
 

 

 
 

 

 
 

AN ENERGY-BASED DAMPING EVALUATION USING BAYESIAN MODEL 

UPDATING FOR VIBRATION-BASED STRUCTURAL HEALTH 

MONITORING OF STEEL TRUSS BRIDGES 
 

 

 

 

（鋼トラス橋ヘルスモニタリングのためのベイズ推定による 

モデルアップデートを利用したエネルギー的振動減衰評価法） 
TITLE 

 
 
 

 PAGE 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

2017 年 3月 
 

 

 

埼玉大学大学院理工学研究科（博士後期課程） 

 

理工学専攻（主指導教員     松本 泰尚） 

  

 
 

SAMIM MUSTAFA  



 

 

 

AN ENERGY-BASED DAMPING EVALUATION USING 

BAYESIAN MODEL UPDATING FOR VIBRATION-BASED 

STRUCTURAL HEALTH MONITORING OF STEEL TRUSS 

BRIDGES 

 

鋼トラス橋ヘルスモニタリングのためのベイズ推定による 

モデルアップデートを利用したエネルギー的振動減衰評価法 

 

 
 

Saitama University 

Graduate School of Science and Engineering 

 

A dissertation 

submitted to the Saitama University 

for the Degree of Doctor of Philosophy 

 

By 

 

 

Samim Mustafa 

 

 

Examination Committee  

 

Professor Yasunao Matsumoto (Chairperson)  

Professor Yoshiaki Okui 

Professor Hiroshi Mutsuyoshi 

Professor Masato Saitoh 

 

March, 2017 



 

iii 

 

 

 

 

 

 

 

 

To my Parents, Sis, Aunt and Uncle 

  



 

v 

 

 

ACKNOWLEDGEMENTS  

The work presented in this dissertation would not have been possible without the support that 

I received from numerous individuals. Foremost, I am very grateful to my supervisor Prof. 

Yasunao Matsumoto for his technical guidance and encouraging association throughout the 

period of my research work in Saitama University. Furthermore, I would like to express my 

gratitude to my examination committee members, Prof. Yoshiaki Okui, Prof. Hiroshi 

Mutsuyoshi and Prof. Masato Saitoh for their valuable comments, advices and guidance 

provided during this research studies. I would also like to thank Assistant Prof. Ji Dang for his 

interest into my research. 

I would like to express my gratitude to Japanese government MEXT scholarship program for 

offering this valuable opportunity of full-time scholarship to pursue my research goals in 

Saitama University. 

I am thankful to my colleagues in the Structural Mechanics and Dynamics Group of Saitama 

University for providing a congenial working atmosphere in the laboratory. I am particularly 

thankful to Dr. Dammika for providing me the experimental data conducted by the past 

researchers of this laboratory. Furthermore, I would like to extend my appreciation to my tutors, 

Mr. Tobita and Mr. Tanaka, for helping me in many ways to make my life comfortable in Japan. 

I would also like to thank to Ms. Kudou who gave numerous support as a secretory of the 

laboratory.  

I also want to thank my parents, aunt and uncles for their inspiration, in spite of being far away 

from me. I am ever grateful to my family members, who have always emphasized the 

importance of a good education and have supported me through my numerous years in school. 

Finally, I want to thank my sis Sharmistha without her constant mental support and 

encouragements this work might not come into this shape. 

  



 

vii 

 

ABSTRACT 

The existing infrastructure such as bridges which are the valuable national assets for 

transportation and economy are required to be maintained properly to ensure the performance 

and condition for their continuous operation. Difficulties in practical application of vibration-

based structural health monitoring (SHM) of structures include considerable amount of 

uncertainties in structural modeling and vibration measurement and sensitivity issues of modal 

parameters due to local damage in case of large structure. This dissertation proposed an 

analytical framework for SHM addressing the aforementioned difficulties by combining two 

techniques: A Bayesian based probabilistic approach for finite element model (FE-model) 

updating that accounts for the underlying uncertainties and an energy-based damping model 

for detecting damage at local level using a small number of sensors. 

An efficient and robust Bayesian model updating was presented in this dissertation by 

introducing a new objective function and a realistic parameterization of mass and stiffness 

matrices. In this framework, the likelihood function for mode shapes was formulated based on 

the cosine of the angle between the analytical and measured mode shapes which does not 

require any scaling or normalization as compared to conventional Bayesian methods. Four 

stiffness parameters were introduced for each element considering both sectional and material 

properties to take into account variation in each element due to local damage. The proposed 

updating method was validated experimentally by updating a FE-model of existing steel truss 

bridge utilizing the vibration data obtained from limited number of sensors by a car running 

test. 

It has been recognized that the damping is more sensitive to local damage and the advantage 

of using damping is that the damping change in global modes affected by local damage can be 

identified with a small number of sensors. In this dissertation, an energy-based damping model 

was introduced for practical and effective SHM by estimating the contribution of modal 

damping ratios from different structural elements utilizing the data from updated FE-model 

and the identification results of damping from a small number of sensors. A previous study 

reported that the studied bridge with damage at local diagonal member showed a significant 

increase in the damping of global vibration mode of the structure. The present study utilized 

the energy-based damping evaluation to identify possible cause of the modal damping increase 

by observing the change in the contribution from different structural elements on the modal 

damping ratios. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background and Motivation 

As most of the current civil infrastructures such as bridges are aging and structurally 

deteriorating due to reaching of their theoretical design life, the need for vibration-based 

structural health monitoring (SHM) has gained significant amount of interest in recent years. 

In Japan, a large number of bridges constructed during the rapid economic growth period from 

1950’s are having aging problem. There were serious incidents due to deterioration or damage 

for steel truss bridges found in rigorous inspections conducted after the tragic collapse of I-

35W Bridge in Minneapolis, USA on August, 2007. Some damages in the steel bridges in Japan 

were also reported in the same year [1]. In all these cases, the damage in early stage were not 

detected by a periodic visual inspection which may imply the limitations of visual inspection. 

In the current standard bridge management strategy in Japan, primary periodic inspections rely 

on visual inspection, although various nondestructive test methods have been used in second 

step detailed inspections [2]. The current scheduled visual inspections are often time 

consuming, costly and require the components to be readily accessible. Furthermore, the results 

of visual inspection are subjective, and vary with the knowledge and experience of the 

inspectors. To address these issues, damage detection based on physical behaviors through 

measurements of deformations, stresses, vibrations are required.  

The goal is to detect damage in a structure if damage occurs to prevent catastrophic failure of 

such infrastructures or to evaluate the condition and performance of the same to ensure public 

safety. The basic idea for vibration-based damage detection is that the damage induced changes 

in the physical properties will result in detectable changes in modal properties. Therefore, it is 

intuitive that damage can be identified by analyzing the changes in vibration features of the 

structure. These vibration-based damage detection techniques can be classified into two 

categories: non-model based and model based inverse methods. The main drawback of non-

model based methods is that they cannot quantify the structural damage severity which is 
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critical information for the evaluation of structural performance [3,4]. On the other hand, model 

based inverse methods have been used to detect damage location and its severity as well [5−7]. 

However, there are some inherent difficulties in the model based SHM due to the underlying 

uncertainties in the initial finite element model (FE-model). These sources of uncertainties can 

be classified into three categories: the measurement error representing the uncertainties in the 

measured vibration data; the modelling errors due to idealization and assumptions while 

constructing FE-model; and lastly the statistical uncertainties in the model parameters. 

Therefore, an effective method for FE-model updating is needed to be established to treat these 

uncertainties explicitly [8−10]. 

Out of the wide array of available uncertainty quantification approaches, the Bayesian 

statistical framework is considered to be most efficient one as it is capable of incorporating all 

types of available information, all types of uncertainties and incomplete experimental data 

[11−13]. Several model updating approaches have been proposed based on identified modal 

parameters using Bayesian statistical frameworks [14−18]. Though these were validated by 

small scale simulated structures, practical applications of Bayesian approaches for structural 

model updating utilizing incomplete identified modal data sets are yet to be explored. Secondly, 

so far the Bayesian based model updating approaches proposed in the literature are based on 

forming objective function by direct correlating the experimentally identified mode shapes with 

the corresponding components of analytical ones [17,19−23]. However, relating mode shapes 

directly to get the optimal values required proper scaling or normalization of mode shape 

components as the mass distribution of the FE-model and the actual structure are usually 

different, hence, the mode shapes may not be scaled consistently. To address these issues, an 

advanced Bayesian statistical framework was proposed in this study by introducing a new 

objective function. In this framework, the likelihood function for mode shapes was formulated 

based on the cosine of the angle between the analytical and measured mode shapes which does 

not require any scaling or normalization. 

After getting the updated FE-model which is supposed to be free from all the underlying 

uncertainties mentioned above, the next step is to use that for structural analysis and SHM. 

There are many vibration-based damage detection approaches have been proposed in the 

literature and an extensive review of those can be found in Doebling et al. [24] and Fan and 

Qiao [25]. Most of these studies for damage detection have been mainly based on change in 

modal frequencies and/or change in mode shape related indices. However, the problem related 
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to low sensitivity of damage features due to local damages remains a concern for the practical 

application of these methodologies. On the other hand, it has been recognized that the damping 

is more sensitive to the local damages especially due to crack or some internal changes in the 

structural property [26−28]. However, there is some inherent difficulties in accurately 

identifying the experimental modal damping ratios. 

There are very few examples of analytical damping evaluation in the literature [29−32] using 

energy-based approach which initiated research in this field. The evaluation of analytical modal 

damping has an advantage that the contribution of energy dissipations in sub-structures on 

modal damping ratios can be estimated which could be useful knowledge in the field of 

vibration-based SHM. In this study, an energy-based damping model was introduced for 

practical and effective SHM based on vibration measurement by estimating the contribution of 

modal damping ratios from different structural elements utilizing the data from updated FE-

model and the identification results of damping from a small number of sensors. As an 

application of proposed Bayesian based model updating and energy-based damping model for 

SHM, an existing steel truss bridge was considered and vibration data measured by car running 

test were used in the analysis. 

1.2 Objectives of the Study 

The main objective of the research presented in this thesis is to develop a practical and effective 

vibration-based SHM approach for steel truss bridges. Difficulties in practical application of 

vibration-based SHM of structures include considerable amount of uncertainties in structural 

modeling and vibration measurement and sensitivity issues of modal parameters due to local 

damage in case of large structure. In realistic scenarios, usually there are limited number of 

sensors available to perform SHM practically. Therefore, it would be worthy to develop a 

method to detect damage or evaluate structural state with less number of sensors. This 

dissertation proposes an analytical framework for SHM addressing the aforementioned 

difficulties by combining two techniques: a Bayesian based probabilistic approach for FE-

model updating that accounts for the underlying uncertainties, and an energy-based damping 

evaluation for detecting damage at local level using a small number of sensors. Fig. 1.1 

schematically illustrates the methodology proposed in this dissertation for SHM of steel truss 

bridges. 
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Fig. 1.1. Schematic diagram of proposed methodology for SHM 

1.3 Outline of the Dissertation 

Motivated by the existing gaps and open problems identified in section 1.1, a systematic study 

on vibration-based SHM of an existing steel truss bridge has been carried out in this dissertation. 

The dissertation is divided into six chapters and two Appendices. 

Chapter 2 provides an overview of vibration-based SHM approaches. Then, brief summary of 

reviewed literatures related to two vibration-based SHM techniques categorized by the 

utilization of FE-model is included and the difficulties in practical application of these 

methodologies to detect local damages are discussed. Possible solutions to overcome these 

difficulties faced by the past researchers in this field are also provided. 

Chapter 3 is aimed at developing a Bayesian probabilistic approach for FE-model updating 

using limited sensor data and treating all the underlying uncertainties. Practical difficulties in 

updating an initial FE-model of real-life structures are addressed in this proposed framework 

by introducing a new objective function and a realistic parameterization of mass and stiffness 

matrices. The proposed updating method was validated experimentally by updating a FE-model 

of existing steel truss bridge. 
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Chapter 4 introduces an energy-based damping framework for SHM by estimating the 

contributions to modal damping ratios from different structural elements utilizing the data from 

updated FE-model. Model updating using only global modes identified with a limited number 

of sensors may not be able to trace the damaged stiffness parameters as the changes in the 

frequencies for the global modes due to local damage are not significant. Therefore, damping 

is considered in this research work for SHM as the advantage of using the damping is that the 

damping change in global modes affected by local damage can be identified with a small 

number of sensors. An equivalent viscous damping model is considered in this dissertation and 

the contributions to modal damping ratios from different sub-structures of the studied truss 

bridge are evaluated by relevant damping analysis.  

In Chapter 5, experimental verification of the proposed vibration-based SHM framework 

developed in this dissertation is considered. A previous study by Yoshioka, et al. reported that 

the studied bridge with damage at local diagonal member showed a significant increase in the 

damping of global vibration mode of the structure. The present study utilized the energy-based 

damping evaluation to identify the cause of the modal damping increase by observing the 

change in the contribution from different structural elements on the modal damping ratios. 

Finally, Chapter 6 presents the conclusions emerging from the studies taken up in this 

dissertation and makes a few suggestions for further research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 An Overview of Vibration-based SHM 

The interest in the ability to monitor a structure and detect damage at the earliest possible stage 

is pervasive throughout the civil, mechanical, and aerospace engineering communities. The 

goal is to detect, locate and access the extent of damage in a structure if damage occurs to 

prevent catastrophic failure of such infrastructures or to evaluate the condition and performance 

of the same to ensure public safety. As an alternative to the current local inspection methods, 

global vibration-based methods have been widely developed over the years [5,24,25]. The basic 

idea for vibration-based damage detection is that the damage induced changes in the physical 

properties will result detectable changes in modal properties. Therefore, it is intuitive that 

damage can be identified by analyzing the changes in vibration features of the structure.  

The global nature of the vibrational characteristics of interest to vibration-based SHM provides 

advantages compared to other health monitoring techniques. It allows for a relatively easy 

interpretation of the measured responses, have the ability to analyse complex structures and do 

not require the structure to be readily accessible in order to be able to identify damage. 

Utilization of global vibration signatures such as natural frequencies, mode shapes and 

damping leads to the monitoring of the entire structural system, not just each structural 

component, which means a large civil engineering structure can be effectively monitored with 

a relatively small set of sensors and equipment. 

Conceptually, the general procedure of the vibration-based SHM consists of five steps namely 

[33-35]: (1) vibration measurement of structural dynamic response, e.g., in terms of 

accelerations or displacements, (2) system identification by analysing recorded vibration data 

to extract modal parameters, (3) characterization of an initial FE-model based on design 

drawings and field observations, (4) perform FE-model updating by utilizing identified modal 

data in order to obtain up-to-date structural model, and (5) evaluation of structural performance 

using the updated finite element model. 
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The measurement of structural dynamic responses is achieved with an instrumentation system 

handling the sensing, transmission and storage of dynamic response data. Various 

characteristics of the instrumentation system, such as sensor types, sampling rate, and storage 

capacity, etc., need to be customized based on each unique application. Acceleration, velocity 

and displacement are the most common types of measurement for dynamic response. It should 

be noted that in order to achieve continuous monitoring of the bridge structure, large amount 

of dynamic data need to be collected and processed. The instrumentation system must be 

designed to handle such types of data throughput. 

In order to identify structural properties, raw dynamic responses of the structure such as 

acceleration time histories can be utilized. However, it is more common that vibrational 

features such as modal parameters are extracted from the raw dynamic response. Modal 

parameters contain important characteristics of the structural dynamic response but are highly 

compressed compared to raw data, easing further analysis and storage [36]. Operational modal 

analysis is typically used to identify the modal model in terms of modal parameters of the 

structure from the dynamic responses under operational conditions. 

The initial characterization of the structure provides a baseline model that adequately predicts 

the structural behaviour in its pristine state. Through continuous monitoring, an up-to-date 

modal model reflecting the current dynamic characteristics of the structure can be maintained. 

FE-model updating can then be performed to obtain an up-to-date representative physical 

model of structure based on the changes in modal parameters observed [8-13]. The objective 

of FE-model updating is to minimize the discrepancy between the FE-model and the actual 

structure so that the physical model accurately represents the structure and is able to predict 

structural behaviour. The sources of these discrepancies are mainly due to the modelling errors, 

variation of material properties during manufacture and uncertainties introduced by the 

construction process. 

Finally, by comparing the baseline model with the current state of the structure, information 

regarding the location and magnitude of the damage that the structure has experienced can be 

deduced. Current structural performance can be evaluated and a prediction regarding the 

remaining life of the structure can be made. 

During the last three decades, extensive research has been conducted in vibration-based SHM. 

A broad range of techniques, algorithms, and methods are developed to solve various problems 

encountered in different structures, from basic structural components (e.g., beams and plates) 
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to complex structural systems (e.g., bridges and buildings). Doebling et al. [37] presented an 

extensive review of vibration-based damage detection methods up to 1996. Sohn et al. [35] 

then presented an updated version of this review on the literature up to 2001. In both articles, 

the features extracted for identification were considered to classify the damage identification 

methods. Following closely this classification, Carden and Fanning [38] presented a literature 

survey with particular emphasis on the papers and articles published from 1996 to 2003. More 

recently, a comprehensive review on modal parameter-based damage identification methods 

carried out by Fan and Qiao [25]. 

2.2 Vibration-based SHM Techniques  

Damage detection using vibration-based damage detection techniques can be classified into 

two categories: non-model based methods and model-based inverse methods. In the following 

sub-sections, the literature review related to these two methodologies are carried out while 

highlighting their merits and drawbacks when implement in practical applications. 

2.2.1 Non-model based Methods 

Non-model based methods, also known as pattern recognition techniques, are straightforward 

and do not require any computer-simulated models. In a non-model based method the results 

are compared with the results of a reference measurement performed prior to setting the 

structure in service. Deviances in the damage sensitive parameters are used to identify damage.  

Hadjileontiadis et al. [39] and Hadjileontiadis and Douka [40] proposed a response-based 

damage detection algorithm for beams and plates using fractal dimension (FD). This method 

calculates the localized FD of the fundamental mode shape directly. The damage features are 

established by employing a sliding window across the mode shape and estimating the FD at 

each position for the regional mode shape inside the window. Damage location and size are 

determined by a peak on the FD curve indicating the local irregularity of the fundamental mode 

shape introduced by the damage. 

Recently, wavelet analysis has shown its inherent merits in damage detection over traditional 

methods due to its ability to closely examine the signal with multiple scales to provide various 

levels of detail and approximations. The use of wavelet transform to identify damage from 

mode shape has been one of the most popular techniques. These methods treat mode shape data 

as a signal in spatial domain, and they use spatial wavelet transform technique to detect the 

signal irregularity caused by damage. Liew and Wang [41] first used spatial wavelet 
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coefficients for crack detection based on the numerical solution for the deflection of a beam 

under oscillating excitation. Quek et al. [42] examined the sensitivity of wavelet technique in 

the detection of cracks in beam structures. Although their works focused on deflection under 

static or impact loading other than mode shape, they demonstrated the potential of using 

wavelet transform on mode shape for damage detection. Hong et al. [43] showed that the 

continuous wavelet transform (CWT) of mode shape using a Mexican hat wavelet is effective 

to estimate the Lipschitz exponent for damage detection of a damaged beam. 

Huth et al. [44] compared several non-model based identification techniques based on test data 

on a progressively damaged prestressed concrete bridge. Although the bridge was severely 

cracked, natural frequencies as well as mode shapes display only minor changes. However, the 

relative changes of mode shapes are larger than those observed for natural frequencies. 

Therefore, the non-model based methods are capable of detecting damage location successfully, 

although, these methods cannot quantify the damage severity, which is critical information for 

evaluating the structural performance. Additionally, a sufficient coverage on various damage 

scenarios is needed as training data in the non-model based method, while usually such data 

obtained from field are limited. 

2.2.2 Model-based Inverse Methods 

In a model based technique the response is compared with some form of model. This can either 

be an analytical or a numerical (e.g. finite element) model. Advantages of model based 

techniques are that these could well be extended to provide information about the severity of 

the detected damage and can be used to account for environmental or operational variations 

(e.g. temperature, boundary conditions). These methods are based on features related to 

changes in mass, stiffness and damping matrix indices that have been correlated such that the 

numerical model predicts, as closely as possible, the identified dynamic properties (resonant 

frequencies, modal damping and mode-shape vectors) of the undamaged and damaged 

structures, respectively. These methods solve for the updated matrices (or perturbations to the 

nominal model that produce the updated matrices) by forming a constrained optimization 

problem based on the structural equations of motion, the nominal model and the identified 

modal properties [45]. Comparisons of the matrix indices that have been correlated with modal 

properties identified from the damaged structure to the original correlated matrix indices 

provide an indication of damage that can be used to quantify the location and extent of damage. 
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Fritzen and Bohl [46] and also Gorl and Link [47] used this approach to localize damage in an 

experimental steel frame structure. A reduction in cross-section of a cantilever beam structure 

was similarly identified in experiment in Ref. [48]. More recently, Reynders et al. [49] used 

this general approach to identify loss of stiffness in a full-scale bridge structure. Similarly 

Shang et al. [50] used FE model updating combined with ‘‘subset selection’’ (method for 

damage localization) to determine location and extent of delamination in a composite laminate 

structure. Many damage identification algorithms rely on a well correlated numerical model of 

the structure in its initial state. Several issues arise when creating a correlated numerical model; 

the measured data chosen to be matched by the model, the accuracy of the initial model, the 

size and complexity of the model, the number of updating parameters and the non-uniqueness 

of resultant model in matching the measured data [51,52]. 

