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CHAPTER 1 

 

INTRODUCTION 

 

During strong earthquakes, propagation of seismic waves through soil medium induces deformations in the 

soil that excite embedded piles by imposing a spatially-variable displacement field. Such displacement field 

will then generate, as the result of “kinematic interaction” ([1.1]~[1.3]), bending and shearing along the 

entire length of the pile. This is different from the bending and shearing generated by the inertial forces 

produced by the vibrating superstructure (as the result of “inertial interaction”). An increasing number of 

research contributions estimating the kinematic response of soil-pile-structure systems has become 

available in recent times ([1.4]~ [1.18]), many of which are based on analytical formulations ([1.4]~ [1.7]).  

 

Previous earthquake events of Mexico City (Mexico) in 1985, Kobe (Japan) in 1995, and Chi Chi (Taiwan) 

in 1999 have highlighted the sensitivity of pile foundations to damage in dominance of kinematic 

interaction. Especially, in kinematic interactions, damages appear either at the pile head or deep down the 

pile where inertial forces are vanishingly small. The observed field data in the past in conjunction with 

theoretical studies have revealed three possibilities of damage due to kinematic bending along fixed head 

piles: (1) near restraining pile cap; (2) interfaces between soil layers; and (3) the toe of the pile. Generally, 

damage due to the kinematic bending occurs at the pile head in homogeneous soil layers and in the presence 

of a stiff restraining cap [1.11]. However, the possibility of damage at the interface between soil layers will 

increase in layered soil media with strong discontinuities [1.8]. A number of design-oriented researches 

([1.8]~ [1.11]) have contributed to simple solutions, allowing the estimation of kinematic pile moments at 

the interface between two consecutive layers with significantly differing stiffness. Studies indicate that the 

kinematic bending strains at these interfaces could exceed the bending strains at the head of the pile 

depending on the soil layers stiffness contrast, the pile-soil stiffness contrast, and the relative thickness of 
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the soil layers with respect to the length of the pile. It has been shown that both in homogeneous and layered 

soils, when the toe is strongly restrained, the kinematic bending strains may dominate [1.12]. Therefore, 

the importance of kinematic loading on the seismic performance of piles has been recognized by modern 

seismic codes including Eurocode 8 and the Italian national provisions ([1.19], [1.20]). For example 

Eurocode 8 states that: ‘piles should be designed to resist the following two types of effects: (i) inertia 

forces from the vibrating superstructure…; (ii) kinematic forces arising from the passage of seismic waves 

and thereby will impose lateral strain on the piles. Therefore, in seismic design, the kinematic bending and 

inertial bending must be considered simultaneously when assessing the performance of a pile. 

 

In seismic design, pile radius plays an important role because it directly affects the bending stiffness of a 

pile ( 𝐸𝐼) and subsequently seismic performance of a pile. For homogeneous soil it is assumed that piles 

are not exposed to significant kinematic forces, therefore only inertial forces of a superstructure are 

considered for design issues. Based on this concept, increasing the pile radius is often an appropriate 

solution in reducing the bending strains. In contrary to this perception which is reflected in seismic Codes, 

kinematic bending may not be negligible compared to inertial bending. In soft soils and large pile diameters 

regardless of seismic intensity, kinematic bending may dominate over inertial one at the pile head. 

Therefore, under the dominance of kinematic interaction even for homogeneous soil, specific techniques 

are needed to minimize the bending strains. Also the importance of pile radius in seismic design is not 

understood well and not covered by seismic codes ([1.5],[1.13]) . 

 

1.1 Influence of pile radius in soil-pile interaction 
 

A number of investigators have argued the importance of the pile radius in kinmatically-loaded piles. A 

simple method for evaluation of the effect of kinematic forces on pile bending developed in the pioneering 

studies of Margason [1.7] and Margason and Holloway [1.8]. These researches are known as the first to 

distinguish the significance of pile radius and suggest using large radius piles as they can conform easier to 

seismically-induced soil deformations. Their method for assessing kinematic pile bending suffers from 
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several drawbacks. For instance, it is assumed that the pile follows the surrounding soil motion and the 

interaction between pile and soil is neglected. Moreover it lacks developing rational analysis. Only a few 

research efforts focused on the effect of pile radius on kinematic bending of piles, most of them conducted 

in the proximity of deep interfaces separating soil layers of different stiffness ([1.5],[1.10],[1.16]) .  

Saitoh [1.14] proposed a technique in order to obtain the optimal pile radius (defined as the radius for which 

the bending strains in the pile are minimum) of a fixed-head cylindrical vertical single pile embedded in a 

homogeneous elastic soil layer and supported by a rotationally compliant bedrock. His theoretical model is 

identical to those described in Tajimi [1.15] and Ohira et al [1.13], and the frequency of excitation is 

assumed to be equal to the fundamental frequency of the soil medium. In his research, variation in both 

inertial and kinematic bending strains against the slenderness ratio (𝑟/𝐻) (radius) was also investigated 

individually. It was shown that the normalized inertial bending strain descends rapidly as the slenderness 

ratio increases. Further, the kinematic bending strains approach zero when the slenderness ratio (𝑟/𝐻) 

tends to zero. The value of the kinematic bending strain increases approximately linearly up to the local 

maximum (𝑟/𝐻 ≈ 0.1), but gradually decreases afterwards. Kinematic and inertial bending strain were 

calculated separately and the resultant effects were superimposed into one as the combined total bending 

strain. The variation of normalized total bending strains with slenderness ratio (𝑟/𝐻)  implies that a 

slenderness ratio that minimizes the normalized bending strains at the head of piles may appear. Moreover, 

in a higher region (larger slenderness ratios) where kinematic bending dominates over inertial bending a 

local maximum of the normalized total bending strain may also appear (Figure 1.1). 
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Figure 1.1: Kinematic and inertial bending moments as function of pile radius. 

 

Dezi et al [1.16] conducted parametric analysis of single fixed-head piles with consideration of varying the 

important parameters governing the response of kinematically excited piles. Influence of different 

parameters such as diameter, bedrock depths and shear wave velocity of the deposit has been taken into 

account for performing a comprehensive parametric analysis. Furthermore, empirical formulas for design 

purposes have been proposed to accomplish evaluation of the induced bending moments at the pile head 

and at the deposit-bedrock interface. They mentioned that the pile radius significantly influences the 

amplitudes of the bending moments at the pile head and at the interface between soil layers: for a given soil 

deposit, the bending moment increases while the pile radius increases.  

 

Di Laora et al [1.22] explored the role of pile radius in seismic induced loads at the pile head under a 

restraining cap, with reference to steel piles in homogeneous soil layer. Their research results indicated that 

kinematic bending moments at the pile head depend on the fourth power of pile diameter d, whereas inertial 

bending moments are proportional to the second or third power, this shows that kinematic moments will 

dominate seismic demand with increasing pile diameter and there will exist a maximum diameter beyond 

which a pile will experience failure. The value of the maximum pile diameter was found to depend on peak 

ground acceleration, soil stiffness and factor of safety against gravity loading. Also they established the 
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combined action of kinematic and inertial moments at the pile head, which in reality interact adversely with 

each other, the simultaneous presence of these actions provides a limited range of permissible radius, with 

the upper bound (maximum diameter) governed by dominance of kinematic action, and the lower one 

(minimum diameter) by inertial action. This range is narrower than that obtained for the kinematic and 

inertial actions considered individually. 

 Mylonakis et al [1.23] inspected the role of pile diameter in seismically-induced bending for both steel and 

concrete piles in homogeneous soils as well as soils with stiffness increasing proportionally with depth. A 

number of closed-form expressions for kinematic and inertial bending moments were presented, based on 

which minimum and maximum admissible pile diameters were defined, Moreover based on their research 

results, following points are worthy of mention: (i) for soft soil with constant stiffness, kinematic interaction 

has a dominant influence and as a result maximum admissible pile size will attain small values. Under these 

conditions, adding more piles or increasing pile length will not guarantee safety against bending failure; (ii) 

in stiffer soil deposits, inertial interaction will dominate. Therefore, a minimum admissible pile diameter 

are provided by inertial interaction which may be quite large for areas vary from moderate to high 

seismicity; (iii) main important parameters such as ground acceleration, pile length, soil strength, soil 

stiffness, pile safety factor and amount of reinforcement control the range of admissible pile diameters. 

Therefore, it could be concluded that pile material strength has insignificant role in controlling pile size. In 

other words geotechnical and geometrical properties seem to be more significant than the structural 

properties; (iv) among all diameters which are admissible for a wide range of parameters, always an optimal 

pile radius that prevent bending failure exists. This diameter will be beneficial as a guidance in designing 

piles in earthquake prone areas.    

 

1.2 Objectives 
 

At present it seems that certain aspects of the pile bending are well understood while others remain 

unresolved. Yet, there has been no investigation dealing with the effect of pile radius on the bending strains 
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at the pile head in soil-pile groups systems where kinematic interaction dominates even for the simple case 

of homogeneous soil layer. The problem appears to be important, because the pile head is stressed by both 

kinematic and inertial forces. Therefore in order to establish a criteria for optimal pile radius for both 

inertially and kinematically excited pile groups, it is essential to quantify variations of both inertial and 

kinematic bending strains with respect to pile radius in a systematic way. This dissertation focuses on 

obtaining a comprehensive relation between the pile radius and the bending strains at the head of a 

cylindrical vertical pile groups under kinematic loading. For the sake of simplicity and in order to perceive 

basic characteristics of the pile groups, piles are considered to be embedded in a homogeneous elastic 

stratum resting on a rigid bedrock, being the piles length identical to the thickness of the soil stratum. Two 

different constraint conditions are considered at the pile tip: (a) hinged tip, and (b) end-bearing (fixed) tip.  

Nikolaou et al [1.9] performed a parametric investigation on the kinematic bending strains in a single pile 

embedded in both homogeneous and layered soil deposit and subjected to harmonic steady-state shear 

waves and proposed a closed-form expression for the evaluation of the maximum bending moment at the 

interface between layers. One of the most important conclusions that have revealed from their analysis 

is that in most cases, the maximum bending strain occurs at the fundamental natural period of the soil 

deposit. The variation of kinematic bending strain with frequency follows, more or less, the amplification 

of the free-field acceleration. This signifies the influence of the first mode of vibration on the magnitude of 

bending strain. In fact the curvature is affected by the overall drift between the top and the bottom of the 

pile. This drift usually becomes maximum at the first mode of vibration, and thereby generates the largest 

bending moment at the first resonance.Therefore with an understanding that the maximum value of 

kinematic bending strains at the head of a pile occurs at the fundamental frequency of the soil stratum for 

most of the soil profiles, such specific frequency is targeted in the present work. Analytical formulations 

are obtained based on the beam-on-dynamic-Winkler-foundation method. 
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1.3 Organization 
 

Chapter 1: A brief introduction to the role pile diameter and optimal pile radius in seismic performance of 

the piles as well as literature review are presented. 

 

Chapter 2: This chapter details the methodology employed for the problem of dynamic pile-soil 

interaction. Pile-soil interaction is realistically represented through a dynamic Winkler model, frequency-

dependent Winkler dashpots and springs are obtained through an improved plain strain model. This model 

is free of the shortcomings of the two-dimensional plane strain model and it allows for cutoff frequency of 

the homogeneous soil layer to be incorporated. Pile-to-pile interaction is taken into account through an 

approximate three-step wave-interference solution in which simple cylindrical wave field originates along 

each pile shaft and spreads outward. Closed form solutions are obtained for: (i) the complex-valued Winkler 

modulus, (ii) the displacement field in the soil and the pile in fundamental frequency of the homogeneous 

soil layer. The simplicity of the approximate method offers an efficient alternative to complex numerical 

solutions. 

 

Chapter 3: In this chapter fixed-head pile groups in a homogeneous viscoelastic soil stratum over a rigid 

base with different tip conditions are considered to be imposed by inertial head loading. Pile-soil interaction, 

incorporating group effects in pile groups, is represented through a simplified beam-on-dynamic-Winkler 

–foundation (BDWF) model with realistic frequency-dependent springs and dashpots. Closed form 

expressions for inertial interaction factors and curvature ratios atop the pile are presented. On the basis of 

the three-step methodology of the chapter two, the inertial bending strains at the head of the piles in 

fundamental frequency of the homogeneous soil layer are derived. The inertial bending strains are 

normalized with respect to a mean shear strain of the soil medium. The variation of normalized inertial 

bending strains are expressed by the radius to height ratio of the piles, the ratio of soil to pile stiffness, and 

a factor representing the relative amplitude and the phase lag between the inertial loading at the head of the 
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piles and the deformation of the ground. Rigorous numerical solutions based on coupled finite elements-

boundary elements (FE-BE) are employed to verify the predictions of the proposed method.  

 

Chapter 4: In this chapter fixed-head pile groups in a homogeneous viscoelastic soil stratum over a rigid 

base with different tip conditions are considered to be provoked by vertical impinging seismic shear waves. 

Pile-soil interaction, incorporating group effects in pile groups, is represented through a simplified beam-

on-dynamic-Winkler –foundation (BDWF) model with realistic frequency-dependent springs and dashpots. 

Closed form expressions for kinematic interaction factors and curvature ratios atop the pile are presented. 

On the basis of the three-step methodology of the chapter two, the kinematic bending strains at the head of 

the piles in fundamental frequency of the homogeneous soil layer are derived. The kinematic bending 

strains are normalized with respect to a mean shear strain of the soil medium. The variation of normalized 

kinematic bending strains are expressed by the radius to height ratio of the piles. Rigorous numerical 

solutions based on coupled finite elements-boundary elements (FE-BE) are employed to verify the 

predictions of the proposed method. In order to investigate main characteristics of the normalized kinematic 

bending strains in pile groups, parametric studies which encompass different parameters are carried out. 

 

Chapter 5: In this chapter fixed-head pile groups in a homogeneous viscoelastic soil stratum over a rigid 

base with different tip conditions are considered to be provoked simultaneously by vertical impinging 

seismic shear waves and inertial head loading. According to chapters three and four, kinematic and inertial 

bending strain are calculated separately. Afterwards, superposition method are applied readily to determine 

the combined total normalized bending strains in pile groups. The variation of normalized inertial bending 

strains are expressed by the radius to height ratio of the piles, the ratio of soil to pile stiffness, and a factor 

representing the relative amplitude and the phase lag between the inertial loading at the head of the piles 

and the deformation of the ground. In order to determine the appropriate radius (optimal radius) in pile 

groups, influence of different parameters (factor of relative amplitude and phase lag between inertial 

loading and soil deformations, the pile-soil stiffness ratio, pile spacing and the number of piles) are 
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implemented through parametric studies. Three different methods (average, weighted average and 

envelope) are introduced for estimating the optimal pile radius in pile groups. 

 

 Chapter6: Conclusions and recommendations for future research are presented. 

 

References 

 

[1.1] Roesset, JM., Whitman, RV., Dobry, R. (1973) Modal analysis for structures with foundation 

interaction. Journal of the Structural Division, 99:ST3, 399-416. 

 

[1.2] Wolf, JP. (1985) Dynamic soil-structure interaction. Prentice-Hall, New York.  

 

[1.3] Gazetas, G. and Mylonakis, G. (1998) Seismic soil-structure interaction: new evidence and 

emerging issues. In: Dakoulas P, Yegian EvlK, Holtz RD, editors. Geotechnical earthquake 

engineering and soil dynamics, ASCE. 

 

[1.4] Dobry, R. O’Rourke, MJ. (1983) Discussion on “Seismic response of end-bearing piles” by 

Flores-Berrons R & Whitman RV”. Journal of the Geotechnical Engineering Division, 

109(5):778-81. 

 

[1.5] Mylonakis, G. (2001) Simplified model for seismic pile bending at soil layer inter-faces. Soils 

and Foundations, 41(4), 47-58. 

 

[1.6] Flores-Berrones, R., Whitman, RV. (1982) Seismic response of end-bearing piles. Journal of 

Geotechnical Engineering Division ASCE, 108(4):554-69. 

 

[1.7] Margason E. Pile bending during earthquake. (1975) Lecture ASCE/UC-Berkeley seminar on 

design construction & performance of deep foundation. 

 

[1.8] Margason E, Holloway DM (1977) Pile bending during earthquakes. In: Sarita Prakashan (ed) 

Proceedings of 6th world conference on earthquake engineering, Meerut, vol II, pp 1690-1696 

 

[1.9] Nikolaou, S., Mylonakis, G., Gazetas, G., Tazoh, T. (2001) Kinematic pile bending during 

earthquakes: analysis and field measurements. Géotechnique; 51(5):425-40. 

 

[1.10] Maiorano, RMS., de Sanctis, L., Aversa, S., Mandolini, A. (2009) Kinematic response analysis 

of piled foundations under seismic excitations. Canadian Geotechnical Journal; 46(5):571-84. 

 

[1.11] Sica, S., Mylonakis, G., Simonelli, AL. (2011) Transient kinematic pile bending in two-layer 

soil. Soil Dynamics and Earthquake Engineering, 31(7):891-905. 

 

[1.12] Di Laora, R., Mandolini, A. and Mylonakis, G. (2012) insight on kinematic bending of flexible 

piles in layered soil. Soil Dynamics and Earhquake Engineering, 43: 309-322. 

 



10 
 

[1.13] Ohira, A., Tazoh, T., Nakahi, S. and Shimizu, K. (1985) Observation and analysis of earthquake 

response behaviour of foundation piles in soft soil deposit. Journal of Structural Mechanics and 

Earthquake Engineering, 362/I-4,417-426 (in Japanese). 

 

[1.14] Saitoh, M. (2005) Fixed-head pile bending by kinematic interaction and criteria for its 

minimization at optimal pile radius. Journal of Geotechnical and Geoenvironmental 

Engineering ASCE,131 (10):1243-1251. 

 

[1.15] Tajimi, H. (1969) Dynamic analysis of a structure embedded in an elastic stratum. In: 

proceedings of the 4th world conference on earthquake engineering, Santiago, Chile. 

 

[1.16] Dezi, F., Carbonari, S., Leoni, G. (2009) Kinematic bending moments in pile foundations. Soil 

Dynamics and Earthquake Engineering, 30(3): 119-132. 

 

[1.17] Kaynia, AM., Kausel, E. (1982) Dynamic stiffness and seismic response of pile groups. Research 

report no. R82-03. Cambridge, MA: Massachusetts Institute of Technology. 

 

[1.18] K, Fan., Gazetas, G., Kaynia, AM., Kausel, E., Ahmad, S. (1991) Kinematic seismic response 

of single piles and pile groups. Journal of Geotechnical Engineering,117 (12):1860-1879. 

 

[1.19] Gazetas, G., K, Fan. (1993) Dynamic response of pile groups with different configurations. Soil 

Dynamics and Earthquake Engineering, (12):239-57. 

 

[1.20] CENT/TC 250. Eurocode 8: Design of structures for earthquake resistance Part 5: Foundations,                                       

retaining structures and geotechnical aspects. European Committee for Standardization 

Technical Committee 250, Brussels, Belgium, Standard EN 1998-5, 2003. 

 

[1.21] Ministero delle Infrastructure. Nuov Norme Tecniche per le Costruzioni. DM 14.01.08. Gazzetta                                                                                       

Ufficiale della Repubblica Italiana, No. 29, 4 Febbraio 2008 [in Italian]. 

 

[1.22] Di Laora, R. Mylonakis, G. Mandolini, A. (2013) Pile-head kinematic bending in layered soil. 

Earthquake Engineering and Structural Dynamics, 42:319-337. 

 

[1.23] Mylonakis, G., Di Laora, R., Mandolini, A. (2014) The Role of Pile Diameter on Earthquake-

Induced Bending. In Perspective on European Earthquake Engineering and Seismology,. 

Springer Vol 1. 533-556. 

 

 

 

 

 

 

 



11 
 

CHAPTER 2 

DYNAMIC SOIL-PILE GROUPS INTERACTION  

 

Dynamic soil-pile interaction modeling has received significant research attention over the past four 

decades. Most studies are based on either purely numerical in nature ([2.1]~[2.3]), or mixed analytical-

numerical formulations which have various degrees of complexity ([2.4]~[2.7] ). Other researches 

concentrate on experimental aspects of the problem, both in the field ([2.8], [2.9]), and the laboratory 

([2.10]~[2.12]). In purely analytical studies two-dimensional idealization for wave propagation in the soil 

medium has been taken into account, these methods are associated with the approximate model of Baranov 

and Novak ([2.13],[2.15]). On the other hand, analytical solutions based on three-dimensional wave 

propagation theory, which are more realistic and have the ability in predicting the main characteristics of 

dynamic soil-pile interaction, have received less research attention ([2.16]~[2.20]),  

Dynamic soil-pile interaction can be modeled efficiently based on engineering approximations in which 

soil medium is represented by series of independent Winkler springs and dashpots uniformly distributed 

along the pile axis. Substitution of soil medium by springs and dashpots is convenient, because the multi-

dimensional boundary value problem is simplified to a rod subjected to one-dimensional wave propagation 

in the vertical and lateral direction. Engineers use these simplified Winkler models for a wide range of 

dynamic soil-pile interaction problems ([2.21]~[2.23]). Their popularities stem from their ability to ([2.24])  

(a) Pile response can be predicted in a realistic way 

(b) Variable soil properties with depth and radial distance from the pile can be incorporated 

(c) Group effects can be modeled by employing pertinent pile-to-pile interaction models 

(d) Computational efforts become smaller than more rigorous alternatives. 

In general the dynamic behavior of a group of vertical piles in any mode of vibration is basically different 

from the single pile. Similarly, the dynamic response of a pile group differ from the response of the 
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individual pile alone, in addition to loading transmitted to piles from the superstructure through the cap pile 

groups experience additional loading imposed along their shafts, This pile-to-pile interaction is dependent-

frequency entity, resulting from waves that are emitted from the periphery of each pile and propagate to 

strike the neighboring piles. 

The scope of this chapter is: (i) to introduce a general approximate method that involves three consecutive 

steps to solve the problem of dynamic pile-soil-pile interaction for two major types of loading: 

(a) Lateral harmonic excitation at the pile head (inertial loading). 

(b) Seismic excitation in the form of vertically-propagating harmonic shear waves (kinematic loading).  

(ii) to develop a simple method for calculating the lateral soil impedance and attenuation of soil 

displacement in fundamental frequency of homogeneous soil layer.  

 

2.1 Model for dynamic soil-pile interaction 
 

The soil-pile system under consideration is shown in Figurre 2.1: two vertical cylindrical piles each of 

length L, diameter d, cross-sectional moment of inertia 𝐼𝑝, mass density 𝜌𝑝, mass per unit length 𝑚𝑝 and 

Young’s modulus of elasticity 𝐸𝑝 is embedded in a homogeneous soil layer of thickness 𝐻(= 𝐿) resting on 

a rigid base. Pile spacing is denoted with 𝑠. The pile group is loaded by either harmonic lateral loads 𝑉(𝑡) =

𝑉0𝑒
𝑖𝜔𝑡  transmitted through rigid cap or vertically propagating shear waves expressed in the form of 

harmonic horizontal displacement 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑡 at rigid base level. This section employs the following 

main assumptions: (a) foundation remains elastic during either seismic ground shaking or lateral head 

loading; (b) soil restraining action can be modeled using a bed of linear or equivalent-linear Winkler springs 

and dashpots, uniformly distributed along the pile axis; (c) perfect contact (i.e., no gap and slippage) exist 

between pile and soil; (d) the flexural deformations of the pile group are dominant during oscillations; (e) 

the frequency of horizontal excitation is assumed to be equal to the fundamental frequency of the soil 

medium.  
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Makris and Gazetas [2.25] developed a simple three steps methodology to obtain the response of pile groups 

under either harmonic head loading or seismic excitation based on wave “interference model”, by using 

this method, pile-soil-pile interaction can be decomposed in the following three steps which is explained in 

detail below. 

 
Figure 2.1: Problem considered for dynamic soil-pile interaction. 

 

 

2.2 Step1: the response of a solitary “active” pile 
 

 The lateral deflection 𝑢11(𝑧) of ‘active’ pile embedded in a homogeneous layer, subjected to either lateral 

inertial loads at its head or kinematic seismic deformations of the surrounding soil (Figure 2.2), is 

determined using a Beam-on-Dynamic-Winkler-Foundation method with relevant complex-valued 

dynamic springs and dashpots. Therefore by using a dynamic Winkler model soil-pile interaction is being 

to account.  Soil is modelled as a linear elastic material with Poisson’s ratio 𝜐𝑠 , mass density 𝜌𝑠 , and 

frequency-independent material damping 𝛽𝑠 which is expressed through a complex-valued shear modulus 

𝐺𝑠
∗ = 𝐺𝑠(1 + 2𝑖𝛽𝑠). The reaction of soil to the lateral pile motion is modeled by bed of continuously-

distributed frequency-dependent springs 𝑘𝑥   and dashpots 𝑐𝑥  along the pile length which represent the 

stiffness and damping due to radiation and hysteretic energy dissipation.  
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Figure 2.2: The response of a solitary “active” pile under either lateral inertial loads at its head or seismic 

waves. 
 

2.2.1 The Dynamic Winkler modulus at the fundamental frequency of the soil layer 
 

The basic problem in the implementation of Winkler models lies in the assessment of the moduli of the 

Winkler springs and dashpots. Current methods for determining these parameters can be classified into 

three main groups [2.26]: (a) experimental methods; (b) simplified theoretical models; and (c) calibration 

with rigorous numerical solutions. One of the simplest theoretical model is the one proposed by Novak 

[2.14]. In this model it is assumed that the soil is subjected to dynamic plane strain deformation and the 

lateral soil impedance according to this model is given by: 

  

𝑘𝑥
∗(𝜔)  = 𝜋𝐺𝑠

∗𝑠2
4𝐾1(𝑞)𝐾1(𝑠) + 𝑠𝐾1(𝑞)𝐾0(𝑠) + 𝑞𝐾0(𝑞)𝐾1(𝑠)

𝑞𝐾0(𝑞)𝐾1(𝑠) + 𝑠𝐾1(𝑞)𝐾0(𝑠) + 𝑞𝑠𝐾0(𝑞)𝐾0(𝑠)
 

(2.1) 

 

s =
𝑖𝑎0

2√1 + 2𝑖𝛽𝑠
 , 𝑞 =

𝑠

𝜂𝑢
 , 𝜂𝑢 = √

2(1 − 𝜐𝑠)

1 − 2𝜐𝑠
 

(2.2) 

 

where 𝑎0 = 𝜔𝑑/𝑉𝑠 denotes the dimensionless frequency factor, frequency-dependent springs and dashpots 

can be calculated by matching the pile dynamic pile response from Winkler and from rigorous numerical 

solutions (finite-element analysis), Dobry et al [2.27] derived the following expressions: 
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𝑘𝑥 = 𝛿𝐸𝑠 (2.3) 

 

𝛿 = 1.67(
𝐸𝑝
𝐸𝑠
)−0.053 

(2.4) 

 

Makris and Gazetas [2.25] proposed the following approximate expressions for the distributed springs and 

dashpots: 

 

𝑘𝑥 ≈ 1.2𝐸𝑠 (2.5) 

 

𝑐𝑥 = (𝑐𝑥)𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + (𝑐𝑥)ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 ≈ 6𝑎0
−
1
4𝜌𝑠𝑉𝑠𝑑 + 2𝛽𝑠

𝑘𝑥
𝜔

 
(2.6) 

 

However the importance of above methods, each can be criticized for certain shortcomings that limit their 

applicability and make them unappealing to geotechnical engineers. For example, Winkler values which 

are obtained based on experimental approaches pertain mostly to large-amplitude static loads, and do not 

take account properly for law-strain soil stiffness, energy dissipation or frequency effects ([2.23]). On the 

other hand numerical complexities in certain parameters ranges may be encountered into calibrations with 

rigorous numerical solutions in group. Plane strain models have shortcomings that limit their applicability. 

