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Abstract

Spatial database is one of the active area in database research communities since

last three decades, addressing the need of spatial data management and analysis in

application such as Geographic Information Systems (GIS). Due to wide availabil-

ity of relatively inexpensive and compact location position devices such as hand-held

Geographical Positioning Systems (GPS) devices and smart-phone, users want an

access to the real-time personal information anywhere in the world. To supply the

end users with required information, a service provider must collect and process the

geolocation information. This service is called location-based services (LBS). LBS

has recently attracted significant attention due to its potential to revolutionize the

mobile communications technologies by providing a personalized and context-aware

services to bring unique and broad value to the end users.

There are several applications using LBS such as route assistance, tracking

management, identification of objects of interest, fleet management, content man-

agement and emergency services. One of the active challenges in LBS is person-

alization which supports more customized and explicit services according to the

users’ unpredictable actions and preferences. To fulfill these requirements, we need

effective and robust querying methodologies to process geographic information (so

called spatial information) to utilize in the real location aware applications.

To accomplish the above challenges, we studied spatial query algorithms and

analyzed the performance efficiencies under various settings. More specifically, we

focused for two types of queries: 1) query evaluates immediately after the query is
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invoked and the answer is transmitted to the user once which is called a snapshot

query, and 2) query evaluates every time instant without user interference to ensure

the correctness and validity of the query answer which is called a continuous query.

The major challenges for these queries are focused on methods to provide an efficient

query processing for either stationary or continuously moving objects with respect

to the processing time, CPU time, and main memory utilization.

In this thesis, we first study the snapshot query over the static data objects

and query objects on several road networks. We use object of interest and data ob-

ject (point) interchangeably throughout the thesis. We present an efficient solution

to answer the reverse k nearest neighbor (RkNN) query using pre-computation

approach. we utilize the simple materialized path view (SMPV ) structure that

can calculate the road network distance with speedy performance and incremental

Euclidean restriction (IER) framework to probe the fast k nearest neighbor (kNN)

query. SMPV structure is constructed by partitioning the whole data space into

multiple subgraphs and creating a materialized distance tables for each subgraph.

An extensive experimental study was conducted to evaluate the performance char-

acteristics of our proposal for static RkNN query with some road networks showed

that it substantially outperforms the competitive approach that do not use any

precomputed distance tables. When we used SMPV framework as the underlying

structure, our algorithm outperformed in processing time that was 10 to 100 times

faster than competitive approach. The key characteristic of our approach is that

when the data objects are distributed sparsely on the road network and the arbi-

trary k value (k > 1 more than one RNN objects) is large, our approach reduced

the overall processing time drastically. Especially, we observed on the bichromatic

RkNN query with this approach that our approach does not depend on any distri-

bution of rival objects (∈ S) and objects of interest (∈ P ) and the processing time

was stable.

As an expanded studies of spatial queries which evaluate continuously accord-

ing to the mobile query objects have been studied in this thesis. Suppose, the query
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object moves freely, the query result changes over time according to the changes of

query object locations which make the query processing more complicated than the

processing with the static query objects. In addition, while the location of query

object is changing, the frequent requests for the up-to-date result to the server oc-

cur that cause heavy workload in the server. To address this problem efficiently, an

idea of safe-region is utilized. Safe-region method restricts the mobile query object

to issue a query update only if mobile object leaves the region. We present how to

process the spatial continuous queries effectively in two chapters (4 and 5) in this

thesis. In chapter 4, we describe the continuous vicinity queries with the aid of

advanced technique called safe-region. The existing approaches for the continuous

queries using safe-region require long processing time to generate safe-regions. In

addition, these approaches are not applicable for all types of spatial queries, thus,

require different safe-region generation mechanism for different spatial queries. To

overcome all these limitation, we provide a set of techniques that can generate the

safe-region with less processing time and is applicable for various types of vicinity

queries. According to the conducted experimental study, the results confirm the

efficiency of our proposed methodologies. The detail theoretical explanation and

performance study are presented in Chapter 4.

The benefits of safe-region approach are maintaining the valid query answers

for mobile query object if object is in safe-region and reducing the communication

cost between the server and client (query object). This kind of approach is suitable

for a kind of trip route planning query (TRPQ) that visits multiple data object

categories and processes continuously. Generally, TRPQ requires huge processing

time to retrieve the best trip route for snapshot query type. In addition, if a

query object (user) is mobile, the user may sometimes deviate from the optimal

route while traveling. To cope with these, generally, we can monitor and update

the route either at a specified time interval or distance. However, this traditional

approach is not applicable for all situation, has many restrictions on the distance

and time interval, and there is deterioration in server performance as the interval
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is reduced. For such cases, we adopt the idea of safe-region and verify the route is

optimal if the position of the current object of targeted category is in the safe-region

although the user veers from the optimal route. Moreover, safe-region approach has

less restrictions compared with the traditional ways.

As a first attempt, we proposed a continuous TRPQ on road network using

safe-region, and we investigated the generation of safe-region for TRPQ with two

approaches. The first approach creates an accurate safe-region and the second

approach generates an approximate safe-region. We analyzed the performance of

our proposed approaches and basic algorithm in the experimental study section.

Our proposed first algorithm needed long processing time when the density of the

data object was high. Our second approach required less processing time. However,

the size of the generated safe-region by second approach became about 3% to 7%

larger than the safe-region size of first approach.

In addition, we addressed the solution to solve the processing time problem

of the trip route query when the distribution of densities of data object categories

are substantially different for each other. For this issue, we introduced a new

method which defines the sparse data category as the first visiting data category to

shorten the processing time. Because the processing time has a great effect on the

visiting order of the data object categories. Our proposed approach dynamically

retrieves the sparse category to define the visiting order of the data categories. The

theoretical explanation and performance study are presented in chapter 5.
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CHAPTER 1

Introduction

In computing world, a database is a system to collect related information that

permits the entry, storage, output and processing of data. Among the various types

of database, our study in this thesis is focused on spatial database. Unlike the

ordinary database, a spatial database or geo-database is a database that is especially

built to store and access the spatial data representing a geometric space. The

spatial database systems are aiming to serve the underlying database technology for

geographic information systems and other applications. The main applications that

are driving research in spatial database systems are the applications of Geographical

Information System (GIS). A spatial database provides a reliable foundation for

accessing, storing, managing and querying the spatial data.

A spatial database can handle complex spatial data such as higher dimensional

objects including time reference. Due to the rapid increase in the availability of

data from a wide variety of sources such as satellite images, mapping agencies and

independent data collection agencies, we have witnessed in recent year an increase in

the demand for systems that can model, manipulate, and interpret the spatial data.

In addition, spatial information can represent the current status of real objects.

1
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Therefore, the study about the spatial objects is increasingly popular in research

areas of computer science. The spatial data is associated with geographical locations

and features such as points, lines, polygons, and surfaces, volumes. A common

example of spatial data is a street map showing roads and popular locations. A

real road map is composed of several two-dimensional objects such as points, lines,

and polygons, that represent cities, roads and regions respectively. Such database

technology makes possible to provide location-based services to the web and mobile

applications.

In a common database system such as relational database management system,

objects are represented by tuples with some attributes and indexed by ordering one

of the attribute. Indexes are used for more efficient search and providing relation-

ship. However, traditional database systems have not been designed to support

frequent update due to object agility, predicative and spatio-temporal based query

processing. Spatial data is logically represented by a road network data model

and stored in a road network data structure. Spatial database uses a unique index

called a spatial index to speed up database performance. Spatial indexing enables

the system to retrieve data from a large collection of objects without searching

the whole database. The detail explanation of the spatial indexing is described in

Chapter 2. In addition, spatial database requires a special kind of data type to

model the geometric structure encountered in spatial objects and to provide the

object’s relationship and properties with respect to its operations in a spatial en-

vironment. Thus, the spatial data types have become an important part of data

model in spatial database management system.

In the beginning, spatial objects were usually assumed as static in the spatial

database. With the advance in positioning technologies such as mobile communi-

cation devices, the spatial temporal database came into existence which can store

attributes of objects that change with respect to time. It is now possible to track

continuously moving objects. Objects whose location change in time need spe-

cial handling from the database system. To handle temporal spatial data, using
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the traditional approach to retrieve and identify the locations and relationship of

spatial objects, high update rates must be sustained by the database system. To

address this problem, we present the various continuous spatial queries are related

to moving objects in this thesis.

1.1 Querying Spatial Objects

Efficient processing of spatial queries is an important part to implement the spatial

database. Various spatial queries have been formulated to address end user prefer-

ences. A spatial query must fulfill the requirements of the real scenarios [42] viz: 1)

be able to incorporate the network connectivity data and provide exact distances

between objects, 2) returns the answer efficiently to support the query objectives,

3) be applicable to the large networks, and 4) be independent of the distribution

of the data objects in road map. To accomplish these objectives, generally, we can

utilize two ways such as pre-computation and on-the-fly approaches to process spa-

tial queries. We can classify mainly two types of the spatial query according to the

characteristics of objects; these are static objects or moving objects.

1.1.1 Querying Spatial Object on Static Environment

In a static environment, the data objects on the road network are stationary and

location changes do not arise. The spatial query that runs on a static environment

executes once and contains only the results which met the specified criteria at

the time the query was created. Numerous spatial queries on static environments

including NN query, RNN query, range query have been well studied in the last

30 years resulting in the development of numerous conceptual models and query

processing techniques. The detail theoretical explanation of each query will be

presented in the next section. Every spatial query type has a counterpart in spatial

database. The fundamental concept for solving the spatial query problems in spatial

database is capturing and processing the spatial objects and the underlying network
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including both the Cartesian coordinate and spatial network [26]. The early research

works for spatial processing of stationary objects were based on Euclidean distance

metrics.

The spatial data processing techniques especially for spatial road network must

take into account real-life constraints such as unidirectional road, unsymmetrical

road network which the existence of one-way roads and obstructions or delays af-

fecting only one direction of a two-way. The shortest road distance between objects

(e.g., user and restaurant) is not only decided by considering the objects locations,

but, also on other constraints such as the connectivity of the road network. This

is explained by comparing in Euclidean and road network distance in Figure 1.1.