The accuracy of the initial model of a structure used to identify damage with an updating 

algorithm is important. Fritzen and Jennewein [53] used sensitivity based algorithms to locate 

and detect damage. It was found that even the use of Bernoulli–Euler beams instead of 

Timoshenko theory shifted the higher Eigen frequencies, so that no reasonable results were 

obtainable. Gola et al. [54] examined the number of parameters identifiable in sensitivity based 

updating methods. The theoretical number of parameters furnished by the matching of 

eigenvalues is equal to the number of measured resonant frequencies. When using mode shapes, 

the number of parameters has an upper limit of the number of modes times the number of 

degrees of freedom measured. This limit is further reduced depending on the structure of the 

mode derivatives. 

Papadopoulas [55] presented a method of model updating and damage identification, which 

accounted for structural variability. The statistical properties of the healthy mass and stiffness 

parameters and the mean healthy natural frequencies and mode shapes of the system were first 

determined. The mean damaged natural frequencies and mode shapes of the system were then 

simulated. The number of modes available was assumed to be equal to the number of damage 

parameters and these parameters were determined. The statistical properties of the damaged 

stiffness were then determined and probabilistically compared to the healthy stiffness to yield 

an estimate of the probability of damage. 

Model updating using frequency response function (FRF) measurements directly has also been 

utilised for damage identification [56-58]. The initial, and obvious, advantage in using FRF 



Literature Review 

12 

 

data over modal data is that it negates the need to identify the modal parameters from 

measurements and to perform mode-pairing exercises. 

In summary, the FE-model updating determines damage as a change in the physical properties 

of a structure by updating the structural parameters in a FE-model to match some selected 

quantities that are either directly measured or derived from field measurements at two different 

times. The selected quantities can be modal parameters [59-61], time-domain response data 

[62-64], and static responses [65,66]. According to the algorithm adopted, the conventional 

model updating includes direct methods, indirect or iterative methods and a sensitivity 

approach. Most of the early model updating methods are direct and they require complete set 

of measured data to update the analytical model. The system matrices are either reduced to the 

observed degrees of freedom (DOF) or the measured incomplete mode shapes are expanded to 

the full FE-model DOFs [67-69]. These early methods are computationally efficient though the 

physical meaning of the updated system matrices are often not preserved which raises the 

question of their validity for SHM. 

The present work in this dissertation addresses the aforementioned difficulties by introducing 

a Bayesian probabilistic approach for FE-model updating using incomplete modal data to 

update a full analytical model to identify the structural properties at the global level and energy-

based damping evaluation to detect damage at local level. In this dissertation, a Bayesian model 

updating was used not to detect damage but to construct a probabilistic baseline using modal 

frequencies and mode shapes that are not sensitive to the local damage. An energy-based 

damping evaluation was carried out in this dissertation to detect local damage as it has been 

recognized that the damping is more sensitive to the local damage [26-31]. Out of the wide 

array of available uncertainty quantification approaches, the Bayesian statistical framework 

was considered in this dissertation as it is capable of incorporating all types of available 

information, all types of uncertainties and incomplete experimental data [11−13]. Several 

model updating approaches have been proposed based on identified modal parameters using 

Bayesian statistical frameworks [14−18]. Though these were validated by small scale simulated 

structures, practical applications of Bayesian approaches for structural model updating utilizing 

incomplete identified modal data sets are yet to be explored. 

2.3 Difficulties in Practical Application of Vibration-based SHM 

Although many structural health monitoring techniques have been proposed in the literature, 

there are still numerous difficulties in the practical application of these approaches. The most 
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important technical issues that need to be resolved before structural health monitoring 

technologies can make the transition from a research topic to actual practice are summarized 

in subsequent sub-sections. 

2.3.1 Issues with Sensing and System Identification 

There is uncertainty about the number and place to install the sensors to successfully detect and 

predict the location of damage of real structure [70,71]. Many techniques that appear to work 

well in example cases actually perform poorly when subjected to the measurement constraints 

imposed by actual testing [25,35,42,44]. Techniques that are to be seriously considered for 

implementation in the field should demonstrate that they can perform well under the limitations 

of a small number of measurement locations, and under the constraint that these locations be 

selected a priori without knowledge of the damage location. 

In reality, the number of the sensors in an installation is limited; the cost of the sensors, data 

acquisition systems, and system installation is significant, and the available budget is always 

limited. Traditionally, algorithms which can achieve adequate performance with a limited 

number of sensors are desirable. Unfortunately, such algorithms that are effective have been 

elusive. Considering that damage is an intrinsically local phenomenon, deployment of more 

sensors throughout the structure has the potential to lead to more accurate damage detection 

results.  

In addition, excitation methods for bridge structures need to be considered. The two main 

categories of excitation methods are ambient vibration and forced vibration. Ambient vibration 

tests are used for a long span bridge due to the difficulty in applying sufficient forces to a large 

bridge, while forced vibration tests are often used for a small or middle size bridges because 

the responses from the ambient vibration may be too small. Therefore, effective excitation 

schemes should be considered according to bridge size. 

Accuracy in damage detection is completely dependent upon the accuracy in measurement of 

modal properties of the structure. It is found that the modal properties are inflicted to fluctuation 

due to variations in the measurement. This makes very difficult to conclude whether the 

observed changes are due to damage or due to variations in the measurement. This is the serious 

issue of sensitivity of vibration based techniques, and need to be explored further. For practical 

applications of the vibration based techniques on real life structures such as tall buildings, 

bridges, dams, and underground structures, it is needed to reduce the dependence upon 
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measurable excitation forces. Vibrations produced by existing loading system and ambient 

environmental can be used for exciting the structure. 

2.3.2 Issues with Model-based SHM 

For the model-based SHM methods, the credibility of a numerical model must be established 

through careful model verification and validation [72]. There are some inherent difficulties in 

the model based SHM due to the underlying uncertainties in the initial FE-model. The sources 

of these uncertainties can be classified into three categories: the measurement error 

representing the uncertainties in the measured vibration data; the modelling errors due to 

idealization and assumptions while constructing FE-model; and lastly the statistical 

uncertainties in the model parameters. Therefore, an effective method for FE-model updating 

is needed to be established to treat these uncertainties explicitly [8−10]. 

The selection of parameters is probably the most important task in model updating. Of course, 

the updating parameters must describe that part of the system which is thought to be 

inadequately modelled. The obvious candidates include the boundary conditions and joints. 

When the model error is at some other point than the boundaries and joints, then there are a 

variety of procedures which can be carried out to either eliminate the error by improved 

modelling, or locate the error for subsequent removal by updating.  

Another issue with FE-model updating is the availability of incomplete modal data (modal 

frequencies and partial mode shapes). In most updating algorithms, all the co-ordinates of a 

given normal mode must be known. Due to physical limitations, time or cost constraints, 

however, the number of measured co-ordinates is generally substantially less than the degrees 

of freedom of the analytical model. Moreover, only a few of the lower modes of a structures 

can be identified with confidence. Hence, the model updating method must be efficient enough 

to update a full-scale analytical model by utilizing limited sensor data only. 

Several model updating approaches have been proposed based on identified modal parameters 

using Bayesian statistical frameworks [14−18]. Though these were validated by small scale 

simulated structures, practical applications of Bayesian approaches for structural model 

updating utilizing incomplete identified modal data sets are yet to be explored. Secondly, so 

far the Bayesian based model updating approaches proposed in the literature are based on 

forming objective function by direct correlating the experimentally identified mode shapes with 

the corresponding components of analytical ones [17,19−23]. However, relating mode shapes 

directly to get the optimal values required proper scaling or normalization of mode shape 
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components as the mass distribution of the FE-model and the actual structure are usually 

different, hence, the mode shapes may not be scaled consistently.  

2.3.3 Issues with Sensitivity of Modal Parameters to Local Damage 

A large obstacle for the practical application of structural health monitoring technologies is the 

dependency of damage parameters on the operational and environmental conditions, such as 

temperature, humidity, loads and boundary conditions [42,44]. Changes in these conditions can 

mask or magnify the effects that are resulting from the damage. Methods should have the ability 

to separate the damage related effects from those that are coming from changes in 

environmental conditions. A wide variety of methods, comprising statistical techniques and 

model based methods, are presented in the literature to compensate for these variations, but 

confidence in these methods is lacking. 

Another issue that is a point of controversy among many researchers is the general level of 

sensitivity that modal parameters have to small flaws in a structure. Much of the evidence on 

both sides of this disagreement is anecdotal because it is only demonstrated for specific 

structures or systems and not proven in a fundamental sense. This issue is important for the 

development of health monitoring techniques because the user of such methods needs to have 

confidence that the damage will be recognized while the structure still has sufficient integrity 

to allow repair. 

In case of large structure, such as bridges, the identification of local damage is a challenging 

task because of the issue of low sensitivity of frequencies and mode shapes to local damage 

especially due to cracks or some internal changes in the structural property [27,28,63]. In such 

cases, model updating using only global modes identified with a limited number of sensors 

may not be able to trace the damaged stiffness parameters as the changes in the frequencies for 

the global modes due to local damage are not significant. 

2.4 Proposed Framework Overcoming Aforementioned Difficulties 

This dissertation introduces a practical and effective vibration-based SHM approach for steel 

truss bridges. An analytical framework is proposed for SHM addressing the aforementioned 

difficulties by combining two techniques: a Bayesian based probabilistic approach for FE-

model updating that accounts for the underlying uncertainties, and an energy-based damping 

evaluation for detecting damage at local level using a small number of sensors. 
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An efficient and robust Bayesian model updating was presented in this dissertation by 

introducing a new objective function and a realistic parameterization of mass and stiffness 

matrices [73]. For the identification of damage at local level using vibration measurements, it 

is necessary to update stiffness matrices of all the elements to capture the variations in the 

stiffness due to local changes. Hence, it is more practical to consider stiffness parameters 

corresponding to each element of the FE-model. In this research work, four stiffness parameters 

were considered for each element considering both sectional and material properties. For the 

parameterization of mass matrix, mass density per unit length of each section was considered 

as uncertain parameter. It is important to note that, the variation of mass is assumed to be much 

smaller compared to the stiffness due to local damage. Hence, lesser number of uncertain 

parameters were assigned for mass matrix. Basically, the main purpose of the parameterization 

of mass matrix was to make the updating results more robust to the modelling errors. In this 

framework, the likelihood function for mode shapes was formulated based on the cosine of the 

angle between the analytical and measured mode shapes which does not require any scaling or 

normalization. The proposed updating method was validated experimentally by updating a FE-

model of existing steel truss bridge utilizing the vibration data obtained from limited number 

of sensors by a car running test. 

After getting the updated FE-model which is supposed to be free from all the underlying 

uncertainties mentioned above, the next step is to use that for structural analysis and SHM. It 

has been recognized that the damping is more sensitive to local damage and the advantage of 

using damping is that the damping change in global modes affected by local damage can be 

identified with a small number of sensors [26-28]. However, there is some inherent difficulties 

in accurately identifying the experimental modal damping ratios. There are very few examples 

of analytical damping evaluation in the literature [29−32] using energy-based approach which 

initiated research in this field. Dammika et al. [32] investigated the analytical modal damping 

evaluation as a complementary method to the experimental SHM of bridges. In that study, an 

energy-based damping model was introduced to estimate the damping parameters of a steel 

arch bridge. The objective was to provide the theoretical basis for modal damping evaluation 

which can improve the reliability of the experimental damping identification. However, the 

uncertainties associated with FE-model of the studied arch bridge were not taken into 

consideration in that study. Furthermore, the proposed framework by Dammika et al. [32] could 

not justify the substantial change in modal damping ratio of coupled global mode caused by 

the damage at local diagonal member as reported in doctoral dissertation by Dammika [74]. 
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In this dissertation, an energy-based damping model was introduced for practical and effective 

SHM by estimating the contribution of modal damping ratios from different structural elements 

utilizing the data from updated FE-model and the identification results of damping from a small 

number of sensors. For SHM with less number of sensors, complimentary theoretical 

consideration is necessary which is discussed in this dissertation. A previous study by Yoshioka, 

et al. [28] reported that the studied bridge with damage at local diagonal member showed a 

significant increase in the damping of global vibration mode of the structure. The present study 

utilized the energy-based damping evaluation to identify possible cause of the modal damping 

increase by observing the change in the contribution from different structural elements on the 

modal damping ratios.  
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CHAPTER 3 

BAYESIAN PROBABILISTIC APPROACH FOR MODEL 

UPDATING USING LIMITED SENSOR DATA 

3.1 Introduction 

In conventional Bayesian model updating methods which are mainly validated by small scale 

simulated structures, the optimal values of uncertain parameters are obtained based on 

formulating likelihood function as a product of two probability density functions (PDF), one 

relating to modal frequencies and one to mode shapes components. However, relating mode 

shapes directly to get the optimal values required proper scaling or normalization of mode 

shape components as the mass distribution of the FE-model and the actual structure are usually 

different, hence, the mode shapes may not be scaled consistently. Moreover, for the 

identification of damage at local level using vibration measurements, it is necessary to update 

stiffness matrices of all the elements to capture the variations in the stiffness due to local 

changes. To address these issues, an efficient and robust Bayesian model updating was 

presented in this dissertation by introducing a new objective function and a realistic 

parameterization of mass and stiffness matrices. In this framework, the likelihood function for 

mode shapes was formulated based on the cosine of the angle between the analytical and 

measured mode shapes which does not require any scaling or normalization. The proposed 

updating method was validated experimentally by updating a FE-model of existing steel truss 

bridge utilizing the vibration data obtained from car running test. 

3.2 Application of Bayesian Probabilistic Approach to FE-model Updating 

3.2.1 Bayesian Probabilistic Approach 

The Bayesian probabilistic approach are used to quantify the uncertainties in the initial FE-

model along with making inferential statement about the unknown quantities given some know 
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quantities. Let 𝑫𝑬 denote available data from a dynamic system under consideration. By using 

Bayes’ theorem, the updated or posterior probability of the model parameter 𝝌  given the 

available data and a model class 𝐶 is given by [6,11]: 

 𝑝(𝝌|𝑫𝑬, 𝐶) =
𝑝(𝑫𝑬|𝝌, 𝐶)𝑝(𝝌|𝐶)

𝑝(𝑫𝑬|𝐶)
 

(3.1) 

where 𝑝(𝝌|𝐶) is the initial or prior probability density function (PDF) of the model parameter 

𝝌; 𝑝(𝑫𝑬|𝝌, 𝐶) is the likelihood function of observed data 𝑫𝑬 and 𝑝(𝝌|𝑫𝑬, 𝐶) is the posterior 

PDF of the model parameters given the observed data and the model class 𝐶. The denominator 

in Eq. (3.1) 𝑝(𝑫𝑬|𝐶) is a normalizing constant such that integrating the posterior PDF over the 

parameter space yields unity as required by the definition of a probability function. 

3.2.2 Parameterization of Mass and Stiffness Matrices 

Assuming that the structure does not exhibit highly nonlinear behavior, a linear model of the 

dynamics should be adequate for identification of the dynamic characteristics of structure. A 

convenient parameterization for the stiffness and mass matrices for a linear structural model 

with 𝑁𝑑 degrees of freedom (DOF) is [17,75]: 

 𝑲(𝜽) = 𝑲0 + ∑ 𝜽𝑖𝑲𝑖
𝑁𝜽
𝑖=1  and 𝑴(𝝑) = 𝑴0 + ∑ 𝝑𝑗𝑴𝑗

𝑁𝝑
𝑗=1  (3.2) 

where 𝑲0, 𝑴0, 𝑲𝑖 and 𝑴𝑗 all are constant matrices independent of the model parameters and 

𝜽𝑖(𝑖 = 1, … ,𝑁𝜽)  and 𝝑𝑖(𝑗 = 1,… , 𝑁𝝑)   are the stiffness and mass parameters respectively 

which need to be updated to make necessary adjustment in the FE-model in order to make it 

more consistent with the real structure. Here, 𝑁𝜽 and 𝑁𝝑 represents the total number of stiffness 

and mass parameters respectively. As the modelling errors are expected to be present in both 

the stiffness and mass matrices, it is thus more reasonable to consider the parameterization of 

mass matrix as well to make the updating results more robust to the modelling errors [19]. 

3.2.3 Formulation of Likelihood Function 

The likelihood function is constructed to measure the agreement between the observed data 

from a dynamic system and the corresponding structural model output. It reflects how likely 

the measurements are observed from the model with particular set of parameters. In 

conventional Bayesian methods, the likelihood function is formulated based on direct 

correlating measured components of modal data with corresponding analytical components 

obtained from FE-model. However, relating mode shapes directly requires an appropriate 
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scaling or normalization of mode shape components obtained from the FE-model and the actual 

structure. To address this issue, an alternative mode shape residual, which is more sensitive to 

the change of mode shape and does not require such scaling, was proposed in this study [73]. 

The mode shape residual was formulated based on cosine of the angle between the analytical 

and measured mode shapes which is expressed as [76]: 

 cos 𝛼𝑟 =
𝝍̂𝑟
𝑇𝝓𝑟

|𝝍̂𝑟||𝝓𝑟|
= √𝑀𝐴𝐶𝑟 (3.3) 

where 𝝓𝑟 and 𝝍̂𝑟 are the rth mode shapes from FE-model and measured data respectively and 

𝑀𝐴𝐶𝑟 represents modal assurance criteria (MAC) for rth mode. To construct the likelihood 

function for mode shape, the measurement error 𝜀𝝍𝑟 = (𝝍̂𝑟
𝑇𝝓𝑟 |𝝍̂𝑟||𝝓𝑟|⁄ − 1) was introduced 

and a Gaussian probability model was chosen for  𝜀𝝍 ∈ ℝ
𝑁𝑚   with zero mean and 

variance 𝜎𝝍
2 ∈ ℝ𝑁𝑚  where, 𝑁𝑚  is the number of measured modes identified from recorded 

vibration data. Hence, the likelihood function for mode shapes can be written as: 

 𝑝(𝝍̂𝑟, 𝜎𝝍𝑟|𝜽, 𝝑) =
1

𝜎𝝍𝑟√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎𝝍𝑟
2 (

𝝍̂𝑟
𝑇𝑳𝝓𝑟

|𝝍̂𝑟||𝑳𝝓𝑟|
− 1)

2

] (3.4) 

where 𝑳 ∈ ℝ𝑁𝑜×𝑁𝑑  is the observation or selection matrix that picks 𝑁𝑜 observed DOF from 

complete mode shape vector 𝝓𝑟.  

Similarly, the likelihood function for eigenvalues can be expressed as: 

 𝑝(𝜆̂𝑟 , 𝜎𝜆𝑟|𝜽, 𝝑) =
1

𝜎𝜆𝑟√2𝜋
𝑒𝑥𝑝 [−

1

2𝜎𝜆𝑟
2 (𝜆𝑟 − 𝜆̂𝑟)

2
] (3.5) 

where 𝜎𝜆
2 is the variance matrix for eigenvalues; 𝜆𝑟(𝑟 = 1,… ,𝑁𝑚) and 𝜆̂𝑟(𝑟 = 1, … ,𝑁𝑚) are 

analytically and experimentally identified eigenvalues respectively. The probability models 

conditional on the parameter vectors 𝜽 and 𝝑 were chosen to have statistical independence 

between the eigenvalues and eigenvectors and between different modes.  

Therefore, the likelihood function of the observed data 𝑫𝑬 can be written as: 

 𝑝(𝑫𝑬|𝜽, 𝝑) =∏𝑝(𝝍̂𝑟, 𝜎𝝍𝑟|𝜽, 𝝑)

𝑁𝑚

𝑟=1

𝑝(𝜆̂𝑟, 𝜎𝜆𝑟|𝜽, 𝝑) (3.6) 
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3.2.4 Formulation of Eigenvalue Equation Errors 

Because of the modelling approximations and errors, it is assumed that the identified modal 

properties never satisfied exactly the eigenvalue problem of any given structural system [17,75]. 

System eigenvalue, 𝜆𝑟  and eigenvector, 𝝓𝑟  were introduced here to model the eigenvalue 

equation errors to measure the agreement between the identified modal parameters and their 

counterparts from the updated FE-model model. These eigenvalue equation errors were 

modelled by choosing a Gaussian PDF with zero mean and 𝜎𝑒
2 as the prescribed equation errors 

variance: 

 
𝑝(𝜆𝑟, 𝝓𝑟| 𝜽, 𝝑) =

1

√(2𝜋)𝑁𝑑|𝜎𝑒2𝐼𝑁𝑑|

𝑒𝑥𝑝 [−
1

2
𝑬𝑔,𝑟
𝑇 (𝜎𝑒

2𝑰𝑁𝑑)
−1
𝑬𝑔,𝑟] (3.7) 

where 𝑬𝑔,𝑟 = [𝑲(𝜽) − 𝜆𝑟𝑴(𝝑)]𝝓𝑟 ∈ ℝ
𝑁𝑑 ,  𝑟 = 1,… ,𝑁𝑚  is the eigenvalue equation errors 

and 𝑰𝑁𝑑  is a 𝑁𝑑 × 𝑁𝑑  identity matrix. By assigning an appropriate value for 𝜎𝑒
2 , one can 

compromise the agreement between the measured modal parameters and their counterparts 

from the updated structural model. A smaller value for 𝜎𝑒
2 can be assigned if the eigenvalue 

equations are nearly satisfied. 

