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A Remark on The Derivative Estimate of Entire Functions 
in A Class of Order q

DÔKU, Isamu
Faculty of Education, Saitama University

Summary
Various types of inequalities are used in the study of pseudo-differential operators (ΨDOs) 

and their applications to PDE theory. And also some inequalities are quite useful in the estimation 
of the ΨDOs. The inequality which we are going to introduce in this article is one of them, espe-
cially it is extremely useful and powerful, too, in the study of pseudo-differential equations whose 
symbols are formal series [7]. So that, the inequality stated in succeeding Proposition is not our 
original result, however, we are going to discuss the formulation of the inequality in the standpoint 
of the asymptotic behaviors of a specific pilot functions related to the inequality, which arise natu-
rally in the discussion of extreme point problem.

Key Words: �entire function, derivative estimate, a class of order q, asympotic behavior, specific 
pilot function.

1.  The class of entire functions of order q
In this section we shall give the definition of a certain class of entire functions of order q, and 

introduce a result of the derivative estimate of those functions. For 0 < q < 1 and r > 0 given, we 
define the norm
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1. The class of entire functions of order q

In this section we shall give the definition of a certain class of entire functions of order q,

and introduce a result of the derivative estimate of those functions. For 0 < q < 1 and r > 0

given, we define the norm

∥u∥q,r := sup{ |u(z)| exp(−r|z|q); z ∈ Cn }, (1)

where z = (z1, . . . , zn) ∈ Cn with zk ∈ C for k = 1, 2, . . . , n, and |z|q = |z1|q + · · ·+ |zn|q. Let
us define a class of entire functions of order q < 1 with weight index r > 0:

Eq,r(Cn
z ) := {u(z) : Cn → C1 is a entire function such that ∥u∥q,r < ∞}. (2)

Then it is easy to see that

Lemma 1. (a) When r1 � r2 for any r1, r2 > 0, then we have the following inclusion

Eq,r1(Cn
z ) ⊂ Eq,r2(Cn

z ). (3)

(b) If r1 < r2 holds, then the above inclusion is compact for any pair (r1, r2); namely, the

inclusion map
i : Eq,r1(Cn

z ) → Eq,r2(Cn
z ) (4)

1

� (1)

where z=(z1, ..., zn)∈ Cn with zk ∈ C for k=1, 2, ..., n, and |z|q=|z1|q+···+|zn|q. Let us define a 
class of entire functions of order q<1 with weight index r>0:
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Then it is easy to see that
Lemma 1. (a) When r1 r2 for any r1, r2> 0, then we have the following inclusion
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In this section we shall give the definition of a certain class of entire functions of order q,

and introduce a result of the derivative estimate of those functions. For 0 < q < 1 and r > 0
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(b) If r1< r2 holds, then the above inclusion is compact for any pair (r1, r2); namely, the inclu-
sion map
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is compact.
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We shall give below a typical example for our target class.
Example 2. Let q:=m/p ∈ Q, q <1 be a rational number with m and p coprime. When we 

define a function f (z) as

	

is compact.

We shall give below a typical example for our target class.

Example 2. Let q := m/p ∈ Q, q < 1 be a rational number with m and p coprime. When

we define a function f(z) as

f(z) :=

p−1∑
k=1

exp

{(
exp

2πik

p

)
νz

}
(5)

where ν = (ν1, . . . , νn) ∈ Cn and νz =
∑n

k=1 νkzk, then its Taylor expansion is given by

f(z) =

∞∑
|α|=0

νpαzpα

(pα)!
, (6)

where (pα)! = (pα1)! · · · (pαn)!, ν
pα = νpα1

1 · · · νpαn
n , and zpα =

∏n
k=1 z

pαk

k . On this account,

it follows that the function
u(z) := f(zq) ≡ f(zq1 , . . . , z

q
n) (7)

is an entire function lying in Eq,r(Cn
z ), where r ≥ max(|ν1|, . . . , |νn|). �

Now we are in a position to state the important proposition that provides us with the

derivative estimate of entire functions lying in a certain class of order q.

