
Doctoral Dissertation

Secure Multiple Group Data

Deduplication in Cloud Data Storage

ラウ ー おける多重 ープ

ータの安全 重複除外 ついて

Ei Mon Cho

Graduate School of Science and Engineering,

Saitama University

Supervisor: Professor Takaomi Shigehara

March 2018

Doctoral Dissertation

Secure Multiple Group Data

Deduplication in Cloud Data Storage

Ei Mon Cho

Graduate School of Science and Engineering,

Saitama University

Supervisor: Professor Takaomi Shigehara

March 2018

Abstract

With the tremendous growth of available digital data, the use of Cloud Service

Providers are gaining much popularity, since these types of services promise to pro-

vide convenient and efficient storage services to end-users by taking advantage of

a new set of benefits and savings offered by cloud technologies in terms of compu-

tational, storage, bandwidth, and transmission costs. In order to achieve savings

in storage, cloud storage providers often employ data deduplication techniques to

eliminate duplicated data. However, benefits gained through these techniques have

to balanced against users’ privacy concerns, as these techniques typically require

full access to data.

In this thesis, we propose solutions for two secure multiple group setting data

deduplication in cloud environments. Firstly, we propose a new framework DDUP-

MUG (deduplication for the multiplegroup signature scheme) that allows one or

more groups to access a file such that the cloud storage server can avoid duplicates

according to the ownership of the file. The main goal of the primitive red is allow-

ing individual management to multiple groups. We propose the group managers

mainly manage the new entities and produce revocation lists for clients and the

server respectively. We use Message-Locked Encryption (MLE) as an ingredient for

deduplication and we provide new three protocols, namely UPL-Dup (for upload-

ing a new message), EDT-Dup (for editing the existing message) and DEL-Dup

(for eliminating the existing message) in the DDUP-MUG framework.

Furthermore, we propose a new primitive group signcryption for deduplica-

tion called verifiable hash convergent group signcryption (VHCGS) by adding the

properties of group signcryption and the verification facilities for the storage server

(third party). An interesting technique called signcryption has been proposed, in

which both the properties of signature (ownership) and encryption are simultane-

ously implemented, with better performance than the traditional signature-then-

encryption approach. According to the deduplication, we propose a new method

for a group of users that can eliminate redundant encrypted data owned by differ-

ent users.

Acknowledgments

First and foremost, praises and thanks to the God, the Almighty, for His showers

of blessings throughout my research work to complete the research successfully.

Special thanks are due to my thesis supervisors Professor Dr.Takeshi Koshiba

and Professor Dr.Takaomi Shigehara for their invaluable support throughout the

hard moments of graduate school.

First I would like to express my deepest gratitude to my first supervisor

Dr.Takeshi Koshiba. Thanks for his professional guidance during my PhD study.

He inspired me much on the research direction, and gave me valuable ideas and

suggestions on both research and future career. Without his great help, my re-

search work would not proceed smoothly.

Special thank also goes to Professor Dr.Takaomi Shigehara for giving me an

opportunity to become his student for my remaining year of my PhD student life.

I am also grateful to my dissertation committees, Dr. Yutaka Ohsawa,

Dr. Atsushi Uchida and Dr. Noriaki Yoshiura, for their support, valuable feed-

back, and insightful ideas to this research.

My study would not have been accomplished without funds supported of Nikkei

Scholarship Foundation and Hirose International Scholarship Foundation. Spe-

cial thanks to Hirose scholarship committees that encourage me not only by finan-

cial but also by warmly kindly supported for my study since April 2015.

My heartfelt thank goes out to my family for their prayers, selfless love and

great support to my study. Their love and care help me overcome difficulties and

obstacles. Finally, my thanks go to all the people who have supported me to

complete the research work directly or indirectly.

iii

Contents

Abstract i

Acknowledgments iii

List of figures v

List of tables vi

Publications vii

Abbreviations x

Notations xii

1 Introduction 1

1.1 Related Works . 2

1.2 Motivating applications . 7

1.3 Problem Formulation . 9

1.4 Main Contributions . 11

1.5 Structure of this Thesis . 13

iv

2 Cryptographic Mechanism 14

2.1 Public Key Encryption . 14

2.2 Hash Function . 15

2.3 Digital Signature . 16

2.4 Group Signature . 17

2.5 Signcryption . 18

2.6 Computational Primitives . 19

2.6.1 Integer Factorization . 19

2.6.2 Discrete-Logarithm . 20

2.7 Security Notions . 22

2.7.1 Steps to Achieving Provable Security 22

2.7.2 Confidentiality Notion . 22

2.7.3 Unforgeability Notion . 26

2.7.4 Random Oracle Model . 28

3 Cloud Computing 30

3.1 Cryptographic Mechanisms of the Cloud 32

3.1.1 Searchable Encryption . 33

3.1.2 Homomorphic Encryption 33

3.1.3 Computing Aggregates over Encrypted Data 34

3.2 Functional Encryption . 34

3.2.1 Order Preserving Encryption 35

3.2.2 Identity-based encryption 35

v

3.2.3 Attributed-based Encryption 36

3.2.4 Predicate Encryption . 36

3.3 Verifiable Computing . 37

3.3.1 Verifiable Outsourced Computation 37

3.3.2 Verifiable Storage . 37

3.4 Other Tools . 38

3.4.1 Format Preserving Encryption 38

3.4.2 Proxy Re-encryption . 39

3.4.3 Secure Deduplication . 39

4 Cloud Data Deduplication 41

4.1 Cloud Storage and Issues . 41

4.2 Deduplication . 42

4.2.1 Client-Side Deduplication 43

4.2.2 Server-Side Deduplication 43

4.2.3 Level of Data Deduplication 43

4.3 Data Deduplication Techinical Design Issues 44

4.3.1 Types of Data Deduplication 45

4.3.2 Client vs Server Side Deduplication 46

4.3.3 Single User vs Cross User Deduplication 46

4.4 Background . 47

4.4.1 Convergent or Message-locked Encryption 47

4.4.2 Proofs of Ownership . 50

vi

5 Multiple Group Signature Setting 52

5.1 Background . 52

5.1.1 Group Signature . 53

5.1.2 Group Signature from Unlikable Randomizable Signature . . 55

5.2 Management Policy of Proposed Scheme 55

5.3 Proposed Scheme Architecture . 56

5.3.1 System Setup Protocol . 58

5.3.2 Upload Protocol . 59

5.3.3 Edit Protocol . 60

5.3.4 Delete Protocol . 62

5.3.5 Restore Protocol . 63

5.4 Security Analysis . 63

5.5 Chapter Summary . 69

6 Multiple Group Signcryption 71

6.1 Background . 72

6.1.1 Signcryption . 72

6.1.2 Original Signcryption Scheme 72

6.1.3 Public Verifiable Signcryption Scheme 73

6.1.4 Group Signcryption Scheme 74

6.2 Proposed Scheme Architecture . 75

6.2.1 KeyGen . 75

6.2.2 Join . 76

vii

6.2.3 Signcryption . 76

6.2.4 Partial Unsigncryption . 77

6.2.5 Unsigncryption . 77

6.3 Application in Cloud Computing 78

6.3.1 System Setup Protocol . 79

6.3.2 Upload Protocol . 80

6.3.3 Download Protocol . 81

6.4 Application in Mobile Data Transmission 81

6.4.1 System Setup . 82

6.4.2 Signcryption . 83

6.4.3 Partial-Unsigncryption . 83

6.4.4 Unsigncryption . 83

6.5 Security Analysis . 84

6.6 Chapter Summary . 88

7 Related Research and Future Improvements 90

7.1 Proxy Re-encryption . 90

7.1.1 Motivation of Proxy Re-encryption 93

7.1.2 Syntax of our PRE scheme 94

7.2 Future Improvements . 96

8 Conclusion 97

8.1 Discussion . 97

References 100

viii

List of Figures

1.1 Deduplication of the Cloud . 2

1.2 Application of Amazon . 7

1.3 Application of Apache SVN . 8

2.1 Public Key Encryption . 15

2.2 Digital Signature . 16

2.3 Group Signature . 18

2.4 Generic Signcryption . 19

2.5 Chosen Plaintext Attack . 23

2.6 Chosen Ciphertext Attack . 26

4.1 Deduplication . 43

4.2 Client Side Deduplication . 44

4.3 Server Side Deduplication . 45

4.4 Syntax of Traditional Encryption 48

4.5 Syntax of Message-Locked Encryption 49

5.1 Proposed DDUP-MUG Scheme . 57

5.2 Illustration of Upload Protocol . 59

ix

5.3 Illustration of Edit Protocol . 60

5.4 Illustration of Delete Protocol . 62

6.1 Cloud Deuplication by using VHCGS 79

6.2 VHCGS Setup Protocol for Cloud Deduplication 80

6.3 VHCGS Upoad Protocol . 80

6.4 VHCGS Download Protocol . 80

6.5 Multiple Group SMS transmission by using VHCGS 82

7.1 Proxy Re-encryption Scheme . 94

x

List of Tables

1.1 Comparison between deduplication techniques carried over encrypted

data . 6

5.1 Data Structure of a file at Server 56

8.1 Comparison of Our Proposed Schemes 98

xi

Publications

Peer-Reviewed Papers

• Ei Mon Cho, Takeshi Koshiba, “Cloud Deduplication based on Multi-

ple Group Signature Scheme”, (The 15th International Conference on

Computer Applications/ ICCA 2017, Yangon, Myanmar, February 16,

2017), pages 34–41.

• Lwin San, Ei Mon Cho, Takeshi Koshiba,”Non- Transferable Proxy Re-

encryption for Group Membership/ Non-Group Membership (full ver-

sion)”, (The 15th International Conference on Computer Applications/

ICCA 2017, Yangon, Myanmar, February 16, 2017), page 321–327.

• Ei Mon Cho, Takeshi Koshiba, “Secure Deduplication in a Multiple

Group Signature Setting” (The 31st IEEE International Conference on

Advanced Information Networking and Applications 2017/ AINA2017,

Taipei, Taiwan, March 27), page 811–818.

• Ei Mon Cho, Takeshi Koshiba, “Big Data Cloud Deduplication based

on Verifiable Hash Convergent Group Signcryption”(IEEE International

Workshop on Big Data Security and Services/ BigDataService2017, San

Francisco, USA, April 2), page 265–270.

• Ei Mon Cho, Takeshi Koshiba, “Secure SMS Transmission based on

Verifiable Hash Convergent Group Signcryption (Poster) (18th IEEE

International Conference on Mobile Data Management/ MDM 2017,

Daejeon, South Korea, May 30), page 332– 335.

• Ei Mon Cho, Lwin San, Takeshi Koshiba, “ Secure Non-Transferable

Proxy Re-Encryption for Group Membership and Non-Membership (The

8th International Workshop on Trustworthy Computing and Security/

TwCSec-2017, Toronto, Canada), Lecture Notes on Data Engineering

and Communications Technologies 7, Springer 2018), page 876–887.

xii

• Ei Mon Cho, Lwin San, Takeshi Koshiba, “Non-Transferable Proxy Re-

Encryption for Multiple Groups”, to appear on The International Jour-

nal of Space-Based and Situated Computing.

xiii

Non Peer-Reviewed Papers

• Ei Mon Cho, Takeshi Koshiba, “Secure Deduplication for Multiple Group

setting”, (2016 Symposium on Cryptography and Information Security,

Kumamoto/ SCIS2016, Japan, January 27, 2016)

• Ei Mon Cho, Takeshi Koshiba, “Deduplication based on Verifiable Hash

Convergent Group Signcryption”, (2017 Symposium on Cryptography

and Information Security/ SCIS2017, Okinawa, Japan, January 27,2017)

• Lwin San, Ei Mon Cho, Takeshi Koshiba, “Non- Transferable Proxy

Re-encryption for Group Membership/ Non-Group Membership”, (2017

Symposium on Cryptography and Information Security/ SCIS2017, Ok-

inawa, Japan, January 27, 2017)

xiv

Abbreviations

ABE Attribute-based Encryption

CDA Chosen Distribution Attack

CDH Computational Diffie-Hellman

CSP Cloud Service Provider

DDH Decisional Diffie-Hellman

DEDUP-MUG Deduplication for Multiple Group Setting

DL Discrete-Logarithm

DS Digital Signature

FPE Format Preserving Encryption

GM Group Manager

GS Group Signature

GSM Global System for Mobile Communications

HCE Hash Convergent Encryption

HE Homomorphic Encryption

IBE Identity-based encryption

IF Integer Factorization

IND-CCA Indistinguishability of Encryptions under Chosen

Ciphertext Attack

IND-CCA2 Indistinguishability of Encryptions under Adaptive

Chosen Ciphertext Attack

IND-CPA Indistinguishability of Encryptions under Chosen

Plaintext Attack

iMLE Interactive Message-Locked Encryption

MLE Message-Locked Encryption

OAEP Optimal Asymmetric Encryption Padding

PDP Proof of Data Possession

xv

PE Predicate Encryption

PoR Proof of Retrievability

PoW Proof of Ownership

PRE Proxy Re-encryption

RSA Rivest, Shamir, and Adelman

SE Searchable Encryption

SMS Short Message Service

URS Unlinkable Randomizable Group Signature

VC Verifiable Computation

VHCGS Verifiable Hash Convergent Group Signcrytion

xvi

Notations

M∗ set of words m1,m2, ...ml, l ≥ 0, over M

{0, 1}∗ set od bit strings of arbitrary length

1k / 1λ constant bit string 1 of length k/λ

a ⊕ b bitwise XOR of bit strings a and b

a ‖ b concatenation of strings a and b

N set of natural numbers: {1, 2, ...}

Z set of integers

R set of real numbers

ln(x) natural lograrithm of a real x > 0

a | b a ∈ Z divides b ∈ Z

Zn residue class ring modulo n

Z
∗
n units in Zn

a mod n remainder of a modulo n

a ≡ b mod n a congruent b modulo n

gcd(a, b) greatest common divisor of integers

Primesk set of primes of binary length k

P or P(X) positive polynomial

prob(ε) probability of an event ε

prob(x) probability of an element x ∈ X

prob(y | x) conditional probability of y aassuming x

x ←$ X x randomly selected from X

x
u
← X x uniformly selected from X

x ← X, y ← Yx first x, then y randomly selected

prob (... : x ← X) probability of ... for randomly chosen x

H(·) Hash Function

H(X) uncertainty (or entropy) of X

xvii

Chapter 1

Introduction

With various advantages of cloud storage such as cost savings, accessibility, scal-

ability, etc., users around the world tend to shift their invaluable data to cloud

storage. As the data operations charges are increasing, it is an issue for cloud

storage providers to provide efficient storage. Cloud storage providers use various

techniques to improve storage efficiency, and one of the dominant technique occu-

pied by them is deduplication, which claims to be saving 90% to 95% of storage

[56]. Data Deduplication technique is developing as a simple storage optimization

technique in distributed storage then widely adopted in primary storage as well

as larger storage areas like cloud storage area as shown in Figure.1.1. Now, data

deduplication is widely used by various cloud storage providers like Dropbox [57],

Amazon S3 [8], Google Drive [71], etc.

Data once conveyed to the cloud servers, it is beyond the security bounds of

the data owner. Therefore, most of data owners prefer to outsource theirs in an en-

crypted format. Data encryption by data owners eliminates cloud service providers

chance of deduplicating it because encryption and deduplication techniques have

clashing strategies, i.e., data encryption with a key converts data into an unidenti-

fiable format called ciphertext thus encrypting, even the same data, with different

keys may output in different ciphertexts, happening deduplication less achievable.

However, performing encryption is essential to make data secure, on the other

hand, performing deduplication is essential for achieving optimized outsourced

storage. Therefore, deduplication and encryption need to work in hand to hand

to ensure secure and optimized storage [5]. Various approached and methods used

for secure deduplication over encrypted data are studied in this thesis.

1

Figure 1.1: Deduplication of the Cloud

Deduplication is basically a compression technique for removing redundant

data. Chapter 4 explains the deduplication process before storing data onto mem-

ory. Deduplication is widely is used various applications like backup, metadata

management, primary storage, global system for mobile coomunication (GSM)

etc. to control the system in order to achieve the desired properties.

In this chapter, we address the main problems considered in this thesis by some

motivating applications and our main contributions, before giving a mathematical

formulation.

1.1 Related Works

This section overviews some research works in the literature on secure data dedu-

plication that are relevant to the scope of this thesis [5].

Bellare et al. [20] propose an encryption scheme where key for encryption and

decryption are derived from the message. MLE key generation algorithm matches

the message M to a key K, and more, the encryption algorithm create ciphertext

C of the message using key K. Ciphertext C is then mapped to a tag T ; and the

tag is for the duplication checking by the server. Keys used in MLE scheme are of

fixed and shorter length, therefore, result will give in much storage overhead.

Chen et al. [45] set forward a method to accomplish dual level source-based

2

deduplication of large encrypted files with block key management and “Proof of

Ownership” [87, 140]. Chen claims that MLE proposes for target based file-level

deduplication and extending it to dual-level deduplication needs more metadata

management. In BL-MLE scheme for the given input file, a master key and the

block keys for each message block in the file are generated. With tag generation

algorithms, both file tags and block tags are generated and these tags are used val-

idating the equality of blocks and files ensuring the security of the file. Ownership

of files or blocks proved and verified by using “PowPrf” and “PowVrf” algorithms

in this approach.

In [63], encryption and decryption data are performed by the client and the key

for encryption and decryption are provided by a key server located at cloud storage

provider. Homomorphic encryption is used as the key management scheme in this

approach. Firsly, data encryption key is generated by the initial file uploader

and another distributed consequent verified uploader by the key server. Data

encryption key used for encryption are encrypted with the hash of file content.

Both encrypted data and encryption keys are sent to the storage server. HEDup

supports the privacy while enabling deduplication. Key server may become a

bottleneck discussed in this approach when the quantity of clients increase for the

large-scale deployment, and a decentralized deployment of key server is supposed

as a solution.

In [20] Bellare et al. guarantee that Message-Locked Encryption [46] is subject

to brute force attack and proposes another architecture called DupLess for brute

force attack. The client gets message-based keys, for encryption, from key server

via an Oblivious Pseudorandom function (OPRF) protocol. With OPRF, the

public key for encryption is shared among the clients where the secret key resides

with key server. With this method attackers’ cost of attack increased and a chance

is eliminated.

Puzio et al. in [112] propose ClouDedup, a secure storage service which pro-

vides block-level deduplication and data confidentiality at the same time using

convergent key encryption [56] added with block-level key management. Design

of ClouDedup intends to prevent well-known attacks against convergent encryp-

tion by embedding a user authentication methods and access control mechanisms.

Therefore, a server encryption is used on top of convergent encryption done by the

user. For each data segment, a signature is linked to it, and need to be verified for

retrieving it. To deal with block-level key management a metadata manager(MM)

has been added to architecture. MM uses file table, pointer table and signature

3

table. File table is to store meta data about file; pointer table is to manage stor-

age and a signature table are to store meta data about signature for meta data

management.

Bugiel et al. in [38] propose an approach that mainly involves two components:

a trusted cloud and a commodity cloud. The trusted cloud is responsible for data

encryption and the commodity cloud performs the verifying operations. Security

operations are performed by trusted cloud and put the queries to outsourced data

are processed by commodity cloud. This approach guarantees the various security

issues like leakage of the data, computation manipulations, etc.

In [88] Li et al. propose a hybrid cloud to ensure the security of the dedupli-

cation which involves private cloud for providing tokens to access encrypted data

in the cloud. Here, data encryption technique is employed by convergent encryp-

tion [56] and PoW [75, 140] is used to ensure ownership eligibility to deduplicate

the file. In [128] Storer et al. propose to provide a single server and distributed

storage systems with data security and space savings. With this method, encryp-

tion key is done out of data chunk. Even a full compromise of the system cannot

reveal which data chunk is owned which user when the decryption information is

encrypted with client’s private keys. There are two models for secure deduplica-

tion in this method which are the authenticated model and the anonymous model.

The authenticated model is similar convergent key structure [56]. The anonymous

model hides identities of both authors and readers.

Li et al., in [88] aim at solving the problem of exposing and deduplicating for

the sensitive data. With this approach, data chunks are distributed among multi-

ple cloud servers. Moreover, to ensure tag consistency and data confidentiality, a

deterministic secret sharing scheme is proposed in this distributed storage system.

Opposite side of the conventional deduplication-encryption method, a secret shar-

ing scheme is used instead of the encryption method. Furthermore, a ramp secret

sharing scheme [33, 120] is used for the key management.

The main goal of [147], is to address the problem of huge key space overhead

and to against brute force attack. For this objective, User Aware Convergent

Encryption (UACE) and Multi-Level Key Management (MLK) are used. With

UACE, cross-user file-level and single user block-level deduplication is achieved in

this approach. File level keys and convergent encryption keys are generated by

using a server aided method whereas chunk level keys are operated via a user-

aided method. For reducing large key space, chunk keys are encrypted using

4

file-level keys, therefore, a number of sharing users are increased but the key space

is not increased. Furthermore, to eliminate the chance of single point of failure,

this method uses multiple key servers, equipped with share-level keys that are

generated out of file level keys and Shamir’s secret sharing scheme [124] is used to

communicate with these distributed servers.

In [127], data are differentiated based on popularity. A popular data denotes

which is shared among multiple user and assumed to less sensitive and actively

included in for deduplication with weaker security. On the other hand, unpopular

data provided with security with semantically secure encryption. In [138] Xu et al.

propose an approach that does with a weak leakage-resilient [75] than for cross-

user client-side deduplication and supporting the security from outside adversaries

and “honest-but-curious” cloud storage service providers.

Li et al. [87] address the issue of efficiently and reliably managing a large

number of convergent keys for secure deduplication. With this De-key approach,

both file level and block level deduplication is supported. Li et al. propose a

base line approach where user maintains a master key to encrypt the convergent

keys and develops De-key approach. With baseline approach, the user need to

protect and manage a large set of master keys, which a tedious task. In De-

key approach, user does not need manage any keys, however, needs to keep the

distribute convergent keys among multiple servers. Ramp secret sharing scheme

is used by De-key approach for securely sharing convergent keys.

Table.1.1 does comparison between various methods, to make deduplication

work with encrypted data [6].

5

Approach Encryption Scheme
Deduplication

Strategy used

MLE [20] Message locked encryption File level

BL-MLE [46]
Block Level Message File level &

locked encryption Block level

DupLESS[27]

Enhanced Message level

File levelencryption to support security

against Brute force attack

ClouDedup[112]

Convergent encryption

File levelwith added access control

mechanisms

Reliable
Convergent encryption Block level

Deduplication[86]

Twin clouds [38] Convergent encryption File level

Hybrid clouds [87] Convergent encryption File level

Secure
Convergent encryption File level

Deduplication [128]

Popularity Symmetric encryption
File level

Deduplication[127] based on popularity

SecDep [147]
User aware convergent File level &

encryption chunk level

Table 1.1: Comparison between deduplication techniques carried over encrypted

data

6

1.2 Motivating applications

A few illustrative examples will be presented here to demonstrate the ubiquitous

multi-group setting in cloud computing applications, and to motivate the problems

considered in this thesis. The examples will highlight some of the shortcomings of

the state of the art controllers for multi-group systems, which will be addressed in

this thesis.

Example 1.1 (Multiple Group in Online Shopping Scenario) There are

many reasons why users would choose to have more than one account in the online

shopping. Users may have multiple accounts on the Amazon [8], ebay and so

on. For example, all sellers are expected to adhere to the policies when listing

products on Amazon.com. Buyers and sellers may communicate with one another

via the Buyer-Seller Messaging Service, which assigns unique Amazon-generated

email addresses to both parties. Duplicate product detail catalog is created by the

Amazon.

