
‒ 307 ‒

埼玉大学紀要　教育学部，68（1）：307－316（2018）

Some Estimates of The Symbol and The Symbol Calculus

DÔKU, Isamu
Faculty of Education, Saitama University

Summary
When a differential operator on the Schwartz class is given, on the assumption that the adjoint 

of the symbol corresponding to the operator possesses a series expansion, namely, its adjoint sym-
bol admits an asymptotic sum, if the operator given is a pseudo-differential operator, then its ad-
joint operator becomes the same type of pseudo-differential operator. Consequently, the original 
operator can be extended to an operator on the space of tempered distributions. In order to realize 
the above-mentioned program, we need some precise estimates of the symbol. We will note some 
crucial technical points behind the proof.

Key Words:  pseudo-differential operator, symbol, the symbol calculus, the Schwartz class, tem-
pered distribution, asymptotic sum.

1.  Introduction and notation
In this section we shall first explain the notation used throughout this article. Let α be a mul-

tiindex, namely, α ∈ Zn
+, α = (α1, . . . , αn), and αj ∈ Z+ for any j = 1, 2, . . . , n. We denote ∂x = 
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1. Introduction and notation

In this section we shall first explain the notation used throughout this article. Let α be

a multiindex, namely, α ∈ Zn
+, α = (α1, . . . , αn), and αj ∈ Z+ for any j = 1, 2, . . . , n. We

denote ∂x = ∂
∂x and Dx = 1

i ∂x, where i =
√
−1. For x = (x1, . . . , xn) ∈ Rn, we mean ∂x

= ∂1∂2 · · · ∂n and ∂j = ∂xj , and ∂α
x = ∂α1

1 · · · ∂αn
n . In particular, we use the following simple

notation

Dα
x = Dα1

1 · · ·Dαn
n =

(
1

i

)n
∂m

∂xα1
1 · · · ∂xαn

n
(1)

when |α| = α1 + · · ·+ αn = m.

The space S ≡ S(Rn) is the totality of C∞ functions u = u(x) = u(x1, . . . , xn) defined on

Rn which decrease rapidly, namely, for any α ∈ Zn
+, β ∈ Zn

+,

lim
|x|→∞

|xα∂β
xu(x)| = 0 (2)

holds. The space S is also called the Schwartz class. The semi-norms on S is given by

|u|α,β := sup
x∈Rn

|xα∂β
xu(x)| < +∞ (3)

for any α, β in Zn
+. A linear form on S which is continuous for the semi-norms | · |α,β , is said

to be a tempered distribution on Rn, and the space of tempered distributions is denoted by

1

 and 
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DÔKU, Isamu
Faculty of Education, Saitama University

Summary

When a differential operator on the Schwartz class is given, on the assumption that the

adjoint of the symbol corresponding to the operator possesses a series expansion, namely,

its adjoint symbol admits an asymptotic sum, if the operator given is a pseudo-differential

operator, then its adjoint operator becomes the same type of pseudo-differential operator.

Consequently, the original operator can be extended to an operator on the space of tempered

distributions. In order to realize the above-mentioned program, we need some precise estimates

of the symbol. We will note some crucial technical points behind the proof.

Key Words: pseudo-differential operator, symbol, the symbol calculus,

the Schwartz class, tempered distribution, asymptotic sum.

1. Introduction and notation

In this section we shall first explain the notation used throughout this article. Let α be

a multiindex, namely, α ∈ Zn
+, α = (α1, . . . , αn), and αj ∈ Z+ for any j = 1, 2, . . . , n. We

denote ∂x = ∂
∂x and Dx = 1

i ∂x, where i =
√
−1. For x = (x1, . . . , xn) ∈ Rn, we mean ∂x

= ∂1∂2 · · · ∂n and ∂j = ∂xj , and ∂α
x = ∂α1

1 · · · ∂αn
n . In particular, we use the following simple

notation

Dα
x = Dα1

1 · · ·Dαn
n =

(
1

i

)n
∂m

∂xα1
1 · · · ∂xαn

n
(1)

when |α| = α1 + · · ·+ αn = m.

The space S ≡ S(Rn) is the totality of C∞ functions u = u(x) = u(x1, . . . , xn) defined on

Rn which decrease rapidly, namely, for any α ∈ Zn
+, β ∈ Zn

+,

lim
|x|→∞

|xα∂β
xu(x)| = 0 (2)

holds. The space S is also called the Schwartz class. The semi-norms on S is given by

|u|α,β := sup
x∈Rn

|xα∂β
xu(x)| < +∞ (3)

for any α, β in Zn
+. A linear form on S which is continuous for the semi-norms | · |α,β , is said

to be a tempered distribution on Rn, and the space of tempered distributions is denoted by

1

. For x = (x1, . . . , xn) ∈ Rn, we mean ∂x= ∂1∂2· · · ∂n and ∂j = ∂xj , and ∂αx = 
∂
α
x