Proposition 3. [7] For every u(z) ∈ Eq,r(Cn
z ), the following inequality

|Dαu(z)| � min{ξ(u), η(u)} (8)

holds for any z ∈ Cn and |α| = 0, 1, 2, . . . , where

ξ(u) :=
∥u∥q,r exp{r|z|q} · (qr)|α|

n∏
i=1

(1 + |zi|)(1−q)αi

× Φn
1/2(αi) (9)

and

η(u) :=
∥u∥q,r exp{r|z|q} · (qr)|α|/q

(α!)1/q−1
× Φn

1/(2q)(αi) (10)

with Φn
k (βi) :=

∏n
i=1(β

k
i ).

2. Derivation of a primitive estimation

An application of Cauchy’s formula in Complex Analysis reads

Dαu(z) =
α!

(2πi)n

∫

|ζ−z|=|a|

u(ζ)

(ζ − z)α+1
dζ (11)

=
α!

(2πi)n

∫
· · · (n) · · ·

∫

|ζ−z|=|a|

u(ζ1, . . . ζn)

(ζ − z)α+1
dζ1 · · · dζn, (12)

2

� (5)

where ν=(ν1, ..., νn)∈ Cn and νz=∑n
k=1 νkzk, then its Taylor expansion is given by
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where (pα)!=(pα1)!···(pαn)!, ν  pα=ν1
pα1···νnpαn, and zpα=∏n

k=1 zk
pαk. On this account, it follows that 

the function
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is an entire function lying in Eq,r(Cn
z), where r ≥ max (|ν1|, ...,|νn|).� □

Now we are in a position to state the important proposition that provides us with the deriva-
tive estimate of entire functions lying in a certain class of order q.

Proposition 3. [7] For every u(z) ∈ Eq, r (Cn
z), the following inequality
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holds for any z ∈ Cn and |α| = 0, 1, 2, . . . , where
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where a = (a1, . . . , an) ∈ Rn, a1> 0, . . . , an> 0. Note that |ζ−z| = |a| indicates
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where a = (a1, . . . , an) ∈ Rn, a1 > 0, . . . , an > 0. Note that |ζ − z| = |a| indicates

|ζ1 − z1| = a1, . . . , |ζn − zn| = an. (13)

By definition we easily get
|u(z)| � ∥u∥q,r exp{r|z|q}. (14)

Paying attention to the above inequality, we readily obtain

|Dαu(z)| � α!

(2π)n
∥u∥q,r exp

{
r

n∑
k=1

(|zk|+ ak)
q

}
×

n∏
k=1

2πak

n∏
k=1

aαk+1
k

(15)

� ∥u∥q,r exp{r|z|q} · α!×
n∏

k=1

exp{rεk}
{(|zk|q + εk)1/q − |zk|}αk

(16)

because we have put (|zk|+ ak)
q = |zk|q + εk (with εk > 0) for simplicity.

3. Further estimation and asymptotic behaviors

For each k, we put

µk(εk, zk) := erεk{(|zk|q + εk)
1/q − |zk|}−αk (17)

and let us consider the factors µk(εk, zk). By virtue of finite limit property of the function µk

not only as |zk| → 0 but also as |zk| → ∞, a simple inequality

µk(εk, zk) � max
zk∈C

µk(εk, zk) (18)

leads to a new estimation result

|Dαu(z)| � ∥u∥q,r exp{r|z|q} · α!×
n∏

k=1

min
εk

{max
zk

µk(εk, zk)}. (19)

It is interesting to note that the maximum of the function

g1(x) =
1

(xq + ε)1/q − x
(20)

over the region x > 0 is given by the value 1/ε(1/q), and also that the minimum of the function

g2(x) = erxx−(α/ε) over the region x > 0 is attained by the value (e/α)α · (qr)α/q. By making

use of the above-mentioned two results, we can deduce together with Stirling’s formula and

(16) that

|Dαu(z)| � ∥u∥q,r exp{r|z|q} ·
(qr)|α|/q

(α!)1/q−1
× Φn

1/(2q)(αk). (21)

This is nothing but (10) in Proposition 3.
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|Dαu(z)| � α!

(2π)n
∥u∥q,r exp

{
r

n∑
k=1

(|zk|+ ak)
q

}
×
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k=1

2πak

n∏
k=1

aαk+1
k

(15)

� ∥u∥q,r exp{r|z|q} · α!×
n∏

k=1

exp{rεk}
{(|zk|q + εk)1/q − |zk|}αk

(16)

because we have put (|zk|+ ak)
q = |zk|q + εk (with εk > 0) for simplicity.