3.2.5 Formulation of Prior PDF 

The prior PDF for the model parameters, 𝜽 and 𝝑 were assumed to be independent Gaussian 

PDFs with mean 𝜽𝑛 ∈ ℝ
𝑁𝜽 and 𝝑𝑛 ∈ ℝ

𝑁𝝑, representing the nominal values of stiffness and 

mass parameters and with covariance matrices 𝚺𝜽 ∈ ℝ
𝑁𝜽×𝑁𝜽  and 𝚺𝝑 ∈ ℝ

𝑁𝝑×𝑁𝝑 respectively. 

The prior covariance matrices 𝚺𝜽  and 𝚺𝝑  were taken to be diagonal and the choice of the 

diagonal values should reflect the level of uncertainty in the nominal model. The final form of 

prior PDF considering eigenvalue equation errors and model parameters can be expressed as: 

 𝑝(𝝀,𝝓, 𝜽, 𝝑) = 𝑝(𝝀,𝝓|𝜽, 𝝑)𝑝(𝜽)𝑝(𝝑) (3.8) 

where 𝑝(𝜽)  and 𝑝(𝝑)  are the prior PDFs for stiffness parameters and mass parameters 

respectively which are given by: 

 𝑝(𝜽) =
1

√(2𝜋)𝑁𝜃|𝚺𝜽|
𝑒𝑥𝑝 [−

1

2
(𝜽 − 𝜽𝑛)

𝑇𝚺𝜽
−1(𝜽 − 𝜽𝑛)] (3.9) 

   

and 𝑝(𝝑) =
1

√(2𝜋)𝑁𝜗|𝚺𝝑|
𝑒𝑥𝑝 [−

1

2
(𝝑 − 𝝑𝑛)

𝑇𝚺𝝑
−1(𝝑 − 𝝑𝑛)] (3.10) 
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3.2.6 Formulation of Posterior PDF 

Substituting Eqs. (3.6) and (3.8) into Eq. (3.1), the expression for the posterior PDF can be 

obtained. The most probable values (MPV) of unknown parameters can be obtained by 

maximizing the posterior PDF. For the ease of this optimization problem, the negative 

logarithm of posterior PDF was taken as the objective function which is given by: 

 

Γ(𝜽, 𝝑, 𝝀, 𝝓) =
1

2
(𝜽 − 𝜽𝑛)

𝑇𝚺𝜽
−1(𝜽 − 𝜽𝑛) +

1

2
(𝝑 − 𝝑𝑛)

𝑇𝚺𝝑
−1(𝝑 − 𝝑𝑛)

+
1

2𝜎𝑒2
∑‖(𝑲(𝜽) − 𝜆𝑟𝑴(𝝑))𝝓𝑟‖

2

𝑁𝑚

𝑟=1

+
1

2
∑

1

𝜎𝜆𝑟
2 (𝜆𝑟 − 𝜆̂𝑟)

2
+
1

2
∑

1

𝜎𝝍𝑟
2 (

𝝍̂𝑟
𝑇𝑳𝝓𝑟

|𝝍̂𝑟||𝑳𝝓𝑟|
− 1)

2𝑁𝑚

𝑟=1

𝑁𝑚

𝑟=1

 

(3.11) 

where ‖ . ‖ denotes the Euclidean norm. The above objective function was formulated by 

excluding the constants which are independent of the uncertain model parameters. The MPV 

of unknown parameters were obtained by minimizing this objective function sequentially and 

iteratively until some prescribed convergence criteria was satisfied [17,77]. 

3.3 Optimal Parameter Vectors 

A linear optimization problem was employed to minimize the above objective function [17]. 

However, it can be seen that the direct linear optimization of Γ with respect to 𝝓𝑟 cannot be 

possible as the above objective function is not quadratic about 𝝓𝑟. To overcome this problem, 

Lagrange multiplier approach [20,23] was employed by introducing auxiliary variables 𝜈𝑟 such 

that 

 𝜈𝑟
2 =

1

|𝝍̂𝑟|
2
|𝑳𝝓𝑟|2

 (3.12) 

By utilizing Langrange multiplier approach, the objective function in Eq. (3.11) can be re-

formulated as: 

Γ(𝜽, 𝝑, 𝝀,𝝓, 𝝂, 𝜸)

=
1

2
(𝜽 − 𝜽𝑛)

𝑇𝚺𝜽
−1(𝜽 − 𝜽𝑛) +

1

2
(𝝑 − 𝝑𝑛)

𝑇𝚺𝝑
−1(𝝑 − 𝝑𝑛)

+
1

2𝜎𝑒
2∑‖(𝑲(𝜽) − 𝜆𝑟𝑴(𝝑))𝝓𝑟‖

2 +
1

2
∑

1

𝜎𝜆,𝑟
2 (𝜆𝑟 − 𝜆̂𝑟)

2

𝑁𝑚

𝑟=1

𝑁𝑚

𝑟=1

+
1

2
∑

1

𝜎𝝍,𝑟
2 (𝜈𝑟𝝍̂𝑟

𝑇𝑳𝝓𝑟 − 1)
2
+∑𝛾𝑟 (𝜈𝑟

2|𝝍̂𝑟|
2
|𝑳𝝓𝑟|

2 − 1)

𝑁𝑚

𝑟=1

𝑁𝑚

𝑟=1

 

(3.13) 
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where 𝛾𝑟, 𝑟 = 1, … ,𝑁𝑚  are Lagrange multipliers. Because of the added constraints, the 

sequence of iteration starts from computing the optimal values for Lagrange multiplier and 

auxiliary variables while keeping other parameters at their nominal values. 

3.3.1 Optimization for Auxiliary Variables and Lagrange Multipliers 

By minimizing the objective function Γ given in Eq. (3.13) with respect to 𝜈𝑟, the optimal value 

for 𝜈𝑟 can be obtained. After substituting the optimal value for 𝜈𝑟 into Eq. (3.12) and selecting 

the root which satisfies 
𝜕2Γ

𝜕𝜈𝑟
2 > 0, the optimal value for r  can be obtained. These are expressed 

as: 

 𝜈𝑟
∗ =

𝜎𝝍,𝑟
−2𝝍̂𝑟

𝑇𝑳𝝓𝑟

(|𝜎𝝍,𝑟
−2𝝍̂𝑟𝑇𝑳𝝓𝑟||𝝍̂𝑟||𝑳𝝓𝑟|)

=
𝑠𝑔𝑛(𝜎𝝍,𝑟

−2𝝍̂𝑟
𝑇𝑳𝝓𝑟)

|𝝍̂𝑟||𝑳𝝓𝑟|
 (3.14) 

   

 𝛾𝑟
∗ =

−𝜎𝝍,𝑟
−2(𝝍̂𝑟

𝑇𝑳𝝓𝑟)
2

2|𝝍̂𝑟|
2
|𝑳𝝓𝑟|2

+ |𝜎𝝍,𝑟
−2𝝍̂𝑟

𝑇𝑳𝝓𝑟 (2|𝝍̂𝑟||𝑳𝝓𝑟|)⁄ | (3.15) 

where 𝑠𝑔𝑛(. ) denotes the sign or signum function. 

3.3.2 Optimization for Mode Shapes 

Similarly by minimizing the objective function Γ given in Eq. (3.13) with respect to 𝝓𝑟, the 

optimal vector for 𝝓𝑟 can be obtained as: 

𝝓𝑟
∗ = [𝜎𝑒

−2(𝑲(𝜽) − 𝜆𝑟𝑴(𝝑))
2 + 𝜎𝝍,𝑟

−2𝜈𝑟
2(𝝍̂𝑟

𝑇𝑳)
𝑇
(𝝍̂𝑟

𝑇𝑳) + 2𝛾𝑟𝜈𝑟
2|𝝍̂𝑟|

2
𝑳𝑇𝑳]

−1

 (3.16) 

3.3.3 Optimization for Frequencies 

By minimizing the objective function Γ given in Eq. (3.13) with respect to 𝜆𝑟, the optimal 

vector for 𝜆𝑟 can be obtained as: 

 𝜆𝑟
∗ = [𝜎𝜆,𝑟

−2 + 𝜎𝑒
−2𝝓𝑟

𝑇𝑴(𝝑)2𝝓𝑟]
−1
[𝜎𝑒

−2𝝓𝑟
𝑇𝑴(𝝑)𝑲(𝜽)𝝓𝑟 + 𝜎𝜆,𝑟

−2𝜆̂𝑟] (3.17) 

3.3.4 Optimization for Stiffness Parameters 

By minimizing the objective function Γ given in Eq. (3.13) with respect to 𝜽, the optimal vector 

for 𝜽 can be obtained as: 

 𝜽∗ = [𝚺𝜽
−1 + 𝜎𝑒

−2𝑾𝑲𝜽
𝑇 𝑾𝑲𝜽]

−1[𝚺𝜽
−1𝜽𝑛 + 𝜎𝑒

−2𝑾𝑲𝜽
𝑇 𝑸𝑲𝜽] (3.18) 
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where 𝑾𝑲𝜽 = [𝑲1𝝓𝑟, 𝑲2𝝓𝑟, … ,𝑲𝑁𝜃𝝓𝑟] ∈ ℝ
𝑁𝑑𝑁𝑚×𝑁𝜃  and 𝑸𝑲𝜽 = [𝜆𝑟𝑴(𝝑) − 𝑲0]𝝓𝑟 ∈

ℝ𝑁𝑑𝑁𝑚. 

3.3.5 Optimization for Mass Parameters 

By minimizing the objective function Γ given in Eq. (3.13) with respect to 𝝑, the optimal vector 

for 𝝑 can be obtained as: 

 𝝑∗ = [𝚺𝝑
−1 + 𝜎𝑒

−2𝑾𝑴𝝑
𝑇 𝑾𝑴𝝑]

−1[𝚺𝝑
−1𝝑𝑛 + 𝜎𝑒

−2𝑾𝑴𝝑
𝑇 𝑸𝑴𝝑] (3.19) 

where 𝑾𝑴𝝑 = [𝜆𝑟𝑴1𝝓𝑟, 𝜆𝑟𝑴2𝝓𝑟, … , 𝜆𝑟𝑴𝑁𝝑𝝓𝑟] ∈ ℝ
𝑁𝑑𝑁𝑚×𝑁𝝑  and 𝑸𝑴𝝑 = [𝑲(𝜽) −

𝜆𝑟𝑴0]𝝓𝑟 ∈ ℝ
𝑁𝑑𝑁𝑚. 

3.4 Studied Steel Truss Bridge 

The feasibility of the proposed model updating method is illustrated through an experimental 

study on an existing steel truss bridge. The description of studied steel truss bridge and its FE-

model are presented in the following sub-sections. 

3.4.1 Test Structure Description 

The bridge studied was a warren type steel truss bridge constructed in 1965 over a river for 

road traffic [78]. The bridge consisted of five main spans, each having length of 70.77 meters 

and a width of 6.0 meters as shown in Fig. 3.1. All the spans of this bridge were simply 

supported. The tension diagonal members were an H-section and the compression diagonal 

members were made of a box section as shown in Fig. 3.1(c). There were eight or nine oval 

openings in the web of each tension diagonal members, except those at the ends of each span, 

for the reduction of the weight of steel. The bridge had a composite deck of steel plate girders 

and reinforced concrete slab. A photographic view of the truss bridge is shown in Fig. 3.2.  

3.4.2 Finite Element Model of Test Structure 

An initial FE-model was developed in MATLAB for this study as shown in Fig. 3.3 by 

modelling only one span (approach span) of the bridge due to its geometric similarity [73]. The 

structural members were modelled as three-dimensional frame elements. The equivalent 

section concept was used in modelling the concrete deck slab with added mass and stiffness 

properties to the stringer beams and added stiffness to the cross beams. Six DOF were 

considered at each joint. The employed numerical model was a 2510 DOF FE-model consisting 
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of 514 frame elements and 420 nodes. Lumped masses were applied to the model for the 

dynamical analysis of the bridge, which were calculated by geometry and the mass density of 

steel and inertia corresponding to rotational DOF was considered as zero. Boundary conditions 

were modelled by pin and roller support conditions and spring elements were introduced in 

order to model the dynamic friction at bridge supports. It was assumed that a spring constant 

of the support in the longitudinal direction was 1.0 x 104 kN/m, and a spring constant in the 

transverse rotation was 5.0 x 105 kNm/rad. The first five bending modes and two torsional 

modes obtained from eigenvalue analysis of the initial FE-model are shown in Fig. 3.4. 

 

Fig. 3.1. Studied steel truss bridge; (a) Side view of the first span; (b) Cross section of bridge 

and (c) Cross section of diagonal members. All the units are in millimeters. [28] 

 

 

Fig. 3.2. Photographic view of the studied truss bridge 

(a) 

(b) 

(c) 
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Fig. 3.3. A three dimensional FE-model developed in MATLAB 

  

Fig. 3.4. Vibration modes obtained from the initial FE-model; (a) 1st bending, (b) 1st 

torsional, (c) 2nd bending, (d) 3rd bending, (e) 4th bending, (f) 5th bending and (g) 3rd 

torsional 

3.5 Experimental Validation of Proposed Updating Framework 

The feasibility of the proposed model updating method is illustrated through an experimental 

study on an existing steel truss bridge. 

3.5.1 Vibration Measurements and System Identification 

In a separate study [78], the vibration acceleration measurement was conducted by a car 

running test on the bridge using thirteen sensors. The measurements were made at the first span 
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where measurements with a wired system network were possible. Fig. 3.5 shows the layout of 

thirteen sensors' location along with the elevation view of the truss bridge. The measurement 

locations were determined for the identification of global vibration modes of the main truss. 

Vertical vibrations were measured at locations on the road surface close to each node in the 

lower chord members expect for both ends of the span where no measureable vertical vibration 

was expected. Additionally, vibrations were measured at the quarter point from the bottom of 

D5 at the upstream side, referred to as D5u. A total of five data sets of 10-min measurements 

were collected at a sampling rate of 100 samples per second. An example of full length recorded 

data measured at U5 location is shown in Fig. 3.6(a). 

Free vibration (FV) responses were extracted from full length recorded data by checking the 

traffic free time on the bridge from the video of traffic recorded during measurements. Fig. 

3.6(b) shows one such FV response extracted from full length recorded data as shown in Fig. 

3.6(a). Two output-only system identification methods: Stochastic Subspace Identification 

(SSI) [79] and Eigensystem Realization Algorithm (ERA) [80,81] were used to identify the 

modal parameters from the extracted FV responses. The identification of modal parameters 

was done using two different techniques to ensure higher confidences against the effect of 

measurement noise in the recorded data as well as deviations of measured vibration from the 

theoretical assumption of white-noise induced vibration in case of SSI.  

Stabilization diagrams were plotted corresponding to both the identification techniques as it is 

recognized to be the most popular tool for differentiating system modes from spurious modes. 

A stabilization diagram is simply a plot of various model orders versus the frequencies 

identified at each of these orders. The motivation is that a system mode should show up with 

consistent frequency, damping and mode shape at various model orders whereas the spurious 

ones could be expected to show a somewhat more erratic behavior. By choosing initially a high 

order for the state space model, system identification was performed with every model order 

so this procedure yields a set of modal parameters for each selected order. Parameters that 

belong to two different model orders were then compared according to some preset criteria 

such as 

 
|𝑓𝑛,𝑖 − 𝑓𝑛+1,𝑗|

𝑓𝑛,𝑖
≤ 𝜀𝑓 (3.20) 

   

 
|𝜉𝑛,𝑖 − 𝜉𝑛+1,𝑗|

𝜉𝑛,𝑖
≤ 𝜀𝜉  (3.21) 
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 1 −𝑀𝐴𝐶(𝝓𝑛,𝑖 , 𝝓𝑛+1,𝑗) ≤ 𝜀𝑀𝐴𝐶 (3.22) 

where 𝜀𝑓, 𝜀𝜉  and 𝜀𝑀𝐴𝐶 are tolerance limits to decide if mode i estimated from model order n is 

the same that mode j estimated from model order n+1. In the above equations, 𝑓𝑛,𝑖, 𝜉𝑛,𝑖, and 

𝜙𝑛,𝑖 represent the ith modal frequency, modal damping ratio and mode shapes corresponding 

to system order n respectively. Fig. 3.7 shows the stabilization diagrams obtained from SSI an 

ERA by analysing data from FV1. In case of SSI, the stable modes, those verifying 𝜀𝑓 = 0.01, 

𝜀𝜉 = 0.05, and 𝜀𝑀𝐴𝐶 = 0.05 simultaneously, had been plotted with a “”, while the unstable 

modes have been plotted with a cross “+”. Fig. 3.7(a) also includes the plot of the average 

normalized power spectral density (PSD) of the measured data corresponding to all the 

measurement location. In case of ERA, the screening criteria used to extract the stable modes 

were  𝜀𝑓 = 0.01, 𝜀𝜉 = 0.05, and 𝜀𝑀𝐴𝐶 = 0.1. In addition to that extended modal amplitude 

coherence (EMAC) [81] was also used for further screening of the identified modes by ERA. 

The modes which satisfied all the above criteria simultaneously in addition to EMAC value 

greater than 0.3 were considered as stable modes and plotted with a “*” in Fig. 3.7(b) along 

with the Fourier spectra of the acceleration at U1 at the background. Fig. 3.8 shows the 

identified modes from both the methods and a good agreement was observed between the 

identified modal parameters from SSI and ERA suggesting a high level of reliability of the 

identified modal parameters. 
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Fig. 3.5. Position of sensors during field vibration measurements at the first span 

 

Fig. 3.6. Acceleration time history measured at U5 location; (a) Full length recorded data, (b) 

FV response extracted from full length recorded data 

3.5.2 Parameterization of Mass and Stiffness Matrices for the Truss Bridge 

For the identification of damage at local level using vibration measurements, it is necessary to 

update stiffness matrices of all the elements to capture the variations in the stiffness due to 

local changes. Also, it is evident from practical experiences that different parts of the structure 

are subjected to different level of deterioration due to corrosion and fatigue depending on their 

exposer conditions and dynamic characteristics. Hence, it is more practical to consider stiffness 

parameters corresponding to each element of the FE-model. In this study, four stiffness 

parameters were considered for each element considering both sectional and material properties 

resulting in a total of 2056 stiffness parameters. The stiffness parameters corresponding to the 

𝑙th element are given by: 

 𝜽𝑙,1 = 𝐸𝐴𝑙 , 𝜽𝑙,2 = 𝐸𝐼𝑧𝑙 , 𝜽𝑙,3 = 𝐸𝐼𝑦𝑙 , 𝜽𝑙,4 = 𝐺𝐽𝑙 (3.23) 

where 𝐸 and 𝐺 are the modulus of elasticity and the modulus of rigidity of steel respectively; 

𝐴𝑙 , 𝐼𝑧𝑙 , 𝐼𝑦𝑙 , 𝐽𝑙 are the cross-sectional area, moment of inertias about two orthogonal axes defined 

as z- and y-axis on cross section and polar moment of inertia of the 𝑙th element respectively. 

For the parameterization of mass matrix, mass density per unit length of each section was 

considered as uncertain parameter. It is important to note that, the variation of mass is assumed 

to be much smaller compared to the stiffness due to local damage. Hence, lesser number of 

uncertain parameters were assigned for mass matrix. Basically, the main purpose of the 

parameterization of mass matrix was to make the updating results more robust to the modelling 

errors as explained earlier. The initial FE-model contains 46 sections which were used to assign 
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sectional properties of various structural members, thus, resulting in a total of 46 mass 

parameters. Hence, the global stiffness and mass matrices are given by: 

 𝑲(𝜽) = 𝑲0 + ∑ 𝜽𝑖𝑲𝑖
2056
𝑖=1  and 𝑴(𝝑) = 𝑴0 + ∑ 𝝑𝑗𝑴𝑗

46
𝑗=1  (3.24) 

   

 

Fig. 3.7. Stabilization diagrams corresponding to FV1 obtained from; (a) SSI: , stable 

mode; +, unstable mode,  (b) ERA: *, stable mode 

3.5.3 Model Updating Results and Discussion 

The model updating was carried out using proposed algorithm considering 1% coefficient of 

variations of the measurement error of the squared modal frequencies and mode shapes 

respectively for all modes. The natural frequencies and partial mode shape vectors of 12 

components of the identified seven global modes were used to update the initial FE-model. The 
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initial model was developed with the model parameters updated manually using the modal 

properties identified experimentally in the previous study [78]. Table 3.1 shows the model 

updating results for modal frequencies and MAC values. It can be seen that the frequencies of 

the updated model are very close to the measured ones and MAC values are also improved, 

validating the proposed algorithm. Fig. 3.9 shows the comparison between the measured mode 

shapes (red lines) and the updated system mode shapes (green lines). The results show that the 

two sets of curves are almost top of each other which also suggests that the updating method is 

efficient in updating mode shapes though only a very few components of modes were measured. 

While performing the model updating, the computational time was calculated as it is one of the 

performance indicators for the optimization process. Total execution time was 174314.05 s for 

100 iterations with a computer having Intel® Core(TM) 3.40 GHz processor and 24 GB RAM. 