Figure 1.2: Application of Amazon

Operating and maintaining multiple seller central accounts is prohibited. If

7

you have a legitimate business need for a second account, seller can apply for an

exception to this policy as shown in Figure. 1.2.

Example 1.2 (Multiple Group in Subversion) For years, Apache Subver-

sion or SVN was the most popular version control system [129]. SVN is a central-

ized version control system. Basically, software developers use version control for

storing and tracking changes in different types of files, such as source code and

documentation. This enables multiple developers to work effectively on the same

codebase without messing up each others’ work. If somebody makes a mistake

or something unexpected happens, version control ensures that the latest working

version of the code can be restored. Version control systems can be roughly divided

into two categories: distributed version control systems (DVCS) and centralized

version control systems (CVC). SVN falls into the latter category. Centralized

version control system means that the version history is stored in a central server.

When a developer wants to make changes to certain files, they check out the files

from the central repository to their own computer. After the developer has made

changes, they commit the changes back to the central repository. The complete

revision history in the repository is not copied to the developer’s computer, as

it would be in a distributed version control system. Subversion deduplication is

enabled by default, although it can be toggled the setting in the repository’s file.

Figure 1.3: Application of Apache SVN

The most common problems that developers have towards SVN is its sub-

8

group controlling users. Branches allow to work on multiple versions of the code

simultaneously. In SVN, branches are created as directories inside the repository

and this directory structure is the reason why developers are less than the fond of

sub-version’s branching model Figure.1.3.

The issue becomes clear when a single user of a group interacts to the others

and share their data. Frequently, tasks can benefit from collaboration, which would

not only make productivity gains, but create a more engaging experience for the

entire group. Thus, it begs the question if combining these two or more groups

would inherit the advantages of both systems.

Supporting data sharing and simultaneous interaction among multiple inde-

pendent groups is challenging and presents a problem that needs a very general

solution. Such a scheme would need to support one individual and many individ-

uals; one group and many groups; or, a mix of both. Distinct group may wish

to collaborate among themselves, or subsets may branch off and choose to work

independently. Effectively, groups are interacting on the cloud asynchronously,

working on different, even loosely coupled,tasks. Designing a scheme that can

support such flexibility requires some research into how groups share securely in

same cloud storage.

This thesis explores the idea of supporting collaboration between mutiple in-

dividual groups in parallel on shared cloud storage. To this end, this work details

accounts of secure duplication at cloud using two user studies to gain a better

understanding of what group signature support and group signcryption. Based

on these detailed observations, this thesis aspires to establish fundamental design

specifications for cross group deduplication systems that will create a more en-

gaging client experience for cloud user. More specifically, to inform the design of

cloud environment for multiple groups, this thesis presents accounts about how

these groups interact with themselves and others securely.

1.3 Problem Formulation

Message-locked encryption [20] is a new relatively theoretical analysis as a new

cryptographic primitive to capture convergent encryption (CE). MLE describes

the models of all existing convergent encryption schemes, and it gives the first

security definitions of a convergent encryption with cryptographic treatment. It

9

basically identifies two attacks on the schemes: tag consistency (TC) and strong

tag consistency (STC). Tag consistency means that cannot compute the tag for

f ile1 and use that encrypt f ile2 (duplicate faking attack). And strong tag con-

sistency (STC) means that an attacker cannot create an empty file and when a

user tries to store a file that has the same tag with the empty file it keeps storing

the empty file. So, STC protects against erasure attacks. After modifying the

weaknesses of existing schemes, [20] produces a new one that is one pass (key gen-

eration, tag, encryption in one time) by randomizing the encryption. Each user

derives the same tag for the same user but they use different keys to encrypt. The

XOR of the randomize keys with the tag is appended to the ciphertext. This is

called randomized convergent encryption (RCE) scheme which is a divergent form

of MLE.

Furthermore, one security issue of original convergent encryption is, it is vul-

nerable to off-line brute force attack. If the adversary knows the entire message

space, it can sample each message, computes the hash, encrypts with the com-

puted hash (key) and compares the ciphertext of sampled message with the target

ciphertext. If both are the same, the adversary can deduce the sampled message

equals the message underlying the target ciphertext. This type of attack has been

recognized by Bellare et al., [27] and they formalized a semantic security definition

under unpredictability assumption (i.e., not allow the adversary to predict and

sample message). The following work DupLESS [27] prevents the off-line brute

force attack by introducing a third party entity for co-generating the encryption

key, i.e., the encryption key depends on both the message content and a system-

wide secret key, which is kept by the third party, in case, the outside adversary

(not accessing the third-party entity) cannot launch off-line brute force attack.

One possible weakness of convergent encryption or message-locked encryption

is vulnerable to statistical attack. Although the RCE scheme can generate random

ciphertext, the tag for message must be deterministic. The tag consistency defined

in Bellare et al. [20] requires, if two messages are the same, they must have identical

tag. The tags essentially reflect the probabilistic distribution of plain messages. If

the message space is with limited min-entropy, and the adversary has some pre-

knowledge about the distribution of the message space, it might successfully guess

some messages with significant probability.

Another existing issue of convergent encryption or message-locked encryption

is that the encryption key is fixed. In case the encryption key need be changed,

such as revoking access right. e.g. Alice grant access right to someone in her

10

group, the digital envelop containing encryption key has been sent to her, but she

wants to remove grant access right to one person, then she wants to revoke the

access right. If the scheme can modify revoking access right among the nominated

persons, revoking access right can be apply by group signature, but CE or MLE is

not applicable for this purpose. MLE is only on the theoretical side and describe

standard model solutions, and it make connections with deterministic encryption,

hash functions secure on correlated inputs.

1.4 Main Contributions

In this thesis, we aim to address to the multiple group setting of secure dedupli-

cation for cloud environment. Two main contributions of this thesis are twofold.

First contribution of this thesis is the DDUP-MUG (Deduplication for mul-

tiple group signature) protocols for secure deuplication with group signature and

message-locked encryption properties. By using unlinkable randomizable signature

functions, we prove the security of every group control where each group of mem-

ber has individual group manager connected into CSP as a verifer of deduplication

and ownership. DDUP-MUG is characterized by server side deduplication. The

above results have been published in the following proceedings:

• Ei Mon Cho, Takeshi Koshiba, “Cloud Deduplication based on Multiple

Group Signature Scheme”, (The 15th International Conference on Computer

Applications/ ICCA 2017, Yangon, Myanmar, February 16, 2017), pages 34-

41

• Ei Mon Cho, Takeshi Koshiba, “Secure Deduplication in a Multiple Group

Signature Setting” (The 31st IEEE International Conference on Advanced

Information Networking and Applications 2017/ AINA2017, Taipei, Taiwan,

March 27), page 811-818

• Ei Mon Cho, Takeshi Koshiba, “Secure Deduplication for Multiple Group

setting”, (2016 Symposium on Cryptography and Information Security, Ku-

mamoto/ SCIS2016, Japan, January 27, 2016).

We briefly describe DDUP-MUG in Chapter 5.

11

The second contribution is the VHCGS (Verifiable Hash Convergent Group

Signcryption) for deduplication systems. We proposed a new group signcryption

scheme for proxy verifiable with deduplicable properties. We analyze the security

of the proposed protocols through signcryption and hash convergent encryption,

and give necessary and sufficient criteria. The proposed scheme are proven to

verifiable signcryption in the multiple group setting. The above results have been

published in the following proceedings:

• Ei Mon Cho, Takeshi Koshiba, “Big Data Cloud Deduplication based on

Verifiable Hash Convergent Group Signcryption”(IEEE International Work-

shop on Big Data Security and Services/ BigDataService2017, San Francisco,

USA, April 2), page 265-270

• Ei Mon Cho, Takeshi Koshiba, “Secure SMS Transmission based on Verifi-

able Hash Convergent Group Signcryption (Poster) (18th IEEE International

Conference on Mobile Data Management/ MDM 2017, Daejeon, South Ko-

rea, May 30), page 332- 335

• Ei Mon Cho, Takeshi Koshiba, “Deduplication based on Verifiable Hash

Convergent Group Signcryption”, (2017 Symposium on Cryptography and

Information Security/ SCIS2017, Okinawa, Japan, January 27,2017).

We briefly describe VHCGS in Chapter 6.

Furthermore, we proposed a proxy re-rencryption scheme (PRE) which is rel-

atively related in cloud deduplication. With future improvement, our new PRE

scheme will support the cloud deuplication for multiple group setting. As result,

we published in the following proceedings:

• Ei Mon Cho, Lwin San, Takeshi Koshiba, “Non-Transferable Proxy Re-

Encryption for Multiple Groups”, to appear on The International Journal

of Space-Based and Situated Computing

• Ei Mon Cho, Lwin San, Takeshi Koshiba, “ Secure Non-Transferable Proxy

Re-Encryption for Group Membership and Non-Membership (The 8th Inter-

national Workshop on Trustworthy Computing and Security/ TwCSec-2017,

Toronto, Canada), page 876–887

12

• Lwin San, Ei Mon Cho, Takeshi Koshiba, “Non- Transferable Proxy Re-

encryption for Group Membership/ Non-Group Membership”, (2017 Sym-

posium on Cryptography and Information Security/ SCIS2017, Okinawa,

Japan, January 27, 2017)

• Lwin San, Ei Mon Cho, Takeshi Koshiba, ”Non- Transferable Proxy Re-

encryption for Group Membership/ Non-Group Membership (full version)”,

(The 15th International Conference on Computer Applications/ ICCA 2017,

Yangon, Myanmar, February 16, 2017), page 321–327.

We briefly describe PRE in Chapter 7.

1.5 Structure of this Thesis

The remaining chapters of this thesis are organized as follows. Chapter 2 presents

some background in public key encryption,hash function, digital signature, group

signature, signcryption, other computational primitives and security notions of

relevance for this thesis. Cryptographic mechanism for cloud computing are pre-

sented in Chapter 3. In Chapter 4, secure deduplication methods for cloud envi-

ronment are presented. In Chapter 5, deuduplication for multiple group setting

(DEDUP-MUG) is presented. In Chapter 6, a multiple group signcryption scheme

(VHCGS) which is useful for secure deduplication is presented. We presented a

proxy re-encryption (PRE) scheme which related research of the cloud deduplca-

tion in Chapter 7. The thesis is concluded in Chapter 8, which also contains a

discussion on possible future research directions.

13

Chapter 2

Cryptographic Mechanism

The basic idea of secure communication is public key cryptography which are using

the public keys. Every individual’s key is sperated into two sections: a public key

of encryption for everyone and a secrete key for decryption which is kept secrete by

the owner. In this chapter, we are ready to describe the very fundamental notions

of security. They will be useful throughout the book.

2.1 Public Key Encryption

Public key encryption, in which a message is encrypted with a recipient’s pub-

lic key. The message cannot be decrypted by anyone who does not possess the

matching private key, who is thus presumed to be the owner of that key and the

person associated with the public key. In public key encryption scheme, the com-

munication partners do not share a secrete key. Each user has a pair of keys: a

secrete key sk known only himself and a public key pk known by everyone. Figure

2.1 illustrates an outline of a public key encryption scheme.

A general public key encryption scheme can be described as follows.

• Key Generation: The receiver Bob creates his private and public key pair,

which we denote by skBob and pkBob respectively.

• Encryption: Using Bob’s public key pkBob, the sender Alice encrypts her

message M, which we call a “plaintext”, and obtains a ciphertext C.

14

Figure 2.1: Public Key Encryption

• Decryption: Upon receiving the ciphertext C from Alice, Bob decrypts it

using his private key skBob to recover the plaintext M.

2.2 Hash Function

A hash function [52] is a compression function H that take an arbitrary length

string and outputs a shorter string. Hash value are used to check the integrity of

public keys. Mathematically, a hash function is a function

h : {0, 1}∗ → {0, 1}n ,m→ h(m)

.

For cryptographic applications we must ensure that the mapping H does not

produce predictable collisions and that the precise mapping is hard to determine.

The most important security properties of a hash function are:

• Collision resistance: it should be computationally infeasible to find two dis-

tinct messages x and z such that H(x) = H(z); that is, to find two messages

that hash to the same value;

• Pre-image resistance: given the result y = H(x) of H applied to a randomly

15

chosen message x, it should be computationally infeasible to find a value

z such that H(z) = y; Second pre-image resistance: given a message x it

should be computationally infeasible to find another message z such that

H(x) = H(z).

Hash functions find numerous uses in cryptography, from dedicated applica-

tions such as password protection through to acting as components in more com-

plex cryptographic tools such as digital signature schemes.

2.3 Digital Signature

Another fundamental public key cryptographic scheme is a digital signature which

is firstly proposed by [35]. The ability to construct a digital signature scheme is

a great advantage of public key cryptography over symmetric key cryptography.

A valid digital signature gives a receiver to trust which the message was created

by a known sender, that the sender cannot deny having sent the message (non-

repudiation), and that the message can not be changed (integrity). Digital signa-

ture is a standard component of most cryptographic protocol, and is commonly

used for software distribution, financial transactions and contract management

software. Figure 2.2 illustrates an outline of a digital signature scheme.

Figure 2.2: Digital Signature

A general digital signature scheme can be described as follows.

16

• Key Generation: The signer Alice creates her private and public key pair,

which we denote by skAlice and pkAlice respectively.

• Signature Generation: Using her private key skAlice, Alice creates a signature

σ on her message M.

• Signature Verification: Having obtained the signature σ and the message M

from Alice, the verifier Bob checks whether σ is a genuine signature on M

using Alice’s public key, pkAlice. If it is, he returns “Accept”. Otherwise, he

returns “Reject”.

2.4 Group Signature

A group signature scheme allows a member of a group to sign message anonymously

on behalf of the group. In the case of later dispute a designated group manager

can revoke the anonymity and identify the originator of a signature. Chaum and

van Heyst [43] proposed a new type of signature scheme for a group of entities,

called group signatures. Such allows a group member to sign a message to sign a

message on the group’s behalf such that everybody can verify the signature but

no one can find out which group member provided it. However, there is a trusted

third party, called the group manager, who can reveal the identity of the originator

of a signature in the case of later dispute. This act is referred to as “opening” a

signature or also as revocation of a signer’ s anonymity. The group manager can

either be a single entity or a number of coalitions of several entities (e.g., group

members). This concept can be generalized to allow designated subsets of all group

members to jointly sign a message on behalf of the group.

Group signatures could for instance be used by a company for authenticating

price list, press release or digital contracts. The customers need to know only a

single company public key to verify signatures. The company can hide any internal

organizational structures and responsibilities, but can still find out which employee

(i.e., group member) has signed a particular documents.

17

Figure 2.3: Group Signature

2.5 Signcryption

Signcryption is a new paradigm in public key cryptography that simultaneously

fulfills both the functions of digital signature and public key encryption in a log-

ically single step, and with a cost significantly lower than that required by the

traditional “signature and encryption” approach.

In order to send a confidential letter in a way that it cannot be forged, it

has been a common practice for the sender of the letter to sign it, put it in an

envelope and then seal it before handing it over to be delivered. Discovering Public

key cryptography has made communication between people who have never met

before over insecure network. Before sending a message, the sender has to do the

following:

1. Sign it using a Digital Signature (DS) scheme

2. Encrypt the message and the signature using a private key encryption algo-

rithm under randomly chosen message encryption key.

3. Encrypt the random message encryption key using the receiver’s public key.

4. Send the message.

18

Signcryption can be defined as a combination of two schemes; one of digital

signatures and the other of public key encryption.

Figure 2.4: Generic Signcryption

2.6 Computational Primitives

The security of a public key cryptographic scheme is depended on the hardness

of a certain computational issue. Although several computational problems have

been proposed, we overview the “Integer Factorization” and “Discrete-Logarithm”

problems, which are the most widely-used computational problems in the typical

cryptographic schemes.

2.6.1 Integer Factorization

Integer Factorization problem, which is commonly call the “IF problem”, can be

described as follows:

IF: Given N = pq where p and q are large primes, find p and q.

A ciphertext C modulo integer N = pq, which is identified to the above

“IF problem”. Here is that equivalence between computing eth root of an element

modulo integer N and solving the “IF problem” has not been demonstrated until

19

now. If the “IF problem” can be easily (namely, “in polynomial time”) solved, then

computing d = e−1 mod φ(N) can be computed also easily since φ(N) = (p−1)(q−1)

can be efficiently done if p and q are known. Besides, no answer has been given yet

for the question whether one have to be factor N to compute d = e−1 mod φ(N).

For this point, the computational problem of the RSA encryption [118] and sig-

nature schemes is categorically called the RSA problem. Certainly, factoring a

large integer is one of the fascinating subjects in computational number theory.

The quadratic sieve , elliptic curve , and number field sieve methods developed by

computational number theorists are now used as factoring algorithms in practice.

Among them, the number field sieve method, is specially used by many cryp-

tographers due to its asymptotic running time faster than those of the quadratic

sieve and elliptic curve methods, and its effectiveness to parallelization as shown

in factoring a 512-bit RSA modulus [42].

2.6.2 Discrete-Logarithm

Addition widely-used computational problem is the Discrete-Logarithm problem,

“DL problem”, which can be informally defined as follows:

DL: Given a finite cyclic group G =
{

g
0, g1, g2, ..., gm−1

}

where m = |G | is the

order of G, and a random element r ∈ G, find the unique integer i ∈ Zm such that

r = g
i.

The DL problem is figured by Diffie and Hellman [35] like the following in-

triguing key exchange protocol: Alice and Bob share the common cyclic group G,

where |G | = m, and its generator g. Alice then chooses a uniformly at random

from Zm, computes ga, and sends this to Bob. Likewise, Bob selects b uniformly at

random from Zm, computes gb, and sends this to Alice. Since Alice and Bob have

their private key a and b respectively, they can calculate the same (secret) key g
ab.

However, the attacker for the above key exchange protocol has two elements in the

group G, that is, ga and g
b. Since the attacker possess the one more additional in-

formation g
b, the security of the Diffie-Hellman key exchange protocol is not same

with the hardness of the DL problem. For this reason similar to the case of the

RSA problem, the computational problem used in the Diffie-Hellman key exchange

protocol is specifically called the “Computational Diffie-Hellman (CDH) problem”,

which can be shown as follows:

20

CDH: Given a finite cyclic group G =
{

g
0, g1, g2, ..., gm−1

}

where m = |G | is the

order of G, and g
a ∈ G and g

b ∈ G for random a, b ∈ Zm, computes gab ∈ G.

After the appearing of the CDH problem, researchers realized that the CDH

problem by itself is not enough for many cryptographic schemes to be proven secure

in that the attacker may have a chance to get some valuable information about

the key g
ab even though its entire part cannot be revealed. This is the motivation

for defining the following “Decisional Diffie-Hellman (DDH) problem”:

DDH: Given a finite cyclic group G =
{

g
0, g1, g2, ..., gm−1

}

where m = |G | is the

order of G, and g
a ∈ G, gb ∈ G and g

c ∈ G for random a, b, c ∈ Zm, decide

whether c = ab ∈ Zm.

If one can solve the DL problem easily, he can easily solve the CDH problem

too. Similarly, if one can solve the CDH problem easily, he can easily solve the

DDH problem. However, the reverse of this reasoning does not generally hold.

Detail descriptions are referred to [95] and [35] for more discussions on this prob-

lem.

Note that in practice, the group G can be implemented using the subgroup of

Z
∗
p =

{

1, 2, ..., p−1
}

of order q such that p = aq+1 for primes p and q > p1/10, or the

group of points on certain elliptic curves of order q [84, 97] for efficiency. As attack

algorithms for the DL problem in a general group G(e.g., regardless of whether G

is the subgroup of Z∗p or the group of points on elliptic curves), Shank’s “baby-step,

giant step” and Pollar’s “rho” methods are used. As a sub-exponential algorithm

for solving the DL problem in Z∗p, the “index calculus” method is famous.

Finally, we observe that there have been a large number of cryptographic

schemes based on the above problems. There are some examples which include

the digital signature schemes based on the DL problem such as ElGamal [59],

Schnorr [121], and digital signature standard (DSS) [100]; the public key encryp-

tion schemes based on the CDH problem such as Pointcheval [111] and Baek-Lee-

Kim [15]; the public key encryption scheme based on the DDH problem such as

ElGamal [59], Tsiounis-Yung [130], and Cramer-Shoup [50].

21

2.7 Security Notions

2.7.1 Steps to Achieving Provable Security

Provable security evaluates the security of a given cryptographic scheme by citing

a reduction between the properly defined security notion of the scheme and the

primary primitive which is secure. Actually, the point of a reduction is originally

from the theory of computation. Casually, it is a way of converting one problem to

another problem in such a way that a solution to the latter problem can be used

to solve the former one [123]. Bellare et al. [22] explains exactly how to achieve

provable security, which can be summarized as the following steps:

1. Set up a security goal, such as confidentiality via encryption or authenticity

by using signature;

2. Construct a formal attack model and define what it means for a crypto-

graphic scheme to be secure;

3. Show by a reduction that the only way to break the security of cryptographic

schemes is to solve computationally hard problems or break other primitives.

Indeed, setting up security goals and constructing relevant attack models, com-

monly, formulating right definitions for the security of cryptographic schemes is

important by itself. Over the last two decades, researchers have been proposing

various security notions (definitions of security) for cryptographic schemes either

in public key or symmetric key setting. In the next sections, we survey some

important confidentiality, unforgeability notions and random oracle model widely

used in public key cryptography.

2.7.2 Confidentiality Notion

In case, we reviewed that the RSA encryption scheme [118] is secure in the “one−

wayness” sense, unless the attacker obtains Bob’s private key, he cannot recover

the entire of plaintext. But we are not sure whether the RSA encryption scheme is

secure in situations where something more than one-wayness is required. Indeed,

the RSA encryption scheme is not secure in the following situation; assume that

members of a committee use a confidential on-line poll to decide on some course

22

of action and the RSA encryption scheme is employed to encrypt the member’

votes. However, there is an additional assumption that the committee members

should use one of the predetermined messages, “Yes” and “No”, to create their

ciphertext. After encrypting one of those messages, each of the members sends over

the ciphertext to a chairperson, who is not supposed to know who votes for “Yes”

or “No”. However, the corrupted chairperson will know who has voted for which

by re-encrypting the guessed plaintext (“Yes” or “No”) to see if the resulting

ciphertext matches what he has. Since there are only two kinds of ciphertexts

CYes and CNo which encrypt “Yes” and “No” respectively.

Figure 2.5: Chosen Plaintext Attack

The main motivation for Goldwasser and Micali’s [69] is the notion of confi-

dentiality for public key encryption called “semantic security ”, same as a “(poly-

nomial) indistinguishability of encryptions under chosen-plaintext attack (IND-

CPA) [70]”. The association of this notion is that a ciphertext should not disclose

any partial information about the plaintext apart from its length to any attacker

whose computational power is polynomially bounded. One can still imagine even

a harsher situation where the attacker may be supplied with a decryption oracle

23

(algorithm), from which he gets decryptions of some ciphertexts of his choice even

if he is not in possession of the decryption key.

This is also called “chosen ciphertext attack”, developed and evolved in the

series of papers by Naor and Yung [99] , Rackhoff and Simon [116] , and Dolev,

Dwork, and Naor [55]. When conducting chosen ciphertext attack’s chance to get

useful information about a plaintext given its encryption which is called a “target

ciphertext” can be very high in some schemes.