Anoyatis et al [2.28] stated that these models are accurate only for infinitely-long piles embedded in a half 

space, as dynamic impedance function in Equations (2.1), (2.3) and (2.5) is independent of the conditions 

at the boundaries of the soil layer. Consequently, it lacks potential to capture the resonance effects in a soil 

stratum overlying a stiff base (which is of particular interest in this study). To overcome these shortcomings 

of the plane strain model, Mylonakis [2.19] proposed a technique within the framework of the plane strain 

model which follows the pioneering work of Nogami and Novak [2.29]. Another special feature of 

Mylonakis’ model, is that the complex valued modulus 𝑘𝑥
∗  is derived under consideration of normal stresses 

in the soil slice. In this model, sinusoidal and exponential shape functions were assumed for the variation 

of the displacement field in the soil along the vertical coordinate. Then, this vertical coordinate was 

eliminated by integrating the governing equations over the thickness of the soil profile, simplifying the 
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three-dimensional problem into a two-dimensional one similar to the plane strain model. In this study, these 

Winkler parameters developed by Mylonakis are utilized, given by the following expressions:  

 

𝑘𝑥
∗(𝜔)  = 𝜋𝐺𝑠

∗𝑠2
4𝐾1(𝑞)𝐾1(𝑠) + 𝑠𝐾1(𝑞)𝐾0(𝑠) + 𝑞𝐾0(𝑞)𝐾1(𝑠)

𝑞𝐾0(𝑞)𝐾1(𝑠) + 𝑠𝐾1(𝑞)𝐾0(𝑠) + 𝑞𝑠𝐾0(𝑞)𝐾0(𝑠)
 

  

(2.7) 

 

s =
1

2
√𝑎𝑐

2 −
𝑎0
2

1 + 2𝑖𝛽𝑠
 , 𝑞 =

𝑠

𝜂𝑢
 , 𝜂𝑢 = √

2 − 𝜐𝑠
1 − 𝜐𝑠

 

 

(2.8) 

 

𝑎𝑐 = 𝑏𝑢𝑑, 𝑏𝑢
2 =

∫ (
𝑑𝜒(𝑧)
𝑑𝑧

)2
𝐻

0
𝑑𝑧

∫ (𝜒(𝑧))2
𝐻

0
𝑑𝑧
  

(2.9) 

 

where, 𝑎𝑐 stands for a dimensionless characteristic frequency (termed as “cutoff frequency”) below which 

no waves can emanate from the pile-soil interface and as a result, radiation damping will not be produced. 

The real part of Equation (2.7) is the soil stiffness  𝑘𝑥 = 𝑅𝑒𝑎𝑙(𝑘𝑥
∗) and the imaginary part presents soil 

damping  𝑐𝑥𝜔 = 𝐼𝑚𝑎𝑔(𝑘𝑥
∗) , 𝜒(𝑧) is the shape function to describe the lateral vibrations along the pile 

length.  

 

2.2.2 Selection of shape function 
 

To calculate the impedance of the soil medium using the proposed method, pertinent shape function 𝜒(𝑧) 

which satisfies the boundary conditions of soil-pile deformations is needed. Mylonakis [2.19] proposed 

shape functions which are convincing for engineering estimates of lateral response. In the lateral mode, a 

sinusoidal shape function is employed: 

 

𝜒(𝑧) = cos (
𝜋𝑧

2𝐻
)   (2.10) 

 

The cutoff frequency can be calculated with this shape function: 
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 𝑎𝑐 =
𝜋𝑟

𝐻
   (2.11) 

 

An alternative shape function can be employed by using Winkler theory ([2.30]) which coincides to the 

deformed shape of a fixed-head hinged-base cylinder.  

 

𝜒(𝑧) = 𝑒−𝜇𝑧{−𝑒2𝜇𝑧(cos(𝜇𝐿) − sin(𝜇𝐿)) + 𝑒4𝜇𝐿(cos(𝜇𝐿) + sin(𝜇𝐿))
− 𝑒2𝜇𝐿[(−1 + 𝑒2𝜇𝐿) cos(2𝜇𝐿 − 𝜇𝑧) + (1 + 𝑒2𝜇𝑧) sin(2𝜇𝐿 − 𝜇𝑧)]} 

(2.12) 

 

The corresponding cutoff frequency of the system can be obtained from the following expression  

 

𝑎𝑐𝑢 = 𝜇√2
−1 + 𝐸8 − 2𝐸2[1 + 4𝜇𝐿 + 𝐸4(−1 + 4𝜇𝐿)𝐶2 + 2𝐸2(1 + 𝐸4)𝑆2 + 2𝐸4(−8𝜇𝐿+𝑆4)

3(−1 + 𝐸8) + 2𝐸2[3(−1 + 𝐸4)𝐶2 − (3 − 4𝜇𝐿 + 𝐸4(3 + 4𝜇𝐿) + 6𝐸2𝐶2)𝑆2
   

(2.13) 

 

where 𝐸𝑗, 𝑆𝑗  and 𝐶𝑗  denote, respectively, the functions exp(𝑗 × 𝜇𝐿), sin(𝑗 × 𝜇𝐿) , cos (𝑗 × 𝜇𝐿) . 𝜇  in the 

above equations is a shape parameter that can be estimated by( [2.27],[2.30] and [2.31]). 

 

𝜇 ≈ (
𝐸𝑠

4𝐸𝑝𝐼𝑝
)1/4   

(2.14) 

 

For simplicity, a sinusoidal shape function (Equation (2.10)) is selected in which the cutoff frequency 

coincides with the fundamental frequency of homogenous soil layer in shearing vibrations. 

 

2.3 Step2: attenuation of soil displacement away from active pile (source pile) 
 

Cylindrical waves are emitted from the periphery of the vibrating active pile with amplitude equal to the 

deflected pile shape 𝑢11(𝑧) (Figure 2.3)., it is assumed the waves propagate in an essentially horizontal 

manner, the free-field soil displacement at a distance 𝑠 and angle 𝜃 from the direction of loading 𝑢𝑠(𝑠, 𝑧, 𝜃)  

is given by (Dobry and Gazetas [2.32]): 

 

𝑢𝑠(𝑠, 𝑧, 𝜃) ≈ 𝜓(𝑠, 𝜃)∆𝑢11 (2.15) 
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In Equation (2.15) ∆𝑢11 is the difference between single pile deflections and free-field soil displacements 

𝑢𝑓𝑓. For inertial loading, this difference is equal to the deflection of the active single pile: ∆𝑢11 = 𝑢11, while 

for kinematic loading, it is identical to the response of the scattered free-field of the soil:  ∆𝑢11 = 𝑢11 − 𝑢𝑓𝑓. 

Indeed this difference perturbs the seismic wave field. 𝜓(𝑠, 𝜃) is the dimensionless attenuation function of 

the horizontal soil displacement with radial distance from the pile and direction of loading. Dobry and 

Gazetas [2.32] derived the simple asymptotic formulae (Equations (2.16) an (2.17)): 

 

𝜓21(𝑠, 0) = (
2𝑠

𝑑
)−1/2exp [−(

𝑠

𝑑
−
1

2
) (𝛽𝑠 + 𝑖)

𝑉𝑠
𝑉𝐿𝑎

𝑎0] 
(2.16) 

 

𝜓21 (𝑠,
𝜋

2
) = (

2𝑠

𝑑
)−1/2exp [−(

𝑠

𝑑
−
1

2
) (𝛽𝑠 + 𝑖)𝑎0] 

(2.17) 

 

where 𝑢𝑠(𝑠, 𝑧, 𝜃) = horizontal soil displacement generated by active pile (source pile) ; 𝜓21(𝑠, 0) and 

𝜓21 (𝑠,
𝜋

2
) =  attenuation functions corresponding to wave travelling along and perpendicular to the 

direction of loading, respectively; 𝑉𝐿𝑎 is the so-called “Lysmer’s analogue” wave velocity accounting for 

the compression-extension waves near the surface 𝑉𝐿𝑎 = 3.4𝑉𝑠/[(1 − 𝜐𝑠)] ([1.33]);  𝜃= angle between the 

direction of loading and the line connecting the pile centers; s= axis-to-axis distance between the direction 

of loading and the line connecting the pile centers. 

 

Several approximate models are available to idealize wave propagation in soil medium. One simplified 

approach is the two-dimensional plane strain model developed by Gazetas and Dobry [2.33]. The 

fundamental assumption in their model is that compression-extension waves propagate in the two quarter-

planes along the direction of loading, and simultaneously shear waves propagate in the two quarter-planes 

perpendicular to the direction of loading. The exactness of the method has shortcomings when dealing with 

shallow layers of soil. Mylonakis [2.19] pointed out that the plane strain model in the presence of a rigid 

base cannot capture fundamental frequency effects. To overcome this discrepancy, he presented a new 

model for the attenuation functions in which beyond the fundamental frequency of soil layer, results are in 
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agreement with the plane strain model, but at smaller frequencies they diverge. In this study, the attenuation 

functions, presented in Equations (2.18) and (2.19), provided by Mylonakis [2.19] are employed. 

 

𝜓21(𝑠, 0) = (
2𝑠

𝑑
)−1/2exp [−(

𝑠

𝑑
−
1

2
)√𝑎𝑐

2 −
𝑎0
2

1 + 2𝑖𝛽𝑠
] 

(2.18) 

 

𝜓21 (𝑠,
𝜋

2
) = (

2𝑠

𝑑
)−1/2exp [−(

𝑠

𝑑
−
1

2
)𝜂𝑢

−1√𝑎𝑐
2 −

𝑎0
2

1 + 2𝑖𝛽𝑠
] 

(2.19) 

 

𝜓21(𝑠, 𝜃) = 𝜓21(𝑠, 0) cos
2(𝜃) + 𝜓21 (𝑠,

𝜋

2
) sin2 (𝜃) (2.20) 

 

In this study, since the excitation frequency is assumed to be equal to the fundamental frequency of the soil 

layer Equations (2.18) and (2.19) can be rewritten as Equations (2.21) and (2.22). 

 

𝜓21(𝑠, 0) = (
2𝑠

𝑑
)−1/2exp [−(

𝑠

𝑑
−
1

2
)
𝜋𝑟

𝐻
√

2𝑖𝛽𝑠
1 + 2𝑖𝛽𝑠

]  
(2.21) 

 

𝜓21 (𝑠,
𝜋

2
) = (

2𝑠

𝑑
)−1/2exp [−(

𝑠

𝑑
−
1

2
)
𝜋𝑟

𝐻
𝜂𝑢
−1√

2𝑖𝛽𝑠
1 + 2𝑖𝛽𝑠

] 
(2.22) 

 

According to the model proposed by Mylonakis, at a distance 𝑠 from the vibrating pile and angle 𝜃 from 

the direction of loading, the displacement field can be expressed as: 

 

 

𝑢𝑠(𝑠, 𝑧, 𝜃) = 𝜓21(𝑠, 𝜃)∆𝑢11 = 𝜓21(𝑠, 𝜃)𝑢
𝐼
11(𝑧)                            for inertial loading            (2.23)                                                        

 

𝑢𝑠(𝑠, 𝑧, 𝜃) = 𝜓21(𝑠, 𝜃)∆𝑢11 = 𝜓21(𝑠, 𝜃)(𝑢
𝐾
11(𝑧) − 𝑢𝑓𝑓)           for kinematic loading (2.24) 

 

The effect of frequency on the attenuation function is illustrated in Figure 2.3, in which the amplitude of 

𝜓21(𝑠, 𝜃 = 0) is plotted as function of frequency for six pile spacings 𝑠/𝑑. Corresponding results obtained 

from the plane strain model are also shown for comparison.  
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Figure 2.3: Attenuation of soil displacement around a pile: lateral mode, (
𝐿

𝑑
= 20 , 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05). 

 

At the cutoff frequency a significant increase in 𝜓 is observed which may exceed 100% of the static value 

particularly at large distances from the pile. This implies that special care should be taken in calculating 

group effects if the predominant frequency of the excitation are close to the cutoff frequency of the system. 

 

 

 

Figure 2.4: Schematic illustration for computing influence of active pile on adjacent passive pile. 
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2.4 Step3: the response of a solitary “passive” pile 
 

As it is shown in Figure 2.4 the presence of passive pile will modify the arriving wave field 𝑢𝑠 and it tends 

to resist the free-field motion of step 2 with its inertial and relative flexural rigidity. This interaction between 

passive pile and surrounding soil leads to a diffraction of the incoming wave field. In result, passive pile 

displacement will be different from free-field displacement, based on the flexibility of the passive pile, its 

deflection will vary between two extremes. For long-flexible pile, it will experience 𝑢21(𝑧) ≈ 𝑢𝑠(𝑧) and 

for rigid pile, it may remain approximately unchanged 𝑢21(𝑧) ≈ 0. For soil-passive pile interaction, a 

Beam-on-Dynamic-Winkler-Foundation model is utilized in which the excitation takes the shape of a 

support motion, that is equal to the attenuated free-field displacement 𝑢𝑠(𝑧). The response of pile to this 

excitation will yield the desired passive pile response 𝑢21(𝑧). 

 
Figure 2.5: The response of a solitary “passive” pile under influence of the active pile. 

 

Consequently a general methodology has been extended for analysis of dynamic pile-soil-pile interaction 

problems under both inertial and kinematic effects. This method is comprised of three independent steps, 

which can be used efficiently to solve and analyze the problem of inertial and kinematic interaction 

separately. Pile soil interaction which is simulated through a series of independent dynamic Winkler springs 

and dashpots and physically-motivated approximations are used to model diffraction and attenuation of 

seismic waves away from each pile. When a group of piles fixed to a cap is subjected to incident seismic 
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waves, the response of each individual pile can be studied as a combination of not only the kinematic part, 

but also the inertial part owing to the restriction imposed by the rigid cap. In this study, the soil-pile model 

is assumed to exhibit linear behavior and therefore for simplicity, both inertial and kinematic effects are 

treated in the context of two modular problems (active and passive pile response). Each sub-problem is 

addressed separately in the following chapters. 
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CHAPTER 3 

INERTIAL RESPONSE OF PILE GROUPS  

 

The deformations of a structure during earthquake generate inertial forces atop the pile foundation systems. 

Investigation on lateral response of single piles and pile groups due to induced inertial forces has attracted 

a vast amount of researches. Various types of techniques have been proposed to investigate the behavior of 

pile-soil-structure under dynamic inertial loads in recent years, such as continuum approach (Novak [3.1]; 

Novak and Aboul-Ella [3.2]), boundary element method (Kaynia and Kausel [3.3]; Sen, Kausel and 

Banerjee [3.4]) finite element solutions,  (Blaney , Kausel and Roesset [3.5] ;Wolf and VonArx [3.6]) . A 

simplified approach was also presented by (Makris and Gazetas [3.7]) for calculating the dynamic response 

and internal forces caused by harmonic loading atop the pile cap. That method is based on generalized 

Winkler model in conjunction with a three step wave interference solution for pile to pile effect. Although 

those studies had led to sufficient understanding in the behavior of inertial response of pile-soil-structure 

systems, the predictions of inertial bending remains questionable. For design purposes, it is necessary to 

determine pile radius because the size of the radius directly affects the bending stiffness of the pile 𝐸𝐼. 

When inertial loading is significant, increasing the pile radius is a proper technique to decrease bending 

strains. Saitoh [3.8] proposed a closed form formula in order to obtain optimal radius of vertical, cylindrical 

fixed-head single pile embedded in a homogeneous elastic soil layer and supported by rotationally 

compliant bedrock. Particularly the frequency of horizontal excitation was assumed to be equal to the 

natural frequency of the soil medium. The variations in normalized inertial bending strains as a function of 

the slenderness ratio 𝑟/𝐻 was investigated. Despite this effort, researches on the influence of the pile radius 

on bending strains in soil-pile group systems where inertial interaction is predominant, has not reported yet, 

therefore to establish criteria for optimal pile radius in pile group, variations of inertial bending strains with 

respect to pile radius should be quantified in a systematic way. This chapter attempts to offer comprehensive 
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relations between radius and the inertial bending strains at the head of vertical, cylindrical pile group 

embedded in a homogeneous soil layer, pile group is assumed to be under harmonic loading at the head, 

and different constraint conditions at the pile group tip (hinged and fixed) is considered. Analytical results 

will be assessed through Beam-on-Dynamic-Winkler-foundation (BDWF) model. Mylonakis and Nikolaou 

[3.9] implied that, in dominance of inertial responses in fundamental frequency of soil-pile system, the 

inertial bending would be significant, particularly at upper part of the piles. Therefore to get insight into the 

physics of the problem and basic characteristics, it would be beneficial to investigate inertial bending strains 

in the fundamental frequency of soil layer. 

 

3.1 Analytical solution of inertial bending of pile groups 
 

The soil-pile-structure system is shown in Figure 3.1: two vertical cylindrical piles of length L, diameter d, 

pile cross-sectional moment of inertia  𝐼𝑝 , mass density 𝜌𝑝  , mass per unit length of the piles 𝑚𝑝 and 

Young’s modulus 𝐸𝑝 is embedded in a homogeneous soil layer of thickness 𝐻(= 𝐿) resting on a rigid base. 

Pile spacing is denoted with 𝑠. Soil is modelled as a linear elastic material of Poisson’s ratio 𝜐𝑠, mass density 

𝜌𝑠, and frequency-independent material damping 𝛽𝑠 which is expressed through a complex-valued shear 

modulus 𝐺𝑠
∗ = 𝐺𝑠(1 + 2𝑖𝛽𝑠) and as a Winkler foundation resisting the lateral pile motion by continuously-

distributed frequency-dependent linear springs 𝑘𝑥 and dashpots 𝑐𝑥 along the pile length. The pile group is 

assumed to be excited by harmonic horizontal load at the head. This section employs the following main 

assumptions: (a) foundation remains elastic during either seismic ground shaking or lateral head loading; 

(b) soil restraining action can be modeled using a bed of linear or equivalent-linear Winkler springs and 

dashpots, uniformly distributed along the pile axis; (c) perfect contact (i.e., no gap and slippage) exist 

between pile and soil; (d) the flexural deformations of the pile group are dominant during oscillations; (e) 

the frequency of horizontal excitation is assumed to be equal to the fundamental frequency of the soil 

medium.  
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Figure 3.1: Problem considered for inertial interaction with different tip conditions. 
 

 

3.2 Deflection of active pile (source pile) 

 

Let  𝑢11(𝑧, 𝑡) = 𝑢11(𝑧)𝑒
𝑖𝜔𝑔𝑡  denote the harmonic pile deflection. With reference to Figure 3.1 dynamic 

equilibrium under harmonic steady-state conditions yields: 

 
𝑑4𝑢11(𝑧)

𝑑𝑧4
+ 4𝜆4𝑢11(𝑧) = 0 

(3.1)                                                                

 

 

Where 𝜆 = 𝜆(𝜔) is the characteristics wave number governing the attenuation functions of pile 

displacement with depth and 𝜔𝑔 is the fundamental frequency of the homogeneous soil layer. The solution 

will yield harmonic horizontal deflection of the active pile 𝑢𝐼11(𝑧, 𝑡) = 𝑢
𝐼
11(𝑧)𝑒

𝑖𝜔𝑔𝑡  in terms of inertial 

integration constants 𝐴𝐼11, 𝐵
𝐼
11, 𝐶

𝐼
11, 𝐷

𝐼
11 which are dependent on the boundary conditions. For both 

hinged and fixed tip conditions, constants can be obtained as following relations. 

 

𝜆 = (
𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑔 −𝑚𝑝𝜔𝑔

2

4𝐸𝑝𝐼𝑝
)1/4 

    (3.2)                                                                  

                                                                                         

 

 𝜔𝑔 =  𝜔𝑐𝑢𝑡𝑜𝑓𝑓 =
𝜋𝑉𝑠
2𝐻

 
                

(3.3)                                                                                                                                                                                                            
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3.2.1 Boundary conditions of active pile (hinged pile groups): 

 

u11
I (z = 0) = 𝑢0   ,    𝜃

𝐼
11(𝑧 = 0) = 0     ,

𝑑2𝑢11
𝐼 (𝑧 = 𝐻)

𝑑𝑧2
= 0   ,   𝑢11

𝐼 (𝑧 = 𝐻) = 0 

 

                                                                         

(3.4)                                                                      

 

[

1                       0
1                       1

1              0
−1            1

−𝑒𝜆𝐻sin (𝜆𝐻)  𝑒𝜆𝐻cos (𝜆𝐻)

𝑒𝜆𝐻cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

𝑒−𝜆𝐻sin (𝜆𝐻) −𝑒−𝜆𝐻cos (𝜆𝐻)

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴11

𝐼

𝐵11
𝐼

𝐶11
𝐼

𝐷11
𝐼
}
 
 

 
 

= {

𝑢0
0
0
0

} 

        (3.5)   

 

 

3.2.2 Boundary conditions of active pile (fixed-tip pile groups) 

 

u11
I (z = 0) = 𝑢0   ,     𝜃

𝐼
11(𝑧 = 0) = 0     ,

𝑑𝑢11
𝐼 (𝑧 = 𝐻)

𝑑𝑧
= 0   ,   𝑢11

𝐼 (𝑧 = 𝐻) = 0 

 

                                                                         

                   (3.6)                                                                      

 
 

[

1                            0
1                             1

   1                          0
−1                          1

𝑒𝜆𝐻(cos(𝜆𝐻) − sin(𝜆𝐻))  𝑒𝜆𝐻(cos(𝜆𝐻) + sin(𝜆𝐻))

𝑒𝜆𝐿 cos(𝜆𝐻) 𝑒𝜆𝐻 sin(𝜆𝐻)

−𝑒−𝜆𝐻(cos(𝜆𝐻) + sin(𝜆𝐻)) 𝑒−𝜆𝐻(− sin(𝜆𝐻) + cos(𝜆𝐻))

𝑒−𝜆𝐻 cos(𝜆𝐻) 𝑒−𝜆𝐻 sin(𝜆𝐻)

]

{
 
 

 
 𝐴11

𝐼

𝐵11
𝐼

𝐶11
𝐼

𝐷11
𝐼
}
 
 

 
 

= {

𝑢0
0
0
0

} 

                                                                                                                                                                                         (3.7)                                                    

                                                                         

                        

 

3.3 Attenuation of soil displacement away from active pile (source pile) 

 
 

This step starts by calculating the difference between single pile deflections and free-field soil 

displacements, ∆𝑢11 (Figure 2.3). For inertial loading, this difference is equal to the deflection of the active 

single pile: ∆𝑢11 = 𝑢𝐼11(𝑧), new cylindrical waves emanate from the periphery of the vibrating active pile 

while spreading outward in all directions. In this study attenuation functions of Mylonakis [3.10] is used. 

With reference to Equation (2.15), at a distance 𝑠 from the vibrating pile and angle 𝜃 from the direction of 

loading, the free-field soil displacement can be expressed as:  

 
𝑢𝑠(𝑠, 𝑧, 𝜃) = 𝜓21(𝑠, 𝜃)∆𝑢11 = 𝜓21(𝑠, 𝜃)𝑢

𝐼
11(𝑧) (3.8) 
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3.4 Interaction of the passive pile (receiver) with arriving waves 
 

Considering a passive pile (receiver pile) located at a distance 𝑠 from the active pile (source pile), the 

diffracted wave field generated by the active pile as represented by Equation (3.8) propagates to strike the 

passive pile. The passive pile does not exactly follow the diffracted wave field [3.11], [3.12] and its flexural 

rigidity tends to resist these induced displacements, resulting in a modified motion at the soil-passive pile 

interface. In order to determine the additional displacement, which is experienced by passive pile, the 

dynamic equilibrium of an infinitesimal pile segment is considered, yielding the following equation 

governing the deflection  𝑢21(𝑧) of the passive pile. 

 
𝑑4𝑢21(𝑧)

𝑑𝑧4
+ 4𝜆4𝑢21(𝑧) =

𝑘𝑥 + 𝑖𝜔𝑔𝑐𝑥

𝐸𝑝𝐼𝑝
𝜓21(𝑠, 𝜃)𝑢

𝐼
11(𝑧)  (3.9) 

 

When the active pile is excited by the lateral harmonic loading 𝑢𝐼11(𝑧 = 0)𝑒
𝑖𝜔𝑔𝑡 = 𝑢0𝑒

𝑖𝜔𝑔𝑡  at the head, the 

solution of Equation (3.9) gives us the additional inertial displacement of the passive pile. This displacement 

consists of two parts; (𝑢𝐼21(𝑧))1 as homogeneous solution and (𝑢𝐼21(𝑧))2 as particular solution. 

 
𝑢𝐾21(𝑧) = (𝑢𝐼

21
(𝑧))1 + (𝑢

𝐼
21(𝑧))2  (3.10) 

 

 

(𝑢𝐼
21
(𝑧))1 = 𝑒

𝜆𝑧(𝐴21
𝐼 cos(𝜆𝑧) + 𝐵21

𝐼 sin(𝜆𝑧)) + 𝑒−𝜆𝑧(𝐶21
𝐼 cos(𝜆𝑧) + 𝐷21

𝐼 sin(𝜆𝑧))  (3.11) 

 

 

(𝑢𝐼
21
(𝑧))2 =

𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑔

16𝐸𝑝𝐼𝑝𝜆
3
𝜓21(𝑠, 𝜃)[𝑧𝑒

𝜆𝑧(𝐴′ cos(𝜆𝑧) + 𝐵′ sin(𝜆𝑧)) + 𝑧𝑒−𝜆𝑧(𝐶′ cos(𝜆𝑧) + 𝐷′ sin(𝜆𝑧))] (3.12) 

 

 

𝐴′ = −(𝐴11
𝐼 + 𝐵11

𝐼 ) ,  𝐵′ = (𝐴11
𝐼 − 𝐵11

𝐼 ) ,  𝐶′ = (𝐶11
𝐼 − 𝐷11

𝐼) ,  𝐷′ = (𝐶11
𝐼 + 𝐷11

𝐼) (3.13) 

 

In particular solution, (Equation. (3.12)), 𝐴′, 𝐵′, 𝐶′ and 𝐷′ are integration constants in which 𝐴11
𝐼 , 𝐵11

𝐼 , 𝐶11
𝐼 

and 𝐷11
𝐼 are known inertial integration constants (i.e. they have already been determined from the boundary 

conditions of the active pile). In homogeneous solution 𝐴21
𝐼 , 𝐵21

𝐼 , 𝐶21
𝐼  and 𝐷21

𝐼  are inertial integration 

constants that should be determined from the boundary conditions of the passive pile.  



