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ABSTRACT 

 

Background and Aim: Motilin and ghrelin are released in the interdigestive state to 

initiate and regulate phase III contractions of migrating motor complex (MMC). The 

MMC is responsible for emptying the stomach during the interdigestive period to prepare 

for the next meal. Gastric phase III contractions of the MMC originate in the stomach 

and propagate downward in the alimentary canal. Previously, I found that motilin and 

ghrelin synergistically induced gastric contractions both in vitro and in vivo. Motilin-

induced contractions are regulated by a ghrelin-mediated GABAergic pathway. 

Therefore, I hypothesized that some regions of the stomach are more responsive to 

motilin and ghrelin and propagate strong contractions. The present study determined 

active responsive sites for motilin- and ghrelin-induced contractions in the stomach and 

elucidated mechanisms underlying the induction of these contractions. 

Methods: The stomachs of Suncus murinus or Asian house shrew, a small insectivorous 

mammal, were dissected, and the fundus, proximal corpus, distal corpus, and antrum 

were isolated to examine the effect of motilin- and/or ghrelin-induced contractions by 

using an organ bath system. The stomach segments were pretreated with tetrodotoxin, 

atropine, bicuculline, phaclofen, adenosine, and dopamine to determine the involvement 

of neural pathways. Quantitative PCR (qPCR) was performed to measure the mRNA 

expression of the motilin receptor GPR38. Distribution of ghrelin-immunopositive cells 

and mRNA expression of the GHSR in the different segments of the suncus stomach 

were examined by performing immunohistochemical analysis and RT-PCR, respectively. 



XIX 

 

Results: Results of this in vitro study showed that treatment with 10 P

-10
P M motilin induced 

contractions only in the proximal corpus. In contrast, treatment with 10 P

-9
P M motilin 

induced strong contractions in the other segments of the suncus stomach. Motilin-

induced contractions in each dissected stomach segment were inhibited by tetrodotoxin 

and atropine pretreatment, suggesting that these contractions were mediated by a 

cholinergic neural pathway in the myenteric plexus. Treatment with ghrelin (10 P

-11
P–10P

-7 

PM) in the presence of low-dose motilin (10 P

-10 
PM) induced gastric contractions in a dose-

dependent manner in the fundus and proximal corpus but not in the distal corpus and 

antrum. In addition, pretreatment with ghrelin antagonist D-Lys3-GHRP6 blocked 

motilin-induced contractions in all the stomach segments. In contrast, treatment with 

GABA antagonists reversed this blockade in all the stomach segments. Treatment with 

adenosine AR2AR receptor and dopamine DR2R receptor agonists also reversed ghrelin 

antagonist-induced inhibition of motilin-induced contractions. The mRNA expression of 

motilin receptor, GPR38 was highest in the proximal corpus and was the lowest in the 

antrum. The mRNA expression of GPR38 varied, with low expression in the mucosal 

layer and higher expression in the muscle layer. The mRNA expression of the ghrelin 

receptor, GHSR was detected in all the stomach segments. Density of ghrelin-

immunopositive cells was significantly higher in the fundus and proximal corpus than in 

the other stomach segments.  

Conclusions: These results suggest that each gastric segment shows a different response 

toward motilin and/or ghrelin. The fundus and proximal corpus, including the cardia, are 

the most sensitive and responsive to motilin- and/or ghrelin-induced synergistic gastric 

contractions, suggesting that the proximal part of the stomach along with fundus is the 

first contractile site for MMC onset. In addition, present results indicate that adenosine 



XX 

 

(via AR2AR receptor) and dopamine (via DR2R receptor) play vital roles in regulating motilin- 

and ghrelin-induced gastric contractions. 
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Chapter 1. General Introduction and Objectives 

 

1.1. Research background 

1.1.1. The migrating myoelectric complex (MMC) of the gastrointestinal (GI) 

motility 

Fasting period (or the interdigestive state) is defined as the duration between two 

successive meals. In all monogastric species including humans, under normal conditions, 

ingested food material is digested by the stomach and upper intestine during the digestive 

period, and the upper alimentary canal is almost empty during interdigestive state 

[Romański 2009]. However, the undigested food remnants, bacteria, and cellular debris 

can remain in the gastrointestinal lumen. Therefore, the motor function in the 

interdigestive period ensures mixing, transport, digestion, and absorptive processes of 

the relatively small amounts of luminal content during this period. These movements 

maintain a homeostatic balance between the various secretions during the digestive 

period and absorption in the fasting state which in turn prevents accumulation of the 

digestive juices and also prevents from gastrointestinal motor abnormalities [Romański 

2009]. Since these cycles move down along the bowel, they were called as the migrating 

myoelectric complexes (MMC) [Szurszewski 1969], and it has been considered that 

MMC plays an important role as ‘‘gastrointestinal housekeeper’’ [Code 1979]. 

 

In 1969, Szurszewski recorded intestinal migrating myoelectrical activity using dogs and 

was the first to describe that the motility of the stomach and small intestine in the 

interdigestive occurs cyclically [Szurszewski 1969]. In 1977, Vantrappen et al. reported 

the similar results in humans [Vantrappen et al. 1977]. In human and dog, MMC is cyclic 
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and occur between every 90-120 mins [Wingate 1981, Itoh 1997, Charles 1975]. It is 

subdivided into three phases in mammalian species: Phase I (period of motor quiescence), 

is the quiescence phase with substantially no contractions; Phase II (period of irregular 

and low-amplitude contractions) consists of intermittent, irregular low-amplitude 

contractions; Phase III (period of regular and high-amplitude contractions) is 

characterized by the most active and a short burst of phasic contractions at maximum 

amplitude and frequency [Husebye 1999, Nieuwenhuijs et al. 1998, Sarna 1985]. 

 

Maintaining MMC cycle in the fasting period is physiologically important because MMC 

phase III contributes to the interdigestive flow [Kerlin et al. 1982] and impaired gastric 

phase III activity may result in various GI disorders as it leads to various abnormalities 

like impediment of the gastric contents as well as small intestinal bacterial overgrowth 

(SIBO) [Nieuwenhuijs et al. 1998, Pimental et al. 2002, Takahashi 2013]. The regulation 

of MMC involves myogenic, hormonal and neural mechanisms [Aeberhard et al. 1980, 

Hall et al. 1986, Naslund et al. 1998, Ormsbee et al. 1979, Hakim et al. 1989, Harvey 

1975]. Among those, several hormones have been reported to be involved in mediating 

MMC, but motilin and ghrelin are included to the most vital regulating factors for MMC 

[Itoh et al. 1976, Tack et al. 2006]. 

 

1.1.2. Motilin and its regulatory mechanism 

Motilin known as a prokinetic hormone is released from the endocrine M-cells of the 

duodenojejunal mucosa during the fasting period [Brown et al. 1973, Dryburgh et al. 

1975]. Motilin was given this name because of its ability to stimulate gastric motility 

[Brown et al. 1971]. MMC re-occurs every 90-120 minutes for the reason that plasma 

motilin levels increase cyclically and completely corresponds with the gastric phase III 
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peak in dogs [Hall et al. 1983; Itoh et al. 1976] and humans [Janssens et al. 1983; 

Vantrappen et al. 1979] and this cyclical release of motilin decreases after ingestion of 

food [Ohno et al. 2010]. Exogenous administration of motilin also propagates gastric 

phase III-like contractions in human, dogs, and suncus [Itoh et al. 1976; Janssens et al. 

1983; Kuroda et al. 2015; Wingate et al. 1976; Sakahara et al. 2010]. From the in vitro 

studies, it was reported that motilin-induced a dose-dependent gastric contractions in 

monogastric animals [Broad et al. 2016; Kitazawa et al. 1994; Tsutsui et al. 2009; 

Mondal et al. 2011; Strunz et al. 1975]. Hence, endogenous motilin is considered as the 

physiologically most predominant to induce phase III contraction [Zietlow et al. 2010]. 

Mechanism of motilin-induced gastric contraction varies among the species. However, 

in humans and rabbits, gastric contraction induced by high doses of motilin is mediated 

through direct stimulation of smooth muscle while low doses of motilin exert its effects 

via a neural pathway [Broad et al. 2016; Coulie et al. 1998; Dass et al. 2003; De Smet et 

al. 2009; Depoortere et al. 2003; Jarvie et al. 2007; Sanger 2012; Van Assche et al. 1997]. 

Besides these, motilin induces gastric contractions through neural pathways in the dog 

and suncus [Mizumoto et al. 1993; Mondal et al. 2011]. Together these results suggest 

that regulatory mechanism of motilin-induced contraction varies not only among the 

species but also with concentration of motilin.  

 

1.1.3. Ghrelin and GI motility 

Ghrelin is a 28-amino-acid octanoylated peptide hormone that was first identified in the 

rat and human stomach in 1999 as the endogenous ligand for the growth hormone 

secretagogue receptor (GHS-R) [Kojima et al. 1999]. Plasma ghrelin levels have been 

found to intensify before and decrease after a meal in humans [Cummings et al. 2001]. 

Several previous studies have reported that ghrelin has gastroprokinetic effects 

https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
https://d.docs.live.net/a03324c42bb6e0c1/P@ndora's%20box%20of%20troubles/Doctoral%20%20Thesis/Jan%202017/main%20text/l
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[Depoortere et al. 2005, Sallam 2010]. The major physiological actions of ghrelin include 

the regulation of growth hormone secretion [Kojima et al. 1999, Seoane et al. 2000, Tolle 

et al. 2001], food intake [Nakazato et al. 2001, Wren et al. 2000], energy metabolism 

[Tschop 2000, Perez-Tilve et al. 2011], GI motility [Nakamura 2010, Perboni 2010, 

Zheng J 2009], gastric acid secretion [Fukumoto et al. 2008, Masuda et al. 2000, Yakabi 

2008], cardiovascular function [Okumura 2002], and cell proliferation [Duxbury et al. 

2003, Maccarinelli et al. 2005]. The ghrelin-stimulated gastric contraction was observed 

in rats [Masuda et al. 2000] and mice [Zheng J 2009], suggesting that it acts as a substitute 

for motilin in motilin-lacking rodents [Peeters 2004] as for GI motility. Furthermore, 

peak plasma ghrelin levels are correlated with phase-III-like contractions in rats [Ariga 

et al. 2007]. Ghrelin-induced phase III-like gastric contractions are mediated via vagal 

cholinergic pathways in mice [Zheng J 2009]. Even though ghrelin is not able to stimulate 

gastric phase-III contractions in dogs [Ohno et al. 2006], high dose of ghrelin induced 

premature phase-III-like contractions in human stomachs [Tack et al. 2006]. However, it 

has been observed that endogenous ghrelin is necessary for phase II contractions, and a 

certain level of ghrelin is needed to initiate phase-III contractions in suncus [Kuroda et 

al. 2015].  