3. Further estimation and asymptotic behaviors
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n∏
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min
εk

{max
zk

µk(εk, zk)}. (19)

It is interesting to note that the maximum of the function

g1(x) =
1
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(20)
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(α!)1/q−1
× Φn

1/(2q)(αk). (21)

This is nothing but (10) in Proposition 3.
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4.  Precise analysis of a specific function

In this section we shall investigate some interesting properties including asymptotic behaviors 
of a specific pilot function h (x, y). We need the following auxiliary result.

Lemma 4. For every u ≡ u(z) ∈ Eq,r (Cn
z), the following inequality
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holds for z ∈ Cn, |α| = 0, 1, 2, . . . .

Proof. It suffices to rewrite (16) into the expression in the above-mentioned form. It is

easy, hence the details omitted. �

Suggested by the aforementioned explicit representation in the right-hand side of (22)-

(23) in Lemma 4, we need to consider a function in the specific form. So that, we define the

specific pilot function h(x, y) as

h(x, y) :=
(1 + x)1−q

(xq + y)1/q − x
(24)

for x ≥ 0 and y ≥ 0. Then we can readily obtain the following asymptotic behaviors.

Lemma 5. (Key Lemma) [7] The function h(x, y) converges to ε−1/q in R1 as y → 0, and

h(x, y) converges to ε−1 in R1 as y → +∞.

with the result that the quantity supy h(x, y) is finite.

5. Verification of the key lemma

In order to derive the results stated in Lemma 5, we have only to investigate the asymp-

totic behaviors of the derivative of the function h(x, y). First of all, adopting the notation

(∂/∂x)h(x, y) = hx(x, y) for brevity’s sake, we have

fx(x, y) (25)

=
(1− q)x{(1 + yx−q)1/q − 1} − (x+ 1){(1 + yxq)(1−q)/q − 1}

(x+ 1)q{(xq + y)1/q − x}2
. (26)

An application of the Taylor expansion in Differential and Integral Calculus yields to

hx(x, y) ∼ −xq−1 =
−1

x1−q
(as x → 0) (27)

and
hx(x, y) ∼ x−(1+q) (as x → +∞). (28)

Consequently, we can get
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Lemma 6. We have

lim
x→0

∂

∂x
h(x, y) = −∞ and lim

x→+∞

∂

∂x
h(x, y) = 0. (29)

Moreover, it follows immediately that hx(x, y) > 0 holds for all x. A little computation

with analysis related to the extreme points of function leads to a preferable result that the

derivative hx(x, y) may possess only one zero. Hence, the desired asymptotic behaviors yields

from the above result.

6. Concluding remarks

When we take the asymptotic behaviors in Lemma 5 into consideration, this only one

zero proves to be the minimum point of h(x, y). Hence the inequality

h(x, y) � M0(q, y) ≡ max(y−1/q, q/y) (30)

is naturally derived for all x > 0. To change variables here

x → ρ, y → ε (31)

for a practical reason, we are going to consider the quantity M0(q, ε) in what follows. To

proceed the discussion, we are required to split the interval of ε into two parts. We have

M0(q, ε) = ε−1/q since the inequality ε1/q ≥ ρ/ε holds as far as ε ∈ I1 = (0, q(q−1)/q). For α

sufficiently large, it follows immediately that

min
ε∈I1

erε{M0(q, ε)}α =

(
1

q

)α
q (1− 1

q )

exp

{
r

(
1

q

) 1
q−1

}
. (32)

On the other hand, as far as ε ∈ I2 = (q(q−1)/q, ∞), it turns out to be that

M0(q, ε) =
q

ε
. (33)

Therefore, we obtain

min
ε∈I2

erε{M0(q, ε)}α = eα
(qr
α

)α

. (34)

As a consequence, a little argument about the minimizing problem leads to the final conclusion

min
ε>0

erε{M(q, ε)}α =
1

α!
(qr)αeα. (35)

Substituting (35) for (22)-(23) in Lemma 4, we may combine the resulting expression with

(21) in Section 3 to derive the desired inequality (9), because we have employed Stirling’s

formula in the above calculation.
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M0(q, ε) =
q

ε
. (33)

Therefore, we obtain

min
ε∈I2

erε{M0(q, ε)}α = eα
(qr
α

)α

. (34)

As a consequence, a little argument about the minimizing problem leads to the final conclusion

min
ε>0

erε{M(q, ε)}α =
1

α!
(qr)αeα. (35)

Substituting (35) for (22)-(23) in Lemma 4, we may combine the resulting expression with

(21) in Section 3 to derive the desired inequality (9), because we have employed Stirling’s

formula in the above calculation.