 

Fig. 3.8. Global modes identified by SSI and ERA from recorded data at the first span; B: 

Bending modes, T: Torsional modes 

Table 3.1. Model updating results for frequencies and MAC values 

Experimental order 

of Mode 

Experimental Initial Updated MAC 

initial 

MAC 

Updated f(Hz) f(Hz) f(Hz) 

1st bending 2.569 2.605 2.569 0.9956 0.9998 

1st torsional 4.605 4.773 4.605 0.9987 0.9997 

2nd bending 5.288 5.454 5.288 0.9917 0.9986 

3rd bending 7.302 7.730 7.306 0.9502 0.9998 

4th bending 9.376 9.315 9.384 0.7651 0.9983 

5th bending 9.915 9.978 9.918 0.7599 0.9978 

3rd torsional 11.42 11.67 11.43 0.8743 0.9998 

  

 

 

SSI ERA

B1: 2.569Hz

B1: 2.559Hz

T1: 4.605Hz

T1: 4.601Hz B2: 5.285Hz

B2: 5.288Hz B3: 7.302Hz B4: 9.376Hz B5: 9.915Hz T3: 11.42Hz

B4: 9.245Hz B5: 10.05Hz T3: 11.41HzB3: 7.296Hz
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Fig. 3.9. Comparison between actual mode shapes and updated system mode shapes 

It can be seen that the frequencies of the initial FE-model are close to the experimentally 

identified ones because the model parameters of the initial model were updated manually 

already in the previous study [78], as described above. Hence, to check the effectiveness of the 

proposed model updating framework against large discrepancy between the initial FE-model 

and actual structure, three different cases were considered. In case 1, the initial values of 

stiffness parameters were significantly overestimated by selecting the parameters from a 

uniform distribution over 𝜽̃ to 1.5𝜽̃ where 𝜽̃ is the stiffness parameters obtained by the model 

updating framework proposed in the present study. In case 2, the initial values of stiffness 

parameters were significantly underestimated by selecting the parameters from a uniform 

distribution over 0.5𝜽̃ to 𝜽̃. In case 3, the initial values of stiffness parameters were selected 

from a uniform distribution over 0.8𝜽̃ to 1.3𝜽̃ so that some parameters were overestimated and 

some were underestimated. The model updating was then carried out using proposed 

framework for each case and the results were tabulated in Tables 3.2-3.4. From these results 

one can conclude that the proposed model updating framework is able to update a FE-model 

having large discrepancy efficiently utilizing modal data that may be practically available. 

Table 3.2. Model updating results for case 1 

Experimental order 

of Mode 

Experimental Initial Updated MAC 

initial 

MAC 

Updated f(Hz) f(Hz) f(Hz) 

1st bending 2.569 2.899 2.569 0.9982 0.9987 

1st torsional 4.605 5.289 4.605 0.9981 0.9970 

2nd bending 5.288 6.062 5.288 0.9910 0.9998 

3rd bending 7.302 8.604 7.304 0.9559 0.9998 

4th bending 9.376 10.345 9.383 0.7972 0.9983 

5th bending 9.915 10.896 9.916 0.7388 0.9977 

3rd torsional 11.42 12.89 11.42 0.8636 0.9998 

 

 

 

 

Measured

Updated

4th Bending2nd Bending 3rd Bending 5th Bending 3rd Torsional1st Bending 1st Torsional
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Table 3.3. Model updating results for case 2 

Experimental order 

of Mode 

Experimental Initial Updated MAC 

initial 

MAC 

Updated f(Hz) f(Hz) f(Hz) 

1st bending 2.569 2.227 2.569 0.9992 0.9985 

1st torsional 4.605 4.061 4.605 0.9975 0.9991 

2nd bending 5.288 4.650 5.288 0.9896 0.9987 

3rd bending 7.302 6.604 7.306 0.9589 0.9998 

4th bending 9.376 7.917 9.396 0.8013 0.9983 

5th bending 9.915 8.293 9.923 0.6980 0.9977 

3rd torsional 11.42 9.86 11.43 0.8756 0.9998 

 

Table 3.4. Model updating results for case 3 

Experimental order 

of Mode 

Experimental Initial Updated MAC 

initial 

MAC 

Updated f(Hz) f(Hz) f(Hz) 

1st bending 2.569 2.652 2.569 0.9985 0.9999 

1st torsional 4.605 4.838 4.605 0.9979 0.9994 

2nd bending 5.288 5.544 5.288 0.9907 0.9997 

3rd bending 7.302 7.870 7.303 0.9568 0.9998 

4th bending 9.376 9.455 9.385 0.8000 0.9983 

5th bending 9.915 9.939 9.917 0.7671 0.9978 

3rd torsional 11.42 11.77 11.42 0.8768 0.9998 

 

3.6 Conclusions 

In this chapter, a Bayesian probabilistic approach for FE-model updating was presented 

accounting various uncertainties and utilizing incomplete modal data (modal frequencies and 

partial mode shapes) identified by limited number of sensors. To validate the proposed 

approach, an existing steel truss bridge was selected as a test-bed and modal properties were 

extracted from measured vibration data obtained from car running test. One new objective 

function was introduced for Bayesian model updating that does not require any scaling or 

normalization of mode shapes as the likelihood function for mode shapes was formulated based 

on cosine of the angle between the analytical and experimentally identified mode shapes. The 

initial MATLAB-based FE-model was updated using the identified modal properties by the 

proposed framework. It was found that the proposed updating framework is efficient enough 

in updating a FE-model of existing truss bridge with four stiffness parameters for each element 

corresponding to sectional and material properties utilizing experimental data from limited 
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number of sensors only. The efficiency of the proposed model updating framework against 

large discrepancy in the initial FE-model was also checked by significantly overestimating or 

underestimating the initial stiffness parameters. The model updating results confirmed the 

effectiveness of the proposed approach against large discrepancy in the initial FE-model as 

well, showing it to be both computationally efficient and robust. This makes the proposed 

method a deserving candidate for model updating of a large-scale structure with incomplete 

measured modal data. 
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CHAPTER 4 

ENERGY-BASED DAMPING EVALUATION FOR SHM 

4.1 Introduction 

In this chapter, an energy-based damping model was introduced for SHM by estimating the 

contributions to modal damping ratios from different structural elements utilizing the data from 

updated FE-model. In case of large structure, such as bridges, the identification of local damage 

is a challenging task because of the issue of low sensitivity of frequencies and mode shapes to 

local damage especially due to cracks or some internal changes in the structural property. In 

such cases, model updating using only global modes identified with a limited number of sensors 

may not be able to trace the damaged stiffness parameters as the changes in the frequencies for 

the global modes due to local damage are not significant. On the other hand, it has been 

recognized that the damping is more sensitive to local damage and the advantage of using 

damping is that the damping change in global modes affected by local damage can be identified 

with a small number of sensors. These are the main motivations of considering damping for 

SHM of steel truss bridges in this dissertation. However, there are two major inherent 

difficulties in the analysis of damping for SHM: accurate identification of experimental modal 

damping ratios and modeling of damping to represent it analytically. In this chapter, both issues 

associated with damping analysis were addressed and discussed properly. The reliability in the 

identified modal damping ratios can be achieved by considering various FV records 

corresponding to different traffic conditions. An equivalent viscous damping model was 

considered in this study for the evaluation of analytical modal damping ratios. 

4.2 Energy-based Damping Evaluation 

It is common practice to express the damping of real structures in terms of equivalent viscous 

damping ratio which is the ratio of the given damping of an equivalent single-degree-of-

freedom system to its critical damping. Using energy-based definition, this damping ratio can 
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be defined as the ratio of the dissipated energy per cycle to the maximum potential energy in a 

cycle [82,83]. Hence, the 𝑛th modal damping ratio, 𝜉𝑛 can be expressed as: 

 𝜉𝑛 ≡
𝐷𝑛
4𝜋𝑈𝑛

 (4.1) 

where 𝐷𝑛 and 𝑈𝑛 are the 𝑛th modal dissipating energy and 𝑛th modal potential energy per unit 

cycle, respectively. The nth modal dissipating energy, 𝐷𝑛 can be expressed as the summation 

of dissipating energies due to different sources, such as damping capacity of materials, friction 

at structural connections, and energy dissipation at supports. 

4.2.1 Energy-based Damping Model for Test Bridge 

The studied steel truss bridge was considered to be composed of five sub-structures as shown 

in Fig. 4.1: diagonal members (D), girders (G), upper chord members (UC), top lateral bracings 

(TLB) and bottom lateral bracings (BLB). The modal energy dissipation from each sub-

structure, which is referred to as the internal modal energy dissipation, 𝐷𝑖,𝑛 in this dissertation, 

was assumed to be proportional to its modal strain energy [84,85]. Therefore, the internal modal 

energy dissipation of the truss bridge for the 𝑛th mode 𝐷𝑖,𝑛 can be expressed as: 

 𝐷𝑖,𝑛 = 2𝜋𝜂𝑑𝑉𝑑,𝑛 + 2𝜋𝜂𝑔𝑉𝑔,𝑛 + 2𝜋𝜂𝑢𝑐𝑉𝑢𝑐,𝑛 + 2𝜋𝜂𝑡𝑙𝑏𝑉𝑡𝑙𝑏,𝑛 + 2𝜋𝜂𝑏𝑙𝑏𝑉𝑏𝑙𝑏,𝑛 (4.2) 

where  𝜂𝑑 , 𝜂𝑔 , 𝜂𝑢𝑐 , 𝜂𝑡𝑙𝑏 , 𝜂𝑏𝑙𝑏  are the equivalent loss factors of diagonal members, girders, 

upper chord members, top lateral bracings and bottom lateral bracings, respectively. In the 

present study, it was assumed that the equivalent loss factors accounted for the material 

damping as well as the damping at structural connection for simplicity. 𝑉𝑑,𝑛, 𝑉𝑔,𝑛, 𝑉𝑢𝑐,𝑛, 𝑉𝑡𝑙𝑏,𝑛 

and 𝑉𝑏𝑙𝑏,𝑛 are 𝑛th modal strain energies of sub-structures described above. The modal energy 

dissipation at supports (S), 𝐷𝑠,𝑛 were expressed as 

 𝐷𝑠,𝑛 =∑4𝐴𝑠,𝑛𝜇𝑠𝑅 (4.3) 

where 𝐴𝑠,𝑛, 𝜇𝑠 and 𝑅 are the 𝑛th modal amplitude at the movable support, dynamic friction 

coefficient and support’s reaction due to vertical load respectively. There may be energy 

dissipation at the support due to transmission of energy from supports to piers, abutments and 

foundations, which was assumed to be included in the energy dissipation represented by Eq. 

(4.3). 
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After calculating 𝐷𝑛 using Eqs. (4.2) and (4.3), the 𝑛th modal damping ratio for the steel truss 

bridge can be evaluated using Eq. (4.1) 

𝜉𝑛 =
2𝜋𝜂𝑑𝑉𝑑,𝑛
4𝜋𝑈𝑛

+
2𝜋𝜂𝑔𝑉𝑔,𝑛

4𝜋𝑈𝑛
+
2𝜋𝜂𝑢𝑐𝑉𝑢𝑐,𝑛
4𝜋𝑈𝑛

+
2𝜋𝜂𝑡𝑙𝑏𝑉𝑡𝑙𝑏,𝑛
4𝜋𝑈𝑛

+
2𝜋𝜂𝑏𝑙𝑏𝑉𝑏𝑙𝑏,𝑛
4𝜋𝑈𝑛

+
8𝐴𝑠,𝑛𝜇𝑠𝑅

4𝜋𝑈𝑛
 (4.4) 

Therefore, as can be seen from the above equation, it is necessary to know the equivalent loss 

factor of each sub-structure and friction coefficient of support to evaluate the modal damping 

ratios of steel truss bridge. The unknown loss factors and friction coefficient can be evaluated 

by using experimentally identified modal damping ratios and corresponding energy ratios 

obtained from updated FE-model. To proceed, the Eq. (4.4) was expanded to a set of equations 

of 𝑚 number of modes by assuming that the unknown damping parameters are independent of 

the vibration mode [32]. 

{
𝜉1
⋮
𝜉𝑚

} =

[
 
 
 
 
2𝜋𝑉𝑑,1
4𝜋𝑈1

2𝜋𝑉𝑔,1

4𝜋𝑈1

2𝜋𝑉𝑢𝑐,1
4𝜋𝑈1

⋮ ⋮ ⋮
2𝜋𝑉𝑑,𝑚
4𝜋𝑈𝑚

2𝜋𝑉𝑔,𝑚

4𝜋𝑈𝑚

2𝜋𝑉𝑢𝑐,𝑚
4𝜋𝑈𝑚

    

2𝜋𝑉𝑡𝑙𝑏,1
4𝜋𝑈1

2𝜋𝑉𝑏𝑙𝑏,1
4𝜋𝑈1

8𝐴𝑠,1𝑅

4𝜋𝑈1
⋮ ⋮ ⋮

2𝜋𝑉𝑡𝑙𝑏,𝑚
4𝜋𝑈𝑚

2𝜋𝑉𝑏𝑙𝑏,𝑚
4𝜋𝑈𝑚

8𝐴𝑠,𝑚𝑅

4𝜋𝑈𝑚 ]
 
 
 
 

{
 
 

 
 
𝜂𝑑
𝜂𝑔
𝜂𝑢𝑐
𝜂𝑡𝑙𝑏
𝜂𝑏𝑙𝑏
𝜇𝑠 }
 
 

 
 

 (4.5) 

It is important to note that the number of modes considered, 𝑚 should be equal to or greater 

than the number of unknown damping parameters in order to able to solve the above equation. 

The Eq. (4.5) can be solved by non-negative least-squares method (NNLS) to obtain the 

unknown damping parameters i.e., equivalent loss factor of each sub-structure and friction 

coefficient of support. After getting the loss factors and friction coefficient, the analytical 

modal damping ratio then can be evaluated using Eq. (4.4) and the contribution of each sub-

structure to the modal damping ratio can also be evaluated. 

 

Fig. 4.1. Sub-structures considered for damping analysis 
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 4.2.2 Elemental Damping Evaluation 

In this sub-section, an extension of the above methodology to calculate the contributions from 

different structural elements to modal damping ratios was introduced. Using the same principle, 

the contribution of each internal element to the modal damping ratio, 𝜉𝑙,𝑛 can also be obtained 

by using the strain energy of that element and corresponding loss factor 

 𝜉𝑙,𝑛 =
2𝜋𝜂𝑙𝑉𝑙,𝑛
4𝜋𝑈𝑛

 (4.6) 

where 𝜂𝑙 and 𝑉𝑙,𝑛 are the equivalent loss factor and 𝑛th modal strain energy of 𝑙th element. The 

equivalent loss factor of the 𝑙th element, 𝜂𝑙 can be assumed to be the same as the loss factor of 

that sub-structure to which it belongs. By looking at these contributions from all the elements, 

one can have a clear understanding about those elements which have dominant contribution to 

damping for a particular mode which can be useful information from the SHM point of view. 

Another good aspect of this elemental damping evaluation is that it may enable one to detect 

damage at local level by observing the change in elemental damping parameter, such as loss 

factor or friction coefficient, before and after possible damage. 

4.2.3 Evaluation Modal Energies 

It is understood from Eq. (4.5) that the evaluation of modal potential energy and modal strain 

energy of each sub-structures are indispensable for the estimation of damping parameters. In 

order to know the contribution of each element to modal damping ratio, it is necessary to 

calculate strain energy of each element. The updated mode shapes and the updated stiffness 

matrix obtained in the previous section can be used here to evaluate the modal potential energy 

and modal strain energy of each element.  

The 𝑛th modal potential energy, 𝑈𝑛 and 𝑛th modal strain energy, 𝑉𝑛 are given by 

 𝑈𝑛 =
1

2
𝝓𝑛
∗𝑇(𝑲𝑒

∗ +𝑲𝐺)𝝓𝑛
∗ =

1

2
𝝓𝑛
∗𝑇𝑲𝑇𝝓𝑛

∗ =∑
1

2
𝝓𝑙,𝑛
∗𝑇𝑲𝑇,𝑙𝝓𝑙,𝑛

∗

𝑁𝑙

𝑙=1

 

 

(4.7) 

 𝑉𝑛 =
1

2
𝝓𝑛
∗𝑇𝑲𝑒

∗𝝓𝑛
∗ =∑

1

2
𝝓𝑙,𝑛
∗𝑇𝑲𝑒,𝑙

∗ 𝝓𝑙,𝑛
∗

𝑁𝑙

𝑙=1

 (4.8) 

where 𝑲𝑒
∗ ,  𝑲𝐺 ,  𝑲𝑇  and 𝝓𝑛

∗  represents updated elastic stiffness matrix, geometric stiffness 

matrix, total stiffness matrix and 𝑛th updated mode shape of the structure; while suffix "𝑙" 
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represents components of total stiffness matrix and 𝑛th updated mode shape corresponding to 

the 𝑙th element. 𝑁𝑙 denotes the number of elements in the FE-model. 𝑲𝑒,𝑙
∗  can be calculated 

using updated stiffness parameters for the 𝑙th element and corresponding subsystem stiffness 

matrices. Once the modal strain energy of each element is calculated, the contribution of each 

element to the modal damping ratio can be evaluated using Eq. (4.6). Here 𝑲𝐺 was considered 

in the evaluation of total potential energy as the effect of 𝑲𝐺 was found to be significant for 

the local modes as can be seen in Fig. 4.2. 

 

Fig. 4.2 Comparison of frequencies obtained from linear elastic and geometric nonlinear 

analysis 

4.3 Application to Test Bridge 

4.3.1 Experimental Damping Identification 

The energy-based damping model requires the identification of unknown loss factors and 

friction coefficient which can be evaluated using experimentally identified modal damping 

ratios and analytically computed energy from updated FE-model. Hence, the efficiency of this 

method is highly dependent on the accuracy in experimental identification of damping ratios. 

The vibration measurements described in Section 3.5.1 enabled identification of global modes 

only. For the identification of diagonal modes, another two sets of measurements were carried 

out using the sensor setup shown in Fig. 4.3. Hence, a total of seven sets of measurements were 

recorded. FV records extracted from the measurement data were then processed by SSI and 

ERA for the identification of modal parameters. Four diagonal modes were identified as shown 

in Fig. 4.4 from the measurement setup shown in Fig. 4.3. Fig. 4.4 shows the bar plots of the 

identified mode shape vectors corresponding to sensor locations. It can be seen that the 
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components of mode shapes corresponding to diagonal members are dominant compared to the 

components corresponding to deck. Fig. 4.5 shows the modal identification results for damping 

and corresponding natural frequency for all the FV records by taking the average of the 

identified values obtained from SSI and ERA. There were slight fluctuations of the identified 

modal damping ratios as can be seen from Fig. 4.5. A possible source of the variation in the 

modal damping ratios might include the dependence of the modal damping on vibration 

amplitude [86]. 

 

Fig. 4.3. Layout of sensors for the identification of diagonal modes 

4.3.2 Identification of Loss Factors and Friction Coefficients 

For the identification of equivalent loss factors and friction coefficients, it is necessary to 

evaluate the strain energy corresponding to each sub-structure. The strain energy of each 

element was calculated using updated mode shapes and updated stiffness parameters and the 

corresponding subsystem stiffness matrices. Then the strain energy of each sub-structure was 

estimated by adding the strain energies of elements belonging to that sub-structure. Fig. 4.6 

shows the distribution of modal strain energy ratio of each sub-structure for first five bending 

modes (B1-B5), first three torsional modes (T1-T3) and 3rd diagonal mode (D3) in which the 

contribution of strain energy from diagonal members was dominant compared to the other 

diagonal modes. As seen in this figure, the bending modes have significant contribution of 

strain energies from upper chords, girders and diagonal members whereas the torsional modes 
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also have contribution of strain energies from top and bottom lateral bracing members as well 

in addition to those sub-structures, as expected. 

 

Fig. 4.4. Diagonal mode shapes identified from FV6; (a) 1st diagonal, (b) 2nd diagonal, (c) 

3rd diagonal, (d) 4th diagonal 

 

Fig. 4.5. Modal identification results for damping and corresponding natural frequency for all 

the FV records 
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Equivalent loss factors and friction coefficients were then identified following the steps 

described in Table 4.1. At Step 1, the equivalent loss factor of diagonal members was estimated 

by considering diagonal dominant mode on the assumption that the energy dissipated owing to 

the diagonal members only. The mean value of the estimated loss factors corresponding to 

different FV records was taken as the equivalent loss factor of diagonal members and used in 

the next step for the determination of other unknown damping parameters. At Step 2, the 

equivalent loss factors of girders, upper chord members, top lateral bracings and bottom lateral 

bracings and friction coefficient of supports were estimated by considering six global modes. 

Table 4.2 shows the estimated equivalent loss factors for all the FV records along with the 

average estimated values. Different damping parameters were estimated for different FV 

records owing to the fluctuation in the identified modal damping ratios. However, the 

reasonability of the estimated damping parameters can be judged by the fact that all estimated 

values are larger than the loss factor of steel which ranges from 0.0001-0.0006 [87], suggesting 

the assumed energy dissipation in the sub-structures. 