1.1.4. Similar properties of motilin and ghrelin  

In humans, 50% of the precursor mRNAs for motilin and ghrelin are homogenous, and 

their ligands also share about 21% amino acid identity [Peeters 2005]. The specific 

receptor for ghrelin is GHS-R [Howard et al. 1996] and for motilin is GPR38 [Feighner 

et al. 1999], both having similar structures belong to the class A rhodopsin-like G-

protein-coupled seven-transmembrane receptor family [McKee et al. 1997]. The 

receptors for motilin and ghrelin also exhibit a substantial homology in sequence with an 
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overall identity of 44%, which is 87% in the transmembrane regions [Peeters 2005]. 

Recent reports on suncus clearly showed using quantitative RT-PCR that suncus ghrelin 

is highly expressed in the mucosal layer of gastric corpus, pylorus, and antrum whereas 

high expression of motilin was found in the small intestine [Ishida et al. 2009, Tsutsui et 

al. 2009]. It has also been shown that both GHS-R and GPR38 receptors in the central 

nervous system were expressed in the hypothalamus, medulla oblongata, pituitary gland 

and the nodose ganglion [Suzuki et al. 2012]. GHS-R mRNA expression has been found 

in both muscle and mucosa of the stomach and small intestine, but GPR38 was found to 

express in the gastric muscle layer, large intestine, lungs and heart [Suzuki et al. 2012]. 

These findings suggest that in suncus, ghrelin and motilin exert their functions through 

specific receptors expressed in the GI tract and in the central nervous system. Moreover, 

previous studies have demonstrated a synergistic effect of motilin and ghrelin on gastric 

contractions in vitro and in anesthetized suncus specimens in vivo [Mondal et al. 2012]. 

In suncus, the coordination of motilin and ghrelin is necessary to initiate phase III 

contraction of the MMC [Mondal et al. 2013]. Therefore, it is reasonable to assume an 

additional or synergistic relationship between these family peptides on various 

physiological functions. However, detailed studies are needed regarding physiological 

functions of motilin and ghrelin besides the stimulation of gastric contraction. 

1.1.5. Asian house shrew (Suncus murinus) 

In spite of the fact that motilin was recognized decades earlier as compared with ghrelin, 

there are lesser reports on its physiological roles besides its contribution in GI motility. 

The possible reason for this might be due the fact that studying the biological action of 

motilin is difficult. Also, one of the possible reasons for the delayed advancement of 

research concerning motilin is that the worldwide conveniently used rodents cannot be 
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utilized for motilin studies owing to the fact that since the common ancestor of these 

animals has the impotent motilin gene, rodents are the natural knockout for motilin and 

its receptors [He 2010]. Dogs and humans are most widely used to study the 

physiological effects of motilin in vivo [Itoh et al. 1978], which limits the study of the 

detailed mechanisms of action, e.g., the distribution of motilin and GPR38 mRNA 

expression and the neuronal signaling pathways involved in motilin stimulation. Ghrelin 

can induce gastric contraction in rats, mice, and humans but not in the dogs and rabbits 

[Ohno et al. 2006]. Therefore, a new animal model relevant to human physiology is 

necessary to study the motilin system. We used Asian house shrew (S. murinus, suncus 

used as a laboratory name), belonging to the order Insectivora and the family Soricidae. 

Order Insectivora has traditionally been regarded as one of the key links for studying the 

origin of mammals [Murphy 2007, Depoortere 2003]. In recent years, suncus has been 

used for anti-emetic research for identifying mechanisms of vomiting and in the 

development of anti-emetic drugs unlike mice and rats [Ito et al. 2002, Ito 2005, Ito et al. 

2003, Matsuki 1996]. Suncus viscera resembles a lot to that of humans and therefore is 

an appropriately suitable model organism for studying the physiology and 

pathophysiology of humans [Yi et al. 2004, Yi et al. 2005]. The structure of the suncus 

gastric mucosa is identical to that of humans, but not hamsters, rats, and mice [Kanamori 

1989]. For example, a glandular mucosa with well-developed luminal folds has been 

identified in the gastric mucosa of suncus, and it has no forestomach as observed in mice 

and hamsters. cDNA sequence of suncus motilin and ghrelin and their receptors have 

already been identified [Suzuki et al. 2012, Ishida et al. 2009, Tsutsui et al. 2009] and it 

was found that suncus has almost identical GI motility and motilin responses to those 

found in humans and dogs [Tsutsui et al. 2009, Sakahara et al. 2010], suggesting that 
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suncus is the suitable animal that can be conveniently used to study the effects of both 

ghrelin and motilin on gastric motility and their mechanisms of action for applications in 

human medicine and physiology. 

1.2. Hypothesis and Objective 

Suncus produce motilin and ghrelin and their receptors throughout the GI tract as 

discussed above. Taken together, I deliberated that some comparatively active site might 

be present in the stomach that respond differently towards motilin and ghrelin. Using 

suncus as a model animal, I examined the main active site of motilin by dividing the 

stomach into various parts. In the second experiment, I studied the synergistic effect of 

motilin and ghrelin on gastric motility in different parts and its underlying mechanism. 

Therefore, this study aimed at finding the most active and responsive site for motilin-

induced contractions in suncus stomach and their regulatory mechanisms.
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Chapter 2. The proximal gastric corpus is the most 

responsive site of motilin-induced contractions in the stomach 

of the Asian house shrew in vitro 

 

2.1. Introduction 

2.1.1. Motilin as an important regulator of MMC 

During the fasting period, the upper gastrointestinal (GI) tract undergoes a temporally 

coordinated cyclic motor pattern known as the migrating motor complex (MMC) in both 

humans and dogs [Vantrappen et al. 1979, Szurszewski 1969]. MMC is believed to be 

physiologically important for the mechanical and chemical cleansing of the empty 

stomach and preparation for the next meal [Code 1979; Sarna et al. 1983; Sarna 1985; 

Wingate 1981]. Motilin was initially isolated from a side fraction produced during the 

purification of secretin [Brown et al. 1971], and later its complete amino acid sequence 

was determined, by J.C. Brown in 1973 from porcine duodenal mucosa [Brown et al. 

1973]. Several physiological factors are needed to sustain motor function in the 

interdigestive period, but motilin is considered the most important in the regulation of 

MMC. Some previous studies have revealed that an increase in plasma motilin 

concentration results in simultaneous contractile activity in the stomach [Itoh et al. 1978; 

Janssens et al. 1983]. Also, exogenous motilin administration induced MMC phase III-

like contraction in the stomach [Itoh et al. 1976] and gastric phase III contraction was 

completely eliminated by neutralizing circulating motilin with motilin antiserum or 

motilin antagonist [Lee et al. 1983; Lee et al. 1978; Ozaki et al. 2009; Sudo et al. 2008], 

indicating that endogenous motilin induces gastric phase III in the interdigestive period. 

These rhythmic motor patterns originate from the foregut and propagate downward in 
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the alimentary canal [Kellow et al. 1986; Sanger et al. 2010]. Since the plasma motilin 

peak is associated with the gastric phase III peak, I hypothesized that there could be a 

specific area in the stomach where motilin binds with its receptor and initiates gastric 

phase III contraction. There also may be a possibility that different areas of the stomach 

may respond differently towards motilin. 

 

2.1.2. Advantages of suncus for studying gastrointestinal physiology including 

gastric motility 

Previously, the contractile properties of the S. murinus stomach, in both conscious free-

moving and in an organ bath experiment was studied, and found that S. murinus has 

almost the same GI motility and motilin response as that found in humans and dogs 

[Sakahara et al. 2010; Tsutsui et al. 2009], indicating that S. murinus can be used for GI 

motility studies. From in vivo and in vitro experiments using S. murinus, it was 

demonstrated that motilin-induced gastric contractions are mediated through the 

myenteric plexus [Mondal et al. 2011; Sakahara et al. 2010]. Similar results showing 

involvement of myenteric plexus in motilin-evoked gastric contractions have been 

reported in other species [De Smet et al. 2009; Kitazawa et al. 1995; Mizumoto et al. 

1993; Ohshiro et al. 2008; Van Assche et al. 1997]. 

In this study, I investigated the active and most responsive site for motilin-induced gastric 

contractions in the suncus stomach. Thus, I examined the motilin-induced gastric 

contractile pattern in different parts of the stomach and its mechanism using an organ 

bath system. To confirm the functional results, I also measured the mRNA expression of 
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motilin receptor GPR38 in various parts of the S. murinus stomach using quantitative 

PCR analysis. 
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2.2. Materials and Methods 

 

2.2.1. Ethical approval 

All procedures were approved and performed in accordance with the Saitama University 

Committee on Animal Research. All efforts were made to minimize animal suffering and 

to minimize the number of animals used in the experiment. 

 

2.2.2. Animals 

Experiments were conducted with female S. murinus, aged 15-20 weeks old and 

weighing 50–75 g, of an outbred KAT strain, established from a wild population in 

Kathmandu, Nepal. Animals were housed individually in plastic cages equipped with an 

empty can as a nest box and were provided food (trout pellets; Nippon Formula Feed 

Manufacturing Co., Ltd., Yokohama, Japan) and water ad libitum. The metabolizable 

energy content of the pellets was 344 kcal 100 g P

-1
P, consisting of 54.1% protein, 30.1% 

carbohydrate, and 15.8% fat. The animal room was maintained at 21–24°C and the light 

and dark cycle were controlled to change every 12 h (lights on from 8.00 to 20.00 h). 

 

2.2.3. Drugs used 

The administration volume of each drug was 1% of the bath volume. Acetylcholine 

chloride (ACh; Sigma-Aldrich Co. LLC., USA) was dissolved in distilled water (DW), 

and synthetic S. murinus motilin (Bex, Tokyo, Japan) was dissolved in 0.1% BSA/PBS. 

In antagonist or inhibitor experiments, the stomachs were equilibrated before the 

application of S. murinus motilin with the antagonist or inhibitor: atropine sulfate (10 P

-6
P 
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M; Merck, USA) and tetrodotoxin (TTX; 10P

-6 
PM; Wako Pure Chemical Industries, Ltd, 

Osaka, Japan) for 30 min. Concentrations of drugs are expressed as final molar 

concentrations in the bath solution. Both atropine sulfate and TTX were dissolved in DW 

before use. All reagents were prepared for each experiment according to the 

manufacturer’s instructions.  

 

2.2.4. Preparation of S. murinus isolated stomach 

 After the animals were fasted for 8 h, they were decapitated after being deeply 

anesthetized with pentobarbital sodium (100 mg/kg IP). The stomach was dissected out 

after laparotomy and immediately placed in freshly prepared Krebs’ solution (NaCl 118 

mM, KCl 4.75 mM, CaClR2R 2.5 mM, MgSOR4 R1.2 mM, NaHR2RPOR4R 1.8 mM, NaHCOR3R 25 

mM, and glucose 11.5 mM; pH 7.2–7.4). The mesentery attachments and fatty tissues 

were removed, and the inside of the stomach was washed with Krebs’ solution through 

a small incision in the gastric fundus. The stomachs were sectioned into four parts: the 

fundus, proximal corpus (includes the cardia), distal corpus, and antrum, as shown in Fig. 