Assume that Bob’s public and private keys are (N, e) and (p, q, d) such that

N = pq, where p and q are large primes chosen at random, and ed = 1 mod φ(N)

where φ(N) = (p−1)(q−1). Suppose that attacker has obtained a target ciphertext

C = Me mod N which encrypts M. Now, attacker just chooses an arbitrary

message R ∈ N, computes C′ = ReC, and queries it to the decryption oracle

(algorithm) and gets M′ = C′d. attacker then computes M′/R. Since

M′ = C′d = (ReC)d = RCd
= RM,

M′/R is the message M which is the plaintext of C.

Practically, RSA-OAEP, a converted version of the RSA encryption scheme us-

ing Bellare and Rogaway’s [25] “Optimal Asymmetric Encryption Padding (OAEP)”,

is widely used. In fact, OAEP fixes the above two security problems of the RSA

encryption scheme. More precisely, it makes the RSA encryption scheme provably

secure in the “indistinguishability of encryptions under chosen ciphertext attack

(IND-CCA)” sense under the random oracle assumption which will be discussed in

detail in next section. We review that the original proof given in [25] that OAEP

applies to any one-way trapdoor permutation was later found to be false by Shoup

[122] . Shortly after Shoup’s work, Fujisaki, Okamoto, Pointcheval, and Stern [65]

confirmed that OAEP in fact applies to the sole RSA function.

Now, we look into the “IND-CCA” notion in the context of modern cryptog-

raphy. In the current literature, the “IND-CCA” notion is usually described in

terms of the following game in which the attacker and the “Challenger” interact

each other:

• Phase 1: The Challenger generates a private/public key pair and all the

necessary common parameters of a given public key encryption scheme in

24

the prescribed manner. The Challenger then gives the public key and the

common parameters to the attacker while keeps the private key secret.

• Phase 2: The attacker queries a number of ciphertexts to the Challenger

to obtain their decryptions. Upon receiving each of the ciphertexts, the

Challenger decrypts it using the private key he generated in Phase 1 and

returns the resulting decryption to the attacker.

• Phase 3: The attacker chooses two equal-length plaintexts (M0,M1) and gives

them to the Challenger. Upon receiving M0 and M1, the Challenger chooses

one of them at random and computes its encryption. The Challenger returns

the resulting ciphertext (called a “target ciphertext”) to the attacker.

• Phase 4: The attacker again queries a number of ciphertexts to the Chal-

lenger to obtain their decryptions, subject to the restriction that the attacker

cannot query the (target) ciphertext obtained in Phase 3. Upon receiving

each of the ciphertexts, the Challenger decrypts it using the private key he

generated in Phase 1 and returns the result (decryption) to the attacker.

• Phase 5: Finally, the attacker outputs his guess on which one of M0 and M1

was chosen by the Challenger in Phase 3.

If no attacker can guess correctly with probability significantly greater than

1/2 in Phase 5, the given public key encryption scheme is said to be secure in the

“IND-CCA” case. We observe that it can be shown that the “IND-CCA” notion

implies the IND-CPA notion, that is, all public key encryption scheme meeting

the “IND-CCA” notion also meets the “IND-CPA” notion. Therefore, obtaining

a public key encryption scheme secure in the “IND-CCA” sense means that we

have already obtained an “IND-CPA” secure one. (Relationships among various

notions of confidentiality of public key encryption are formally discussed in [23].)

We also remark that the chosen ciphertext attack discussed in this section is

sometimes referred to in the literature as the “adaptive chosen ciphertext attack”

to emphasize that the attacker is allowed to query ciphertexts to decryption oracle

in an adaptive way before and after he obtains a target ciphertext. For this reason,

the “IND-CCA” notion described above is sometimes referred to as “IND-CCA2”

[23]. However, throughout this thesis, we adopt “chosen ciphertext attack, IND-

CCA”.

A final remark is that the above “IND-CCA” notion can be extended to the

chosen ciphertext security notion for identity-based encryption, called “IND-ID-

25

Figure 2.6: Chosen Ciphertext Attack

CCA” [35]. In this notion, the attacker is only prohibited to calculate decryption

queries, but also to create a number of private key extraction queries to the PKG to

obtain private keys corresponding to some identities of his choice. An encryption

scheme should remain secure under this attack to be IND-ID-CCA secure.

2.7.3 Unforgeability Notion

The evaluation of the security of a digital signature scheme for the attacker can

grow “chosen message attack”. For attack, the forger attacker has access to Alice’s

signature generation oracle (algorithm) from which attacker gets signatures of any

messages of his selection. At the end of the attack, he returns a new message

signature pair as a forgery. The message has not been queried to the signature

generation oracle before. This type of forgery is called the “existential forgery”.

Assume that Alice’s public and private keys are (N, e) and (p, q, d) such that N =

26

pq, where p and q are large primes chosen at random, ed = 1 mod φ(N) where

φ(N) = (p − 1)(q − 1). Then, attacker queries chooses two messages M1 ∈ N and

M2 ∈ N and gets signatures σ1 = Md
1
and σ2 = Md

2
from the signature generation

oracle. attacker then computes M0 = M1M2 and σ0 = σ1σ2, and outputs (M0, σ0)

as a forgery. Since

σ′e = (σ1σ2)e = (M1dM2d)e = M1M2,

σ′ is a valid signature for the message M′.

However, one may claim that the existential forgery is a too strong security

requirement since the output message is likely to be meaningless. Since, in the

current computing environment, not only meaningful messages but also arbitrary

bit streams such as keys, image files, program code can be signed, so the existential

forgery can cause serious damage. We remark that in order to protect the above

attack on the RSA signature scheme, we need a hash function to digest the message

before it is signed. In [29], it was shown that if the hash function is assumed to

be a random oracle, the RSA signature scheme can be “existentially unforgeable

under chosen message attack (UEF-CMA)”. Now, we look into the UEF-CMA

notion in the context of modern cryptography as we previously did for the IND-

CCA notion. The UEF-CMA notion was first formalized by Goldwasser, Micali,

and Rivest [69] and is usually described in terms of the following attack game in

which the attacker and the “Challenger” interact each other:

• Phase 1: The Challenger generates a private/public key pair and all the

necessary common parameters of a given digital signature scheme in the pre-

scribed manner. The Challenger then gives the public key and the common

parameters to the attacker while keeps the private key secret.

• Phase 2: The attacker queries a number of messages to the Challenger to

obtain signatures on them. Upon receiving each of the messages, the Chal-

lenger generates a signature using the private key he generated in Phase 1

and returns the resulting signature to the attacker.

• Phase 3: The attacker outputs a new message-signature pair. (Note that

the message has not been queried to the Challenge for signature generation

in Phase 2.)

27

The signature scheme is said to be secure in the “UEF-CMA” sense if no

attacker can succeed in Phase 3 with great probability. Similarly to the case of

“IND-CCA”, the above “UEF-CMA” can be extended to the unforgeability notion

for identity-based signature, which we call “UF-IDS-CMA” [22, 25]. In this notion,

the attacker is not only allowed to make signature generation queries, but also to

make a number of private key extraction queries to the PKG to obtain private

keys corresponding to some identities of his choice. If a signature scheme remains

secure under this attack, it is said to “UF-IDS-CMA” secure.

These notions notions will be used directly or further evolved to analyze the

various cryptographic schemes which will be presented in the rest of the chapters.

Before moving to the next chapter, we describe about the random oracle model,

which is a useful tool for designing efficient and provably secure cryptographic

schemes.

2.7.4 Random Oracle Model

After formulating security notions, the next step brings to the provable security

approach which shows by a reduction that the only way to break the security of

a given cryptographic scheme is to solve a related computationally hard problem.

However, this is not always easy unless hash functions used in the architecture of

cryptographic scheme are assumed to behave as completely random functions.

The random oracle model, first introduced in [50] and popularized by Bellare

and Rogaway [26] , gives a mathematical model of such ideal hash functions. In

this model, a hash function h : X → Y is chosen at random from SX,Y which

denotes the set of all functions from X to Y, and evaluation of h on inputs in X

can be done only by querying the random oracle. According to Anderson [9], the

random oracle can be compared with a black box in which an elf is sitting with a

source of randomness and some means of storage, which are represented as a dice

and a scroll respectively. The elf accepts inputs of a certain type from the outside,

then looks up the scroll to see whether this query has been answered before. If so,

the elf returns the corresponding answer again; otherwise, he randomly generates

an answer by throwing the dice. Hence, by the assumptions made in the random

oracle model, we obtain the following key property:

Assume that h ∈ SX,Y is chosen at random. Fix x ∈ X and y ∈ Y. Then we

have Pr[h(x) = y] = 1/|Y |.

28

However, a problem of the random oracle model is that the behavior of the

random oracles is so ideal that no realization is possible. One can do is to replace

the random oracles by the conventional hash functions such as SHA-1 [101] or MD5

[117] when the cryptographic schemes that use them are implemented. For this

reason, the use of the random oracle model is somewhat controversial. Canetti,

Goldreich, and Halevi were even able to demonstrate that there exist some special

signature and encryption schemes which are secure in the random oracle model but

become insecure whenever the random oracles are specified [40]. However, there is

also a strong trend that security proofs in the random oracle at least give a certain

level of security guarantees although not at the same level as those of the standard

provable security approach, and more importantly, the schemes designed in the

random oracle are usually very efficient [23]. Actually, it is becoming a consensus

that today’s standards should include the schemes with proof in the random oracle

model rather than those without.

Notes: The chapter 2 is partly based on [Joonsang Baek, 2004; Stefan Rass et.al,

2014] [16, 119].

29

Chapter 3

Cloud Computing

There are a number of attempts to define cloud computing in numerous ways.

Among definitions, the widely accepted one is “ The NIST Definition of Cloud

Computing” [96] as follows: Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service

provider interaction. This cloud model is composed of five essential characteristics,

three service models, and four deployment models.

Essential Characteristics:

• On-demand self-service. A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automati-

cally without requiring human interaction with each service provider.

• Broad network access. Capabilities are available over the network and ac-

cessed through standard mechanisms that promote use by heterogeneous

thin or thick client platforms (e.g., mobile phones, tablets, laptops, and

workstations).

• Resource pooling. The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand. There is a sense of location independence in that the customer

generally has no control or knowledge over the exact location of the provided

30

resources but may be able to specify location at a higher level of abstraction

(e.g., country, state, or datacenter). Examples of resources include storage,

processing, memory, and network bandwidth.

• Rapid elasticity. Capabilities can be elastically provisioned and released, in

some cases automatically, to scale rapidly outward and inward commensurate

with demand. To the consumer, the capabilities available for provisioning

often appear to be unlimited and can be appropriated in any quantity at any

time.

• Measuring service. Cloud systems automatically control and optimize re-

source use by leveraging a metering capability at some level of abstraction

appropriate to the type of service (e.g., storage, processing, bandwidth, and

active user accounts). Resource usage can be monitored, controlled, and re-

ported, providing transparency for both the provider and consumer of the

utilized service.

Service Models:

• Software as a Service (SaaS). The capability provided to the consumer is

to use the provider’s applications running on a cloud infrastructure. The

applications are accessible from various client devices through either a thin

client interface, such as a web browser (e.g., web-based email), or a program

interface. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage, or even

individual application capabilities, with the possible exception of limited

userspecific application configuration settings.

• Platform as a Service (PaaS). The capability provided to the consumer is

to deploy onto the cloud infrastructure consumer-created or acquired appli-

cations created using programming languages, libraries, services, and tools

supported by the provider. The consumer does not manage or control the

underlying cloud infrastructure including network, servers, operating sys-

tems, or storage, but has control over the deployed applications and possibly

configuration settings for the application-hosting environment.

• Infrastructure as a Service (IaaS). The capability provided to the consumer

is to provision processing, storage, networks, and other fundamental com-

puting resources where the consumer is able to deploy and run arbitrary

31

software, which can include operating systems and applications. The con-

sumer does not manage or control the underlying cloud infrastructure but

has control over operating systems, storage, and deployed applications; and

possibly limited control of select networking components (e.g., host firewalls).

Deployment Models:

• Private cloud. The cloud infrastructure is provisioned for exclusive use by a

single organization comprising multiple consumers (e.g., business units). It

may be owned, managed, and operated by the organization, a third party,

or some combination of them, and it may exist on or off premises.

• Community cloud. The cloud infrastructure is provisioned for exclusive use

by a specific community of consumers from organizations that have shared

concerns (e.g., mission, security requirements, policy, and compliance con-

siderations). It may be owned, managed, and operated by one or more of

the organizations in the community, a third party, or some combination of

them, and it may exist on or off premises.

• Public cloud. The cloud infrastructure is provisioned for open use by the

general public. It may be owned, managed, and operated by a business,

academic, or government organization, or some combination of them. It

exists on the premises of the cloud provider.

• Hybrid cloud. The cloud infrastructure is a composition of two or more

distinct cloud infrastructures (private, community, or public) that remain

unique entities, but are bound together by standardized or proprietary tech-

nology that enables data and application portability (e.g., cloud bursting for

load balancing between clouds) [96].

3.1 Cryptographic Mechanisms of the Cloud

In term of practical outsourcing of cloud data storage and processing, client’s data

may be sensitive and it should not be revealed to the untrusted cloud storage

providers. Cryptography supports a mathematical tool for the data security of

the cloud environments as traditionally has focused on providing confidentiality

and data integrity. However, modern cryptography can achieve significantly more

32

functionality which is effective solutions to specific security issues arising in the

cloud environments such as the enabling of processing of encrypted data. In this

chapter, we review a number of relatively cryptographic mechanisms that provide

interesting functionality, all of which are potentially suitable for a wide range of

the cloud environments [7].

3.1.1 Searchable Encryption

One of the basic processing tasks that might be required to be performed on

encryption is to allow keyword search over the encrypted files. For cloud storage

provider (CSP), the outsourcing files are encrypted and the ciphertext should

not leak any information. Therefore, the usual search algorithms are as well no

longer applicable. Another solution is to download the encrypted by the client

and decrypt, and search at the client side. However, it is impractical for the cloud

environment.

Searchable encryption (SE) schemes are encryption methods designed to ad-

dress this problem which used the clients’ trapdoor information. SE schemes vary

in the expressiveness of queries and the degree of privacy offered. The server

thereby neither learns the extract query nor the underlying data. The CSP can

then retrieve and respond with all the data

Early SE schemes allow a single data owner to issue queries. Subsequent work

[35] enables many clients to write to a database by encrypting data segments with

the public key of a single user who may form searches using the corresponding

private key. Other solutions allow a single data owner to grant and revoke the

ability to search their files [51], or combine both properties to allow multiple readers

and multiple writers. In terms of efficiency, some schemes [51] include a search

phase in which the workload of the server is not linear in the number of uploaded

documents but rather in the number of documents that match the query.

3.1.2 Homomorphic Encryption

By default, traditional encryption schemes do not allow meaningful combinations

of ciphertexts. In any case, some encryption schemes are homomorphic in nature

and allow some computations to be performed on encrypted data. Certain op-

erations can be applied to two ciphertexts such that the result, when decrypted,

33

outputs a plaintext as if the operation had been applied to the plaintexts them-

selves. For instance, let C1 be the encryption of a message m1 and let C2 encrypt

m2. Then, in some homomorphic encryption schemes, multiplying C1 and C2 to-

gether will produce a new ciphertext C3 which will decrypt to reveal a plaintext

equal to m1 times m2. It should be noted that, by design, homomorphic encryption

schemes are malleable (ciphertexts can be altered and remain valid).

Schemes that show homomorphic properties for a specific operation are known

as partially homomorphic encryption schemes. Additionally, if the set of permis-

sible operations enables arbitrary computations to be performed then the schemes

are referred to as fully homomorphic [68]. Such schemes are very capable since

they permit arbitrary computation on encrypted data, and thus fit the cloud set-

ting particularly well as the untrusted CSP does not require access to the plaintext

data. Unfortunately, current schemes tend to be limited in the number of opera-

tions that may be applied before decryption will not succeed, or are inefficient in

terms of speed and the size of parameters and ciphertexts.

3.1.3 Computing Aggregates over Encrypted Data

There is an example of specific application which is privacy preserving data aggre-

gation, which allows specific types of computation to be performed on encrypted

data. The data is assumed to come from multiple independent sources, which are

reluctant to share their sensitive information with either other sources or the aggre-

gator. This has led to an active area of research where proposed solutions mainly

rely on homomorphic encryption and secret sharing techniques. Some schemes

achieve aggregator obliviousness using a trusted dealer that provides the aggrega-

tor with the sum of users’ secret keys, which in turn allows the decryption of the

sum of users’ data. Other schemes handle dynamic user populations and arbitrary

user failures. Recently, Leontiadis et al. [85] removed the need for trusted key

dealers while supporting dynamic group management and user failures.

3.2 Functional Encryption

Functional encryption develops traditional public-key encryption to permit the

holder of a private key to get a specific function of an encrypted message. This

function could restore the message itself (by the traditional public key encryption),

34

storing the message only if some other criteria is met, or may create the output of

some computation specified by the message and private key. In the cloud comput-

ing, functional encryption can be set up as a cryptographic enforcement mechanism

for access control policies. Functional encryption allows the encryptor (a client) to

indicate an access control policy in terms of identities or more general descriptive

attributes; decryptors may get the data that they fulfill this arrangement pol-

icy. Accordingly, data owners hold control of which entities may learn their data

without using explicit prior knowledge of users.

There are a sort of functional encryption scheme that could be useful in cloud

environments.

3.2.1 Order Preserving Encryption

Order preserving encryption [3, 34, 132] allows a CSP to perform series of queries

on encrypted data in order to get relevant results to a client query. This is a type

of deterministic symmetric encryption where numerical comparison operators can

be used to encrypted numerical data. It has common applications to querying

encrypted databases. The scheme of Boldyreva et al. [34] claims to achieve such

numerical range searches in logarithmic time (in the size of the database).

3.2.2 Identity-based encryption

Identity-based Encryption (IBE) [37] permits encryptors to specify an arbitrary

identity string (user name, email address, IP address etc.) while preparing a

ciphertext, as opposed to use a pre-defined public key. A decryptor can request

(either earlier or subsequently) a decryption key related to an identity from a

key generation authority. The plaintext is successfully recovered if the identity

associated with the ciphertext and the key. Since identity strings can be arbitrary,

it is possible to append the current day, for example, in order to specify a lifetime

for a decryption key. In addition, one could append access rights or different

separations of duty, etc.

35

3.2.3 Attributed-based Encryption

Attribute-based Encryption (ABE) is suitable when the authorized set of decryp-

tors cannot easily be stated explicitly in terms of identifier strings (for instance,

the user population is very large or changes frequently). Rather, authorized de-

cryptors can be defined in terms of attributes. ABE comes in several variants that

vary based on the type of the key and ciphertexts. In Key-Policy ABE (KP-ABE)

[72], the ciphertext contains a set of attributes that describe the classification

and contents of the plaintext, although the decryption key is related to an access

structure (which describes the access policy). Decryption succeeds if the set of

attributes satisfies the access structure. Hence, a user can be issued a key for a

formula specifying their access rights, while ciphertexts can be related a set of at-

tributes describing its contents or required level of protection (e.g. YearlyReport,

Accounts, ClearanceLevel2). Moreover, Ciphertext-Policy ABE (CP-ABE) [131]

reverses the association of attribute sets and access structures. Ciphertexts are

now formed with an associated formula over attributes during decryption keys are

issued for an attribute set.

3.2.4 Predicate Encryption

Predicate Encryption (PE) [82] uses the previous notions of functional encryption,

particularly KP-ABE. Decryption keys are related a predicate F over attributes

and ciphertexts are related to a set of attributes I. Decryption will succeed if

F(I) = 1 . Therefore, if F(I) = 0 then no information is got about the encrypted

message; this property is referred to as payload hiding. Furthermore, some schemes

can accomplish a stronger notion of attribute hiding by which, also hiding the

message, no information is learnt about the attribute set I beyond what is normally

leaked by the decryption functionality that is the result of F(I). Many PE schemes

aim to the specific predicates of inner products, which have been appeared to

encompass useful functionality such as boolean formulas in conjunctive normal

form and disjunctive normal form, threshold policies and polynomial evaluation.

36

3.3 Verifiable Computing

It is commonly recommended that CSPs should be “honest-but-curious”, by im-

plying that they are trusted to follow the principle of any process, however, be

fully trusted with respect to privacy of data that they happen to observe. But it

is not necessarily always the case that such a level of trust can be placed in a CSP.

Several new cryptographic mechanisms provide benefits that may be suitable in

the cloud environments with reduced levels of trust in CSPs.

3.3.1 Verifiable Outsourced Computation

One concern emerges in the cloud environment which CSP is not trusted to get the

correct result of a processing computation. In verifiable outsourced computation

(VC), a client delegates the execution of computationally demanding operations to

the cloud and receives the results alongside a cryptographic proof of their integrity

or privacy. These proofs permit the detection of any server misbehavior and, in

the meantime, do not allow a client dishonestly accuse a server of misbehaving.

Features of certain verifiable computation schemes include public verifiabil-

ity, which guarantees that anyone can verify the correct processing of outsourced

operations using only public information. Most VC schemes use non-interactive

proofs, which restrain the level of interaction between provers and verifiers. There

are many different techniques used to build VC schemes, including fully homo-

morphic encryption [44, 17] and KP-ABE [107]. Pinocchio [109] applies succinct

non-interactive arguments of knowledge (SNARKs) to achieve the public verifiable

computation.

3.3.2 Verifiable Storage

Another concern arises when CSPs are not trusted to protect the integrity of

outsourced data in their charge. A basic solution is for the client to compute and

keep a checksum (such as a MAC) of the data. But this kind of verification ascends

poorly in the cloud environments where large amounts of data are stored. Verifiable

storage schemes aim to make verification more efficient rather than downloading

the whole data set, and allow clients to do integrity checks as many times as

needed. Solutions commonly fall into two categories:

37

i deterministic solutions that offer an undeniable guarantee of integrity, and

ii probabilistic solutions in which the verifier is convinced of the integrity of the

data with a certain probability only.

Deterministic solutions obtain considerable computation and communication

complexity, commonly linear in the size of the entire data. Most schemes intro-

duce probabilistic optimizations based on random sampling; for example checking

the entire file, some checks the integrity of a subset of segments included in the

file. Probabilistic solutions can generally be classify as either Provable Data Pos-

session (PDP) (verifying that the data is belonged to the server) [13] or Proofs

of Retrievability (POR) (verifying that data is recoverable from the server, even

if a few modifications have been made by a malicious server) [78]. [13] proposed

static data in the context of archival or back-up storage, when others allow for

efficient editions of the data (modification, deletion or insertion of blocks) and for

efficient integrity verification to ensure that the server stores the latest version of

the outsourced data. Moreover, some solutions let to verify to be delegated to a

third-party (auditor) [12] and to render this public verification privacy-preserving

[133].

3.4 Other Tools

In previous sections, we discussed the three classes of cryptographic mechanism.

Here, there still have several other relatively recent cryptographic tools that have

the potential for deployment in the cloud environments.

3.4.1 Format Preserving Encryption

Format Preserving Encryption (FPE) [24] enables formatted data to be encrypted

to ciphertexts that follow to the same formatting rules (e.g. credit card numbers

are encrypted to the random, valid credit card numbers). The encryption induces a

pseudo-random generation over all validly formatted strings. This property can be

used for storing encrypted databases where data fields must have specific format-

ting rules. Specifically, it is useful when upgrading heritage outsourced database

solutions to be secure. Generally, it is not possible to simply encryption utilizing

a non-format preserving encryption scheme without changing the structure of the

38

database itself. One approach to achieve FPE is the “rank-then-encipher” ap-

proach where the set of all valid strings are numbered according to some ranking

function. After that, using a simple integer FPE scheme (which encrypts integers

to integers), one can encrypt the rank of the message. The output ciphertext will

be an integer that indexes some random (correctly formatted) message from the

message space, which forms the final ciphertext. Such ranking functions exist for

all formatted domains where the format can be expressed by a regular language.