In the figure, the black rectangle represents the hospital and red dot represents the

query user, the numerical values attached on the straight dashed line are Euclidean

distance and the numerical values on the road segments are road network distance.

When a user searches the hospitals within 10km range, the result will contain A,

B, and C accordingly to the road network distance. If we consider Euclidean dis-

tance, A, B, C, and D are the result. Note that, the nearest hospital is B in road

network. However, the nearest hospital in Euclidean distance is D which is the

furthest hospital from query object in road network distance. To perform the query

processing on the road network, the road network distance calculation between two

objects is essential and the distance computation on the road network is expensive.

Therefore, the spatial data processing in the spatial network becomes a challenge

in spatial database research community.

To achieve the spatial query processing, we can attempt using structure based,

and non-structure based techniques. Structure based technique uses the index struc-

ture such as R-Tree [4], R*-Tree [8], Quad-Tree [6], and Voronoi diagram (V D)

[14]. Indexing is mainly designed to speed up objects retrieval since objects are

usually assumed to be constant unless explicitly updated. There is also a differ-

ent approach that is based on pre-computation of the solution space or the pre-

computation of distance from query object q to its closest objects of interest such
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Figure 1.1: Distance Comparison of (a) Euclidean distance on a road map and (b)
road network distance on a road map.

as materialized path view (MPV ). However, when we use these approach, we need

storage/computation-time tradeoffs algorithms because pre-computation approach

suffers from the problem of requiring a huge memory space. We discuss and study

such kind of tradeoffs methodology called simple materialized path view (SMPV )

index structure in chapter 3.

1.1.2 Querying Spatial Object on Dynamic Environment

In dynamic environment, the data objects or query objects move and hence fre-

quent update is required. Queries made by a moving object need frequent updates

simultaneously to provide the latest query result. The strategies targeted for spatial

queries on static objects are not efficient for dynamic environments since the results

may be invalidated as soon as the objects move. To address such situation, we need

a query algorithm that can monitor the moving objects and maintain the correctness

of the query result continuously. As opposed to snapshot spatial queries that are

evaluated only once to return a single result, continuous queries require constantly

evaluate and update the results according to the position of objects. Such queries

are especially relevant to spatio-temporal databases, which are inherently dynamic,

and the result of any query is strongly related to the temporal context [27].

An example of a continuous spatio-temporal query is asking question such as:

“ based on user current location and speed of moving object, what will be the
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two nearest gas stations from user’s current location for the next 5 minutes?”.

Continuous queries can be categorized into three groups based on the mobility of

the query and the data objects [52] viz. 1) static query objects querying moving

data objects, 2) moving query objects querying moving data objects, and 3) moving

query objects querying static data objects. The bulk of the research for the distinct

types of spatial queries on the dynamic environment have been carried out since

last two decades using various techniques for the moving objects database where

data or queries (or both) objects move. The related research works are presented

in the chapter 2.

Generally, we described some techniques to accomplish the query processing

in above section. The tree based indexing techniques are not well suited for the

moving objects and incur a large latency to access data if index structure is not

inefficient. Therefore, we need an innovative methodologies to process query on

moving objects efficiently. In chapter 4 and 5, we propose some mechanisms for the

continuous spatial queries.

1.1.3 Spatial Queries Proposed in this Thesis

This section discusses the various spatial queries such as range query, k nearest

neighbor query, reverse k nearest neighbor query, and trip route query which are

studied with our proposed index structure and framework in this thesis. In this

thesis, we have considered spatial queries on both static querying and continuous

querying the objects.

Range Query

Range query arises frequently in spatial applications such as tracking the number of

nearest taxis within 1km distance. Range query selects the objects that lie within

a specified range (e.g. 1km). Range query can also be useful for other queries such

as nearest neighbor query. It provides as preprocessing tools by retrieving the data
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objects within the specified range for reducing the accessing amount of data. In

the static environment, the range query can probe the data objects easily. In a

dynamic environment, given a collection of moving objects and a moving query, the

range query retrieves the objects that lie within the specified region defined by the

query object and updates synchronously the latest result when the query object

moves. As the query object moves, the position and outline of the query region

also change; hence, the methodology of the range query especially for moving envi-

ronment should be accomplished by considering a dynamic shaped region approach

instead of employing the traditional range queries such as rectangular range (win-

dow query). The query achieves the result based on R-Tree structure and constructs

the rectangular range around the query objects and returns the data objects that

lie within the given range. Tree based methodology especially R-Tree is slow in

update and the query efficiency declines while processing query continuously. An

efficient way to process continuously range query is explained in chapter 4.

k Nearest Neighbor query

k nearest neighbor (kNN) query is an extention of nearest neighbor (NN) query.

NN query finds a closest object from the query location and focuses the search

of potential neighbors only. kNN query retrieves the arbitrary k nearest objects

such that no other objects are nearer to the query object. As an example, kNN

query initiated by a location aware devices such as car navigation or smart-phone

navigation to find the 3 (k) nearest cafes from the user’s current location. kNN

query is more complicated compared to the range query. The kNN query can be

classified according to the characteristics of objects as 1). kNN query that retrieves

results at a time instant called snapshot kNN and 2). kNN query that evaluates

the result continuously during a time interval.

The original and most influential kNN searching algorithms utilizes the tree

based index structure and Voronoi diagram. Although these approaches are capable

to retrieve kNN on static objects, applying these approaches directly for the moving
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objects suffers performance related problem. To address this, we present a better

approach for kNN query to process continuously in chapter 4.

Reverse k Nearest Neighbor query

Another related variant of the nearest neighbor (NN) queries is reverse nearest

neighbor query. Reverse nearest neighbor (RNN) query retrieves all the data ob-

jects that consider query object (q) as one of their closest points. RNN can also

be extended into reverse k nearest neighbor (RkNN) query that probes all the

data objects for which q as their k nearest points. For example, imagine, a player

looking for the players from an opponent team who are considering him as their

nearest player among others. As a next example, a business owner planning to

open new convenient store may ask “Where is the best location for the new store

to attract many customers?”. We can rephrase this question as “How many cus-

tomers will consider this location as their nearest?”. Then each candidate locations

invokes RkNN query and makes a comparison with the existing store locations.

The study of RNN and RkNN queries have received considerable attentions due

to their usefulness in several applications involving location management system,

decision support system and emergency (such as 911).

RkNN queries are generally classified into two types: monochromatic RkNN

(MRkNN) and bichromatic RkNN (BRkNN) queries. In MRkNN , the query

and the data objects are the same data type. In the above two examples, the

former one (the player example) is the example of the MRkNN query. Unlike the

MRkNN queries, in BRkNN queries, the data objects and query objects belong to

two different types of objects. The latter example (the business planner example) is

able to deal with BRkNN queries in which the data objects (customers) and query

(convenient stores) objects belong to two distinct types. Several related studies

for RkNN queries are described in chapter 2 and our strategies to enhance the

RkNN queries for static and continuous querying are described in chapter 3 and 4

respectively.
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Trip Route Planning Query

One more interesting spatial query called trip route planning query (TRPQ) has

been evolving to cater road navigation system. Due to the rapid increase in the

number of car navigation system and smart phone devices, the use of route assis-

tance and direction support application are increasing rapidly in daily activities.

For example, a tourist wants to go a museum from a hotel in an unfamiliar city

with a car. In addition, during trip from hotel to the museum, he/she wants to visit

a restaurant and a gas station. In such situation, he/she needs the best route (i.e.

shortest distance) with more than one stopovers. This type of query is called trip

route planning query. TRP query, given a source s and destination d, retrieves the

shortest route from s to d passing through one object of interest from each related

category. In above example, the gas station and the restaurant are visited with

any order i.e. the visiting order is not specified while traveling between the hotel

and museum. In general, there could be many restaurants and gas stations in the

neighboring of the trip route. Therefore, TRP query needs to retrieve a sequence

of objects of interest from each category that gives the shortest trip route length.

The detail study about TRP query is presented in chapter 5.

1.2 Objectives and Contributions of this Thesis

As we discussed in the previous sections, various spatial queries with several pro-

cessing techniques have been proposed for different environments. However, existing

techniques still suffer from query processing on the road network either stationarily

or continuously. This thesis aims to solve these problem with twofold approaches.

First, we studied snapshot RkNN queries using pre-computation approach. Sec-

ond, we expanded our studies for continuous querying the spatial objects with the

mobile query object. For continuous queries, we studied several vicinity queries

and trip route planning queries which have widespread usage in daily activities. To

accomplish these spatial continuous queries, we proposed several safe-region gen-
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eration methods which reduce the communication and computation cost between

the query objects and server. In addition, it can address the main challenges of

continuous queries which is the maintenance of the valid query answer with the

mobile objects.

1.2.1 Contributions on Snapshot RkNN Queries

The detail of the algorithms will be covered in chapter 3. Here, we summarize the

main contribution as follow:

• We proposed an efficient reverse k nearest neighbor (RkNN) queries including

monochromatic RkNN and bichromatic RkNN that is implemented with

simple materialized path view (SMPV ) framework. This study is mainly

related to the instantaneous queries.

• An extensive experimental evaluation were carried out for both MRkNN and

BRkNN queries for real road network are presented. These benchmark test

results showed that the new method improves the processing time significantly.

1.2.2 Contributions on Continuous Vicinity Queries

Continuous queries generally have client-server model. The task of the server is

to compute the query requested by the query object continuously and update the

query according to the current location of the object. The main challenges of the

spatial queries with moving objects are the maintenance of the up to date query

result when the querying object moves arbitrary and minimizing the communication

cost between the server and the moving objects. To acknowledge these challenges,

we proposed a new approach for moving object called safe-region generation for

various vicinity queries. The details of this query processing technique are discussed

in chapter 4. Here, we summarize the main contributions as follow:

• We proposed a fast safe-region generation method applicable for vicinity
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queries including range queries, set-kNN , ordered-kNN and RkNN queries

in road networks. Our proposed safe-region technique does not compromise

on query types and maintains the efficiency.