1 · · · ∂α
n
n. In particular, we use the following simple notation

 

Some Estimates of The Symbol
and The Symbol Calculus
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for any α, β in Zn
+. A linear form on S which is continuous for the semi-norms | · |α,β, is said to be 

a tempered distribution on Rn, and the space of tempered distributions is denoted by S′. On the 
other hand, the space of distributions with compact support in Rn is denoted by E ′(Rn), which is 
identified with the space of linear forms on C∞(Rn) being continuous for the topology defined by 
the semi-norms
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S ′. On the other hand, the space of distributions with compact support in Rn is denoted by

E ′(Rn), which is identified with the space of linear forms on C∞(Rn) being continuous for the

topology defined by the semi-norms

|u|K,m := sup
x∈K

sup
|α|�m

|∂α
x u(x)|, (4)

where K runs over the compact subsets of Rn and m runs over the integers. Note that

E ′(Rn) ⊂ S ′ and S ⊂ S ′. Since D = C∞
0 (Rn) ⊂ S, it is easy to see that S is dense in S ′ with

the topology of simple convergence on S. The Fourier transformation F is a continuous linear

mapping
F : S ∋ u �→ Fu = û ∈ S, (5)

defined by

(Fu)(ξ) ≡ û(ξ) :=

∫
e−ix·ξu(x)dx (6)

for u ∈ S and ξ ∈ Rn. Its inverse mapping F−1 is given by

(F−1û)(x) = u(x) =
1

(2π)n

∫
eix·ξû(ξ)dξ. (7)

In the last we shall give you a rough idea about what this article was written for. When a

differential operator A on the Schwartz class S is given, on the assumption that the adjoint

a∗(x, ξ) of the symbol a(x, ξ)corresponding to the operator A possesses a series expansion∑
j a

∗
j , namely, its adjoint symbol a∗ admits an asymptotic sum

∑k
j=1 a

∗
j , if the operator A

given is a pseudo-differential operator, then its adjoint operator A∗ becomes the same type

of pseudo-differential operator. Consequently, the original operator A can be extended to an

operator on the space S ′of tempered distributions. In order to realize the above-mentioned

program, we need some precise estimates of the symbol. We will note some crucial technical

points behind the proof.

Here is the principal assertion in this article, which provides us with a fundamental result

of the symbol calculus.

Theorem 1. Suppose that a ≡ a(x, ξ) ∈ Sm.

(a) Then

a∗(x, ξ) =
1

(2π)n

∫
exp{−iy · η} · ā(x− y, ξ − η)dydη (8)

belongs to Sm.

(b) The symbol a∗(x, ξ) satisfies the asymptotic formula

a∗(x, ξ) ∼
∑
α≥0

1

α!
∂α
ξ D

α
x ā(x, ξ). (9)

2

 (4)

where K runs over the compact subsets of Rn and m runs over the integers. Note that E ′(Rn) ⊂ S′ 
and S ⊂ S′. Since D = C0

∞(Rn) ⊂ S, it is easy to see that S is dense in S′ with the topology of 
simple convergence on S. The Fourier transformation F is a continuous linear mapping
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sup
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|∂α
x u(x)|, (4)

where K runs over the compact subsets of Rn and m runs over the integers. Note that

E ′(Rn) ⊂ S ′ and S ⊂ S ′. Since D = C∞
0 (Rn) ⊂ S, it is easy to see that S is dense in S ′ with

the topology of simple convergence on S. The Fourier transformation F is a continuous linear

mapping
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defined by
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In the last we shall give you a rough idea about what this article was written for. When a

differential operator A on the Schwartz class S is given, on the assumption that the adjoint

a∗(x, ξ) of the symbol a(x, ξ)corresponding to the operator A possesses a series expansion∑
j a

∗
j , namely, its adjoint symbol a∗ admits an asymptotic sum

∑k
j=1 a

∗
j , if the operator A

given is a pseudo-differential operator, then its adjoint operator A∗ becomes the same type

of pseudo-differential operator. Consequently, the original operator A can be extended to an

operator on the space S ′of tempered distributions. In order to realize the above-mentioned

program, we need some precise estimates of the symbol. We will note some crucial technical

points behind the proof.
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exp{−iy · η} · ā(x− y, ξ − η)dydη (8)

belongs to Sm.
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α!
∂α
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α
x ā(x, ξ). (9)
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(c) If A = Op(a) is a pseudo-differential operator of order m, then A = Op(a∗) is a pseudo-differ-
ential operator of order m.
(d) Consequently, A extends to an operator from S′(Rn) to S′(Rn).

2.  Symbol and pseudo-differential operator
We shall start with defining the symbol class.

Definition 2. For m ∈ R, let Sm = Sm(Rn×Rn) denote the set of a ≡ a(x, ξ) ∈ C∞(Rn
 ×Rn) such 

that, for ∀α, β ∈ Zn
+
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|∂α
x ∂

β
ξ a(x, ξ)| � Cα,β(1 + |ξ|)m−|β| (10)

holds. An element a ∈ Sm is called a symbol of order m. We also denote

S−∞ =
∩
m

Sm.