1. The cutting sites of the stomach were decided by two notches, the cardiac notch, and 

angular notch. Differences in tissue coloring were also used to distinguish between 

different parts. The whitish body above the cardiac notch was dissected as fundus. The 

proximal corpus was cut out along the lower part of the esophagus, and the cardiac region 

was included in the proximal corpus section. The remainder of the cylindrical body was 

considered distal corpus. The antrum is distinctly visible as a whitish pink body below 

the angular notch. Tissues with mucosa attached to the muscle layer were used instead 

of muscle layer strips. The longitudinal and circular muscle layers were not separated 

into strips because as previously shown, myenteric plexus is important for motilin-
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induced suncus gastric contractions [Mondal et al. 2012], and keeping an intact 

anatomical structure of the myenteric neuron and smooth muscle is essential for studying 

motilin-induced contraction. The segmented stomach parts were mounted in 10-ml 

water-jacketed organ baths along the longitudinal muscle direction with the thread tied 

on cut edge surfaces. Contractility is hence obtained from longitudinal muscle. Tissues 

were initially loaded with approximately 0.5 g weight. The temperature of Krebs’ 

solution was maintained at 37 ± 0.5°C, and the solution was aerated continuously with 

carbogen (a mixture of 95% OR2R and 5% COR2R). 

 

2.2.5. Gastric Contractility study 

Contractile activities of the stomach with motilin treatment were monitored using an 

isometric force transducer (UM-203, Iwashiya Kishimoto Medical Instruments, Kyoto, 

Japan) and software (PicoLog for Windows, Pico Technology Ltd., St. Neots, UK). To 

normalize the contractions of each segment, stomach sections were first treated with 

acetylcholine chloride (ACh 10P

−5
P M) twice before the experiment, and at the end of the 

experiment, ACh (10 P

−5
P M) was introduced once again into the organ bath. The percentage 

of maximal contractions were then calculated by averaging the tonic response induced 

by these three ACh (10 P

−5
P M) administrations. To examine the effect of motilin, each 

stomach section was treated with the S. murinus motilin (10P

-10
P to 10 P

-7
P M) in the absence 

or presence of antagonist or inhibitor, and motilin-induced contractions were measured, 

and contraction was measured in g weight tension. Then, the effects of S. murinus motilin 

in the absence or presence of antagonists or inhibitors were determined. The pH of the 

bath was checked before drug administration to ensure it was between 7.2 and 7.4. 
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2.2.6. GPR38 mRNA expression 

Stomachs were dissected into four parts: fundus, proximal corpus, distal corpus, and 

antrum; then, the mucosal layers and the muscle layer were peeled off using a glass slide. 

Separated tissues were frozen with liquid nitrogen and broken using CRYO PLUS 

(Microtech Co., Ltd., Chiba, Japan) before being dipped in ISOGEN (Nippon Gene, 

Tokyo, Japan). The total RNA from the tissues was extracted using ISOGEN (Nippon 

Gene) according to the manufacturer’s instructions and then subjected to DNase 

treatment. cDNA was synthesized from 1 μg total RNA using the High Capacity RNA-

to-cDNA kit (Applied Biosystems, USA) according to the manufacturer’s instructions. 

The oligonucleotide-specific primers for S. murinus β-actin are forward 5′- 

TGCGTGACATCAGGAGAAG -3′; reverse 5′- TCCAGAGAGGAAGAGGATGC -3′, 

and those for GPR38 are forward 5′- ACAGGCAGACCATCCGC -3′; reverse 5′- 

TACATTGTCCGGGTGTCCTT -3′. The quantitative PCR (qPCR) reactions were 

performed using a Light Cycler (Roche Diagnostics, USA) with SYBR Premix Ex-Taq 

GC (Takara BIO, Shiga, Japan). The initial template denaturation was programmed for 

30 s at 95°C. PCR was performed with 40 cycles of 10 s at 95°C, 20 s at 64°C and 30 s 

at 72°C, and a final cooling step was performed for 30 s at 40°C. The S. murinus β-actin 

mRNA was used as the invariant control. The expression of each mRNA is shown 

relative to β-actin mRNA expression. All reactions were performed in duplicate, and each 

transcript was quantitatively measured by establishing a linear amplification curve from 

serial dilutions of each plasmid containing the amplicon sequence. The amplicon size 

and specificity were confirmed using a melting curve analysis and 2% agarose gel 

electrophoresis. 
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2.2.7. Statistical analysis 

The results are expressed as the mean ± SEM. Recording experiments were repeated 

individually at least three times, and similar results were obtained. The number of 

animals used for statistical analyses are represented in the figure legends. I used 

GraphPad Prism 5 software (GraphPad Software Inc., CA, USA) to analyze the data. 

Statistical analyses were performed using one-way ANOVA followed by Tukey’s 

multiple comparison test. P < 0.05 was considered statistically significant. 
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2.3. Results 

 

2.3.1. Spontaneous contractile pattern in the different segments of isolated stomach  

The isolated S. murinus stomach in the organ bath showed spontaneous contraction 

activity under a basal 0.5-gram weight (gwt) resting tension, and contraction differed 

among all parts of the stomach. In the fundus, the spontaneous contractile activity was 

unclear and arrhythmic, and the amplitude of spontaneous contraction was about 0.2 gwt 

(Fig. 2A). The amplitude of the spontaneous contraction of the proximal corpus was 

approximately 0.4 gwt, and the contractile rate was 12–16 cycles per minute (Fig. 2B). 

In the distal corpus, the amplitude of the spontaneous contraction activity was 

approximately 0.3 gwt, and the rate was approximately 8–12 cycles per minute (Fig. 2C). 

In the antrum, the amplitude of the spontaneous contraction activity was approximately 

0.5 gwt, and the rate was approximately 2–6 cycles per minute (Fig. 2D). The maximum 

tensions produced by ACh (10 P

-5
P M) were also different in each stomach segment (Fig. 

2A–D). In fundus and proximal corpus, ACh-induced maximum tension was 

approximately 2.5 gwt, whereas it was 5 gwt in the distal corpus and 4 gwt in the antrum. 

 

2.3.2. Responses to motilin in different segments of stomach 

To examine the difference in response to motilin treatment in stomach sites, S. murinus 

motilin (10P

-10
P–10P

-7
P M concentrations) was introduced into the organ bath, and contractile 

amplitudes and frequencies were measured. Although motilin-induced contraction 

occurred in a concentration-dependent manner, the responses to motilin varied according 

to the stomach parts (Fig. 2A–D and Fig. 3). In the fundus, motilin-induced contractions 

in a dose-dependent manner were observed starting from a concentration of 10 P

-9
P M. 
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Maximum contractions at the 10 P

-7
P M concentration were about 64% of ACh-induced 

contractions (Fig. 2A, Fig. 3). In the proximal corpus, motilin-induced contractions were 

observed starting from a concentration of 10 P

-10
P M; 50% response of the ACh was 

observed in response to this concentration. Maximum contractions (89%) were observed 

in response to the 10 P

-9
P M concentration, and contractions were the same at higher doses 

of motilin, 10P

-8
P M and 10 P

-7
P M (Fig. 2B, Fig. 3). In the distal corpus, the 10 P

-10
P M motilin 

concentration did not increase contractile activity. The contraction was induced by 

motilin concentrations of 10 P

-9
P M and higher; contraction responses were 25%, 54%, and 

71% of the total ACh-induced contractions at 10 P

-9
P M, 10P

-8
P M, and 10P

-7
P M motilin 

concentrations, respectively (Fig. 2C, Fig. 3). In the antrum, the amplitude of contraction 

(gwt tension) was increased in a dose-dependent manner starting from the 10 P

-9
P M motilin 

concentration, and showed the maximum contraction response of 28% at 10 P

-7 
PM (Fig. 3), 

although this was not significant. In addition, the frequency of contraction was increased 

significantly at 10 P

-9
P M, 10 P

-8
P M, and 10 P

-7
P M motilin concentrations and the rate of 

contractile activity changed to 8-9 cycles per minute (Fig. 2D). The EC50 values of 

motilin-induced contractions in different regions of the stomach are shown in Table-1. 

Since 10 P

-11 
PM motilin concentration did not induce contraction in any stomach part, 

contractions at this concentration were considered to be zero. It was observed that the 

proximal corpus had higher potency because it had a low concentration of motilin-

induced gastric contractions compared to other parts of the stomach. Comparing 

contraction responses for motilin in each stomach sections, the response in the proximal 

corpus was significantly higher than that in the other sections to the 10 P

-9
P M, 10 P

-8
P M and 

10P

-7
P M motilin concentrations (Fig. 3). Even at the lower dose (10 P

-10
P M), the proximal 

corpus showed high reactivity.  



 2| Motilin target site in the stomach 
 

18 

 

2.3.3. The cholinergic pathway of the motilin-induced contraction 

Atropine, a muscarinic receptor antagonist, suppressed spontaneous contractile activity 

in all of the stomach sections (Fig. 4A–D). Under atropine pretreatment, motilin 

concentrations of 10 P

-10
P to 10 P

-8
P M did not induce contraction in any stomach parts (Fig. 

4A–E). However, motilin concentration of 10 P

-7
P M induced contractions in all parts of the 

stomach, but they were not significant. (Fig. 4E).  

  

2.3.4. The myenteric plexus pathway of the motilin-induced contraction 

I also examined the involvement of TTX, a potent neurotoxin that blocks action 

potentials in nerves by binding to the voltage-gated NaP

+
P channel, and found that TTX did 

not affect the spontaneous contraction of the fundus, proximal corpus, and distal corpus 

(Fig. 5A–C). The spontaneous contraction of the antrum altered after TTX administration, 

as shown in Fig. 5D and the amplitude was slightly decreased. Under TTX pretreatment, 

motilin concentrations of 10 P

-10
P toP

 
P10 P

-8
P M did not evoke contraction in all of the stomach 

segments (Fig. 5A–E) and only the 10 P

-7
P M concentration slightly induced contractions, 

not significantly, in the fundus, proximal corpus, and distal corpus (Fig. 5E).  

 

2.3.5. GPR38 mRNA expression in the stomach 

To analyze the distribution of GPR38 in the stomach, I compared the GPR38 mRNA 

expression level in the fundus, proximal corpus, distal corpus, and antrum using qPCR. 