 

Fig. 4.6. Distribution of modal strain energy ratios 

4.3.3 Evaluation of Analytical Modal Damping Ratios 

After getting the equivalent loss factors, the analytical modal damping ratios were evaluated 

using Eq. (4.4) by substituting the loss factors and corresponding energy ratios. Fig. 4.7 shows 

the comparison between experimentally identified and analytically estimated modal damping 

ratios for different FV records. In this figure, mode numbers 1-6 correspond to the modes 

considered for the identification of damping parameters in Table 4.1. It can be seen that 

analytically evaluated modal damping ratios agree well with the experimentally identified ones 

for all the FV records. Fig. 4.8 shows the comparison between analytical modal damping ratios 
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estimated using average loss factors and friction coefficient shown in Table 4.2 and 

corresponding experimental damping by taking average over all the FV records. Here also, it 

can be seen that analytically evaluated modal damping ratios agree well with the 

experimentally identified ones. 

Table 4.1. Steps for estimating loss factors and friction coefficient 

Analysis 

step 

Considered 

mode 

FV 

record 

Estimated 

parameter 
Analysis conditions 

Step 1 

3rd diagonal 

(Dominant 

diagonal mode) 

FV 1 to 6 𝜂𝑑 

Assumed that energy 

dissipated only from diagonal 

members 

Step 2 

1: 1st bending 

2: 2nd bending 

3: 3rd bending 

4: 2nd torsional 

5: 4th bending 

6: 3rd torsional 

FV 1 to 7 
𝜂𝑢𝑐, 𝜂𝑔, 𝜂𝑡𝑙𝑏, 

 𝜂𝑏𝑙𝑏, 𝜇𝑠 

Average value of 𝜂𝑑from 

Step 1 was used 

 

NNLS was employed to get 

equivalent loss factors 

 

Fig. 4.7. Comparison of experimentally and analytically estimated modal damping ratios 

The contribution of each sub-structure to the modal damping ratios was then estimated by using 

corresponding loss factor and energy ratio. Fig. 4.9 shows the contribution of damping from 

each sub-structure to the modal damping ratios estimated analytically with the average 

damping parameters shown in Table 4.2. From Fig. 4.9(a), it can be seen that there is a 

significant damping contribution from support for the 1st bending mode as it is expected due 
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to the slip of the movable support in longitudinal direction. There is also dominant damping 

contribution from upper chord members due to bending of these members in this mode. For 

other bending modes, there are significant damping contribution from upper chords, girders 

and diagonal members, however, the damping contribution from supports is much less than the 

1st bending mode. In Fig. 4.9(b), the significant contribution of modal damping from top and 

bottom lateral bracings for the 1st torsional mode express the torsional effect in that mode. 

Similar trends can also be found in the 2nd and 3rd torsional modes as can be seen in Figs. 

4.9(e) and 4.9(i). In the diagonal mode, the dominant damping contribution from diagonal 

members can be observed from Fig. 4.9(f). 

 

Fig. 4.8. Comparison of average experimental modal damping ratios and corresponding 

analytical modal damping ratios 

Table 4.2. Estimated equivalent loss factors and friction coefficient for the first span 

Analysis 

step 

Para-

meter 
FV1 FV2 FV3 FV4 FV5 FV6 FV7 Avg. 

Step 1 𝜂𝑑 0.0085 0.0068 0.0073 0.0100 0.0068 0.0073 - 0.0078 

Step 2 

𝜂𝑢𝑐 0.0206 0.0245 0.0000 0.0277 0.0183 0.0136 0.0226 0.0212 

𝜂𝑔 0.0085 0.0077 0.0121 0.0090 0.0088 0.0074 0.0075 0.0087 

𝜂𝑡𝑙𝑏 0.0000 0.1532 0.0914 0.1041 0.0000 0.0346 0.0982 0.0963 

𝜂𝑏𝑙𝑏 0.0000 0.0196 0.0021 0.0000 0.0027 0.0211 0.0692 0.0229 

𝜇𝑠 0.7688 0.0025 0.7753 0.0288 0.2545 0.4476 0.0000 0.3796 
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Fig. 4.9. Contribution of each damping source to modal damping ratios for: (a) 1st bending, 

(b) 1st torsional, (c) 2nd bending, (d) 3rd bending, (e) 2nd torsional, (f) 3rd diagonal, (g) 4th 

bending, (h) 5th bending and (i) 3rd torsional mode 

4.3.4 Contribution of Modal Damping from Each Element 

Using the same energy-based damping definition, the contribution of modal damping ratios 

from each element was estimated by using corresponding loss factor and modal energy ratio 

(MER) in Eq. (4.6). In this dissertation, the MER was defined as the ratio of modal strain energy 

of a structural component to the modal potential energy of the whole structure. The assumption 

here was that all the elements in a sub-structure had the same loss factor which was equal to 

the loss factor of that sub-structure. Fig. 4.10 shows the elements contributing largely to the 

modal damping ratio for the 1st bending mode, 1st torsional mode and 3rd diagonal mode 

respectively. The dissipation of energy occurs mainly from the upper chord members due to 

the bending in vertical direction for the 1st bending mode as can be seen from Fig. 4.10(a). In 

case of the 1st torsional mode, the elements from upper chords, top and bottom lateral bracings 

and diagonals have dominant contribution to damping as can be seen from Fig. 4.10(b). The 

diagonal elements which have dominant damping contribution can be observed in Fig. 4.10(c). 

From similar plots for other modes, one should be able to identify the elements contributing 

largely to the energy dissipation for a particular mode. This kind of information can be useful 

for the identification of damage in case of large structures, such as bridges, especially when 
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the problem related to low sensitivity of frequencies and mode shapes due to local damage 

remains a concern and model updating using these two modal parameters inadequate to trace 

the changes in stiffness parameters due to local damage. In such cases, increases in modal 

damping due to damages can be attributed to increases in damping contribution from elements 

which have damage. Those increases in damping contribution from damaged elements will be 

identified as increases in the loss factors of the elements. It should be noted that, if this is the 

case, the loss factors identified will differ from the actual loss factors of the elements due to 

errors in the stiffness parameters and the estimation of strain energy. 

 

Fig. 4.10. Elements having significant analytical modal damping ratio (shown in red colour): 

(a) >0.3% of modal damping for 1st bending, (b) >0.1% of modal damping for 1st torsional, 

and (c) >1% of modal damping for 3rd diagonal mode 

4.4 Conclusions 

In this chapter, energy-based damping evaluation was carried out for the test structure. An 

equivalent viscous damping model was considered in this study for the evaluation of analytical 

modal damping. The updated mode shapes and the updated stiffness matrix obtained in the 

previous chapter were used to evaluate the modal potential energy and modal strain energy of 

each element of the updated FE-model. The evaluation of analytical modal damping has an 

advantage that the contribution of energy dissipations in sub-structures on modal damping 

ratios can be estimated which could be useful knowledge in the field of vibration-based SHM. 

For the studied truss bridge, five sub-structures were considered to investigate the contribution 

of modal damping from different components of the structure. The main conclusions derived 

from this can be summarized as: 

1. Equivalent loss factors and friction coefficient were estimated using experimentally 

identified modal damping ratios and corresponding modal energies. It was found that 

the equivalent loss factors of all the sub-structures are different. 

2. The analytical modal damping ratios evaluated using the proposed framework showed 

good agreements with the corresponding experimental ones. 
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3. Significant damping contribution from supports was observed for the 1st bending mode 

as it was expected due to the slip of the movable support in longitudinal direction. For 

torsional modes, significant damping contributions from top and bottom lateral 

bracings were observed due to torsional effect in those modes. 

4. An extension of the existing framework by Dammika et al. [32] was introduced to 

calculate the contributions from different structural elements to modal damping ratios. 

The proposed framework can be used to detect local damage by observing the change 

in elemental modal damping ratios before and after possible damage. 
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CHAPTER 5 

APPLICATION OF PROPOSED FRAMEWORK TO SHM 

WITH A SMALL NUMBER OF SENSORS 

5.1 Introduction 

For the application of vibration-based SHM to steel truss bridge to detect local damages, such 

as fatigue cracks, corrosion, and bolt loosening, a large number of sensors may be required 

because of the low sensitivity issue of frequencies and mode shapes to local damage. Hence, it 

leads to a trade-off between monitoring cost and ability of damage detection. It would be, 

therefore, worth to develop a method to detect damage or evaluate structural state with less 

number of sensors. For SHM with less number of sensors, complimentary theoretical 

consideration is necessary which is discussed in this chapter. A previous study by Yoshioka, et 

al. [28] reported that the studied bridge with damage at local diagonal member showed a 

significant increase in the damping of global vibration mode of the structure. The present study 

utilized the energy-based damping evaluation to identify the cause of the modal damping 

increase by observing the change in the contribution from different structural elements on the 

modal damping ratios. 

5.2 Problem Description 

A large crack at the lower end part of D5u diagonal member (see Fig. 5.1) was observed in the 

fourth span of the same bridge. As an emergency measure, reinforcing plates were installed 

inside and outside of the flange and web. Fig. 5.2 shows the damaged D5u member and its 

reinforced condition. Field vibration measurements of this span were carried out before and 

immediately after reinforcement using five accelerometers only as shown in Fig. 5.1. The three 

accelerometers on diagonal member were placed at quarter point of damaged D5u member to 

measure vibrations in three orthogonal axes. Table 5.1 shows the modal identification results 

by ERA for frequencies and damping that were averaged over identified parameters 

corresponding to nine sets of recorded data for before and after reinforcement conditions of 
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D5u diagonal member. It was observed that the changes in natural frequencies of the global 

modes due to damage are much smaller than the change in modal damping ratios. However, 

significant changes in both natural frequency and modal damping ratio were observed in the 

case of diagonal mode. It can also be observed that the frequency of the diagonal mode came 

very close to the frequency of the 3rd bending mode due to damage. The standard deviation 

(SD) of the identified modal damping ratios, shown in the parentheses, were not large so that 

the average values identified could be considered reliable.  More details of the measurement at 

the fourth span and discussion on the modal parameters identified experimentally have been 

described in [78]. 

 

Fig. 5.1. Layout of sensors for the fourth span 

 

Fig. 5.2. Damaged and reinforced conditions of D5u diagonal member 

In order to simulate the damage in the FE-model, the sectional properties of all the elements of 

D5u diagonal member (Elements 436-443) were reduced to half. The frequencies of the FE-

model show a reasonable agreement with the corresponding experimental identification, as 

observed in Table 5.1. The change in the natural frequency of diagonal mode due to damage, 
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which resulted in close natural frequencies for the diagonal and 3rd bending modes, can also 

be confirmed from the simulated damaged FE-model. Because of this closeness in frequency, 

dynamic coupling [78] of D5u diagonal member was observed in the 3rd bending mode as can 

be seen in Fig. 5.3(b). Here, it is important to note that, the proposed model updating framework 

was not applied here to identify the damaged stiffness parameters corresponding to the 

damaged D5u diagonal member because of the limitation of the number of identified modes 

and too less components of experimentally identified mode shapes. In a situation where the 

location of damage is not known, the identification of damaged stiffness parameters by the 

proposed FE-model updating framework requires a large array of sensors at both deck and 

diagonal members, leading to an increase in monitoring cost and time. In that case, identifying 

the change in updated stiffness parameters would be sufficient to detect damage at local level 

without going into the analysis of damping discussed in this section. However, in many 

practical situations, the model updating using only global modes identified with a limited 

number of sensors may not be able to trace the damaged stiffness parameters as the changes in 

the frequencies for the global modes due to local damage are not significant. The advantage of 

using the damping, as used in this study, is that the damping change in global modes affected 

by local damage can be identified with a small number of sensors [78]. 

Table 5.1. Modal identification results of frequencies and damping for the fourth span 

Identified 

modes 

Natural frequency (Hz) Modal damping ratio 

Experimental FE-model Experimental 

Before After Rate Before After Before(SD) After(SD) Rate 

1st bending 2.577 2.604 -1% 2.615 2.629 
0.0093 

(0.0020) 

0.0069 

(0.0007) 
35% 

2nd bending 5.254 5.313 -1% 5.394 5.463 
0.0072 

(0.0014) 

0.0061 

(0.0009) 
18% 

3rd bending 7.143 7.295 -2% 7.604 7.756 
0.0106 

(0.0009) 

0.0060 

(0.0007) 
77% 

Diagonal 7.135 9.783 
-

27% 
7.164 9.184 

0.0055 

(0.0008) 

0.0039 

(0.0017) 
41% 

 

 

Fig. 5.3. Modes obtained from damaged FE-model of the fourth span; (a) Diagonal, (b) 3rd 

bending 
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5.3 Identification of Loss Factors for Damaged Span 

To understand possible causes of the significant change in experimentally identified modal 

damping ratios for global modes due to damage in D5u diagonal member, the analytical modal 

damping ratios were evaluated for this span using the same energy-based damping model. Due 

to the limitation of number of identified modes shown in Table 5.1, only the loss factors of 

diagonal members, girders and upper chord members, which appeared to be the dominant 

contributors of damping in those modes as observed in Fig. 4.9, were estimated using the 

experimentally identified modal damping ratios at the fourth span. Loss factors of other sub-

structures were assumed to be the same as those of the first span which are given in Table 4.2. 

At first, the analytical modal damping ratios corresponding to the after reinforcement (AR) 

condition were evaluated. Table 5.2 shows the analysis steps for the identification of loss 

factors for AR condition. The value of the equivalent loss factors of diagonal members, girders 

and upper chord members obtained from the above analysis were 0.0115, 0.0130 and 0.0078 

respectively. For before reinforcement (BR) condition, the equivalent loss factor of damaged 

D5u member (𝜂𝑑5) was estimated by considering D5u diagonal in-plane mode shown in Fig. 

5.3(a). In this step, the equivalent loss factor for other diagonal members was taken as 0.0115 

which is corresponding to AR condition. In the second step, the loss factors of girders, upper 

chord members for BR condition were taken to be the same as the AR condition as the damage 

was observed in D5u diagonal member only. Table 5.3 shows the identified damping 

parameters for the fourth span for AR and BR conditions. In case of BR condition, significant 

increase in equivalent loss factor of damaged D5u diagonal member was observed.  

Table 5.2. Analysis steps for the identification of equivalent loss factors for AR condition 

Analysis 

step 

Considered 

mode 

Estimated 

parameter 
Analysis conditions 

Step 1 Diagonal 𝜂𝑑 
Assumed that energy dissipated only from 

diagonal members 

Step 2 

1: 1st bending 

2: 2nd bending 

3: 3rd bending 

𝜂𝑢𝑐, 𝜂𝑔 

Same values of 𝜂𝑡𝑙𝑏, 𝜂𝑏𝑙𝑏, 𝜇𝑠 from reinforced 

first span were used here 

NNLS was employed to get equivalent loss 

factors 
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Table 5.3. Damping parameters corresponding to AR and BR conditions 

Damping 

parameters 
𝜂𝑑5 𝜂𝑑 𝜂𝑔 𝜂𝑢𝑐 𝜂𝑡𝑙𝑏 𝜂𝑏𝑙𝑏 𝜇𝑠 

AR 0.0115 0.0115 0.0130 0.0078 0.0963 0.0229 0.3796 

BR 0.0172 0.0115 0.0130 0.0078 0.0963 0.0229 0.3796 

 

5.4 Damage Detection Using Change in Analytical Modal Damping Ratios 

5.4.1 Evaluation of Analytical Modal Damping Ratios for Damaged Span 

The modal damping ratios of the identified global modes were then analytically evaluated using 

the damping parameters listed in Table 5.3 and the corresponding MER of sub-structures 

obtained from the FE-model. Table 5.4 shows the experimentally identified and analytically 

evaluated modal damping ratios for AR and BR conditions. The percentage changes in 

analytically evaluated modal damping ratios were also listed in the last column of Table 5.4. It 

can be seen that analytically evaluated modal damping ratios agree well with the corresponding 

experimental ones for AR condition because the damping parameters for three sub-structures 

were identified with the experimental data for AR condition as shown in Table 5.2. However, 

for BR condition, such kinds of agreements between the analytically evaluated and 

experimentally identified modal damping ratios were not observed.  

Very small amount of changes were observed in analytically evaluated modal damping ratios 

of first two bending modes due to damage in D5u diagonal member, although significant 

amount of changes were observed in experimentally identified damping ratios of these two 

modes. In case of the 3rd bending mode, an increment of around 17% was observed in 

analytical modal damping ratio, although this change was much smaller than the change in 

experimental modal damping ratio. 

Table 5.4. Experimentally identified and analytically evaluated modal damping ratios 

Mode 
Experimental 

AR 

Analytical 

AR 

Experimental 

BR 

Analytical 

BR 

% Change in 

Analytical 𝜉 

1st bending 0.0069 0.0070 0.0093 0.0071 1.4% 

2nd bending 0.0061 0.0061 0.0072 0.0064 4.9% 

3rd bending 0.0060 0.0059 0.0106 0.0069 16.9% 

 

For the 3rd bending mode, the modal damping contribution from each element was estimated 

using Eq. (15) for both AR and BR conditions. Fig. 5.4 shows the bar diagram plots of change 
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in elemental modal damping ratios evaluated analytically between AR and BR conditions. The 

changes in elemental modal damping ratios of Elements 436 to 443 that correspond to D5u 

diagonal member are much higher than the changes in other elements for the coupled 3rd 

bending mode. This result suggests that the elemental modal damping ratios can be used to 

detect damage at local level by observing change in elemental modal damping ratios of the 

coupled bending mode identified with a small number of sensors, which could lead to an 

effective SHM based on vibration measurement. It is worthy to note here that to identify the 

damaged stiffness parameters by FE-model updating a large number of sensors is required, 

however, with a small number of sensors one can identify the change in modal properties for 

lower order global modes and seek a possibility to identify damage from that information along 

with relevant analysis instead of updating model with data from a large array of sensors at deck 

and diagonal members. 

 

Fig.5.4. Bar diagram of change in elemental modal damping ratios for 3rd bending mode 

It is understood from Eq. (4.4) that the change in modal damping ratios can only be possible if 

there is change either in equivalent loss factors or in MER of sub-structures or due to both. 

Hence to investigate further, the distribution of MER of each sub-structure in AR and BR 

conditions are compared in Fig. 5.5. The values of the MER of all the sub-structures for the 

first three bending modes are also listed in Table 5.5. From this comparison, it can be seen that 

the distribution of MER of diagonal members, girders and upper chord members remain almost 

the same for global modes due to the local damage at D5u diagonal member. On the other hand, 

some changes in the distribution of MER of top and bottom lateral bracings and supports were 

observed as can be seen from Table 5.5, although, their contributions are much smaller 

compared to the contributions from diagonals, girders and upper chord members. From the 

energy-based damping model as given in Eq. (4.4), it is understood that the modal damping 

ratio is proportional to the equivalent loss factors and friction coefficient for a constant MER 

of each sub-structure. Hence, there must be some increase in equivalent loss factor(s) of one or 
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several sub-structures as well due to damage at D5u diagonal member, as the experimental 

identification results for BR condition clearly indicated significant increase in modal damping 

ratios of first three bending modes. Some changes in loss factors of the sub-structures which 

appear not to have damage could be possible, if the modal damping ratios are found to be 

dependent on the amplitude of vibration which is discussed in more details in next sub-section. 

 
(a)                                                                   (b) 

Fig. 5.5. Distribution of MER of each sub-structure; (a) AR, (b) BR 

Table 5.5. The values of the MER of all the sub-structures at AR and BR conditions 

Members 

MER of sub-structures (𝑉𝑛,𝑖 𝑈𝑛⁄ ) 

1st bending 2nd bending 3rd bending 

AR BR AR BR AR BR 

D 0.3728 0.3791 0.5151 0.5136 0.5256 0.5054 

G 0.2246 0.2230 0.3246 0.3152 0.3524 0.3583 

UC 0.3693 0.3650 0.1204 0.1214 0.0995 0.1063 

TLB 0.0006 0.0007 0.0009 0.0055 0.0004 0.0024 

BLB 0.0129 0.0128 0.0321 0.0379 0.0148 0.0134 

S 0.0633 0.0647 0.0090 0.0072 0.0042 0.0261 

 

5.4.2 Re-analysis of Loss Factors for Damaged Span 

The loss factors of sub-structures were re-identified using the experimentally identified modal 

damping ratios of first three bending modes for BR condition. However, due to the limitation 

of number of identified modes, only the loss factors of girders and upper chord members were 

re-estimated following the same steps as described in Table 5.2. The values of equivalent loss 

factors of girders and upper chords members were obtained as 0.0258 and 0.0078 respectively. 

Comparing these values with the corresponding values in Table 5.3, there was a significant 

increase in the equivalent loss factor of girders from 0.0130 to 0.0258, although the value of 
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the loss factor of upper chord members remains unchanged at 0.0078. Fig. 5.6 shows the 

comparison of experimentally identified and analytically evaluated modal damping ratios for 

both AR and BR conditions and the values are also listed in Table 5.6. A much better agreement 

between experimentally identified and analytically evaluated modal damping ratios were 

observed for BR condition when there was the increase in loss factor of girders along with the 

increase in loss factor of damaged diagonal member (see Tables 5.4 and 5.6).  

 

Fig. 5.6. Comparison of experimentally identified and analytically evaluated modal damping 

ratios; (a) AR, (b) BR 

Table 5.6. Experimentally identified and analytically evaluated modal damping ratios after 

re-analysis of loss factors 

Mode 
Experimental 

AR 

Analytical 

AR 

Experimental 

BR 

Analytical 

BR 

% Change in 

Analytical 𝜉 

1st bending 0.0069 0.0070 0.0093 0.0092 31.4% 

2nd bending 0.0061 0.0061 0.0072 0.0078 27.9% 

3rd bending 0.0060 0.0059 0.0106 0.0097 64.4% 

 

5.4.3 Justification against Change in Loss Factors and Discussion 

To investigate that much of change in the loss factor of girders, the distribution of MER of 

different components of girders such as cross beams (CB), stringers (St) and lower chords (LC) 

were studied. Table 5.7 shows the values of the MER of different components of girders for 

AR and BR conditions for the first three bending modes. The percentage change in the MER 

of each component with respect to the AR condition was also listed in the same table. 