�

Let us define the semi-norms on Sm by

|a|mα,β := sup
(x,ξ)∈Rn×Rn

{
(1 + |ξ|)−(m−|β|)|∂α

x ∂
β
ξ a(x, ξ)|

}
. (11)

The convergence an → a in Sm means that

for ∀α, ∀β, |an − a|mα,β → 0 (as n → ∞), (12)

which determines the topology for the space Sm. Then Sm becomes a Fréchet space with

respect to the metric induced by the semi-norms | · |mα,β . We write

a(x, ξ) ∼
∑
j

aj(x, ξ) (when |ξ| → ∞) (13)

where the above expression means that for ∀k ≥ 0,

a(x, ξ)−
k∑

j=0

aj(x, ξ) ∈ Smk+1 (14)

with aj = aj(x, ξ) ∈ Smj , (∀j ∈ N) and the sequence {mj} satisfies mj → −∞.

For a ∈ Sm and u ∈ S, the formula

Op(a)u(x) = (2π)−n

∫
eix·ξa(x, ξ)û(ξ)dξ (15)

defines a function of S, and the mapping : (a, u) �→ Op(a)u is continuous. For a ∈ Sm,

the operator Op(a) is the pseudo-differential operator with symbol a = a(x, ξ). A pseudo-

differential operator is said to be of order m if its symbol belongs to Sm. By convention we

often denote Op(a) = a(x,D) and A = Op(a).
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respect to the metric induced by the semi-norms | · |mα,β . We write

a(x, ξ) ∼
∑
j

aj(x, ξ) (when |ξ| → ∞) (13)

where the above expression means that for ∀k ≥ 0,

a(x, ξ)−
k∑

j=0

aj(x, ξ) ∈ Smk+1 (14)

with aj = aj(x, ξ) ∈ Smj , (∀j ∈ N) and the sequence {mj} satisfies mj → −∞.

For a ∈ Sm and u ∈ S, the formula

Op(a)u(x) = (2π)−n

∫
eix·ξa(x, ξ)û(ξ)dξ (15)
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3. Adjoint and conjugate

Let A be an arbitrary operator from S to S. Then we seek an operator A∗ : S → S, such
that

(Au, v) = (u,A∗v), ∀u, v ∈ S. (16)

Note that, if A∗ exists, then it is unique. Then A∗ is called the adjoint of A. While, the

existence of A∗ allows us to define an extension A : S ′ → S ′ by the formula

(Au, v) = (u,A∗v), for ∀u ∈ S ′, ∀v ∈ S. (17)

Notice that, if u ∈ S ′ and v ∈ S, then the inner product (or Hermitian product) (u, v) denotes

the duality bracket ⟨u, v̄⟩. So that, we have

⟨Au, v⟩ = ⟨u,A∗v̄⟩. (18)

Verification. Since we have (u, v) = ⟨u, v̄⟩, we can get (Au, v) = ⟨Au, v̄⟩. By employing

this result, it is easy to see that

⟨Au, v⟩ = ⟨Au, ¯̄v⟩ = (Au, v̄) = (u,A∗v̄) = ⟨u,A∗v̄⟩. (19)

�
If P =

∑
|α|�m aα(x)D

α is a differential operator with slowly increasing C∞ coefficients,

then for all functions u, v in S we have

(Pu, v) = (u, P ∗v), where P ∗v =
∑

|α|�m

Dα(āαv). (20)

Note that P ∗ is a differential operator with slowly increasing coefficients in C∞. It is interesting

to note that its principal symbol is merely the conjugate of the principal symbol of P . As a

matter of fact, we obtain the following lemma.

Lemma 3. When a(D) denotes a differential operator with slowly increasing coefficients in

C∞, then we have
a(D)∗ = ā(D). (21)

Proof. From the definition of adjoint operator, we have

(a(D)u, v) = (u, a(D)∗v). (22)

On the other hand, by virtue of the Fourier integral theory an easy computation with u and

v in S
(a(D)u, v) =

1

(2π)n
(a(D)û, v̂) =

1

(2π)n
(û, ā(D)v̂) = (u, ā(D)v) (23)

yields to the equality a(D)∗ = ā(D), if we compare (20) to (21). �

4
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then for all functions u, v in S we have

(Pu, v) = (u, P ∗v), where P ∗v =
∑

|α|�m

Dα(āαv). (20)

Note that P ∗ is a differential operator with slowly increasing coefficients in C∞. It is interesting

to note that its principal symbol is merely the conjugate of the principal symbol of P . As a

matter of fact, we obtain the following lemma.