I found that GPR38 mRNA expression was low in the mucosal layer and high in the 

muscle layer in all areas of the stomach. In the muscle layer, the GPR38 mRNA 
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expression level differed among stomach parts, with the highest expression in the 

proximal corpus and lowest in the antrum (Fig. 6). 
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2.4. Discussion 

 

2.4.1. Sensitivity towards motilin is region-specific 

I observed that there are differences in response to motilin in various stomach parts in 

vitro. The response to motilin in the proximal corpus was higher than that in the other 

parts of the stomach, especially with the low motilin concentration, i.e., the 10 P

-10 
PM 

motilin concentration, which slightly induced contractions and the contraction response 

at 10 P

-9 
PM were significantly higher in the proximal corpus than that in the other parts. 

From previously published reports of concentration-dependent contractile effects of 

motilin on the isolated S. murinus whole stomach in vitro, it was reported that motilin-

induced contraction occurred starting from the 10 P

-9
P M concentration [Mondal et al. 2011]. 

Even though the stomach was divided into four sections, each of sections retained the 

ability to react to motilin, similar to that observed in vitro in the whole stomach. Also, 

the speed of onset of contraction and the amplitude of contraction increased in all the 

parts with motilin in dose dependent manner. This delay might be caused by the 

permeation of the motilin into the tissue. Interestingly, the effect of the motilin in the 

antrum was different from that in the other sections, a dose-related increase in contractile 

frequency was observed in the antrum. However, both the fundus and antrum showed 

dose-dependent increases in contraction and the proximal corpus showed maximum 

contractile activity at much lower dose of motilin at 10P

-10
P M concentration. These results 

suggest that the proximal corpus is the most sensitive to motilin treatment. In a study on 

humans, it has already been showed that different regions of the GI tract responded 

differently to electrical field stimulation-induced contractions under motilin pretreatment 

[Broad et al. 2012]. They clearly showed that in gastric fundus and antrum, EFS evoked 
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contraction were monophasic, and frequency-dependent which were caused by 

cholinergic activity dominating simultaneous activation of inhibitory nitrergic neurons, 

as well as this difference in region-specific response towards motilin, is attributed to 

various neural pathways like cholinergic, nitrergic and tachykinin-ergic being involved 

[Broad et al. 2012]. Likewise, in suncus, involvement of these neural pathways in the 

myenteric plexus has been reported by Mondal et al. to be involved in motilin-induced 

contraction responses [Mondal et al. 2011]. 

 

2.4.2. Physiological correlation of MMC and motilin 

It has been found that plasma motilin concentration in dogs and humans shows cyclic 

changes during MMC, and its peak is correlated with phase III contractions. In humans 

and dogs, plasma motilin concentrations ranges approximately 100–500 pmol/L, 

corresponding to 10 P

-10 
PM–10P

-8
P M in the blood [Hall et al. 1983; Itoh et al. 1983; Itoh et 

al. 1978; Janssens et al. 1983; Vantrappen et al. 1979]. In the present study, only the 

proximal corpus responded to motilin at the concentration of 10 P

-10
P M, which is close to 

the physiological dose. Based on this result, the proximal corpus is thought to be the first 

target site of motilin, and it is probable that contractions begin at the proximal corpus 

and propagate downwards.  

 

2.4.3 Regulatory mechanism of motilin-induced gastric contraction 

I found that motilin-induced contractions in all gastric segments were inhibited by TTX 

and atropine pretreatment, suggesting that motilin-induced gastric contraction is 

mediated through the cholinergic neural pathway in the myenteric plexus in all regions 
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of the stomach. In the fundus and corpus, at high concentration, motilin 10 P

-7 
PM slightly 

increased contraction even under atropine and TTX treatment but is almost negligible. It 

has been reported that plasma motilin concentration varies approximately between 10 P

-10 

PM–10P

-8
P M [Hall et al. 1983; Itoh et al. 1983; Janssens et al. 1983; Vantrappen et al. 1979]. 

The contractile action of motilin from 10 P

-10 
Pto 10P

-7
P M concentration in all the segments 

of the suncus stomach was significantly eliminated by atropine and tetrodotoxin 

treatment and mediates through the neural pathway in all the parts of the suncus stomach. 

However, in previous reports, a high concentration of motilin that is thought to be 

pharmacological concentration stimulate gastric contraction by the myogenic effect. For 

example, motilin-induced myogenic contraction in rabbits at 10 P

-6 
PM [Adachi et al. 1981; 

Depoortere et al. 1995] and 10P

-7 
PM for humans and chickens; [Coulie et al. 1998; Shim 

2002; Kitazawa et al. 1995; Kitazawa et al. 1997]; however, this myogenic contraction 

was not evident in the suncus. Atropine or TTX treatment almost completely attenuated 

the motilin-evoked gastric contraction in each segment of stomach indicating that each 

gastric segment contracts with the similar mechanism i.e. cholinergic neural pathway. 

 

2.4.4. Motilin receptor GPR38 mRNA expression 

Previously, the S. murinus motilin receptor (GPR38) gene was identified and the fact that 

its expression was high in the stomach [Suzuki et al. 2012]. I analyzed this in more detail 

and showed that the distribution of GPR38 mRNA expression differs in different parts 

of the stomach by using quantitative PCR method. It was found that GPR38 mRNA 

expression was low in the mucosal layer and high in the muscle layer in every part of the 

stomach. Moreover, in the muscle layer, the GPR38 mRNA expression level differed in 

each stomach section, with the highest in the proximal corpus and the lowest in the 
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antrum. Therefore, the high reactivity for motilin in the proximal corpus may be caused 

by the high expression of GPR38, suggesting that the proximal corpus area, including 

the cardia, may be a site of onset of motilin-induced phase III contraction. In humans, 

motilin receptor immunoreactivity was identified in the muscle and myenteric plexus in 

the upper gut. Immunoreactivity studies indicate that the motilin receptor is co-expressed 

with choline acetyltransferase in neurons [Broad et al. 2012]. Together, these results 

suggest that GPR38 expressed in the neurons of the myenteric plexus is the first target of 

plasma motilin in MMC. 
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2.5. Summary 

From the present study, it can be concluded that the proximal corpus and cardia was an 

important site for motilin-induced contractions, with high GPR38 mRNA expression. 

Motilin 10P

-9 
PM stimulates contraction in all the parts of the stomach, but the lower 

concentration of motilin 10 P

-10 
PM P

 
Pstimulates contraction in the proximal corpus, 

suggesting that the proximal corpus is the first site in which contractions are induced by 

motilin stimulation, and hence the MMC propagates from the proximal corpus to the 

distal tract and downwards in the GI tract. These motilin-evoked gastric response is 

mediated by cholinergic neurons in the myenteric plexus.
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Chapter 3. Synergistic effect of motilin and ghrelin induces 

different responses in different segments of the stomach of 

Suncus murinus in vitro 

 

3.1 Introduction 

 

3.1.1 Regulatory mechanism underlying motilin- and ghrelin-induced gastric 

contractions 

An evident association between plasma motilin levels and gastric phase III contractions 

has been reported in dogs and humans [Itoh et al. 1976, Itoh et al. 1978, Janssens et al. 

1983, Vantrappen et al. 1979, Hall et al., 1983]. Similar plasma ghrelin peaks and phase 

III-like contractions have been observed in rats [Ariga et al. 2007]. In S. murinus, the 

gastric migrating motor complex (MMC) is regulated synergistically by motilin and 

ghrelin both in vitro and in vivo [Mondal et al. 2012]. However, motilin-induced 

contractions vary among different stomach segments, as shown in Chapter 2. Therefore, 

I investigated the synergistic effect of motilin and ghrelin in different segments of the 

suncus stomach. 

Endogenous ghrelin is important for inducing gastric phase II and phase III contractions 

[Mondal et al. 2013]. Moreover, ghrelin is an indispensable hormone for promoting 

motilin-induced gastric contractions in conscious suncus. Interestingly, GABAergic 

neurons seem to be involved in motilin-induced contractions [Kuroda et al. 2015]. 

Therefore, I examined the involvement of the GABAergic pathway in different stomach 

segments by using an in vitro organ bath system. To determine the complete mechanism 

underlying motilin-induced gastric contractions, I investigated the driving forces of 
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GABAergic neurons. Several studies on the central nervous system (CNS) indicate that 

adenosine and dopamine act as major neurotransmitters and neuromodulators of 

GABAergic neurons [Fuxe et al. 2003, Ferre et al. 1993]. 

 

3.1.2 Adenosine and dopamine as neurotransmitters and neuromodulators  

Adenosine is a ubiquitous endogenous homeostatic modulator secreted by almost all cells, 

including neuronal and glial cells. Newby in 1984 named adenosine as a “retaliatory 

metabolite,” and Englar in 1991 named it as a “signal of life” [Newby 1981, Englar 1991]. 

Adenosine performs different functions in the regulation of cardiopulmonary, renal, 

nervous, and gastrointestinal systems [Christofi et al. 2001, Riberio et al. 2003]. It also 

plays important roles in preventing and inducing apoptosis [Di Iorio et al. 2002]. Unlike 

other neurotransmitters, adenosine is not stored in synaptic vesicles but is released from 

cells in response to metabolic stress or after the breakdown of ATP, which is produced 

by both neuronal and non-neuronal cells [Ren et al. 2008, Abbracchio et al. 2006]. Under 

basal conditions, adenosine is nonspecifically released into the extracellular space by 

normal cells and neurons [Begg et. al 2002]. Hasko et al. reported that electrically 

induced longitudinal muscle preparations of the myenteric plexus release adenosine 

[Hasko et al. 2007] and that endogenous adenosine concentrations in the myenteric 

plexus of the gastrointestinal (GI) tract vary with pOR2R levels [Deshpande et al. 1999]. 

Dopamine is also an essential monoamine neurotransmitter abundantly found in the CNS 

and peripheral nervous system. It plays a major role in regulating emotion and cognition, 

pain, and reward system and in modulating GI motility [Nieoullon 2002, Wise 2004, 

Zhang et al. 2012, Carlino et al. 2016]. 
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Endogenous adenosine and dopamine inhibit GABAergic neurons through A R2AR and DR2R 

receptors, respectively [Hu et al. 1997, Jo et al. 1999, Sebastiao et al. 1996, Mayfield et 

al. 1994, Floran et al. 1997]. Although mechanisms underlying GABAergic signaling in 

the gut are unclear, recent data highlight the functional significance and effective role of 

enteric GABAergic signaling in motilin-induced gastric contractions. Mondal et al. 

showed that adenosine significantly suppressed ghrelin-induced contractions and did not 

inhibit motilin-induced contractions in the suncus stomach [Mondal et al. 2013]. Also, 

another study showed that dopamine DR2R receptor expressed by GABAergic neurons 

suppressed food intake and small intestinal transit [Kaneko et al. 2010]. These findings 

suggest that adenosine AR2AR receptor and dopamine DR2R receptor play significant roles in 

regulating GABAergic signaling. Therefore, I investigated whether adenosine and/or 

dopamine can be used as substitutes for ghrelin and whether they can accelerate motilin-

induced gastric contractions by inhibiting GABAergic pathway.  