Significant changes were observed in the distribution of MER of lower chords for the 2nd and 

3rd bending modes due to damage at D5u diagonal member. Some changes in the distribution 

of MER of other components were observed as well for the 2nd and 3rd bending modes. 
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However, the distribution of MER of the 1st bending mode was almost unaffected by the 

damage. 

To understand the change in the distribution of modal damping ratios of various components 

of girder, the distribution of MER of elements near to the damaged D5u member were studied. 

Fig. 5.7 shows the elements of girders near to the damaged D5u member. Table 5.8 shows the 

MER of elements near to the damaged D5u member for first three bending modes. The results 

suggest significant increase in MER for the 3rd bending mode in Element 9 and 10, which are 

the elements of lower chords, due to damage. For the 2nd bending mode, the MER of Elements 

9 and 10 were reduced whereas the MER of Elements 1306 and 1307, which are the elements 

of stringers, were increased significantly. These changes at elemental level are consistent with 

the change in different components of girder observed in Table 5.7. On the other hand, the 

MER from all these elements almost remain the same for the 1st bending mode. From these 

results, it is clear that the damage in D5u diagonal member has some effects on the distribution 

of MER for the 2nd and 3rd bending modes and it is more prominent for the 3rd bending mode 

due to the coupling with the local motion of D5u damaged diagonal member. The change in 

the loss factors of girder sub-structure observed between AR and BR conditions may be 

attributed to the change in modal energy distribution as discussed above and the non-

homogeneity in the loss factors of different components of girders. While considering the same 

loss factor for a non-homogeneous sub-structure such as girders due to the limitation of number 

of identified modes in the present study, some weighting factors can be introduced to express 

non-identical contributions of damping from different components of a non-homogeneous sub-

structure. The selection of weighting factors could be based on the actual exposure conditions 

and material properties of these components in real structure. In this study, the concrete deck 

slab was modelled by equivalent section concept with added mass and stiffness properties to 

stringer beams and added stiffness to the cross beams. Thus higher weightage values can be 

assigned to stringers and cross beams compared to the lower chords as viscous damping of 

reinforced concrete is higher than the steel. 

The increase in the loss factor of girders also might have attributed to the fact that the same 

values of loss factors and friction coefficient of the first span were used in the fourth span for 

top and bottom lateral bracings and supports, although it was observed that the modal damping 

ratios of the fourth span are different from the first span even for AR condition. Although the 

contributions of damping from these sub-structures were smaller individually, collectively their 

contribution can be significant and could affect the results as well. 
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Table 5.7. MER of different components of girders for AR and BR conditions 

Member 

MER of different components of girder 

1st bending 2nd bending 3rd bending 

AR BR % AR BR % AR BR % 

CB 0.0275 0.0272 -0.8 0.0656 0.0661 0.7 0.1225 0.1176 -4.0 

St 0.0601 0.0599 -0.3 0.0949 0.1035 9.0 0.1739 0.1704 -2.0 

LC 0.1371 0.1358 -1.0 0.1640 0.1456 -11.3 0.0560 0.0702 25.4 

 

 

Fig.5.7. Elements of girder near to the damaged D5u diagonal member 

Table 5.8. MER of elements near to the damaged D5u member 

Element 

No. 

MER of elements (𝑉𝑛,𝑖 𝑈𝑛⁄ ) 

1st bending 2nd bending 3rd bending 

AR BR AR BR AR BR 

9 6.22e-3 5.93e-3 2.84e-3 1.98e-3 8.71e-4 1.63e-3 

10 6.03e-3 5.82e-3 2.84e-3 1.93e-3 9.37e-4 1.73e-3 

13 7.15e-3 7.11e-3 3.03e-4 3.71e-4 3.83e-3 4.03e-3 

14 7.14e-3 7.09e-3 3.11e-4 3.55e-4 3.94e-3 4.16e-3 

715 1.47e-3 1.37e-3 2.04e-3 2.42e-3 9.08e-3 8.73e-3 

716 1.33e-4 1.09e-4 2.24e-4 1.95e-4 1.61e-3 2.05e-3 

1306 1.77e-3 1.76e-3 1.81e-3 2.62e-3 7.25e-4 6.39e-4 

1307 2.11e-3 2.29e-3 8.04e-4 1.60e-3 9.83e-3 1.11e-2 

 

Possible reasons for the increase in the loss factor of girder could include the amplitude 

dependence of the loss factor. Yamaguchi et al. [78] found that the modal damping ratios for 

the lower order modes, in particular the 1st bending mode, of the bridge studied in the present 
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study showed the dependence on amplitude in which the modal damping ratios tended to 

increase with increase in the initial modal amplitude. It was also reported in that study that the 

modal damping ratios for the higher order modes including the coupled bending mode did not 

show any clear sign of amplitude dependence. To investigate more on this, the initial modal 

amplitudes of vibration at measurement locations obtained from ERA were listed in Table 5.9. 

From this table, it can be seen that the initial modal amplitudes of girders for 1st and 2nd 

bending modes are much higher in BR condition compared to AR condition which might have 

caused the increase in the modal damping for these two modes. For the 3rd bending mode, a 

significantly large amplitude of D5u member was observed in BR condition. If the loss factor 

of D5u is amplitude-dependent, then the loss factor of D5u member for the 3rd bending mode 

in BR condition would be much higher compared to that for the damaged diagonal mode and 

this increase in the loss factor might have caused the significant increase in the modal damping 

ratio for the 3rd bending mode. Considering the above hypothesis, the loss factor of damaged 

D5u member for the 3rd bending mode was evaluated as 0.1047, keeping the loss factors of all 

other sub-structures same as the AR condition, which was clearly much higher than the 

corresponding value of 0.0172 for the damaged diagonal mode. Here, the consideration of 

amplitude-dependent loss factor could be reasonable as the damage discussed in this 

dissertation was due to cracks that could induce significant increase in frictional damping 

which is expected to be dependent on the amplitude of vibration. Hence, the analytical model 

for damping using energy-based approach could be modified considering amplitude-dependent 

loss factors to express the substantial change in the modal damping ratio of coupled global 

mode more reasonably in case of damage in diagonal member of steel truss bridges, which 

could be the future works in this field. 

Table 5.9. Initial modal amplitudes at measurement locations for AR and BR conditions 

Mode 

Amp. at AR condition (m/s2) Amp. at BR condition (m/s2) 

Amp. at 

U2 

Amp. at 

L2 

Amp. at 

D5u 

Amp. at 

U2 

Amp. at 

L2 

Amp. at 

D5u 

1st bending 0.0058 0.0062 0.0001 0.0255 0.0270 0.0050 

2nd bending 0.0126 0.0128 0.0033 0.0261 0.0246 0.0015 

3rd bending 0.0053 0.0043 0.0021 0.0053 0.0083 0.1488 

Diagonal 0.0008 0.0014 0.0342 0.0024 0.0011 0.0583 
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5.5 Conclusions 

In this study, an energy-based damping model was introduced for practical and effective SHM 

based on vibration measurement by estimating the contribution of modal damping ratios from 

different structural elements utilizing the data from updated FE-model and the identification 

results of damping from a small number of sensors. The main conclusions of this chapter can 

be summarized as: 

1. The results of energy-based damping evaluation implied that substantial change found 

experimentally in the damping for the global mode coupled with diagonal mode was 

caused by significant increase in the equivalent loss factor of damaged diagonal 

member. 

2. From the investigation of damping of damaged span, it was found that the loss factors 

can be dependent on the amplitude of vibration. The consideration of amplitude-

dependent loss factor could be reasonable as the damage discussed in this dissertation 

was due to cracks that could induce significant increase in frictional damping which is 

expected to be dependent on the amplitude of vibration. 

3. It was also found that the initial modal amplitudes of girders for 1st and 2nd bending 

modes are much higher in BR condition compared to AR condition which might have 

caused the increase in the modal damping for these two modes. 

4. The proposed approach may be able to detect damage at local level by investigating 

analytically the contribution from structural elements to the damping of global mode 

coupled with vibration of local member in steel truss bridges. 
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CHAPTER 6 

SUMMARY AND FUTURE WORKS 

The studies taken up in this dissertation have developed a global method for vibration-based 

SHM using Bayesian model updating and energy-based damping evaluation for an existing 

steel truss bridge. Summary and detailed discussions have been taken up at the end of relevant 

chapters. The purpose of this chapter is to recapitulate the main findings, unifying them and to 

suggest some further research directions. 

6.1 Summary of the Contributions Made 

Difficulties in practical application of vibration-based SHM of structures include considerable 

amount of uncertainties in structural modeling and vibration measurement and sensitivity 

issues of modal parameters due to local damage in case of large structure. This dissertation 

proposes an analytical framework for SHM addressing the aforementioned difficulties by 

combining two techniques: a Bayesian based probabilistic approach for FE-model updating 

that accounts for the underlying uncertainties, and an energy-based damping evaluation for 

detecting damage at local level. The proposed vibration-based SHM approach could be 

promising in detecting damage at local level when the problem related to low sensitivity of 

frequencies and mode shapes due to local damage remains a concern and damage detection by 

change in stiffness parameters using FE-model updating utilizing data from a large number of 

sensors is not practically feasible due to limitation of budget and time. 

The first step of the proposed methodology is to develop a baseline model using Bayesian 

probabilistic approach. For that an initial FE-model of the studied truss bridge was developed 

in MATLAB for the ease and faster analysis instead of linking a finite element analysis package 

with MATLAB. The structural members were modelled as three-dimensional frame elements. 

Six DOFs are considered at each joint. In this dissertation, the Bayesian statistical framework 

was considered as it is capable of incorporating all types of available information, all types of 
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uncertainties and incomplete experimental data. An advanced Bayesian statistical framework 

was proposed in this dissertation by introducing a new objective function and a realistic 

parameterization of mass and stiffness matrices to address the difficulties associated with the 

practical application of Bayesian model updating. In this framework, the likelihood function 

for mode shapes is formulated based on the cosine of the angle between the analytical and 

measured mode shapes which does not require any scaling or normalization. 

It is evident from practical experiences that different parts of the structure are subjected to 

different level of deterioration due to corrosion and fatigue depending on their exposer 

conditions and dynamic characteristics. Hence, it is more practical to consider stiffness 

parameters corresponding to each element of the FE-model. In this dissertation, a realistic and 

reasonable parameterization of stiffness matrix was introduced by considering four stiffness 

parameters for each element considering both sectional and material properties. For the 

parameterization of mass matrix, mass density per unit length of each section was considered 

as uncertain parameter. It is important to note that, the variation of mass was assumed to be 

much smaller compared to the stiffness due to local damage. Hence, lesser number of uncertain 

parameters were assigned for mass matrix. Basically, the main purpose of the parameterization 

of mass matrix was to make the updating results more robust to the modelling errors. The 

proposed updating method was validated experimentally by updating a FE-model of existing 

steel truss bridge. It was found that the proposed updating framework was efficient enough in 

updating a FE-model of existing truss bridge having large discrepancy utilizing experimental 

data from limited number of sensors only. 

After getting the updated FE-model which is supposed to be free from all the underlying 

uncertainties mentioned above, the next step is to use that for structural analysis and SHM. In 

this dissertation, an energy-based damping model was introduced for practical and effective 

SHM based on vibration measurement by estimating the contribution of modal damping ratios 

from different structural elements utilizing the data from updated FE-model and the 

identification results of damping from a small number of sensors. A previous study reported 

that the studied bridge with damage at local diagonal member showed a significant increase in 

the damping of global vibration mode of the structure. The energy-based damping evaluation 

was utilized to identify the cause of the modal damping increase by observing the change in 

the contribution from different structural elements on the modal damping ratios. The results of 

energy-based damping evaluation implied that substantial change found experimentally in the 
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damping for the global mode coupled with local vibration of damaged diagonal member was 

caused by the significant increase in the equivalent loss factor of damaged diagonal member. 

The results also suggested that the elemental modal damping ratios can be used to detect 

damage at local level by observing the change in elemental modal damping ratios of the 

coupled bending mode identified with a small number of sensors, which could lead to an 

effective SHM based on vibration measurement. 

In summary, the work conducted in this dissertation achieved the followings: 

 Introduction of a new objective function by considering cosine of angle between the 

analytical and measured mode shapes in the likelihood function for mode shapes which 

does not require any normalization of mode shapes as compared to conventional 

Bayesian methods (Chapter 3) 

 Introduction of a realistic parameterization of mass and stiffness matrices for FE-model 

updating (Chapter 3) 

 Development of a FE-model of studied truss bridge in MATLAB for the ease and faster 

analysis instead of linking a finite element analysis package with MATLAB (Chapter 

3)  

 Extension of existing framework to calculate the contributions of modal damping ratios 

from different structural elements of FE-model (Chapter 4) 

 Estimation of loss factors of different structural components corresponding to damaged 

conditions (Chapter 5)  

 Introduction of a methodology to detect local damage by investigating analytically the 

contribution from structural elements to the damping of global mode coupled with 

vibration of local member in steel truss bridges (Chapter 5) 

6.2 Suggestions for Further Works 

The study conducted in this dissertation throws some general questions on vibration-based 

SHM. The followings are some important areas of research which emerge immediately from 

this study: 

 From the experimental identification results of damaged span, it was observed that the 

changes in natural frequencies for global modes due to local damage were not 

significant. Hence, the FE-model updating using only global modes may not be able to 
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trace the damaged stiffness parameters. On the other hand significant changes in the 

modal damping ratios for global modes were observed due to local damage. Therefore, 

it would be worthy to develop a methodology for FE-model updating considering 

damping as well in addition to frequencies and mode shapes as the observed data in 

the objective function.  

 Development of appropriate damping model to express the energy dissipation 

mechanism more realistically to overcome the limitation of existing framework of 

energy-based damping evaluation where viscous damping model was assumed for 

simplicity. Real structures often do not show purely viscous damping and, in case of 

damage, energy dissipation mechanism depends on the types of damage. Hence, 

further study is needed to model damping of a damaged structure more appropriately. 

 In this dissertation, it was found that the loss factors can be dependent on the amplitude 

of vibration. The consideration of amplitude-dependent loss factor could be reasonable 

as the damage discussed in this dissertation was due to cracks that could induce 

significant increase in frictional damping which is expected to be dependent on the 

amplitude of vibration. Hence, the analytical model for damping using energy-based 

approach could be modified considering amplitude-dependent loss factors to express 

the substantial change in the modal damping ratio of coupled global mode more 

reasonably in case of damage in diagonal member of steel truss bridges. 

 Development of optimal sensor placement (OSP) methodology to get sufficient 

information about the dynamic behaviour of a large structural system with a small 

number of sensors that are practically available. 
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CHAPTER 7 

CONCLUSIONS 

In this dissertation, a vibration-based SHM approach that combined two techniques was 

presented. A Bayesian based probabilistic approach was proposed for FE-model updating 

utilizing incomplete modal data (modal frequencies and partial mode shapes) and an energy-

based damping evaluation was introduced for detecting damage at local level by using a small 

number of sensors. The main conclusions of this dissertation can be summarized as: 

1. One new objective function was introduced for Bayesian model updating that does not 

require any scaling or normalization of mode shapes as the likelihood function for mode 

shapes was formulated based on cosine of the angle between the analytical and 

experimentally identified mode shapes.  

2. A realistic parameterization of mass and stiffness matrices were introduced for FE-

model updating to take into account any variation in stiffness due to local changes.  

3. It was found that the proposed updating framework is efficient enough in updating a 

FE-model of existing truss bridge with four stiffness parameters for each element 

corresponding to sectional and material properties utilizing experimental data from 

limited number of sensors only. 

4. The modal damping ratios can be analytically evaluated by using energy-based 

damping definition and a method to know the contribution of modal damping ratios 

from different structural elements of a FE-model was introduced. 

5. The results of energy-based damping evaluation implied that substantial change found 

experimentally in the damping for the global mode coupled with diagonal mode was 

caused by significant increase in the equivalent loss factor of damaged diagonal 

member.  

6. The proposed approach may be able to detect damage at local level by investigating 

analytically the contribution from structural elements to the damping of global mode 

coupled with vibration of local member in steel truss bridges.  



69 

 

 

 

 

REFERENCES 

1. Fujino Y and Siringoringo DM. Structural health monitoring of bridges in Japan: an 

overview of the current trend, Proceedings of the 4th International Conference on FRP 

Composites in Civil Engineering, Zurich, 2008. 

2. National Guideline. Guideline for periodic inspection of bridges, Ministry of Land, 

Infrastructure, Transport and Tourism, Japan, 2014. (in Japanese) 

3. Nakamura M, Masri SF, Chassiakos AG, Caughey TK. A method for non-parametric 

damage detection through the use of neural networks. Earthquake Engineering and 

Structural Dynamics 1998; 27(9):997-1010. 

4. Nair KK, Kiremidjian AS, Law KH. Time series-based damage detection and localization 

algorithm with application to the ASCE benchmark structure. Journal of Sound and 

Vibration 2006; 291:349–68. 

5. Salawu O. Detection of structural damage through changes in frequency: a review. 

Engineering Structures 1997; 19(9):718-723. 

6. Vanik MW, Beck JL, Au SK. Bayesian probabilistic approach to structural health 

monitoring. Journal of Engineering Mechanics 2000; 126(7):738–45. 

7. Goller B, Beck JL, Schueller GI. Evidence-based identification of weighting factors in 

Bayesian model updating using modal data. Journal of Engineering Mechanics 2012; 

138(5):430-40. 

8. Soize C, Capiez-Lernout E, Ohayon R. Robust updating of uncertain computational models 

using experimental modal analysis. AIAA Journal 2008; 46(11):2955–65. 

9. Govers Y, Link M. Stochastic model updating-covariance matrix adjustment from 

uncertain experimental modal data. Mechanical Systems and Signal Processing 2010; 

24(3):696–706. 

10. Simoen E, De Roeck G, Lombaert G. Dealing with uncertainty in model updating for 

damage assessment: a review. Mechanical Systems and Signal Processing 2015; 56– 

57:123–49.  

11. Beck JL, Katafygiotis LS. Updating models and their uncertainties. I: Bayesian statistical 

framework. Journal of Engineering Mechanics 1998; 124(4):455-61. 

12. Sohn H, Law KH. Bayesian probabilistic damage detection of a reinforced-concrete bridge 

column. Earthquake Engineering and Structural Dynamics 2000; 29(8):1131-52. 

13. Yuen KV, Au SK, Beck JL. Two-stage structural health monitoring approach for Phase I 

benchmark studies. Journal of Engineering Mechanics 2004; 130:16–33. 



References 

70 

 

14. Beck JL, Au SK, Vanik MW. Monitoring structural health using a probabilistic measure. 

Computer-Aided Civil and Infrastructure Engineering 2001; 16:1–11. 

15. Ching J, Muto M, Beck JL. Structural model updating and health monitoring with 

incomplete modal data using Gibbs sampler. Computer-Aided Civil and Infrastructure 

Engineering 2006; 21(4):242–57. 

16. Gardoni P, Reinschmidt KF, Kumar R. A Probabilistic Framework for Bayesian Adaptive 

Forecasting of Project Progress. Computer-Aided Civil and Infrastructure Engineering 

2007; 22(3):182-96. 

17. Yuen KV, Beck JL, Katafygiotis LS. Efficient model updating and monitoring 

methodology using incomplete modal data without mode matching. Structural Control and 

Health Monitoring 2006; 13(1):91–107. 

18. Papadimitriou C, Papadioti DC. Component mode synthesis techniques for finite element 

model updating. Computers and Structures 2013; 126:15–28. 

19. Ching J, Beck JL. New Bayesian model updating algorithm applied to a structural health 

monitoring benchmark. Structural Health Monitoring 2004; 3:313–32. 

20. Yan WJ, Katafygiotis Lambros S. A novel Bayesian approach for structural model updating 

utilizing statistical modal information from multiple setups. Structural Safety 2015; 

52:260–71. 

21. Behmanesh I, Moaveni B. Probabilistic identification of simulated damage on the Dowling 

Hall footbridge through Bayesian finite element model updating. Structural Control and 

Health Monitoring 2015; 22:463–483. 

22. Mustafa S, Debnath N, Dutta A. Bayesian probabilistic approach for model updating and 

damage detection for a large truss bridge. International Journal of Steel Structures 2015; 

15(2):473-85. 

23. Au SK. Assembling mode shapes by least squares. Mechanical Systems and Signal 

Processing 2011; 25(1):163–79. 

24. Doebling SW, Farrar CR, Prime MB. A summary review of vibration-based damage 

identification methods. Shock and Vibration Digest 1998; 30(2):91–105. 

25. Fan W, Qiao P. Vibration-based damage identification methods: a review and comparative 

study. Structural Health Monitoring 2011; 10:83–129. 

26. Modena C, Sonda D, Zonta D. Damage localization in reinforced concrete structures by 

using damping measurements, Damage assessment of structures. Proceedings of the 

international conference on damage assessment of structures, DAMAS 99 1999; 132–141. 

27. Curadelli RO, Riera JD, Ambrosini D, Amani MG. Damage detection by means of 

structural damping identification. Engineering Structures 2008; 30(12):3497-3504. 