• In addition, we proposed a new method to generate safe-region utilizing ma-

terialized run-time distance view. This method generates the safe-region effi-

ciently and has significant performance improvement.

• The experimental studies showed that the proposed safe-region generation

method outperforms the existing algorithms in the computational processing

time.

1.2.3 Contributions on Trip Route Planning Queries for Station-

ary and Moving Objects

For the trip route planning query, we examined its earlier studies and found that it

is a kind of time consuming query especially when the data objects are distributed

sparsely. To reduce the processing time, we introduced sparse category first ap-

proach. In addition, the previous studies are mainly for static objects and although,

there is some approach for TRP query with moving objects, they are impractical

to some extent. One of techniques for querying with mobile objects: safe-region for

several continuous queries has been studied except the TRP query. Therefore, we

proposed continuous TRPQ on road network with multiple stopovers using the safe-

region method. The detail explanation of our strategies for the TRPQ is presented

in chapter 5.

The main contribution of this thesis in TRP query are as follow:

• As a first attempt, we proposed a continuous trip route planning query for

the spatial network utilizing an efficient safe-region techniques called the pre-

ceding rival addition (PRA) and the tardy rival addition (TRA) to generate

the safe-region for continuous monitoring.



12 Efficient Algorithms for Spatial Queries

• We introduced an on-the-fly network distance materialization method which

is amenable to efficient safe-region generation.

• According to the conducted experiments, the snapshot trip route queries usu-

ally consume longer processing time when it works with multiple data object

categories whereas our methods can reduce the processing time significantly

and monitor effectively the moving query objects.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

1. Chapter 2 reviews some relevant background knowledge, querying techniques

in static spatial database and moving object database.

2. The snapshot RkNN queries using SMPV structure and an analytical anal-

ysis of proposed methods are described in Chapter 3.

3. Chapter 4 presents a safe-region generation approach for continuous vicinity

queries with moving query object.

4. Chapter 5 presents the new query called the Continuous Trip Route Plan-

ning Query (CTRPQ). We present CRTPQ with the various safe-region

techniques with experimental evidences.

5. Finally, the conclusion of the thesis is presented in Chapter 6.



CHAPTER 2

Literature Review

In this chapter, we discuss a brief overview of the theoretical background and the

related studies previously carried out on the topic presented in this thesis.

2.1 Spatial Index Structure

Study of spatial database is one of the active research area in current database

research activities. A well-known spatial database system is Geographical Informa-

tion System (GIS). A spatial database system consists of a collection of objects

over the multidimensional space. Spatial data is huge in quantity and complex in

structure and relationship. For a road network consisting a large set of spatial data

objects, pre-computing the distance for all pair of nodes and storing all the data

objects becomes inefficient and sometimes infeasible. One of the methods to retrieve

road network distance between two nodes creates precomputed distance tables and

stores the road network distance value in a database. Efficient processing of the

spatial queries mainly depends on the index structures. The spatial data index

structure not only supports efficient spatial operations such as locating the closest

objects and identifying the objects in a definite query region, but also optimize the

13
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search operation on spatial data objects. The way how this is done is explained in

the following sections.

2.1.1 Indexing Methods in Spatial Database

Indexing in a spatial database is different from indexing in a conventional database.

In the spatial database, the database system is constructed with multidimensional

objects associated with the geographical locations and features. Objects in spatial

database are composed of geometric elements such as lines, points, polygons and

irregular shapes to represent geographical locations. To deal with such geometric

elements in the database, conventional indexing approach such as Hash table [62]

or B-Tree [3] is not suitable for spatial data operation such as insertion, storage of

the objects and retrieving of the relevant data for computation. Hash tables are

based on the exact matching which do not support in searching the closest objects

within the specified range, whereas B-Tree relies on single attributes ordering which

is not applicable for retrieving the closest objects. To solve this problem, we need

an effective index structure suitable for spatial database. The spatial data objects

often cover areas in multi-dimension and a common operation on spatial data is to

search for all objects in an area. The R-Tree [4] algorithm, proposed by Guttman

in 1984, is the most used indexing in spatial query.

R-Tree

R-Tree [4] is a hierarchical, high balanced data structure in which all leaf nodes

appear at the same level, designed for use in secondary storage. It is a generalization

of the B-Tree for multi-dimensional spaces and one of the earliest proposed tree

structures for non-zero sized spatial object indexing. The key idea of R-Tree is

grouping the nearby objects and indexing them using their minimum bounding

rectangle (MBR). In a R-Tree, objects are represented by tuples, and each tuple

has a unique identifier for retrieving its leaf nodes. Leaf nodes contains entries of the

form (R, tuple − identifier) where R is a d-dimensional rectangle so called MBR
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and tuple− identifier is the identifier of the objects detailed description. Non-leaf

nodes contain entries of form (R, child−ptr) where child−ptr contains the address of
a lower level nodes in R-Tree and R covers all rectangles in the lower node’s entries.

The structure and characteristic of R-Tree is illustrated in Figure 2.1. R-Tree has

several advantages to be applied in spatial database compared with the traditional

indexing methods. Unlike hash based indexing methods, R-Tree supports efficiently

exact matching. R-Tree provides two-dimensional ordering and it can be extended

dynamically to multi-dimensional spaces. This is the main advantages comparing

with the B-Tree which provides only one-dimensional ordering of a single key value.

Due to the effectiveness of R-Tree, it has been adopted as one of the useful indexing

method for spatial queries in LBS. Moreover, new applications and queries continue

to demand improved indexes and associated algorithms.
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Figure 2.1: An example of R-Tree index structure.

Voronoi Diagram in Euclidean Space

Next spatial data object indexing structure is Voronoi diagram (V D). A Voronoi

diagram divides a given area into the disjoint polygons. The closest objects of any

points inside a polygon is called the generator of the polygon. The concept of the

Voronoi diagram in both Euclidean and network spaces is presented in [14]. Suppose

P: {p1, p2, ..., pn} be a set of n distinct points called generator points distributed

in an Euclidean space. These generator points can be the spatial objects such as

restaurant or bank. All locations in the plane assemble to their closest generators.
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A set of locations allocated to each generator forms a region called Voronoi polygon

of that generator. The set of Voronoi polygons associated with all the generators is

called the Voronoi diagram with respect to the generators set.

In Euclidean space, Voronoi polygon is a convex polygon. The Voronoi poly-

gons of a Voronoi diagram are collectively exhaustive because every location in the

plane is associated with at least one generator. The polygons are also mutually ex-

clusive except for their boundaries. The boundaries of the polygons, called Voronoi

edges, are the set of locations that can be assigned to more than one generator.

Each edge of Voronoi polygon is a segment of the perpendicular bisector of the line

segment connecting p to another point of the set P . The Voronoi polygons that

share the same edges are called adjacent polygons and their generators are called

adjacent generators. The Voronoi polygon and Voronoi diagram can be mathe-

matically defined as follow: Assume a set of generators P = {p1, p2, ..., pn}, where
2<n<∞. The Voronoi polygon is given by:

V P (pi) = {p|d(p, pi) ≤ d(p, pj), i ̸= j, j ∈ In, In = {1, ..., n}}

where d(p, pi) denotes the minimum Euclidean distance between p and pi

(e.g.,length of the straight line connecting p and pi in Euclidean space), is called the

Voronoi polygon associated with pi, and the set given by: VD(P ) = V P (p1), ..., V P (pn)

is called the Voronoi diagram generated by P . Figure. 2.2 shows the simple Voronoi

diagram with 7 generator points in Euclidean space.

Voronoi Diagram in Road Network

The network Voronoi diagram (NVD) in the road network space is a generalized

version of V D created by replacing the Euclidean distance with spatial road network

distance [79]. In NVD, the distance between the objects is the road network

distance.

Definition 2.1. A spatial network can be modeled as a directed weigh graphs G =
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Figure 2.2: The Voronoi diagram (V D) in Euclidean space.

(N,E), where N = Ni|1 ≤ i ≤ n is the set of nodes representing intersection and

terminal points called the nodes of the graph. E = (Ei, Ej)|1 ≤ i, j ≤ n and i ̸= j is

the set of edges representing the network edges each connecting two nodes (ni, nj),

ni and nj are starting and ending nodes, respectively.

Assume that, Voronoi generators are located on the network segments as

the graph nodes. Each edge connecting nodes pi, pj stores the network distance

dN(pi, pj). For nodes that are not directly connected, dN(pi, pj) is the length of the

shortest path from pi to pj. The dominance region and the border points of the

each Voronoi polygon (V P ) are defined as:

Definition 2.2. Dominance Region of pi over pj

Dom(pi, pj) = {p|p ∈ ∪k
o=1eo, dN(p, pi) ≤ dN(p, pj)} represents all points in all

edges in E that are closer or equal distance to pi than pj.

Definition 2.3. Border Points between pi and pj

b(pi, pj) = {p|p ∈ ∪k
o=1eo, dN(p, pi)} represent all points in all edges that are

equally distanced from pi and pj.

The elements of NVD are mutually exclusive and collectively exhaustive simi-

lar to ordinary Voronoi diagram. The network Voronoi diagram can be constructed

using the parallel Dijkstra algorithm [1] with the Voronoi generators as multiple

sources [79]. Specifically, the random initial node can expand shortest path trees
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from each generator simultaneously and stop the expansions when the shortest path

trees meet. The shortest path tree is formed by linking the next hop of all nodes

involved in the calculation [71]. Figure 2.3 shows an example of network Voronoi

diagram (NVD).

Figure 2.3(a) depicts the road network as a directed graph G(N,E) in which

N={p1, p2, ...., p14} are nodes, p1, p2, p3 are the Voronoi generators (e.g., data ob-

jects) and p4 to p14 are nodes connected by a set of edges. Figure 2.3(b) illus-

trates the network Voronoi diagram of original road network of Figure 2.3(a) where

each line style of corresponds to the shortest path tree according to each generator

points. Each shortest path tree composes a network Voronoi polygon (Voronoi cell).