By using S. murinus as a model organism, I determined the synergistic effect of motilin 

and ghrelin on different stomach segments. In addition, I determined the involvement of 

adenosine and dopamine through the AR2AR and DR2R receptors, respectively, on motilin-

induced contractions in different segments of the suncus stomach and in the whole 

stomach by using specific agonists of these receptors. 
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3.2 Materials and Methods 

3.2.1. Ethical approval 

All procedures used in this study were approved by and were performed in accordance 

with the Saitama University Committee on Animal Research. All efforts were taken to 

minimize animal suffering and to minimize the number of animals used in the study. 

 

3.2.2. Animals 

Experiments were conducted with female S. murinus (age, at least 15–20 weeks; weight, 

50–75 g) obtained from an outbred KAT strain established from a wild population in 

Kathmandu, Nepal. The animals were housed individually in plastic cages equipped with 

an empty can as a nest box and were provided food (trout pellets; Nippon Formula Feed 

Manufacturing Co., Ltd., Yokohama, Japan) and water ad libitum. Metabolizable energy 

content of the pellets was 344 kcal·100 g P

-1
P, with 54.1% protein content, 30.1% 

carbohydrate content, and 15.8% fat content. The animal room was maintained at a 

temperature of 21°C–24°C and 12-/12-h light/dark cycle (lights on from 8.00 to 20.00 h). 

The animals were fasted for 8 h and were decapitated after being deeply anesthetized 

with pentobarbital sodium (100 mg/kg IP). Their stomachs were removed immediately 

by performing midline incision and were used for performing molecular, morphological, 

and organ bath studies. In addition, the stomachs were sectioned into four segments, 

namely, the fundus, proximal corpus (including the cardia), distal corpus, and antrum, as 

described in Chapter 2. 
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3.2.3. RT-PCR 

The dissected stomach segments were frozen in liquid nitrogen and were ground using 

CRYO PLUS (Microtech Co., Ltd., Chiba, Japan) before dipping in ISOGEN (Nippon 

Gene, Tokyo, Japan). Total RNA from the tissues was extracted using ISOGEN, 

according to the manufacturer’s instructions. Trace DNA contamination was removed by 

treating the RNA with DNase (Promega, Madison, WI, USA). Next, 1 μg DNase-treated 

total RNA was reverse transcribed using Superscript P

®
P III Reverse Transcriptase 

(Invitrogen, Carlsbad, CA) and random primers (#48190-011; Invitrogen). The following 

primers were used for performing RT-PCR: (1) sense (5- 

CTTCCTCCCAAGTCCTGCTG -3) and antisense (5-

CTTCCTCCCAAGTCCTGCTG-3) primers against the suncus ghrelin gene (fragment 

size, 165 bp) and (2) sense (5-TGCGTGACATCAAGGAGAAG-3) and antisense (5-

GACAGCACTGTGTTGGCCATA-3) primers against the suncus β-actin gene (internal 

control; fragment size, 274 bp). PCR was performed using iCycler (Bio-Rad, Hercules, 

CA, USA). 

 

3.2.4. Tissue preparation for morphological analysis 

The stomach segments were immediately dissected, were opened along their longitudinal 

axes, and were immersed in 4% paraformaldehyde for 12 h. Tissues of different stomach 

segments were dehydrated in an ascending ethanol series, were immersed in xylene, and 

were embedded in paraplast (Oxford Labware, MO, USA). Next, tissue blocks produced 

were cut into 10-μm-thick sections by using a microtome and were mounted on slides 

coated with silane (Shin-Etsu Chemicals, Tokyo, Japan). 
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3.2.5. Immunohistochemical analysis 

Immunohistochemical detection of ghrelin-immunopositive (ghrelin-ip) cells was 

performed using an anti-ghrelin serum (#603) and avidin–biotin–peroxidase complex 

(ABC) method. Production and specificity of the anti-ghrelin serum has been confirmed 

in previous studies [Date et al. 2000, Hosoda et al. 2000], which showed that the anti-

ghrelin serum recognizes the N-terminal region of rat ghrelin. The stomach sections were 

deparaffinized with xylene and were rehydrated using a descending ethanol series. The 

sections were treated with 0.5% sodium metaperiodate for 10 min at room temperature 

to block endogenous peroxidase activity and were washed with distilled water (DW). 

Next, the sections were treated with 1% sodium thiosulfate for 10 min. After washing 

with DW, the sections were incubated with a blocking reagent (TNBS) for 1 h. Next, the 

sections were incubated overnight in a humid chamber with the anti-ghrelin serum 

diluted to 1:100,000 in the blocking reagent. After washing with phosphate-buffered 

saline (PBS), the sections were incubated for 1 h with biotin-conjugated anti-rabbit IgG 

serum (Vectastain ABC kit; Vector, Burlingame, CA, USA) diluted to 1:300 with the 

blocking reagent and were washed again with PBS. Next, the sections were incubated for 

30 min with ABC solution (Vectastain ABC kit) prepared according to the 

manufacturer’s instructions. After washing with PBS for 10 min, the sections were 

treated with 0.02% 3,3-diaminobenzidinetetrachloride (DAB) mixed with 0.006% 

hydrogen peroxide (HR2ROR2R) and 0.05 M Tris–HCl (pH 7.6) for 4–5 min to detect 

immunostaining. After washing with PBS and Millipore water, the sections were 

dehydrated using a graded ethanol series, cleared in xylene, mounted with Entellan 

(Merck, Darmstadt, Germany), and viewed under a light microscope (BX60; Olympus, 
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Tokyo, Japan). All the incubations were performed in a humid chamber at room 

temperature.  

 

3.2.6. Morphometric analysis 

Densities of ghrelin-ip cells in the different segments of the suncus stomach were 

estimated. Digital photographs were obtained using a light microscope equipped with a 

digital camera (DP70; Olympus). The number of ghrelin-ip cells in each section was 

counted, and the area of mucosal layer in each section was measured using a 

computerized image analysis program ImageJ (National Institutes of Health, Bethesda, 

MD). Density of ghrelin-ip cells was calculated as the number of immunopositive 

mucosal cells per unit area (cells/mm P

2
P). All data are expressed as mean ± SEM. 

 

3.2.7. Preparation of the isolated S. murinus stomach 

The stomachs were dissected after performing laparotomy and were immediately placed 

in freshly prepared Krebs’ solution (118 mM NaCl, 4.75 mM KCl, 2.5 mM CaCl R2R, 1.2 

mM MgSOR4R, 1.8 mM NaHR2RPOR4R, 25 mM NaHCOR3R, and 11.5 mM glucose [pH 7.2–7.4]). 

Mesenteric attachments and fatty tissues were removed, and the insides of the stomachs 

were washed with Krebs’ solution by creating a small incision in the fundus. Next, the 

stomachs were sectioned into four segments, i.e., the fundus, proximal corpus (including 

the cardia), distal corpus, and antrum. The gastroesophageal junction, i.e., the cardiac 

region, was included in the proximal corpus segment (criteria for dividing the stomach 

into segments and their preparation is mentioned in Chapter 2, section 2.2.4). The 
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stomach segments were mounted in 10 ml water-jacketed organ baths, with an initially 

loaded with approximately 0.5 gwt. The temperature of the Krebs’ solution was 

maintained at 37°C ± 0.5°C, and the solution was aerated continuously with a mixture of 

95% OR2R and 5% COR2R. 

 

3.2.8. Analysis of in vitro gastric contractions 

Mechanical activity of the stomach segments was monitored with an isometric force 

transducer (UM-203; Iwashiya Kishimoto Medical Industrials, Kyoto, Japan) and 

PicoLog for Windows (Pico Technology Ltd., St Neots, UK). The initial load was set at 

0.5 g for each preparation. Experiments were initiated after stabilization of contraction 

pattern for 45 min. To normalize gastric contractions, the organ bath was treated with 10 P

-

5
P M acetylcholine (ACh) twice before cumulatively administering motilin and once at the 

end of the experiment. The percentage of maximal contractions was calculated by 

averaging tonic response induced by the three treatments with 10 P

-5
P M ACh. Contraction 

amplitude was expressed as a relative contraction (%) of ACh-induced response. In each 

case, ACh administration induced almost the same tonic GI contractions in each stomach 

segment. To examine the synergistic effect of motilin and ghrelin, each stomach segment 

was cumulatively treated with suncus ghrelin (10 P

-11
P–10P

-7
P M) with or without pretreatment 

with suncus motilin (10 P

-10 
PM) for 30 s and responses induced were recorded. To elucidate 

mechanism underlying the cumulative effect of motilin and ghrelin, the stomach 

segments were pretreated with 10 P

-6
P M atropine for 30 min. To determine regulatory 

mechanism underlying the effect of motilin, the stomach segments were pretreated with 

D-Lys3-GHRP6 (a ghrelin receptor antagonist) 10 min before cumulatively 

administering motilin (10P

-11
P–10P

-7
P M). In addition, the stomach segments were treated 
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with 10 P

-7
P M adenosine (an adenosine receptor agonist) and 10 P

-5
P M 6-hydroxydopamine 

hydrochloride (a dopamine receptor agonist) 15 min before cumulatively administering 

motilin. The pH of the buffer was maintained between 7.2 and 7.4 before administering 

the drugs. 

 

3.2.9. Drugs used 

Administration volume of each drug was 1% of the bath volume. Atropine sulfate (Merck, 

USA), ACh, adenosine (a non-selective adenosine receptor agonist), 6-hydroxydopamine 

hydrochloride (a non-selective dopamine receptor agonist), PSB 0777 ammonium salt 

(an adenosine AR2AR receptor agonist), B-HT 920 (a dopamine DR2R receptor agonist; Sigma-

Aldrich Co. LLC., USA) were dissolved in DW. Synthetic S. murinus motilin (Bex, 

Tokyo, Japan), active human ghrelin (Asubio Pharma Co., Ltd. Hyogo, Japan), and D-

Lys3-GHRP6 (ghrelin antagonist; Bachem, Torrance, CA, USA) were dissolved in 0.1% 

bovine serum albumin/PBS. Drug concentrations are expressed as final molar 

concentrations in the bath solution. Atropine sulfate was dissolved in DW before use. 

For each experiment, all the reagents were prepared according to the manufacturer’s 

instructions. 