28. Yoshioka T, Yamaguchi H, Matsumoto Y. Structural health monitoring of steel truss 

bridges based on modal damping changes in local and global modes. Proceedings of 5th 

World Conference on Structural Control and Monitoring, International Association for 

Structural Control and Monitoring: Los Angeles, 2010; 167. 



References 

71 

 

29. Kawashima K, Nagashima H, Iwasaki H. Evaluation of modal damping ratio based on 

strain energy proportional damping method. Proceedings of 9th U.S.–Japan Bridge 

Engineering Workshop, Public Works Research Institute (PWRI) 1994;211-26. 

30. Yamaguchi H, Jayawardena L. Analytical estimation of structural damping in cable 

structures. Journal of Wind Engineering and Industrial Aerodynamics 1992; 41/44:1961–

72. 

31. Yamaguchi H, Takano H, Ogasawara M, Shimosato T, Kato M, Kato H. Energy-based 

damping evaluation of cable-stayed bridges and application to Tsurumi Tsubasa bridge. 

Structural Engineering Earthquake Engineering, JSCE 1997; 14(2):201s–213s. 

32. Dammika AJ, Kawarai K, Yamaguchi H, Matsumoto Y, Yoshioka T. Analytical Damping 

Evaluation Complementary to Experimental Structural Health Monitoring of Bridges. 

Journal of Bridge Engineering 2014; 20(7). 

33. Huang Q, Gardoni P, Hurlebaus S. A probabilistic damage detection approach using 

vibration-based nondestructive testing. Structural Safety 2012; 38:11-21. 

34. Farrar CR, Doebling SW, Nix DA. Vibration-based Structural Damage Identification, 

Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical 

and Engineering Sciences 2001; 359:131–149. 

35. Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR. A Review of 

Structural Health Monitoring Literature: 1996–2001, Los Alamos National Laboratory, 

USA, 2003. 

36. Maia NMM, Silva JMM. Theoretical and Experimental Modal Analysis. England: 

Research Studies Press Ltd., 1997. 

37. Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage Identification and Health 

Monitoring of Structural and Mechanical Systems from Changes in their Vibration 

Characteristics: A Literature Review, Los Alamos National Laboratory report, USA, 1996. 

38. Carden EP, Fanning P. Vibration based condition monitoring: A review. Structural Health 

Monitoring 2004; 3:355–377.  

39. Hadjileontiadis LJ, Douka E, Trochidis A. Fractal dimension analysis for crack 

identification in beam structures. Mechanical Systems and Signal Processing 2005; 19: 

659–674. 

40. Hadjileontiadis LJ, Douka E. Crack detection in plates using fractal dimension. 

Engineering Structures 2007; 29:1612–1625. 

41. Liew KM, Wang Q. Application of wavelet theory for crack identification in structures. 

Journal of Engineering Mechanics 1998; 124:152–157. 

42. Quek ST, Wang Q, Zhang L, Ang KK. Sensitivity analysis of crack detection in beams by 

wavelet technique. International Journal of Mechanical Sciences 2001; 43:2899–2910. 

43. Hong JC, Kim YY, Lee HC, Lee YW. Damage detection using the Lipschitz exponent 

estimated by the wavelet transform: applications to vibration modes of a beam. 

International Journal of Solids and Structures 2002; 39:1803–1816. 



References 

72 

 

44. Huth O, Feltrin G, Maeck J, Kilic N, Motavalli M. Damage identification using modal data: 

Experiences on a prestressed concrete bridge. Journal of Structural Engineering 2005; 

131:1898–1910. 

45. Friswell MI, Mottershead JE. Finite element modal updating in structural dynamics. 

Dordrecht: Kluwer, 1995. 

46. Fritzen CP, Bohle K. Global damage identification of the ‘‘Steelquake’’ structure using 

modal data. Mechanical Systems and Signal Processing 2003; 17:111–117. 

47. Goerl E, Link M. Damage identification using changes of eigenfrequencies and mode 

shapes. Mechanical Systems and Signal Processing 2003; 17(1):219–226. 

48. Xu GY, Zhu WD, Emory BH. Experimental and numerical investigation of structural 

damage detection using changes in natural frequencies. Journal of Vibration and Acoustics 

2007; 129:686–700. 

49. Reynders E, Teughels A, Roeck GD. Finite element model updating and structural damage 

identification using OMAX data. Mechanical Systems and Signal Processing 2010; 

24:1306–1323. 

50. Shang S, Yun GJ, Qiao P. Delamination identification of laminated composite plates using 

a continuum damage mechanics model and subset selection technique. Smart Materials and 

Structures 2010; 19:055024(13pp). 

51. Sohn H, Law KH.  A Bayesian probabilistic approach for structural damage detection. 

Earthquake Engineering & Structural Dynamics 1997; 26:1259-81. 

52. Papadimitriou C, Beck JL, Katafygiotis LS. Updating robust reliability using structural test 

data. Probabilistic Engineering Mechanics 2001; 16:103-13. 

53. Fritzen CP, Jennewein D. Damage detection based on model updating methods. 

Mechanical Systems and Signal Processing 1998; 12(1):163–186. 

54. Gola MM, Soma A, Botto D. On theoretical limits of dynamic model updating using a 

sensitivity-based approach. Journal of Sound and Vibration 2001; 244(4):583–595. 

55. Papadopoulos L, Garcia E. Structural damage identification: a probabilistic approach. AIAA 

Journal 1998; 36(11):2137–2145. 

56. D’Ambrogio W, Zobel PB. Damage detection in truss structures using a direct updating 

technique. Proceeding of 19th International Seminar for Modal Analysis on Tools for Noise 

and Vibration Analysis, Katholieke Universiteit, Belgium, 1994; 2:657–667. 

57. Cha PD, Tuck-Lee JP. Updating structural system parameters using frequency response 

data. Journal of Engineering Mechanics 2000; 126(12):1240–1246. 

58. Marwala T, Heyns PS. Multiple-criterion method for determining structural damage. AIAA 

Journal 1998; 36(8):1494–1501. 

59. Teughels A, Maeck J, Roeck GD. Damage assessment by FE model updating using damage 

functions. Computers & Structures 2002; 80:1869–79. 



References 

73 

 

60. Brownjohn JMW, Moyo P, Omenzetter P, Lu Y. Assessment of highway bridge upgrading 

by dynamic testing and finite-element model updating. Journal of Bridge Engineering 

2003; 8(3):162–72. 

61. Jaishi B, Ren WX. Structural finite element model updating using ambient vibration test 

results. Journal of Structural Engineering 2005; 131(4):617–28. 

62. Koh CG, Hong B, Liaw C-Y. Parameter identification of large structural systems in time 

domain. Journal of Structural Engineering 2000; 126(8):957–63. 

63. Katkhuad H, Martinez R, Haldar A. Health assessment at local level with unknown input 

excitation. Journal of Structural Engineering 2005; 131(6):956–65. 

64. Bu JQ, Law SS, Zhu XQ. Innovative bridge condition assessment from dynamic response 

of a passing vehicle. Journal of Engineering Mechanics 2006; 132(12):1372–9. 

65. Banan MR, Banan MR, Hjelmstad KD. Parameter estimation of structures from static 

response, I. Computational aspects. Journal of Structural Engineering 1994; 

120(11):3243–55. 

66. Hjelmstad KD, Shin S. Damage detection and assessment of structures from static 

responses. Journal of Engineering Mechanics 1997; 123(6):568–76. 

67. Chen HP. Efficient methods for determining modal parameters of dynamic structures with 

large modifications. Journal of Sound and Vibration 2006; 298:462-470. 

68. Carvalho J, Datta BN, Lin W, Wang C. Symmetry preserving eigenvalue embedding in 

finite element model updating of vibration structures. Journal of Sound and Vibration 2006; 

290:839-864. 

69. Yang YB, Chen YJ. A new direct method for updating structural models based on measured 

modal data. Journal of Engineering Structures 2009; 31:32-42. 

70. Udwadia FE. Methodology for optimum sensor locations for parameter identification in 

dynamic systems. Journal of Engineering Mechanics, 1994; 120 (2):368–390. 

71. Meo M, Zumpano G. On the optimal sensor placement techniques for a bridge structure. 

Engineering Structures, 2005; 27:1488-1497. 

72. Hemez FM. Uncertainty quantification and the verification and validation of computational 

models. Proceeding of Damage Prognosis for Aerospace, Civil and Mechanical Systems, 

Chichester, England, Hoboken, NJ: Wiley, 2004. 

73. Mustafa S, Matsumoto Y. Bayesian Model Updating and Its Limitations for Detecting 

Local Damage of an Existing Truss Bridge. Journal of Bridge Engineering 2017; DOI: 

10.1061/(ASCE)BE.1943-5592.0001044. (In press) 

74. Dammika AJ. Experimental-analytical framework for damping change-based structural 

health monitoring of bridges. Ph.D Thesis, Saitama University, Japan, 2014. 

75. Beck JL, Au SK, Vanik MW. A Bayesian Probabilistic Approach to Structural Health 

Monitoring. Proceedings of the American Control Conference: San Diego, California 1999; 

2:1119-1123. 



References 

74 

 

76. Mustafa S, Dammika AJ, Matsumoto Y, Yamaguchi H, Yoshioka T. A Bayesian 

Probabilistic Approach for Finite Element Model Updating Utilizing Vibration Data 

Measured in an Existing Steel Truss Bridge. Proceeding of Structural Health Monitoring 

of Intelligent Infrastructure: Torino, Italy, 2015; RS3:114-123. 

77. Yuen KV. Bayesian methods for structural dynamics and civil engineering. John Wiley & 

Sons; 2010. 

78. Yamaguchi H, Matsumoto Y, Yoshioka T. Effects of local structural damage in a steel truss 

bridge on internal dynamic coupling and modal damping. Smart Structures and Systems 

2015; 15(3):523-41. 

79. Overschee PV, Moor BD. Subspace algorithms for the stochastic identification problem. 

Automatica 1993; 29(3):649-60. 

80. Juang JN, Pappa RS. An eigensystem realization algorithm for modal parameter 

identification and model reduction. Journal of Guidance, Control, and Dynamics 1985; 

8(5):620-27. 

81. Richard SP, Kenny BE, Axel S. Consistent-mode indicator for the eigensystem realization 

algorithm. Journal of Guidance, Control, and Dynamics 1993; 16(5):852-858. 

82. Ungar EE, Kerwin EM. Loss factor of viscoelastic systems in terms of energy concepts. The 

Journal of the Acoustical Society of America 1962; 34(7):954-7. 

83. Yamaguchi H, Nagahawatta HD. Damping effects of cable cross ties in cable-stayed 

bridges. Journal of Wind Engineering and Industrial Aerodynamics 1995; 54/55:35-43. 

84. Nashif AD, Jones DI, Henderson JP. Vibration damping. Wiley, New York 1985;45-50. 

85. Yamaguchi H, Ito M. Mode-dependence of structural damping in cable-stayed bridges. 

Journal of Wind Engineering and Industrial Aerodynamics 1997; 72:289-300. 

86. Chen GW, Beskhyroun S, Omenzetter P. Experimental investigation into amplitude-

dependent modal properties of an eleven-span motorway bridge. Engineering Structures 

2016; 107:80-100. 

87. Zoghi M. The international handbook of FRP composites in civil engineering. CRC Press; 

2014. 



75 

 

 

 

 

APPENDIX A 

OPTIMAL SENSOR PLACEMENT FOR EXISTING STEEL 

TRUSS BRIDGE 

A.1 Introduction 

The problem of sensor placement is an important issue in dynamic testing of large structures, 

and has been investigated from different approaches, as can be seen from the abundance of 

literature [A1-A4], and the references therein. Especially due to the increasing interest of 

damage identification and SHM in last two decades, more researchers are involved in this topic 

and methods from various perspectives are proposed [A5,A6]. The key ideas behind these 

approaches are, however, similar. Most sensor placement methods aim to achieve best 

sensitivity changes detection of signatures indicating damage, or the best identification of 

structural characteristics, including the modal frequencies, mode shapes and modal damping 

ratios using the limited sensors that are practically available. Hence, an optimal sensor 

placement (OSP) configuration can minimize the number of sensors required, increase 

accuracy and provide a robust system. OSP is important in cases where the properties of a 

system, described in terms of continuous functions, need to be identified using discrete sensor 

information. Hence, the efficiency of vibration-based SHM techniques using a small number 

of sensors depend highly on the sensitivity of the acquired data to structural changes that may 

be obtained by placing the sensors according to the OSP strategies. The present study 

investigates techniques for selecting optimal sensor locations to monitor the health condition 

of an existing steel truss bridge by capturing sufficient information to identify structural 

dynamic behavior.  

A.2 OSP Techniques 

From the literature survey, three major groups of techniques are observed as: (1) Effective 

independence method (EFI), (2) Energy matrix rank optimization method, and (3) Modal 

approaches using various system norms (Hankel, H∞ and H2). In this study, different techniques 

from all the groups were investigated which are discussed in the following sub-sections.  
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A.2.1 Effective Independence Method 

The aim of this method is to search the best set DOFs locations from all the candidate locations 

in the structure such that the linear independence of the mode shapes is maintained while 

containing the sufficient information about the target modal responses in the measurements. 

The method originates from estimation theory by sensitivity analysis of the parameters to be 

estimated, and then it arrives at the maximization of the Fisher information matrix (FIM) which 

is defined as the product of the mode shape matrix, 𝚽 and its transpose. The starting point of 

this method is the full modal matrix from a finite element model. The number of sensors is 

reduced from an initially large candidate set in an iterative manner by removing sensors from 

those DOFs which contribute least among all the candidate sensors to the linear independence 

of the target modes. In the end, it preserves the required necessary candidate sensors as the 

optimal sensor set.  

The vector of the measured structural response denoted by 𝒚𝑠  can be estimated as a 

combination of N mode shapes through the expression: 

 𝒚𝑠 = 𝚽𝒒+𝒘 =∑𝑞𝑖𝝓𝑖 +𝒘

𝑁

𝑖=1

 (A.1) 

where 𝚽 is the matrix of FE-model target mode shapes, 𝒒 is the coefficient response vector 

and 𝒘 is a sensor noise vector which can be assumed a stationary Gaussian white noise with 

zero mean and a variance of 𝜎0
2. The above representation of structural response is based on 

the concept [A7] that the response in any point of an elastic structure can be obtained in the 

time or frequency domain as a linear combination of mode shape values. In this way, the ith 

coefficient of 𝒚𝑠 is a linear combination of the ith mode shape vectors where 𝑞𝑖 is a multiplier 

coefficient that is a function either of time or frequency.  

Evaluating the coefficient response vector using an efficient unbiased estimator and then, 

estimating the covariance of the errors results in: 

 𝐸[(𝒒 − 𝒒̂)(𝒒 − 𝒒̂)𝑇] = [
1

𝜎0
2𝚽

𝑇𝚽]

−1

= 𝐅𝐈𝐌−1 (A.2) 

where E denotes the expected value and 𝒒̂ is the efficient unbiased estimator of 𝒒. Hence, the 

best estimation of 𝒒 occurs when 𝐅𝐈𝐌 is maximized, therefore the procedure for selecting the 

best sensor placements is to unselect candidate sensor positions such that the determinant of  

𝐅𝐈𝐌 is maximized. In order to achieve this, an iterative algorithm was developed by Kammer 
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and Brillhart [A8], which evaluates the candidate location sensor contributions employing the 

effective independence distribution vector, 𝑬𝑑 given by: 

 𝑬𝑑 = [𝚽𝝍]
2𝜆−1{1}𝑘 (A.3) 

where 𝝍 and 𝜆 are the eigenvectors and corresponding eigenvalues of 𝐅𝐈𝐌. {1}𝑘 is a 𝑘 × 1 

column vector with all elements of 1. The selection procedure is to sort the elements of the 𝑬𝑑 

coefficients, and to remove the smallest one at a time. The 𝑬𝑑 coefficients are then updated 

according to the new mode shape matrix and the process is repeated iteratively until the number 

of remained sensors equals to a preset value.  

A mass weighted version of the EFI (EFIWM) method is also studied in the literature [A9,A10]. 

In this case the FIM and 𝑬𝑑 correspond to 

 𝐅𝐈𝐌 = 𝚽𝑇𝑴𝚽  and  𝑬𝑑 = √𝑴𝚽𝐅𝐈𝐌
−1𝚽𝑇√𝑴 (A.4) 

where 𝑴 represents the symmetric mass matrix of the initial FE-model. In this case, Guyan 

reduction is implemented at each iteration to reduce the mass matrix to the candidate DOFs. 

A.2.2 Energy Matrix Rank Optimization 

The basic idea underlying the energy matrix rank optimization (EMRO) algorithm is to achieve 

a sensor location configuration that maximizes the strain energy (SE) or kinetic energy (KE) 

of the measured mode shapes from the structure [A11,A12]. The strain energy and kinetic 

energy are given by 

 𝐒𝐄 = 𝚽𝑇𝑲𝚽  and  𝐊𝐄 = 𝚽𝑇𝑴𝚽 (A.5) 

where 𝑲 is the stiffness matrix of the initial FE-model. This method is similar to the EFI 

method where the FIM is assembled using a Cholesky decomposition of the mass or stiffness 

matrix given by 

 𝑲 = 𝑪𝑇𝑪  or  𝑴 = 𝑪𝑇𝑪 (A.6) 

where 𝑪 is an upper triangular matrix. Then, the FIM is assembled as 

 𝐅𝐈𝐌 = 𝝍𝑇𝝍  where  𝝍 = 𝑪𝚽  (A.7) 

The same procedure is then carried out to calculate effective independence distribution vector 

similar to EFI method but Guyan reduction is employed here at each step of iteration to reduce 

the stiffness or mass matrix to the candidate DOFs.  
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A.2.3 Modal Approach Using System Norms 

System norms serve as a measure of intensity of its response o standard excitations and in this 

capacity they are used in the model reduction and in the sensor placement procedures. There 

are three system norms: H2, H∞ and Hankel norms. Given a large set of sensors, the placement 

problem consists of determining the locations of a smaller subset of sensors such that the 

system norms of the subset is as close as possible to the norms of the original set [A13]. In this 

study only H2 norm was considered and hence, the following description is restricted to OSP 

using H2 norm only.  

Let (𝑨,𝑩, 𝑪 ) be a system state-space representation of a linear system and let 𝐺(𝜔) =

𝑪(𝑗𝜔𝐼 − 𝑨)−1𝑩 be its transfer function. The H2 norm of the system is defined as  

 ‖𝐺‖2
2 =

1

2𝜋
∫ 𝑡𝑟(𝐺∗(𝜔)𝐺(𝜔))𝑑𝜔
∞

−∞

 (A.8) 

where 𝑡𝑟(𝐺∗(𝜔)𝐺(𝜔)) is the sum of the squared magnitudes of all of the elements of 𝐺(𝜔). 

Thus, it can be interpreted as an average gain of the system, performed over all the elements of 

the matrix transfer function and over all frequencies. For structure in modal representation, 

each mode is independent of others, thus the norms of a single mode are independent as well. 

Considering the ith mode and its state-space representation (𝑨𝑚𝑖, 𝑩𝑚𝑖 , 𝑪𝑚𝑖), the H2 norm of 

the ith mode is given by [A13-A15] 

 ‖𝐺𝑖‖2 ≅
‖𝑩𝑚𝑖‖2‖𝑪𝑚𝑖‖2

2√𝜉𝑖𝜔𝑖
 (A.9) 

where 𝜉𝑖  and 𝜔𝑖  are the ith modal damping ratio and modal frequency respectively. The 

placement index 𝜎2𝑘𝑖 that evaluates the kth sensor at the ith mode in terms of the H2 norm is 

defined with respect to all the modes and all admissible 𝑅 sensors 

 𝜎2𝑘𝑖 = 𝑤𝑘𝑖
‖𝐺𝑘𝑖‖2
‖𝐺‖2

,               𝑘 = 1, … , 𝑅 (A.10) 

where 𝑤𝑘𝑖 ≥ 0 is the weight assigned to the kth sensor and the ith mode, and 𝐺𝑘𝑖 is the transfer 

function of the kth sensor and ith mode. Eq. (A.10) represents the sensor placement index of 

kth sensor for a single mode. For 𝑁 number of target modes, the placement index for kth sensor 

with respect to H2 norm can be expressed as 

 𝜎2𝑘 = √∑ 𝜎𝑖𝑘
2𝑁

𝑖=1   (A.11) 
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Hence, the vector of the sensor placement indices for all the 𝑅 candidate sensors is defined as 

𝝈𝑠 = [𝜎𝑠1, 𝜎𝑠2, … , 𝜎𝑠𝑅]
𝑇 , and its kth entry is the placement index of the kth sensor for the 𝑁 

number of target modes which is given in Eq. (A.11). After calculating the sensor placement 

indices for the targeted modes and for all the candidate sensor locations, the sensors with the 

higher indices can be considered for the OSP.  

A.3 Results of OSP for Test Structure 

All the DOFs used in the FE-model cannot be measured in the real structure due to physical 

limitations. Therefore, the DOFs corresponding to rotations were eliminated from the full 

modal matrix. Similarly, not all of the mode shapes can be experimentally measured, hence 

first fifty modes were selected as a target modes to be optimally detected. For norm based 

modal approach, mass and stiffness proportional damping was considered with the assumption 

of monotonic increment of damping ratio with natural frequency. Damping ratio corresponding 

to the fundamental frequency was considered as 1%. Fundamental frequency was found from 

the initial FE-model as 2.067 Hz with transversely dominant mode shape. State space modal 

model was then constructed with mass, stiffness and damping matrices to carry out necessary 

computations.  