3.4.2 Proxy Re-encryption

Proxy Re-encryption is a relatively newly-devised cryptographic primitive which

allow a seimi-trusted proxy to transform a ciphertext encrypted under one key into

an encryption of the same plaintext under another key, without revealing the un-

derlying the plaintext, proxy re-encryption [13] allows a semi-trusted intermediary

(proxy) to convert a ciphertext intended to be read by one entity into one that

can be read by another, without the proxy decrypting the ciphertext, or otherwise

learning the message itself.

We also proposed non transferable proxy re-encryption [49] which the re-encryption

key is generated by a key generator; delegator help to generate the partial decryp-

tion key for delegatee using the part of private key. Therefore delegatee and proxy

cannot collude to re-delegate decryption rights since they do not have knowledge

of PKG key or delegator’s private key.

One example application is to manage access to encrypted data stored on a

cloud server, which acts as the proxy. The stored ciphertexts can be transformed

such that they can be decrypted by authorized entities, yet the server itself remains

unable to read the data.

3.4.3 Secure Deduplication

Secure Deduplication [20] provides a space efficient storage solution for outsourced

data of the cloud service. If two users demand to keep the same data file, a cloud

server may want to save storage costs by only storing single copy of the file for

both users. However, there has difficultly if data is encrypted before submitting to

the outsourced cloud, as the security properties of a encryption scheme will output

the ciphertexts for both files resulting entirely different . Furthermore, storing just

39

one ciphertext will prevent other users from recovering the data without holding

the same decryption key (symmetric encryption). One of the solution for this

problem is to use message-locked encryption (MLE) [20] which is relatively new

encryption scheme. MLE encrypts the message by using a key derived from the

original message. Such as, the key could be defined to be the output of a hash

function applied to the message. A tag is generated that the server will use to

detect duplicates faking attack. Privacy holds only when the message space has

sufficient min-entropy. Another important security property for deduplication is

tag consistency, which requires that it is hard to force an honest client to recover

a message different from that which it uploaded.

In this thesis, data deduplicaion is main concerned for the secure cloud comput-

ing and we describe the detail explanation of secure deduplication from Chapter

4.

Notes: The chapter 3 is based on [James Alderman et.al, 2015] [7].

40

Chapter 4

Cloud Data Deduplication

We overview the basic concept of cloud deduplication, type of deduplication and

some research works on data deduplication which are relevent to the scope of this

thesis.

4.1 Cloud Storage and Issues

Cloud storage is a service where data is remotely maintained, managed, and backed

up. The service is available to users over a network which allows the user to store

files remotely and the user can access them from any location via the Internet.

The cloud service provider (CSP) company provides them available to the user

online by keeping the uploaded files on an external storage devices. This gives

companies using cloud storage services ease and convenience, but can potentially

be costly after a long period. Users should also be aware that backing up their

data is still required when using cloud storage services because recovering data

from cloud storage is much slower than local backup [61].

The use of Internet and other digital services have been grown to a digital data

explosion, including the cloud storages. A survey [60] revealed that only 25% of

the data in data warehouses are unique in data warehouses. In the presence of this

huge problem of big data, it would be beneficial in terms of storage savings if the

replicated data could be removed from the data storages. According to the survey

in [39], only 25 GB of the total data for each individual user are unique and the

remaining ones are similar shared data among various users. On the enterprise

41

level [1], it was reported that businesses hold an average of three to five copies of

files, with 15 % to 25 % of these organizations having more than 10 copies of the

files. Keeping these facts in view, cloud service providers have massively adopted

data deduplication, a technique that allows the cloud service provider to save some

storage space by storing only a single copy of previously duplicated data.

A major issue hindering the acceptance of cloud storage services by users is

the data privacy issue associated with the cloud paradigm. Indeed, although data

is outsourced in its encrypted form, there is no guarantee of data privacy when an

honest but curious cloud service provider handles the management of confidential

data while these data reside in the cloud. This problem is even more challenging

when data deduplication is performed by the cloud service provider as a way to

achieve cost savings. Data deduplication is being adopted by many popular cloud

storage vendors like Dropbox [57], Spider Oak [126] and Mozy [98]. Recently,

Dropbox [58] was reported to have stolen 70 millions of passwords of some users,

but they shifted the blame to because a Dropbox employee re-used a password

they had used on another site. However, the users cannot compromise the security

of their data, and then the attack was perpetrated either by an anonymous exter-

nal attacker or it was an internal fault attributed to the cloud service provider.

According to the above discussion, it is a serious demand of current big data and

cloud computing paradigm to handle to issue of data growth and security. Data

deduplication is an effective technique exercised to handled the issue. The primary

condition is that the data deduplication should be designed in accordance to the

security and efficiency requirements of the system in consideration.

4.2 Deduplication

Data deduplication is a data compression technique to eliminate the copies of the

identical data, which improves storage utilization cloud as shown in Figure. 4.1.

For example, Dropbox [57], Google Drive [71], Mozy [98] and so on have adopted

data deduplication to save storage and network data transfer [20, 75, 114, 142,

3]. Normally, the cloud users encrypt data with their own keys to ensure their

data privacy and data confidentiality. Therefore, deduplication cannot happen,

especially, if the same encrypted data is stored by different owners with different

keys, the result will different. It means the typical encryption schemes do not

support deduplication [138, 125, 143, 47]. Meanwhile, designing an efficient and

secure data sharing scheme for groups in the cloud is not an easy task and pose

42

Figure 4.1: Deduplication

many challenging security issues.

4.2.1 Client-Side Deduplication

In a client-side deduplication [61, 82], the client could use a hash function to the

block or file and sends the ciphertext to the server side. The server receives and

checks, and if it already has a copy of this data, then the data is only sent if the

server does not possess a copy of the file as shown in Figure. 4.2.

4.2.2 Server-Side Deduplication

When deduplication can be carried out at the server or directly from the client,

it is called the server-side deduplication [61, 82]. The client sends the data to the

server executes the deduplication algorithms is execute at the server side as shown

in Figure. 4.3.

4.2.3 Level of Data Deduplication

Many kinds of deduplication algorithms are performed at different levels as file-

level deduplication and block-level deduplication. Generally, file-level deduplica-

tion does three tasks:

43

Figure 4.2: Client Side Deduplication

1. checks for redundant copies of the same file,

2. stores the first copy, and then

3. index the other references to the first file. At the other side, when the

deduplication is at a block level, the files are separated into data blocks and

the same verification for each block formed with the files is carried out.

File-level deduplication will reduce a small amount of space on the storage.

Block-level deduplication will save more. Block-level deduplication will execute

all of the duplicates, even if named differently, and will store the name variations

with pointers to the original blocks [61, 82].

4.3 Data Deduplication Techinical Design Issues

Following is an compact explanation of some of the main technical design consid-

erations of data deduplication.

44

Figure 4.3: Server Side Deduplication

4.3.1 Types of Data Deduplication

Hash Based: Hash based data deduplication methods use a hashing algorithm

to identify the chunks of data after the data chunking process.

Content Aware: Content aware data deduplication methods rely on the struc-

ture or common patterns of data used by the applications. Content aware tech-

nologies are also called byte level deduplication or delta-differencing deduplication.

Key element of the content-aware approach is that it uses a higher level of abstrac-

tion when analyzing the data [35]. The deduplication server sees the actual objects

(files, database objects etc.) and divides data into larger segments of sizes from

8 MB to 100 MB. Since it has the knowledge of the content of the data, it finds

segments that are similar and stores only the changed bytes between the objects.

That is why it is called a byte level comparison.

Hyper Factor: Hyper factor is a patent pending data deduplication technology

that is included in the IBM System Storage Protec TIER Enterprise Edition V2.1

software [142]. According to [141], a new data stream is sent to the ProtecTIER

server, where it is first received and analyzed by Hyper factor. For each data ele-

ment in the new data stream, HyperFactor searches the Memory Resident Index in

45

ProtecTIER to locate the data in the repository that is most similar to the data el-

ement. The similar data from the repository is read. A binary differential between

the new data element and the data from the repository is performed, resulting in

the delta difference which is stored with corresponding pointers. Another aspect to

be considered when dealing any deduplication system is the level of deduplication.

Data deduplication can take place at two levels file or block level. In block level

deduplication, a file is first broken down into blocks (often called chunks) and then

the blocks are compared with other blocks to find duplicates. In some systems,

only complete files are compared, which is called Single Instance Storage (SIS).

This is not as efficient as block level deduplication as entire files have to be stored

again as a result of any minor modification to that file.

4.3.2 Client vs Server Side Deduplication

Client deduplication refers to the comparison of data objects at the source before

they are sent to a destination (usually a data backup destination). A benefit of

client deduplication is that less data is required to be transmitted and stored at the

destination point. A disadvantage is that the deduplication catalog and indexing

components are dispersed over the network so that deduplication potentially be-

comes more difficult to administer. If the main objective is to reduce the amount

of network traffic when copying the files, client deduplication is the only feasible

option. On the other hand, server side deduplication refers to the comparison of

data objects after they arrive at the server/destination point. A benefit of server

deduplication is that all the deduplication management components are central-

ized. A disadvantage is that the whole data object must be transmitted over the

network before deduplication occurs. If the goal is to simplify the management

of the deduplication process server side deduplication is preferred. Among many

popular vendors such as DropBox [57], SpiderOak, Microsoft Sky Drive, Amazon

S3 [8], Apple iCloud and Google Drive, only SpiderOak allows to perform server

side deduplication [3].

4.3.3 Single User vs Cross User Deduplication

The deduplication can be done on a single user side, where the redundancy among

his/her data is identified and removed, but the single user data deduplication is not

very practical and does not yield maximum space saving. To maximize the benefits

46

of data deduplication, cross user deduplication is used in practice. This technique

consists in identifying the redundant data among different users and then removes

the redundancy and save a single copy of the data. According to [2], 60 percent of

the data can be deduplicated on average for individual users by using cross user

deduplication techniques. In order to save bandwidth, cloud storage provider and

users of their services are inclined to apply client-side deduplication where similar

data is identified at the client side before being transmitted to the cloud storage.

However, the potential benefit of data deduplication in terms of storage space and

storage cost can also have some associated drawbacks. In 2012, Drop Box disabled

the client side cross user deduplication due to some security concerns [3].

4.4 Background

While providing data confidentiality and security, the traditional encryption is

incompatible with data deduplication. Specially, it needs different users to encrypt

their data with their own keys as in Figure. 4.4. Thus several copies of identical

original plaintext (with their owned keys) will lead to different ciphertexts, and

deduplication process will never happen. Public key encryption, by comparison

has two different keys, one used to encrypt the string (the public key) and one

used to decrypt it (the private key). Each file use common hash function (Sha1,

Sha256 and etc.) to store the index of all the hashes already in the system. For

example, if there is a new file, then compute hash and look hash up in the index

table. If the file is a new one, then this file will add to the index. Else the file

known hash, only the hash values is saved as a pointer to existing data.

4.4.1 Convergent or Message-locked Encryption

Encrypting files before uploading them to a storage service allows us to guarantee

confidentially with respect to insider attacks of the storage provider (SP) or any

outsider that breaks into the system, since neither the SP nor the outsider gets

to know the respective decryption keys (they are managed by the clients). We

note that today several cloud SPs like Amazon S3 provide means to server side

encryption. However this can at most provide confidentiality with respect to ex-

ternal attackers (assuming the decryption keys are appropriately secured at the

storage provider), but not against insider attacks, because the SP has access to

47

Figure 4.4: Syntax of Traditional Encryption

the outsourced data in plaintext, as all decryption keys are available to the SP.

In [48], the authors discussed whether it is possible to use client-side encryp-

tion with the following feature: if the same file is encrypted by two different

clients who do not share any internal state nor any secret key, can the resulting

ciphertext always be identical. Therefore, they introduced what they call a conver-

gent encryption scheme, which produces identical ciphertext (files) from identical

plaintext (files), irrespective of their encryption keys and should provide reason-

able confidentiality guarantees with respect to insiders (i.e., the storage server in

our scenario).

The basic idea behind their construction is very simple and shares some simi-

larities with turning probabilistic into deterministic public key encryption schemes.

Therefore, let (KeyGen, Encrypt, Decrypt) be a secure symmetric encryption scheme

and let H be a secure hash function. The idea is not use KeyGen to gener-

ate a random key, but to compute a key k as k = H(F) where F is the file

to be stored. Consequently, the ciphertext F′ (the encrypted file) is computed

as F′ = Encrypt(F; H(F)). Note that everybody having the file F can compute

k = H(F), and thus produce the deterministic ciphertext F′, which allows dedu-

plication at the server without compromising the confidentiality. Note that the

server does not know F, and thus the key k required to decrypt F′.

48

Although convergent encryption has been around for some years and is already

used in deployed applications and proposed for the use in deduplication, a formal

study for what the authors call message-locked encryption has only been performed

very recently. This work, from a practical side, essentially shows that convergent

encryption, as introduced above in the context of deduplication, is secure.

This construction works out of the box when using server-side deduplication.

However, care must be taken when using convergent encryption with client- side

deduplication. Basically, just sending the hash value H(k) = H(H(F)) of the F′ for

checking, then some of the attacks discussed below are (PoW) protocols.

Message-Locked Encryption

Figure 4.5: Syntax of Message-Locked Encryption

Message-Locked Encryption (MLE) is introduced by Bellare et al. [20] as a the-

oretical treatment of secure deduplication based on Convergent Encryption (CE)

[112, 113]. An MLE scheme (illustrate in Figure. 4.5), encapsulates a standard

symmetric-key encryption scheme where encryption algorithm accepts a message

M and a key k and outputs a ciphertext C. Decryption algorithm recovers M

49

from C given k. It also includes a tag generation algorithm that is a way to test

whether the plaintexts underlying two ciphertexts are the same or not. See [20, 2]

for details.

Interactive Message-Locked Encryption

Interactive message-locked encryption (iMLE) is proposed by Bellare et al. [21] for

the interactive properties. iMLE enables incremental updates and is established

by an original MLE scheme permitting incremental updates, the interaction being

used only for tag consistency. The iMLE consists of an initialization Init algo-

rithm and three protocols for Reg (Register), Put (Upload), and Get (Download).

However, iMLE [21] is purely theoretical, we have to adopt in real scenarios.

4.4.2 Proofs of Ownership

When applying client side deduplication with the approach discussed in the in-

troduction; that is by simply sending the hash value of the file for the check, two

main classes of potential attacks for which we provide some illustrating examples:

Privacy and Confidentiality: Fraudulent users can check whether someone

has stored a specific file. For example, think of some privacy intrusive file or some

whistleblowing activity. Furthermore, if a file is highly structured and only a small

space of varying content is left, someone can simply brute force all potential files by

computing their hash values and check whether the respective file has been stored-

think of contract backups. Moreover, if someone just learns the hash values of files

(e.g., reports containing sensitive information), then this person can illegally get

access to the file.

Misuse of storage service: Fraudulent users may use a storage services as a

low bandwidth convert channel. For example, by choosing two files, and assigning

them bit values, a bit can be communicated via the information whether or not a

file is already present at the SP. Another misuse is by uploading a file to the storage

service and then distributing its hash value such that other users can download

such files. This would actually let the SP unknowingly act as content distribution

network.

50

Note that in all above examples, access control does not prevent any of these

attacks, since deduplication is performed over all users irrespective of access rights

to particular files. The problem yeilding to attacks is that short information

from the file is sufficient to download the file. Essentially, the solution to the

problem is to force users to prove that they know much more information about

the file at hand and not only its hash value. Thus, such a solution is called

“Proof of ownership (PoW)” and more sophisticated proposals than the thresh-

old solution which we briefly sketch below. The security model requires that a

client succeeds only with negligible probability in a PoW, as long as the client has

enough uncertainty about the file (i.e., an attacker is allowed to have partial infor-

mation about the file). The security guarantees in the subsequent constructions

are increasingly relaxed for the sake of efficiency.

• The first construction takes a file, uses an erasure code to produce an encoded

file, then computes a Merkle tree over the encoded file. The server stores

the root hash of the Merkle tree over the encoded file. The server stores the

root hash of the Merkle tree along with the file. A PoW then amounts to

challenge the client to send the authentication paths. (i.e., siblings of a leaf

on the path to the root) for randomly sampled (superlogarithmic) number

of leaf indices.

• The second construction avoids such costly and disk access intensive erasure

coding. Instead, this solution uses a universal hash function to hash the file

into a so-called reduction buffer, which is much smaller than an encoded file,

but still too large to share it with other users, say, 64 MB. Then the Merkle

tree approach is implemented on this reduction buffer instead of the encoded

file.

• The third schemes replaces universal hashing, which costly to compute for

such a large output space, with a more efficient mixing and reduction proce-

dure. Essentially, the mixing phase builds the reduction buffer by XORing

each block of the original file with four random positions in the buffer (af-

ter performing a bit shift). The mixing phase then amplifies confusion and

diffusion in the reduction buffer by XORing together random positions of

the reduction buffer. Finally, the reduction buffer is used as a basic for the

Merkle tree approach.The problem will all the above mentioned contructions

is that the client needs to process the entire file for conductiong a PoW.

51

Chapter 5

Multiple Group Signature Setting

In this chapter, a secure scheme is proposed that achieves multiple group of client

for deduplication in cloud storage environment. Its design consists of message-

locked encryption along with group signature to control the multiple group of

users. The message-locked encryption is used to ensure that the proposed scheme

is secured against a semi honest cloud service providers and the group signature is

used to enable a classification of group. In such way, the deduplication cross the

groups can be performed securely. The proposed scheme is called DDUP-MUG

which supports deduplication not only uploading a new file but also updating the

existing files and deleting files among the different groups. Security analysis are

provided, showing the effectiveness of multiple group deduplication and security

of our proposed scheme.

5.1 Background

The motivation behind the scheme is to allow cross-groups which are controlled

by each individual group manager. In this scenario, not only multiple users but

also multiple groups may own a single message which is located in the same data

storage. The ownership of any client (group member) is verified for the UPL-Dup

protocol and the EDT-Dup protocol according to what he/she demands whether

he/she wants to upload a new file or update an existing file. Finally, a group

member can eliminate his own file according to the revocation list by using the

DEL-Dup (Delete a duplicated file) protocol. Our three protocols use a deter-

ministic encryption method called Message-Lock Encryption (MLE) or interactive

52

Message Lock Encryption (iMLE) as an ingredient and also we add unlinkable ran-

domizable group signature (URS) [148] features to manage the individual group.

We slightly improve URS group signature with revocable functionality. We com-

bine the above three protocols as a new scheme, Deduplication for Multiple Group

Signature (DDUP-MUG). One common fact of three protocols, the client has to

send only a pair of tag and ownership. The duplication checking is performed at

the server side. If the file is duplicate, the client does not need to upload the

ciphertext.

5.1.1 Group Signature

Group Signature schemes, originally defined by Chaum and van Heyst [14], are

an important building block for our deduplication method in the multiple-group

setting. According to the general group signature (GS) scheme, GS consists of

one signer, one verifier and the several members. Group signature schemes al-

low any member of a group to sign a file on behalf of the group. In general, a

group manager controls the group membership and issues group signing keys to

group members. The group members sign documents by using the group signature

keys. Furthermore, a group signature provides anonymity and unlinkability to the

signer, i.e. anybody can verify that the signature is valid which is signed on be-

half of the group, but nobody except the group manager can identify the signing

member. Additionally, a verifier can check whether two different valid signatures

were generated by the same group or not [3, 28, 31, 148].

Role of the Individual Group Manager It is usually accepted that the group

manager is a trusted party with respect to joining new entities to the group. Many

group signature schemes involve an issuer who is joining new members and many

openers who are responsible for opening signature.

Multiple Group Signature According to secure cloud deduplication, the server

will store one unique instance of redundant data. Therefore, clients from different

groups have to prove that they simultaneously own a stored file. Though multiple

group settings are based on the ability to link some designated group signatures via

equality proofs, such a fact does not affect the main properties of group signatures

such as anonymity and unlinkability. Note that the multiple group setting is very

interesting in anonymous authorization scenarios, since in these environments it

53

is quite common for file properties in order to give the authorization to carry out

some specific transaction.

Correctness for the Group Signature scheme

A group signature scheme should satisfy the following correctness properties.

Verification Correctness Group signature produced by group members can be

verified successfully while manager of the group ensures the signer identification

[3, 28, 31, 148].

Definition 1 A group signature scheme GS = (KeyGen, Sign, Ver) is correct if

all λ which is the security parameter, N ∈ N which is the number of entities, all

keys (gpk, gmsk, gsk) ← KeyGen(1λ, N), all identities i ∈ [1, N] and all messages

m ∈ {0, 1}∗,

Ver(gpk, m, Sign(gsk[i],m)) = 1.

Revocation List Correctness In the fully dynamic group signature scheme,

group managers allow prospective members into the group through the Join proto-

col as well as admit verifier with secret key gsk, group public key gpk and revocation

token grt which is used to issue membership credentials [35].

Definition 2 A group signature scheme with verifier-local revocation GS=

(KeyGen, Sign, Ver) is correct if all (gpk, gsk, grt) ← KeyGen(1λ, N), all identi-

ties i ∈ [1, N] and all messages m ∈ {0, 1}∗

Ver(gpk, RLt,m, Sign(gsk[i],m)) = 1⇔ grt[i] < RLt .

Actually group signatures with above characteristics have been proposed and

adopted explicitly or implicitly by [3, 28, 31, 35, 148].

54

5.1.2 Group Signature from Unlikable Randomizable Sig-

nature

Definition 3 A group signature consists of the following algorithms for a group

manager GM, group members and verifiers [148].

• Setup: an algorithm is initiated by GM to generate group public key gpk and

a group secrete key gsk.

• Join: a probabilistic interactive protocol between GM and a group member.

If a new group member is added, GM gives a group signing key gpki including

the member secret key mski and the member certificate certi ; and GM

adds an entry for i (denoted as regi) in its registration table reg storing the

protocol transcript, e.g. certi.

• GSig: a probabilistic algorithm by a group member, on input a message m

and a group signing key gpki= (mski, certi), returns a group signature σ.

• GVer: a deterministic algorithm which, on input a message-signature pair

(m, σ) and GM’s public key gpk, returns 1 or 0 indicating the group signature

is valid or invalid respectively.

• Open: a deterministic algorithm which, on input a message-signature pair

(m, σ), the secret key gsk of GM, and the registration table reg, returns the

identity of the group member who signed the signature, and a proof π.

The group signature is σ by using group singing key gpki where s = GSig(

mski, certi)and proof of knowledgefor σ satisfying v = GVer = 1. (GSig,GVer) is

the signature generation and verification algorithms of an independent signature

scheme.

5.2 Management Policy of Proposed Scheme

Our system aims at secure client-side deduplication for the encrypted messages.

Message-Locked Encryption (MLE) is introduced by Bellare et al. [20] as a theo-

retical treatment of secure deduplication based on Convergent Encryption (CE).