 

3.2.10. Statistical analysis 

Results are expressed as mean ± SEM from at least four separate animals. Recording 

experiments were repeated individually at least three times, and similar results were 

obtained. The number of animals used for statistical analyses are mentioned in figure 

legends. Data were analyzed using GraphPad Prism 6 (GraphPad Software Inc., La Jolla, 
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CA, USA). Statistical analyses were performed using Student’s t-test or two-way 

ANOVA followed by Tukey’s multiple comparison test. p < 0.05 was considered 

statistically significant. 
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3.3 Results 

 

3.3.1. Synergistic effect of motilin and ghrelin on the different segments of the 

suncus stomach 

Stomach tissues were treated with 10 P

-5
P M ACh to stimulate the maximum contraction of 

smooth muscle cells. ACh induced strong contractions in all the stomach segments, with 

a maximum tension of approximately 2.2 gwt in the fundus (Fig. 7A [i]), 4.5 gwt in the 

proximal corpus (Fig. 7B [i]), 4.2 gwt in the distal corpus (Fig. 7C [i]), and 4.0 gwt in 

the antrum (Fig. 7D [i]). Cumulative administration of human ghrelin (10 P

-11
P–10P

-7
P M) did 

not induce contractions in any stomach segment (Fig. 7A–D [iii, iv]; Fig. 1F). Next, I 

investigated ghrelin-induced contractions in the stomach segments in the presence of 

low-dose motilin (10 P

-10
P M). In the presence of 10 P

-10
P M motilin, ghrelin significantly 

induced contractions in both the fundus and proximal corpus (Fig 7A–B [ii, iv], 7E) in a 

dose-dependent manner but did not induce contractions in the distal corpus and antrum 

(Fig 7C–D [ii, iv], 7E). 

 

3.3.2. Motilin and ghrelin synergistically induce gastric contractions through a 

cholinergic neural pathway 

In the presence of low-dose motilin (10P

-10
P M), ghrelin (10P

-11
P–10P

-7
P M) did not induce 

contractions in any stomach segment pretreated with atropine, a muscarinic receptor 

antagonist (Fig. 8A–E). 

 

3.3.3. GHS-R mRNA expression in the different segments of the suncus stomach 
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mRNA transcripts of the GSHR were detected in all the four segments of the suncus 

stomach, i.e., the fundus, proximal corpus, distal corpus, and antrum (Fig. 9). 

 

 

3.3.4. Localization of ghrelin-ip cells in the suncus stomach 

Ghrelin-ip cells were detected in the mucosal layer of the fundus (Fig. 10A), proximal 

corpus (Fig. 10B), distal corpus (Fig. 10C), and antrum (Fig. 10D). The density of 

ghrelin-ip cells was the highest in the fundus (95.0 ± 7.6 cells/mm P

2
P) and proximal corpus 

(44.3 ± 4.7 cells/mmP

2
P) and was significantly different from that in the distal corpus (15.2 

± 0.8 cells/mm P

2
P) and antrum (12.5 ± 1.7 cells/mm P

2
P) (Fig. 10E). 

 

3.3.5. Effect of D-Lys3-GHRP6 and GABA receptor antagonists on motilin-induced 

gastric contractions in vitro  

In vitro organ bath experiments were performed to determine mechanisms underlying 

the effect of ghrelin on motilin-induced contractions in each segment of the suncus 

stomach. ACh response was obtained in all the dissected stomach segments (Fig. 11A–

D [i]). Treatment with 10 P

-9
P M motilin induced strong contractions in the fundus, distal 

corpus, and antrum (Fig. 11A, C, D [ii, v]), whereas treatment with 10 P

-10
P M motilin 

induced contractions in the proximal corpus (Fig. 11B [ii, v]). In contrast, pretreatment 

with 10 P

-5
P M D-Lys3-GHRP6 almost completely inhibited motilin-induced contractions 

in all the stomach segments (Fig. 11A–D [iii, v]). However, pretreatment with bicuculline, 

a GABARAR receptor antagonist, almost completely reversed D-Lys3-GHRP6-induced 

inhibition of motilin-induced contractions. Treatment with phaclofen, a GABARBR receptor 

antagonist, also reversed D-Lys3-GHRP6-induced inhibition of motilin-induced gastric 

contractions, but, treatment with 10 P

-9
P M motilin induced contractions in the proximal 
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corpus (Fig. 12B [iv, v]), and treatment with 10 P

-8
P M motilin induced contractions in the 

fundus, distal corpus, and antrum (Fig. 12A, C, D [iv, v]).  

 

3.3.6. Effect of non-selective adenosine and dopamine receptor agonists on motilin-

induced gastric contractions 

Cumulative administration of motilin (10 P

-11
P–10 P

-7
P M) induced contractions in the whole 

stomach (Fig. 13 [ii, v]) as well as in all the stomach segments (Fig. 14; Fig. 15A–D [ii, 

v]) in a dose-dependent manner. Pretreatment with 10 P

-5
P M ghrelin antagonist D-Lys3-

GHRP6 completely abolished these contractions (Fig. 13–15 A–D [iii, v]). To determine 

whether adenosine and dopamine regulated motilin-induced gastric contractions, the 

whole stomach tissue was simultaneously treated with 10P

-8 
PM adenosine, the adenosine 

receptor agonist, and 10P

-5 
PM 6-hydroxydopamine hydrochloride, the dopamine receptor 

agonist, for 30 min. Treatment with adenosine and 6-hydroxydopamine hydrochloride 

partially reversed D-Lys3-GHRP6-induced inhibition of motilin-induced contractions in 

the whole stomach (Fig. 13 [iv, v]). Next, the effects of adenosine and 6-

hydroxydopamine hydrochloride pretreatment on all the four segments of the suncus 

stomach were determined. Although individual pretreatment with these agonists 

recovered motilin-induced gastric contractions, the recovery was lower than that 

observed with simultaneous pretreatment with these agonists (Fig. 14; Fig. 15A–D [iv, 

v]).  

 

3.3.7. Effect of adenosine AR2AR receptor agonist and dopamine DR2R receptor agonist 

on motilin-induced gastric contractions 
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Next, effects of suspected candidate adenosine AR2AR and dopamine DR2 Rreceptors was 

examined after confirming the involvement of adenosine and dopamine. Individual 

pretreatment with adenosine AR2AR receptor agonist PSB 0777-AS (10P

-6 
PM) and dopamine 

DR2R receptor agonist B-HT 920 (10P

-6 
PM) partially reversed D-Lys3-GHRP6-induced 

inhibition of motilin-induced contractions in all the stomach segments (Fig. 16; Fig. 

17A–D [i–v]). Next, involvement of the AR2AR and DR2R receptors was confirmed using the 

whole stomach tissue. Simultaneous pretreatment with adenosine A R2AR receptor agonist 

PSB 0777-AS (10P

-6 
PM) and dopamine DR2R receptor agonist B-HT 920 (10P

-6 
PM) completely 

reversed ghrelin antagonist D-Lys3-GHRP6 (10 P

-5
P M)-induced inhibition of motilin-

induced contractions (Fig. 18 [i–v]). 
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3.4 Discussion 

 

3.4.1 Role of ghrelin in the MMC 

Results presented in Chapter 2 clearly showed that cumulative administration of motilin 

(10P

-10
P–10P

-7
P M) induced contractions in all the segments of the suncus stomach in a dose-

dependent manner. In the present study, I observed that these stomach segments 

responded differently to simultaneous motilin and ghrelin treatment in vitro. It was also 

observed that 10 P

-10
P M motilin treatment is sufficient to induce contraction in proximal 

corpus but, 10 P

-9
P M motilin treatment is required to induce contractions in the fundus, 

distal corpus, and antrum. However, cumulative administration of ghrelin (10 P

-11
P–10P

-7
P M) 

induced contractions in the fundus and proximal corpus pretreated with a low dose (10 P

-

10
P M) of motilin but not in the distal corpus and antrum, suggesting that administration 

of 10 P

-9
P M motilin with ghrelin was required to induce contractions in these stomach 

segments. Drug-mediated response is directly proportional to receptor concentration in 

the tissue. Thus, higher the receptor expression, higher the drug response in the tissue. 

Results of RT-PCR for the expression of motilin receptor GPR38 (presented in Chapter 

2) indicated that this receptor was highly expressed in the proximal corpus. Results of 

the present study indicated that ghrelin receptor GHSR was also expressed in all the 

stomach segments. The density of ghrelin-ip cells was significantly high in the fundus, 

and proximal corpus, which may be the reason for the high sensitivity of these stomach 

segments to motilin and ghrelin Ghrelin-ip cells are present in the gastric mucosa, and 

the mucosa is inevitable for ghrelin-induced contractions in S. murinus stomach [Mondal 

et al. 2013]. 
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3.4.2 Involvement of the GABAergic pathway in motilin-induced gastric 

contractions 

I first examined the effect of D-Lys3-GHRP6 on motilin-induced gastric contractions and 

observed that blockade of the ghrelin receptor considerably inhibited motilin-induced 

contractions in all the stomach segments. These results indicate that motilin only induces 

strong phase III-like gastric contractions in the presence of ghrelin. Interestingly, I found 

that treatment with GABA antagonists reversed ghrelin antagonist-induced inhibition of 

motilin-induced gastric contractions. GABARA Rreceptor antagonist bicuculline reversed 

ghrelin antagonist-induced inhibition of motilin-induced contractions more strongly than 

GABARB Rreceptor antagonist phaclofen in all the stomach segments, suggesting that 

inhibitory GABAergic neurons suppressed motilin-induced contractions in all the 

segments of the suncus stomachR. RPrevious immunohistochemical studies have reported 

heterogeneous distribution of GABARAR0T 0Tand GABARBR0T 0Treceptors in the enteric nervous 

system (ENS), with these receptors being localized on both submucosal and myenteric 

neurons [Poulter et al. 1999, Casanova et al., 2009]. Activation of GABA RB Rreceptors is 

mainly coupled with the presynaptic inhibition of voltage-dependent calcium channels, 

resulting in reduced ACh release from enteric neurons [Cherubini et al. 1984, Marcoli et 

al., 2000]. Conversely, activation of ionotropic GABARAR receptors is usually associated 

with the stimulation of neurotransmitter release from cholinergic and NANC enteric 

neurons, resulting in contractile or relaxant response of GI smooth muscles [Zizzo et al. 

2007, Frigo et al. 1987, Krantis et al. 1987, Kaputlu et al. 1996, Penchava 1997]. That is 

one possibility to explain that GABARAR is more efficacious in motilin-induced 

contractions in all the segments of suncus stomach. In the ENS, GABAergic neurons 

strongly suppress motilin-induced smooth muscle contraction pathway. In contrast, 
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ghrelin stimulates this motilin pathway by inhibiting GABAergic neurons, which is 

consistent with the results obtained using the whole stomach of S. murinus [Kuroda et al. 

2015]. 