Some edges (e.g., e(p4, p5)) can be partially contained in different Voronoi cells and

e(p4, p7) is completely inside the Voronoi cell of p1. The border points b1 to b7 are

the nodes where the shortest path tree meet as a result of the parallel Dijkstra’s

algorithm (this algorithm is described in next section).

The border points between any two generator points are equally distanced

from each other. The figure also describes how adjacent border points should be

connected to each other: when the two adjacent border points (e.g., b6, b7) are

between two same generators, they can be connected with an arbitrary line that

does not cross any edges. In addition, any three or more adjacent border points

(e.g., b2, b3, b6) can be connected to each other through an arbitrary auxiliary point

(v in figure). Moreover, unlike Voronoi polygons in Euclidean space, common edges

between two network Voronoi polygons contain more than two border points and

thus they are not necessarily straight lines.

2.2 Road Network Distance Calculation

The fundamental and widely used query in spatial network is shortest path finding

query between the two objects such as hotel and meeting venue. Such kinds of query

algorithm has been studied since 1950’s with various strategies and data structure.
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Figure 2.3: (a)An example of road network. (b) An example of network Voronoi
diagram of road network(a).

The performance of spatial queries in spatial network are essentially examined by

its ability to search the objects of interest efficiently in terms of processing time

and storage requirements. There are two main approaches to examine the network

distance between two nodes in spatial networks. These are 1) compute-on-demand

approach and 2) pre-computation which employs precomputed distances between

data points and network vertices for improving the performance. The well-known

shortest path finding algorithms in spatial networks are Dijkstra’s [1] and A∗ [2].

These are described in the following sections.

2.2.1 Description of Algorithms

In this section, we present the various algorithms of road network distance calcula-

tion with their principles and processing procedures.

Dijkstra’s algorithm

Dijkstra’s shortest path algorithm [1] is the fundamental algorithm in computer

science and related fields for network distance calculations. Dijkstra’s algorithm

uses the greedy approach to solve the single source shortest problem. It works

by solving the k sub problems by computing the shortest path from source to the

vertices among the k closest vertices to the source.
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The key idea of the Dijkstra’s algorithm is keeping all the shortest distance of

vertex v from the source in a priority queue. Initially, distance form source to all

other vertices are set to infinity to indicate that those vertices are not yet processed.

After the algorithm finishes the processing of the vertices, the shortest distance of

vertex from source to every other vertex is updated. The procedure of the Dijkstra’s

algorithm is as follows:

1. First, the algorithm marks all nodes as unvisited and sets the initial node as

a current node.

2. For the current node, it loops to all its unvisited neighboring nodes and cal-

culates their distances. After that, it makes a comparison with all distances

and chooses the one that has a minimum value. Then the selected node is

marked as visited node which is never checked again.

3. If the target node has been marked as visited or the minimum distance is in-

finity means there is no connection between the initial node and the remaining

unvisited nodes. In such case, searching will be stopped and the algorithm

will terminate.

4. The algorithm iterates with the unvisited node that is marked with minimum

tentative distance, and sets it as the new current node then loops back to step

2.

Although Dijkstra algorithm can determine the best route, it has some restrictions

such as the graph should be directed-weight graph and the edges should be non-

negative. If the edges are negative, the actual shortest path cannot be retrieved.

The shortest path searching between s and d using Dijkstra’s algorithm is illustrated

in Figure 2.4. Although Dijkstra’s finds the shortest path, Dijkstra’s algorithm

does a blind search and it visits the nodes in all directions like a circular wavefront

and searches from a start node and then gradually expands the search space to

neighboring nodes. Consequently,it consumes a lot of time. On a graph with n

nodes and m edges, the complexity of the processing time will be O(n2) because
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it allows for directed cycles. To overcome those defections, A∗ algorithm has been

proposed which is described in the next section.

Figure 2.4: The example of shortest path searching between s and d on road map
and the way of expansion of the searching area using Dijkstra’s algorithm.

A∗ algorithm

Hart et al. [2] introduced A∗ algorithm which is a graph search algorithm that finds

the shortest path for a given initial node to a given goal node using the best first

search approach instead of greedy approach that is used in Dijkstra’s. A∗ visits

the nodes according to the estimation of the heuristic estimation h(x). However, it

employs the advantages of Dijkstra’s algorithm that is favoring the vertices closer

to the starting point and pros of the best first search favoring vertices that are

closer to the goal. Consequently, A∗ is faster compared to Dijkstra’s algorithm. In

addition, the heuristic implantation improves the efficiency of search process.

In A∗ algorithm the cost function f(n) is calculated as g(n) + h(n), where

g(n) is the distance value between two nodes represented as actual cost and h(n)

is the estimated heuristic cost (distance value) from node v to destination node. In

A∗ algorithm, h(n) is admissible means it should not overestimates actual cost to
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guide an optimal path.

A∗ algorithm has two main input parameters: first parameter holds nodes

which will be next visited nodes in the path (the “open” set) and second parameter

handles nodes that have already been visited (the “closed” set). The processing of

A∗ algorithm is as follows:

1. Set a start node s.

2. Put the neighbor nodes of start node s by referring the adjacency list into

“ open” set as unexpected nodes.

3. If “open” set is not empty; the following steps are continued. Otherwise, the

search algorithm is terminated.

4. Remove a node n with minimum f value from “open” set, and place it into a

“closed” set to be used for expected nodes.

5. Expand node n, generating all its adjacent nodes with point back to previous

node (node n).

6. Iterative process for all adjacent nodes n′ of n. (a) Calculate f(n’). (b) If n′

is not included in “open” set, add it into “open” set. Then, assign the other

computed f(n′) to node n. (c) If n′ exists in “open” set, compare the newly

computed f(n′) with previously assigned n’ node. If the new value is lower,

substitute it with the old (i.e., update the cost of this node to any successors).

Then, add node n′ to “closed” set.

7. Loop to step 2.

An empirical study found that A∗ algorithm explores less than 10% of the

nodes expanded by the Dijkstra algorithm [1]. The result is shown in Figure 2.5.

Some researchers demonstrated that A∗ algorithm identifies the shortest path in

many Euclidean graphs with an average polynomial computational complexity [5].

Owing to its performance and accuracy, A∗ algorithm is one of the most popular
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algorithm implemented in current navigation systems. However, the main drawback

of A∗ algorithm is memory requirement since it needs to save the entire openlist

and it is severely space-limited in practice.

Figure 2.5: The example of shortest path searching between s and d on road map
and the way of expansion of the searching area in A∗ algorithm.

Single Source Multi Target A* (SSMTA∗)

The single source multi target A∗ algorithm [84] is a variation of the A∗ algorithm.

It is designed to apply in searching the shortest distance from one single source to

multiple target objects. As we mentioned above, A∗ algorithm is faster than Dijk-

stra’s algorithm to find the shortest path from a given initial point to a given target

node. However, the performance of A∗ algorithm deteriorates when the target nodes

are more than one because A∗ algorithm executes the same node repeatedly. Conse-

quently the searching areas on the road network overlap while searching the target

object, and the total number of searching at each node are increased. To reduce the

searching iteration for each road network node and searching area, node expansion

can be controlled by employing the heap for each target point [69]. However, when

the target nodes are multiple, several heaps are required to manage the search area

and the contents in each heap must be kept the same which requires much more

processing time. To cope with these drawbacks, SSMTA∗ algorithm controls the
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node expansion by using only one heap and avoid the content synchronization.

SSMTA∗ algorithm finds the shortest path in basically same way as the A∗
algorithm. However, it searches the shortest paths to multiple target points simul-

taneously which is the main difference of A∗ algorithm. The way of searching the

multiple target points and node expansion in SSMA∗ algorithm is demonstrated in

Figure 2.6. In the figure, s is source and t1 to t4 (∈ T ) are target points. Suppose,

the shortest path from s to node n has been found. Before reaching the target

points, the closest neighbor nodes of n such as na to nc are obtained by refer-

ring adjacency list. To calculate network distance adopting A* algorithm, we need

a heuristic distance (Euclidean distance) between each neighbor node and target

points. For instance, the minimum heuristic Euclidean distance from na to t2 which

is the closest of t2 is dmin
E (na, t2). The minimum cost from s to t2 is assigned as

Cost= dN(s, n) + dN(n, na) + dmin
E (na, t2). When the searching reaches each target

node, the target node is removed from the target list (T ). The searching operation is

repeated over the remaining neighbor nodes of n. Finally, the algorithm terminates

when the search paths from s reach to all the target points.

When the node expansion reaches the target point t, t is removed from the

target list T . However, the entry for which the cost from the nodes to target

point remains in the heap are calculated. To synchronize the history record, the

function recalculates the cost in heap based only on the remaining target points. In

SSMTA∗, the function called RenewQueue recalculates the cost in proportion to

the size of heap. Heap contains only wave front nodes and the number of wave front

nodes is roughly proportioned to the distance from s. The recalculation function

is only invoked when the target list is changed, and no disk access is required.

Because, SSMTA∗ reuses all records inside heap and the order of nodes in heap

according to the recalculated cost value, the processing cost is lower than executing

A∗ algorithm.
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Figure 2.6: The example of searching the shortest paths to multiple target points
and node expansion in SSMTA∗ algorithm.

Shortest Path Finder using Materialized path view (MPV )

Materialized Path View (MPV ) can retrieve the optimal shortest path by com-

puting paths between all pairs of source and destination nodes. If all paths are

enumerated in such a path view, a single lookup query serves to meet any path

request. Although, the shortest path can be retrieved fast on MPV , such kind of

structure requires an unrealistically large amount of storage. It needs O(n2) space

when the number of nodes on the given graph is n. If the road network is large,

this method is infeasible to apply in real situations.

A semi-materialized view approach, proposed by Agrawal et al. [7], is a com-

promise between space and retrieval efficiency. It encodes the path information

with encoding structure which keeps with a via node. Via nodes are the first hop in

the path from the source node to the destination node. In this approach, the next

hop procedure can be retrieved with one lookup query. Jing et al. [11] proposed a

semi-materialized method of the shortest path route to reduce the data amount. It

only records the next pursued node along the shortest path, and the whole shortest

path route is restored by tracking the next visiting node in the sequence. Samet

et al. [54] reduced the data amount to O(n1.5), using the shortest path quad tree

leads to the reduction of the storage requirements.