Lemma 3. When a(D) denotes a differential operator with slowly increasing coefficients in

C∞, then we have
a(D)∗ = ā(D). (21)

Proof. From the definition of adjoint operator, we have

(a(D)u, v) = (u, a(D)∗v). (22)

On the other hand, by virtue of the Fourier integral theory an easy computation with u and

v in S
(a(D)u, v) =

1

(2π)n
(a(D)û, v̂) =

1

(2π)n
(û, ā(D)v̂) = (u, ā(D)v) (23)

yields to the equality a(D)∗ = ā(D), if we compare (20) to (21). �
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Notice that, if u ∈ S′ and v ∈ S, then the inner product (or Hermitian product) (u, v) denotes the 
duality bracket u, v. So that, we have
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existence of A∗ allows us to define an extension A : S ′ → S ′ by the formula

(Au, v) = (u,A∗v), for ∀u ∈ S ′, ∀v ∈ S. (17)

Notice that, if u ∈ S ′ and v ∈ S, then the inner product (or Hermitian product) (u, v) denotes

the duality bracket ⟨u, v̄⟩. So that, we have

⟨Au, v⟩ = ⟨u,A∗v̄⟩. (18)

Verification. Since we have (u, v) = ⟨u, v̄⟩, we can get (Au, v) = ⟨Au, v̄⟩. By employing

this result, it is easy to see that

⟨Au, v⟩ = ⟨Au, ¯̄v⟩ = (Au, v̄) = (u,A∗v̄) = ⟨u,A∗v̄⟩. (19)

�
If P =

∑
|α|�m aα(x)D

α is a differential operator with slowly increasing C∞ coefficients,

then for all functions u, v in S we have

(Pu, v) = (u, P ∗v), where P ∗v =
∑

|α|�m
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Verification. Since we have (u, v) = u, v, we can get (Au, v) = Au, v. By employing this 
result, it is easy to see that
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� □
If P = |α|m aα(x)Dα is a differential operator with slowly increasing C∞ coefficients, then or 

all functions u, v in S we have
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Note that P * is a differential operator with slowly increasing coefficients in C∞. It is interesting to 
note that its principal symbol is merely the conjugate of the principal symbol of P. As a matter of 
fact, we obtain the following lemma.
Lemma 3.    When a(D) denotes a differential operator with slowly increasing coefficients in C∞, 
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Proof. From the definition of adjoint operator, we have
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On the other hand, by virtue of the Fourier integral theory an easy computation with u and v in S 
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(Pu, v) = (u, P ∗v), where P ∗v =
∑
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yields to the equality a(D)* = a(D), if we compare (20) to (21). □
In the above two cases on P and a(D), the adjoint of the pseudo-differential operator in ques-

tion is a pseudo-differential operator of the same order. This is true in general.

4.  Kernel and pseudo-differential operator
Let Ω1 and Ω2 be open subsets of Rn. For a differential operator A = AK, the distribution K ∈ 

D′(Ω1 × Ω2) satisfies the equation

 

In the above two cases on P and a(D), the adjoint of the pseudo-differential operator in

question is a pseudo-differential operator of the same order. This is true in general.

4. Kernel and pseudo-differential operator

Let Ω1 and Ω2 be open subsets of Rn. For a differential operator A = AK , the distribution

K ∈ D′(Ω1 × Ω2) satisfies the equation

⟨AKv, u⟩ = ⟨K,u⊗ v⟩, (24)

where u ∈ C∞
0 (Ω1) and v ∈ C∞

0 (Ω2). The tensor product means here that

u⊗ v(x1, x2) = u(x1)v(x2). (25)

Suppose now that the differential operator

AK : C∞
0 (Ω2) → D′(Ω1) (26)

associated with K is linear and continuous. By virtue of the continuity of AK , we have the

following estimate: for any u ∈ C∞
0 (Ω1) and any compact subset K̃ of Ω1, there exist a

positive constant c > 0 and an integer m ∈ N such that

|⟨AKv, u⟩| � c · sup
x∈K̃

sup
|α|�m

|∂αv(x)| (27)

holds for any v ∈ C∞
0 (Ω2) with supp v ⊂ K̃. If K is contained in L1

loc(Ω1×Ω2), then the dual

pairing relation ⟨AKv, u⟩ = ⟨K, u⊗ v⟩ yields to an explicit expression

AKv(x1) =

∫
K(x1, x2)v(x2)dx2 (28)

where AKv(x1) ∈ D′(Ω1). Because we have from the Fubini theorem

⟨AKv, u⟩ = ⟨K,u⊗ v⟩ =
∫∫

K(x1, x2)u⊗ v(x1, x2)dx1dx2 (29)

=

∫ (∫
K(x1, x2)v(x2)dx2

)
u(x1)dx1 = ⟨

∫
K(x1, x2)v(x2)dx2, u⟩. (30)

Let us observe that if the adjoint operator A∗ exists, there is a simple expression for its kernel