 

3.4.3 Adenosine and dopamine are the key molecules for mediating motilin-induced 

gastric contractions 

Results of the present study showed that both adenosine and dopamine agonists partially 

reversed ghrelin antagonist D-Lys3-GHRP6-induced inhibition of motilin-induced 

contractions in the whole stomach. Similar results were obtained when the different 

stomach segments were treated with adenosine or dopamine agonist alone. However, 

motilin-induced contractions were slightly stronger in stomach segments pretreated with 

the specific adenosine AR2AR receptor agonist and dopamine DR2R receptor agonist than in 

stomach segments not pretreated with any selective agonist. Furthermore, pretreatment 

of the whole stomach with both the adenosine AR2AR receptor agonist and dopamine DR2R 

receptor agonist almost completely reversed ghrelin antagonist D-Lys3-GHRP6-induced 

inhibition of motilin-induced contractions. These results suggest that both adenosine and 

dopamine partially suppress the inhibitory action of GABAergic neurons on the motilin 

pathway through the adenosine AR2AR and dopamine DR2R receptors, thus promoting motilin-

induced contractions both in the whole stomach and different stomach segments. 

Endogenous adenosine and dopamine are the key modulators of GABAergic inhibition 

[Regan et al. 1992, Ferre et al. 1997, Seamans et al. 2001, Olianas et al., 1978]. Some 

studies have clearly shown adenosine AR2A Rand dopamine DR2R receptor expression on 

enteric GABAergic neurons [Christofi et al., 2001 and Li et al., 2006]. Moreover, some 

studies have shown that endogenous adenosine and dopamine inhibit GABA through the 



 3| Collaborative response of motilin and ghrelin 
 

42 

 

AR2AR and DR2R receptors, respectively, in the myenteric plexus of the ENS [Sebastiao et al. 

1996, Concas et al. 1993, Kaneko et al. 2010]. In the ENS of guinea pigs, adenosine0T 0Tacts 

as a presynaptic neuromodulator through the AR2A Rreceptor to influence the release of 

excitatory neurotransmitter ACh [Gao et al. 2007, Christofi et al., 1993]. These findings 

clearly indicate that both adenosine and dopamine act through the AR2AR and DR2R receptors, 

respectively, to promote GABA inhibition. 

 

Adenosine is ubiquitously present in the synaptic and axonal regions of the ENS and 

CNS as a by-product of ATP consumption during various metabolic processes [Ren et 

al. 2008]. Dopamine is also an essential neurotransmitter secreted by almost all neurons 

of the ENS. Ghrelin receptors expressed on GABAergic and dopaminergic neurons are 

expected to stimulate dopamine secretion in the synaptic region [Naitou et al. 2016]. 

Results of the present study indicate that both adenosine and dopamine are the key 

driving forces of GABAergic pathway and regulate motilin-induced gastric contractions 

through the AR2AR and DR2R receptors, respectively. However, these results have only been 

obtained by performing in vitro experiments. Therefore, it would be interesting to 

determine in vivo expression of adenosine and dopamine receptors in the stomach of S. 

murinus 
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4. Summary and Conclusion 

 

Together, the results of this research indicate that the proximal corpus and cardia are 

important sites for motilin-induced contractions and show high mRNA expression of the 

motilin receptor GPR38. Treatment with 10 P

-9 
PM motilin stimulates contractions in all the 

stomach segments. However, treatment with low motilin concentration (10 P

-10 
PM)P

 

Pstimulates contractions only in the proximal corpus, suggesting that the MMC propagates 

from the proximal corpus to the distal region of the alimentary tract and that the proximal 

corpus is the first site of motilin-induced contractions. 

 

A previous in vivo study showed that ghrelin is important for initiating phase III MMC 

contractions and that co-administration of motilin 10 P

-10
P M and ghrelin at concentrations 

ranging from 10 P

-9
P to 10P

-7
P M induces a synergistic phasic response in prepared, isolated 

stomachs in a dose-dependent manner. The present in vitro study showed that ghrelin-

induced contractions in the presence of motilin differed in different stomach segments 

and were mediated by the cholinergic neural pathway in the myenteric plexus. Treatment 

with 10 P

-10
P M motilin induced contractions only in the fundus and proximal corpus. The 

mRNA expression of ghrelin receptor GHSR was detected in all the stomach segments. 

Moreover, the density of ghrelin-ip cells was significantly higher in the fundus and 

proximal corpus than in the other stomach segments. These results suggest that the fundus 

and proximal corpus (constituting the proximal stomach) are the most sensitive and 

responsive to motilin- and ghrelin-induced synergistic contractions. Moreover, results of 

the present study showed that pretreatment with the GABA RAR antagonist bicuculline 

reversed ghrelin antagonist D-lysR3R-GHRPR6R-induced inhibition of motilin-induced gastric 
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contractions. Moreover, the GABARBR antagonist phaclofen also reversed ghrelin 

antagonist D-lysR3R-GHRPR6R-induced inhibition of gastric contractions but less effectively 

than the GABARAR antagonist bicuculline. 

 

Adenosine and dopamine are well-known neurotransmitters and neuromodulators of the 

CNS and ENS. Several studies have shown that adenosine and dopamine regulate the 

inhibition of GABAergic neurons, which is the major turning point of this research. In 

addition to their numerous functions, adenosine and dopamine aid in modulating GI 

motility. Involvement of adenosine and dopamine in motilin-induced contractions was 

determined using the different stomach segments as well as the whole stomach. Results 

clearly showed that adenosine and dopamine partially reversed ghrelin antagonist-

induced inhibition of motilin-induced contractions. Next, I examined the suspected 

receptor candidates adenosine AR2AR receptor and dopamine DR2R receptor. Surprisingly, 

simultaneous pretreatment with the agonists of both these receptors almost completely 

recovered motilin-induced contractions in all the stomach segments as well as in the 

whole stomach, suggesting that adenosine and dopamine played key roles in motilin-

induced gastric contractions in S. murinus through the AR2AR and DR2R receptors, respectively.
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5. Figures, Tables, and Annexure 

 

 

 

 

Fig 1. Stomach segments used in the study 

(A) Photograph showing the different stomach segments, namely, the fundus, proximal 

corpus, distal corpus, and antrum. (B) For the organ bath experiment, the stomachs were 

dissected into four segments: (i) fundus, (ii) proximal corpus (including the cardia), (iii) 

distal corpus, and (iv) antrum. The arrows indicate the cardia (gastroesophageal junction), 

cardiac notch, and angular notch. The arrowheads indicate the pylorus. 
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Fig 2. Motilin induced contractions in the different segments of the isolated 

stomach 
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ACh (10P

-5
P M) was used to induce maximum contractions in the stomach tissue. ACh 

induced contractions in all the stomach segments, with a maximum tension of 

approximately 2.5 gwt in the fundus (A, left), 2.2 gwt in the proximal corpus (B, left), 

5.0 gwt in the distal corpus (C, left), and 4.1 gwt in the antrum (D, left). Treatment with 

a low dose (10P

-10
P M) of motilin induced contractions in the fundus (A, right) and proximal 

corpus (B, right), which showed 28% contraction, and in the distal corpus (C, right) and 

antrum (D, right). Contractile amplitudes were measured after serially treating the (A) 

fundus, (B) proximal corpus, (C) distal corpus, and (D) antrum with motilin (10 P

-9
P–10P

-7
P 

M). Treatment with 10 P

-9 
PM motilin induced dose-dependent contractions in the (A) 

fundus, (B) proximal corpus, and (C) distal corpus. (D) In the antrum, contraction 

amplitude changed with an increase in motilin dose. The arrowhead indicates the timing 

of reagent administration; the number indicates drug concentration used (-logM). 

 

  



 5| Figures, Tables and Annexures 
 

48 

 

 

 

Fig 3. Motilin induced contractions in the stomach segments 

Contraction responses were calculated as percentage maximum contractions induced by 

10P

-5 
PM ACh. Treatment with a low dose (10 P

-10 
PM) of motilin induced significantly 

stronger concentration response in the proximal corpus than in the other stomach 

segments. Each histogram represents mean ± SEM values (n = 5). Different letters denote 

significant difference (P < 0.05) among groups. 
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Fig 4. Atropine inhibits motilin-induced contractions in the different stomach 

segments  
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Pretreatment with 10 P

-6 
PM atropine almost completely inhibited 10 P

-10
P–10P

-7
P M motilin-

induced contractions in all the stomach segments, i.e., the fundus (A, left), proximal 

corpus (B, left), distal corpus (C, left), and antrum (D, left). Results obtained by 

performing motilin treatment in the presence of atropine are summarized in panel E. ▼

Timing of reagent administration. The number indicates drug concentration (-logM). 

Each histogram represents mean ± SEM values (n = 4). 
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Fig 5. Tetrodotoxin inhibits motilin-induced contractions in the different stomach 

segments 
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Effects of tetrodotoxin (TTX) administration on contractions in all the stomach segments, 

i.e., the fundus (A, left), proximal corpus (B, left), distal corpus (C, left), and antrum (D, 

left). Pretreatment with 10 P

-6 
PM TTX almost completely inhibited 10 P

-10
P–10 P

-7
P M motilin-

induced contractions in all the stomach segments (A–D), with a slight reduction in 

contraction amplitude in the antrum (D). Results obtained by performing motilin 

treatment in the presence of TTX are summarized in panel E. ▼Timing of reagent 

administration. The number indicates drug concentration (-logM). Each histogram 

represents mean ± SEM values (n = 4). 
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Fig 6. mRNA expression of the motilin receptor GPR38 in the suncus stomach 

The mRNA expression level of the GPR38 was low in the mucosal layer and was high 

in the muscle layer. Moreover, the mRNA expression level differed among the muscle 

layer of different stomach segments, with the highest level being observed in the muscle 

layer of the proximal corpus and the lowest level being observed in the muscle layer of 

the antrum. Each histogram represents mean ± SEM values (n = 6). Different letters 

denote significant difference (P < 0.05) among groups. 
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Fig 7. Motilin and ghrelin synergistically induce contractions in the different 

stomach segments 

ACh response was assessed to determine the viability of the tissue in all the stomach 

segments, i.e., the fundus (A [i]), proximal corpus (B [i]), distal corpus (C [i]), and 

antrum (D [i]). The segments were pretreated with a low dose (10 P

-10
P M) of motilin for 30 

s before cumulatively administering ghrelin (10 P

-11
P–10P

-7 
PM) (A–D [ii]). In addition, 

contractions were measured in all the stomach segments not pretreated with motilin but 

cumulatively treated with ghrelin (10 P

-11
P–10P

-7
P M) (A–D [iii]). Concentration-response 

curve corresponding to percentage maximum contractions induced by ACh (10 P

-5
P M) is 

shown for all the stomach segments (A–D [iv]). Results of ghrelin treatment in the 

presence or absence of motilin pretreatment are summarized in panels E and F, 

respectively. Arrow represents the timing of reagent administration, and dotted arrow 

represents the timing of tissue washing. The number indicates drug concentration (-

logM). Each value is expressed as mean ± SEM (n = 5). Contractions in the different 

segments of the suncus stomach were compared using two-way ANOVA followed by 

Tukey’s post hoc test. ***p < 0.001 and ****p < 0.0001 indicate significant difference 

among groups. 
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Fig 8. Atropine inhibits motilin- and ghrelin-induced contractions in the different 

stomach segments 
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Pretreatment with 10 P

-6 
PM atropine almost completely inhibited 10 P

-10 
PM motilin- and 10 P

-

11
P–10P

-7
P M ghrelin-induced contractions in all the stomach segments (A–D). Results of 

ghrelin and motilin treatment in the presence of atropine are summarized in panel E. 