Several methods based on materialized path view (MPV ) have also been pro-
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posed to compute the road network distance faster. When two points are located

on the road network nodes, the distance can be obtained by only single access to

the table. Generally, two points are not always located on nodes, which means data

points exist on the network link. In such situation, distance cannot be obtained

directly from the tables and needs to be gathered from the nearest nodes of each

data point. After investigating the nearest nodes of data points and network ver-

tices, the distance can be referred from each respective table, therefore, at most

4 times access is required. However, in any case, the road network distance can

be determined in a constant time by referring the precomputed distance table in

MPV .

Car navigation systems sometimes search the shortest paths between two points

located very far away. In this situation, the most suitable search method can be

considered as a hierarchical structure based on the types of roads [11]. For example,

roads are divided into the highway and the usual road. First, it searches a rough

shortest path on the highway network, and then searches the path between each

given terminal point and the access point of the highway on the usual road network.

Though this method may not give the shortest path, the result is adequate for the

practical purposes.

A shortest path finder (SPF ) [85] based on a lightweight local distance mate-

rialization called simple materialized path view (SMPV ) is constructed with the

partitioned subgraphs. In SPF , the road network is partitioned into the subgraphs,

and the distance materialization is performed only in the subgraphs. Therefore, the

amount of precomputed data is greatly reduced. The shortest path is retrieved

using a best first-search approach in a priority queue. In SPF , the road network

nodes are classified as inner node that belongs to only one subgraph and border

node that belongs to at least two neighboring subgraphs. This method outperforms

the A∗ algorithm, as they reduce the data amount drastically compared with the

conventional hierarchical distance materialization methods.
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In SMPV , the length of road network is calculated by traveling inside the

subgraph. If there is no connected path between a paired node inside the sub-

graph, algorithm refers the table called border-to-border distance table (BBDT ).

To retrieve the distance from the starting point as an inner node to a border node,

the inner to border node distance table (IBDT ) is referred to obtain the distance.

the node-to-node distance table (NNDT ), that lists the distances of all combina-

tions of the nodes in each subgraph, is used to know the distance between two

arbitrarily specified nodes. There are three SPF approaches based on the varia-

tions of the distance materialization level on each subgraph such as full material-

ization (SPFFM), medium materialization (SPFMM) and light materialization

(SPFLM). The main difference of these three approaches are as follow:

• SPFFM determines the shortest path by referring the NNDT which has all

combinations of the distances between any two inner-nodes.

• SPFMM obtains the distance by referring IBDT and BBDT tables when

the nodes are not inside the subgraph. Otherwise, the distance is obtained by

A∗ algorithm.

• SPFLM determines the shortest path by A∗ algorithm by referring to usual

adjacency list.

Figure 2.7 is illustrated the shortest path searching using the SPFMM approach

on the SMPV structure.

2.3 Categories of the Spatial Queries

Spatial databases have been studied extensively in the last two decades resulting

in rapid development of numerous conceptual models, multi-dimensional indexes

and query processing techniques. The main challenge of the spatial queries for

LBS applications is handling distinct types of objects for instance query object

and data objects are either static or moving, both are static, and both of query
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Figure 2.7: The example of shortest path searching between s and d on road map
and the way of expansion of the searching area in the SPFMM approach.

and data objects are in a mobile environment. Similarly, we can outline specifically

the spatial data processing on types of spaces such as data processing considering

Cartesian (Euclidean) distance or network distance.

The related research works of our studies on the spatial queries will be discussed

with the two main groups called static and continuous queries.

2.3.1 Static (Snapshot) Spatial Queries

The snapshot query mainly targets the static data set including all the spatial

objects of interest and the query objects (e.g. restaurant, convenience store). This

section describes all related works of the static queries by classifying with the query

types as follow:

Range Query

Range Query is one of the common queries in spatial database. There are several

studies to retrieve all objects whose location lie within the user defined region.

Based on the calculation methodology, the range query is named as rectangular

range query when the query returns the objects that lie within a rectangular region,
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circular range query when the search space is a circular region and distance range

query retrieves the data objects within the specified distance range. The traditional

range query using an index structure such as R-Tree to finds all bounding rectangles

intersecting a given range is called the rectangular range query. The search process

descends all subtrees that intersect or fully contain the range specification.

Papadias et al. [26] proposed two methods to achieve the range query on

road network called range Euclidean restriction (RER) using the Euclidean lower

bound distance between data point and query object, and range network expansion

(RNE) which retrieves the data set within network range e from q. Although,

their Euclidean based range is feasible for the real-world scenario, the network

distance range search has time-consuming and storage space issues. Xuan et al.

[68] introduced the range query with Network Voronoi diagram. However, their

approach was not directly applicable for network distance. So, as an extended

version, Xuan et al. [75] proposed range query on road network as constraint range

queries using the Voronoi diagram. Their approaches are restricted with region

(specified location/place) and k nearest objects. For instance, retrieves maximum

5 parking lots within 3km in city area, if the number of parking lots is less than

5 within 3km, their approach try to examine to enlarge range radius to satisfy 5

nearest parking lots.

kNN Query

The next common spatial query is the nearest neighbor NN and kNN with arbi-

trary k value. In the beginning, NN and kNN queries were processed as a snapshot

(i.e., one-time single output) query over static objects, assuming that the distance

function is Minkowski metric (such as Euclidean). It indexes the data with a spatial

access method (e.g., an R-Tree [4]) and utilizes the distance bounds between the

index nodes and the query point to restrict the search space [13]. Several meth-

ods were proposed to efficiently process the nearest neighbor queries for stationary

points. Some of the methods rely on index structures built specifically for the near-
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est neighbor queries [10], [12]. Branch-and-bound methods work on index structures

originally designed for range queries.

To be compatible with spatial networks, spatial queries in spatial networks has

been studied with various indexing schemes to manage spatial data and processing

strategies. Papadias et al. [26] proposed algorithms to compute static range queries

and nearest neighbor queries in spatial network. They proposed two approaches

1) incremental Euclidean restriction (IER) searches k-nearest neighbor points of

interest (POIs) based on the Euclidean distance before verifying the distance on

the road network using Dijkstra’s algorithm. and 2) incremental network expansion

(INE) approach that efficiently supports the exact kNN queries on spatial network

databases. However, these approaches suffer from deficient performance when the

objects (e.g., restaurants) are distributed sparsely in the network.

As an optimization approach of IER, Deng et al. [69] proposed new approach

called lower bound constraint (LBC) that calculates the lower bound distance of the

object. Lower bound distance is used for pruning hence, the workload of the network

distance calculation is reduced. Kolahdouzan et al. [32] studied k nearest neighbor

search using the network Voronoi diagram (NVD) for spatial network on static

objects. This approach is based on partitioning a large network to small Voronoi

regions, and then pre-computing distances both within and across the regions.

RkNN Query

Another type of spatial query called RNN query was first proposed by Korn et al.

[15]. Their algorithm requires pre-computed data, in which the distance from each

point to its NN . Given this data, a set of point and their distances to the NN are

registered in an R-Tree, and the circle centered at a data point with the radius equal

to the distance to the NN called its vicinity circle. This approach is not suitable for

RNN query with k values and road network. Because of the R-Tree construction

using vicinity circles with predefined kth NN distances. Stanoi et al. [16] and Tao
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et al. [31] proposed RkNN queries without using the pre-computation approach

called SAA and TPL respectively. Although, these approaches were applicable to

general RkNN queries, they were not feasible for spatial road network because they

only focused for Euclidean plane.

In the foremost, Yui et al. [47] proposed RkNN query algorithm relevant to

the road networks. In RkNN algorithm, the area in which the reverse kNN objects

exist is searched gradually enlarging the search area using the Dijkstra’s approach.

They proposed two algorithms called Eager and Lazy algorithms that differ in their

respective pruning methods. In eager method [47], kNNs are searched at every

visited road network node and prune nodes that cannot be reverse nearest neighbor

of query point q proactively. In essence, the Eager algorithm is efficient only when

the search area and k value are small. In lazy approach, it exploits the verification

phase of the algorithm to prune nodes for their future searches. Lazy traverses a

large part of the road network.

Safar et al. [63] proposed a solution for snapshot RNN queries in spatial

networks based on manipulating network Voronoi diagram. In addition, they intro-

duced a progressive incremental network expansion (PINE) approach to find the

Voronoi polygon on the network distance. They also extended the studies for prox-

imity RkNN using the same approach of Tran et al. [64]. Similarly, RkNN query

algorithm using the SMPV structure and adopting IER strategy was proposed by

Hlaing et al. [89]. Their approach solved the performance deficiencies of the Eager

algorithm [47].

Trip Route Planning Query

Another spatial query gaining attention in location-aware application is trip route

planning query. As an earlier study, Li et al. [38] introduced trip route planning

query called trip planning query (TPQ). TPQmainly targeted for the static objects

on spatial network. Given a source s and a destination d, the TPQ retrieves the
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shortest route from s to d passing through at least one object of interest from each

category, however, there are no order constraints in category. This paper proposed

several approximation algorithms to provide the near optimal solution of the TPQ

problems in metric spaces for road network distance, whose approximation ratios

either depends on the number of categories, or the maximum number of categories

of each type, or both. When finding the optimal route with TPQ, the candidate

space extremely grows, thus, it requires enormous processing time due to the lack

of any restriction on the visiting order of the data category. TPQ requires the

processing time in proportion to M (
∏M

i=1N(Ci)) where M is the number of data

points set to be visited during the trip and N(Ci) is the number of data points in a

category Ci. Therefore, TPQ is only feasible when M is small.