Three different OSP techniques were tested on the studied steel truss bridge. Optimal sensor 

locations were identified for fifty numbers of target modes. Fig. A.1 shows the optimal sensor 

locations in vertical direction for 20 uniaxial accelerometers which were obtained by different 

OSP techniques. It can be seen that the optimal sensor locations for 20 vertical sensors obtained 

from all the methods are mostly on stringers which is matching with the expected outcome. 

The results obtained from the EFI, EFIWM and EMRO methods were showing good 

agreements with each other’s because of their analytical similarities to calculate the optimal 

sensor locations.  
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Fig. A.1. Placements of 20 vertical sensors considering fifty numbers of target modes 

according to: (a) EFI, (b) EFIWM, (c) EMRO and (d) H2 norm 

A.4 Conclusions 

In this work, several OSP techniques for an existing steel truss bridge were studied. The sensor 

locations were chosen in such a way that they should be able to give relevant information in 

the reconstruction of modal and dynamic characteristics of the bridge under investigation. From 

the sensor placement results obtained by various methods it was clear that the sensors must be 
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placed on stringers on both sides of the bridge to identify the bending and torsional modes by 

placing sensors in vertical direction only. Hence, a better placement of sensors can be obtained 

in a scientific way rather than placing sensors based on practical judgement which is highly 

dependent on the experience and the knowledge of the inspector. Moreover, for the placement 

of a small number of sensors in case of large structure, the sensors must be placed judiciously 

in order to provide adequate information for the identification of the structural behavior which 

can be achieved by following the procedure as described in this study. 
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APPENDIX B 

DAMAGE DETECTION BY FE-MODEL UPDATING 

B.1 Application to SHM 

In order to determine damage, the most probable values of the stiffness parameters from the 

damaged and undamaged structure and their standard deviations are used to compute the 

probability that a given stiffness parameter 𝜃𝑙  has been reduced by a certain fraction d 

compared to the undamaged state of the structure [6,14,17]. Based on the Gaussian 

approximation of stiffness parameters, the probability of damage in terms of a fractional 

damage level, d can be obtained as 

 𝑃𝑙
𝑑𝑎𝑚(𝑑) = 𝑃(𝜽𝑙

𝑝𝑑 < (1 − 𝑑)𝜽𝑙
𝑢𝑑) ≈ 𝚽

[
 
 
 

(1 − 𝑑)𝜽𝑙
∗𝑢𝑑 − 𝜽𝑙

∗𝑝𝑑

√(1 − 𝑑)2(𝝈𝑙
𝑢𝑑)2 + (𝝈𝑙

𝑝𝑑)2
]
 
 
 

 (B.1) 

where 𝚽(⋅) is the cumulative distribution function of the standard Gaussian random variable, 

𝜽𝑙
∗𝑢𝑑 and 𝜽𝑙

∗𝑝𝑑
 denote the most probable values of the stiffness parameters for the undamaged 

and possibly damaged structures respectively, and 𝝈𝑙
𝑢𝑑, 𝝈𝑙

𝑝𝑑
 are the corresponding standard 

deviations of the stiffness parameters. 

The posterior uncertainty of unknown parameters can be obtained by modelling the posterior 

PDF of unknown parameters using a Gaussian distribution with mean at the optimal parameters 

and covariance matrix 𝚵 which is equal to the inverse of the Hessian calculated at the optimal 

parameters [17,20]. This covariance matrix is given by 

 𝚵(𝝓∗, 𝝂∗, 𝜸∗, 𝝀∗, 𝝑∗, 𝜽∗) =

[
 
 
 
 
 
 𝚪
𝝓𝝓

𝚪𝝂𝝓

𝚪𝜸𝝓

𝚪𝝓𝝂

𝚪𝝂𝝂

𝚪𝜸𝝂

𝚪𝝓𝜸 𝚪𝝓𝝀 𝚪𝝓𝝑 𝚪𝝓𝜽

𝚪𝝂𝜸 𝚪𝝂𝝀 𝚪𝝂𝝑 𝚪𝝂𝜽

𝚪𝜸𝜸 𝚪𝜸𝝀 𝚪𝜸𝝑 𝚪𝜸𝜽

𝚪𝝀𝝓 𝚪𝝀𝝂 𝚪𝝀𝜸 𝚪𝝀𝝀 𝚪𝝀𝝑 𝚪𝝀𝜽

𝚪𝝑𝝓

𝚪𝜽𝝓
𝚪𝝑𝝂

𝚪𝜽𝝂
𝚪𝝑𝜸

𝚪𝜽𝜸
𝚪𝝑𝝀

𝚪𝜽𝝀
𝚪𝝑𝝑

𝚪𝜽𝝑
𝚪𝝑𝜽

𝚪𝜽𝜽 ]
 
 
 
 
 
 
−1

 (B.2) 
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where each element of the Hankel matrix represents the double derivatives of the objective 

function, 𝚪 given in Eq. (3.13) with respect to two vectors in the subscript. As the Hankel 

matrix is symmetric, only the elements in the upper or lower triangular are needed to be derived 

analytically. After computing the posterior covariance matrix given in above equation, the 

variance of each unknown parameter then can be obtained from the corresponding diagonal 

elements of 𝚵. 

B.2 Damage Detection 

The proposed Bayesian model updating framework in Chapter 3 can be applied to detect 

damage at local level. The application to SHM was carried out by considering both the data 

from simulated damage structure and experimental data from actual damaged span in the 

subsequent sub-sections [73]. 

B.2.1 Considering Simulated Damage 

As actual damage may not be possible to be introduced in the existing bridge, the numerical 

model was considered for damage simulation. One element (element number 316) of D5d 

diagonal member was assumed to be damaged. In order to introduce damage, the sectional 

properties of element 316 had been reduced by 50%. The sectional properties of all other 

elements were kept same as the undamaged state. Modal parameters were then extracted from 

this damaged structure and a sample of zero-mean Gaussian noise with 1% coefficient of 

variation was added to the extracted modal frequencies and mode shapes from the view point 

of realistic measurements. With all other values same as the undamaged case, the same iterative 

procedure is followed to update the preliminary model having simulated damage. After 

updating the preliminary FE-model, the posterior uncertainty of stiffness parameters was 

estimated using Eq. (B2). Based on the most probable values and the standard deviation of the 

stiffness parameters, the probabilities of damage for all the four stiffness parameters (defined 

in Eq. (3.23)) corresponding to 514 frame elements were evaluated using Eq. (B.1). Figs. B.1-

B.4 show the probabilities of damage of four stiffness parameters for all the elements 

respectively. From these figures, it can be clearly seen that element 316 has possible damage 

with a very high probability having an extent of damage of around 50% in all the four stiffness 

parameters. These plots suggest that the method is very sensitive as it has not only identified 

the damaged element but also the extent of damage. Therefore, the proposed updating 

framework has great potential to detect damage at the elemental property level without showing 
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any false alarm despite having complexity of the analysed structure, which is very appealing 

characteristic of this method. Fig. B5(a) shows the bar diagram of the percentage change in the 

updated stiffness parameters between the undamaged and damaged structures. Fig. B5(b) 

shows the same bar plot which was partly zoomed for better clarity. It can be seen that stiffness 

parameters corresponding to element 316 (𝜃4×(316−1)+1: 𝜃4×(316−1)+4 = 𝜃1261: 𝜃1264) are 

showing higher index suggesting substantial change in the stiffness value of the concerned 

element compared to the other undamaged elements of the structure. However, the damage 

detection by simulated data is much easier compared to the realistic scenarios as in case of 

simulated damage, the data corresponding to the undamaged and simulated damage structures 

are subjected to similar levels of model errors and the variations in system properties are only 

due to the induced damage in the structure. Additionally, the problem related to low sensitivity 

of frequencies and mode shapes due to local damage remains a concern for the practical 

application of the methodology discussed above. 

 

Fig. B.1. Probability of damage of axial stiffness parameters for all the elements 

 

Fig. B.2. Probability of damage of bending stiffness parameters about z-axis for all the 

elements 
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Fig. B.3. Probability of damage of bending stiffness parameters about y-axis for all the 

elements 

 

Fig. B.4. Probability of damage of torsional stiffness parameters for all the elements 

 

 
                                                 (a)                                                                      (b) 

Fig. B.5. (a) Bar diagram of the percentage change in updated stiffness parameters between 

damaged and undamaged structures, (b) Same bar diagram which is party zoomed 
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B.2.2 Considering Experimental Data from Damaged Span 

For the practical applicability of the proposed model updating framework to detect local 

damage, the identified modal data from the damaged fourth span were used to update an initial 

FE-model. Four global modes and one diagonal mode were identified from the recorded data 

at the fourth span (see Fig. 5.1) corresponding to BR condition. The natural frequencies and 

partial mode shape vectors of 3 components of the identified modes were used to update the 

initial FE-model using the proposed updating framework. The nominal stiffness values for this 

initial FE-model were selected from the uniform distribution over 𝜽̃ to 1.5𝜽̃ where 𝜽̃ is the 

actual stiffness parameters of the preliminary model. Table B.1 shows the model updating 

results for frequencies and mode shapes after 100 iterations. It can be seen that the frequencies 

of the global modes of the updated FE-model are close to the corresponding experimental ones 

and MAC values are also improved. On the other hand, there was still some discrepancy in the 

frequencies of damage diagonal mode between actual structure and updated FE-model. 

However, the frequency of the diagonal mode of updated FE-model was found significantly 

lower than the corresponding frequency of the baseline model (decrease of frequency from 

9.183Hz to 8.664Hz), representing the damaged structural condition of the fourth span.  

Table B.1. Model updating results for frequencies and MAC values 

Experimental order 

of Mode 

Experimental Initial Updated MAC 

initial 

MAC 

Updated f(Hz) f(Hz) f(Hz) 

1st bending 2.588 2.899 2.598 0.9766 0.9998 

1st torsional 4.596 5.289 4.742 0.8147 0.9997 

2nd bending 5.250 6.062 5.443 0.7629 0.9986 

Diagonal 7.129 9.467 8.664 0.9982 0.9998 

3rd bending 7.206 8.604 7.665 0.8216 0.9983 

 

To determine the extent of damage and its location, the bar diagram showing the percentage 

change in updated stiffness parameters between possibly damaged and undamaged structures 

was plotted in Fig. B.6. It can be seen that stiffness parameters 𝜃1762 and 𝜃1766 are showing 

higher percentage of change in the bar plot. The damaged elements corresponding to these two 

stiffness parameters were shown in Fig. B.7. From this figure it can be seen that the damage 

elements are the ones which are connected to the node where the measurement on damaged 

D5u diagonal member was taken. Table B.2 shows the identification results for stiffness 

parameters corresponding to damaged elements. It can be seen that only the stiffness 
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parameters corresponding to the bending component about z-axis for both the elements are 

showing significant reduction in stiffness properties. This is because of the fact that only 

acceleration response data corresponding to vertical direction (z-direction) were used in the 

analysis. 

 

Fig. B.6. Bar diagram of the percentage change in updated stiffness parameters between 

damaged and undamaged structure 

 

Fig. B.7. Damaged elements identified by FE-model updating using global and diagonal 

modes of the fourth span 

Table B.2. Identified stiffness parameters for damaged and undamaged structure 

Element 

No. 
Parameter Undamaged Damaged % change 

441 

𝜃1761 832000 kN 832000 kN 0.0 

𝜃1762 2400 kN-m2 1640 kN-m2 -31.7 

𝜃1763 18800 kN-m2 18800 kN-m2 0.0 

𝜃1764 77 kN-m2 77 kN-m2 0.0 

442 

𝜃1765 832000 kN 832000 kN 0.0 

𝜃1766 2400 kN-m2 1621 kN-m2 -32.4 

𝜃1767 18800 kN-m2 18800 kN-m2 0.0 

𝜃1768 77 kN-m2 77 kN-m2 0.0 
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The above discussion about the identification of damaged stiffness parameters using proposed 

model updating framework is based on prior information about the damage location in which 

the vibration measurement was taken on the damaged diagonal member. However, in practical 

cases such kind of information is not available. The objective is to identify the local damage 

using global vibrational characteristics of the structure which can be identified with limited 

number of sensors. Therefore, the model updating was performed again using only global 

modes and identified components of mode shapes corresponding to L2 and U2 sensor locations 

(see Fig. 5.1). Table B.3 shows the model updating results for frequencies and mode shapes 

after 100 iterations. Here also, it can be seen that the frequencies of the global modes of the 

updated FE-model are close to the corresponding experimental ones and MAC values are also 

improved. On the other hand, the frequency of the diagonal mode remains almost unaffected 

by the updating process. Fig. B.8 shows the bar diagram of the percentage change in updated 

stiffness parameters between possibly damaged and undamaged structures by considering only 

global modes. No damage with significant change in stiffness parameter has been detected this 

time as only global modes were used to perform FE-model updating. Hence, it can be 

concluded that the detection of local damage using proposed updating framework by utilizing 

global vibration characteristics can only be possible if the changes in frequencies and/or mode 

shapes of the global modes due to local damage are significant.  

Table B.3. Model updating results for frequencies and MAC values 

Experimental order 

of Mode 

Experimental Initial Updated MAC 

initial 

MAC 

Updated f(Hz) f(Hz) f(Hz) 

1st bending 2.588 2.899 2.598 0.9994 1.0000 

1st torsional 4.596 5.289 4.744 0.9932 1.0000 

2nd bending 5.250 6.062 5.443 0.9934 1.0000 

Diagonal 7.129 9.467 9.204 0.9982 0.9983 

3rd bending 7.206 8.604 7.721 0.9469 0.9999 

 

 

Fig. B.8. Bar diagram of the percentage change in updated stiffness parameters between 

damaged and undamaged structure considering only global modes 
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B. 3 Conclusions 

In this Appendix, damage detection by the proposed model updating framework was presented 

by considering both the data from simulated damaged structure and experimental data from 

real damaged structure, having damage in one of the diagonal member, were used in the 

analysis. In case of simulated damage data, the proposed model updating framework 

successfully detected the local damage may be because of the assumption that the data 

corresponding to the undamaged and simulated damage structures are subjected to similar 

levels of model errors and the variations in system properties are only due to the induced 

damage in the structure. In case of experimental data from real damaged structure, the damage 

detection by the proposed updating framework could only be possible by considering damaged 

diagonal mode and the component of mode shapes measured at damaged diagonal member. 

However, no damage with significant change in stiffness parameter has been detected when 

considering only global modes to perform FE-model updating. Hence, it can be concluded that 

the detection of local damage using proposed updating framework by utilizing global vibration 

characteristics can only be possible if the changes in frequencies and/or mode shapes of the 

global modes due to local damage are significant. 
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APPENDIX C 

FORMULATION AND PARAMETERIZATION OF MASS 

AND STIFFNESS MATRICES 

A linear finite element program was developed with sufficient features for linear analysis of 

the truss bridge. This program was developed in MATLAB software and all necessary 

structural information such as joint coordinates, joint restraint assignment, element 

connectivity, material properties, sectional properties etc. were collected from the design 

drawing and engineering knowledge. The important features considered in the FE-model 

program are presented below. 

C.1 Stiffness Formulation 

The structural members were modelled as three-dimensional frame elements and six DOFs 

were considered at each joint resulting in 12 × 12 elemental stiffness matrices. Fig. C1 shows 

the DOFs at joint of frame element in local coordinate. The convention adopted is to label first 

the three translatory displacements of the first joint followed by the three rotational 

displacements of the same joint, then to continue with the three translatory displacements of 

the second joint and finally the three rotational displacements of this second joint. To 

differentiate rotational nodal coordinates from translational nodal coordinates, the double 

arrows were used for rotational nodal coordinates in Fig. C1. Local 1 axis was considered along 

the length of frame element with positive direction from first node to second node. For a three 

dimensional frame element, the local orthogonal axes will be established such that the X 

defines the longitudinal centroidal axis of the member and the X-Y plane will coincide with 

the plane of the structural system. In this case, the z axis will define the minor principal axis of 

the cross section while the Y axis will define the major axis of the cross section. It was assumed 

that the shear centre of the cross section coincides with the centroid of the cross section. The 

local 1-2 plane was taken to be vertical, i.e. parallel to the global Z or 3 axis. The elemental 

stiffness matrix in local coordinates can be expressed as  
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Fig. C.1 DOFs at joint of frame element in local coordinate 
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(C.1)
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

where 𝐼𝑦 and 𝐼𝑧 are, respectively, the cross-sectional moments of inertia with respect to the 

principal axes labelled as y and z and 𝐿, 𝐴, and J are the length, cross-sectional area, and 

torsional constant of the frame element respectively. 

C.2 Mass Formulation 

The lumped mass matrix was used for the dynamic analysis of the truss bridge. The lumped 

mass matrix for the uniform beam segment of a three-dimensional frame element is simply a 
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diagonal matrix in which the coefficients corresponding to translatory displacements are equal 

to one-half of the total inertia of the frame element while coefficients corresponding to rotations 

were assumed to be zero. The elemental mass matrix in local coordinates can be expressed as 

 𝑴𝒆 =
𝜌𝑚𝐴𝐿

2

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0
0
0

0
0
0

0
0
0]
 
 
 
 
 
 
 
 
 
 

 (C.2) 

where 𝜌𝑚, 𝐴 and 𝐿 are the mass density of material, the cross-sectional area and the length of 

the frame element respectively. 

C.3 Transformation of Coordinates 

The stiffness and mass matrices given by Eqs. (C.1) and (C.2) respectively are referred to local 

coordinates axes of the frame element. To obtain the stiffness and mass matrices of the structure, 

it is necessary first to transform these matrices to the same reference systems, the global system 

of coordinates. If 𝑣1, 𝑣2 and 𝑣3 are the unit vectors along the local coordinates 1, 2 and 3 

respectively and (𝑙1, 𝑚1, 𝑛1), (𝑙2, 𝑚2, 𝑛2) and (𝑙3, 𝑚3, 𝑛3) represents their direction cosines 

with the global coordinates respectively, then the transformer matrix, 𝑻 to compute the global 

stiffness and mass matrices is given by 

 𝑻 = [

𝑅 0 0 0
0 𝑅 0 0
0
0

0
0

𝑅 0
0 𝑅

] (C.3) 

where 𝑹 is the block matrix which is given by 

 𝑹 = [
𝑙1 𝑚1 𝑛1
𝑙2 𝑚2 𝑛2
𝑙3 𝑚3 𝑛3

] (C.4) 

The global stiffness and mass matrices of each frame element then can be computed as  

 𝑲𝒈𝒆 = 𝑻𝑇𝑲𝑒𝑻         and         𝑴𝒈𝒆 = 𝑻𝑇𝑴𝒆𝑻          (C.5) 
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C.4 Parameterization of Stiffness and Mass Matrices 

As mentioned earlier in Chapter 3, four stiffness parameters were considered for the 

parameterization of stiffness matrix for each element considering both sectional and material 

properties. The subsystem stiffness matrices at local coordinates corresponding to four stiffness 

parameters are given by 

𝑲𝒍,𝟏 =

[
 
 
 
 
 
 
 
 
 
 
 
1/𝐿 0 0 0 0 0 −1/𝐿 0 0 0 0 0
0
0
0
0
0

−1/𝐿
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1/𝐿
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0
0
0

0
0
0

0
0
0]
 
 
 
 
 
 
 
 
 
 
 

 (C.6) 

 

𝑲𝒍,𝟐 =

[
 
 
 
 
 
 
 
 
 
 
 
0    0   0 0    0     0             0        0 0 0 0  0
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 (C.7) 

 

𝑲𝑙,3 =

[
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 (C.8) 
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𝑲𝒍,𝟒 =

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0 0
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−1/𝐿 0 0
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1/𝐿
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 (C.9) 

Using the transformation matrix 𝑻, the above subsystem stiffness matrices can be transformed 

in to the global coordinate system as 

𝑲𝒈𝒍,𝟏 = 𝑻
𝑇𝑲𝑙,1𝑻,  𝑲𝒈𝒍,𝟐 = 𝑻𝑇𝑲𝑙,2𝑻,   𝑲𝒈𝒍,𝟑 = 𝑻𝑇𝑲𝑙,3𝑻,   and    𝑲𝒈𝒍,𝟒 = 𝑻𝑇𝑲𝑙,4𝑻          (C.10) 

where 𝑲𝒈𝒍,𝟏, 𝑲𝒈𝒍,𝟐, 𝑲𝒈𝒍,𝟑, and 𝑲𝒈𝒍,𝟒 are the global subsystem stiffness matrices for the 𝑙 th 

element. 

For the parameterization of mass matrix mass density per unit length of each section was 

considered as an uncertain parameter. Hence, the subsystem mass matrix at local coordinate 

for the 𝑙th element having sectional properties of the 𝑟th section is given by 

 𝑴𝒓,𝒍 =
𝐿

2

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0
0
0

0
0
0

0
0
0]
 
 
 
 
 
 
 
 
 
 

 (C.11) 

Similarly, the global subsystem mass matrix can be obtained as 

 𝑴𝒈,𝒍 = 𝑻𝑇𝑴𝑟,𝑙𝑻       (C.12) 

 