K∗ employing the kernel K of A. As a matter of fact, we can get

⟨K(x, y), u(y)v(x)⟩ = ⟨Au, v⟩ = ⟨u,A∗v̄⟩ = ⟨ū, A∗v̄⟩ (31)

= ⟨K∗(y, x), v̄(x)ū(y)⟩. (32)

Finally, it follows from (32) that

K∗(y, x) = K(x, y). (33)
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associated with K is linear and continuous. By virtue of the continuity of AK, we have the follow-
ing estimate: for any u ∈ C0

∞(Ω1) and any compact subset K̃ of Ω1, there exist a positive constant 



‒ 311 ‒

c > 0 and an integer m ∈ N such that
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positive constant c > 0 and an integer m ∈ N such that

|⟨AKv, u⟩| � c · sup
x∈K̃

sup
|α|�m

|∂αv(x)| (27)

holds for any v ∈ C∞
0 (Ω2) with supp v ⊂ K̃. If K is contained in L1

loc(Ω1×Ω2), then the dual

pairing relation ⟨AKv, u⟩ = ⟨K, u⊗ v⟩ yields to an explicit expression

AKv(x1) =

∫
K(x1, x2)v(x2)dx2 (28)

where AKv(x1) ∈ D′(Ω1). Because we have from the Fubini theorem

⟨AKv, u⟩ = ⟨K,u⊗ v⟩ =
∫∫

K(x1, x2)u⊗ v(x1, x2)dx1dx2 (29)

=

∫ (∫
K(x1, x2)v(x2)dx2

)
u(x1)dx1 = ⟨

∫
K(x1, x2)v(x2)dx2, u⟩. (30)

Let us observe that if the adjoint operator A∗ exists, there is a simple expression for its kernel

K∗ employing the kernel K of A. As a matter of fact, we can get

⟨K(x, y), u(y)v(x)⟩ = ⟨Au, v⟩ = ⟨u,A∗v̄⟩ = ⟨ū, A∗v̄⟩ (31)

= ⟨K∗(y, x), v̄(x)ū(y)⟩. (32)

Finally, it follows from (32) that

K∗(y, x) = K(x, y). (33)
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Finally, it follows from (32) that

K∗(y, x) = K(x, y). (33)

5

 (28)

where AKv(x1) ∈ D′(Ω1). Because we have from the Fubini theorem

 

In the above two cases on P and a(D), the adjoint of the pseudo-differential operator in

question is a pseudo-differential operator of the same order. This is true in general.

4. Kernel and pseudo-differential operator

Let Ω1 and Ω2 be open subsets of Rn. For a differential operator A = AK , the distribution

K ∈ D′(Ω1 × Ω2) satisfies the equation

⟨AKv, u⟩ = ⟨K,u⊗ v⟩, (24)

where u ∈ C∞
0 (Ω1) and v ∈ C∞

0 (Ω2). The tensor product means here that

u⊗ v(x1, x2) = u(x1)v(x2). (25)

Suppose now that the differential operator

AK : C∞
0 (Ω2) → D′(Ω1) (26)

associated with K is linear and continuous. By virtue of the continuity of AK , we have the

following estimate: for any u ∈ C∞
0 (Ω1) and any compact subset K̃ of Ω1, there exist a

positive constant c > 0 and an integer m ∈ N such that

|⟨AKv, u⟩| � c · sup
x∈K̃

sup
|α|�m

|∂αv(x)| (27)

holds for any v ∈ C∞
0 (Ω2) with supp v ⊂ K̃. If K is contained in L1

loc(Ω1×Ω2), then the dual

pairing relation ⟨AKv, u⟩ = ⟨K, u⊗ v⟩ yields to an explicit expression

AKv(x1) =

∫
K(x1, x2)v(x2)dx2 (28)

where AKv(x1) ∈ D′(Ω1). Because we have from the Fubini theorem

⟨AKv, u⟩ = ⟨K,u⊗ v⟩ =
∫∫

K(x1, x2)u⊗ v(x1, x2)dx1dx2 (29)

=

∫ (∫
K(x1, x2)v(x2)dx2

)
u(x1)dx1 = ⟨

∫
K(x1, x2)v(x2)dx2, u⟩. (30)

Let us observe that if the adjoint operator A∗ exists, there is a simple expression for its kernel

K∗ employing the kernel K of A. As a matter of fact, we can get

⟨K(x, y), u(y)v(x)⟩ = ⟨Au, v⟩ = ⟨u,A∗v̄⟩ = ⟨ū, A∗v̄⟩ (31)

= ⟨K∗(y, x), v̄(x)ū(y)⟩. (32)
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Finally, it follows from (32) that
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)
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∫
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Let us observe that if the adjoint operator A∗ exists, there is a simple expression for its kernel
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⟨K(x, y), u(y)v(x)⟩ = ⟨Au, v⟩ = ⟨u,A∗v̄⟩ = ⟨ū, A∗v̄⟩ (31)
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Finally, it follows from (32) that