5
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for a practical reason, we are going to consider the quantity M0(q, ε) in what follows. To proceed 
the discussion, we are required to split the interval of ε into two parts. We have M0(q, ε) = ε−1/q 
since the inequality ε1/q ≥ ρ/ε holds as far as ε ∈ I1 = (0, q (q−1)/q). For α sufficiently large, it fol-
lows immediately that

	

Lemma 6. We have

lim
x→0

∂

∂x
h(x, y) = −∞ and lim

x→+∞

∂

∂x
h(x, y) = 0. (29)

Moreover, it follows immediately that hx(x, y) > 0 holds for all x. A little computation

with analysis related to the extreme points of function leads to a preferable result that the

derivative hx(x, y) may possess only one zero. Hence, the desired asymptotic behaviors yields

from the above result.

6. Concluding remarks

When we take the asymptotic behaviors in Lemma 5 into consideration, this only one

zero proves to be the minimum point of h(x, y). Hence the inequality

h(x, y) � M0(q, y) ≡ max(y−1/q, q/y) (30)

is naturally derived for all x > 0. To change variables here

x → ρ, y → ε (31)

for a practical reason, we are going to consider the quantity M0(q, ε) in what follows. To

proceed the discussion, we are required to split the interval of ε into two parts. We have

M0(q, ε) = ε−1/q since the inequality ε1/q ≥ ρ/ε holds as far as ε ∈ I1 = (0, q(q−1)/q). For α

sufficiently large, it follows immediately that

min
ε∈I1

erε{M0(q, ε)}α =

(
1

q

)α
q (1− 1

q )

exp

{
r

(
1

q

) 1
q−1

}
. (32)

On the other hand, as far as ε ∈ I2 = (q(q−1)/q, ∞), it turns out to be that

M0(q, ε) =
q

ε
. (33)

Therefore, we obtain

min
ε∈I2

erε{M0(q, ε)}α = eα
(qr
α

)α

. (34)

As a consequence, a little argument about the minimizing problem leads to the final conclusion

min
ε>0

erε{M(q, ε)}α =
1

α!
(qr)αeα. (35)

Substituting (35) for (22)-(23) in Lemma 4, we may combine the resulting expression with

(21) in Section 3 to derive the desired inequality (9), because we have employed Stirling’s

formula in the above calculation.
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On the other hand, as far as ε ∈ I2= (q(q−1)/q, ∞), it turns out to be that

	

Lemma 6. We have

lim
x→0

∂

∂x
h(x, y) = −∞ and lim

x→+∞

∂

∂x
h(x, y) = 0. (29)

Moreover, it follows immediately that hx(x, y) > 0 holds for all x. A little computation

with analysis related to the extreme points of function leads to a preferable result that the

derivative hx(x, y) may possess only one zero. Hence, the desired asymptotic behaviors yields

from the above result.

6. Concluding remarks

When we take the asymptotic behaviors in Lemma 5 into consideration, this only one

zero proves to be the minimum point of h(x, y). Hence the inequality

h(x, y) � M0(q, y) ≡ max(y−1/q, q/y) (30)

is naturally derived for all x > 0. To change variables here

x → ρ, y → ε (31)

for a practical reason, we are going to consider the quantity M0(q, ε) in what follows. To

proceed the discussion, we are required to split the interval of ε into two parts. We have

M0(q, ε) = ε−1/q since the inequality ε1/q ≥ ρ/ε holds as far as ε ∈ I1 = (0, q(q−1)/q). For α

sufficiently large, it follows immediately that

min
ε∈I1

erε{M0(q, ε)}α =

(
1

q

)α
q (1− 1

q )

exp

{
r

(
1

q

) 1
q−1

}
. (32)

On the other hand, as far as ε ∈ I2 = (q(q−1)/q, ∞), it turns out to be that

M0(q, ε) =
q

ε
. (33)

Therefore, we obtain

min
ε∈I2

erε{M0(q, ε)}α = eα
(qr
α

)α

. (34)

As a consequence, a little argument about the minimizing problem leads to the final conclusion

min
ε>0

erε{M(q, ε)}α =
1

α!
(qr)αeα. (35)

Substituting (35) for (22)-(23) in Lemma 4, we may combine the resulting expression with

(21) in Section 3 to derive the desired inequality (9), because we have employed Stirling’s

formula in the above calculation.
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Therefore, we obtain

	

Lemma 6. We have

lim
x→0

∂

∂x
h(x, y) = −∞ and lim

x→+∞

∂

∂x
h(x, y) = 0. (29)

Moreover, it follows immediately that hx(x, y) > 0 holds for all x. A little computation

with analysis related to the extreme points of function leads to a preferable result that the

derivative hx(x, y) may possess only one zero. Hence, the desired asymptotic behaviors yields

from the above result.