30 
 

3.4.1 Boundary conditions of passive pile (hinged pile groups) 

 

𝜃𝐼21(𝑧 = 0) = 0   ,     
𝑑3𝑢21

𝐼 (𝑧 = 0)

𝑑𝑧3
= 0     ,

𝑑2𝑢21
𝐼 (𝑧 = 𝐻)

𝑑𝑧2
  ,   𝑢21

𝐼 (𝑧 = 𝐻) = 0 (3.14) 

 

[

1                         1
−1                        1

−1              1
1            1

−𝑒𝜆𝐻sin (𝜆𝐻)  𝑒𝜆𝐻cos (𝜆𝐻)

𝑒𝜆𝐻cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

𝑒−𝜆𝐻sin (𝜆𝐻) −𝑒−𝜆𝐻cos (𝜆𝐻)

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴21

𝐼

𝐵21
𝐼

𝐶21
𝐼

𝐷21
𝐼
}
 
 

 
 

=

{
 

 
𝐻1
𝐻2
𝐻3
𝐻4}

 

 

 

 

(3.15) 

 

{

𝐻1
𝐻2
𝐻3
𝐻4

} =

{
 
 
 

 
 
 

0

2𝛼21𝑢0
𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻)

𝑠𝑖𝑛ℎ(2𝜆𝐻) − 𝑠𝑖𝑛(2𝜆𝐻)

4

3
𝛼21𝑢0

𝜆𝐻 𝑐𝑜𝑠(𝜆𝐻) 𝑐𝑜𝑠ℎ(𝜆𝐻)

𝑠𝑖𝑛ℎ(2𝜆𝐻) − 𝑠𝑖𝑛(2𝜆𝐻)

4

3
𝛼21𝑢0

𝜆𝐻𝑠𝑖𝑛(𝜆𝐻) 𝑠𝑖𝑛ℎ(𝜆𝐻)

𝑠𝑖𝑛(2𝜆𝐻) − 𝑠𝑖𝑛ℎ(2𝜆𝐻)}
 
 
 

 
 
 

 (3.16) 

 

 

3.4.2 Boundary conditions of passive pile (end-bearing pile groups) 

 

𝜃𝐼21(𝑧 = 0) = 0   ,       
𝑑3𝑢21

𝐼 (𝑧 = 0)

𝑑𝑧3
= 0   ,

𝑑𝑢21
𝐼 (𝑧 = 𝐻)

𝑑𝑧
= 0   ,   𝑢21

𝐼 (𝑧 = 𝐻) = 0 
(3.17)                  

 

[

1                            1
−1                             1

−1              1
1            1

𝜆𝑒𝜆𝐻(cos (𝜆𝐻) − sin (𝜆𝐻))  𝜆𝑒𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻))

𝑒𝜆𝐿cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

−𝜆𝑒−𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻)) 𝜆𝑒−𝜆𝐻(−sin (𝜆𝐻) + cos (𝜆𝐻))

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴21

𝐼

𝐵21
𝐼

𝐶21
𝐼

𝐷21
𝐼
}
 
 

 
 

= {

𝐻1
𝐻2
𝐻3
𝐻4

}                                                                                                                                                                                                                                   

(3.18)                                       

 

 

 

 

            

 

{

𝐻1
𝐻2
𝐻3
𝐻4

} =

{
 
 

 
 

0

2𝛼21𝑢0
𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻)

𝑐𝑜𝑠ℎ(2𝜆𝐻) + 𝑐𝑜𝑠(2𝜆𝐻) − 2
8

3
𝛼21𝑢0

𝜆𝐻 𝑠𝑖𝑛(𝜆𝐻) 𝑠𝑖𝑛ℎ(𝜆𝐻)

𝑐𝑜𝑠ℎ(2𝜆𝐻) + 𝑐𝑜𝑠(2𝜆𝐻) − 2
0 }

 
 

 
 

 (3.19) 

 

𝛼21 =
3

4
𝜓21(𝑠, 𝜃)

𝑘𝑥 + 𝑖𝑐𝑥𝜔

𝑘𝑥 + 𝑖𝑐𝑥𝜔 −𝑚𝜔
2
   

(3.20)                                                        

 

 

3.5 Inertial interaction factors 
 

According to the calculation of pile group response, an important difficulty will arise, for instance with the 

only two piles, the presence of the second pile changes the axial symmetry of the single pile problem, 

therefore, three dimensional analysis of the problem is necessary. Significantly for large pile groups, 
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substantial computational effort will be needed. Poulos [3.13] and Butterfield and Banerjee [3.14] implied 

that group effects can be estimated by superimposing the effects of only two piles. This type of analysis 

referred to as the “superposition method”. 

 

The above definition for the interaction factor is very important in study of pile groups. Once the interaction 

factors between individual piles have been determined, pile group response can be obtained through simple 

system of algebraic equations. A large amount of researches with resource to rigorous numerical solutions 

([3.13]~[3.15]) or simple physical models have been conducted on obtaining the static interaction factors, 

also the interaction factor concept was extended to dynamic problems by (Kaynia and Kausel [3.3]; Dobry 

and Gazetas [3.16]). Their results for pile group systems showed good match in comparison with the results 

from rigorous numerical solutions. 

 

The inertial interaction factor 𝛼𝐼21(𝑠, 𝜃) between two piles is defined as the response of a pile carrying no 

load at its head (passive pile), subjected to the ground displacement induced by an adjacent pile (active 

pile), which carries either horizontal force or moment atop its head. The inertial interaction factor then is 

defined as the response atop the passive pile, normalized by the response of the active pile which is caused 

by its own loading. This can be written as: 

 

𝛼 =
additional displacement atop the pile 2 due to the adjacent pile 1

dispalcement atop the pile 1 due to its own head load
 =

𝑢21(0)

𝑢11(0)
 

     (3.21)                                                        

 

 In flexural vibrations, the inertial interaction factor is expressed by a 2×2 complex matrix. 

 

[𝛼𝐼] = [𝛼𝐼21(𝑠, 𝜃)] = [
𝛼𝐼𝑢𝑃 𝛼𝐼𝑢𝑀
𝛼𝐼𝜙𝑃 𝛼𝐼𝜙𝑀

]  
     (3.22)                                                        

 

where 𝛼𝑢𝑃= swaying inertial interaction factor; 𝛼𝜙𝑀= rocking inertial interaction factor; 𝛼𝑢𝑀  and 𝛼𝜙𝑃= 

cross-swaying-rocking factors. Dobry and Gazetas [3.16] introduced a simplified model for calculating the 
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dynamic interaction factor between piles in homogeneous soil profiles. They assume that: (1) cylindrical 

waves are emitted from all points along active pile shaft. The waves propagate through the soil and strike 

simultaneously the shaft of the passive pile; (2) the passive pile follows exactly attenuated ground motion 

this infer that interaction between passive pile and encompassing soil is neglected; and (3) the rocking and 

cross-swaying-rocking interaction factors are small therefore they could be neglected. Based on these 

suppositions the interaction factors are written as: 

 

𝛼𝐼𝑢𝑃 ≈ 𝜓(𝑠, 𝜃); 𝛼
𝐼
𝑢𝑀 ≈ 𝛼

𝐼
𝜙𝑃 ≈ 𝛼

𝐼
𝜙𝑀 ≈ 0       (3.23)                                                        

 

Despite the simplicity of the method of Dobry and Gazetas, in the case of inhomogeneous soil or slender 

piles the accuracy of their proposed method gradually degenerates. A similar three-step model was 

introduced by Makris and Gazetas [3.11] who considered only infinitely-long fixed-head piles in 

homogeneous soil. To overcome the drawbacks of the Dobry and Gazetas [3.16] method, an improved 

model is developed by Mylonakis and Gazetas [3.12] who studied lateral vibrations of finite pile length and 

soil layering. In this study pile cap is assumed to be rotationally fixed. Therefore, 𝛼𝐼𝜙𝑀= rocking inertial 

interaction factor; 𝛼𝐼𝑢𝑀  and 𝛼𝐼𝜙𝑃= cross-swaying-rocking interaction factors will be equal to zero and 

inertial interaction factor between active pile (pile 1) and passive pile (pile 2) can be simplified as: 

 

𝛼𝐼𝑢𝑃(𝑠, 𝜃) = 𝛼
𝐼
21
(𝑠, 𝜃) =

𝑢21
𝐼 (0)

𝑢11
𝐼 (0)

 
    (3.24)                                                        

 

𝛼𝐼21(𝑠, 𝜃) =
𝐴21
𝐼 + 𝐵21

𝐼

𝐴11
𝐼 +𝐵11

𝐼 =
𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑔

𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑛 −𝑚𝑝𝜔𝑔2
𝜓21(𝑠, 𝜃)𝜉𝑢𝑃 

    (3.25)                                                        

 

The dimensionless diffraction factor 𝜉𝑢𝑃  and inertial interaction factors are related to the boundary 

conditions at the tip of the fixed-head pile groups and for both cases of hinged and end-bearing (fixed) tip 

have been obtained in the following sections.  

3.5.1 Inertial interaction factor for hinged-tip pile groups 
 

𝛼21
𝐼 (𝑠, 𝜃) =

𝑢21
𝐼 (0)

𝑢11
𝐼 (0)

=
3

4
𝜓(𝑠, 𝜃)

𝑘𝑥 + 𝑖𝑐𝑥𝜔

𝑘𝑥 + 𝑖𝑐𝑥𝜔 −𝑚𝜔
2
𝜉ℎ𝑔(𝜆𝐻) = 𝛼21𝜉ℎ𝑔(𝜆𝐻) 

     (3.26)                                                        
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𝜉ℎ𝑔(𝜆𝐻) =
𝑚1

𝑚2
 

 

     (3.27)                                                        

 
𝑚1 = −𝑠𝑖𝑛ℎ(4𝜆𝐻) − 2𝑐𝑜𝑠(2𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻) + 2𝑠𝑖𝑛(2𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻) + 𝑠𝑖𝑛(4𝜆𝐻)

+ (
8𝜆𝐻

3
) 𝑠𝑖𝑛(2𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻) 

     (3.28)                                                        

 
m2 = −𝑠𝑖𝑛ℎ(4𝜆𝐻) − 2𝑐𝑜𝑠(2𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻) + 2𝑠𝑖𝑛(2𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻) + 𝑠𝑖𝑛(4𝜆𝐻)        (3.29)                                                        

 

 

Fig 3.2: Dimensionless diffraction factor for hinged-tip pile groups. 

 

3.5.2 Inertial interaction factor for fixed-tip pile groups 

 

𝛼21
𝐼 (𝑠, 𝜃) =

𝑢21
𝐼 (0)

𝑢11
𝐼 (0)

=
3

4
𝜓(𝑠, 𝜃)

𝑘𝑥 + 𝑖𝑐𝑥𝜔

𝑘𝑥 + 𝑖𝑐𝑥𝜔 −𝑚𝜔
2
𝜉𝑒𝑛(𝜆𝐻) = 𝛼21𝜉𝑒𝑛(𝜆𝐻) 

 

       (3.30)                                                        

 

𝜉𝑒𝑛(𝜆𝐻) =
𝑚1

𝑚2
 

       (3.31)                                                        

𝑚1 = −4𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(4𝜆𝐻) + 2𝑐𝑜𝑠(2𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻) + 2𝑠𝑖𝑛(2𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻) − 4𝑠𝑖𝑛(2𝜆𝐻)

+ 𝑠𝑖𝑛(4𝜆𝐻) − (
8𝜆𝐻

3
) 𝑐𝑜𝑠ℎ(2𝜆𝐻) + (

8𝜆𝐻

3
) + (

8𝜆𝐻

3
) 𝑐𝑜𝑠(2𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻)

− (
8𝜆𝐻

3
) 𝑐𝑜𝑠(2𝜆𝐻) 

        

(3.32)                                                        

 

𝑚2 = −4sin(2λH) + 𝑠𝑖𝑛ℎ(4𝜆𝐻) + 2𝑐𝑜𝑠(2𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻) + 2𝑠𝑖𝑛(2𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻) − 4𝑠𝑖𝑛(2𝜆𝐻)
+ 𝑠𝑖𝑛(4𝜆𝐻) 

         

(3.33)                                                        
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      Figure 3.3: Dimensionless diffraction factor for fixed-tip pile groups. 

 

 

3.6 Inertial curvature ratios 
 

(1) Inertial curvature ratio of the active pile is defined as the ratio of the active pile head curvature as a 

single solitary pile due to its own inertial head loading to the active pile-top displacement [3.17]; (2) Inertial 

curvature ratio of the passive pile is defined as the ratio of the passive pile head curvature due to the 

additional inertial head displacement of the passive pile to the active pile-top displacement due to the inertial 

head loading [3.17]; 

 

𝛽11
𝐼 =

𝑢11
𝐼 ′′
(0)

𝑢11
𝐼 (0)

=
2𝜆2(𝐵11

𝐼 − 𝐷11
𝐼)

𝐴11
𝐼 + 𝐶11

𝐼  
(3.34)                  

 

𝛽21
𝐼 =

𝑢21
𝐼 ′′

(0)

𝑢11
𝐼 (0)

=

2𝜆2

3
(3(𝐵21

𝐼 − 𝐷21
𝐼) − 2𝛼21(𝐵11

𝐼 − 𝐷11
𝐼))

𝐴11
𝐼 + 𝐶11

𝐼  

(3.35)                  

  

 

 

3.6.1 Inertial curvature ratios for hinged-tip pile groups 
 

𝛽11
𝐼 =

𝑢11
𝐼 ′′
(0)

𝑢11
𝐼 (0)

= −2𝜆2
sin(2𝜆𝐻) + sinh(2𝜆𝐻)

(sinh(2𝜆𝐻) − sin(2𝜆𝐻))
 

(3.36)                  
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𝛽21
𝐼 =

𝑢21
𝐼 ′′

(0)

𝑢11
𝐼 (0)

= −2𝜆2𝛼21𝐻2ℎ𝑔(𝜆𝐻) 
(3.37)                  

 

𝐻2ℎ𝑔(𝜆𝐻) =
𝑚11

𝑚22
 

(3.38)                  

 

 
m11 = cosh(6λH) − 3𝑐𝑜𝑠ℎ(2𝜆𝐻) + 2𝑐𝑜𝑠(2𝜆𝐻)𝑐𝑜𝑠ℎ(4𝜆𝐻) − 3𝑐𝑜𝑠(2𝜆𝐻)

+ 2𝑐𝑜𝑠(4𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻) + 𝑐𝑜𝑠(6𝜆𝐻) − 16𝜆𝐻𝑠𝑖𝑛ℎ(2𝜆𝐻)
− 8𝜆𝐻𝑐𝑜𝑠(2𝜆𝐻)𝑠𝑖𝑛ℎ(4𝜆𝐻) + 16𝜆𝐻𝑠𝑖𝑛(2𝜆𝐻) + 8𝜆𝐻𝑠𝑖𝑛(4𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻) 

 

(3.39)                  

 

 
m22 = 3(𝑐𝑜𝑠ℎ(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(6𝜆𝐻) + 2𝑐𝑜𝑠(2𝜆𝐻)𝑐𝑜𝑠ℎ(4𝜆𝐻) − 𝑐𝑜𝑠(2𝜆𝐻)

− 2𝑐𝑜𝑠(4𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻) − 𝑐𝑜𝑠(6𝜆𝐻) − 4𝑠𝑖𝑛(2𝜆𝐻)𝑠𝑖𝑛ℎ(4𝜆𝐻)
− 4𝑠𝑖𝑛(4𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻) 

 

(3.40)                  

 

3.6.2 Inertial curvature ratios for fixed-tip pile groups 

 

𝛽11
𝐼 = −2𝜆2

cosh(2𝜆𝐻) − cos(2𝜆𝐻)

(cosh(2𝜆𝐻) + cos(2𝜆𝐻) − 2)
= −2𝜆2𝐻1𝑒𝑛(𝜆𝐻) 

(3.41)                  

 

𝛽21
𝐼 =

𝑢21
𝐼 ′′

(0)

𝑢11
𝐼 (0)

= −2𝜆2𝛼21𝐻2𝑒𝑛(𝜆𝐻) 
(3.42)                  

 

𝐻2𝑒𝑛(𝜆𝐻) =
𝑚11

𝑚22
 

 

(3.43)                  

 

 
𝑚11 = 𝑠𝑖𝑛ℎ(4𝜆𝐻)− 𝑠𝑖𝑛(4𝜆𝐻)− 2𝑠𝑖𝑛ℎ(2𝜆𝐻)𝑐𝑜𝑠(2𝜆𝐻)+ 2𝑠𝑖𝑛(2𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻)

− 8𝜆𝐻𝑠𝑖𝑛(2𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻) 
(3.44)                  

 

 
𝑚22 = 3(𝑠𝑖𝑛ℎ(4𝜆𝐻)− 4𝑠𝑖𝑛ℎ(2𝜆𝐻)+ 2𝑐𝑜𝑠(2𝜆𝐻)𝑠𝑖𝑛ℎ(2𝜆𝐻)+ 2𝑠𝑖𝑛(2𝜆𝐻)𝑐𝑜𝑠ℎ(2𝜆𝐻)

− 4𝑠𝑖𝑛(2𝜆𝐻)+ 𝑠𝑖𝑛(4𝜆𝐻)) 
(3.45)                  

 

 

3.7 Inertial response of pile-soil system 
 

A pile group with identical N piles was considered to be connected by a rigid cap restricted against rotation 

and subjected to lateral loading 𝑉(𝑡) = 𝑉0𝑒
𝑖𝜔𝑔𝑡 at the head of pile group. The total horizontal response of 

N pile at the head may be calculated as the sum of the following components: (1) The horizontal 

displacement at the head of single (solitary) pile due to its own head loading with the amplitudes  

𝑃1 , … , 𝑃𝑁 ; (2) The additional horizontal displacement at the head of the pile transmitted from the other N-
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1 piles due to their head-loading with the amplitudes 𝑃1… , 𝑃𝑁.When the horizontal head displacement of 

the foundation is expressed by 𝑈(𝐺), the compatibility condition can be described by: 

 

{
 
 

 
 
𝑈(𝐺) =∑  𝛼𝐼𝑖𝑗

𝑃𝑗

𝐾𝑥
(1)
     

𝑁

𝑗=1

∑𝑃𝑗

𝑁

𝑗=1

= 𝑉0

 

(3.46)                  

 

 

These system of equations can be set into a matrix form as: 

 

[
 
 
 
 
1 −𝛼𝐼11
1 −𝛼𝐼11

−𝛼𝐼12 … −𝛼𝐼1𝑁
−𝛼𝐼11 … −𝛼𝐼2𝑁

⋮ ⋮
1
0

−𝛼𝐼𝑁1
1

⋮ ⋮     ⋮     
−𝛼𝐼𝑁2
1

…
…

−𝛼𝐼𝑁𝑁
1 ]

 
 
 
 

{
 
 
 
 

 
 
 
 
𝑈(𝐺)

𝑃1

𝐾𝑥
(1)

𝑃2

𝐾𝑥
(1)

⋮
𝑃𝑁

𝐾𝑥
(1)}
 
 
 
 

 
 
 
 

=

{
 
 

 
 

0
0
⋮
0
𝑉0

𝐾𝑥
(1)}
 
 

 
 

 

(3.47)                  

where 𝛼𝐼𝑖𝑗 are the interaction factors for inertial loading in the case where 𝑖 = 𝑗  𝛼𝐼𝑖𝑗 = 1 and 𝐾𝑥
(1) is the 

dynamic stiffness at the head of single pile (Equations (3.48) and (3.49)). Finally by using superposition 

method the total curvature can be expressed as: 

 

𝐾𝑥
(1) = 𝐸𝐼𝜆3𝐹(𝜆𝐻) (3.48)                  

 

𝐹(𝜆𝐻) =

{
 
 

 
 4

cos(2𝜆𝐻) + cosh (2𝜆𝐻)

− sin(2𝜆𝐻) + sinh (2𝜆𝐻)
                  end − bearing

4
sin(2𝜆𝐻) + sinh (2𝜆𝐻)

cos(2𝜆𝐻) + cosh(2𝜆𝐻) − 2
                            hinged 

 

(3.49)                  

 

 

𝑈𝑖
′′(0) =∑𝛽𝑖𝑗

𝐼
𝑃𝑗

𝐾𝑥
(1)

𝑁

𝑗=1

 
(3.50)                  

Finally by using superposition method the total curvature can be expressed as: 
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{

𝑈1
′′(0)

𝑈2
′′(0)
⋮

𝑈𝑁
′′(0)

} =

[
 
 
 
𝛽11
𝐼 𝛽12

𝐼 … 𝛽1𝑁
𝐼

𝛽21
𝐼

⋮
𝛽𝑁1
𝐼

𝛽22
𝐼 … 𝛽2𝑁

𝐼

⋮     ⋮ ⋮  
𝛽𝑁2
𝐼 … 𝛽𝑁𝑁

𝐼 ]
 
 
 

{
 
 
 

 
 
 
𝑃1

𝐾𝑥
(1)

𝑃2

𝐾𝑥
(1)

⋮
𝑃𝑁

𝐾𝑥
(1)}
 
 
 

 
 
 

 

(3.51)                  

Further Inertial curvature ratio can be set to matrix form: 

 

[
 
 
 
𝛽11
𝐼 𝛽12

𝐼 … 𝛽1𝑁
𝐼

𝛽21
𝐼

⋮
𝛽𝑁1
𝐼

𝛽22
𝐼 … 𝛽2𝑁

𝐼

⋮     ⋮ ⋮  
𝛽𝑁2
𝐼 … 𝛽𝑁𝑁

𝐼 ]
 
 
 

= −2𝜆2

[
 
 
 
 
𝐻1(𝜆𝐻) 𝛼12𝐻2(𝜆𝐻) … 𝛼1𝑁𝐻2(𝜆𝐻)

𝛼21𝐻2(𝜆𝐻)
⋮

𝛼𝑁1𝐻2(𝜆𝐻)

𝐻1(𝜆𝐻)       … 𝛼2𝑁𝐻2(𝜆𝐻)

⋮           ⋮        ⋮  

𝛼𝑁2𝐻2(𝜆𝐻) …       𝐻1(𝜆𝐻)]
 
 
 
 

 

(3.52)                  

 

 

𝛽ij
𝐼 = −2𝜆2(𝐻1(𝜆𝐻)[𝐼] + 𝐻2(𝜆𝐻)[𝛼

′
𝑖𝑗]) 

 

(3.53)                  

 

[𝛼′𝑖𝑗] = [𝛼𝑖𝑗] − [𝐼] (3.54)                

 

Based on (9) group displacement 𝑈𝐺 and vector of forces {
𝑃𝑖

𝐾𝑥
(1)} can be obtained as: 

 

{
𝑃𝑖

𝐾𝑥
(1)
} = {𝛾𝑗}

𝑉0

𝐾𝑥
(1)

 (3.55) 

 

Vector {𝛾𝑗} is displacement group factor which can be obtained after solving Equation (3.47). By replacing 

vector forces in Equation (3.50) bending strains at the head of each pile in pile groups in vector form can 

be calculated as following expression:   

 

{𝜀𝑝𝑖
𝐼 (0)} = {−

𝑑

2

𝑑2𝑈𝑖(𝑧=0)

𝑑𝑧2
}  (3.56) 

 

In reality pile foundations are subjected two simultaneous actions arising from kinematic and inertial soil-

pile interaction. Therefore in this study, to assist in understanding the main characteristics of the inertial 

interaction, it would be beneficial to normalize the inertial bending strains 𝜀𝑝𝑖
𝐼  at the head of each pile with 
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respect to soil deformations or mean shear strain of the homogeneous soil layer which is defined as 𝛾𝑠 

([3.8]). Therefore the closed form formula of the normalized bending strains can be written as follows: 

 

{
𝜀𝑝𝑖
𝐼 (0)

𝛾𝑠
} = [𝛽𝑖𝑗

𝐼 ]{𝛾𝑗}
𝑓𝑟

𝜋
8
(
𝑟
𝐻
)3(𝜆𝐻)𝐹(𝜆𝐻)

 

  

(3.56) 

Factor 𝑓𝑟  is a dimensionless factor which is related to the effect of the lateral load relative to the 

deformation of the soil layer. This factor is a complex value since there is a phase lag 𝜑𝑟 between lateral 

load V and the mean shear strain of the soil medium 𝛾𝑠 therefore, this factor can be rewritten again by the 

following formula: 

 

𝑓𝑟 = 𝐹𝑟𝑒𝑖𝜑𝑟   (3.57) 

 

where 

 

𝐹𝑟 = |
𝑉0

𝐸𝑝𝛾𝑠𝐻
2
|  (3.58) 

 

and 

 

𝜑𝑟 = arg (
𝑉0

𝛾𝑠
)  (3.59) 

 

The calculation of the factor 𝐹𝑟 is based on estimation of the maximum values of the lateral load 𝑉0 and 

the mean shear strain 𝛾𝑠. The estimation of phase lag 𝜑𝑟 in Equation (3.59) is a complex task because there 

have been few researches into the estimation of phase lag between the lateral load 𝑉0 and mean shear strain 

𝛾𝑠 (ground motion), particularly in soil-pile-structure systems where kinematic interaction is predominant. 

Murono and Nishimura [3.18] investigated fundamental characteristics of the phase lag between the lateral 

load and the ground motion. They indicated that three types of phase lag (Figure 3.4) can occur and they 

are associated with the ratio of the natural period of soil-pile-structure system 𝑇𝑠  and the fundamental 

natural period of a soil medium 𝑇𝑔 in a soil-pile-structure system where the kinematic interaction dominates, 

and are as follows: (1) in the case of  𝑇𝑠/𝑇𝑔 ≤ 1, the phase lag of the lateral load with respect to the ground 
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motion tends to become zero; (2) in the case of  𝑇𝑠/𝑇𝑔 ≈ 1, the phase lag tends to become –𝜋/2; and (3) 

in the case of  𝑇𝑠/𝑇𝑔 ≥ 1, the phase lag tends to become –𝜋 ( in accordace with design coefficients in their 

study, −3𝜋/4 would be practically appropriate). 