K∗(y, x) = K(x, y). (33)
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Now we are going to consider seeking for a concrete expression of the adjoint of a pseudo-differ-
ential operator given. We suppose that the pseudo-differential operator A has a symbol a ∈ Sm. We 
would like to determine the adjoint A∗ of A on the assumption that it exists. As we have seen in 
the above, it suffices to verify that if K is the kernel of the symbol a = a(x, ξ) given by

 

Now we are going to consider seeking for a concrete expression of the adjoint of a pseudo-

differential operator given. We suppose that the pseudo-differential operator A has a symbol

a ∈ Sm. We would like to determine the adjoint A∗ of A on the assumption that it exists. As

we have seen in the above, it suffices to verify that if K is the kernel of the symbol a = a(x, ξ)

given by

K(x, y) =
1

(2π)n
(Fξa)(x, y − x), (34)

where Fξa denotes the Fourier transform of a with respect to the variable ξ in S ′(R2n) =

S ′(Rn
x × Rn

ξ ), then the operator with kernel K∗ given by (33), sends S to S.

Lemma 4. When a ∈ S−∞, its pseudo-differential operator Op(a) possesses the kernel K

given by

K(x, y) =
1

(2π)n

∫
ei(x−y)·ξa(x, ξ)dξ. (35)

Proof. Since we have

Op(a)u(x) =
1

(2π)n

∫
eix·ξa(x, ξ)û(ξ)dξ (36)

for any u in S, from the definition of kernel K, we can get

Op(a)u(x) =

∫
K(x, y)u(y)dy. (37)

On the other hand, it is easy to see that

Op(a)u(x) =
1

(2π)n

∫
eix·ξa(x, ξ)dξ

∫
e−iy·ξu(y)dy (38)

=
1

(2π)n

∫
u(y)dy

∫
ei(x−y)·ξa(x, ξ)dξ (39)

=

∫ (
1

(2π)n

∫
ei(x−y)·ξa(x, ξ)dξ

)
u(y)dy (40)

where we have used the Fubini theorem. From (37) and (40), we finally obtain the desired

equality (35). �
The Fourier inversion formula gives

a(x, ξ) = Fy→ξ[K(x, x− y)]. (41)

Lemma 5. The adjoint a∗ of symbol a ∈ Sm is given as a function of a by

a∗(x, ξ) =
1

(2π)n

∫
e−iy·ηā(x− y, ξ − η)dydη. (42)
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for any u in S, from the definition of kernel K, we can get
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for any u in S, from the definition of kernel K, we can get

Op(a)u(x) =

∫
K(x, y)u(y)dy. (37)

On the other hand, it is easy to see that

Op(a)u(x) =
1

(2π)n

∫
eix·ξa(x, ξ)dξ

∫
e−iy·ξu(y)dy (38)

=
1

(2π)n

∫
u(y)dy

∫
ei(x−y)·ξa(x, ξ)dξ (39)

=

∫ (
1

(2π)n

∫
ei(x−y)·ξa(x, ξ)dξ

)
u(y)dy (40)

where we have used the Fubini theorem. From (37) and (40), we finally obtain the desired

equality (35). �
The Fourier inversion formula gives

a(x, ξ) = Fy→ξ[K(x, x− y)]. (41)

Lemma 5. The adjoint a∗ of symbol a ∈ Sm is given as a function of a by

a∗(x, ξ) =
1

(2π)n

∫
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 is given as a function of a by
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Proof.    Since we have K∗(y, x) = K(x, y), we can get easily

 

Proof. Since we have K∗(y, x) = K(x, y), we can get easily

K∗(y, x) = K(x, y) =
1

(2π)n

∫
ei(x−y)·ξa(y, ξ)dξ (43)

by employing the integral representation of kernel K of Op(a). Hence, an elementary calcula-

tion yields to

a∗(x, ξ) =

∫
K∗(x, x− y)e−iy·ξdy =

1

(2π)n

∫∫
eiy·(η−ξ)ā(x− y, η)dydη (44)

=
1

(2π)n

∫∫
e−iy·ηā(x− y, ξ − η)dydη. (45)

�

5. Oscillatory integral

This section treats a class of oscillatory integrals of the type

∫

RN

eiφ(θ)a(θ)dθ, (46)

where φ is a rapidly varying function at infinity, and a is regular with essentially polynomial

growth. We need the following technical lemma, which is closely related to the stationary

phase.

Lemma 6. Let K be a compact subset of RN , and φ be a real-valued function in C∞(RN )

satisfying that
|φ′(θ)| ≥ c0 ≥ 0 on K (47)

for some positive constant c0. Then for any function a = a(θ) ∈ C∞
0 (K), for any k ∈ N, the

oscillatory integral ∫

RN

eiλφ(θ)a(θ)dθ (48)

admits the following estimate :

λk

����
∫

eiλφ(θ)a(θ)dθ

���� � Ck+1(φ) · C(c0,K) · sup
|α|�k

|∂αa(θ)| (49)

for every λ ≥ 1, where the constant Ck+1(φ) remains bounded when φ remains bounded in the

space Ck+1(K).