One of the related study of TPQ query called the optimal sequence route

(OSR) query, addressed to solve the TPQ problem, was proposed by Sharifzadeh

et al. [39] in both vector based on the Euclidean distance and metric spaces based

on the road network distance in which visiting order was explicitly considered. [39]

introduced light threshold based iterative algorithm called LORD for Euclidean

space OSR and progressive neighbor expansion (PNE) algorithm for network space

OSR query. There are some spatial queries that could be posed to a spatial database

community called aggregate nearest neighbor queries [45], [94] which return the

objects with minimize aggregate distance with respect to a set of query points,

skyline query [18], [19] and topk query which retrieve the most interesting and

preferred items based on all the preferences of all users.

2.3.2 Continuous Spatial Queries

Mobile devices and widespread wireless networks have brought a propagation of

location-aware applications such as traffic monitoring, enhanced emergency service

and mixed-reality games. Such applications involve either data object or query

object moves unpredictably and both data and query objects are mobile, therefore,

their locations have to be updated frequently. In such highly dynamic environment,
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the results of traditional spatial queries are no longer valid due to the location of

either query or data objects are constantly changing. A very recent trend in spatio-

temporal database research is to continuously monitor such query results. Although

there are numerous spatial queries, we emphasize only the spatial queries that are

related with our studies in this thesis.

Continuous Range Query

Prabhakar et al. [23] proposed velocity constrained indexing and query indexing for

continuous evaluation of static queries over moving objects. Distributed approaches

for continuous range query was introduced in [34]. Gedik et al. [34] introduced a

technique called MobiEyes, which reduces the computation load on the server and

communication costs between the clients and the server by delegating some compu-

tation load to the client objects. To enhance the performance and system utilization

of MobiEyes, [48] introduced a set of optimization techniques, such as Lazy Query

Propagation, Query Grouping, and Safe Periods, to constrict the amount of com-

putations handled by the moving objects. But, there approaches did not target to

apply for road network.

As a different approach, Hu et al. [43] studied a generic framework to monitor

continuous range queries and kNN queries over moving objects. They define the

safe zones for each data object such that the query results remain unchanged if the

object does not leave the region. However, they assumed that queries objects are

registered in server and kept in main memory. The previous continuous studies are

applied for the both of query and data objects are moving but there is no clear

descriptions for the spatial road network.

Earlier studies for continuous range query on road network is proposed using

the tree index structure and the tradition way include the filter step and refinement

steps in [52]. Similarly, [77] used the grid index and distance pre-computation

approach. As an different approach for study on continuous query, [73] proposed
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distance based range query that continuously changes the locations in a Euclidean

space and returns every objects (o) that lies within distance (r) of the moving

query location q. Their proposed range query used the concept of safe zone (in

other literature called as safe-region) in which the query result does not change.

Kefeng et al. [75] extended their previous studies in static queries [68] using their

network Voronoi diagram to achieve the continuous range query for road network.

Continuous kNN Query

There are several studies on the kNN queries over moving objects using traditional

indexing techniques [28] such as Voronoi diagram and safe-region [57], [65]. The

concept of the safe-region provides an efficient way to achieve the continuous queries

with accurate answer without sampling the moving objects. Nutanong et al. [57]

studied moving kNN queries using the incremental safe-region based technique

called V ∗-Diagram. The V ∗-Diagram computes safe-regions based on not only the

data objects, but also the query location.

Similarly, Hasan et al. [65] studied moving kNN queries using safe-region.

The algorithm in [65] for moving kNN queries assumes known trajectory path and

needs to set in advance the sufficient resources according to the dataset. However,

these studies are mainly functionable for Euclidean space. Recently, the attention of

spatial database researches has shifted to the continuous queries especially in spatial

network [41], [49], [88] which is essential for the mobile data. The first one used tree

based index approach. But their approach need large memory because the network

information, data objects and queries are stored in memory. The continuous queries

run for the long-time periods and demands frequent update which makes the query

process more complicated than process of static queries.

Continuous RkNN Query

Benetis et al. [22] presented the first continuous RNN monitoring algorithm using

TPR-tree (Time Parameterized R-tree [17]). Their approach is only for singly RNN
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and Euclidean plane. As a different approach for continuous RNN and RkNN

queries, [51], [56] adopts a two phases computation technique. In the filtering phase,

objects are pruned by using the existing pruning paradigms and the remaining

objects are considered as the candidate objects. In the verification phase, every

candidate object for which the query returns its closest point as the RNN . In

this approach, whenever the query or a candidate result changes the location, the

expensive pruning phase is needed to be re-invoked. To overcome such problem,

Cheema et al. [66] introduced the lazy updates for continuous RkNN queries by

reducing the number of processing time to re-invoke the pruning phase by assigning

a rectangular region for each moving object.

The continuous queries on Euclidean space cannot be applied directly for the

real road map. Therefore, we need to seek alternative methodologies. For road

network, Sun et al. [58] studied the RNN queries for moving objects in spatial

network. They created the multi-way tree for each query that employs in identifying

a monitoring region. They consider updating the query only in the region which

affects the results. In addition, their studies mainly focus on the case where k=1.

Cheema et al. [80] presented a continuous RkNN monitoring algorithm for moving

objects and queries in spatial networks which is extended version of [66]. They

studied continuous RkNN queries using safe-region. In [80], although they avoid

frequent calls to the pruning phase, unfortunately their algorithm needs to verify

the location of client whenever it changes its position. The verification of a client is

expensive because it requires determining whether the query is one of the k closest

facilities of the client or not. Therefore, we need a methodology to address expensive

verification issue.

Continuous Trip Route Planning Query

We continue with explaining the next common spatial query which has the great

interest in navigation systems called trip route query processing. We mentioned

in previous section that this query is mainly focused on static route [38], [39] op-
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timization for snapshot query type. Nowadays, finding the shortest (optimal) trip

route query applicable with the dynamic environment is frequently used. [60], [74]

studied the dynamic route with the near optimal solution. Utilizing the Voronoi

diagram, Chen et al. [67] presented OSR query which can apply for the continuous

queries. Nirmesh et al. [74] used the combination of pre-computation and on-the-fly

route calculation method to achieve approximate result.

Aljubayrin et al. [90] studied new path finding problem which extended stud-

ies of the path computation called the safest path via safe zone. In their scenarios,

the buildings and street blocks are assumed as the regions of interest (safe zones).

Their methods finds the optimal path to minimize the traveled distance through a

set of discrete safe zones. Natanong et al. [81] studied the continuous detour queries

(CDQ) in spatial networks which targeted to find the shortest route between two

locations with a stopover. Although their research goal is to find the optimal trip

route with minimum trip distance for moving objects on spatial network, their al-

gorithm is not considering for multiple stopovers (not visiting multiple categories).

Ohsawa et al. [96] proposed the continuous trip route planning query visiting mul-

tiple data points (multiple categories) taking the advantage of safe-region.

2.4 Synopsis of Our Proposal

We presented several processing mechanisms to achieve the static and continuous

spatial queries above. To summarize the related studies of spatial queries, we have

seen that most of them, either static or continuous queries, are developed using inte-

gration of index structure (R-Tree, Grid), and filter/refinement strategies, utilizing

Voronoi diagram and safe-region derived from the Voronoi diagram theory. Among

them, safe-region is mainly used for continuous queries. In this thesis, to process

static spatial queries, we used the pre-computation approach because query object

and objects of interest are static. Therefore, our goal in this study is to overcome

the processing time problem of existing approach by achieving pre-computation
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query processing. Specifically, we used a strategy of the integration of indexing

(R-Tree) and materialized path view which is similar idea of the Voronoi diagram.

The theoretical explanation of our studies for static query is presented in chapter

3. Next, we studied various continuous spatial queries. Pre-computation becomes

problematic when the data objects or query objects are needed to be updated if

they are mobile. To process continuous spatial queries with moving query object,

the computation and query result with guaranteed accuracy are the major concern.

To achieve these goals, we accomplished by applying on-the-fly query processing

approach. More specifically, we proposed several safe-region generation techniques

for continuous spatial queries and they are presented in chapter 4 and 5.

2.5 Summary

In this chapter, we mainly discussed about three topics that are very typical for the

spatial database management system (SDBMS).

1. In first section, we briefly discussed about the various spatial indexing tech-

niques for spatial objects.

2. Next, we presented the existing road network distance calculation techniques

for spatial queries and introduced our proposed strategy for road network

distance calculation. Road network distance calculation is very typical task

for querying spatial objects especially on the road network.

3. Finally, we provided a brief overview of the related studies for each types of

spatial queries we worked with in this thesis.





CHAPTER 3

Reverse k Nearest Neighbor (RkNN) Queries on

Road Network

The goal of reverse k nearest neighbor (RkNN) query is to identify the influence

of a query object on the whole date set. Although the RkNN problem is the

complement of the k nearest neighbor (kNN) problem, RkNN and kNN problem

are not symmetric. The naive approach for RkNN problem on spatial network

requires O(n2) time thus, more efficient approach is necessary. In this chapter, we

present a new and an efficient RkNN approach for road networks.

3.1 k Nearest Neighbor (kNN) Queries and Reverse

k Nearest Neighbor (RkNN) Queries

In this section, the theoretical explanation and the general definitions of the kNN

and RkNN queries are described. When a set of objects of interest P distributed

geographically around a spatial road network is given, a common type of spatial

query in a location-based application finds the k nearest neighbors with an arbitrary

k ≥ 1 around a given query object q. This type of query is called k nearest neighbor

39
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(kNN) query and mathematically we define the query as follow:

kNN(q, k, P ) = {r ∈ P |∀p ∈ P : d(q, r) ≤ d(q, p)}

where r and p are the objects of interest (data points) from P set and d(a, b)

is the distance between a and b.

The above definition of kNN query is illustrated with Figure 3.1. In Figure

3.1(a), there are five points in a two-dimensional (2D) plane and the dotted lines

indicates the distance between two points. The first and second nearest neighbor

neighbors are represented as 1NN and 2NN respectively in Figure 3.1(b).