 

Figure 3.4: Different types of phase lag between amplitude of inertial lateral loads and soil deformations. 

 

 

3.8 Verification of the method with numerical method 
 

In order to verify the accuracy of the proposed method, two cases including single pile and 3×3 piles with 

tip condition (hinged) are considered. Piles are connected by a rotationally restricted rigid cap. Also, piles 

are subjected to harmonic head loading 𝑉(𝑡) = 𝑉0𝑒
𝑖𝜔𝑔𝑡  as shown in Figure 3.5. The frequency of the 

horizontal excitation equals to the fundamental frequency of the soil medium. Results are compared against 

those of a three-dimensional time-harmonic continuum linear model based on a coupled finite elements-

boundary elements (FE-BE) formulation [19,20]. In this formulation approach, the boundary element 

method (BE) is used to model the dynamic behavior of the homogeneous, viscoelastic, isotropic, linear soil 

medium; while finite elements are used for piles, the piles are represented by FE as beams according to the 

Bernoulli hypothesis. The piles are treated as load lines acting within the soil, so their presence does not 

affect the soil continuity. Welded boundary conditions are assumed at the pile-soil interface. From the 

boundary element point of view, the loads arising from the pile–soil interaction are modelled as 

distributions of interaction forces applied on an internal line defined by the pile axis, which can be named 

as ‘load-line’ (see Figure 3.5). Piles rigidity is provided by mono-dimensional finite elements, bonded to 
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the surrounding soil by equilibrium and compatibility conditions. In this section it is assumed that the phase 

lag is equal to zero. 

 
Figure 3.5: Pile foundation modelling through FEM-BEM coupling formulation. 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 3.6: Normalized inertial bending strains of hinged single pile. Comparison of the present method with 

rigorous results by FE-BE and Tajimi method  (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000 ). 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3.7: Normalized inertial bending strains of 3×3 hinged pile groups. Comparison of the present method 

with rigorous results by FE-BE method  (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000 ,

s

d
= 5). 

 

In Figures 3.6 and 3.7, normalized inertial bending strains in single hinged piles and 3× 3 hinged pile groups 

respectively presented with three different methods of FE-BE, Proposed method of this study and Tajimi 

method. Their variations as functions of the slenderness ratio 𝑟/𝐻 with different values of the factor 𝐹𝑟 for 

the phase lag 𝜑𝑟 = 0  are depicted. With reference to Figure 3.6, it is observed that all of these methods are 

converged together at slenderness ratio /𝐻 ≈ 0.03 . However before this slenderness ratio they differ a 

little in their values, the proposed method has the values larger than the others, the Tajimi method has the 

smaller values and the FE-BE method locate between the Tajimi method and the proposed method. In 
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Figure 3.7, the proposed method are compared with FE-BE method for 3×3 hinged pile groups. It is also 

observed that the proposed method overestimate inertial bending strains for small values of the slenderness 

ratios 𝑟/𝐻 ≈ 0.03. 

 

3.9 Behavior of inertial bending in pile groups 

To have further insight into the characteristics and behavior of the normalized inertial bending strains 

against slenderness ratio 𝑟/𝐻 by using the expression proposed in Equation (3.56), additional studies of the 

3×3 fixed-head pile groups with different boundary conditions at the tip (fixed or hinged) are carried out. 

Piles are subjected to harmonic head loading (𝑡) = 𝑉0𝑒
𝑖𝜔𝑔𝑡 . The frequency of excitation is assumed to be 

equal to the fundamental frequency of the soil layer. Special attention is paid to the effects of the parameters 

like pile spacing /𝑑 ,  pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠, factor Fr on the normalized inertial bending strains in 

the group.  

 

 
(a) 

 

 
(b) 

Figure 3.8: Normalized inertial bending strains of 3×3 hinged pile groups 

(
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000, 𝐹𝑟 = 10−5). 
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(a) 

 
(b) 

 
Figure 3.9: Normalized inertial bending strains of 3×3 hinged pile groups 

(
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000, 𝐹𝑟 = 5 × 10−5). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 3.10: Normalized inertial bending strains of 3×3 fixed-tip pile groups 

 (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000,𝐹𝑟 = 10−5 ). 
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(a) 

 

 
(b) 

Figure 3.11: Normalized inertial bending strains of 3×3 fixed-tip pile groups 

 (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000,𝐹𝑟 = 5 × 10−5 ). 

 

 

 

 

 
(a) 

 

 
(b) 

 
Figure 3.12: Normalized inertial bending strains of 3×3 hinged-tip pile groups 

 (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 100, 𝐹𝑟 = 10−5). 
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(a) 

 

 
(b) 

Figure 3.13: Normalized inertial bending strains of 3×3 hinged-tip pile groups 

 (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 100, 𝐹𝑟 = 5 × 10−5 ). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 3.14: Normalized inertial bending strains of 3×3 fixed-tip pile groups 

 (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 100, 𝐹𝑟 = 10−5 ). 
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(a) 

 

 
(b) 

Figure 3.15: Normalized inertial bending strains of 3×3 fixed-tip pile groups 

 (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 100 , 𝐹𝑟 = 5 × 10−5). 

 

 

 

 

 
(a) 

 
(b) 

 

 

Figure 3.16: Normalized inertial bending strains of 3×3 hinged-tip pile groups with different parameters 

 (
𝐸𝑝

𝐸𝑠
= 100,1000, 𝐹𝑟 = 10−5, 5 × 10−5

ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05,𝜑𝑟 = 0,

𝑠

𝑑
= 5). 
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Figure 3.17: Normalized inertial bending strains of 3×3 hinged-tip pile groups (pile2, pile3) with different 

parameters (
𝐸𝑝

𝐸𝑠
= 100,1000, 𝐹𝑟 = 10−5, 5 × 10−5

ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05,𝜑𝑟 = 0 ,

𝑠

𝑑
= 5). 

  

Figures 3.8 through 3.17 show the values of normalized inertial bending strains in 3× 3 pile groups with 

different tip conditions (hinged and fixed). Their variations as functions of the slenderness ratio 𝑟/𝐻 with 

different values of the factor 𝐹𝑟 = 10−5, 5 × 10−5and the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 = 100,1000, pile 

spacing 𝑠/𝑑 = 5,10 for the phase lag 𝜑𝑟 = 0  are presented. These figures reveal that even in pile group 

configurations, each pile follows the general trend of the single pile. In addition, it is worth noting that in 

pile groups normalized inertial bending strains are very close to those of the single pile over the entire range 

of the slenderness ratio 𝑟/𝐻. Therefore within the entire range of slenderness ratios 𝑟/𝐻, the normalized 

inertial bending strains of piles  in a group can be estimated by that of the single pile. Indeed this can be 

validated from Figures 3.8 through 3.17. Furthermore, as the pile spacing 𝑠/𝑑  increases, normalized 

bending strains of pile groups converge to those of single piles. For small values of the slenderness ratio 

𝑟/𝐻, normalized inertial bending strains tend to increase. However, strains significantly decrease as 𝑟/𝐻 

increases. To assist in understanding of the behavior of the inertial bending strains in the pile groups. The 

detailed results and the influence of important parameters (𝐹𝑟, 𝐸𝑝/𝐸𝑠) on behavior of inertial bending 

strains are explained in the following sections: 
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3.9.1 Effect of factor Fr 

 

The results of Figures 3.8 through 3.13 for 3×3 pile groups and single pile with different tip conditions and 

different parameters, imply that the value of normalized inertial bending strains at the head of each pile in 

pile groups and single pile tend to shift to larger values, while the factor 𝐹𝑟 increases. This behavior can be 

more clearly seen in Figures 3.12 and 3.13. This reason is physically linked to the effect of lateral inertial 

loads associated with the factor 𝐹𝑟, this increase seems to be more significant for large values of the pile-

soil stiffness ratios 𝐸𝑝/𝐸𝑠. 

 

3.9.2 Effect of pile-soil stiffness ratio  𝑬𝒑/𝑬𝒔 

 

The results of Figures 3.8 through 3.13 indicate that the values of the normalized inertial bending strains 

tend to shift to larger values as the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 increases. For 𝐸𝑝/𝐸𝑠 → ∞ piles behave 

inflexibly and regardless of fixity conditions at the tip, all piles will experience higher values of the inertial 

bending strains. This reason can be validated from Figure 3.13.   

 

 

3.10 Conclusions 
 

An efficient method has been extended to compute the bending strains of fixed-head pile groups of finite 

length embedded in a homogeneous soil layer, where inertial interaction dominates. This method allows 

the inertial bending strains to be obtained in closed form formula while using dynamic Winkler model in 

conjunction with an extension to three dimensional of Novak’s plain-strain model. This model is free of the 

drawbacks of the two dimensional plain-strain model reproducing cutoff frequency of the soil-pile system. 

Pile group effect is considered through interaction factors and the inertial bending strains are normalized 

with respect to a mean shear strain of a soil stratum 𝛾𝑠 then variation of normalized inertial bending strains 

against slenderness ratio 𝑟/𝐻 are investigated which gives valuable insight into the characteristics of the 

inertial bending strains in pile groups. Homogeneous solutions are considered in active and passive piles 
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deflections for appropriately considering various boundary conditions when estimating bending strains. 

Solutions for pile group response are performed in fundamental frequency of soil strata.  

In pile groups when the slenderness ratios 𝑟/𝐻 approach zero in all piles, inertial bending strains become 

infinite. The inertial bending strains decrease significantly as slenderness ratio 𝑟/𝐻 increases. The inertial 

bending strains of the piles in a group are very close to those of a single pile. This conclusion allows to 

approximate the behaviour of pile groups under inertial loads in fundamental frequency of homogeneous 

soil layer with that of single of the single pile. 
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CHAPTER 4 

KINEMATIC RESPONSE OF PILE GROUPS  

 

It is well understood that the transmission of seismic waves to the base of a pile-supported structure is 

different than the free-field motion, because of the dynamic interaction between the foundation and the 

surrounding soil will occur. This interaction develops regardless of the presence of a superstructure and is 

referred to as kinematic effect. This problem has received large attention in recent years ([4.1]~[4.15]), and 

several studies have devoted to investigation of the nature of seismic ground motion and the mechanism of 

soil-pile interaction to determine the seismic design loads for pile-supported structures. Modern seismic 

codes and provisions have acknowledged theses aspects and suggest accounting for soil-structure 

interaction effects in the foundation and superstructure design [4.16],[4.17]. 

For soil-pile group systems where kinematic interaction dominates, there has been no investigation into the 

effects of the pile radius on the bending strains. In order to establish criteria for optimal pile radius for 

kinematically excited pile groups, it is essential to quantify variations of kinematic bending strains with 

respect to pile radius in a systematic way. This chapter focuses on obtaining a comprehensive relation 

between the pile radius and the kinematic bending strains at the head of a cylindrical vertical pile group 

under kinematic loading. Piles are considered to be embedded in a homogeneous elastic stratum resting on 

a rigid bedrock, being the pile length identical to the thickness of the soil stratum. Two different constraint 

conditions are considered at the pile tip: (a) hinged tip, and (b) end-bearing (fixed) tip. With an 

understanding that the maximum value of kinematic bending strains at the head of a pile occurs at the 

fundamental frequency of the soil stratum for most of the soil profiles [4.5], such specific frequency is 

targeted in this chapter. Analytical formulations are obtained based on the beam-on-dynamic-Winkler-

foundation method. After a brief presentation of the analytical model and its validation, a comprehensive 

parametric analysis is carried out by varying the main parameters governing the dynamic response of piles.  
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4.1 Analytical solution of kinematic bending of pile groups 
 

The soil-pile system under consideration is shown in Figure 4.1: two vertical cylindrical piles each of length 

L, diameter d, cross-sectional moment of inertia  𝐼𝑝, mass density 𝜌𝑝, mass per unit length 𝑚𝑝 and Young’s 

modulus of elasticity 𝐸𝑝 is embedded in a homogeneous soil layer of thickness 𝐻(= 𝐿) resting on a rigid 

base. Pile spacing is denoted with 𝑠. Soil is modelled as a linear elastic material with Poisson’s ratio 𝜐𝑠, 

mass density 𝜌𝑠, and frequency-independent material damping 𝛽𝑠 which is expressed through a complex-

valued shear modulus 𝐺𝑠
∗ = 𝐺𝑠(1 + 2𝑖𝛽𝑠). The reaction of soil to the lateral pile motion is modeled by 

continuously-distributed frequency-dependent springs 𝑘𝑥 and dashpots 𝑐𝑥 along the pile length. The pile 

group is loaded by vertically propagating shear waves expressed in the form of harmonic horizontal 

displacement 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑡 at rigid base level. This section employs the following main assumptions: 

(a) foundation remains elastic during either seismic ground shaking or lateral head loading; (b) soil 

restraining action can be modeled using a bed of linear or equivalent-linear Winkler springs and dashpots, 

uniformly distributed along the pile axis; (c) perfect contact (i.e., no gap and slippage) exist between pile 

and soil; (d) the flexural deformations of the pile group are dominant during oscillations; (e) the frequency 

of horizontal excitation is assumed to be equal to the fundamental frequency of the soil medium. 

 

 
Figure 4.1: Problem considered for kinematic interaction with different tip conditions. 
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4.2 Free-field response 
 

In one dimensional analysis based on linear stress-strain laws, stress at any depth 𝑧 can be obtained as: 

 

𝜏 = −𝐺𝑠
∗
𝜕𝑢𝑓𝑓

𝜕𝑧
 

                                  

(4.4) 

 

where 𝜏 is the shear stress and 𝑢𝑓𝑓 is the displacement of the free-field soil which is dependent on time and 

depth. By considering forced harmonic oscillations of the free-field displacement 𝑢𝑓𝑓(𝑧, 𝑡) = 𝑢𝑓𝑓(𝑧)𝑒
𝑖𝜔𝑔𝑡 , 

the equilibrium of forces in the horizontal direction which is acting on a small soil element yields the 

following differential equation. 

 

𝑑2𝑢𝑓𝑓

𝑑𝑧2
+ 𝛿2𝑢𝑓𝑓 = 0 

                                      

(4.2) 

 

In Equation (4.2)  𝛿 = 𝜔𝑔/𝑉𝑠
∗  is the soil wavenumber, 𝑉𝑠

∗ = 𝑉𝑠√1 + 2𝑖𝛽𝑠  is the complex-valued shear 

wave velocity of the soil, and 𝜔𝑔 is the cyclic fundamental frequency of the soil layer. By solving Equation 

(4.2) and applying the boundary conditions, i.e., zero shear stresses at the free surface and the displacement 

at the base equals to the induced base displacement 𝑢𝑔0, the following relation can be obtained[4.18],[4.19]. 

 

𝑢𝑓𝑓(𝑧, 𝑡) = 𝑢𝑓𝑓0 cos(𝛿𝑧)𝑒
𝑖𝜔𝑔𝑡 = 𝑢𝑔0

cos (𝛿𝑧)

cos (𝛿𝐻)
𝑒𝑖𝜔𝑔𝑡 

                                                      

(4.3) 

 

 𝜔𝑔 =  𝜔𝑐𝑢𝑡𝑜𝑓𝑓 =
𝜋𝑉𝑠
2𝐻

 
                                  

(4.4) 

 

Equation (4.3) describes a standing wave of amplitude 𝑢𝑓𝑓0 at the soil surface (𝑧 = 0). By assuming the 

amplitude of the seismic excitation at the base (𝑢𝑔0), the amplification function can be expressed [4.18], 

[4.19] as: 

 
𝑢𝑓𝑓0

𝑢𝑔0
=

1

𝑐𝑜𝑠(𝛿𝐻)
 

(4.5) 
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When a group of piles fixed to a cap is subjected to incident seismic waves, the response of each individual 

pile can be studied as a combination of not only the kinematic part, but also the inertial part owing to the 

restriction imposed by the rigid cap. In this study, the soil-pile model is assumed to exhibit linear behavior 

and therefore, both inertial and kinematic interaction effects (has been explained in detail in chapter three) 

can be studied separately in the context of two modular problems (active and passive pile response). 

Because inertial problem has been explained in detail in chapter three, only kinematic problem is addressed 

in the incoming sections. 

 

4.3 Deflection of active pile (source pile) 
 

Let  𝑢11(𝑧, 𝑡) = 𝑢11(𝑧)𝑒
𝑖𝜔𝑔𝑡  denote the harmonic pile deflection. With reference to Figure 5.1 dynamic 

equilibrium under harmonic steady-state conditions yields:  

 

𝑑4𝑢11(𝑧)

𝑑𝑧4
+ 4𝜆4𝑢11(𝑧) =

𝑘𝑥 + 𝑖𝜔𝑔𝑐𝑥
𝐸𝑝𝐼𝑝

𝑢𝑔0
cos (𝛿𝑧)

cos (𝛿𝐻)
 

                                                                            (4.6)                                

where 𝜆 = 𝜆(𝜔) is the characteristic wavenumber governing the attenuation of pile displacement with 

depth. 

 

𝜆 = (
𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑔 −𝑚𝑝𝜔𝑔

2

4𝐸𝑝𝐼𝑝
)1/4 

                                                                             

(4.7)                                

 

 

4.3.1 Kinematic response of the active pile (source pile) 
 

It is supposed here that the active pile is excited by kinematic loading 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡 at the bedrock. 

Because of the flexural rigidity, pile will resist the induced lateral vibration of the free-field  𝑢𝑓𝑓(𝑧, 𝑡) =

𝑢𝑓𝑓(𝑧)𝑒
𝑖𝜔𝑔𝑡 (Equation (4.3)). With such excitation, the pile would undergo deflections (Equation (4.8)) over 

its entire length, which consist of homogeneous and particular solutions. Homogeneous solution is given in 

terms of kinematic integration constants 𝐴𝐾11 , 𝐵
𝐾
11 , 𝐶

𝐾
11 , 𝐷

𝐾
11 which are dependent on the boundary 
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conditions. 𝛤 is a dimensionless response coefficient given by Equation (4.9). Makris and Gazetas [4.20] 

who investigated the lateral and seismic response of piles, noted that the contribution of the homogeneous 

solution in most practical cases is not as important as that of the particular solution and can be neglected. 

In this work, however, since different boundary conditions at the pile tip are considered, homogeneous 

solution for both cases of active and passive pile is taken into account. 

 

𝑢𝐾11(𝑧) = 𝑒
𝜆𝑧(𝐴𝐾11𝑐𝑜𝑠(𝜆𝑧) + 𝐵

𝐾
11𝑠𝑖𝑛(𝜆𝑧)) + 𝑒

−𝜆𝑧(𝐶𝐾11𝑐𝑜𝑠(𝜆𝑧) + 𝐷
𝐾
11𝑠𝑖𝑛(𝜆𝑧)) + 𝛤𝑢𝑔0

cos (𝛿𝑧)

cos (𝛿𝐻)
 

(4.8) 

 

 

𝛤 =
𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑔

𝐸𝑝𝐼𝑝𝛿4 + 𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑔 −𝑚𝑝𝜔𝑔2
 

            (4.9)                                                        

  

 

4.3.1.1 Boundary conditions of active pile (hinged-tip pile groups) 

 

 

𝜃𝐾11(𝑧 = 0) = 0    ,     
𝑑3𝑢11

𝐾 (𝑧 = 0)

𝑑𝑧3
= 0    ,

𝑑2𝑢11
𝐾 (𝑧 = 𝐻)

𝑑𝑧2
= 0   ,   𝑢11

𝐾 (𝑧 = 𝐻) = 𝑢𝑔0 
 (4.10)                  

 

 

[

1                            1
−1                             1

−1              1
1            1

−2𝑒𝜆𝐻sin (𝜆𝐻)  2𝑒𝜆𝐻cos (𝜆𝐻)

𝑒𝜆𝐿cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

2𝑒−𝜆𝐻sin (𝜆𝐻) −2𝑒−𝜆𝐻cos (𝜆𝐻)

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴11

𝐾

𝐵11
𝐾

𝐶11
𝐾

𝐷11
𝐾
}
 
 

 
 

=

{
 
 

 
 

0
0

𝛿2

𝜆2
𝛤𝑢𝑔0

𝑢𝑔0(1 − 𝛤)}
 
 

 
 

 

 (4.11)                  

 

By normalizing the both sides with respect to   
𝛤𝑢𝑔0

cos (𝛿𝐻)
  the matrix form could be simplified into the 

following from: 

 

[

1                            1
−1                             1

−1              1
1            1

−2𝑒𝜆𝐻sin (𝜆𝐻)  2𝑒𝜆𝐻cos (𝜆𝐻)

𝑒𝜆𝐿cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

2𝑒−𝜆𝐻sin (𝜆𝐻) −2𝑒−𝜆𝐻cos (𝜆𝐻)

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴̅11

𝐾

𝐵̅11
𝐾

𝐶1̅1
𝐾

𝐷̅11
𝐾
}
 
 

 
 

=

{
 
 

 
 

0
0

𝛿2

𝜆2
cos (𝛿𝐻)

(1 − 𝛤)

𝛤
cos (𝛿𝐻)}

 
 

 
 

 

 

(4.12)                  

 

 

4.3.1.2 Boundary conditions of active pile (fixed-tip pile groups) 

 

 

𝜃𝐾11(𝑧 = 0) = 0    ,     
𝑑3𝑢11

𝐾 (𝑧 = 0)

𝑑𝑧3
= 0    ,

𝑑𝑢11
𝐾 (𝑧 = 𝐻)

𝑑𝑧
= 0   , 𝑢11

𝐾 (𝑧 = 𝐻) = 𝑢𝑔 
        (4.13)                                                        
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[

1                            1
−1                             1

−1              1
1            1

𝜆𝑒𝜆𝐻(cos (𝜆𝐻) − sin (𝜆𝐻))  𝜆𝑒𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻))

𝑒𝜆𝐿cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

−𝜆𝑒−𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻)) 𝜆𝑒−𝜆𝐻(−sin (𝜆𝐻) + cos (𝜆𝐻))

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴11

𝐾

𝐵11
𝐾

𝐶11
𝐾

𝐷11
𝐾
}
 
 

 
 

=

{
 
 

 
 

0
0

𝑢𝑔0
𝛿

𝜆
𝛤
sin (𝛿𝐻)

cos (𝛿𝐻)

𝑢𝑔0(1 − 𝛤) }
 
 

 
 

 

                                                                                                                                                                                                   (4.14) 

              

 

 

 

 

 

 

By normalizing both sides with respect to   
𝛤𝑢𝑔0

cos (𝛿𝐻)
  the matrix form could be simplified into the following 

form: 

 

[

1                            1
−1                             1

−1              1
1            1

𝜆𝑒𝜆𝐻(cos (𝜆𝐻) − sin (𝜆𝐻))  𝜆𝑒𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻))

𝑒𝜆𝐿cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

−𝜆𝑒−𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻)) 𝜆𝑒−𝜆𝐻(−sin (𝜆𝐻) + cos (𝜆𝐻))

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴̅11

𝐾

𝐵̅11
𝐾

𝐶1̅1
𝐾

𝐷̅11
𝐾
}
 
 

 
 

=

{
 
 

 
 

0
0

𝛿

𝜆
sin(𝛿𝐻)

(1 − 𝛤)

𝛤
cos (𝛿𝐻)}

 
 

 
 

 

                                                                                                                                                                                                  (4.15)  

              

 

 

 

 

 

  

 

4.4 Attenuation of soil displacement away from active pile (source pile) 
 
 

This step starts by calculating the difference between single pile deflections and free-field soil 

displacements, ∆𝑢11 (Figure 2.3). for kinematic loading, this difference is identical to the response of the 

scattered free-field of the soil: ∆𝑢11 = 𝑢
𝐾
11(𝑧) − 𝑢𝑓𝑓, new cylindrical waves emanate from the periphery 

of the vibrating active pile while spreading outward in all directions. In this study attenuation functions of 

Mylonakis [3.10] is used. With reference to Equation (2.15), at a distance 𝑠 from the vibrating pile and 

angle 𝜃 from the direction of loading, the free-field soil displacement can be expressed as:  

 

𝑢𝑠(𝑠, 𝑧, 𝜃) = 𝜓21(𝑠, 𝜃)∆𝑢11 = 𝜓21(𝑠, 𝜃)(𝑢
𝐾
11
(𝑧)− 𝑢𝑓𝑓) (4.16) 
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4.5. Interaction of the passive pile (receiver pile) with arriving waves 
 

Considering a passive pile (receiver pile) located at a distance 𝑠 from the active pile (source pile), the 

diffracted wave field generated by the active pile as represented by Equation (2.24) propagates to strike the 

passive pile. The passive pile does not exactly follow the diffracted wave field [4.20],[4. 21] and its flexural 

rigidity tends to resist these induced displacements, resulting in a modified motion at the soil-passive pile 

interface. In order to determine the additional displacement, which is experienced by passive pile, the 

dynamic equilibrium of an infinitesimal pile segment is considered, yielding the following equation 

governing the deflection  𝑢21(𝑧) of the passive pile. 

 
𝑑4𝑢21(𝑧)

𝑑𝑧4
+ 4𝜆4𝑢21(𝑧) =

𝑘𝑥 + 𝑖𝜔𝑔𝑐𝑥
𝐸𝑝𝐼𝑝

𝜓21(𝑠, 𝜃)(𝑢
𝐾
11(𝑧) − 𝑢𝑓𝑓)   

      (4.17)                                                        

 

 

4.6 Kinematic response of the passive pile (receiver pile) 
 

When the active pile is excited by kinematic loading 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡  at the bedrock, the additional 

displacement at the soil-passive pile interface can be obtained through solution of Equation (4.16). 

Additional kinematic displacement of the passive pile consists of three part; (𝑢𝐾
21
(𝑧))1 as homogeneous 

solution, (𝑢𝐾21(𝑧))2 and (𝑢𝐾21(𝑧))3 as particular solutions. 