An MLE scheme encapsulates a standard symmetric-key encryption scheme where

55

CipherID TagID Ownership

C1 T1 σa σb σc

C2 T2 σa σb

Table 5.1: Data Structure of a file at Server

encryption algorithm accepts a message M and a key k and outputs a ciphter-

text C. Decryption algorithm recovers M from C given k. It also includes a tag

generation algorithm that is a way to test whether the plaintexts underlying two

ciphertexts are the same or not [2] . We also use interactive message-locked en-

cryption (iMLE) Bellare et al. [21] for the interactive properties. iMLE enables

incremental updates and is established by an original MLE scheme permitting in-

cremental updates, the interaction being used only for tag consistency. However,

we will not generalize some functions of initialization, registration or download for

new users from interactive protocols. Four algorithms (K, Enc, Dec, GTag) are

contained in the MLE scheme. A message derived key k is produced from an algo-

rithm, k←$ K(p, M), where p is a system-wide public parameter, and we can get

the ciphertext by C←$ Enc(k, M). Decryption recovers M by using M ← Dec(k0

,C) and the key is also derived from message M as k0 ←$ K(p, M). Tags which

appear from t ← GTag(C) are used to check whether the plaintexts underlying

two ciphertexts are the same or not. Every encryption for the same message M

will have the same tag. There are many MLE and iMLE schemes, and any MLE

or iMLE can perform deduplication [20, 21, 2]

5.3 Proposed Scheme Architecture

Our system involves four entities: the agency or group manager, the storage server,

the verifier, and the clients (group members) as illustrated in Figure. 5.1. Their

responsibilities are described below:

Group Manager(GM) The manager controls the group memberships and gen-

erates the membership keys of group members (clients). Furthermore, the GM

56

Figure 5.1: Proposed DDUP-MUG Scheme

enables signers to sign on behalf of the group and reveals the identity of the signa-

ture’s originator when disputes arise. The GM issues the keys and the revocation

list for both the client and the storage server. And then the GM also provides the

computational services to facilitate key management.

Verifier A verifier can check the validity of the group signature by using the

group secret master key and the revocation list.

Storage Server The server provides data outsourcing for all groups. To reduce

the cost of storage, the server removes the redundant data of identical files via

deduplication and keeps only a unique copy of the data.

Client or Group Member A member is an entity of a group who needs to

store/restore/remove data from the server. No client will be allowed to upload

data which is a duplicate of data on the server, i.e., the deduplication policy can

reduce not only the storage size but also the upload bandwidth.

Now, we present a secure deduplication framework (DDUP-MUG) starting

by describing a design concept to address the threats and then elaborate on the

57

detailed construction. The main idea is that for avoiding duplication at storage

server. The proposed protocol is composed of four operations: setup, UPL-Dup,

EDT-dup and DEL-Dup. Firstly GM and client initiate the setup protocol.

5.3.1 System Setup Protocol

Before the client uploads a message to the storage server, the client, the GM and

the verifier must be the members of a group which associates to the storage server.

Therefore, Join protocol will interact between client-GM and GM-verifier. We

follow the unlinkable randomizable group signature scheme (URS) introduced by

Zhou et al. [29]. And then we modify some parts such as removing open and judge

and adding a revoke algorithm in our scheme. The detailed setup of the proposed

system includes system initialization (KeyGen), user registration (Join) and user

revocation (Revoke) as shown in below.

1. KeyGen is a probabilistic key generation algorithm for the group manager,

on input 1λ which is the security parameter, and N which is the maximum

number of members. Generate the randomness R ←$ {0, 1}
P(λ), R1 ←$

{0, 1}P1(λ) and R2 ←$ {0, 1}
P2(λ) where P, P1, P2 are polynomials. Compute

(pks, sks) ← Ks

(

1λ
)

and pke ← Ke

(

1λ
)

where Ks and Ke are polynomial

time algorithms, respectively for signature generation keys and signature

encryption keys . Then assign the group public key gpk = (R, R1, R2, pke, pks)

and the group manager secret key gmk = (sks).

2. Join is an interactive protocol between a member and the group manager.

Clienti selects member secrete key ski and caculate pki by a one way function

f , pki ← f (ski) , Generate a non interactive zero knowledge proof π of

ski as π = P(pki, ski, R) and sends pki, π to group manager. If member

key verification algorithm KeyVer(pki, π, R) returns 1, GM generates certi =

Sig f (sks, pki) and sets reg[i] = pki. Then, Clienti sets gski = (pki, ski, certi).

Finally, the secret key gski and reg[i] respectively are indexed.

3. Revoke, a probabilistic algorithm, RLt ← Revoke (gpk, grt, ru, reg[i]) where

gpk is the group public key, grt is the group revocation token, gmk is the

revoked user, and reg[i].

These steps are assumed to have been performed uniformly for all following

protocols.

58

5.3.2 Upload Protocol

Figure 5.2: Illustration of Upload Protocol

Figure. 5.2 illustrates how to store and share a data file in the storage cloud

server. The detail process of encryption and tag generation is based on MLE. The

client, GM, and server perform the following operations.

1. The client encrypts the message by taking as input a message M and a

message-derived key k ←$ K(p,M) where p is a public parameter p ←$

{0, 1}k(λ). A ciphertext C is produced by C ←$ Enc(k,M).

2. The tagging algorithm T is produced by using T ← GTag(p,C) in which

GTag is tag producing algorithm to detect duplicates and the client con-

structs the uploading data file and message format as shown in Table. I.

3. The client generates the signature σ by using gpk, gski and the ciphertext

C. GM parses certi as (γ,Ξ) and gpk as (R, R1, R2, pke, pks). The randomness

is generated by (γ′,Ξ′) ← Rnd(gpk, ski, γ,Ξ), φ ← SigEnc(pke, pki, ri) where

ri is random. And then π1 ← P1(〈pke, pks,C, φ,Ξ
′〉 , 〈ski, γ

′, ri〉 , Ri) where π1

is a non interactive zero knowledge proof and denotes signature by σ ←

GSign(φ,Ξ′, π1).

4. The client uploads the ciphertext and signature pair by Upload (C, σ) from

the server.

5. The server must check validation and sends (C, σ) pair to the verifier of the

group manager.

59

6. The verifier generate GVer (gpk, (C, σ), RLt) and checks validation, and σ

parses as (φ,Ξ′, π1) and gpk as (R, R1, R2, pke, pks) and assign the output ’valid’

or ’invalid’.

7. After checking the validation of the group, the server checks whether dupli-

cate tag exists on the server or not.

8. If a duplicate file exists, the server keeps σ as this client becomes one of the

owners of ciphertext C.

9. The server sends response “duplicate file exist” to the client directly and

otherwise, the server replies “no duplicate file exists”. See detail in Figure.

5.2.

Finally, the deduplicated encrypted message will be stored in the cloud after

the above procedure is performed.

5.3.3 Edit Protocol

Figure 5.3: Illustration of Edit Protocol

Assume the server already has a ciphertext C of a message M and a client

wants to update the existing ciphertext C to C′. Therefore the client must have

the original message M1 and must show that he/she is one of the owners of this

ciphertext C. The detail process of encryption and tag generation is based on

iMLE. The pre-operation according to the group signature procedures are operated

in the way of the setup protocol. After some preparations between the group

60

manager and the member, the following operations are performed as shown in

Figure. 5.3.

1. The client encrypts both old and new messages to creates the old ciphertext

C and the new ciphertext C′. A message-derived key is k ←$ K(p,M) where

p is a public parameter p ←$ {0, 1}
k(λ) and k1 ← H(p,M), k2 ← H(p,M′)

where H is a hash function. Then the new ciphertext C′ is produced by

C′← Enc(k2,M).

2. The old-new tag pair (T, T ′) is created by T ← GTag(p,C) and T ′ ←

GTag(p,C′) to check deduplication.

3. The client goes to generate signature σ′ by using gpk, gsk and a ciphertext

C. [Detail steps of signature generation is operated in the same way as

UPL-Dup.]

4. He/she sends a pair of old and new tags, the ciphertext and the signature

by Edit(T , T ′,C′, σ′) to a server.

5. The server asks for the verifier to check signature validation by sending (C′,

σ′).

6. The verifier checks the signature by the algorithm GVer(gpk, (C’, σ′), RLt).

The output is ‘valid’ or ‘invalid’. [Detail steps of verification is operated in

the same way as UPL-Dup.]

7. After checking the validation of the group, the server maps tag T to meta

data table as shown in Table. 5.1.

8. In turn, the server checks the meta data table, whether σ′ and all other σ

clients originate from the same or different group.

9. If so, then server replaces C1 with new ciphertext C′ , edits the tag value T

to T ′.

10. Else if C1 has different σs originating from the different groups, the server

will perform the following three steps.

11. Firstly it saves the updated ciphertext C′ as a new contents C2 and adds the

data column of ownership as shown in Figure. 5.3.

61

12. Secondly, the server clusters the two groups according to the ownership of

original ciphertext C and the new (updated C′) ciphertext C2. For the task

of clustering, we choose the candidate pairs of clusters whose distance are

less than a threshold and merge them.

13. Finally, the server performs the clustering to re-organize the tag value and

ownerships.

5.3.4 Delete Protocol

Figure 5.4: Illustration of Delete Protocol

Figure. 5.4 presents a DEL-Dup protocol for an existing message. A client who

wants to eliminate a message must have signature σ and tag T for the message.

1. The client sends Delete(name, σ) which are a file name and a signature to a

server.

2. The server asks for the verifier to check signature validation by sending sig-

nature and the associated ciphertext (C, σ).

3. The verifier checks the signature with GVer(gpk, (C, σ), RLt). The output is

‘valid’ or ‘invalid’. [Detail steps of verification is operated in the same way

as UPL-Dup]

4. If the server receives the validation of the signature and the revocation list,

then it checks the meta data table which is owned by others.

62

5. After checking the validation of the group, the server maps the tag T to the

meta data table as shown in Table. 5.1.

6. If at that time, the index shows that there are no other owners for the

ciphertext C, then the server deletes this ciphertext and ownership (C, T

and σ).

7. Otherwise, the server has to check the signature of the meta table whose

owners are from the same group or the different groups.

8. If all owners are from the same group, the server deletes this ciphertext C

and all ownership (tag and signature).

9. If some owners come from different groups, the server must perform two

steps. First, the server creates two clusters: cluster1 contains which σ’s

come from the same group and cluster2 contains the others (which come

from different groups). Finally, the server deletes all meta data that exists

in the cluster of σ’s. See Detail in Figure. 5.4.

5.3.5 Restore Protocol

These restore steps are identical to the any MLE or iMLE [20, 21]. When the

user wants to restore a file, the user has to send a request and the file name to

the storage server. If the storage server receives a request, the server asks for

the verifier to check signature validation by sending (C, σ). If it is valid, the

storage server sends the ciphertext and tag (C, T) to the user. The user obtains

the ciphertext C, the user decrypts it and checks the correctness with tag.

5.4 Security Analysis

DDUP-MUG is designed to ensure data confidentiality and group signature secu-

rity for cross-group deduplication system. Generally, there are the two types of

adversaries; that is external adversary and internal adversary. However, DDUP-

MUG resists the external adversary by group authentication. Therefore, we focus

on internal adversary by analyzing the data confidentiality and security for group

signature. The fundamental security of our approaches is inherited from the origi-

nal MLE and iMLE. For the sake of self-containment, we briefly review the security

63

of MLE and iMLE. Both MLE and iMLE concern the privacy of unpredictable data

and duplicate faking attacks.

The privacy of DDUP-MUG schemes is a pre-requisite for the security of the

encryption in these protocols. It concerns plaintexts drawn form a distribution

with negligible guessing probability. More concretely, a CDA (chosen-distribution

attack) consists either of a uniformly distributed string of bits or an encryption

of a message drawn randomly form a distribution provided by adversary [20, 2].

The security level is defined by the distinguisher’s running time, its advantage

over a random guess, and the min-entropy of the distribution that the adversary

is allowed to specify. A lower min-entropy requirement corresponds to a stronger

security guarantee. Concurrently, the deterministic encryption scheme provides

tag consistency quite efficiently. Indeed, if the plaintexts are possible to be re-

covered, the adversary may compute their tags and test them against that of the

challenge ciphertext. Tag consistency provides security against duplicate faking

attacks, which means no efficient adversary can find two ciphertexts with matching

tags that decrypt to different messages [20, 21].

KR game : E xpkr
SE
(λ)

k ← K
(

1λ
)

;

k′← A (ελ,Dλ) ;

return (k = k′)

We take advantage of MLE and iMLE schemes by Bellare et al. [20, 21] to

generate the key, encrypt the message, and produce the tag, all together, in a single

process. The scheme is built by using a deterministic symmetric encryption scheme

SE = (SK, SE, SD) and random oracle hash function family H = (HK, H).

The encryption scheme uses its message space (typically 0, 1) by a parameter

generation HK, and shares a common key generation algorithm. SE consists of a

key generation SK, a deterministic encryption SE and a deterministic decryption

SD. We need key recovery security and real or random security for the scheme

[21]. See KR game in . We denote the KR advantage as Advkr
SE,A
(λ) = Pr[KRA

SE
(λ)]

and SE is KR-secure if Advkr
SE,A
(λ) is negligible for all polynomial time adversary.

64

ROR game : E xpror
SE
(λ) ;

b← {0, 1} ;

m← {0, 1}∗ ;

I f b = 1, then k ← K
(

1λ
)

c← E (k,m) ;

return (c) ;

Else return (b) ;

The formal security definition of real-or-random oracle model is originated from

Bellare et al. [1]. If an adversary A is not able to determine the oracles operation

of real or random, it is assumed that A is unable to guess encryptions and the

encryption scheme be secure with real-or-random security as shown in ROR game.

The advantage of an adversary is defined as Advror
SE,A
(λ) = 2 · Pr[RORA

SE
(λ)] − 1 for

a negligible function of Advror
SE,A
(·).

P$ − CDA game : E xp
p$−CDA

MLE or iMLE,A
(λ)

p← P
(

1λ
)

;

b← {0, 1} ; (m, c′) ← D () ;

For i = 1 to n

ki ← K (mi) ;

c1
i
← E (ki,mi) ;

c0
i
← {0, 1}|c

1

i | ;

b′← A (p, c′) ;

return (b = b′)

Privacy Notation for MLE

MLE is formulated for CDA where encryptions of unpredictable messages should

be indistinguishable (“P$-CDA” stands for privacy for chosen- distribution at-

tack) which is obtained by the real or random oracle model. In the P$-CDA

game definition, M is the message source for MLE. If A is an adversary, we let

Adv
p$−CDA

MLE,M,A
(λ) = 2·Pr[P-CDAA

MLE,M
(λ)]−1. That means our encryption is P$-CDA

secure for MLE-valid sources if Adv
p$-CDA

MLE,M,A
is negligible for all messages. P$-CDA

maintains the indistinguishability of encryptions for two unpredictable message.

65

Theorem 1 Let hash functionH be a random oracle (RO) and SE = (SK, SE, SD)

be a one-time symmetric encryption scheme. Then if SE is both KR (key recovery)-

secure and ROR (real or random)-secure, MLE is P$-CDA secure.

Proof Our DEDUP-MUG scheme adopted the MLE one-time symmetric encryp-

tion scheme and a hash function family H= (HK,H). For SE = (SK, SE, SD):

key generation SK, on input 1λ, output a key K; deterministic encryption SE maps

a key K and plaintext M to a ciphertext C; and deterministic decryption SD maps

a key K and ciphertext C to message M. The probability of Pr[SD(K,SE) =M]=

1 for all λ ∈ N, all K ∈ [SK (1λ)], and all M ∈ {0, 1}∗.

We consider our MLE provide both key recovery and real or random security.

In game KRSE , on input (1λ, run the adversary A. The query at most once to an

encryption oracle with a message M to which the game replies with an encryption

of M under key K. Adversary A outputs a bit string K′ and wins if K′ = K.

Advantage is defined as Advkr
SE,A(λ) = Pr[KRA

SE
(λ)] and we say that SE is KR

secure if Advkr
SE,A
(λ) is negligible for all polynomial time adversary.

In game RORSE , on input (1λ), firstly choose a random bit b, and then run

the adversary A. Adversary A can make multiple queries to an encryption oracle,

each query a plaintext M ∈ {0, 1}∗. If b = 1, then encryption oracle will choose

a random key K ←$ SK(1λ) and return C ←$ (SE(K,M)). Here, we assume

each encryption uses a fresh key. If b = 0, encryption oracle will return a random

bit string. Adversary needs to guess b to win with advantages of Advror
SE,A
(λ) =

2 · Pr[RORA
SE
(λ)] − 1 for a negligible function of Advror

SE,A
(·).

We prove P$-CDA is secure when H is a RO. Now, we have P$-CDA1 with

b = 1 and P$-CDA0 with b = 0. A standard argument be

AdvP$-CDA
MLE,A

(λ) = 1/2(Pr[P$-CDA1A
MLE,M(λ)] − Pr[P$-CDA0A

MLE,M(λ)]).

We say that adversary A win with probability of a negligible function of

AdvP$-CDA
MLE,A

(·). Our scheme is essentially the same as the scheme of original MLE

with encryption, which seems necessary to achieve our notion of security for chosen

distribution attack.

66

Privacy Notation for iMLE

We inherit the feature of interactive iMLE which is introduced by Bellare [21].

The primary security requirement for our encryption schemes is the privacy of

unpredictable data as described in P$-CDA game.

Theorem 2 Let H be an RO and SE be both KR-secure and ROR-secure, then

iMLE is P$-CDA -secure.

Discussion

If we use a collision resistant hash function as H as well different security has been

proved. See Theorem 1 proof for the details.

TC game : E xpTC
π (λ)

p← P
(

1λ
)

;

k ← K (m) ; (m, c′) ← A (p) ;

I f m = ⊥ or c′ = invalid,

then return f alse :

m′← D (k, c′) ;

t ← T (E (k,m)) ; t′← T (c′) ;

I f t , t′ then return f alse

I f m = m′ then return f alse

I f m = ⊥ then return f alse

return true

Tag Consistency

We turn to security in the sense of tag consistency. The adversary colludes with

some users and performs the duplicate fake attacks to the data on the storage

server. Specially, the adversary and these colluders may upload their data to

the deduplication based system. They upload the correct tags, but replace the

data with wrong data. To resist these problem, tag consistency (TC) aims to

provide security against the duplicate faking attacks in which a legitimate message

is undetectably replaced by a fake one. Both MLE and iMLE have a guarantee

67

for TC security so that an adversary cannot make a client recover a file different

from the one he/she uploaded [20, 21].

Theorem 3 Let SE = (SK, SE, SD) be a one-time symmetric encryption scheme

and tag consistent with any probabilistic polynomial-time adversary A, then no

efficient A has non-negligible TC advantage so that Adv
exp

π,A
(λ) = Pr[E xp

π,A
TC
(λ) →

true] is defined, see TC game.

Proof We consider the TC game and let A be an adversary. Let Adv
exp

π,A
(λ) =

Pr[E xp
π,A
TC
(λ)]. We say that MLE is TC secure if AdvTC

MLE,A
(·) is negligible.

We consider adversary A creates and upload C′. A honest client, having M, A

is allowed to pick M,computes K$ → KP(M), and uploads C$ → EP(K,M). The

server finds that the tags of C and C′ are equal and thus continues to store only

C′. Then, the honest client downloads C′ and decrypts under K. It expects to

recover M, but in a successful deduplicate-faking attack. It recovers instead some

M′ , M. TC security protects against this.

Security of Signature

The adversary tries to obtain the signature, and recover the user’s data. Specially,

the adversary compromise the storage server. However, each group is generated

by unlinkable and randomizable group signature [148] . DDUP-MUG ensures the

security of group signature.

GS game : E xpGS
URS,A

(λ)

b← {0, 1} ;

(gpk, gsk) ← KeyGen
(

1λ
)

;

(T0, σ0,T1, σ1) ← A (gpk, gsk) ;

I f GVer = (pk,T0, σ0) = 0 or

GVer = (pk,T1, σ1) = 0

then return f alse

σ′← Rnd (Tb, σb) ;

b′← A (sk, pk,T ′) ;

return b′

68

Theorem 4 A group signature GS = (keyGen, GSign, GVer, Rand) is unlink-

able and randomizable for any probabilistic polynomial time algorithm Algo, the

probability between E xp
urs,Algo

GS
(λ) is negligible (defined GS game) [148].

Pr[E xp
urs,Algo

GS
(λ) = 0] = Pr[E xp

urs,A
GS
(λ) = 1] < ǫ(λ).

Proof: For any adversary that is not computationally restricted, a group signa-

ture generated by an honest group member is always valid by Definition 1. Ver

will always correctly identify the signer the above GS game; the output of GS will

always be accepted by the verification algorithm.

We now prove the correctness of the revocation list of our scheme.

Theorem 5 Revocable Group Signature GS is correct, as defined in Definition 2.

Proof: We consider public parameter gpk = (R, R1, R2, pke, pks), secrete key gsk

where each i, gski = (pki, ski, certi); revocation list RLt = (gpk, grt, ru, i) as output

by key generation algorithm.

An honest signer with secrete key gski for each i generates a signature σ =

GSign(φ,Ξ′, π1).

In particular, the signer computes the generators by Definition 2. Therefore,

the verifier uses the same generators. Now, the first part of signature verification

algorithm accepts a signature if GVer = (gpk, RLt, σ,m) = 1.

As mentioned above, the adversary cannot obtain other users’ data by com-

promising the storage server or colluding with users. All messages and metadata

stored in the storage server is encrypted and the group signature is also randomize.

DDUP-MUG can ensure the data security of cloud deduplication.

5.5 Chapter Summary

In this chapter, we have proposed a scheme that supports secure deduplication

where several groups are sharing data by using MLE. Multiple group deduplication

being present, it is essential to try it out a real system. In doing so, we are

taking the utility of an existing source rather than proposing an entirely new

69

one. We first propose three frameworks with cross-group setting which can protect

against duplication faking attacks and defend from the unpredictable data attacks.

DDUP-MUG fits the original framework of deterministic MLE while satisfying

multiple group features by adding the signature scheme. Generally, DDUP-MUG

composed of three protocols: UPL-Dup protocol, EDT-Dup protocol, and DEL-

Dup protocol. Moreover, DDUP-MUG reduces the bandwidth by sending only

tag and signature pair while checking verification and duplication. DDUP-MUG

ensures both the message security, tag consistency and the bandwidth efficiency

among the cross-group. DDUP-MUG supports extended demands that arise in

realistic and secure scenarios.

70

Chapter 6

Multiple Group Signcryption

In a secure data deduplication scheme, normal public key cryptographic techniques

do not support the removal of redundant files. In order to solve this deduplication

problem, a message-derived key can be used on encryption and then the same

ciphertext of the same plaintext will be identical. Another problem of the dedu-

plication is the ownership of ciphertext; the designated group users need to prove

the membership and ownership of the ciphertext. If a tag can consequently gen-

erate parallel by the ciphertext, the tag management will be effective in a large

amount of encrypted data on the cloud. As both the original message and the

signature are encrypted, the filtering process at the storage server cannot authen-

ticate the message independent of the endpoint user. The cloud storage cannot

access the signature and the message cannot be decrypted without the receiver

key. In addition, we have to think about third parties who should be able to verify

the signcrypted message without using any information from the users.

This chapter propose a novel signcryption scheme, “Verifiable Hash Convergent

Group Signcryption (VHCGS)”, which possess two properties: group signcryption

and proxy signcryption. At the cloud deduplication level, multiple groups of clients

can perform signcryption simultaneously and CSP performs verification to further

remove the duplicates files, resulting in cost and space reducing. Our proposed

scheme is meant to allow to operate such as uploading a signcrypted file through

CSP and downloading/ unsigncrypting a file from the CSP. Our VHCGS consists

of partial unsigncryption which allows the CSP to check the validity of the true

owner of the file and tag correctness which allows the user to check the integrity

of its data against the semi-honest CSP.