6. Concluding remarks

When we take the asymptotic behaviors in Lemma 5 into consideration, this only one

zero proves to be the minimum point of h(x, y). Hence the inequality

h(x, y) � M0(q, y) ≡ max(y−1/q, q/y) (30)

is naturally derived for all x > 0. To change variables here

x → ρ, y → ε (31)

for a practical reason, we are going to consider the quantity M0(q, ε) in what follows. To

proceed the discussion, we are required to split the interval of ε into two parts. We have

M0(q, ε) = ε−1/q since the inequality ε1/q ≥ ρ/ε holds as far as ε ∈ I1 = (0, q(q−1)/q). For α

sufficiently large, it follows immediately that

min
ε∈I1

erε{M0(q, ε)}α =

(
1

q

)α
q (1− 1

q )

exp

{
r

(
1

q

) 1
q−1

}
. (32)

On the other hand, as far as ε ∈ I2 = (q(q−1)/q, ∞), it turns out to be that

M0(q, ε) =
q

ε
. (33)

Therefore, we obtain

min
ε∈I2

erε{M0(q, ε)}α = eα
(qr
α

)α

. (34)

As a consequence, a little argument about the minimizing problem leads to the final conclusion

min
ε>0

erε{M(q, ε)}α =
1

α!
(qr)αeα. (35)

Substituting (35) for (22)-(23) in Lemma 4, we may combine the resulting expression with

(21) in Section 3 to derive the desired inequality (9), because we have employed Stirling’s

formula in the above calculation.

5

� (34)

As a consequence, a little argument about the minimizing problem leads to the final conclusion

	

Lemma 6. We have

lim
x→0

∂

∂x
h(x, y) = −∞ and lim

x→+∞

∂

∂x
h(x, y) = 0. (29)

Moreover, it follows immediately that hx(x, y) > 0 holds for all x. A little computation

with analysis related to the extreme points of function leads to a preferable result that the

derivative hx(x, y) may possess only one zero. Hence, the desired asymptotic behaviors yields

from the above result.

6. Concluding remarks

When we take the asymptotic behaviors in Lemma 5 into consideration, this only one

zero proves to be the minimum point of h(x, y). Hence the inequality

h(x, y) � M0(q, y) ≡ max(y−1/q, q/y) (30)

is naturally derived for all x > 0. To change variables here

x → ρ, y → ε (31)

for a practical reason, we are going to consider the quantity M0(q, ε) in what follows. To

proceed the discussion, we are required to split the interval of ε into two parts. We have

M0(q, ε) = ε−1/q since the inequality ε1/q ≥ ρ/ε holds as far as ε ∈ I1 = (0, q(q−1)/q). For α

sufficiently large, it follows immediately that

min
ε∈I1

erε{M0(q, ε)}α =

(
1

q

)α
q (1− 1

q )

exp

{
r

(
1

q

) 1
q−1

}
. (32)

On the other hand, as far as ε ∈ I2 = (q(q−1)/q, ∞), it turns out to be that

M0(q, ε) =
q

ε
. (33)

Therefore, we obtain

min
ε∈I2

erε{M0(q, ε)}α = eα
(qr
α

)α

. (34)

As a consequence, a little argument about the minimizing problem leads to the final conclusion

min
ε>0

erε{M(q, ε)}α =
1

α!
(qr)αeα. (35)

Substituting (35) for (22)-(23) in Lemma 4, we may combine the resulting expression with

(21) in Section 3 to derive the desired inequality (9), because we have employed Stirling’s

formula in the above calculation.

5

� (35)

Substituting (35) for (22)-(23) in Lemma 4, we may combine the resulting expression with (21) in 
Section 3 to derive the desired inequality (9), because we have employed Stirling’s formula in the 
above calculation.
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