Proof. When we set

L := −i|φ′|−2
N∑
j=1

∂φ

∂θj

∂

∂θj
, (50)

we can get easily the equality
L(eiλφ) = λeiλφ. (51)
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e−iy·ηā(x− y, ξ − η)dydη. (45)

�

5. Oscillatory integral

This section treats a class of oscillatory integrals of the type

∫

RN

eiφ(θ)a(θ)dθ, (46)

where φ is a rapidly varying function at infinity, and a is regular with essentially polynomial

growth. We need the following technical lemma, which is closely related to the stationary

phase.

Lemma 6. Let K be a compact subset of RN , and φ be a real-valued function in C∞(RN )

satisfying that
|φ′(θ)| ≥ c0 ≥ 0 on K (47)

for some positive constant c0. Then for any function a = a(θ) ∈ C∞
0 (K), for any k ∈ N, the

oscillatory integral ∫

RN

eiλφ(θ)a(θ)dθ (48)

admits the following estimate :

λk

����
∫

eiλφ(θ)a(θ)dθ

���� � Ck+1(φ) · C(c0,K) · sup
|α|�k

|∂αa(θ)| (49)

for every λ ≥ 1, where the constant Ck+1(φ) remains bounded when φ remains bounded in the

space Ck+1(K).

Proof. When we set

L := −i|φ′|−2
N∑
j=1

∂φ

∂θj

∂

∂θj
, (50)

we can get easily the equality
L(eiλφ) = λeiλφ. (51)

7

 (44)

 

Proof. Since we have K∗(y, x) = K(x, y), we can get easily

K∗(y, x) = K(x, y) =
1

(2π)n

∫
ei(x−y)·ξa(y, ξ)dξ (43)

by employing the integral representation of kernel K of Op(a). Hence, an elementary calcula-

tion yields to

a∗(x, ξ) =

∫
K∗(x, x− y)e−iy·ξdy =

1

(2π)n

∫∫
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for some positive constant c0. Then for any function a = a(θ) ∈ C 0
∞(K), for any k ∈ N, the oscilla-

tory integral
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Hence, it follows immediately from (51) that

 

Hence, it follows immediately from (51) that

λk

∫
eiλφ(θ)a(θ)dθ = λk−1

∫
λeiλφ(θ)a(θ)dθ = λk−1

∫
L(eiλφ)a(θ)dθ (52)

= λk−2

∫
L(λeiλφ)a(θ)dθ = λk−2

∫
L2(eiλφ)a(θ)dθ = · · · by induction · · · (53)

= λ

∫
Lk−1(eiλφ)a(θ)dθ =

∫
Lk(eiλφ)a(θ)dθ = ⟨Lk(eiλφ), a⟩ (54)

= ⟨eiλφ, (tL)ka⟩ =
∫

eiλφ(θ)(tL)ka(θ)dθ. (55)

Moreover, we obtain by integration by parts

⟨L(eiλφ), a⟩ =
∫

K

(−i)|φ′|−2
N∑
j=1

∂φ

∂θj

∂

∂θj
(eiλφ) · a(θ)dθ (56)

= (−i)
N∑
j=1

∫

K

|φ′|−2 ∂φ

∂θj

∂

∂θj
(eiλφ) · a(θ)dθ (57)

� (−i)c−2
0

N∑
j=1

∫

K

∂φ

∂θj

∂

∂θj
(eiλφ) · a(θ)dθ (58)

= (−i)c−2
0

N∑
j=1

∫

K

∂

∂θj
(eiλφ) · ∂φ

∂θj
a(θ)dθ (59)

= ic−2
0

N∑
j=1

∫

K

eiλφ
∂

∂θj

(
∂φ

∂θj
a(θ)

)
dθ (60)

= ic−2
0

N∑
j=1

∫

K

(
eiλφ

∂2φ

∂θ2j
a(θ) +

∂φ

∂θj

∂a

∂θj
(θ)

)
dθ (61)

� C(c0,K) · C2(φ) · sup
|α|�1

|∂αa|, (62)

where there exist some proper positive constants C(c0,K), C2(φ). As we have seen in the

above computation like (62), we may repeat the same procedure k times just like in (54), to

obtain the desired result (49). �

Definition 7. (Class of amplitude) For ρ ∈ (−∞, 1] and m ∈ R, the class of amplitude

Am
ρ (RN ) is the totality of functions a = a(θ) ∈ C∞(RN ) satisfying that

|∂αa(θ)| � C(α) · (1 + |θ|)m−ρ|α| (63)

holds for any θ ∈ RN and any α ∈ ZN
+ . Furthermore,

A+∞
ρ =

∪
m∈R

Am
ρ . (64)

8
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As for Sm, we define a natural structure of a complete space on Am
ρ  (ρ1) by using the semi-

norms:

 

As for Sm, we define a natural structure of a complete space on Am
ρ (ρ � 1) by using the

semi-norms:
Nm

ρ,k(a) := sup
|α|�k,θ∈RN

(1 + |θ|)−m+ρ|α||∂αa(θ)|. (65)

6. Outline of proof for the principal assertion

For the oscillatory integrals, the following result is obtained.