71

6.1 Background

6.1.1 Signcryption

Signcryption is a cryptographic primitive which can provide confidentiality and in-

tegrity simultaneously [54]. From the viewpoint of data encryption and user own-

ership, there is a solution called signcryption which has been designed by adding

encryption and signature properties [145, 146]. Signcryption is an asymmetric

cryptographic method that can simultaneously provide message confidentiality and

unforgeability with a lower computational and communicational overhead.

Zheng et al. proposed original signcryption which is “Cost (Signcryption &

Encryption) ≪ Cost (Signature) + Cost (Encryption)” [145]. It is used to send

a message from a sender to a receiver with authenticity and confidentiality. A

signcrypted message moves from the sender to the receiver. However, anyone

cannot examine the contents of ciphertext except the designated receiver. Fur-

thermore, anyone cannot decide the authenticity of the original message. Gamage

et al. proposed a new signcryption method for public verification [67]. Kwak et

al. proposed the distributed signcryption using distributed encryption where any

party can signcrypt a message and distribute it to a designated group and any

participant from the receipent group can unsigncrypt the original message [79, 80]

.

6.1.2 Original Signcryption Scheme

Zheng’s signcryption [145, 146] refers to an original cryptographic method that

involves the functions of encryption and digital signature simultaneously. The

scheme provides a method to save the computational cost of encryption and sig-

nature compared to traditional signature-then-encryption. This signcryption is

based on the Digital Signature Standard (DSS) with a minor adjustment. Assume

Alice (a sender) signcrypts a message and Bob (a receiver) unsigncrypts the mes-

sage. (xa, ya = g
xa) and (xb, yb = g

xb) are the private key and public key pairs for

Alice and Bob, respectively. hash (·) denotes a one-way hash function, hashk (·) a

keyed one-way hash function with key k, and Ek (Dk) a symmetric encryption and

decryption [18].

72

Signcrypt: Choose z ∈R ZR. Compute k = y
a
b
mod p. Divide k into k1 and k2.

Compute r = hashk2 (m), s = z (r + xa)
−1 mod q, and c = Ek1 (m).

Unsigncrypt: k = (ya · g
r)s·xb mod p. Split k into k1 and k2. Compute m =

Dk1 (c). Verify r
?
= hashk2 (m).

6.1.3 Public Verifiable Signcryption Scheme

Generally, signcryption is used to send a message from a sender to a receiver with

confidentiality and integrity. One notices that the third party such as proxy or

firewall which are widely used today. When a signcrypted message passed through

a third trusted party (proxy), it cannot determine the authenticity of the message

and it becomes an issue.

Bao et al. [18] proposed a signcryption scheme that allows a third party to

publicly verify the message. Nonetheless, it does not offer confidentiality.

Gamage et al. [67] proposed an alternative scheme for publicly verifiable scheme

the origin of a ciphertext by anyone (a signature (r, s) on the encrypted message c.

This is accomplished in such a way that a storage server can verify that (r, s) is a

valid signature c. The Gamage’s signcryption departs from the naive “Encryption-

then-Sign” composition because c is encrypted by using the random value x.

Signcryption: Choose an integer x randomly from {1, ..., q − 1} and compute

k = hash
(

y
b
x mod p

)

and y = third trusted party) without learning anything about

the plaintext. In this scheme, a ciphertext (c, r, s) can be thought of as containing

a mod p. The signcrypted message (c, r, s) is computed by Alice as c = Ek (m),

r = hash (y, c), s = s
r+xa

mod q.

Unsigncryption: Bob can recover the message by full unsigncryption from(c, r, s),

y = (yag
r)s mod p, k = hash(yxb mod p) and m = Dk (c). If hash (y, c)

?
= r and

the signature is accepted.

Signature Verification: Any verifier will compute from(c, r, s), y = (yag
r)s mod

p and this step is called partial unsigncryption for signature verification. If hash (y, c)
?
=

73

r and the signature is accepted. Finally, the verification process is performed with-

out recovering the message.

Unfortunately, the above schemes do not support in the multiple user setting.

6.1.4 Group Signcryption Scheme

In this section, we review the Kwak-Moon’s group singature scheme [79, 80]. The

sender and the receiver belong to group A (GA) and group B(GB) respectively.

Additionally, each of communication is a session and the session key does not help

an attacker to determine the session key from another session. GA and GG share

a session key based on the strong RSA assumption. The scheme consists of the

following five algorithms: Setup, Join, Signcryption, Unsigncryption, and Open.

Setup: The GM (group manager) initiates the setup protocols to generate sig-

nature key, verification key and signature key for each corresponding.

Join: An entity i who wants to join a group generates his own secret key ǫi and

computes the membership key τi. The GM generates each membership certificate

and a group public key.

Signcryption: Assume that Alice is a sender from GA and the receiver belongs

to group GB. Alice wants to signcrypt a message with and then she sends it to

the group GB using group GB’s public key. To signcrypt a message m, Alice uses

the one-way hash function and symmetric key encryption and identity of GA.

Unsigncryption: Bob who belongs to GB can unsigncrypt the signcrypted mes-

sage using his membership and group public key. And he discovers the session key

and decrypts ciphertext and verify the signature certificate.

Open: In the case of a dispute, Bob forwards the c1, ω and his public key to the

GM of GA after decrypting signcrypted message and identifying the IDGA
. The

GM can then identify the group member, Alice, who issued the signcryption by

testing whether signature is valid or not.

74

6.2 Proposed Scheme Architecture

We use Bellare’s Hash Convergent Encryption in [20] as the initial scheme to

work with because of the following reasons. HCE will encrypt identical data into

identical ciphertexts. Another reason why we take advantage of Bellare’s HCE is

for its tag consistency. In the process of decryption, the tag Tag of the ciphertext

is checked by re-generating the decrypted tag Tag′. If these two tags are unequal

(Tag , Tag′), then it returns false.

Furthermore, we follow the Kwak-Moon’s group signcryption [79, 80] for the

properties of the group signature. In particular, the group manager GM is trusted

by every group member and he publishes the group public key and correspond-

ing secret key. Verifiable Hash Convergent Signcryption consists of five tuples:

(KeyGen, Join, Signcryption, Partial Unsigncryption, Unsigncryption).

Assume that a sender of a group signcrypts a message and sends it to the server

that is associated with the designated group. The server can partially unsigncrypt

the ciphertext, that is checking the validity of the ciphertext and the signature. To

follow the third party verifiable signcryption, we inherit the properties of Gamage’s

proxy verifiable signcryption scheme [20]. In this scheme, the proxy(the trusted

third party) can verify the ciphertext and the signature without recovering the

original message.

Thereafter, we construct our proposed VHCGS according to the following al-

gorithms.

6.2.1 KeyGen

The GM will do the following:

• Choose two random secret lp bit primes p, q such that p = 2p + 1, q = 2q + 1

are prime. Set the modulus n = pq.

• Choose random elements a, a0, h ∈R QR (n) (of order p, q) where QR is defined

as the set of quadratic residues.

• Choose his secret element x ∈R Zpq and sets y = g
x mod n.

75

Then the group public key is Y = (n, a, a0, y, g, h) and the corresponding secret key

is S = (p, q, x).

6.2.2 Join

Our scheme is based on the premise that the strong RSA assumption is compatible

with the underlying group signature. The detailed steps of Join are as follows:

• User Ui who wants to join a group generates his own secret xi and sends it

to the group manager through an interactive protocol as in the Kwak-Moon

scheme. Ai denotes (a
xia0)

1/ei mod n.

• Ui computes yi = g
xi mod n and sends yi to the GM.

• The signature σi for yi is calculated by the GM and then the GM chooses a

random x ∈R Z
∗
pq and computes y = g

x mod n.

• After receiving each member’s (yi, σi), the GM checks whether the (yi, σi)’s

are valid or not. If they are all correct, the GM then computes the members’

αi = y
x
i
mod n and generates the group secret shared key

κ = H0 (c | |α1 | |...αN), where c is the initial vector, H0 (·) is a one-way function,

and N is the size of the group.

• The GM sends (κi, c, y, σs) to each member, where κi is κ
⊕

H1 (c | |αi) ,H1 (·)

is another one-way hash function different from H0 (·), and σs denotes the

signature of κi | |c | |y. Each member checks the signature σs, then computes

σi = y
xi mod n and recovers the shared secrete value κ with all the group

members and publishes Ω = g
k mod n.

6.2.3 Signcryption

Consider Ui belongs to the designated group Ga. Ga and Gb are the different group

and Vj is the third party (server) who can partially unsigncrypt the message to

check the validity of the signature and the ownership of the ciphertext. The Ga’s

public key is ya = (n, a, a0, y, g, h,Ωa) and the corresponding GM’s secret key is

Sa = (p
′, q′, x). Armed with (xi, Ai, ei, yi, αi,Ωa), a group member Ui in group Ga

can then generate and send an encrypted group signature of the message (C1,C2)

to Vj as the server.

76

• Choose r1, r2 ∈R {0, 1}
2lp and compute the session key ks = F (gr2), where

F (·) is a suitable hash function such that |F (·)| < |n̄|.

• Compute the message derived key km ← (p,m) where p is the public param-

eter.

• Compute C1 ← (b0, b1) ←
(

n̄r1, κsΩ
r1
b

)

, σ = Eks (m| |C1), C2 = HCE (m, km),

Tag = (C2,Km), C3 = σ | |C2, where σks (·) is the Kwak-Moon group signature,

HCEkm (·) is hash convergent encryption.

• Send (C1,C3,Tag) to the server.

6.2.4 Partial Unsigncryption

Assume server Vj join the the destinated group and get ks and y. Vj can par-

tially unsigncrypt by using his group’s ks to do the following with ciphertext

(C1,C3,Tag).

• Recover the session key ks ← b1 (b0)
k j and message derived key km ←

(p,C2)
k j .

• Unsigncrypt DKs
(C3) = C2 | |σ.

• Verify the signature: if hash (C2 | |σ), accept the signature.

6.2.5 Unsigncryption

User U j , one of the receivers in the group Gb, uses his group’s kb to do the following

with ciphertext (C1,C3,Tag).

• Recover the session key ks ← b1 (b0)
ka .

• Unsigncrypt Dks (C3) = C2 | |σ.

• Verify the signature using the same verification process as in the Kwak-Moon

scheme.

• Decrypt HDCkm (C2) = m by using the hash convergent decryption process

on input km.

77

• Calculate tag Tag′ = Hash (H,H (km,m)).

• If Tag = Tag′, then the message is valid; otherwise invalid.

6.3 Application in Cloud Computing

This section focuses on cloud environment deduplication. We propose a framework

which consists of embedding VHCGS protocol along with signcryption, partial-

unsigncryption and unsigncryption. The design of the proposed framework for se-

cure cloud deduplication involves three participants: group manager, group mem-

ber/ client and the cloud storage server/ verifier as shown in Figure. 6.1. In our

proposed cloud deduplication application aims the following:

• to support Multiple Group Setting which many groups may simultaneously

join to the storage server.

• allow third party to publicly verify the signcrypted message (without getting

any information of original message)

To consider a more specific application, we built the scenario of the cloud

deduplication for VHCGS. First, we design an upload protocol to store a new

ciphertext at the storage server. Then we demonstrate a download protocol by

which the client can restore a ciphertext by verifying ownership. We assume that:

• a user may register in a group,

• there may be one or more group which connected to the storage server, and

the storage server is assumed as a third party for verifier,

• the storage server is allowed to check the ownership of the particular message

via the verification process,

• the user (who can proof as a owner) can download the message and unsign-

crypt the original message,

• the correctness of the message can be checked.

78

Figure 6.1: Cloud Deuplication by using VHCGS

6.3.1 System Setup Protocol

Every client, the GM and the storage server perform the setup operations as shown

in Figure. 6.2 . This step is assumed to have been performed uniformly as a setup

for the entire framework which consists of KeyGen and Join from our VHCGS.

The GM initiates the KeyGen algorithm of the VHCGS scheme and establishes

the group public key gpk and the group manager secret key gsk. When a client

wants to join the group as a new group member, the client generates his own secret

key usk and sends it to the GM. Join is an interactive protocol between a member

and the GM. After that, the GM checks the validity and defines user ID and shares

gpk. Thereafter, the GM establishes the connection (Join Verifier) between the

verifier of the server by using gpk and authentication ID of the verifier.

79

Client Group Manager Verifier

(Ui) (Ga) (Vj)

0. KeyGen
(

1
λ
)

1.Registrate User (usk)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2.Join (gpk, gsk, umk)
←−−−−−−−−−−−−−−−−−−−−−−−−−−→

3.JoinVerifier (gpk, auth)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 6.2: VHCGS Setup Protocol for Cloud Deduplication

Client Verifier Server

(Ui) (Vj)

1. Signcrypt (C1,C3, Tag)

2.Upload (C1,C3,Tag)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

3.Verify(C1,C3,Tag)
←−−−−−−−−−−−−−−−−−−−−−−→

4.Checkdup

5. If new, keep (C3, Tag)

Otherwise, keep (uid)

Figure 6.3: VHCGS Upoad Protocol

Client Verifier Server

(Ui) (Vj)

1. Download (f ilename,C1)
−−−→

2.Check-ownership (C1, gpk,C3)

3.Obtain (C3)
←−−

4.Unsigncrypt (C3, gpk, usk)

5.Check Tag Correctness

Figure 6.4: VHCGS Download Protocol

6.3.2 Upload Protocol

Figure. 6.3 illustrates the deduplicaiton process when a client stores and shares a

data file in the storage cloud server. The detailed process of the upload protocol

80

is based on our VHCGS scheme.

Firstly, the client generates a signature of file as C1. Then he encrypts the file

m to C2 and generates a tag by using the ciphertext C2. The ciphertext of the file

and the ciphertext of the signature is signcrypted into C3. After that, the client

uploads the ciphertexts and the tag pair (C1, Tag) to the server. The server asks to

the verifier for verification of the ciphertext. The verifier can partially unsigncrypt

to check the validity of the file and return ‘valid’ or ‘invalid’.

After checking the validity of the group, the server checks whether there exists

the same ciphertext on the server. If no duplicate file exists on the server, the server

keeps C1 → σ as the signature (ownership) of the message, C3 as the ciphertext of

the file and Tag to check for fake deduplication respectively. Otherwise, the server

stores only σ as the new signature (ownership) of the existing ciphertext.

Finally, the deduplicated encrypted message will be stored in the cloud storage

server after the above procedure is performed.

6.3.3 Download Protocol

When a client tries to download a file from the storage server, the following steps

are performed as in Figure. 6.4. He has to send a download request to the server

by using his signature (ownership) of the file. The server asks to the verifier for

verification of the ciphertext. As the verifier can partially unsigncrypt to check the

validation of the file, return ‘valid’ or ‘invalid’. The server checks the ownership of

the ciphertext. Once the server finishes the validation of signature and ownership

of message, it gives the ciphertext to the client. Then, the client unsigncrypts the

ciphertext. Finally, the client check the tag for the correctness of the ciphertext

C2. In the restore session, the only owner from the designated group can decrypt

the ciphertext. The Tag is useful for checking deduplication fake.

6.4 Application in Mobile Data Transmission

According to our VHCGS, the signcryption algorithm for each message takes input

for real or random and the result of signcryted message is polynomial size. There-

fore, we can apply VHCGS in GSM (Global System for Mobile Communications)

81

Figure 6.5: Multiple Group SMS transmission by using VHCGS

especially in SMS (Short Message Service) application. Here, we demonstrate how

the VHCGS scheme can be used in this framework. An SMS transmission sys-

tem is composed of a set of protocols in which four participants are involved: the

clients, the group manager for each group of the clients, and the service provider

as shown in Figure. 6.5.

6.4.1 System Setup

The client, the group manager and the mobile service provider perform the follow-

ing operations. These steps are assumed to have been performed uniformly as a

setup for the entire protocol.

• The group manager initiates the KeyGen algorithm of the VHCGS scheme

and establishes the group public key and the group manager secret key.

• Join is an interactive protocol between a client and the group manager.

When a new client wants to join the group, the group member generates his

own secret key and sends it to the group manager. After that, the group

82

manager checks the validity and defines user ID and the share group secret

key.

6.4.2 Signcryption

In Figure. 6.5, a message is sent from one group to another group via the service

provider. The detailed process is based on our VHCGS scheme.

• The client generates the signature of file C1.

• And encrypts the file m to C2.

• Then, the client signcrypts the ciphertext of the file and the ciphertext of

the signature into C3.

• Finally, the ciphertexts (C1, C3) is uploaded to the storage provider.

6.4.3 Partial-Unsigncryption

In these steps, the storage server can check the validity of the ciphertext and

deduplicate at the service provider side, too.

• The CSP partially unsigncrypts to check the validity of the file and return

‘valid’ or ‘invalid’.

• The CSP checks whether the redundant ciphertext is exist or not. If there

is any duplicate file existing at the storage server, the new redundant file is

removed and the index goes to the identical message.

6.4.4 Unsigncryption

When the CSP forwards the ciphertext to the destination group, any participants

from the destination group can decrypt the original message by the following steps.

• The service provider forwards (C1, C3) to the destination group.

83

• Any clients from the destination group decrypt the ciphertext by discovering

the session key and the public key of the group member.

• Finally, the client unsigncrypts the ciphertext.

6.5 Security Analysis

Since it is supposed to provide encrypted group signature, the proposed scheme

should have both the group signature’s security properties and confidentiality at

the same time. In addition, it should also have a membership identification pro-

cess that confirms whether or not the signer of the signature is indeed the sender

to guard against possible misuse by a non-group member with another member’s

group signature. For the proposed encrypted group signature, most of these prop-

erties depend on the Kwak-Moon scheme that is based on the strong RSA assump-

tion.

Correctness: The signcrypted message produced by a valid group member must

be accepted by the unsigncryption by checking the Tag , which can be shown by

inspection of the protocol.

Definition 4 (Tag Correctness:) A signcrypted message of VHCGS (·) is tag consistent,

if for any a probabilistic polynomial time adversary A for HCE (·) is secure.

Tag provide security against duplicate faking attack in which a message is

replaced by a fake one. In such way, we can prevent from the adversary A creating

and uploading message C′ [19].

Unforgeability: Only valid group members are able to signcrypt a message

on behalf of the group. If we assume that the hash keyed function behaves as

a random function hashk (·), then the group private key will not be revealed to

anyone. Therefore this is an unforgeable protocol.

84

Anonymity: The groups’ and the entities’ information are encrypted by Ek (·)

and HCE (·). No one (including the receiver) can extract the information about the

signer except the group manager. The formal security definition of real-or-random

oracle model is originated from [19] .

Definition 5 (ROR): Let SE=(Gen, Enc, Dec) be a public key encryption system

with security parameter λ. An adversary of ROR game is define as follows for

{real, random}:

ROR game : E xpror
SE
(λ)

b← {0, 1} ;

m← {0, 1}∗ ;

I f b = 1, then k ← K
(

1λ
)

;

c← E (k,m) ; return (c) ;

Else return b;

If an adversary A is not able to determine the oracles operation of real or

random, it is assumed that A is unable to guess encryptions and the encryption

scheme be secure with real-or-random security as shown in above ROR game. The

advantage of an adversary is defined as Advror
SE,A
(λ) = 2 · Pr

[

RORA
SE
(λ)

]

− 1 for a

negligible function of Advror
SE,A
(·) .

Theorem 6 (VHCGS-CDA): Let HCE (·) is ROR secure mode ∈ {real, random}then

the VHCGS is in a security model for chosen distribution attack.

Proof We consider as same as the HCE . In game RORSE , on input (1λ), firstly

choose {real, random} mode, and then run the adversary A. Adversary A can

make multiple queries to an encryption oracle, each query a plaintext M ∈ {0, 1}∗.

If b = real, then encryption oracle will choose a random key K ←$ SK(1λ) and

return C ←$ (SE(K,M)). Here, we assume each encryption uses a fresh key. If

b = random, encryption oracle will return a random bit string. Adversary needs to

guess b to win with advantages of Advror
SE,A
(λ) = 2 ·Pr[RORA

SE
(λ)]−1 for a negligible

function. We say that hash function H is secure in VHCGS-CDA if Advcda
VHCGS

(·)

is negligible.

85

VHCGS − CDA game : E xpHCE
cda
(λ)

(pk, sk)
R
← Gen

(

1λ
)

;

(m,mode)
R
← A

(

1λ
)

;

i f mode = real,

C ← Encpk (m, r) ;

i f mode = random,

m′
R
← M,C ← Encpk (m

′, r) ;

b
R
← A (C,mode) ;

return b

Unlinkability: It is computationally difficult to figure out whether two sign-

crypted ciphertexts (C3,C
′
3
) were generated by the same group member or not.

C1 is generated using a random r1, while C2 is encrypted using HCE (·). Even if

the receivers can decrypt the ciphertext, they cannot determine it because of the

Kwak-Moon-scheme and the Bellare-HCE scheme.

Exculpability: No one can obtain any information about a group private key

xi from α (= y
xi). Thus the value of xi is computationally hidden. Moreover, GM

cannot signcrypt on behalf of a group member because computing the discrete

logarithm is assumed to be infeasible.

Traceability: Any verifier can partially unsigncrypt (C1,C3,Tag) to check the

validity of membership and can recover the membership certificate via the facilities

of the Gamage-scheme and the group signature properties.

Coalition-resistance: The underlying the Kwak-Moon group signcryption is a

provably secure coalition-resistant scheme and the secret shared key k computed by

the GM cannot be computed by any coalition attack except valid group members

who know his αi = y
xi , where xi is the entity’s private key.

86

Membership identification: A signcrypted message C3 is generated by a non-

group member. C1 cannot be computed from σ (m| |C1) without a verifiable session

key. Hence, only valid group members can generate valid encrypted group signa-

tures.

Confidentiality: According to Bellare’s HCE scheme, the adversary does not

know about the secret information of the user. Furthermore, the adversary can

recover neither signature nor data information without finding out the session key

ks.

The signed message C3 is encrypted by HCE (·). Even if an adversary got the

ciphertext C3, the confidentiality of the data is still ensured.

Definition 6 (Session Key Freshness) A protocol excecution that entity B believes

it has undertaken with entity A and using session identity session key is fresh if

1. entity B has successfully terminated the protocol execution,

2. the attacker has not required the Reveal oracle on the input (IDGA
, IDGB

,

session key) unless the attacker has called the Expire (IDGA
, IDGB

, session key)

oracle,

3. the attacker has not required the Reveal oracle on the input (IDGB
, IDGA

,

session key) unless the attacker has called the Expire (IDGB
, IDGA

, session key)

oracle,

4. the attacker has not required the corruption oracle on either IDGA
or IDGB

.

Theorem 7 (IND-VHCGS-CCA): If session key establishment is secure for out-

sider then the VHCGS is in a security model in which the attacker make no Expire

queries and in which session identity is defined to be ciphertext C.

Proof We say that our VHCGS signcryption scheme, which is proved to be secure

against distinguisher under adaptive chosen-message attacks if Pr[E xp
ind−vhcgs−cca

ghcgs,A
(λ)

=1] ≤ ǫ(λ) for all adversaries A running on polynomial time algorithm and sending

at most qs queries to sincryption oracle on each sender and qu queries to unsign-

cryptin oracle for each receiver in the following experiment: E xp
ind−vhcgs−cca

ghcgs,A
(λ).

87

• The challenger C runs algorithm K → Setup(1k) of signcryption scheme and

give the adversary A K. And C runs KeyGen(K, IDi) to generate all key pairs

(pkIDi, skIDi), secrete parameter skIDi for all i. The challenger implements

the oracles for A.