Arrow represents the timing of reagent administration. The number indicates drug 

concentration (-logM). Each value is expressed as mean ± SEM (n = 4). Contractions in 

the different segments of the suncus stomach were compared using two-way ANOVA. 
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Fig 9. mRNA expression of the ghrelin receptor, GHSR 

PCR products and specificity were confirmed by performing agarose gel electrophoresis 

on a 2% gel. The mRNA expression of the ghrelin receptor GHSR in all the stomach 

segments and the medulla oblongata (positive control). Distilled water (DW) was used 

as a negative control, and β-actin was used as an internal control. 
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Fig 10. Microphotographs of ghrelin-immunopositive cells in the different 

stomach segments 

Ghrelin-immunopositive (ghrelin-ip) cells in the (A) fundus, (B) proximal corpus, (C) 

distal corpus and (D) antrum were determined by performing immunohistochemical 

analysis. Insets show high magnification of ghrelin-ip cells. Ghrelin-ip cells are scattered 

in the epithelium of the mucosal layer of the suncus stomach. Bars in A–D correspond to 

20 and 100 μm in the insets. (E) Histograms showing the densities (cells/mm P

2
P) of ghrelin-

ip cells in different stomach segments, as determined by performing 

immunohistochemical analysis. Arrowheads represent ghrelin-ip cells. Each value is 

expressed as mean ± SEM (n = 4). Densities of ghrelin-ip cells in the different segments 

of the suncus stomach were compared using one-way ANOVA followed by Tukey’s post 

hoc test. ***p < 0.001 and ****p < 0.0001 indicate significant difference among groups. 
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Fig 11. In vitro bicuculline pretreatment shows that the ghrelin-mediated 

GABAergic pathway is involved in motilin-induced gastric contractions 

ACh treatment of all the stomach segments (A–D [i]). Treatment with 10 P

-11
P–10P

-7
P M 

motilin induced gastric contractions in a dose-dependent manner (A–D [ii]). Pretreatment 

with the ghrelin antagonist D-Lys3-GHRP6 (10 P

-5
P M) completely inhibited motilin-
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induced contractions in all the segments of the suncus stomach (A–D [iii]), which were 

completely reversed by pretreatment with 10 P

-5
P M bicuculline, a GABARA Rantagonist (A–

D [iv]). Concentration-response curve corresponding to percentage maximum 

contractions induced by 10 P

-5
P M ACh is shown for all the stomach segments (A–D [v]). 

Arrow represents the timing of reagent administration, and dotted arrow represents the 

timing of tissue washing. The number indicates drug concentration (-logM). Each value 

is expressed as mean ± SEM (n = 4). Contractions in the different segments of the suncus 

stomach were compared using two-way ANOVA followed by Tukey’s post hoc test. 

***p < 0.001 and ****p < 0.0001 indicate significant difference among groups. 
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Fig 12. In vitro phaclofen pretreatment shows that the ghrelin-mediated GABAergic 

pathway is involved in motilin-induced gastric contractions  

Concentration-response curve corresponding to percentage maximum contractions 

induced by 10 P

-5
P M ACh was constructed for all the stomach segments. Treatment with 

10P

-11
P–10P

-7
P M motilin induced contractions in the (A) fundus, (B) proximal corpus, (C) 

distal corpus, and (D) antrum in a dose-dependent manner. Pretreatment with the ghrelin 
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antagonist D-Lys3-GHRP6 (10 P

-5
P M) completely inhibited motilin-induced contractions 

in all the stomach segments, which were partially reversed by pretreatment with 10 P

-5
P M 

phaclofen, a GABARB Rantagonist (A–D). Each value is expressed as mean ± SEM (n = 4). 

Contractions in the different segments of the suncus stomach were compared using two-

way ANOVA followed by Tukey’s post hoc test. **p < 0.01, ***p < 0.001, and ****p 

< 0.0001 indicate significant difference among groups. 
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Fig 13. Adenosine and dopamine promote motilin-induced contractions in the 

whole stomach through the ghrelin-mediated GABAergic pathway 

ACh response (i). Pretreatment with 10 P

-8
P M adenosine, the adenosine receptorR Ragonist, 

and 10 P

-5
P M 6-hydroxydopamine hydrochloride, the dopamine receptor agonist, partially 

reversed 10 P

-5
P M ghrelin antagonist D-lys3-GHRP6-induced inhibition (iii) of motilin-

induced gastric contractions (ii, iv, v). Results are presented as a concentration-response 

curve corresponding to percentage maximum contractions induced by 10 P

-5
P M ACh (v). 

Arrow represents the timing of reagent administration, and dotted arrow represents the 

timing of tissue washing. The number indicates drug concentration (-logM). Each value 

is expressed as mean ± SEM (n = 4). Contractions in the whole stomach were compared 

using two-way ANOVA followed by Tukey’s post hoc test. ***p < 0.001 and ****p < 

0.0001 indicate significant difference among groups. 
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Fig 14. Adenosine promotes motilin-induced gastric contractions through the 

ghrelin-mediated GABAergic pathway 

Concentration-response curve corresponding to percentage maximum contraction 

induced by 10 P

-5
P M ACh in all the stomach segments. Treatment with 10 P

-11
P–10P

-7
P M motilin 

induced contractions in the (A) fundus, (B) proximal corpus, (C) distal corpus, and (D) 
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antrum in a dose-dependent manner. Pretreatment with the ghrelin antagonist D-Lys3-

GHRP6 (10P

-5
P M) completely inhibited motilin-induced gastric contractions, which were 

partially reversed by pretreatment with adenosine (10 P

-8 
PM). Each value is expressed as 

mean ± SEM (n = 4). Contractions in the different segments of the suncus stomach were 

compared using two-way ANOVA followed by Tukey’s post hoc test. **p < 0.01, ***p 

< 0.001, and ****p < 0.0001 indicate significant difference among groups. 
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Fig 15. Dopamine promotes motilin-induced gastric contractions through the 

ghrelin-mediated GABAergic pathway 

Concentration-response curve corresponding to percentage maximum contraction 

induced by 10 P

-5
P M ACh in all the stomach segments. Treatment with 10 P

-11
P–10P

-7
P M motilin 

induced contractions in the (A) fundus, (B) proximal corpus, (C) distal corpus, and (D) 
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antrum in a dose-dependent manner. Pretreatment with the ghrelin antagonist D-Lys3-

GHRP6 (10P

-5
P M) completely inhibited motilin-induced gastric contractions, which were 

partially reversed by pretreatment with dopamine (10 P

-6 
PM). Each value is expressed as 

mean ± SEM (n = 4). Contractions in the different segments of the suncus stomach were 

compared using two-way ANOVA followed by Tukey’s post hoc test. **p < 0.01, ***p 

< 0.001, and ****p < 0.0001 indicate significant difference among groups. 
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Fig 16 Adenosine AR2AR receptor promotes motilin-induced gastric contractions 

through the ghrelin-mediated GABAergic pathway 

Concentration-response curve corresponding to percentage maximum contraction 

induced by 10 P

-5
P M ACh in all the stomach segments. Treatment with 10 P

-11
P–10P

-7
P M motilin 

induced contractions in the (A) fundus, (B) proximal corpus, (C) distal corpus, and (D) 

antrum in a dose-dependent manner. Pretreatment with the ghrelin antagonist D-Lys3-
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GHRP6 (10P

-5
P M) completely inhibited motilin-induced gastric contractions, which were 

reversed by pretreatment with the adenosine AR2AR receptor agonist PSB 0777-AS (10P

-6 

PM). Each value is expressed as mean ± SEM (n = 4). Contractions in the different 

segments of the suncus stomach were compared using two-way ANOVA followed by 

Tukey’s post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 indicate 

significant difference among groups. 
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Fig 17. Dopamine DR2R receptor promotes motilin-induced gastric contractions 

through the ghrelin-mediated GABAergic pathway 

Concentration-response curve corresponding to percentage maximum contraction 

induced by 10 P

-5
P M ACh in all the stomach segments. Treatment with 10 P

-11
P–10P

-7
P M motilin 

induced contractions in the (A) fundus, (B) proximal corpus, (C) distal corpus, and (D) 

antrum in a dose-dependent manner. Pretreatment with the ghrelin antagonist D-Lys3-
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GHRP6 (10P

-5
P M) completely inhibited motilin-induced gastric contractions, which were 

reversed by pretreatment with the dopamine DR2R receptor agonist B-HT 920 (10P

-6 
PM). 

Each value is expressed as mean ± SEM (n = 4). Contractions in the different segments 

of the suncus stomach were compared using two-way ANOVA followed by Tukey’s post 

hoc test. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 indicate significant 

difference among groups. 
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Fig 18. Both adenosine AR2AR receptor and dopamine DR2R receptor promote motilin-

induced contractions in the suncus stomach in vitro through the ghrelin-mediated 

GABAergic pathway 

ACh response (i). Pretreatment with both PSB 0777-AS (10P

-6 
PM) and B-HT 920 (10P

-6 
PM) 

recovered motilin-induced gastric contractions (ii, iv, and v) abolished by treatment with 

the ghrelin antagonist D-lys3-GHRP6 (10 P

-5
P M) (iii). Results are represented as 

concentration-response curve corresponding to percentage maximum contractions 

induced by 10 P

-5
P M ACh (v). Arrow represents the timing of reagent administration, and 

dotted arrow represents the timing of tissue washing. The number indicates drug 

concentration (-logM). Each value is expressed as mean ± SEM (n = 4). Contractions in 

the whole stomach were compared using two-way ANOVA followed by Tukey’s post 

hoc test. ****p < 0.0001 indicates significant difference among groups. 
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Table-1 

 

 

 

 

 

 

 

Table-1 Comparison of contractile activity in the different stomach segments based on 

ECR50R values of concentration-response curves of motilin. 

  

Segments of stomach ECR50R (nmol L P

-1
P) ± SE 

Fundus 15.9 ± 9.2 

Proximal corpus 0.9 ± 0.4 

Distal corpus 9.6 ± 4.3 

Antrum 314.7 ± 140.7 
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  Appendix-I 

 

Appendix-1 Effect of low-dose motilin on the different segments of the suncus 

stomach. 
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Appendix-II 

 

 

 

Appendix-2 Organ bath system for monitoring GI contractions in S. murinus. 
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