 

𝑢𝐾21(𝑧) = (𝑢
𝐾
21
(𝑧))1 + (𝑢

𝐾
21(𝑧))2 + (𝑢

𝐾
21(𝑧))3 

 

      (4.18)                                                        

 

(𝑢𝐾
21
(𝑧))1 = 𝑒

𝜆𝑧(𝐴𝐾21 cos(𝜆𝑧) + 𝐵
𝐾
21 sin(𝜆𝑧)) + 𝑒

−𝜆𝑧(𝐶𝐾21 cos(𝜆𝑧) + 𝐷
𝐾
21 sin(𝜆𝑧))       (4.19)                                                        

 

(𝑢𝐾21(𝑧))2 =
𝑘𝑥 + 𝑖𝑐𝑥𝜔𝑛
16𝐸𝑝𝐼𝑝𝜆3

𝜓21(𝑠, 𝜃)[𝑧𝑒
𝜆𝑧(𝐴′ cos(𝜆𝑧) + 𝐵′ sin(𝜆𝑧)) + 𝑧𝑒−𝜆𝑧(𝐶′ cos(𝜆𝑧) + 𝐷′ sin(𝜆𝑧))]   

                                                                                                                                                                                        (4.20) 

               

 

 

𝐴′ = −(𝐴11
𝐾 + 𝐵11

𝐾 )  ,  𝐵′ = (𝐴11
𝐾 − 𝐵11

𝐾 ) ,  𝐶′ = (𝐶11
𝐾 −𝐷11

𝐾)  ,   𝐷′ = (𝐶11
𝐾 + 𝐷11

𝐾) 
 

      (4.21)                                                        
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(𝑢𝐾21(𝑧))3 = 𝜓21(𝑠, 𝜃)𝑢𝑔0𝛤(𝛤 − 1)
cos (𝛿𝑧)

cos (𝛿𝐻)
 

 

      (4.22)                                                        

In the particular solution (Equation (4.20)), 𝐴′, 𝐵′, 𝐶′ and 𝐷′ are integration constants in which 𝐴11
𝐾 , 𝐵11

𝐾 , , 𝐶11
𝐾  

and , 𝐷11
𝐾  are known kinematic integration constants (i.e. they have already been determined from the 

boundary conditions of the active pile). In the homogeneous solution 𝐴21
𝐾 , 𝐵21

𝐾 , 𝐶21
𝐾 and 𝐷21

𝐾are integration 

constants that should be determined from the boundary conditions of the passive pile. 

 

4.6.1 Boundary conditions of passive pile (hinged-tip pile groups) 

 

𝜃𝐾21(𝑧 = 0) = 0   ,    
𝑑3𝑢21

𝐾 (𝑧 = 0)

𝑑𝑧3
= 0    ,

𝑑2𝑢21
𝐾 (𝑧 = 𝐻)

𝑑𝑧2
= 0   , 𝑢21

𝐾 (𝑧 = 𝐻) = 0  
 (4.23)                  

By normalizing both sides of the system of equations with respect to   
𝛤𝑢𝑔0

cos (𝛿𝐻)
  the matrix form could be 

simplified into the following form: 

 

[

1                            1
−1                             1

−1              1
1            1

−2𝑒𝜆𝐻sin (𝜆𝐻)  2𝑒𝜆𝐻cos (𝜆𝐻)

𝑒𝜆𝐿cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

2𝑒−𝜆𝐻sin (𝜆𝐻) −2𝑒−𝜆𝐻cos (𝜆𝐻)

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴̅21

𝐾

𝐵̅21
𝐾

𝐶2̅1
𝐾

𝐷̅21
𝐾
}
 
 

 
 

=

{
 
 

 
 

0
0

𝛼̅21
𝛿2

𝜆2
cos (𝛿𝐻) + 𝐻3

−𝛼̅21cos (𝛿𝐻) + 𝐻4 }
 
 

 
 

 

                                                                                                                                                                                                    (4.24) 

    

 

 

 

 

 

 

𝐴 =
𝛿2

𝜆2
cos(𝛿𝐻) ,   𝐵 =

(1 − 𝛤)

𝛤
cos (𝛿𝐻) 

         (4.25)                  

 

 
𝐻3 = 𝛼21[𝐴𝐺1(𝜆𝐻) + 𝐵𝐺2(𝜆𝐻)] = 𝛼21𝐺′       (4.26)                  

 

 
𝐻4 = 𝛼21𝜆𝐻[𝐴𝐺1′(𝜆𝐻) + 𝐵𝐺2′(𝜆𝐻)] = 𝛼21𝜆𝐻𝐺′′          (4.27)                  

 

 

𝐺1(𝜆𝐻) =
2𝑐𝑜𝑠ℎ(2𝜆𝐻) + 𝜆𝐻𝑠𝑖𝑛ℎ(2𝜆𝐻) + 2𝑐𝑜𝑠(2𝜆𝐻) − 𝜆𝐻𝑠𝑖𝑛(2𝜆𝐻)

3(𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻))
       (4.28)                  

 

 

𝐺2(𝜆𝐻) =
−2𝜆𝐻(𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻))

3(𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻))
       (4.29)                  

 

 

𝐺1
′(𝜆𝐻) =

𝑠𝑖𝑛ℎ(2𝜆𝐻) + 𝑠𝑖𝑛(2𝜆𝐻)

6(𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻))
       (4.30)                  
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𝐺2
′(𝜆𝐻) =

2𝑠𝑖𝑛ℎ(2𝜆𝐻) − 2𝑠𝑖𝑛(2𝜆𝐻)

6(𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻))
               (4.31)                  

 

 

4.6.2 Boundary conditions of passive pile (fixed-tip pile groups) 

 

𝜃𝐾21(𝑧 = 0) = 0   ,       
𝑑3𝑢21

𝐾 (𝑧 = 0)

𝑑𝑧3
= 0     ,

𝑑𝑢21
𝐾 (𝑧 = 𝐻)

𝑑𝑧
= 0   ,   𝑢21

𝐾 (𝑧 = 𝐻) = 0 
   (4.32)                  

 

By normalizing both sides of the system of equations with respect to   
𝛤𝑢𝑔0

cos (𝛿𝐻)
  the matrix form could be 

simplified into the following form: 

 

[

1                            1
−1                             1

−1              1
1            1

𝜆𝑒𝜆𝐻(cos (𝜆𝐻) − sin (𝜆𝐻))  𝜆𝑒𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻))

𝑒𝜆𝐿cos (𝜆𝐻) 𝑒𝜆𝐻sin (𝜆𝐻)

−𝜆𝑒−𝜆𝐻(cos (𝜆𝐻) + sin (𝜆𝐻)) 𝜆𝑒−𝜆𝐻(−sin (𝜆𝐻) + cos (𝜆𝐻))

 𝑒−𝜆𝐻cos (𝜆𝐻) 𝑒−𝜆𝐻sin (𝜆𝐻)

]

{
 
 

 
 𝐴̅21

𝐾

𝐵̅21
𝐾

𝐶2̅1
𝐾

𝐷̅21
𝐾
}
 
 

 
 

=

{
 
 

 
 

0
0

𝛼̅21
𝛿

𝜆
sin(𝛿𝐻) + 𝐻3

−𝛼̅21cos (𝛿𝐻) + 𝛼21
𝐴𝜆𝐻

3 }
 
 

 
 

 

                                                                                                                                                                                                      (4.33) 

                                                                                                                                                                                                                  

    

 

 

 

 

 

 

𝐴 =
𝛿

𝜆
sin(𝛿𝐻) ,   𝐵 =

(1 − 𝛤)

𝛤
cos (𝛿𝐻) 

    (4.34)                  

 

𝐻3 = 𝛼21[𝐴𝐺1(𝜆𝐻) + 𝐵𝐺2(𝜆𝐻)] = 𝛼21𝐺′  (4.35)                  

 

𝐺1(𝜆𝐻) =
𝑠𝑖𝑛ℎ(2𝜆𝐻) + 𝑠𝑖𝑛(2𝜆𝐻) + 2𝜆𝐻𝑐𝑜𝑠ℎ(2𝜆𝐻) + 2𝜆𝐻𝑐𝑜𝑠(2𝜆𝐻)

3(𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻))
     (4.36)                  

 

𝐺2(𝜆𝐻) =
2𝜆𝐻(𝑠𝑖𝑛(2𝜆𝐻) − 𝑠𝑖𝑛ℎ(2𝜆𝐻))

3(𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻))
   (4.37)                  
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4.7 Kinematic interaction factor 
 

The kinematic interaction factor 𝛼𝐾21(𝑠, 𝜃) between active pile (pile 1) and passive pile (pile 2) is defined 

as the ratio of the kinematic additional top horizontal displacement of the passive pile resulting from the 

kinematic loading of active pile to the pile-top kinematic horizontal displacement of the active pile. Makris 

and Gazetas [4.20] derived a simplified equation (Equation. (4.39)) for estimating kinematic interaction 

factors for infinitely-long fixed-head piles in homogeneous soil. The kinematic interaction factors in the 

case of fixed-head piles with finite length are calculated in this study (Equation (4.40)).  

 

𝛼21 =
3

4
𝜓21(𝑠, 𝜃)

𝑘𝑥 + 𝑖𝑐𝑥𝜔

𝑘𝑥 + 𝑖𝑐𝑥𝜔 −𝑚𝜔2
   

        (4.38)                                                        

 

𝛼̅21 = 𝜓21(𝑠, 𝜃)(𝛤− 1)               (4.39)                                                        

 

𝛼𝐾21(𝑠, 𝜃) =
𝑢𝐾21(0)

𝑢𝐾11(0)
=
𝐴𝐾21 + 𝐶

𝐾
21 +

𝜓21(𝑠, 𝜃)(𝛤 − 1)𝛤𝑢𝑔0
𝑐𝑜 𝑠( 𝛿𝐻)

𝐴𝐾11 + 𝐶
𝐾
11 +

𝛤𝑢𝑔0
𝑐𝑜 𝑠( 𝛿𝐻)

 

              

(4.40)                                                        

 

4.7.1 Kinematic interaction factor for fixed-tip pile groups: 

 

𝛼21
𝐾 (𝑠, 𝜃) =

𝑢𝐾21(0)

𝑢𝐾11(0)
=
𝐴̅21
𝐾 + 𝐶2̅1

𝐾 + 1

𝐴̅11
𝐾 + 𝐶1̅1

𝐾 + 1
=
(𝐴𝐹11 − 𝐹22cos (𝛿𝐻) + 1)

(𝐴𝐹11 + 𝐵𝐹22 + 1)
𝛼̅21 +

(𝐺′𝐹11 + 𝜆𝐻𝐺′′𝐹22)

(𝐴𝐹11 + 𝐵𝐹22 + 1)
𝛼21 

  (4.41)                                                        

 

 

𝐹11 =
−𝑠𝑖𝑛(𝜆𝐻)𝑠𝑖𝑛ℎ(𝜆𝐻)

(𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻))
       𝐹22 =

2𝑐𝑜𝑠ℎ(𝜆𝐻)𝑐𝑜𝑠(𝜆𝐻)

(𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻))
 

 

   (4.42)                                                        

 

4.7.2 Kinematic interaction factor for fixed-tip pile groups: 

 

𝛼21
𝐾 (𝑠, 𝜃) =

𝑢𝐾21(0)

𝑢𝐾11(0)
=
𝐴̅21
𝐾 + 𝐶2̅1

𝐾 + 1

𝐴̅11
𝐾 + 𝐶1̅1

𝐾 + 1
=
(𝐴𝐹11 − 𝐹22cos (𝛿𝐻) + 1)

(𝐴𝐹11 + 𝐵𝐹22 + 1)
𝛼̅21 +

(𝐺′𝐹11 +
𝐴𝜆𝐻
3

𝐹22)

(𝐴𝐹11 + 𝐵𝐹22 + 1)
𝛼21 

  (4.43)                                                        

 

𝐹11(𝜆𝐻) =
−2𝑠𝑖𝑛(𝜆𝐻)𝑠𝑖𝑛ℎ(𝜆𝐻)

(𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻))
   ,    𝐹22(𝜆𝐻) =

(2𝑐𝑜𝑠ℎ(𝜆𝐻)𝑠𝑖𝑛(𝜆𝐻) + 2𝑐𝑜𝑠(𝜆𝐻)𝑠𝑖𝑛ℎ(𝜆𝐻))

(𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻))
 

   (4.44)                                                        

 

Further kinematic interaction can be set to matrix form: 
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[
 
 
 
𝛼11
𝐾 𝛼12

𝐾

𝛼21
𝐾 𝛼22

𝐾

… 𝛼1𝑁
𝐾

… 𝛼2𝑁
𝐾

⋮ ⋮
𝛼𝑁1
𝐾 𝛼𝑁2

𝐾
⋮ ⋮
… 𝛼𝑁𝑁

𝐾 ]
 
 
 
=  [

1 0
0 1

… 0
… 0

⋮ ⋮
0 0

⋮ ⋮
… 1

] +
𝑄11
𝐷
[

0 𝛼̅12
𝛼̅21 0

… 𝛼̅1𝑁
… 𝛼̅2𝑁

⋮ ⋮
𝛼̅𝑁1 𝛼̅𝑁2

⋮ ⋮
… 0

] +
𝑄22
𝐷
[

0 𝛼12
𝛼21 0

… 𝛼1𝑁
… 𝛼2𝑁

⋮ ⋮
𝛼𝑁2 𝛼𝑁2

⋮ ⋮
… 0

] 

 

                                                                                                                                                                  (4.45) 

                  

 

Kinematic interaction factor can be set into a compact form: 

 

𝛼ij
𝐾 = [I] +

𝑄11
𝐷
[𝛼̅𝑖𝑗

  ′
] +

𝑄22
𝐷
[𝛼′𝑖𝑗] 

      (4.46)                  

 

[𝛼̅𝑖𝑗
 ′
] = [𝛼𝑖𝑗] − [𝐼], [𝛼̅ij] = [𝛼𝑖𝑗] − [𝐼]  

 (4.47)                  

 

 

For hinged-tip pile groups: 

 

𝑄1 = (𝐴𝐹1 − 𝐹2cos (𝛿𝐻))  , 𝑄2 = (𝐺′𝐹1 + 𝜆𝐻𝐺′′𝐹2 −
2

3
𝐴𝐹1 −

2

3
𝐵𝐹2) 

(4.48)                  

 

 

𝐹1(𝜆𝐻) =
−𝑐𝑜𝑠ℎ(𝜆𝐻)𝑐𝑜𝑠(𝜆𝐻)

𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻)
, 𝐹2(𝜆𝐻) =

−2𝑠𝑖𝑛(𝜆𝐻)𝑠𝑖𝑛ℎ(𝜆𝐻)

𝑐𝑜𝑠(2𝜆𝐻) + 𝑐𝑜𝑠ℎ(2𝜆𝐻)
  

  (4.49)                  

 

For fixed-tip pile groups: 

 

Q1 = (AF1 − 𝐹2cos (𝛿𝐻)) , 𝑄2 = (𝐺′𝐹1 +
𝐴𝜆𝐻

3
𝐹2 −

2

3
𝐴𝐹1 −

2

3
𝐵𝐹2) 

    (4.50)                  

 

𝐹1(𝜆𝐻) =
−2𝑐𝑜𝑠ℎ(𝜆𝐻)𝑐𝑜𝑠(𝜆𝐻)

𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻)
 , 𝐹2(𝜆𝐻) =

2(𝑐𝑜𝑠(𝜆𝐻)𝑠𝑖𝑛ℎ(𝜆𝐻) − 𝑠𝑖𝑛(𝜆𝐻)𝑐𝑜𝑠ℎ(𝜆𝐻))

𝑠𝑖𝑛(2𝜆𝐻) + 𝑠𝑖𝑛ℎ(2𝜆𝐻)
 

(4.51)                  

 

 

4.8 Kinematic response of the pile-soil system 
 

Consider a pile group with N identical piles connected by a rigid cap restricted against rotation and subjected 

to seismic excitation 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡  at the bedrock surface, and let 𝑈𝐾11 = ⋯ = 𝑈𝐾NN  denote the 

horizontal pile-top displacements of the N piles without any interaction among them when subjected to the 

seismic excitation at the bedrock surface [4.22].  
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The total horizontal response at the head of each pile may be calculated as the sum of the following 

components: 

(1) The horizontal pile-top displacement as a single (solitary) pile when subjected to seismic excitation at 

the bedrock surface; 

(2) The additional horizontal pile-top displacement resulting from the motions transmitted by the other N-

1 piles due to seismic excitation at the bedrock surface; 

(3) The horizontal displacement at the head of a single (solitary) pile due to its own head loading with the 

amplitudes  𝑃1 , … , 𝑃𝑁 ; 

(4)  The additional horizontal displacement at the head of the pile transmitted from the other N-1 piles due 

to their head-loading with the amplitudes 𝑃1… , 𝑃𝑁; 

(1) and (2) are ‘kinematic’ effects, while (3) and (4) are ‘inertial’ effects. The total horizontal head 

displacement of pile i may be expressed as: 

 

𝑈𝑖 =∑(𝛼𝐾𝑖𝑗𝑈
𝐾
jj + 𝛼

𝐼
𝑖𝑗

𝑃𝑗

𝐾𝑥
(1)
)

𝑁

𝑗=1

 
    (4.52)                                                        

 

When the horizontal head displacement of the foundation is expressed by 𝑈(𝐺), the compatibility 

condition can be described by: 

 

𝑈𝑖 = 𝑈
(𝐺) =∑(𝛼𝐾𝑖𝑗𝑈

𝐾
jj + 𝛼

𝐼
𝑖𝑗

𝑃𝑗

𝐾𝑥
(1)
)

𝑁

𝑗=1

 

 

  (4.53)                                                        

 

Dividing both sides of Equation (4.53) by the common displacement 𝑈𝐾11 = ⋯ = 𝑈𝐾NN leads to: 

 

𝑈(𝐺)

𝑈𝐾11
−∑ 𝛼𝐼𝑖𝑗

𝑃𝑗

𝐾𝑥
(1)𝑈𝐾jj

𝑁

𝑗=1

=∑𝛼𝐾𝑖𝑗

𝑁

𝑗=1

 
   (4.54)                                                        
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Since the pile cap is considered massless and no external force is applied to the cap, equilibrium of the 

cap requires  

 

∑𝑃𝑗

𝑁

𝑗=1

= 0 
     (4.55)                                                        

 

These systems of equations can be set into matrix form as: 

 

[
 
 
 
 
1 −𝛼𝐼11
1 −𝛼𝐼11

−𝛼𝐼12 … −𝛼𝐼1𝑁
−𝛼𝐼11 … −𝛼𝐼2𝑁

⋮ ⋮
1
0

−𝛼𝐼𝑁1
1

⋮ ⋮     ⋮     
−𝛼𝐼𝑁2
1

…
…

−𝛼𝐼𝑁𝑁
1 ]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑈(𝐺)

𝑈𝐾11
𝑃1

𝐾𝑥
(1)𝑈𝐾11
𝑃2

𝐾𝑥
(1)𝑈𝐾22
⋮
𝑃𝑁

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 
 
 

 
 
 
 
 

=

{
 
 
 
 
 

 
 
 
 
 ∑𝛼𝐾1𝑗

𝑁

𝑗=1

∑𝛼𝐾2𝑗

𝑁

𝑗=1

⋮

∑𝛼𝐾𝑁𝑗

𝑁

𝑗=1

0 }
 
 
 
 
 

 
 
 
 
 

 

 

     (4.56)                                                        

where 𝛼𝐼𝑖𝑗 are the interaction factors for inertial loading and 𝛼𝐾𝑖𝑗 are the interaction factors for kinematic 

loading, being 𝛼𝐼𝑖𝑖 = 𝛼𝐾𝑖𝑖 = 1, and 𝐾𝑥
(1) the dynamic stiffness of the single pile. The bending moment at 

the head of pile i may be derived from the total curvature 𝑈𝑖
′′(0) as:  

 

𝑀𝑖 = 𝐸𝑝𝐼𝑝𝑈𝑖
′′(0)      (4.57)                                                        

 

4.9 Kinematic curvature ratios 
 

 The kinematic curvature ratio of the active pile is defined as the ratio of the active pile head curvature as a 

single solitary pile due to the kinematic loading of active pile when subjected to seismic excitation at the 

bedrock surface to the active pile-top displacement  [4.22]; 

 

𝛽11
𝐾 =

𝑢11
𝐾 ′′(0)

𝑢𝐾11(0)
=
2𝜆2(𝐵11

𝐾 − 𝐷11
𝐾) −

𝛤𝛿2𝑢𝑔0
cos (𝛿𝐻)

𝐴11
𝐾 + 𝐶11

𝐾 +
𝛤𝑢𝑔0

cos (𝛿𝐻)

 

         (4.58)                                                        
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𝛽11
𝐾 =

𝑢11
𝐾 ′′(0)

𝑢11
𝐾 (0)

=
−2𝜆2

𝐷
(𝐴𝐹1 + 𝐵𝐹2) −

𝛿2

𝐷
 

  (4.59)                                                        

 

The kinematic curvature ratio of the passive pile is defined as the ratio of the passive pile head curvature 

due to the additional kinematic head displacement of the passive pile to the active pile-top displacement 

due to the kinematic loading when subjected to seismic excitation at the bedrock surface [4.22]; 

 

𝛽21
𝐾 =

𝑢21
𝐾 ′′(0)

𝑢𝐾11(0)
=

2𝜆2

3
(3(𝐵21

𝐾 − 𝐷21
𝐾) − 2𝛼21(𝐵11

𝐾 − 𝐷11
𝐾)) −

𝛼̅21𝛤𝛿
2𝑢𝑔0

cos (𝛿𝐻)

𝐴11
𝐾 + 𝐶11

𝐾 +
𝛤𝑢𝑔0

cos (𝛿𝐻)

 

(4.60)                                                        

 

𝛽21
𝐾 =

𝑢21
𝐾 ′′(0)

𝑢11
𝐾 (0)

=
−2𝜆2

𝐷
(𝛼̅21𝑄1 + 𝛼21𝑄2) −

𝛿2

𝐷
𝛼̅21 

(4.61)                                                        

 

further kinematic curvature ratio can be set to matrix form: 

 

[
 
 
 
𝛽11
𝐾 𝛽12

𝐾

𝛽21
𝐼 𝛽22

𝐼

… 𝛽1𝑁
𝐾

… 𝛽2𝑁
𝐾

⋮ ⋮
𝛽𝑁1
𝐾 𝛽𝑁2

𝐾
⋮ ⋮
… 𝛽𝑁𝑁

𝐾 ]
 
 
 

= −𝛿2[𝛼̅𝑖𝑗] − 2𝜆
2(𝑄0 [

1 0 … 0

0
⋮
0

1 … 0

⋮     ⋮  ⋮  

0 … 1

] + 𝑄1 [

0 𝛼̅12
𝛼̅21 0

… 𝛼̅1𝑁
… 𝛼̅2𝑁

⋮ ⋮
𝛼̅𝑁1 𝛼̅𝑁2

⋮ ⋮
… 0

] + 𝑄2 [

0 𝛼12
𝛼21 0

… 𝛼1𝑁
… 𝛼2𝑁

⋮ ⋮
𝛼𝑁2 𝛼𝑁2

⋮ ⋮
… 0

]) 

           

                                                                                                                                                                                                        (4.62) 

                                                                   

 

kinematic curvature ratio can be set into a compact form: 

 

 

𝛽𝑖𝑗
𝐾 = −𝛿2[𝛼̅𝑖𝑗] − 2𝜆

2(𝑄0[𝐼] + 𝑄1[𝛼̅𝑖𝑗
  ′
] + 𝑄2[𝛼

′
𝑖𝑗]) 

 

(4.63)                  

 
𝑄0 = 𝐴𝐹1 + 𝐵𝐹2 (4.64)                  

 

For hinged-tip pile groups: 

 

𝐴 =
𝛿2

𝜆2
cos(𝛿𝐻) ,   𝐵 =

(1 − 𝛤)

𝛤
cos (𝛿𝐻) 

(4.65)                  

 

For fixed-tip pile groups: 

 

𝐴 =
𝛿

𝜆
sin(𝛿𝐻) ,   𝐵 =

(1 − 𝛤)

𝛤
cos (𝛿𝐻) 

(4.66)                  
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4.10 Total curvature ratios 
 

Finally, by using the superposition method to add the kinematic and inertial effects together, the total 

curvature can be expressed as: 

 

𝑈𝑖
′′(0) =∑(𝛽𝑖𝑗

𝐾𝑈𝐾jj + 𝛽𝑖𝑗
𝐼

𝑃𝑗

𝐾𝑥
(1)
)

𝑁

𝑗=1

 
                 (4.67)                                                        

For simplicity of the expression, the following form can be reached. 

 

𝑈𝑖
′′(0)

𝑈𝐾jj
=∑(𝛽𝑖𝑗

𝐾 + 𝛽𝑖𝑗
𝐼

𝑃𝑗

𝐾𝑥
(1)𝑈𝐾jj

)

𝑁

𝑗=1

 
                 (4.68)                                                        

 

These systems of equations can be set into a matrix form as: 

 

{
 
 
 

 
 
 
𝑈1
′′(0)

𝑈𝐾11
𝑈2
′′(0)

𝑈𝐾22
⋮

𝑈𝑁
′′(0)

𝑈𝐾NN }
 
 
 

 
 
 

=

[
 
 
 
𝛽11
𝐾 𝛽12

𝐾 … 𝛽1𝑁
𝐾

𝛽21
𝐾

⋮
𝛽𝑁1
𝐾

𝛽22
𝐾 … 𝛽2𝑁

𝐾

⋮     ⋮ ⋮  
𝛽𝑁2
𝐾 … 𝛽𝑁𝑁

𝐾 ]
 
 
 

{

1
1
⋮
1

} +

[
 
 
 
 𝛽11

𝐼 𝛽
12
𝐼 … 𝛽

1𝑁
𝐼

𝛽
21
𝐼

⋮
𝛽
𝑁1
𝐼

𝛽
22
𝐼 … 𝛽

2𝑁
𝐼

⋮     ⋮ ⋮  

𝛽
𝑁2
𝐼 … 𝛽

𝑁𝑁
𝐼
]
 
 
 
 

{
 
 
 

 
 
 

𝑃1

𝐾𝑥
(1)𝑈𝐾11
𝑃2

𝐾𝑥
(1)𝑈𝐾22
⋮
𝑃𝑁

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 

 
 
 

 

 

                 (4.69)                                                        

 

{
𝑈𝑖
′′(0)

𝑈𝐾11
} = [𝛽𝑖𝑗

𝐾]{𝐼} + [𝛽
𝑖𝑗
𝐼 ] {𝑃̅𝑗} 

                 (4.70)                                                        

where the vector forces  {𝑃̅𝑗} = {
𝑃𝑗

𝐾𝑥
(1)𝑈𝐾jj

}  is obtained by solving Equation (4.55). Bending strains can be 

calculated after obtaining bending moments at the head of each pile in the group in vector form: 

𝜀𝑝(𝑧) = −
𝑑

2

𝑑2𝑈𝑖(𝑧)

𝑑𝑧2
 

                 (4.71)                                                        

 

{𝜀𝑝𝑖
𝐾 (0)} = {−

𝑑

2
𝑈𝑖
′′(0)} 

                 (4.72)                                                        

 

After calculating the simplified form of the bending strain vector, it can be expressed as: 

 

{𝜀𝑝𝑖
𝐾 (0)} = ([𝛽𝑖𝑗

𝐾]{𝐼} + [𝛽𝑖𝑗
𝐼 ]{𝑃̅𝑗})

𝑑𝛤𝑢𝑔0

2cos (𝛿𝐻)
 

                 (4.73)                                                        

 



66 
 

Afterwards, the kinematic bending strain 𝜀𝑝𝑖
𝐾  at the head of the pile is normalized with respect to a mean 

shear strain of the soil medium 𝛾𝑠 .The mean shear strain is defined as the absolute value of the maximum 

harmonic response displacement of the ground surface with respect to the bedrock divided by the height of 

the soil medium H as shown in Equation (4.74). 