Next, we focus on the inverse relationship among the set of objects of interest

(P ). When a set of objects of interest P and a query point q (∈ P ) are given, if q is

included in the kNN of p (∈ P ), q is called an RkNN of p. For example in Figure

3.1(a), the RNN query for point p1 returns point p2 and p5. p3 and p4 are not

returned as results because they have each other as their nearest neighbors. Note

that even though p2 is not a nearest neighbor of p1 because p1 is the point closest to

p2. The result of R1NN and R2NN of each data point are listed in Figure 3.1(c).

Commonly, we can define the reverse k nearest neighbor (RkNN(q)) as follow:

RkNN(q, k, P ) = {p ∈ P |q ∈ kNN(p, k, P )}

where kNN(q, k, P ) is the kth NN of p.

Generally, RkNN query can be classified into two cases: monochromatic

RkNN (MRkNN) and bichromatic RkNN (BRkNN) queries. In MRkNN , all

objects of interest and query objects are the same data types. In BRkNN , the

data objects and query objects belong to two different types of objects. A number

of methods are proposed to process RkNN with different index structures are pro-

posed. The aim of these studies is to maximize the algorithm efficiency for different

environments such as static or dynamic.
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We studied MRkNN and BRkNN queries on road network with the assump-

tion that traffic environment is static in [89], [91]. Our approaches for RkNN

queries employs SMPV framework and IER strategy. The detail explanation of

our strategies to solve the RkNN queries are presented in the next sections.

p1

p5

p3

p4

8

7

6

5

3
2

2

p2

Figure 3.1: The example of the kNN and RkNN on the road network.

3.2 Monochromatic RkNN (MRkNN) Queries

In this section, we explain the basic concept of monochromatic RkNN and our new

strategy to achieve the RkNN problem efficiently.

3.2.1 Basic Method for MRkNN Query

First, to understand the basic concept for RkNN search in road network, we mainly

consider for only one data type called Monochromatic RkNN . We define the

MRkNN query as follow:

MRkNN(q, k, P ) = {p ∈ P |d(p, p′) ≤ d(p, q)}

where d(p, q) is the distance between p and q. For query arising at q, the object p

will be the RNN of q if q is the nearest point to p than p′ (∈ P ).

A simple method for retrieving the RNN set initializes from q and traverses

p ∈ P . The query registers q as a nearest neighbor if the distance between p and q

is not greater than the distance between p and its NN . There is no fixed data size

in the set RNN(q) which may contain points that are not the closest point of q.
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Thus, generally, RNN query needs to visit all data points. Yiu et al. [47] proposed

the following lemma to minimize the road network traversal.

Lemma 3.1. Let q be a query point, n be a road network node, and p be a data

point that satisfies dN(q, n) > dN(p, n). For any data point p′(̸= p) whose shortest

path to q passes through n, dN(q, p
′)>dN(p, p

′). This means that p′ is not an RNN

of q.

Let’s explain the above lemma 3.1 with a diagram shown in Figure 3.2. In

figure, when the algorithm probes the nearest data point from node n7, the NN

data point is p3 and NN data point of p3 is p2; hence, the NN data point of q

is p3. However, according to the lemma 3.1, we observe that d(q, n7)>(n7, p3) and

d(q, p2)>d(p3, p2). Therefore, if we search pass through from n7, we cannot find the

RNN of q.

Using the lemma 3.1, they proposed the Eager algorithm that visits the road

network nodes from q to surrounding nodes in a same manner as the Dijkstra’s algo-

rithm. Specifically, q retrieves the k nearest data points within the distance between

q and its nearest node n, d(q, n). This function is called the rangeNN(q, n, d) as

a first stage of the algorithm. In second stage, the nearest data point p of the node

n is investigated to check whether q is the kNN of p by applying a rangeNN

function. This function is called verify and the function is executed in algorithm

as verify(p, k, q). Eager algorithm uses Dijkstra’s shortest path finder to calculate

the road network distance between data points and network nodes. The Eager al-

gorithm can perform well when the density of data point is high as the search area

remains small. In contrast, when the density of data point is low and the k value

is small, the processing time increases rapidly because the search area is large.

To address this problem, we propose a new and fast RkNN query by adopting

IER strategy proposed by Papadias et al. [26] to retrieve kNN objects. In addition,

we run our algorithm on SMPV framework to construct an individual partitioned

subgraph and to reduce the amount of data requirements.
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Figure 3.2: The basic example of searching MRkNN on the road network applying
lemma 3.1.

3.2.2 Simple Materialized Path View (SMPV) Structure

Before explaining our methodology for RkNN query, we discuss briefly about

SMPV structure [85] that is applied as the underlying framework to run our algo-

rithm. We briefly introduced about the SMPV structure in previous chapter. In

this section, we explain the characteristics of SMPV structure using some figures

and tables. In SMPV structure, the road network is partitioned into multiple sub-

graphs. A road network is modeled as a directed graph G(V,E,W ), where V is the

set of vertices (nodes), E is the set of edges (road segments) and W is the set of

weights(we assume here is road network distance). A subgraph SGi(Vi, Ei,Wi) is

partitioned graph of G with Vi ∈ V,Ei ∈ E, and Wi ∈ W . Figure 3.3(a) describes

the simple graph G of a road network and (b) is the multiple subgraphs SGi of G.

Partitioning of a road network into the subgraphs are performed by the fol-

lowing procedures: (1) source nodes on the given road network are selected with

the specified number of divisions, (2) multiple sources Dijkstra’s algorithm is used

to categorize each node into a subgraph that has the same source node as near-

est neighbor. In each subgraph, there are two types of nodes namely border node

and inner node which are represented as black rectangle and white rectangle re-

spectively. The definition of these nodes are described below. Two subgraphs are
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SG1
SG2

SG3

(a)

(b)

Figure 3.3: (a)The Simple graph which represents the road network. (b) The
partition subgraphs of (a).

defined as being adjacent if they have at least one common border node. The set

of border nodes of SGi is denoted by BVi.

Definition 3.1. Border Node: The node belongs to plural subgraphs.

Definition 3.2. Inner Node: The node belongs to only one subgraph.

After partitioning into subgraphs, distances within the respective subgraphs

are materialized, and two distance tables called the border-to-border distance table

(BBDT ) and inner-to-border distance table (IBDT ) are constructed. The distance

calculation between two points on the road network is rendered by the best first

search approach. Figure 3.4 describes BBDT and IBDT tables for the subgraph

SG1 of Figure 3.3(b). Figure 3.4(b) shows the BBDT distance table in which the

shortest path length between every pair of border nodes of the subgraph SG (in

example SG1) are listed. This table is applicable to retrieve the distances between

border nodes among different subgraphs. If there is no connected path between a

pair of nodes inside the subgraph, an infinity value (∞) is assigned. Figure 3.4(c)

denotes IBDT distance table in which the distance between inner node to border
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bodes are listed. To reduce the precomputed distance data, the table for the inner-

to-inner nodes is not considered and an adjacency list is used in our approach to

get the road network node information.

(a)  SG1

Figure 3.4: (a)Subgraph SG1 of Figure 3.3(b). (b) Border node to border node
distance table of SG1. (c) Inner node to border node distance table of SG1.

3.2.3 MRkNN Query on SMPV Structure

The performance deficiency step of Eager algorithm is executing the rangeNN

function at every expanded node. In our new method, rangeNN is invoked only

on the border nodes of the subgraph which improves the performance effectively. In

addition, in the Eager algorithm, verification function searches the kNN of each p

(∈ P ). If q is included in the kNN set, p is determined to be an RkNN of q. This

check requires a wide searching area. This query can also be efficiently performed

with IER using SMPV .

In our approach for RkNN queries, the shortest paths on road network cal-

culations are done by applying the shortest path finder [85], especially SPFMM

algorithm run on SMPV structure. For simplicity, we assume that the object of

interest is on the road network nodes. In practice, the object of interest has possi-

bility of existing on the network edges, therefore our method can be easily extended

for network edges. The procedures of monochromatic RkNN query on SMPV

structure can be summarized as follow:
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(i) When the query object q and set of objects of interest P are given, initially, the

subgraph where q belongs is determined.

(ii) The objects of interest belonging to the subgraph are searched.

(iii) Next, verify function is invoked to check whether each object of interest is

exact RkNN object of q.

(iv) If the result of verify is true, the object of interest is added to the result set.

(v) The algorithm enlarges the searching area to include the neighboring subgraph

and rangeNN is invoked at the border node and repeats the step ii, iii and

iv.

(vi) If the size of candidates from rangeNN function is smaller than k, other

RkNN could exist on the path through the current node v.n. Therefore, the

node expansion and searching will continue from the current node.

(vii) Otherwise, no more RkNN exists on the path through v.n, the searching will

be terminated.

The detail theoretical explanation and performance studies of the MRkNN

query on SMPV structure have already described in [89] , [93]. Our method ex-

pands the search area in concentric circles, similar to the Eager algorithm and

invokes the rangeNN only on border nodes that drastically reduce the overall pro-

cessing time. In addition, IER adoption for rangeNN and verification function

supports to enhance the performance especially when the distribution of the data

points is sparse, and arbitrary k value is large.

3.3 Bichromatic RkNN Queries

BRkNN query is an extended type of RkNN queries to deal with the two different

data types. When a set of rival objects S and a set of objects of interest P from

different data types are given, a random query point q (∈ S) is set, BRkNN query
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retrieves object of interest which considers query object is the nearest than other

rival objects. The specific definition of BRkNN is described as:

BRkNN(q, k, P ) = {p ∈ P |q ∈ kNN(p, k, S)}

where kNN(p, k, S) is a set of kNN objects in S for p.

For instance, let P be a set of supermarkets and S be a set of residence. To

construct a new residence q (∈ S), BRkNN query can find all the supermarkets

which are the nearest to the new residence location among other existing residence.

Depending on the query result, the best location to build the new residence can be

decided.

Figure 3.5: An example of the bichromatic RkNN query.