Lemma 8. Let φ ∈ C∞(RN \ {0}) is a real-valued and homogeneous of degree µ > 0. If

µ+ ρ > 1, then the oscillatory integral

Iφ(a) :=

∫

RN

eiφ(θ)a(θ)dθ (66)

can be extended by continuity to all the Am
ρ , m ∈ R. This extension is unique, taking into

account the density of S in these spaces.

We set φ(y, η) = −yη, which is a non-degenerate quadratic form on R2n. Thus it satisfies

the hypotheses of Lemma 8 with µ = 2.Since the function ā(x−y, ξ−η) belongs to Am+
0 (R2n)

with
m+ := max(m, 0) (67)

for fixed (x, ξ), Lemma 8 enables us to define the integral

1

(2π)n

∫
e−iy·ηā(x− y, ξ − η)dydη (68)

as an oscillating integral. Note that this quantity can only be a∗(x, ξ) by continuity. We may

apply Lemma 8 to get the following estimate

|a∗(x, ξ)| � C ·Nm+
0,k (ā(x− ·, ξ − ·)) (69)

for some k and some positive constant C > 0. Hence, this estimate gives the result for m ≥ 0.

By choosing µ = |m|, we can get easily

|a∗(x, ξ)| � C(1 + |ξ|)m, (70)

where we have employed Peetre’s inequality. Repeating the same discussion for the term

∂α
x ∂

β
ξ a(x, ξ) instead of a = a(x, ξ), we deduce thata∗ ∈ Sm.

As for the asymptotic expansion, an application of Taylor’s formula with integral remainder

for the function
g(t) = ā(x+ ty, ξ + tη) (71)

to obtain

a∗(x, ξ) =
1

(2π)n

∑
|α|+|β|�2k+1

(−1)|α|+|β|

α!β!

(∫
e−iyηyαηβdydη

)
∂α
x ∂

β
ξ ā(x, ξ) +Rk(x, ξ) (72)
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for the function
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ξ ā(x, ξ) +Rk(x, ξ) (72)

9

 (71)

to obtain

 

As for Sm, we define a natural structure of a complete space on Am
ρ (ρ � 1) by using the

semi-norms:
Nm

ρ,k(a) := sup
|α|�k,θ∈RN

(1 + |θ|)−m+ρ|α||∂αa(θ)|. (65)

6. Outline of proof for the principal assertion

For the oscillatory integrals, the following result is obtained.

Lemma 8. Let φ ∈ C∞(RN \ {0}) is a real-valued and homogeneous of degree µ > 0. If

µ+ ρ > 1, then the oscillatory integral

Iφ(a) :=

∫

RN

eiφ(θ)a(θ)dθ (66)

can be extended by continuity to all the Am
ρ , m ∈ R. This extension is unique, taking into

account the density of S in these spaces.

We set φ(y, η) = −yη, which is a non-degenerate quadratic form on R2n. Thus it satisfies

the hypotheses of Lemma 8 with µ = 2.Since the function ā(x−y, ξ−η) belongs to Am+
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g(k)(t) =
∑

|α|+|β|=k

k!

α!β!
yαηβ∂α

x ∂
β
ξ ā(x+ ty, ξ + tη), (73)

where

Rk(x, ξ) =
1

(2π)n

∫ 1

0

(1− t)2k+1dt

∫
e−iyη·

×
∑

|α|+|β|=2k+2

(−1)|α|+|β| 2k + 2

α!β!
∂α
y ∂

β
η ā(x− ty, ξ − tη)yαηβdydη. (74)

Finally the proof would be finished by calculating the general integral term in (72). In fact,

it suffices to show that for any α ∈ Nn and any β ∈ Nn

1

(2π)n

∫
e−iy·ηyαηβdydη = (−i)|α|α!δαβ (75)

where the symbol δαβ denotes the Kronecker delta, and it indicates that δαβ = 1 if α = β,

and δαβ = 0 if α ̸= β.
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6. Dôku, I. : A remark on approximate formula and asymptotic expansion for pseudodif-

ferential operators of Kohn-Nirenberg type. J. Saitama Univ. Fac. Educ. (Math. Nat.

Sci.) 66 (2017), no.2, 589–598.
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6. Dôku, I. : A remark on approximate formula and asymptotic expansion for pseudodif-

ferential operators of Kohn-Nirenberg type. J. Saitama Univ. Fac. Educ. (Math. Nat.

Sci.) 66 (2017), no.2, 589–598.
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