 

𝛾𝑠 =
𝑢𝑓𝑓(𝑧 = 0) − 𝑢𝑓𝑓(𝑧 = 𝐻)

𝐻
=

𝑢𝑔0
cos (𝛿𝐻)

− 𝑢𝑔0

𝐻
=

𝑢𝑔0

𝐻𝑐𝑜𝑠(𝛿𝐻)
(1 − 𝑐𝑜𝑠(𝛿𝐻)) 

                  
  (4.74) 

 

Therefore the closed form formula of the normalized bending strains can be written as follows 

 

{
𝜀𝑝𝑖
𝐾 (0)

𝛾𝑠
} = ([𝛽𝑖𝑗

𝐾]{𝐼} + [𝛽𝑖𝑗
𝐼 ]{𝑃̅𝑗})

(
𝑟
𝐻)𝛤

(1 − cos(𝛿𝐻))
 

                  (4.75)                                                        

 

The normalized parameters are: (1) the slenderness ratio (the radius to height ratio of the piles, 𝑟/𝐻); (2) 

the pile-soil stiffness ratio (i.e., ratio of Young’s modulus of Elasticity) (𝐸𝑝/ 𝐸𝑠); (3) the ratio of the mass 

density of the pile 𝜌𝑝 and the soil 𝜌𝑠 (𝜌𝑝/𝜌𝑠). 

 

4.11 Verification of the method and comparison in different boundary conditions 
 

In order to verify the accuracy of the proposed method, three cases including single pile, 1×2, and 2×1 

piles with different tip condition (hinged or fixed) are considered. Piles in the group are placed in a row and 

are connected by a rotationally restricted rigid cap. Also, piles are subjected to seismic excitation 𝑢𝑔(𝑡) =

𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡 at the bedrock in parallel and orthogonal directions with respect to the line connecting all piles 

centers as shown in Figure 4.2. The frequency of the horizontal excitation equals to the fundamental 

frequency of the soil medium. Results are compared against those of a three-dimensional time-harmonic 

continuum linear model based on a coupled finite elements-boundary elements (FE-BE) formulation 

[4.23],[4.24]. In this approach, the soil is modeled by BE as a homogeneous, viscoelastic, isotropic, linear 

medium; while the piles are represented by FE as Bernoulli’s beams. The piles are treated as load lines 
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acting within the soil, so their presence does not affect the soil continuity. Welded boundary conditions are 

assumed at the pile-soil interface. 

 

 

Figure 4.2: Two piles in line orthogonal (2×1) and parallel (1×2) to the excitation. 

 

 

 

Figure 4.3: Pile foundation modelling through FEM-BEM coupling formulation. 
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Figure 4.4: Normalized kinematic bending strains of single hinged pile. Comparison of the present method 

with rigorous results by FE-BE and Tajimi method  (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000 ,

s

d
= 5). 

 

 

 
(a) 

 
(b) 

 
Figure 4.5: Normalized kinematic bending strains of hinged and fixed-tip1×2 and 2×1 pile group.Comparison 

of the present method with rigorous results by FE-BE method(
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000 ,

s

d
= 5). 
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(a) 

 
(b) 

 

Figure 4.6: Normalized kinematic response of hinged and fixed-tip 1×2 and 2×1 pile groups. Comparison of 

the present method with rigorous results by FE-BE method (
ρp

ρs
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

Ep

Es
= 1000 ,

s

d
= 5). 

 

Figures 5.4 and 5.5 shows the normalized kinematic bending strains at the head of single pile and each pile 

in 1x2 and 2x1 pile groups. Additional comparison is presented in Figure 4.6 in terms of normalized 

kinematic response factor 𝐼𝑢 = 𝑈
(𝐺)/𝑈𝑓𝑓0 . In all figures, results are plotted against slenderness ratio. For 

end-bearing piles, the maximum bending strains are higher than those of hinged piles, appearing for lower 

𝑟/𝐻 ratios. This observation may be due to the restriction effect of the pile tip that makes the rotation along 

the pile length difficult. As a result, pile cap will bear larger moments. With such consideration, the 

proposed method in this study has the benefit of simulating tip conditions for pile groups. It should be noted 

that the predictions of the proposed method convincingly match with the numerical results of the rigorous 

method. However, there are mismatches between amplitudes in the case of end-bearing pile group which 

may be related to the selection of proper shape functions in lateral motion. In this study, the basic shape 

function is selected as a sinusoidal function which reproduces the fundamental mode shape of the soil 

profile and hinged piles. The fundamental mode shape of the end-bearing pile due to lateral motion, 

however, cannot be reproduced by this simple harmonic shape function and its selection is dependent on 

the pile tip and head condition. It should be noted that the shape function in Equation (2.9) affects the 

frequency-dependent parameters in Equation (2.8), and those parameters play important roles in calculation 
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of the complex valued modulus 𝑘𝑥
∗  (Equation (2.7)) and the attenuation function 𝜓21(𝑠, 𝜃) (Equations 

(2.21) and (2.22)).  

 

4.12 Behavior of kinematic bending in pile group 
 

To have further insight into the characteristics and behavior of the normalized kinematic bending strains 

against slenderness ratio 𝑟/𝐻 by using the expression proposed in Equation (4.75), additional studies of the 

fixed-head pile groups 2×2, 3×3 with different boundary conditions at the tip (fixed or hinged) are carried 

out. Piles are subjected to the seismic excitation 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡 at the bedrock as shown in Figure 4.7. 

The frequency of excitation is assumed to be equal to the fundamental frequency of the soil layer. Special 

attention is paid to the effects of the parameters like pile spacing  𝑠/𝑑 , pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 and 

the number of piles 𝑁 on the kinematic normalized bending strains in the group. Despite assumptions of 

Euler-Bernoulli beam being valid only for slenderness ratios below 0.2, a wider range (𝑟/𝐻 = 0 − 0.4) is 

presented in this study in order to have a clear picture of the behavior of pile groups beyond the local 

maximum. 

 

 

Figure 4.7: Depiction of pile groups under study. 
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(a) 

 
(b) 

 
Figure 4.8: Normalized kinematic bending strains of 2×2 hinged and end-bearing pile groups with respect to 

single pile (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 

 

 

 

 
(a) 

 
(b) 

 

Figure 4.9: Normalized kinematic bending strains of 2×2 hinged and end-bearing pile groups with respect to 

single pile (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) 

 
(b) 

 

Figure 4.10: Normalized kinematic bending strains of 3×3 hinged pile groups with respect to single                          

pile (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 

 

 

 

 

(a) 

 

(b) 
 

Figure 4.11: Normalized kinematic bending strains of 3×3 hinged pile groups with respect to single                           

pile (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) 

 

 
(b) 

Figure 4.12: Normalized kinematic bending strains of 3×3 end-bearing pile groups with respect to single                           

pile (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 

 

 

 

 
(a) 

 

 
(b) 

Figure 4.13: Normalized kinematic bending strains of 3×3 end-bearing pile groups with respect to single                           

pile (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) 

 

 
(b) 

Figure 4.14: Normalized kinematic response of 2×2 hinged and end-bearing pile groups with respect to single  

pile (
𝜌𝑝

𝜌𝑠
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100 ). 

 

 
 

 

 

 
(a) 

 

 
(b) 

Figure 4.15: Normalized kinematic response of 2×2 hinged and end-bearing pile groups with respect to single  

pile (
𝜌𝑝

𝜌𝑠
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000 ). 
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(a) 

 

 
(b) 

Figure 4.16: Normalized kinematic response of 3×3 hinged and fixed-tip pile groups with respect to single  

pile (
𝜌𝑝

𝜌𝑠
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100 ). 

       

 

 

 
(a) 

 
(b) 

 

Figure 4.17: Normalized kinematic response of 3×3 hinged and fixed-tip pile groups with respect to single 

pile (
𝜌𝑝

𝜌𝑠
= 1.43, 𝜐𝑠 = 0.4 , 𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000 ). 

           

Figures 4.8 through 4.13 show the variation of the normalized kinematic bending strains in both cases of 

hinged and end-bearing piles as a function of the slenderness ratio 𝑟/𝐻 with different values of the pile 

spacing 𝑠/𝑑 and pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 . These figures reveal that even in pile group configurations, 

each pile interestingly follows the general trend of the single pile. Moreover, it is worth noting that in pile 
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groups normalized kinematic bending strains are generally slightly smaller than those of the single pile over 

the entire range of 𝑟/𝐻. Furthermore, as the pile spacing 𝑠/𝑑 increases, normalized kinematic bending 

strains of pile groups converge to those of single piles. The kinematic bending strains start from zero when 

slenderness ratios approach zero, increasing almost linearly up to a maximum located at values of 𝑟/𝐻 

between 0.05 and 0.18, corresponding to pile aspect ratios 𝐿/𝑑 of 10 and 2.8, respectively. In end-bearing 

configurations, the maximum normalized kinematic bending strain always takes place at smaller 

slenderness ratio 𝑟/𝐻  than in hinged configurations. For 𝑟/𝐻 → ∞  piles behave as a rigid disk and 

regardless of fixity condition at the tip, all piles will experience zero bending strains. To assist in the 

understanding of the behaviour of the kinematic bending strains in the pile groups, the normalized kinematic 

seismic responses of both cases of 2×2 and 3×3 pile groups are shown in Figures 4.14 through 4.17. The 

existence of filtering effects in soil-pile systems has been proved in the published researches [4.3], [4.14], 

[4.20]. These effects are the outcome of pile resistance to adapting to the wavy movements of the free field. 

Based on Figures 4.14 through 4.17, it implies that filtering effects are clearly dependent on the number of 

piles in the group, pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 , pile spacing 𝑠/𝑑, and pile tip fixity conditions. The decline 

in amplitude of kinematic bending strains in pile groups can be physically linked to filtering effect which 

is more pronounced for close spacing piles and high pile-soil stiffness ratios. 

 

As shown in Figures 4.8 through 4.13, interestingly a definite pattern of change in kinematic bending strains 

can be found. The local maximum of kinematic bending strain shifts to lower slenderness ratio when pile-

soil stiffness ratio increases and this is compatible with single pile. The normalized kinematic bending 

strains of the piles in a group are smaller than those of the single pile in all cases except for the 3×3 end-

bearing configuration at slenderness ratios 𝑟/𝐻 below the location of the maximum. In this sense, it is worth 

noting that the maximum values for the case of pile groups appear at slenderness ratios slightly smaller than 

for single piles. In 3×3 pile groups, the pile in the center (i.e., pile 5) exhibits the highest value of bending 

strain (being closest to the single pile), while corner piles (i.e., piles 1, 3, 7 and 9) exhibit the smallest value 
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of bending strain. This means that although the boundary conditions change, distribution pattern of bending 

strains in pile groups remains unchanged.   

 

For slenderness ratios 𝑟/𝐻 below the location of the maximum, the kinematic bending strains of the piles 

in a group can always be approximated by that of the single pile. Indeed this can be validated using Figures 

4.14 through 4.17 which show that the displacement of the head of the piles in a group are almost the same 

as that of a single pile. This implies that the effect of pile-to-pile interaction is relatively not as significant 

as it is when the slenderness ratio is large, justifying that kinematic bending strains of the piles in a group 

show a behavior almost identical to that of a single pile for small slenderness ratios 𝑟/𝐻. 

 

4.13 Conclusions 
 

An efficient method has been developed to compute the bending strains of fixed-head pile groups of finite 

length embedded in a homogeneous soil layer where kinematic interaction dominates. The proposed method 

allows the kinematic bending strains to be obtained in a closed form formula while using a dynamic Winkler 

approach in conjunction with an extension to three-dimensions of Novak’s plane strain expressions by 

Mylonakis. The enhanced model is free of the drawbacks of the two- dimensional plane strain model, as it 

is able to reproduce the cutoff frequency of the soil-pile system. Pile group effect is considered through 

interaction factors and the kinematic bending strains are normalized with respect to the mean shear strain 

of the soil stratum 𝛾𝑠. The variation of normalized kinematic bending strains against slenderness ratio 𝑟/𝐻 

is investigated, revealing valuable insight into the characteristics of the kinematic bending strains in pile 

groups. Homogeneous solutions are considered in active and passive piles deflections for appropriately 

considering various boundary conditions when estimating kinematic bending strains. Solutions for pile 

groups’ responses are obtained at the fundamental frequency of the soil stratum.  

In pile groups when the slenderness ratios 𝑟/𝐻 approach zero in all piles, kinematic bending strains become 

zero. The kinematic bending strains increase almost linearly up to a local maximum, gradually decreasing 
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afterwards. The presence of that local maximum implies the existence of a particular slenderness ratio 𝑟/𝐻 

that maximizes the kinematic bending strains in pile groups and should, therefore, be avoided. Below the 

local maximum, the kinematic bending strains of the piles in a group are very close to those of a single pile. 

This conclusion allows to use the “optimal pile radius” previously computed for single piles in pile groups. 

From the viewpoint of engineering practice, the range of typical slenderness ratio 𝑟/𝐻 might be from nearly 

0.01 to 0.1. Accordingly, it is conceived that due to the kinematic bending, when the slenderness ratio 

increases within that range, the normalized kinematic bending strain may increase almost linearly. 
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CHAPTER 5 

Total response of pile groups  
 

In previous chapters, inertial and kinematic interaction were considered individually, however in reality 

those actions interact with each other detrimentally. Therefore, pile foundations in earthquake prone areas 

should be designed to withstand the presence of kinematic and inertial effects simultaneously, kinematic 

loads develop as a result of soil deformations in the vicinity of the pile and inertial loads imposed at the 

pile head. Mylonakis et al [5.1] demonstrated that for all piles in seismic areas with a wide range of 

geotechnical and geometrical parameters, always an optimal diameter (radius) exists which maximize safety 

against bending failure. Due to distinct importance of optimal pile radius in design issues and reducing 

seismic forces in soil-pile systems, this chapter aims at exploring these objectives: (i) to investigate the 

behaviour of soil-pile group systems under the simultaneous effect of kinematic and inertial forces; (ii) to 

quantify variation of the pile radius against bending of piles in pile groups; (iii) to assess the significance 

of the optimal pile radius in pile groups through pertinent numerical studies which encompass a wide range 

of parameters. 

 

5.1 Analytical solution of total bending of pile groups 
 

The soil-pile system under consideration is shown in Figure 5.1: a group of vertical cylindrical piles each 

of length L, diameter d, cross-sectional moment of inertia  𝐼𝑝, mass density 𝜌𝑝, mass per unit length 𝑚𝑝 and 

Young’s modulus of elasticity 𝐸𝑝 is embedded in a homogeneous soil layer of thickness 𝐻(= 𝐿) resting on 

a rigid base. Pile spacing is denoted with 𝑠. The pile group is loaded by harmonic lateral loads 𝑉(𝑡) =

𝑉0𝑒
𝑖𝜔𝑡  transmitted through rigid cap and vertically propagating shear waves expressed in the form of 

harmonic horizontal displacement 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑡 at rigid base level. Main assumptions are given by: (a) 

foundation remains elastic during either seismic ground shaking or lateral head loading; (b) soil restraining 

action can be modeled using a bed of linear or equivalent-linear Winkler springs and dashpots, uniformly 
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distributed along the pile axis; (c) perfect contact (i.e., no gap and slippage) exist between pile and soil; (d) 

the flexural deformations of the pile group are dominant during oscillations; (e) the frequency of horizontal 

excitation is assumed to be equal to the fundamental frequency of the soil medium. 

 

 
Figure 5.1: Problem considered for combined effect of inertial and kinematic interaction with different tip 

conditions. 

 

 

5.2 Total response of the pile-soil system 
 

Consider a pile group with identical N piles connected by a rigid cap restricted against rotation and subjected 

to seismic excitation 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡 at the bedrock surface and lateral loading 𝑉(𝑡) = 𝑉0𝑒

𝑖𝜔𝑔𝑡  at the 

head of pile group, and let 𝑈𝐾11 = ⋯ = 𝑈𝐾NN denote the horizontal pile-top displacements of the N piles 

without any interaction among them when only subjected to the seismic excitation at the bedrock surface 

[4.22]. 

The total horizontal response at the head of each pile may be calculated as the sum of the following 

components: 

(1) The horizontal pile-top displacement as a single (solitary) pile when subjected to seismic excitation at 

the bedrock surface. 
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 (2) The horizontal displacement at the head of single (solitary) pile due to its own head loading (outcome 

of seismic excitation) with the amplitudes  𝑃1
𝐾 , … , 𝑃𝑁

𝐾. 

(3) The additional horizontal pile-top displacement resulting from the motions transmitted by the other N-

1 piles due to seismic excitation at the bedrock surface. 

(4) The additional horizontal pile-top displacement transmitted from the other N-1 piles due to their head-

loading (outcome of seismic excitation) with the amplitudes 𝑃1
𝐾 , … , 𝑃𝑁

𝐾 . 

(5) The horizontal pile-top displacement as a single (solitary) pile due to its own head loading (outcome 

of inertial forces atop the pile group) with the amplitudes  𝑃1
𝐼 , … , 𝑃𝑁

𝐼  .  

(6)  The additional horizontal pile-top displacement transmitted from the other N-1 piles due to their head-

loading  (outcome of inertial forces atop the pile group) with the amplitudes 𝑃1
𝐼 , … , 𝑃𝑁

𝐼 . 

(1) and (3) are ‘kinematic’ effects, while (2),(4),(5) and (6) are ‘inertial’ effects. When the horizontal head 

displacement of the foundation is expressed by 𝑈(𝐺), the compatibility condition and equilibrium of forces 

at head of pile group can be described by: 

 

𝑈(𝐺) = 𝑈(𝐺)𝐼 + 𝑈(𝐺)𝐾 (5.1)                  

 

 

𝑈(𝐺) = 𝑈𝑖 =∑(𝛼𝐾𝑖𝑗𝑈
𝐾
jj + 𝛼

𝐼
𝑖𝑗

𝑃𝑗
𝐾

𝐾𝑥
(1)
+ 𝛼𝐼𝑖𝑗

𝑃𝑗
𝐼

𝐾𝑥
(1)
)

𝑁

𝑗=1

 
(5.2)                  

 

 

∑𝑃𝑗

𝑁

𝑗=1

= 𝑉0 
(5.3)                  

 

where 𝑈(𝐺)𝐼 , 𝑈(𝐺)𝐾  are respectively displacement groups when only inertial forces acting at the pile head 

and kinematic forces subjecting at the bedrock surface, Dividing both sides of Equation. (5.2) by the 

common displacement 𝑈𝐾11 = ⋯ = 𝑈𝐾NN leads to: 
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𝑈(𝐺)

𝑈𝐾11
−∑ (𝛼𝐼𝑖𝑗

𝑃𝑗
𝐾

𝐾𝑥
(1)𝑈𝐾jj

+ 𝛼𝐼𝑖𝑗
𝑃𝑗
𝐼

𝐾𝑥
(1)𝑈𝐾jj

𝑁

𝑗=1

) =∑𝛼𝐾𝑖𝑗

𝑁

𝑗=1

 
(5.4)                  

 
These systems of equations (Equation (5.4)) can be rewritten into matrix form as: 

  

[
 
 
 
 
1 −𝛼𝐼11
1 −𝛼𝐼11

−𝛼𝐼12 … −𝛼𝐼1𝑁
−𝛼𝐼11 … −𝛼𝐼2𝑁

⋮ ⋮
1
0

−𝛼𝐼𝑁1
1

⋮ ⋮     ⋮     
−𝛼𝐼𝑁2
1

…
…

−𝛼𝐼𝑁𝑁
1 ]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑈(𝐺)

𝑈𝐾11

𝑃1
𝐾 + 𝑃1

𝐼

𝐾𝑥
(1)𝑈𝐾11

𝑃2
𝐾 + 𝑃2

𝐼

𝐾𝑥
(1)𝑈𝐾22
⋮

𝑃𝑁
𝐾 + 𝑃𝑁

𝐼

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 
 
 

 
 
 
 
 

=

{
 
 
 
 
 
 

 
 
 
 
 
 
∑𝛼𝐾1𝑗

𝑁

𝑗=1

∑𝛼𝐾2𝑗

𝑁

𝑗=1

⋮

∑𝛼𝐾𝑁𝑗

𝑁

𝑗=1

V0

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 
 
 
 

 
 
 
 
 
 

 

(5.5)                  

 

[
 
 
 
 
1 −𝛼𝐼11
1 −𝛼𝐼11

−𝛼𝐼12 … −𝛼𝐼1𝑁
−𝛼𝐼11 … −𝛼𝐼2𝑁

⋮ ⋮
1
0

−𝛼𝐼𝑁1
1

⋮ ⋮     ⋮     
−𝛼𝐼𝑁2
1

…
…

−𝛼𝐼𝑁𝑁
1 ]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑈(𝐺)𝐼

𝑈𝐾11

𝑃1
𝐼

𝐾𝑥
(1)𝑈𝐾11

𝑃2
𝐼

𝐾𝑥
(1)𝑈𝐾22
⋮

𝑃𝑁
𝐼

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 
 
 

 
 
 
 
 

+

[
 
 
 
 
1 −𝛼𝐼11
1 −𝛼𝐼11

−𝛼𝐼12 … −𝛼𝐼1𝑁
−𝛼𝐼11 … −𝛼𝐼2𝑁

⋮ ⋮
1
0

−𝛼𝐼𝑁1
1

⋮ ⋮     ⋮     
−𝛼𝐼𝑁2
1

…
…

−𝛼𝐼𝑁𝑁
1 ]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑈(𝐺)𝐾

𝑈𝐾11

𝑃1
𝐾

𝐾𝑥
(1)𝑈𝐾11

𝑃2
𝐾

𝐾𝑥
(1)𝑈𝐾22
⋮

𝑃𝑁
𝐾

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 
 
 

 
 
 
 
 

=

{
 
 

 
 

0
0
⋮
0
V0

𝐾𝑥
(1)𝑈𝐾NN}

 
 

 
 

+

{
 
 
 
 
 

 
 
 
 
 
∑𝛼𝐾1𝑗

𝑁

𝑗=1

∑𝛼𝐾2𝑗

𝑁

𝑗=1

⋮

∑𝛼𝐾𝑁𝑗

𝑁

𝑗=1

0 }
 
 
 
 
 

 
 
 
 
 

 

(5.6)                  

 

By separating kinematic and inertial effects, above matrix form can be expressed as: 
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[
 
 
 
 
1 −𝛼𝐼11
1 −𝛼𝐼11

−𝛼𝐼12 … −𝛼𝐼1𝑁
−𝛼𝐼11 … −𝛼𝐼2𝑁

⋮ ⋮
1
0

−𝛼𝐼𝑁1
1

⋮ ⋮     ⋮     
−𝛼𝐼𝑁2
1

…
…

−𝛼𝐼𝑁𝑁
1 ]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑈(𝐺)𝐼

𝑈𝐾11

𝑃1
𝐼

𝐾(1)𝑈𝐾11

𝑃2
𝐼

𝐾𝑥
(1)𝑈𝐾22
⋮

𝑃𝑁
𝐼

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 
 
 

 
 
 
 
 

=

{
 
 

 
 

0
0
⋮
0
V0

𝐾𝑥
(1)𝑈𝐾NN}

 
 

 
 

 

(5.7)                  

 

[
 
 
 
 
1 −𝛼𝐼11
1 −𝛼𝐼11

−𝛼𝐼12 … −𝛼𝐼1𝑁
−𝛼𝐼11 … −𝛼𝐼2𝑁

⋮ ⋮
1
0

−𝛼𝐼𝑁1
1

⋮ ⋮     ⋮     
−𝛼𝐼𝑁2
1

…
…

−𝛼𝐼𝑁𝑁
1 ]

 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑈(𝐺)𝐾

𝑈𝐾11

𝑃1
𝐾

𝐾𝑥
(1)𝑈𝐾11

𝑃2
𝐾

𝐾𝑥
(1)𝑈𝐾22
⋮

𝑃𝑁
𝐾

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 
 
 

 
 
 
 
 

=

{
 
 
 
 
 

 
 
 
 
 
∑𝛼𝐾1𝑗

𝑁

𝑗=1

∑𝛼𝐾2𝑗

𝑁

𝑗=1

⋮

∑𝛼𝐾𝑁𝑗

𝑁

𝑗=1

0 }
 
 
 
 
 

 
 
 
 
 

 

(5.8)                  

 

where 𝛼𝐼𝑖𝑗 are the interaction factors for inertial loading and 𝛼𝐾𝑖𝑗 are the interaction factors for kinematic 

loading, being 𝛼𝐼𝑖𝑖 = 𝛼𝐾𝑖𝑖 = 1, and 𝐾𝑥
(1) the dynamic stiffness of the single pile. The bending moment at 

the head of pile i may be derived from the total curvature 𝑈𝑖
′′(0) as:  

 
𝑀𝑖 = 𝐸𝑝𝐼𝑝𝑈𝑖

′′(0)                    (5.9)                                                        

 

 

5.3 Total curvature ratios 
 

Finally, by using the superposition method to add the kinematic and inertial effects together, the total 

curvature can be expressed as: 

 

𝑈𝑖
𝑇′′(0) = 𝑈𝑖

𝐾′′(0) + 𝑈𝑖
𝐼′′(0) =∑(𝛽𝑖𝑗

𝐾𝑈𝐾jj + 𝛽𝑖𝑗
𝐼
𝑃𝑗
𝐾

𝐾𝑥
(1)
+ 𝛽𝑖𝑗

𝐼
𝑃𝑗
𝐼

𝐾𝑥
(1)
)

𝑁

𝑗=1

 
                 (5.10)                                                        

 

For simplicity of the expression, the following form can be reached: 
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𝑈𝑖
𝑇′′(0)

𝑈𝐾jj
=∑(𝛽𝑖𝑗

𝐾 + 𝛽𝑖𝑗
𝐼

𝑃𝑗
𝐼

𝐾𝑥
(1)𝑈𝐾jj

+ 𝛽𝑖𝑗
𝐼

𝑃𝑗
𝐾

𝐾𝑥
(1)𝑈𝐾jj

)

𝑁

𝑗=1

 
                 (5.11)                                                        

 

 

These systems of equations can be set into a matrix form as: 

 

 

{
 
 
 
 

 
 
 
 𝑈1

𝑇′′(0)

𝑈𝐾11

𝑈2
𝑇′′(0)

𝑈𝐾22
⋮

𝑈𝑁
𝑇′′(0)

𝑈𝐾NN }
 
 
 
 

 
 
 
 

=

[
 
 
 
𝛽11
𝐾 𝛽12

𝐾 … 𝛽1𝑁
𝐾

𝛽21
𝐾

⋮
𝛽𝑁1
𝐾

𝛽22
𝐾 … 𝛽2𝑁

𝐾

⋮     ⋮ ⋮  
𝛽𝑁2
𝐾 … 𝛽𝑁𝑁

𝐾 ]
 
 
 

{

1
1
⋮
1

} +

[
 
 
 
 
𝛽
11
𝐼 𝛽

12
𝐼 … 𝛽

1𝑁
𝐼

𝛽
21
𝐼

⋮
𝛽
𝑁1
𝐼

𝛽
22
𝐼 … 𝛽

2𝑁
𝐼

⋮     ⋮ ⋮  

𝛽
𝑁2
𝐼 … 𝛽

𝑁𝑁
𝐼
]
 
 
 
 

{
 
 
 

 
 
 

𝑃1
𝐼

𝐾𝑥
(1)𝑈𝐾11
𝑃2
𝐼

𝐾𝑥
(1)𝑈𝐾22
⋮
𝑃𝑁
𝐼

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 

 
 
 

+

[
 
 
 
 𝛽11

𝐼 𝛽
12
𝐼 … 𝛽

1𝑁
𝐼

𝛽
21
𝐼

⋮
𝛽
𝑁1
𝐼

𝛽
22
𝐼 … 𝛽

2𝑁
𝐼

⋮     ⋮ ⋮  

𝛽
𝑁2
𝐼 … 𝛽

𝑁𝑁
𝐼
]
 
 
 
 

{
 
 
 

 
 
 

𝑃1
𝐾

𝐾𝑥
(1)𝑈𝐾11
𝑃2
𝐾

𝐾𝑥
(1)𝑈𝐾22
⋮
𝑃𝑁
𝐾

𝐾𝑥
(1)𝑈𝐾NN}

 
 
 

 
 
 

 

 

                 (5.12)                                                        

 

{
𝑈𝑖
𝑇′′(0)

𝑈𝐾11
} = [𝛽𝑖𝑗

𝐾]{𝐼} + [𝛽
𝑖𝑗
𝐼 ] {𝑃̅𝑗

𝐼
} + [𝛽

𝑖𝑗
𝐼 ] {𝑃̅𝑗

𝐾
} 

                 (5.13)                                                        

 

where the vector of forces for inertial and kinematic effects {𝑃̅𝑗
𝐼
} = {

𝑃1
𝐼

𝐾𝑥
(1)𝑈𝐾jj

} , {𝑃̅𝑗
𝐾
} = {

𝑃1
𝐾

𝐾𝑥
(1)𝑈𝐾jj

}   are 

obtained separately after solving Equations (5.7) and (5.8).  