• The adversary A receives all public keys of honest parties and may start

to perform at most qs to signcryption oracle on each sender and qu queries

to unsigncryption oracle on each receiver and makes a polynomial umber of

Corruptcorruption queries and EstablishParty quries where the number of

EstablishParty is determined by the session time t by Definition of “Session

key freshness”.

• At the end of the game, A may terminate with the output of a signcrypted ci-

phertext CA and identities of sender ID and receiver ID. Finally, 0 is returned

if one of the following conditions holds:

– the sender ID is corrupted,

– Unsigncyption =⊥;

otherwise, return 1.

The proof of security is made possible by a technical detail in the security

model: the definition of C as the session identity and the inability of the attacker

to expire session. These combine to mean that the attacker cannot re-submit a

ciphertext C to entity B as this would involve sending to completed session.

6.6 Chapter Summary

We have proposed a signcryption scheme that supports secure deduplication where

several groups are sharing data by using VHCGS. This is an attempt to try out

cross-group user deduplication in a real cloud environment. We use VHCGS

scheme not only in the cloud deduplicaiton but also in SMS transmission which

can protect against duplication for the service providers and defend against unpre-

dictable data attacks. VHCGS fits the original framework of deterministic hash

convergent encryption while satisfying a group feature by adding the cloud server

verifiable group signcryption. VHCGS is composed of three protocols: a setup

protocol, an upload protocol, and a download protocol. VHCGS ensures both

message security and tag consistency as well as the bandwidth efficiency of the

88

group user and cloud storage server. VHCGS supports the extended demands

that arise in realistic and secure scenarios.

89

Chapter 7

Related Research and Future

Improvements

The one of the most important of cloud service is information security and pri-

vacy to give the owners. And information on the cloud became frequently large

amount of increasing in a scrambled frame. As we mention in previous chapters,

encryption information presents the difficulties for cloud deduplication, which gets

to be distinctly vital for handling in cloud. Even conventional deduplication plans

are good ways to keep the storage size of the cloud, we would like to try the

other approaches to control the storage size and ownership of the information.

Hence, we will present the new proxy re-encryption scheme to improve the cloud

deduplciation. In this paper, we propose a plan which can be used in deduplicate

encoded information put away in cloud of ownership properties of message and

intermediary re-encryption.

This chapter presents features in related studies that could be applied to im-

prove the deduplication framework but were outside the scope of deduplicaple

state.

7.1 Proxy Re-encryption

Proxy Re-Encryption (PRE) is a public key cryptosystem which allows a semi-

trusted proxy to transform a ciphertext encrypted under one key into another

ciphertext of the same plaintext under another key, without revealling any infor-

90

mation of the plaintext. The concept of the proxy cryptosystem which is also called

proxy decryption, is introduced by Mambo et al. [91]. A proxy decryptor decrypts

the encrypted ciphertext by Alice’s public key on behalf of Alice. In 1998, Blaze

et al. [30] proposed the notion of proxy re-encryption which is similar to the proxy

cryptosystem. In proxy re-encryption, the proxy converts Alice’s ciphertext to a

new ciphertext for Bob without exposing the plaintext. Thus, the proxy should be

key independent to avoid compromising the private keys of the sender (Alice) and

the receiver (Bob). The scheme is only useful when the mutual trust relationship

exists between Alice and Bob. In the PRE scheme, a proxy with re-encryption

keys can change a ciphertext for Alice (a delegator) into another ciphertext of the

same plaintext for Bob (a delegatee). The proxy cannot get any information about

the plaintext or the private key [30, 41, 74, 110].

The PRE scheme can be calssified into two types: unidirectional PRE schemes

and bidirectional PRE schemes. In the unidirectional proxy re-encryption [77],

Alice can delegate to Bob without having to delegate to Alice without any secret

key of Bob. It only requires the secret key of Alice and the public key of Bob to

discover a re-encryption key from Alice to Bob. It does not allow Bob to Alice

(the reverse direction).

In 2010, Matsuda, Nishimaki, and Tanaka [93] proposed a bidirectional proxy

re-encryption scheme without bilinear maps. The re-encryption key to converting

ciphertext from Alice to Bob can be also used to translate from Bob to Alice.

Canetti and Hohenberger [41] proposed the CCA (chosen ciphertext attack) secure

bidirectional multi-hop PRE scheme in the standard model by using the bilinear

maps. A bidirectional single-hop PRE scheme without bilinear maps is considered

by Deng et al [53] in 2008 and then it is also CCA secure in random oracle model.

Bidirectional PRE schemes have attracted much attention from the cryptogra-

phy community [14, 30, 73, 77, 89, 94, 103, 134] because they have many interesting

and useful applications, such as the email forwarding, the encrypted files distribu-

tion, the digital rights management [104] and the cloud data sharing [62].

There is another type of PRE scheme which is called group-based proxy re-

encryption. Group communication becomes popular in many applications. Gener-

ally speaking, two groups are supposed: a sender group and a receiver group. Any

member from the sender group can encrypt a message and send to the designated

receiver group. Any member from the designated receiver group can decrypt the

ciphertext. However, there have some problems such as proxy re-encryption or for-

91

warding message. For example, by dividing tasks among a group A and another

group B, an encrypted message from the group A should be allowed to decrypt by

the group B. Such kind of scenarios is supported by the group-based PRE scheme,

which was first proposed by Ma et al.[90]. Their scheme is bidirectional proxy

re-encryption scheme. In their scheme, a message is sent from the group A to the

group B, any member from the group B can decrypt the ciphertext. And the proxy

allows the reverse direction. Because re-encryption key is generated by using the

private key of the group A and the group B.

In 2006, Ateniese [14] proposed a proxy re-encryption scheme which supports

unidirectional proxy re-encryption and uses the delegator’s private key for protect-

ing the collusion of a proxy and a delegatee. However, this scheme is lacking the

non-transferable property. This problem was first addressed by Libert in 2008 [89].

The proxy and delegatee are quite difficult to protect from colluding. Libert et al.

solved the problem instead of preventing the collision of proxy and delegatee, by

using traceable proxy re-encryption. However, it cannot prevent the re-delegation

of the proxy.

Wang et al. [134] proposed “identity-based proxy re-encryption scheme” to

solve the problem of proxy colluding, in 2010. Their major advantages are that

the proxy and the delegates cannot delegate the decryption right to the others

without the permission of the public key generator (PKG). However, PKG in their

scheme can decrypt both of the original ciphertext and the re-encrypted ciphertext.

This means that the transferable problem still cannot be solved.

In 2015, Wang at al. [136] proposed a new scheme for protecting critucal

information systems which is based Cramer-Shoup encryption scheme. But, it can

not achieve the delegator’s IND − CCA security for the proxy and the delegatee.

All above schemes do not provide non-transferable property or collusion prop-

erty for the proxy re-encryption scheme. For example, the proxy or Bob can collude

to get the decryption key to anyone. In addition, the re-encryption key for the

proxy is generated by the trusted private key generator (PKG). However, this kind

of schemes have the key escrow problem which PKG is a malicious and PKG can

decrypt the original ciphertext or re-encrypted ciphertext. Furthermore, PKG can

generate many re-encryption keys for adversary without accessing any right from

the Alice. This problem is called PKG despotism problem. In 2012, He et al.[76]

proposed the non-transferable proxy re-encryption scheme which is suitable for the

key escrow problem and the PKG despotism problem. Their scheme is based on

92

the certificateless cryptography.

7.1.1 Motivation of Proxy Re-encryption

Proxy re-encryption has many practical applications such as email forwarding,

health care cloud system and so on. For example, health care cloud system is a

cloud computing service using for storing, maintaining and backing up personal

health information of the patient. This system acts as a third party between

physicians and patients. Therefore, this system needs to secure for patient’s health

records and their biometric data.By using proxy re-encryption techniques, the

health care cloud system can be secured as in [137].

In particular, our proxy re-encryption can be used in secure file sharing system.

In distributed file sharing system, the third party is difficult to be trusted from

the confidential point of view. Therefore, the distributed file users are desired to

apply the encryption methods for the confidentiality. The proxy can distribute

the encrypted file without using the information of original data. With group

or non-group members, our scheme supports to decrypt by using the authority

of the sender. When a receiver accesses to the proxy to request forwarding the

ciphertext, the proxy re-encrypt the message without learning any information

from the original ciphertext or key.

Our new PRE scheme takes the background idea of non-transferable proxy re-

encryption scheme [76] to support the non-transferable property. We suppose that

there are three kinds of participants: a delegator i (Alice), a delegatee j (Bob)

who is the same group with Alice and another delegatee j (Charlie) who is from

the outside of the group. Therefore, we need to think about the non-transferable

property for both the same group or the outsider. For the communication between

Alice and Bob, we borrow the idea of [90] for group signature properties. Alice

does not need to send her certificate to the proxy or Bob. By using delegatee

ID from Alice’s and Bob’s public keys, the proxy can generate the re-encryption

key. At the point of the communication of Alice to Charlie, Alice has to send

her signature (certificate) of the designated ciphertext to Charlie. When Charlie

sends his public key and the proof of Alice signature, the proxy can generate the

re-encryption key.

93

7.1.2 Syntax of our PRE scheme

Our proposed scheme belongs to thirteen algorithms. “Delegator i” (Alice) owns

a message, “Delegatee j” (Bob) is the same group with “Delegator i” (Alice)

and “Delegatee k” (Charlie) is the receiver of the message without same group of

“Delegator i” (Alice) as shown in Figure.7.1.

Figure 7.1: Proxy Re-encryption Scheme

• Setup: From the input of the security parameter 1k , the public parameters

mpk and the master secret key msk are generated.

• Key Generation:

– Set-Secret-Value. The algorithm generates a secret value which is only

known to the user himself.

– Partial-Private-Key. On input a user’s identity ID and msk, the algo-

rithm generates a partial private key for the user.

– Set-Private-Key. On input the partial private key and the secret value,

the algorithm outputs the whole private key for the user.

– Set-Public-Key. On input a user’s identity ID and a secret value, the

algorithm generates a public key.

94

• Private Key Correctness Check: The algorithm checks the correctness of the

private key.

• Encryption: The encryption algorithm takes a public key upkA of the del-

egator Alice and a message m as input, outputs a ciphertext CA encrypted

under upkA.

• Alice-Decryption (delegator i): The decryption algorithm takes a private key

uski of the delegator i and a ciphertext Ci as input, outputs the message m.

• Bob-Re-Encryption Key Generation: The algorithm verifies the delegator j′s

signature and the public key. The re-encryption key generation algorithm

outputs a re-encryption key rk j and other relational values.

• Bob-Partial-Decryption-Key Generation: The algorithm checks the correct-

ness of the re-encryption key, and generates a partial decryption key.

• Bob-Re-Encryption: The re-encryption algorithm takes re-encryption key

rk j and ciphertext Ci as input, outputs a re-encrypted ciphertext Cj under

upk j .

• Bob-Decryption (delegatee j): The decryption algorithm takes the private

key usk j of delegatee j, the partial decryption key and the ciphertext Ci as

input, outputs message m.

• Charlie-Re-Encryption Key Generation: The algorithm verifies the delega-

tor k′s ID and the public key. The re-encryption key generation algorithm

outputs a re-encryption key rkk and other relational values.

• Charlie-Partial-Decryption-Key Generation: The algorithm checks the cor-

rectness of the re-encryption key, and generates a partial decryption key.

• Charlie-Re-Encryption: The re-encryption algorithm takes re-encryption

key rkk and ciphertext Ci as input, outputs a re-encrypted ciphertext Ck

under upkk .

• Charlie-Decryption (delegatee k): The decryption algorithm takes private

key uskk of delegatee k, the partial decryption key and ciphertext Ci as input,

outputs the message m.

95

7.2 Future Improvements

Cloud computing offers another method for deduplication benefits by improving

different assets (e.g., capacity, figuring) and giving them to clients in view of their

requests. Cloud service provider provides a major sharing by connecting multi-

ple group together. It must have the properties such as adaptability, flexibility,

adaptation to internal failure, and pay-per-utilize. In this way, it has turned into

a promising administration stage. The most essential cloud administration is in-

formation management among the different users or different groups.

The clients transfer individual or classified information to the server farm of a

Cloud Service Provider (CSP) and permit it to keep up these information. Since

interruptions and assaults towards touchy information at CSP are not avoidable,

it is reasonable to expect that CSP cannot be completely trusted by cloud clients.

Also, the loss of control over their very own information prompts to big data

security dangers, particularly information protection spillages. Because of the

quick improvement of information mining and different examination innovations,

the security issue gets to be distinctly honestly. Subsequently, a great practice

is to encrypt the information on the cloud with a specific end goal to guarantee

information security and client protection. Be that as it may, the same or diverse

clients may transfer copied information in scrambled frame to CSP, particularly

for situations where information are shared among numerous clients.

Our proposed PRE scheme can be adopted to data ownership and management

of encrypted data storage with deduplication. Solutions were given to add cross’

group file sharing in the future.

96

Chapter 8

Conclusion

As digital data is growing tremendously, cloud storage services are gaining popu-

larity since they promise to provide convenient and efficient storage services that

can be accessed any time, from anywhere. At the same time, with the advent

of cloud computing and its digital storage services, the growth of digital content

has become irrepressible at both the group and individual levels. These increasing

volumes of data among different group of cloud users need some methods for the

storage, processing and availability and cloud technology offers all the potentials

to fulfill these requirements. A major issue is handle by the deduplication tech-

nology of the cloud storage service. Although data is encrypted, it is difficult to

guarantee of data privacy without management of CSP which are sharing among

the different group of client. In this thesis, we have addressed the issue of the

security of the data in the cloud storage by two approaches when these data are

shared among multiple group.

8.1 Discussion

Encryption, verification, and access control are three important domains in security

field. We explored these two aspects in mutiple group and cloud environment as

shown in Table. 8.1. For both schemes of this thesis, our results show that our

strategy gives secure and efficient storage space savings for cross group setting of

cloud environment.

The first one (DDUP-MUG) is an cross group data deduplication scheme em-

97

DDUP-MUG VHCGS

1. Deduplication Yes Yes

2. Side Server Server

3. Type Cross Group Cross Group

4. Encryption MLE/iMLE HCE

5. Ownership Group Signature Encrypted Signature

6. Upload Yes Yes

7. Update Yes No

8. Delete Yes No

9. Download No Yes

10.Secrity Proof Encryption & Signature Signcryption

Table 8.1: Comparison of Our Proposed Schemes

bedding the unlinkable randomizable group signature (URS) group signature while

ensuring that the CSP can perform data deuplication with taking the duties of ver-

ifier. We improve the work of MLE by proposing a mutilple multiple group setting

for cloud service provider as well as cloud users. In particular, we solve the problem

of

1. enhancing the convenience and security of MLE

2. accessing revoke user in each group and

3. protecting data on updating from other groups of users or lost of data during

the deduplication process.

DDUP-MUG consists of five protocols: setup protocol, join protocol, upload

protocol, edit protocol and delete protocol. At the point of security, DDUP-MUG

against Chosen Distribution Attack (CDA) by the encryption of message drawn

by randomly. Concurrently, DDUP-MUG provides the tag consistency which is

against the duplicate faking attack which means adversary cannot find two ci-

phetexts by matching the tags of two different files. Furthermore, when every

group are controlled by the group manager and each group is generated by URS,

98

DDUP-MUG ensure the security of every signature. Therefore, entire cloud dedu-

plcation environment is protected by the group signature and encryption.

The second one focuses on verifiable hash convergent group signcryption (VHCGS)

which can be used in cloud computing. In our scheme, both signature and original

message is encrypted. For authentication from the credential, the client generates

signature for proving the possession of data for cloud service providers, with-

out asking any information of message or client. VHCGS involves the functions

of encryption and signature simultaneously which provides to save the computa-

tional cost of encryption and signature compared to traditional signature-then-

encryption. In our proposed VHCGS scheme, there are five algorithms which are

KeyGen, Join, Signcryption, Partial Unsigncryption and Unsigncryption. In or-

der to address the deduplication issue, the CSP needs to check the duplication of

the files and to verify the ownership the files. Therefore, we think about the “

Partial Unsigncryption” step which the CSP can verify the signcrypted message

without any knowledge of the original message. VHCGS also supports multiple

group user deduplication in a real cloud environment. We use VHCGS scheme not

only in the cloud deduplicaiton but also in SMS transmission which is against du-

plication for the cloud providers (or mobile service providers) and defend against

unpredictable data attacks.

The novelty of our scheme stems from combining and exploiting mutiple group

signatures as well as signcryption so that we can randomize the signature to make

the signature look different for multiple groups of users and hide information of the

messages which are not the concerns of the CSP. In this thesis, the duduplication is

processed by using the message-locked encryption (MLE) and hash convergent en-

cryption (HCE). Here, both encryption methods are relatively new cryptographic

methods of convergent encryption. MLE is improved to applicable at cross group

data deduplication. Furthermore, HCE is also adding the properties of signcryp-

tion by using session key and message derived key for cross group deduplication

process.

99

References

[1] A guide to data de duplication, “http://www.computerweekly.com/feature/A-

guide-to-data-de-duplication”, 2017.

[2] M. Abadi, D. Boneh, I. Mironov, A. Raghunthan, G. Sev, “Message-locked en-

cryption for lock-dependent messages”, CRYPTO’13, Lecture Notes in Com-

puter Science, vol. 8042, pp. 374–39, 2013.

[3] A. Agarwal, R. Saraswat, “A survey of group signature technique, its applica-

tions and attacks”, International Journal of Engineering and Innovative Tech-

nology’ 13, vol. 2, issue 10, pp. 28–35, 2013

[4] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, “Order preserving encryption for

numeric data”, Proceedings of the 2004 ACM SIGMOD international confer-

ence on Management of data. SIGMOD’ 04, pp. 563–574, 2004.

[5] K. Akhila, A. Ganesh, C. Sunitha, “Ensuring security for Fixed Block Level

Deduplication in Cloud Backup”, IOSR Journal of Computer Engineering, pp.

06–12.

[6] K. Akhila, A. Ganesh, C. Sunitha, “A Study on Deduplication Techniques over

Encrypted Data”, Procedia Computer Science, vol. 87, pp. 38–43, 2016.

[7] J. Alderman, J. Crampton , K. M. Martin, “ Cryptographic Tools for Cloud

Environments”, Guide to Security Assurance for Cloud Computing, Computer

Communications and Networks’ 15, pp. 15–30, 2015.

[8] AmazonS3, “ http://aws/amazon.com/s3s”, 2017.

[9] R. Anderson, “Security Engineering: A Guide to Building Dependable Dis-

tributed Systems”, John Wiley and Sons, Inc., 2001.

[10] E. Artin, “Theory of Braids, Annals of Math.”, no. 48, pp. 101–126, 1947.

100

[11] F. Armknecht, J. Bohli, G. O. Karame, F. Youssef, “Transparent Data Dedu-

plication in the Cloud”, ACM Conference on Computer and Communications

Security’ 15, pp. 886–900, 2015.

[12] F. Armknecht, J. Bohli, G. O. Karame, Z. Liu, C. A Reuter, C.A, “ Out-

sourced proofs of retrievability”, Proceedings of the 2014 ACM SIGSAC Con-

ference on Computer and Communications Security’ 14, pp. 831–843, 2014.

[13] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, D.

Song, “ Provable data possession at untrusted stores”, Proceedings of the 14th

ACM Conference on Computer and Communications Security’ 07, pp. 598–609,

2007.

[14] G. Ateniese, K. Fu, M. Green, S. Hohenberger, “ Improved proxy re-

encryption schemes with applications to secure distributed storage”, ACM

Transactions on Information and System Security’ 06 vol. 9, pp. 1–30, 2006.

[15] J. Baek, B. Lee, and K. Kim, “Provably Secure Length-Saving Public-Key En-

cryption Scheme under the Computational Diffie-Hellman assumption”, Elec-

tronics and Telecommunications Research Institute (ETRI) Journal’ 00, vol.

22, No. 4, pp. 25–31, 2000.

[16] J. Baek, “Construction and Formal Security Analysis of Cryptographic

Schemes in the Public Key Setting”, Monash University, pp. 1–184, 2004.

[17] M. Barbosa, P. Farshim, “Delegatable homomorphic encryption with appli-

cations to secure outsourcing of computation”, Topics in Cryptology CT-RSA’

12, Lecture Notes in Computer Science, vol. 7178, pp. 296–312, 2012.

[18] F. Bao, R. H. Deng, “A Signcryption Scheme with Signature Directly Verifi-

able by Public Key”, Public Key Cryptography’ 98, Lecture Notes in Computer

Science, vol. 1431, pp. 55–59, 1988.

[19] M. Bellare, A. Boldyreva, A. Neill, “Deterministic and efficiently searchable

encryption”, Advances in Cryptology , CRYPTO’ 07, Lecture Notes in Com-

puter Science, vol. 4622, pp. 535–552, 2007.

[20] M. Bellare, S. Keelveedhi, T. Ristenpart, “Message-Locked Encryption and

Secure Deduplication”, EUROCRYPT’ 13, Lecture Notes in Computer Science,

vol. 7881, pp. 296–312, 2013.

101

[21] M. Bellare, S. Keelveedhi, “Interactive message-locked encryption and secure

deduplication”, Public-Key Cryptography’ 15, Lecture Notes in Computer Sci-

ence, vol. 9020 , pp. 516–538, 2015.

[22] M. Bellare, “Practice-Oriented Provable-Security, Lectures on Data Security”,

Modern Cryptology in Theory and Practice’ 88, Lecture Notes in Computer

Science, vol. 1561, pp. 1–15, 1988.

[23] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, “Relations Among No-

tions of Security for Public-Key Encryption Schemes”, Advances in Cryptology

Proceedings of CRYPTO’ 98, Lecture Notes in Computer Science, vol. 1462,

pp. 26–45, 1998

[24] M. Bellare,T. Ristenpart, P. Rogaway, T. Stegers, “ Format-preserving en-

cryption”, Selected Areas in Cryptography’ 09, Lecture Notes in Computer

Science, vol. 5867, pp. 295–312, 2009.

[25] M. Bellare, P. Rogaway, “Optimal Asymmetric Encryption, Advances in

Cryptology”, Proceedings of EUROCRYPT’ 94, Lecture Notes in Computer

Science, vol. 950, pp. 92–111, 1994.

[26] M. Bellare, P. Rogaway, “ Random Oracles are Practical: A Paradigm for De-

signing Efficient Protocols”, Proceedings of the 1st ACM Conference on Com-

puter and Communications Security, CCS’ 93, pp. 62–73, 1993.

[27] M .Bellare, S. Keelveedhi, T. Ristenpart, “DupLESS: server-aided encryption

for deduplicated storage”, USENIX Security Symposium’ 13, pp. 1–16, 2013.

[28] M .Bellare, H. Shi, C. Zhang,“Foundations of group signatures: The case of

dynamic groups ”, CT-RSA’05, The Cryptographers’ Track at the RSA Con-

ference’ 05, Lecture Notes in Computer Science , vol. 3376, pp. 136–153, 2005.

[29] M. Bellare, P. Rogaway, “Exact Security of Digital Signatures- How to Sign

with RSA and Rabin”, Advances in Cryptology ? Proceedings of EURO-

CRYPT’ 96, Lecture Notes in Computer Science, vol. 1070, pp. 399–416, 1996.

[30] M. Blaze, G. Bleumer, M. Strauss, “Divertible protocols and atomic proxy

cryptography”, In EUROCRYPT’ 98, LNCS 1403, pages 127–144, 1998.