 

5.4 Total bending strain as fundamental measure of pile bending 
 

It is beneficial to use total bending strain as a deformation-related quantity to quantify pile bending. The 

maximum total bending strain at the outer fibre of the pile cross-section, 𝜀𝑝𝑖, is related to bending moments 

as: 

 

𝜀𝑝𝑖
𝑇 (𝑧) =

𝑀𝑖

𝐸𝑝𝐼𝑝
𝑟 = {−

𝑑

2

𝑑2𝑈𝑖(𝑧)

𝑑𝑧2
}                   (5.14)                                                        
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where r is the distance from the neutral axis to the farthest fibre in the cross-section. Bending strain has 

several advantages over bending moment in assessing the seismic performance of a pile because: (i) it is 

dimensionless; (ii) it is directly measurable experimentally; (iii) it can be used to quantify damage (iv) 

ultimate (‘failure’) bending strains do not vary significantly among common structural materials. For 

instance, strains of the order of 0.1% is enough to inflict damage in conventionally-design concrete or steel 

beams. After obtaining kinematic and inertial bending moments at the head of each pile in the group in 

vector form, the total bending strains can be calculated by superimposing these to effects together which 

gives:   

 

 {𝜀𝑝𝑖
𝑇 (𝑧 = 0)} = {−

𝑑

2

𝑑2𝑈𝑖(𝑧=0)

𝑑𝑧2
}                   (5.15)                                                        

 

{𝜀𝑝𝑖
𝑇 (𝑧 = 0)} = {𝜀𝑝𝑖

𝐾 (0)} + {𝜀𝑝𝑖
𝐼 (0)}                   (5.16)                                                        

 

Afterwards the total bending strain 𝜀𝑝𝑖(0) at the head of each pile is normalized with respect to a mean 

shear strain of the soil medium 𝛾𝑠 .The mean shear strain is defined as the absolute value of the maximum 

harmonic response displacement of the ground surface with respect to the bedrock divided by the height of 

the soil medium H as shown in Equation (5.17). 

 

𝛾𝑠 =
𝑢𝑓𝑓(𝑧 = 0) − 𝑢𝑓𝑓(𝑧 = 𝐻)

𝐻
=

𝑢𝑔0
cos (𝛿𝐻)

− 𝑢𝑔0

𝐻
=

𝑢𝑔0

𝐻𝑐𝑜𝑠(𝛿𝐻)
(1 − 𝑐𝑜𝑠(𝛿𝐻)) 

                  
  (5.17) 

 

 

Therefore the closed form formula of the normalized total bending strains can be written as follows: 

 

{
𝜀𝑝𝑖
𝑇 (0)

𝛾𝑠
} = {

𝜀𝑝𝑖
𝐾 (0)

𝛾𝑠
} + {

𝜀𝑝𝑖
𝐼 (0)

𝛾𝑠
} 

                 (5.18)                                                        

 

The first and the second terms in Equation (5.18) are associated with normalized kinematic and inertial 

bending, respectively, which have been quantified in closed form equations previously in chapters three 

and four. By using them, normalized total bending strains can be expressed by: 
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{
𝜀𝑝𝑖
𝑇 (0)

𝛾𝑠
} = ([𝛽𝑖𝑗

𝐾]{𝐼} + [𝛽𝑖𝑗
𝐼 ]{𝑃̅𝑗

𝐾
})

(
𝑟
𝐻
)𝛤

(1 − cos(𝛿𝐻))
+

[𝛽𝑖𝑗
𝐼 ]{𝛾𝑗}

𝜋
8
(
𝑟
𝐻
)3(𝜆𝐻)𝐹(𝜆𝐻)

𝑁 |
𝑉0

𝐸𝑝𝛾𝑠𝐻
2| 𝑒

𝑖𝜑𝑟 

                    (5.19)                                                        

or 

{
𝜀𝑝𝑖
𝑇 (0)

𝛾𝑠
} = ([𝛽𝑖𝑗

𝐾]{𝐼} + [𝛽𝑖𝑗
𝐼 ]{𝑃̅𝑗

𝐾
})

(
𝑟
𝐻)

𝛤

(1 − cos(𝛿𝐻))
+

[𝛽𝑖𝑗
𝐼 ]{𝛾𝑗}

𝜋
8 (
𝑟
𝐻)

3(𝜆𝐻)𝐹(𝜆𝐻)
𝑁.𝐹𝑟𝑒𝑖𝜑𝑟 

                 (5.20)                                                        

Factor 𝐹𝑟 is a dimensionless factor which is related to the effect of the lateral inertial load relative to the 

free-field deformation of the soil layer. 𝜑𝑟 is the phase lag between lateral inertial load 𝑉0 and mean shear 

strain 𝛾𝑠 (ground motion). Both parameters have been obtained and discussed in detail in chapter three. N 

is the number of piles in pile groups.  

 

5.5 Behavior of total bending in pile groups 
 

To have further insight into the characteristics and behavior of the normalized total bending strains against 

slenderness ratio 𝑟/𝐻 by using the expression proposed in Equations (5.19) and (5.20), additional studies 

of the fixed-head pile groups 1×2, 2×2, 3×3 and 4×4 with different boundary conditions at the tip (fixed 

or hinged) are carried out. Piles are simultaneously subjected to the seismic excitation 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡 at 

the bedrock and harmonic head loading (𝑡) = 𝑉0𝑒
𝑖𝜔𝑔𝑡 . The frequency of excitation is assumed to be equal 

to the fundamental frequency of the soil layer. Special attention is paid to the effects of the parameters like 

pile spacing /𝑑 , pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠, factor Fr, phase lag 𝜑𝑟 and the number of piles 𝑁 on the 

normalized total bending strains in the group. Despite assumptions of Euler-Bernoulli beam being valid 

only for slenderness ratios below 0.2, a wider range (𝑟/𝐻 = 0 − 0.4) is presented in this study in order to 

have a clear picture of the behavior of pile groups beyond the local maximum. 

                                                  

        Figure 5.2: Depiction of 1×2 pile group. 
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5.5.1 Hinged-tip 1×2 pile groups: 

 
(a) 

 

 
(b) 

Figure 5.3: Normalized total bending strains of 1×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000, 𝜑𝑟 = 0). 

 
(a) 

 

 
(b) 

Figure 5.4: Normalized total bending strains of 1×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000, 𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 
(b) 

Figure 5.5: Normalized total bending strains of 1×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000, 𝜑𝑟 = −

3𝜋

4
). 

 

 

 

 

 
(a) 

 

 

(b) 

Figure 5.6: Normalized total bending strains of 1×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100, 𝜑𝑟 = 0). 
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(a) 

 

 
(b) 

Figure 5.7: Normalized total bending strains of 1×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100, 𝜑𝑟 = −

𝜋

2
). 

 

 

 

 

 
(a) 

 

 
(b) 

       Figure 5.8: Normalized total bending strains of 1×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100, 𝜑𝑟 = −

3𝜋

4
). 

 

 

 



91 
 

5.5.2 Fixed-tip 1×2 pile groups: 

 
(a)  

(b) 
Figure 5.9: Normalized total bending strains of 1×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 

 

 

 

 

 
(a) 

 
(b) 

 
Figure 5.10: Normalized total bending strains of 1×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 
(b) 

 
Figure 5.11: Normalized total bending strains of 1×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 

 

 

 

 

 
(a) 

 

 
(b) 

 
Figure 5.12: Normalized total bending strains of 1×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 

 
(b) 

Figure 5.13: Normalized total bending strains of 1×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 

 

 

 

 

 
(a) 

 

 
(b) 

        Figure 5.14: Normalized total bending strains of 1×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 
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       Figure 5.15: Depiction of 1x3 pile groups.  

5.5.3 Hinged-tip 1×3 pile groups: 

 
(a) 

 

 
(b) 

  Figure 5.16: Normalized total bending strains of 1×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 

 
(a) 

 

 
(b) 

  Figure 5.17: Normalized total bending strains of 1×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 
(b) 

  Figure 5.18: Normalized total bending strains of 1×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 

 

 

 

 
(a) 

 

 
(b) 

  Figure 5.19: Normalized total bending strains of 1×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 

 
(b) 

Figure 5.20: Normalized total bending strains of 1×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 

 

 

 

 

 
(a) 

 

 
(b) 

  Figure 5.21: Normalized total bending strains of 1×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 
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  5.5.4 Fixed-tip 1×3 pile groups: 

 
(a) 

 

 
(b) 

  Figure 5.22: Normalized total bending strains of 1×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 5.23: Normalized total bending strains of 1×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 
(b) 

Figure 5.24: Normalized total bending strains of 1×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 5.25: Normalized total bending strains of 1×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 
(b) 

 
Figure 5.26: Normalized total bending strains of 1×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 5.27: Normalized total bending strains of 1×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 

 



100 
 

 

        Figure 5.28: Depiction of 2x2 pile groups.  

5.5.5 Hinged-tip 2×2 pile groups: 

 
(a) 

 

 
(b) 

Figure 5.29: Normalized total bending strains of 2×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 

 
(a) 

 
(b) 

Figure 5.30: Normalized total bending strains of 2×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 
(b) 

Figure 5.31: Normalized total bending strains of 2×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 5.32: Normalized total bending strains of 2×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 
(b) 

 
Figure 5.33: Normalized total bending strains of 2×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 5.34: Normalized total bending strains of 2×2 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 
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5.5.6 Fixed-tip 2×2 pile groups: 

 
(a)  

(b) 

 
Figure 5.35: Normalized total bending strains of 2×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 5.36: Normalized total bending strains of 2×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 
(b) 

Figure 5.37: Normalized total bending strains of 2×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 5.38: Normalized total bending strains of 2×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 

 
(b) 

Figure 5.39: Normalized total bending strains of 2×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 

 

 

 

 

 
(a) 

 
(b) 

 
Figure 5.40: Normalized total bending strains of 2×2 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 
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    Figure 5.41: Depiction of 3x3 pile groups.  

5.5.7 Hinged-tip 3×3 pile groups: 

 
(a) 

 

 

 

 
(b) 

 
(c)  

(d) 

 
        Figure 5.42: Normalized total bending strains of 3×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

        Figure 5.43: Normalized total bending strains of 3×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 
(b) 

 
(c) 

 
(d) 

 
        Figure 5.44: Normalized total bending strains of 3×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 
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(a) 

 

 

 

 
(b) 

 

 

 
(c) 

 

 
(d) 

Figure 5.45: Normalized total bending strains of 3×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 

 

 

 
(b) 

 

 

 
(c) 

 

 
(d) 

Figure 5.46: Normalized total bending strains of 3×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 

 
(b) 

 

 

 
(c) 

 

 
(d) 

        Figure 5.47: Normalized total bending strains of 3×3 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 
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5.5.8 Fixed-tip 3×3 pile groups: 

 
(a) 

 
(b) 

 

 

 

 
(c)  

(d) 

 
Figure 5.48: Normalized total bending strains of 3×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 
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(a) 

 

 

 

 
(b) 

 

 

 

 
(c) 

 
(d) 

 
Figure 5.49: Normalized total bending strains of 3×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5.50: Normalized total bending strains of 3×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 
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(a) 

 

 

 

 
(b) 

 

 

 

 
(c) 

 

 
(d) 

Figure 5.51: Normalized total bending strains of 3×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 

 

 

 

 

 



116 
 

 

 

 

 
(a) 

 

 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5.52: Normalized total bending strains of 3×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.53: Normalized total bending strains of 3×3 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 
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     Figure 5.54: Depiction of 4x4 pile groups.  

5.5.9 Hinged-tip 4×4 pile groups: 
 

 
(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.55: Normalized total bending strains of 4×4 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 
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(a) 

 
(b) 

 

 

 

 
(c) 

 

 
(d) 

Figure 5.56: Normalized total bending strains of 4×4 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.57: Normalized total bending strains of 4×4 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5.58: Normalized total bending strains of 4×4 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.59: Normalized total bending strains of 4×4 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.60: Normalized total bending strains of 4×4 hinged pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 
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5.5.10 Fixed-tip 4×4 pile groups: 

 
(a) 

 

 

 

 
(b) 

 
(c)  

(d) 

 
Figure 5.61: Normalized total bending strains of 4×4 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = 0). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5.62: Normalized total bending strains of 4×4 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.63: Normalized total bending strains of 4×4 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000,𝜑𝑟 = −

3𝜋

4
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5.64: Normalized total bending strains of 4×4 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = 0). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5.65: Normalized total bending strains of 4×4 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

𝜋

2
). 
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(a) 

 

 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.66: Normalized total bending strains of 4×4 fixed-tip pile groups with respect to single pile                           

(
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100,𝜑𝑟 = −

3𝜋

4
). 

 

Figures 5.3 through 5.66 show the variations in normalized total bending strains in both fixed-tip and hinged 

piles as a functions of the slenderness ratio 𝑟/𝐻 with different values of the factor  𝐹𝑟 = 10−5, 5 × 10−5 

phase lag 𝜑𝑟 = 0,−𝜋/2,−3𝜋/4 and pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 = 100 , 1000. It is assumed that the 

mass density ratio 𝜌𝑝/𝜌𝑠 = 1.43 ; the material damping 𝛽𝑠 = 0.05; and the Poissons’s ratio 𝜐𝑠 = 0.4. In 

order to illustrate the behavior of total bending strains in pile groups in detail, the results of normalized total 
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bending strains for 3 × 3 hinged pile groups in figures 5.42 through 5.44 (𝐸𝑝/𝐸𝑠 = 1000,𝜑𝑟 =

0,−𝜋/2,−3𝜋/4)  are compared with those of Figures 5.45 through 5.47 (𝐸𝑝/𝐸𝑠 = 100,𝜑𝑟 = 0,−𝜋/

2,−3𝜋/4). These figures indicate that even in pile group configurations, each pile closely follows the 

general trend of the single pile. Furthermore, as the pile spacing 𝑠/𝑑 increases, normalized bending strains 

of pile groups converge to those of single piles. For 𝑟/𝐻 → ∞ piles behave as a rigid disk and regardless 

of boundary condition at the tip, all piles will experience zero total bending strains. The variation of 

normalized total bending strains with slenderness ratio (𝑟/𝐻) implies the presence of two distinct points, 

local minimum points which minimizes the normalized total bending strains (optimal pile radius) and local 

maximum points which maximizes the normalized total bending strains. For small values of the slenderness 

ratio 𝑟/𝐻, normalized inertial bending strains tend to increase markedly which can be due to dominance of 

inertial forces. As the slenderness ratio increases, bending strains tend significantly to decrease up to a local 

minimum point  𝑟/𝐻 ≈ (𝑟/𝐻)𝑚𝑖𝑛  then increase almost linearly up to a local maximum point 𝑟/𝐻 ≈

(𝑟/𝐻)𝑚𝑎𝑥 which can be due to dominance of kinematic interaction. Afterwards gradually decrease beyond 

the local maximum. This point indicates the presence of a worst-case slenderness ratio in which pile groups 

may experience bending failure. 

Figures 5.42 through 5.44 (𝐸𝑝/𝐸𝑠 = 1000) or Figures 5.45 through 5.47 (𝐸𝑝/𝐸𝑠 = 100) show that when 

the factor 𝐹𝑟  increases, the value of the normalized bending strains in pile groups at local minimum 

gradually increases. In this case, the local minimum area occurs for small  𝐹𝑟 (i.e., ≤ 5 × 10−5) within the 

practical range of 𝑟/𝐻. This implies the radius that can appropriately minimize the bending strains. The 

presence of local minimum area is linked to the opposite change in the inertial and kinematic bending strains 

with 𝑟/𝐻. It is apparent that the changes in 𝐹𝑟 have little effect upon the value of slenderness ratio at local 

maximum. 

By comparing results of figures 5.42 through 5.44 (𝐸𝑝/𝐸𝑠 = 1000,𝜑𝑟 = 0,−𝜋/2,−3𝜋/4) with those of   

figures 5.45 through 5.47 (𝐸𝑝/𝐸𝑠 = 100, 𝜑𝑟 = 0,−𝜋/2,−3𝜋/4), it can be noted that at the local minimum 
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once the phase lag 𝜑𝑟 begins to decrease the value of the normalized total bending strains gradually tend to 

decrease. When 𝜑𝑟  becomes closer to –𝜋 , approximately all piles in the group experience zero total 

bending strain. This implies that by decreasing the value of the phase lag 𝜑𝑟 the value of the inertial bending 

strain and the kinematic bending strain become equal with different signs and subsequently cancel each 

other. However, being 𝜑𝑟 =–𝜋 in practical engineering may not be realistic because the phase lag 𝜑𝑟 

probably converges to about −3𝜋/4 in the case where 𝑇𝑠/𝑇𝑔 ≥ 1, as described by Murono and Nishimura 

[5.2]. 

Figures 5.42 through 5.44 (𝐸𝑝/𝐸𝑠 = 1000,𝜑𝑟 = 0,−𝜋/2,−3𝜋/4)  and Figures 5.45 through 5.47 

(𝐸𝑝/𝐸𝑠 = 100,𝜑𝑟 = 0,−𝜋/2,−3𝜋/4),  also show the variations in normalized total bending strains with 

different values of the pile-soil stiffness ratio. These figures imply that the value of the normalized total 

bending strains at the local minimum point significantly increases as 𝐸𝑝/𝐸𝑠 increases. The reason for this 

increase can be due to the fact that the increase in the pile-soil stiffness due to the movement of the 

surrounding soil, as indicated by Equation (2.7), makes the reaction forces in the dynamic Winkler springs 

apparently increase. 

In figures 5.61 through 5.66, the results of parametric studies are shown for 4×4 fixed-tip pile groups. In 

these figures the local minimums and the local maximums characterized by wavy pattern of the total 

bending strains appear. This behaviour is the direct consequence of the pile-to-pile interaction between 

piles. Thus, peaks and valleys appear on the normalized total bending strains curves, which becomes 

increasingly pronounced as the number of piles in the group increases.  

 The effects of important parameters (𝐹𝑟,  𝜑𝑟  , 𝐸𝑝/𝐸𝑠) on the value of local minimum and local maximum 

slenderness ratios in pile groups can be categorized in the following sections: 
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5.5.11 Effect of factor Fr 

 

In order to have further insight into the characteristics of minimum and maximum pile radius in pile groups 

against variation of the facotr 𝐹𝑟 additional results of 1×2, 1×3, 2×2, 3×3 hinged pile groups with different 

values of phase lag 𝜑𝑟 = 0,−𝜋/2,−3𝜋/4 and pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 = 100 , 1000 are presented 

in the following figures: 

 
(a) 

 
(b) 

 

 
(c) 

 
Figure 5.67: Variation of minimum and maximum radius of 1×2 hinged pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) 

 
(b) 

 

 

 
(c) 

 
Figure 5.68: Variation of minimum and maximum radius of 1×2 hinged pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 
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(a) 

 
(b) 

 

 

 
(c) 

 

Figure 5.69: Variation of minimum and maximum radius of 1× hinged3 pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) 

 
(b) 

 

 

 
(c) 

 

Figure 5.70: Variation of minimum and maximum radius of 1×3 hinged pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 
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(a) 

 

(b) 

 

 
(c) 

 

Figure 5.71: Variation of minimum and maximum radius of 2×2 hinged pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) 

 
(b) 

 

 

 
(c) 

 

Figure 5.72: Variation of minimum and maximum radius of 2×2 hinged pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 
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(a) 
 

(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure 5.73: Variation of minimum and maximum radius of 3×3 hinged pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

 

Figure 5.74: Variation of minimum and maximum radius of 3×3 hinged pile groups with 𝐹𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 
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Figures 5.67 through 5.74, can clearly indicate that the values of the minimum pile radius in pile groups 

tend to increase gradually as the factor 𝐹𝑟 increases. The reason for this can be due to the outcome of 

inertial bending strains and kinematic bending strains which behave in opposite directions and as a result 

induce changes in the slenderness ratio associated with the local minimum point. Therefore, the local 

minimum point tends to move toward larger values of the slenderness ratios as 𝐹𝑟 increases. In contrast, as 

𝐹𝑟 increases (dominance of inertial interaction), the values of the maximum pile radius in pile groups 

remain approximately unchanged. This can be due to the fact that the value of the slenderness ratio at local 

maximum point is mainly affected by kinematic interaction. For instance, this behaviour can be clearly seen 

in figures 5.67 and 5.68. It is also found that the distance between the slenderness ratios associated with the 

local minimum and the local maximum points tends to decrease as the factor 𝐹𝑟 increases. As a result, a 

local minimum and maximum will be generated for small values of the factor 𝐹𝑟 (e.g., ≤ 10−4.5). It is 

noted, therefore that the presence of local minimum may largely depend on the value of the factor 𝐹𝑟. 

 

5.5.12 Effect of phase lag 𝝋𝒓  
 

To assist in the understanding the characteristics of minimum and maximum pile radius in pile groups 

against the variations of the phase lag 𝜑𝑟 additional results of 3×3 hinged pile groups with different values 

of the factor 𝐹𝑟 = 10−5, 5 × 10−5 and pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 = 100 , 1000  are presented in the 

following figures: 
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 5.75: Variation of minimum and maximum radius of 3×3 hinged pile groups with 𝜑𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 1000). 
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(a) (b) 

 

 
(c) 

 

 
(d) 

 

Figure 5.76: Variation of minimum and maximum radius of 3×3 hinged pile groups with 𝜑𝑟 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 ,

𝐸𝑝

𝐸𝑠
= 100). 

 

Despite local deviations in figures  5.75 (c) and (d), it can be concluded the values of the minimum and 

maximum pile radius in pile groups with variation of the phase lag ranges  (𝜑𝑟 ≈ −𝜋 𝑡𝑜  𝜑𝑟 ≈ 0) does not 

substantially change and can be considered constant. Therefore, the changes in the phase lag 𝜑𝑟  have 

negligible influence upon the minimum and the maximum radius in pile groups. Moreover, as the factor 𝐹𝑟 

increases the local minimum and local maximum points tend to become equal to each other as one single 

point. 
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5.5.13 Effect of pile-soil stiffness ratio  𝑬𝒑/𝑬𝒔 
 

To assist in the understanding the characteristics of minimum and maximum pile radius in pile groups 

against the variations of the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 additional results of 3×3 hinged pile groups with 

different values of the factor 𝐹𝑟 = 10−5, 5 × 10−5 and the phase lag 𝜑𝑟 = 0,−𝜋/2,−3𝜋/4  have been 

presented in the following figures: 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.77: Variation of minimum and maximum radius of 3×3 hinged pile groups with 𝐸𝑝/𝐸𝑠 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 , 𝐹𝑟 = 10−5). 

 



144 
 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.78: Variation of minimum and maximum radius of 3×3 hinged pile groups with 𝐸𝑝/𝐸𝑠 

 (
𝜌𝑝

𝜌𝑠
= 1.43,   𝜐𝑠 = 0.4 ,  𝛽𝑠 = 0.05 , 𝐹𝑟 = 5 × 10−5). 

 

Figures 5.77 and 5.78 show that the local maximum of bending strains shift substantially to lower values 

of the slenderness ratio as the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 increase. In contrast, as the pile-soil stiffness 

ratio 𝐸𝑝/𝐸𝑠  increases the values of the minimum pile radius in pile groups remain approximately 

unchanged. It is also found that the distance between the local minimum and the local maximum tends to 

decrease as the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 increases. As a result, a local minimum and maximum area 
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will be generated for small values of the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 (e.g., ≤ 103). It can be concluded 

that the changes in the 𝐸𝑝/𝐸𝑠 have negligible effect upon the minimum pile radius in pile groups.  

 

 

5.6 Optimal radius in pile groups and its practical application 
 

By taking the advantage of the local minima of total bending strain, the total bending strain at pile head can 

be reduced effectively. In this subsection, three methods are proposed to mitigate the bending strains in pile 

groups by appropriately selecting pile radius. This pile radius is defined as “optimal pile radius” of pile 

groups.  In order to demonstrate the applicability of the method developed in this chapter for optimal pile 

radius in pile groups, a 3×3 hinged pile groups is considered. The following properties of the system are 

assumed: 𝐻(= 𝐿) = 15 𝑚, initial pile diameter 𝑑0 = 0.5 𝑚, the density of the pile 𝜌𝑝 = 2.4 𝑡/𝑚
3, the ratio 

of the mass density of the pile 𝜌𝑝 and the soil 𝜌𝑠 (𝜌𝑝/𝜌𝑠 = 1.43), Poisson’s ratio 𝜐𝑠 = 0.4, pile spacing 

𝑠/𝑑 = 4 and material damping 𝛽𝑠 = 0.05. It is assumed that fixed-head piles are simultaneously subjected 

to the seismic excitation 𝑢𝑔(𝑡) = 𝑢𝑔0𝑒
𝑖𝜔𝑔𝑡 at the bedrock and harmonic head loading 𝑉(𝑡) = 𝑉0𝑒

𝑖𝜔𝑔𝑡. The 

frequency of excitation is assumed to be equal to the fundamental frequency of the soil layer 𝜔 = 𝜔𝑔, the 

geometry of the pile group is sketched in figure 5.79 (section) and figure 5.80 (plan). Different values of 

the factor 𝐹𝑟 = 10−5, 2 × 10−5, 5 × 10−5, the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 = 100 , 1000 and the phase 

lag 𝜑𝑟 = 0,−𝜋/2,−3𝜋/4  are chosen to examine the applicability of the proposed method.  
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Figure 5.79: Cross-section of the 3×3 hinged pile groups and the used soil properties.    

 

   

 

 
Figure 5.80: Plan of the 3×3 hinged pile groups configuration.       

 

 

5.6.1 Ultimate capacity of the pile groups 
 

In order to avoid failure, soil near the surface should have sufficient bearing capacity to support the 

structural loads. The weight of the superstructure should not surpassed the bearing capacity. Therefore it 

would be essential to define the weight of the structure based on the compressive ultimate load applied on 

the top of the pile groups (figure 5.81).     
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(𝑄𝑣)𝑢𝑙𝑡 = 𝑄𝑝 + 𝑄𝑓                  (5.21)                                                        

 

Where (𝑄𝑣)𝑢𝑙𝑡 is the ultimate bearing capacity of pile, 𝑄𝑝 is the end-bearing capacity, and 𝑄𝑓 is 

the frictional capacity along the pile perimeter [5.3].  

𝑄𝑝 = 𝐴𝑝𝜎𝑣
′𝑁𝑞                  (5.23)                                                        

 

𝑄𝑓 = 𝑝𝐾𝑠𝑡𝑎𝑛𝛿 ∑𝜎𝑣𝐿
′

𝐿=𝐿

𝐿=0

∆𝐿 

                 (5.24)                                                        

 

where 𝑁𝑞 is the nondimensional bearing capacity parameter and are dependent on the angle of 

inertial friction of the soil, 𝜎𝑣
′  is the effective overburden pressure at the pile tip, 𝐴𝑝 is the pile tip 

area, 𝜎𝑣𝐿
′  is the effective vertical stress at a point along the pile length, p is the pile perimeter, 𝐾𝑠 

is the earth pressure coefficient. for most design purposes, 𝛿 = 2/3𝜙, 𝜙 is the angle of internal 

friction. Equation (5.22) may then be rewritten as: 

 

(𝑄𝑣)𝑢𝑙𝑡 = 𝑄𝑝 + 𝑄𝑓 = 𝐴𝑝𝜎𝑣
′𝑁𝑞 + 𝑝𝐾𝑠𝑡𝑎𝑛𝛿 ∑𝜎𝑣𝐿

′

𝐿=𝐿

𝐿=0

∆𝐿 

                 (5.25)                                                        

 

 
Figure 5.81: Basic concept of load support by pile foundations. 
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It is assumed that the concrete pile is embedded into dry sand, the sand has 𝜙 = 300 estimate the pile 

group’s allowable load: 

𝑠𝑜𝑖𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝛾𝑠 = 1.6783 𝑡/𝑚
3                  (5.26)                                                        

 

𝐴𝑝 = 𝜋/4 ∗ (0.5)
2 = 0.1963 𝑚2                  (5.27)                                                        

 

With reference to [5.3]: 

 

𝑁𝑞 = 25                  (5.28)                                                        

 

𝐾𝑠 = 0.5                  (5.29)                                                        

 

𝛿 = 2/3 ∗ 300 = 200                  (5.30)                                                        

 

𝜎𝑣
′ = 1.6783 ∗ 15 = 27.1745 𝑡/𝑚2                  (5.31)                                                        

 

∑𝜎𝑣𝐿
′

𝐿=𝐿

𝐿=0

∆𝐿 = 𝜋 ∗ 0.5 ∗ 0.5 ∗ tan(200) ∗ (0.5 ∗ 1.6783 ∗ 15) ∗ 15 = 188.81𝑡𝑜𝑛 

                 (5.32)                                                        

𝑄𝑓 = 𝜋 ∗ 0.5 ∗ 0.5 ∗ tan(20
0) ∗ 188.81 = 53.9732𝑡𝑜𝑛                   (5.33)                                                        

 

𝑄𝑝 =
𝜋

4
∗ (0.5)2 ∗ 1.6783 ∗ 15 ∗ 25 = 123.575 ton 

                 (5.34)                                                        

 

(𝑄𝑣)𝑢𝑙𝑡 𝑔𝑟𝑜𝑢𝑝 = 9 ∗ (𝑄𝑝 + 𝑄𝑓) ≈ 1600 𝑡𝑜𝑛                  (5.35)                                                        

 

Using a factor of safety, FS , equal to 3 

 

(𝑄𝑣)𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑝 = 1600/3 ≈ 533 𝑡𝑜𝑛                  (5.35)                                                        

 

Therefore the weight of the superstructure should be limited by the value of allowable bearing capacity of 

the pile group. After obtaining total bending strains in each pile, analysis is carried out in reaching the 

optimal radius in each pile. Three different type of methods are employed to calculate the optimal radius in 

3×3 hinged pile group, subsequently each method and corresponding results are discussed. 

 

5.6.2 Average method 
 

In this method, the values of the slenderness ratios at local minimum points are averaged by the number of 

similar piles, for 3×3 pile groups,  piles 2,3,5 and 6 are considered for taking the average. By using this 
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method, optimal pile diameter and pile spacing in pile groups has been obtained for different values of 

factor 𝐹𝑟 (𝐹𝑟 = 10
−5, 2 × 10−5, 5 × 10−5) (Table 1) . As shown in figures 5.82 and 5.83, the values of the 

normalized total bending strains and slendreness ratios corresponding to initial and opimal stage for each 

pile in the group has been obtained. Moreover, the percent changes between the values of the normalized 

total bending strains has been calculated (Table 2). For simple case of 𝐹𝑟 = 10
−5, 𝐸𝑝/𝐸𝑠 = 100  and the 

phase lag 𝜑𝑟 = 0 calculations are given by: 

(
𝑟

𝐻
)𝑜𝑝𝑡2 = (

𝑟

𝐻
)𝑜𝑝𝑡3 = (

𝑟

𝐻
)𝑜𝑝𝑡6 = 0.033 

   (5.21)                  

 

(
𝑟

𝐻
)𝑜𝑝𝑡5 = 0.032 

   (5.22)                  

 

average(
𝑟

𝐻
)𝑜𝑝𝑡 = ((

𝑟

𝐻
)
𝑜𝑝𝑡2

+ (
𝑟

𝐻
)
𝑜𝑝𝑡3

+ (
𝑟

𝐻
)
𝑜𝑝𝑡5

+ (
𝑟

𝐻
)
𝑜𝑝𝑡6

)/4 = 0.0328 

   (5.23)                  

 

𝑑𝑜𝑝𝑡 = 0.0328 ∗ 15 ∗ 2 = 0.984 m    (5.24)                  

 

𝑠𝑜𝑝𝑡 = 4 ∗ d = 3.936 m    (5.25)                  

      
 

Phase lag 𝜑𝑟 

 

 

𝐹𝑟 × (10−5) 
 

𝐸𝑝/𝐸𝑠 × (10
2) 

 

𝑑𝑜𝑝𝑡(𝑚) 
 

𝑠𝑜𝑝𝑡  (𝑚) 

0 

 

 

 

 

 

 

−
𝜋

2
 

 

 

 

 

 

−
3𝜋

4
 

 

 

1 

 

2 

 

5 

 

 

1 

 

2 

 

5 

 

 

1 

 

2 

 

5 

1 

10 

1 

10 

1 

10 

 

1 

10 

1 

10 

1 

10 

 

1 

10 

1 

10 

1 

10 

0.984 

1.29 

1.23 

Non 

1.6425 

Non 

 

0.8775 

1.0725 

1.23 

1.395 

1.4625 

Non 

 

0.8025 

0.9675 

1.0125 

1.2225 

1.35 

1.68 

3.936 

5.16 

4.92 

Non 

6.57 

Non 

 

3.51 

4.29 

4.92 

5.58 

5.85 

Non 

 

3.21 

3.87 

4.05 

4.89 

5.4 

6.72 

 
Table 1: Optimal pile diameter an pile spacing in 3× 3 hinged pile groups (average method).  
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(a) 

 
(b) 

 

Figure 5.82: Initial value and optimal value of normalized total bending strains in 3× 3 hinged pile groups 

(average method)(pile 2 ,3). 

 

 

 

 

 

 

 
(a) 

 
(b) 

 

Figure 5.83: Initial value and optimal value of normalized total bending strains in 3× 3 hinged pile groups 

(average method)(pile 5 ,6). 
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Pile 

 

 

(𝜺𝒑𝒊/𝜸𝒔)𝟎 

 

(𝜺𝒑𝒊/𝜸𝒔)𝒐𝒑𝒕 
 

Percent change 

 

2 

3 

5 

6 

0.2025896 

0.2190231 

0.1830603 

0.2016073 

0.1204112 

0.1277294 

0.1113012 

0.1195991 

-40.56 

-41.68 

-39.20 

-40.68 

 
Table 2: Percent changes in the normalized total bending strains between initial vale and optimal values  

(average method). 

 

 

5.6.3 Weighted average method 

 
In this method, the values of the slenderness ratios at local minimum points are averaged by the number of 

piles, each value has a specific weight (which is the number of similar piles) assigned to it. By using this 

method, optimal pile diameter an pile spacing in pile groups has been obtained for different values of factor 

𝐹𝑟  (𝐹𝑟 = 10
−5, 2 × 10−5, 5 × 10−5) (Table 3). As shown in figures 5.84 and 5.85, the values of the 

normalized total bending strains and slendreness ratios corresponding to initial and opimal stage for each 

pile in the group has been obtained. Moreover, the percent changes between the values of the normalized 

total bending strains has been calculated (Table 4). For simple case of 𝐹𝑟 = 10
−5, 𝐸𝑝/𝐸𝑠 = 100  and the 

phase lag 𝜑𝑟 = 0 calculations are given by: 

(
𝑟

𝐻
)𝑜𝑝𝑡2 = (

𝑟

𝐻
)𝑜𝑝𝑡3 = (

𝑟

𝐻
)𝑜𝑝𝑡6 = 0.033 

   (5.26)                  

 

(
𝑟

𝐻
)𝑜𝑝𝑡5 = 0.032 

   (5.27)                  

 

average(
𝑟

𝐻
)𝑜𝑝𝑡 = (2 ∗ (

𝑟

𝐻
)
𝑜𝑝𝑡2

+ 4 ∗ (
𝑟

𝐻
)
𝑜𝑝𝑡3

+ (
𝑟

𝐻
)
𝑜𝑝𝑡5

+ 2 ∗ (
𝑟

𝐻
)
𝑜𝑝𝑡6

)/9 = 0.0329 

   (5.28)                  

 

𝑑𝑜𝑝𝑡 = 0.0329 ∗ 15 ∗ 2 = 0.987 m    (5.29)                  

 

 

𝑠𝑜𝑝𝑡 = 4 ∗ d = 3.948 m 
 

   (5.30)                  
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Phase lag 𝜑𝑟 

 

𝐹𝑟 × (10−5) 
 

𝐸𝑝/𝐸𝑠 × (10
2) 

 

𝑑𝑜𝑝𝑡(𝑚) 
 

𝑠𝑜𝑝𝑡  (𝑚) 

0 

 

 

 

 

 

 

−
𝜋

2
 

 

 

 

 

 

−
3𝜋

4
 

 

 

1 

 

2 

 

5 

 

 

1 

 

2 

 

5 

 

 

1 

 

2 

 

5 

1 

10 

1 

10 

1 

10 

 

1 

10 

1 

10 

1 

10 

 

1 

10 

1 

10 

1 

  10 

0.9870 

1.32 

1.24 

Non 

1.6667 

Non 

 

0.8833 

1.0867 

1.24 

1.43 

1.4767 

Non 

 

0.8067 

0.9833 

1.0167 

1.2367 

1.36 

1.7 

3.9480 

5.28 

4.96 

Non 

6.6667 

Non 

 

3.533 

4.3467 

4.96 

5.72 

5.9067 

Non 

 

3.2267 

3.9333 

4.0667 

4.9467 

5.44 

6.804 

 

Table 3: Optimal pile diameter an pile spacing in 3× 3 hinged pile groups (weighted average method). 

 

 
(a) 

 
(b) 

 
Figure 5.84: Initial value and optimal value of normalized total bending strains in 3× 3 hinged pile groups 

(weighted average method) (pile 2 ,3). 
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(a) 

 

 
(b) 

Figure 5.85: Initial value and optimal value of normalized total bending strains in 3× 3 hinged pile groups 

(weighted average method) (pile 5 ,6). 

 

 

Pile 

 

 

(𝜺𝒑𝒊/𝜸𝒔)𝟎 

 

(𝜺𝒑𝒊/𝜸𝒔)𝒐𝒑𝒕 
 

Percent change 

2 

3 

5 

6 

0.2025896 

0.2190231 

0.1830603 

0.2016073 

0.1204118 

0.1277088 

0.1113251 

0.1195992 

-40.56 

-41.69 

-39.19 

-40.68 

 
Table 4: Percent changes in the normalized total bending strains between initial vale and optimal values  

(weighted average method). 

 

5.6.4 Envelop method 

 

In this method maximum of values of the normalized total bending strains among all piles in each step of 

analysis are chosen, then the resultant will be the envelope of all maximum vlaues (figure 5.86).  By using 

this method, optimal pile diameter an pile spacing in pile groups has been obtained for different values of 

factor 𝐹𝑟 (𝐹𝑟 = 10
−5, 2 × 10−5, 5 × 10−5) (Table 5). As shown in figures 5.87 and 5.88, the values of the 

normalized total bending strains and slendreness ratios corresponding to initial and opimal stage for each 

pile in the group has been obtained. Moreover, the percent changes between the values of the normalized 
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total bending strains has been calculated (Table 6). For simple case of 𝐹𝑟 = 10
−5, 𝐸𝑝/𝐸𝑠 = 100  and the 

phase lag 𝜑𝑟 = 0 calculations are given by: 

𝑀𝑎𝑥 {
𝜀𝑝𝑖
𝑇 (0)

𝛾𝑠
} = 𝑀𝑎𝑥{

𝜀𝑝2
𝑇 (0)

𝛾𝑠
 
𝜀𝑝3
𝑇 (0)

𝛾𝑠

𝜀𝑝5
𝑇 (0)

𝛾𝑠

𝜀𝑝6
𝑇 (0)

𝛾𝑠
} 

 

   (5.31)                  

(
𝑟

𝐻
)𝑜𝑝𝑡 = 0.033 

 
 

   (5.32)                  

𝑑𝑜𝑝𝑡 = 0.033 ∗ 15 ∗ 2 = 0.99 m 

 
 

   (5.33)                  

𝑠𝑜𝑝𝑡 = 4 ∗ d = 3.96 m 

 

 

 

 

 
 

   (5.34)                  

 

 
 

Figure 5.86: Optimal diameter of the 3× 3 hinged pile groups with envelope method.           

 

 

 

 

 

 

 

 

 

 

 

 



155 
 

 
 

Phase lag 𝜑𝑟 

 

 

𝐹𝑟 × (10−5) 
 

𝐸𝑝/𝐸𝑠 × (10
2) 

 

𝑑𝑜𝑝𝑡(𝑚) 
 

𝑠𝑜𝑝𝑡  (𝑚) 

0 

 

 

 

 

 

 

−
𝜋

2
 

 

 

 

 

 

−
3𝜋

4
 

 

 

 

 

1 

 

2 

 

5 

 

 

1 

 

2 

 

5 

 

 

1 

 

2 

 

5 

1 

10 

1 

10 

1 

10 

 

1 

10 

1 

10 

1 

10 

 

1 

10 

1 

10 

1 

10 

0.99 

1.38 

1.26 

Non 

1.71 

Non 

 

0.9 

1.11 

1.26 

1.44 

1.5 

Non 

 

0.81 

0.99 

1.02 

1.23 

1.38 

1.7 

3.96 

5.52 

5.04 

Non 

6.84 

Non 

 

3.6 

4.44 

5.04 

5.76 

6 

Non 

 

3.24 

3.96 

4.08 

4.92 

5.52 

6.804 

 
Table 5: Optimal pile diameter an pile spacing in 3× 3 hinged pile groups (envelope method).   

 
 

 
(a) 

 

 
(b) 

Figure 5.87: Initial value and optimal value of normalized total bending strains in 3× 3 hinged pile groups 

(envelope method) (pile 2 ,3). 
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(a) 

 
(b) 

 
Figure 5.88: Initial value and optimal value of normalized total bending strains in 3× 3 hinged pile groups 

(envelope method) (pile 5 ,6). 

 

 

 

Pile 

 

 

(𝜺𝒑𝒊/𝜸𝒔)𝟎 

 

(𝜺𝒑𝒊/𝜸𝒔)𝒐𝒑𝒕 
 

Percent change 

2 

3 

5 

6 

0.2025896 

0.2190231 

0.1830603 

0.2016073 

0.1204157 

0.1276959 

0.1113473 

0.1196026 

-40.56 

-41.70 

-39.17 

-40.68 

 
Table 6: Percent changes in the normalized total bending strains between initial vale and optimal values  

(envelope method). 

 

 

 
 

Figure 5.89: Initial and optimized configuration of 3×3 hinged pile groups (
Ep

Es
= 100, 𝐹𝑟 = 10−5). 
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Tables 2,4 and 6 give a comparison of the results obtained by applying three different methods. The percent 

changes in the values of the normalized total bending indicate that all of them yeild vlues of optimal radius 

approximately close to each other. In addition, increasing the pile radius makes the spacing between piles 

in the group increase (figure 5.89). this may increase safety, however, the cost of material and construction 

will increase. Therefore, optimal radius in pile groups can be defined as the radius in which all piles in the 

group simultanesouly minimize the total bending strains.  

 

5.7 Conclusions 
 

An efficient method has been developed to compute the normalized total bending strains of fixed-head pile 

groups of finite length embedded in a homogeneous soil layer subjected to both kinematic and inertial 

harmonic loading. The proposed method allows the total bending strains to be obtained in a closed form 

formula while using a dynamic Winkler approach in conjunction with an extension to three-dimensions of 

Novak’s plane strain expressions by Mylonakis. The enhanced model is free of the drawbacks of the two- 

dimensional plane strain model, as it is able to reproduce the cutoff frequency of the soil-pile system. Pile 

group effect is considered through frequency-dependent interaction factors and the total bending strains are 

normalized with respect to the mean shear strain of the soil stratum 𝛾𝑠. The variation of the normalized total 

bending strains against slenderness ratio 𝑟/𝐻  is investigated, revealing valuable insight into the 

characteristics of the bending strains radius in pile groups. Solutions for pile groups’ responses are obtained 

at the fundamental frequency of the soil stratum.  

 

In pile groups when the slenderness ratios 𝑟/𝐻 approach zero in all piles, the total bending strains become 

infinite. Afterwards the total bending strains decrease rapidly up to a local minimum point 𝑟/𝐻 ≈

(𝑟/𝐻)𝑚𝑖𝑛 as the slenderness ratio 𝑟/𝐻  increases. The local minimum point indicates the presence of 

optimal case in which bending strains are minimized.  After local minimum point, the total bending strains 

increase almost linearly up to a local maximum point 𝑟/𝐻 ≈ (𝑟/𝐻)𝑚𝑎𝑥. The local maximum point implies 
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the existence of a particular slenderness ratio 𝑟/𝐻 that maximizes the total bending strains in pile groups 

and should, therefore, be avoided.  

This chapter shows the normalized total bending strains for various parameters, such as the factor 𝐹𝑟, the 

pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 and the phase lag 𝜑𝑟 indicating the characteristics and the presence of the 

local minimum and the local maximum in soil-pile group systems. The results of parametric study indicate 

the dependence of the optimal radius and the optimal bending strains in pile groups on the factor 𝐹𝑟, the 

pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 and the phase lag 𝜑𝑟. As a whole, it appears that the slenderness ratios at 

local minimum point increases as 𝐹𝑟 increases, while the ratios remain unvaried as  𝐸𝑝/𝐸𝑠 and 𝜑𝑟 increase. 

It should be noted that a substantial decrease in the normalized total bending strains at optimal radius would 

be expected within a range of small 𝐸𝑝/𝐸𝑠 and 𝐹𝑟. Moreover, this decrease seems to be more significant 

for small values of the phase lag 𝜑𝑟. 

Three different approaches (average, weighted average and envelope) are provided for estimating the 

optimal radius in pile groups that minimize the normalized total bending strains simultaneously. Each of 

them can be considered applicable for engineering purposes.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

6.1 Main conclusions 

The following summarize some of important findings of this study. As detailed conclusions are provided 

at the end of each chapter; only major findings are discussed here. 

 

In chapter 3 , Inertial interaction in soil-pile group systems was analytically investigated through an 

improved plain strain model by combining the concepts of Winkler support and frequency-dependent 

interaction factors. The proposed method yields the variation of normalized inertial bending strains with 

slenderness ratio 𝑟/𝐻  at the head of fixed-head pile groups resting on rigid base, embedded in a 

homogeneous viscoelastic soil stratum. Analysis was carried out for different boundary conditions in 

fundamental frequency of the soil layer. Rigorous numerical solutions based on coupled finite elements-

boundary elements (FE-BE) were employed to validate the predictions of the proposed method. It was 

founded that the proposed method convincingly match with the numerical results for soil-pile group systems. 

 

In chapter 4 , a theoretical method was developed for the analysis of fixed-head pile groups in a 

homogeneous viscoelastic soil stratum over a rigid base under vertical impinging seismic shear waves in 

fundamental frequency of the soil layer. Within the framework of improved plain strain model and 

frequency-dependent interaction factors, a solution was developed to quantify the variation of normalized 

kinematic bending strains with slenderness ratio 𝑟/𝐻 at the head of each pile in pile groups with different 

tip conditions. It was concluded that: 

 Results of normalized kinematic bending strains in pile groups follow closely corresponding 

results obtained from rigorous FE-BE solutions. 
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 The combined influence of pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠, pile spacing 𝑠/𝑑 and the number of piles 

N on normalized kinematic bending strains in pile groups are investigated. It was founded that for 

slenderness ratios 𝑟/𝐻  below the location of the maximum, the kinematic bending strains of the 

piles in a group can always be approximated by that of the single pile regardless of pile group 

configurations. Moreover practical range of slenderness ratio 𝑟/𝐻  might be from 0.01 to 0.1. 

Within that range, the normalized kinematic bending strains may increase almost linearly. 

 

In chapter 5 , a theoretical method was derived for the analysis of fixed-head pile groups in a homogeneous 

viscoelastic soil stratum over a rigid base under simultaneous effect of superstructure forces (inertial 

interaction) and vertically-propagating shear waves (kinematic interaction). Different tip conditions (hinged 

and fixed) have been taken into account. With an understanding the importance of fundamental frequency 

of the soil layer, such specific frequency was targeted in this chapter. Normalized total bending strains were 

expressed in terms of slenderness ratio 𝑟/𝐻. In order to investigate the fundamental characteristics of 

normalized total bending strains in pile groups, the effects of important parameters (the factor 𝐹𝑟, the pile-

soil stiffness ratio 𝐸𝑝/𝐸𝑠 ,the phase lag 𝜑𝑟, pile spacing s/d and the number of piles N) were considered.  

The main conclusions of this chapter are: 

 

 Obtained results imply the presence two extreme points, local minimum points which minimizes 

the normalized total bending strains (optimal pile radius) and local maximum points which 

maximizes the normalized total bending strains. 

 

  The factor 𝐹𝑟, the pile-soil stiffness ratio 𝐸𝑝/𝐸𝑠 and the phase lag 𝜑𝑟 have strong influence on the 

presence of the optimal radius and the optimal bending strains in pile groups. Optimal points are 

more easily generated as 𝐹𝑟  and 𝐸𝑝/𝐸𝑠  becomes smaller. In addition, the normalized bending 

strains at the local minimum points gradually decrease as the phase lag 𝜑𝑟 decreases. It appears 



161 
 

that the value of the slenderness ratios at local minimum points increases as 𝐹𝑟 increases, while the 

ratios remain unvaried as 𝐸𝑝/𝐸𝑠 and 𝜑𝑟 increase.  

 

 Three different methods can be used for estimating the optimal radius in pile groups. Each of them 

can be applied for engineering purposes. 

 

6.2 Limitations  

Notwithstanding the usefulness and practical appeal of this study is limited by simplifying assumptions of 

linearity in soil and the pile material, of a perfectly contact between soil and pile, and the adoption of the 

superposition principle for pile-to-pile interaction. Therefore, revisions are required in presence of strongly 

non-linear effects in the soil. In order to calculate the optimal pile radius in cases when the local minimum 

and local maximum disappear, increasing the pile dimatere would be appropriate solution to decrease the 

total bending strains. However, this solution increases the value of optimal pile radius and pile spacing 𝑠/𝑑 

in pile groups, subsequently, this makes the piles become large-diameter shafts and the cost of materials 

and construction methods may increase. By increasing the number of piles in pile groups, local minimums 

and maximums appear on the normalized total bending strains curves, therefore use of optimal pile radius 

concept for pile groups may leads to erroneous results. 

6.3 Recommendations and future research 

Recommendations for future research include: (i) incorporation of the non-linearity of the soil into the 

models, (ii) incorporation of inhomogeneity or layered soil deposits in analysis of lateral pile motion, (iii) 

extension of the analysis in time domain through FFT algorithms to establish a criteria for optimal pile 

radius in pile groups, (iv) extension of the method for soil-pile groups systems under impinging P or 

Rayleigh waves, (v) incorporate the contribution of superior modes of vibration in the case of deeper soil 

deposits. 
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