[31] V. Benjumea, S. Choi, J. Lopez, M. Yung, “Fair traceable multi-group signa-

ture”, 12th International Conference Financial Cryptography and Data Secu-

rity’ 08, Lecture Notes in Computer Science, vol. 5143 pp. 231–246, 2008.

102

[32] I. Bhattacharya, L. Getoor, “Deduplication and Group Detection using

Links”, ACM SIGKDD Workshop on Link Analysis and Group Detection,

2004.

[33] G. R. Blakley, C. Meadows, “Security of ramp schemes”, CRYPTO’ 84, pp.

242–268, 1984.

[34] A. Boldyreva, N. Chenette, Y. Lee, A. O’Neill, “Order-preserving symmetric

encryption”, Advances in Cryptology ? EUROCRYPT’ 09, Lecture Notes in

Computer Science, vol. 5479, 224–241, 2009.

[35] D. Boneh, “The Decision Diffie-Hellman Problem, Algorithmic Number The-

ory Symposium”, Proceedings of ANTS’ 98, Lecture Notes in Computer Science

vol. 1423, pp. 48–63, 1998.

[36] D. Boneh, H. Shacham, “Group Signatures with verifier-local revocation”,

ACM Conference on Computer and Communications Security’ 04, pp. 168–

177, 2004.

[37] D. Boneh, M. Franklin, “ Identity-based encryption from the Weil pairing”,

Advances in Cryptology - CRYPTO’ 01, Lecture Notes in Computer Science

vol. 2139, 213–229, 2001.

[38] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider, “Twin clouds: An

architecture for secure cloud computing”, Workshop Cryptography Security

Clouds’ 11, pp. 32–44, 2011.

[39] Can you compress and dedupe it depends.,

“http://storagesavvy.richardanderson.net/2010/12/17/can-you-compress-

and-dedupe-it-depends/”, 2017.

[40] R. Canetti, O. Goldreich, S. Halevi, “The Random Oracle Methodology, Re-

visited”, The Computing Research Repository, 2000.

[41] R. Canetti, and S. Hohenberger, “Chosen-ciphertext secure proxy re-

encryption”, In ACM conference on Computer and Communication Security,

pages 185–1946, 2007.

[42] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Mur-

phy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand,

F. Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann, “Fac-

torization of a 512-bit RSA Modulus, Advances in Cryptology”, Proceedings of

103

EUROCRYPT’ 00, Lecture Notes in Computer Science, vol. 1807, pp. 1–18,

2000.

[43] D. Chaum, E. van Heyst, “Group Signatures”, EUROCRYPT’ 91, Lecture

Notes in Computer Science, vol. 547, pp. 257–265, 1991.

[44] K. Chung, Y. Kalai, S. Vadhan, “Improved delegation of computation us-

ing fully homomorphic encryption”, Advances in Cryptology, CRYPTO’ 10,

Lecture Notes in Computer Science, vol. 6223, pp. 483–501, 2010.

[45] R. Chen, Y. Mu, G. Yang, F. Guo, “OBC: A block-ciphertext mode of op-

eration for efficient authenticated encryption”, Proceedings of the 8th ACM

Conference on Computer and Communications Security, ACM CCS’ 01, pp.

196–205, 2001.

[46] R. Chen, Y. Mu, G. Yang, F. Guo, “BL-MLE: Block-Level Message-Locked

Encryption for secure large file deduplication”, IEEE Transactions on Infor-

mation Forensics and Security’ 15, vol. 10, pp. 2643–2652, 2015.

[47] E. M. Cho, T. Koshiba, “Secure Deduplication for Multiple Group setting”,

SCIS’ 16, pp. 34–41, 2016.

[48] E. M. Cho, T. Koshiba, “Secure Deduplication in a Multiple Group Signature

Setting”, The 31st IEEE International Conference on Advanced Information

Networking and Applications, AINA’ 17, pp. 811–818, 2017.

[49] E. M. Cho, L. San, T. Koshiba, “ Secure Non-Transferable Proxy Re-

Encryption for Group Membership and Non-Membership”, The 8th Interna-

tional Workshop on Trustworthy Computing and Security/ TwCSec’ 17, 2017.

[50] R. Cramer and V. Shoup, “A Practical Public Key Cryptosystem Provably

Secure against Adaptive Chosen Ciphertext Attack, Advances in Cryptology”,

Proceedings of CRYPTO’ 98, Lecture Notes in Computer Science, vol. 1462,

pp. 13–25, 1998.

[51] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, “Searchable symmetric

encryption: improved definitions and efficient constructions”, Journal of Com-

puter Security’ 11, vol. 19, pp. 895–934, 2011.

[52] Q. Dang, “Recommendation for applications using approved hash algo-

rithms”, National Institute of Standards and Technology Special Publication’

08, vol. 107, 2008.

104

[53] R. H. Deng, J. Weng, S. Liu and K. Chen, “Chosen-ciphertext secure proxy

re-encryption without pairings”, In Matthew K. Franklin, Lucas Chi Kwong

Hui, and Duncan S. Wong, editors, CANS, volume 5339 of Lecture Notes in

Computer Science, Springer, pages 1–7, 2008.

[54] A. W. Dent, Y. Zheng, “Practical Signcryption. Information Security and

Cryptography”, ISBN: 978-3-540-89409-4, Springer , 2010.

[55] D. Dolev, C. Dwork, M. Naor, “Non-malleable Cryptography”, Annual ACM

Symposium on Theory of Computing ? Proceedings of STOC’ 91, pp. 542–552,

1991.

[56] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer, “Reclaiming

space from duplicate files in a serverless distributed file system”, IEEE’ 02, pp.

617–624, 2002.

[57] Dropbox , “Dropbox http://www.dropbox.com”, 2017.

[58] Dropbox stolen data, “http://uk.businessinsider.com/dropbox-hack-68-

million-accounts-passwords-stolen-employee-reused-2016-8”, 2016.

[59] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms”, IEEE Transactions on Information Theory’ 85, vol. 31,

pp. 469–472, 1985.

[60] EMC Corporation, “The digital universe decade- are you ready?”, 2010.

[61] EMC2 Cloud backup System, “https://www.emc.com/corporate/glossary/datd-

deduplication.htm”.

[62] X. Fan, F. Liu, “Various Proxy Re-Encryption Schemes from Lattices”, IACR

Cryptology ePrint Archive 2016/278.

[63] M. R. Felipe, K. M. M. Aung, Mediana, “HEDup: Secure Deduplication with

Homomorphic Encryption”, 10th IEEE International Conference on Network-

ing, Architecture and Storage, NAS’ 15, pp. 215–223, 2015.

[64] A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions of Identi-

fication and Signature Problems”, Proceedings of CRYPTO’ 86, Lecture Notes

in Computer Science vol. 263, pp. 186–184, 1986.

[65] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, “RSA-OAEP is Secure

under the RSA Assumption”, Journal of Cryptology’ 04, vol.17, no. 2, pp. 81–

104, 2004.

105

[66] C. Gamage, J. Leiwo, Y. Zheng, “An Efficient Scheme for Secure Message

Transmission using Proxy-Signcryption”, Australasian Computer Science Con-

ference, Auckland, New Zealand’ 99, pp. 420–431, 1999.

[67] C. Gamage, J. Leiwo, Y. Zheng. “Encrypted Message Authentication by Fire-

walls”, Public Key Cryptography PKC’ 99, Lecture Notes in Computer Science,

vol. 1560, pp. 69–81, 1999.

[68] C. Gentry,’ “A fully homomorphic encryption scheme”, 2009.

[69] S. Goldwasser, S. Micali, R. Rivest, “A Digital Signature Scheme Secure

Against Adaptive Chosen-Message Attacks”, Society for Industrial and Applied

Mathematics, SIAM Journal on Computing’ 88, vol. 17, no. 2, pp. 281–308,

1988.

[70] S. Goldwasser, S. Micali, “ Probabilistic Encryption”, Journal of Computer

and System Sciences’ 84, vol. 28, pp. 270–299, 1984.

[71] GoogleDrive,” http://www.drive.google.com”, 2017

[72] V. Goyal, O. Pandey, A. Sahai, B. Waters, “ Attribute-based encryption for

fine-grained access control of encrypted data”, Proceedings of the 13th ACM

Conference on Computer and Communications Security’ 06, pp. 89–98, 2006.

[73] H. Guo, Z. Zhang, J. Xu, “Non-Transferable Proxy Re-Encryption”, In IACR

Cryptology ePrint Archive 2015/1216.

[74] L. Guo, L. Hu, “Efficient bidirectional proxy re-encryption with direct chosen-

ciphertext security”, Computers and Mathematics with Applications 63(1),

pages 151–157, 2012.

[75] S. Halevi, D. Harnik, B. Pinkas, A. Shulman-Peleg, “Proofs of ownership in

remote storage systems”, ACM Conference on Computer and Communications

Security’ 11, pp. 491–500, 2011.

[76] Y. He, T. W. Chim, L. C. K. Hui, and S. Yiu, “Non-Transferable Proxy

Re-Encryption Scheme”, In NTMS 2012, pages 1–4, 2012.

[77] A. Ivan and Y. Dodis, “Proxy cryptography revisited”, In proceeding of

NDSS’03, The Internet Society (2003).

[78] A. Juels, B. S. Kaliski Jr, “PORs: Proofs of retrievability for large files”,

Proceedings of the 14th ACM Conference on Computer and Communications

Security’ 07, pp. 584–597, 2007.

106

[79] D. Kwak, S. Moon, “Efficient Distributed Signcryption Scheme as Group

Signcryption”, ACNS’ 03, Lecture Notes in Computer Science, vol. 2846, pp.

403–417, 2003.

[80] D. Kwak, S. Moon, G. Wang, R. Deng. “A secure extension of the Kwak-Moon

group signcryption scheme”, ACNS’ 03, Lecture Notes in Computer Science,

vol. 2846, pp. 435–444, 2003.

[81] J. Katz, A. Sahai, B. Waters, “Predicate encryption supporting disjunctions,

polynomial equations, and inner products”, In: Advances in Cryptology EU-

ROCRYPT’ 08, pp. 146–162, 2008.

[82] M. S .Kiraz, “Solving the Secure Storage Dilemma: An Efficient Scheme

for Secure Deduplication with Privacy-Preserving Public Auditing ”, IACR

Cryptology ePrint Archive’ 16, no. 696, 2016.

[83] K. Ko, S. Lee, J. Cheon, J. Han, J. Kang, and C. Park, “New Public-Key

Cryptosystem Using Braid Groups, Advances in Cryptology”, Proceedings of

CRYPTO 2000 , Lecture Notes in Computer Science, vol. 1880, pp 166–183.

[84] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation’

87, vol. 48, no. 177, pp 203–209, 1987.

[85] I. Leontiadis, K. Elkhyaoui, R. Molva, “Private and dynamic time-series data

aggregation with trust relaxation”, Cryptology and Network Security’ 14, Lec-

ture Notes in Computer Science vol. 8813, pp. 305–320, 2014.

[86] J. Li, X. Chen, M. Li, J. Li, P.P. Lee, W. Lou, “Secure deduplication with

efficient and reliable convergent key management”, Parallel and Distributed

Systems’ 14, no. 6, pp. 1615–1625, 2014.

[87] J. Li, K. L. Yan, X. Chen, P. P. Lee, and W. Lou. “A hybrid cloud approach

for secure authorized deduplication.” Parallel and Distributed Systems’ 15 , no.

5, pp. 1206–1216, 2015.

[88] J. Li, X. Chen, X. Huang, S. Tang, Y. Xiang, M. M. Hassan, A. Alelaiwi,

“Secure Distributed Deduplication Systems with Improved Reliability”, IEEE

Transactions on Computers’ 15 vol. 64(12), pp. 3569–3579, 2015.

[89] B. Libert and D. Vergnaud, “Tracing malicious proxies in proxy re-

encryption”, In Pairing-Based Cryptography-Pairing 2008, pages 332–353,

2008.

M

107

[90] C. Ma, and J. Ao, “Group-Based Proxy Re-encryption Scheme”, ICIC (1)

2009, pages 1025–1034, 2009.

[91] M. Mambo and E. Okamoto, “Proxy cryptosystems: Delegation of the power

to decrypt ciphertexts”, IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol.E80A, no.1, pages 54–63, 1997.

[92] W. Mao, “Modern Cryptography: Theory and Practice”, Prentice Hall, 2004.

[93] T. Matsuda, R. Nishimaki and K. Tanaka, “CCA proxy re-encryption without

bilinear maps in the standard model”, PKC 2010, volume 6056 of Lecture Notes

in Computer Science, Springer, pages 261–278, 2010.

[94] T. Matsuo, “Proxy re-encryption systems for identity-based encryption”, In

Pairing-Based Cryptography-Pairing 2007, pages 247–267, 2007.

[95] U. Maurer, “Towards Proving the Equivalence of Breaking the Diffie-Hellman

Protocol and Computing Discrete Logarithms”, Advances in Cryptology ?Pro-

ceedings of CRYPTO’ 94, Lecture Notes in Computer Science, vol. 839, pp.

271–281, 1994.

[96] P. Mell, T. Grance’, “The NIST definition of cloud computing. Technical re-

port, National Institute of Standards and Technology, Information Technology

Laboratory, 2009”

[97] V. Miller, “Use of Elliptic Curves in Cryptography, Advances in Cryptology”,

Proceedings of CRYPTO’ 85, Lecture Notes in Computer Science, vol. 218, pp.

417–429, 1985.

[98] Mozy, “https://mozy.com/”, 2017

[99] M. Naor, M. Yung, “Public-Key Cryptosystems Provably Secure against cho-

sen ciphertext Attacks”, Annual ACM Symposium on Theory of Computing ?

Proceedings of STOC’ 90, pp. 427–437, 1990.

[100] National Institute of Standards and Technology, “Digital Signature Stan-

dards”, U.S. Department of Commerce, NIST FIPS PUB 186, May 1994.

[101] National Institute of Standards and Technology, “Secure Hash Standard”,

U.S. Department of Commerce, NIST FIPS PUB 180-1, April 1995.

[102] T .Nakanishi, H. Fujii, Y. Hira, N. Funabiki, “Revocable Group Signature

Schemes with Constant Costs for Signing an Verifying”, IEICE Transactions’

10, vol. 93-A(1), pp. 50–62, 2010.

108

[103] K. Niu, X. A. Wang, and M. Q. Zhang, “How to solve key escrow problem

in proxy re-encryption from cbe to ibe”, In DBTA, pages 95–98, 2009.

[104] D.Nuez, I. Agudo, J. Lopez, “A Parametric Family of Attack Models for

Proxy Re-Encryption”, IEEE 28th Computer Security Foundations Sympo-

sium, CSF 2015, pages 290–301, 2015.

[105] T. Okamoto and S. Uchiyama, “A New Public-Key Cryptosystemas as Se-

cure as Factoring, Advances in Cryptology”, Proceedings of EUROCRYPT’ 98,

Lecture Notes in Computer Science, vol. 1403, pp. 308–318, 1998.

[106] P. Paillier, “Public Key Cryptosystems Based on Composite Degree Redid-

uosity Classes, Advances in Cryptology”, Proceedings of EUROCRYPT’ 99,

Lecture Notes in Computer Science, vol. 1592, pp. 223–238, 1999.

[107] B. Parno, M. Raykova, V. Vaikuntanathan, “ How to delegate and verify

in public: verifiable computation from attribute-based encryption”, Theory of

Cryptography’ 12, Lecture Notes in Computer Science, vol. 7194, pp. 422–439,

2012.

[108] B. Parno, J. Howell, C. Gentry, M. Raykova, “Pinocchio: nearly practical

verifiable computation”, In: IEEE Symposium on Security and Privacy’ 13,

pp. 238–252, 2013.

[109] B. Pinkas, T. Reinman, “Oblivious RAM revisited” Advances in Cryptology

CRYPTO’ 10, Lecture Notes in Computer Science, vol. 6223, pp. 502–519,

2010.

[110] L. Phong, L Wang, Y. Aono, M. Nguyen, X. Boyen, “Proxy Re-Encryption

Schemes with Key Privacy from LWE”, IACR Cryptology ePrint Archive

2016/327.

[111] D. Pointcheval, “New Public Key Cryptosystems Based on the Dependen-

tRSA Problems, Advances in Cryptology”, Proceedings of EUROCRYPT’ 99,

Lecture Notes in Computer Science vol. 1592, pp. 239–254, 1999.

[112] P. Puzio, R. Molva, M. Onen, S. Loureiro, “Cloudedup: secure deduplication

with encrypted data for cloud storage”, 5th International Conference on Cloud

Computing Technology and Science’ 13, pp. 363–370, 2013.

[113] P. Puzio, R. Molva, M. Onen, S. Loureiro, “PerfectDedup: secure

data deduplication”, Data Privacy Management, and Security Assurance,

109

DPM/QASA@ESORICS’ 15, Lecture Notes in Computer Science, vol. 9481,

pp. 150–166, 2015.

[114] R. D. Pietro, A. Sorniotti, “Boosting efficiency and security in proof of own-

ership for deduplication”, ASIACCS’ 12, pp. 81–82, 2012.

[115] M. O. Rabin, “Digitalized Signatures and Public-Key Functions as In-

tractable as Factorization,” MIT/LCS/TR-212, MIT Laboratory for Computer

Science, 1979.

[116] C. Rackoff, D. Simon, “Non interactive Zero-Knowledge Proof of Knowl-

edge and chosen ciphertext Attack”, Advances in Cryptology - Proceedings of

CRYPTO’ 91, Lecture Notes in Computer Science, vol. 576, pp.434–444, 1991.

[117] R. L. Rivest. “The MD5 Message-Digest Algorithm, Internet Repost”, RFC’

92 vol. 1321, 1992.

[118] R. L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Ob-

taining Digital Signatures and Public-Key Cryptosystems”, Communications

of the ACM’ 78, vol. 21 (2), pp. 120–126, 1978.

[119] S. Rass, D. Slamanig, Cryptography for Security and Privacy in Cloud Com-

puting’ 14, Artech House, 2014.

[120] A. D. Santis, B. Masucci, “Multiple Ramp Schemes”, IEEE Trans. Informa-

tion Theory’ 99, vol. 45(5), pp. 1720–1728, 1999.

[121] C. P. Schnorr, “Efficient Identification and Signatures for Smart Cards, Ad-

vances in Cryptology”, Proceedings of CRYPTO’ 89, Lecture Notes in Com-

puter Science, vol. 435, pp. 235–251, 1989.

[122] V. Shoup, “OAEP Reconsidered, Advances in Cryptology”, Proceedings of

CRYPTO’ 01, Lecture Notes in Computer Science vol. 2139, pp. 239–259, 2001.

[123] M. Sipser, “Introduction to the Theory of Computation”, PWS Publishing

Company, 1997.

[124] A. Shamir, “How to share a secret”, Commun. ACM’ 97 , vol. 22, no. 11,

pp. 612–613, 1997.

[125] Y .Shin, J. Hur, K. Kim, “Security weakness in the Proof of Storage with

Deduplication”, IACR Cryptology ePrint Archive’ 12, vol. 554, pp. 886–900,

2012.

110

[126] Spideroak, “https://spideroak.com/”, 2017

[127] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure data dedu-

plication scheme for cloud storage”, Financial Cryptography’ 14, pp. 99–118,

2014.

[128] M. W .Storer, K. Greenan, D. D. Long, and E. L. Miller, “Secure data

deduplication”, 4th ACM international workshop on Storage Security and Sur-

vivability, pp. 1–10, October 2008.

[129] SVN, “https://subversion.apache.org/”, 2017

[130] Y. Tsiounis and M. Yung, “On the Security of ElGamal-Based Encryption,

Public Key Cryptography”, Proceedings of PKC’ 98, Lecture Notes in Com-

puter Science vol. 1431, pp 117–134, 1998.

[131] B. Waters, “Ciphertext-Policy Attribute-Based Encryption: An Expressive,

Efficient, and Provably Secure Realization”, Public Key Cryptography PKC’

11, Lecture Notes in Computer Science, vol. 6571, pp. 53–70, 2011.

[132] C. Wang, N. Cao, J. Li, K. Ren, W. Lou, “Secure ranked keyword search over

encrypted cloud data”, Proceedings - International Conference on Distributed

Computing Systems’ 10, pp. 253–262, 2010.

[133] C. Wang, Q. Wang, K. Ren, W. Lou, “Privacy-preserving public auditing

for data storage security in cloud computing”, In: INFOCOM ,2010.

[134] L. Wang, L. Wang, M. Mambo, and E. Okamoto, “New identity- based

proxy re-encryption schemes to prevent collusion attacks”, In Pairing 2010,

pages 327–346. Springer, 2010.

[135] X. A. Wang and X. Y. Yang, “Identity based broadcast encryption based on

one to many identity based proxy re-encryption”, In IEEE, pages 47–50, 2009.

[136] X. A. Wang, J. Ma and X. Y. Yang, “A new proxy re-encryption scheme for

protecting critical information systems”, In Journal of Ambient Intelligence

and Humanized Computing 6(6) , pages 699–711, 2015.

[137] X. A.Wang, J. Ma, F. Xhafa, M. Zhang and X. Luo, “Cost-effective secure E-

health cloud system using identity based cryptographic techniques”, In Journal

of Future Generation Computer Systems, vol 67, pages 242–254, 2017.

[138] J .Xu, E. Chang, J. Zhou, “Leakage-Resilient Client - side Deduplication of

Encrypted Data in Cloud Storage”, ASIACCS’ 13, pp. 195–206, 2013.

111

[139] L. Xu, X. Wu, and X. Zhang, ”A certificateless proxy re-encryption scheme

for secure data sharing with public cloud”, ASIACCS 2012, pages 87–88, 2012.

[140] C. Yang, J. Ma, J. Ren, “Provable Ownership of Encrypted Files in De-

Duplication Cloud Storage”, Ad Hoc & Sensor Wireless Networks’ 15, vol. 26,

no. 1–4, pp. 43–72, 2015.

[141] J .Yuan, S. Yu, “Secure and constant cost public cloud storage auditing with

deduplication”, IEEE-CNS’ 13, pp. 145–153, 2013.

[142] Y. Zheng, X. Yuan, X. Wang, J. Jiang, C. Wang, X. Gui, “Enabling en-

crypted cloud media center with secure deduplication”, ASIACCS’ 15, pp.

63–72, April 2015.

[143] Q. Zheng, S. Xu, “Secure and Efficient Proof of Storage with Deduplication”,

CODASPY’ 12, 2012.

[144] Y. Zheng, H. Imai, “How to construct efficient signcryption schemes on el-

liptic curves”, Information Processing Letters, vol.68, pp. 227–233, 1998.

[145] Y. Zheng. “Digital Signcryption or how to achieve cost (signature & encryp-

tion) ≪ cost(signature) + cost (encryption)”, CRYPTO’ 97, Lecture Notes in

Computer Science, vol.1294, pp. 165–179, 1997.

[146] Y. Zheng. “Signcryption and its application in efficient public key solutions”,

Information Security Workshop ISW’ 97, Lecture Notes in Computer Science,

vol.1396, pp. 291–312, 1997.

[147] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, C. Li, “SecDep: a

user-aware efficient fine-grained secure deduplication scheme with multi-level

key management”, 31st Symposium on Mass Storage Systems and Technologies,

MSST’ 15, pp. 1–14, 2015.

[148] S. Zhou, D. Lin, “Unlinkable Randomizable Signature and Its Application

in Group Signature”, Inscrypt’ 07, pp. 328–342, 2007.

112