Figure 3.5 shows an example of the BRkNN query. Assume the rival objects

are black rectangles and the objects of interest are shown by the pentagons. The

BRNN query finds the objects of interest (either p1, p2 or p3) that the query object

as their nearest neighbor among the rival objects. In this example, although the

distance between the p1 and s2 is shorter than the distance between s2 and p3, the

object of interest p1 does not consider s2 as its nearest neighbor, because p1 is closer

to s1. Therefore, the answer of the BRNN of s2 will be p3 which considers the s2



48 Efficient Algorithms for Spatial Queries

as the nearest object among the other rival objects.

3.3.1 The Concept of BRkNN Query with Voronoi Diagram

Voronoi diagram (V D) [14] has been used to solve the various spatial query problems

in spatial database. In general, a V D of a data point set P is a collection of regions

that divide the Euclidean plane. These regions are called Voronoi polygons (V P s).

Each region (V P ) is associated with a data point and all the points in one region are

closer to the corresponding points of a region than any other points. The Voronoi

diagram can be applied to process the BRNN objects. There are some previous

research works [51], [61], [70] for BRkNN for various environments using Voronoi

diagram. When a set of rival objects S and a set of objects of interest P are given,

BR1NN of a query object (∈ S) can be obtained by processing the following two

steps:

1. Generate the Voronoi regions of the rival objects S.

2. Search the object of interest p (∈ P ) which are included in the generated

Voronoi region of the respective query point.

Figure 3.6 illustrates the Voronoi diagram for S set in Euclidean plane. As a

simple example, when s1 is specified as the query object, the BR1NN of s1 retrieves

p1 because p1 exists in the Voronoi region of s1. To find the BR1NN in the road

network, the network Voronoi diagram (NVD) [79] for the set of rival objects S

can be generated with the network distance.

The BRNN results with k>1 is more complicated than the k = 1. For k>1,

the Voronoi diagram in which a query point q is included in the set of kNN among S

must be generated. Specifically, in Figure 3.6, when q is s1 and k is 2, the searching

steps for the BR2NN are as follow: 1) the region in which s1 include in the 2NN

set is generated, and then 2) the objects of interest p (∈ P ) include in the region

are reported as the result.
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p2
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Figure 3.6: BR2NN searching using Voronoi diagram

3.3.2 Our Approaches for BRkNN Query on Road Network

In this section, we mainly discuss our proposed strategy to accomplish the BRkNN

query on spatial road network.

BRkNN query using Eager algorithm

The Eager algorithm [47] mainly proposed for the monochromatic RkNN query

for the large road network, is also applicable to the BRkNN query on road net-

work. The original Eager algorithm processes RkNN searches in two stages named

rangeNN(q, n, d) and verify(p, k, q) as described in section 3.2.1. We adopt the

original Eager approaches for searching the BRkNN . Algorithm 3.1 is used to find

the BRkNN query result.

First, the algorithm initializes a priority queue (PQ) by inserting the road

network node n existing the query point q. Using the lemma 3.1 described in

section 3.2.1, Eager algorithm determines the expansion process. Next, it retrieves

the k nearest rival objects set performing the rangeNN(n, k, d(q, n), S) function.

If the rival objects are less than k, the algorithm expands to the neighbor nodes.

Concurrently, the algorithm examines the current node n whether it is object of

interest because we assumed the objects of interest are on the network node for

simplicity. If the current node is object of interest p, the algorithm invokes the
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Algorithm 3.1 Eager algorithm for BRkNN query

1: function BRkNN(q)
2: PQ← ∅, RS ← ∅
3: Let rec be the record of network nodes which exist q.
4: PQ.enQueue(rec)
5: while PQ not empty do
6: v ← PQ.deQueue()
7: CS.add(v)
8: KNN ← rangeNN(v.n, k, dN(v.n, q), PQ)
9: if thenv.c ∈ P
10: p← v.c
11: if verify(p, k, q) then
12: RS ← RS ∪ p
13: end if
14: end if
15: if |KNN | < k then
16: PQ.enQueue(ExpandNeighborNode(v.c))
17: end if
18: end while
19: return RS ▷ BRkNN of q
20: end function

verify(p, k, q, S). If q ∈ kNN(p), p is added to the result set. The verified p is

marked as verified to avoid the duplicate verification.

The main deficiency of the Eager algorithm is the huge processing time require-

ment when the rival objects are distributed sparsely on the road network or the k

value is large. Therefore, we studied the BRkNN query to overcome the above

difficulties employing the following procedures:

1. Apply the IER strategy when we decide to expend the region.

2. Employ the SMPV data to suppress the times of checking a road network

node to determine whether it is included in the BRkNN region or not.
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BRkNN query on SMPV structure

When a set of rival objects S, a set of objects of interest P are given and a query

object q (∈ S) is specified, the BRkNN query on SMPV structure initializes to

find the range R in which q is included as the kNN . Then, the objects of interest

which lie in the range are retrieved. We can prune the unnecessary nodes that are

not guaranteed to find the BRNN of the query object q by utilizing the lemma

3.1. Although lemma 3.1 is proposed for the MRkNN query on the road network,

it also solves for the BRkNN query in the road network.

Figure 3.7 explains the lemma 3.1 with an example using the border nodes

SMPV structure described in chapter 2. In this figure, the black rectangles are

border nodes belonging to more than one subgraph in SMPV structure. When

the distance between the border node bi and the object s1 : d(s1, bi) is greater

than the distance between bi and s2 : d(bi, s2), BRNN of s1 passing through the bi

cannot be found. Therefore, all paths passing through the border node bi can be

pruned safely. This constraint can also be applied to reduce the unnecessary node

expansion. While retrieving kNN (∈ S) of a border node (bi), if q is not included in

the kNNset of bi, the searching for all paths which pass through bi can be pruned.

Figure 3.7: An example illustrates lemma 3.1.

We continue by explaining the detail processing of the BRkNN in SMPV

structure. Suppose that q be a given query object and SGq be a subgraph in which

q exists. Initially, the algorithm determines the SGq where the searching initializes.
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To obtain the fast access in retrieving each subgraph information where elements

of rival set S belong, the position of the rival objects s (∈ S) is indexed by R-

Tree [4]. The data points p (∈ P ) and subgraphs related table are constructed

according to the subgraph in which object of interest belongs. Referring this table

can reduce the processing time and node expansion dramatically. Because, we can

omit accessing the subgraph in which there are no data point. Figure 3.8 shows the

simple subgraph where q belongs.

In the figure, p is the data point from P set. The q object retrieves the data

points belonging in SGq then the kNN set of each retrieved data point (p) is

searched. If q is included in kNN set of P , p is added to the result set. The record

of each border nodes of SGq are inserted into PQ with the following format:

<d, n, p, cid>

where d is the road network distance from q object to current node n (a border node

(bi), n is the current node, p is the previous visited node (in this case, q object) and

cid is the subgraphID in which current node locates (SGq in this case). The first

record enqueued into PQ is composed as follow:

<d(q, bi), bi, q, SGq>

Algorithm 3.2 describes the above procedure as a pseudo code.

After examining the initial step, the algorithm searches the most kNN of the

current node (border node) v.n that is dequeued from PQ and then kept in kNN .

This function is called rangeNN described in Line 7 of Algorithm 3.3. The set

of objects of interest C belonging to the subgraph of current of node are retrieved

using findPinSubgraph(v.n) instead of examining the each current node as in the

original Eager approach. These objects are called candidate objects C. Each object

in C is checked whether its kNN contains q or not. If q ∈ kNN(p), {p ∈ C}, the
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Algorithm 3.2 StartSubgrpah

1: procedure StartSubgrpah(q, PQ,R)
2: sg ← determineSG(q)
3: P ← findPOIinSG(q)
4: for all p ∈ P do
5: if verify(p, k, q) then R ∪ p ▷ add p to result set
6: end if
7: end for
8: for all b ∈ BN do
9: PQ.enQueue(< dN(q, b), b, q, sg >)

10: end for
11: end procedure

SGq

n1

p2 n3
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r3
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4 3
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Figure 3.8: An example of BRkNN query processing on SGq

candidate object is BRNN of q object. This verification is invoked in line 10. To

avoid duplicate investigation in subgraph, the investigated subgraph is marked.

If the number of data points from KNN is less than k, other BRkNN on the

path through the current node might exist. The algorithm continues the search by

invoking the ExpandSubGraph function from the node v.n as shown in line 15 of

algorithm 3.3. The detail explanation of this function is described in algorithm 3.4.

In algorithm 3.4, line 2-5 collect the neighbor subgraphs and then the information

of the border nodes of the subgraph are enqueued into PQ. The BRkNN searching

is terminated when no more BRkNN exists on the path through v.n.
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Algorithm 3.3 BRkNN query algorithm with SMPV structure

1: function BRkNN(q)
2: PQ← ∅, RS ← ∅
3: StartSubgrpah(q, PQ,RS)
4: while PQ not empty do
5: v ← PQ.deQueue()
6: CS.add(v)
7: KNN ← rangeNN(v.n, k, dN(v.n, q), PQ)
8: C ← findPinSubgraph(v.n)
9: for all p ∈ C do
10: if verifyPSet(p, k, q) then
11: RS ← RS ∪ p
12: end if
13: end for
14: if |KNN | < k then
15: ExpandSubGraph(v.n, PQ)
16: end if
17: end while
18: return RS ▷ BRkNN of q
19: end function

Algorithm 3.4 ExpandSubGraph

1: procedure ExpandSubGraph(q, PQ,R)
2: SGs ← determineNeighborSG(v.n)
3: for all sg ∈ SGs do
4: for all b ∈ BN do
5: PQ.enQueue(< dN(q, b), b, p, v.cid >)
6: end for
7: end for
8: end procedure

3.3.3 Performance Study

Experimental Environment and Settings

Extensive experiments were conducted to investigate the performance of our pro-

posed algorithms and existing algorithms utilizing a PC Intel Core i7-4770 CPU
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(3.4GHz) and 16GB memory. In addition, all the algorithms described in thesis

are implemented using Java programming language using real road map data of

Saitama city (small map) and Saitama prefecture (large map), Japan as described

detail in Table 3.1. Table 3.2 shows the detail information of the road network nodes

and subgraphs of each map for the SMPV structure that is used in our studies.

The objects of interest on the road network map are generated by the pseudoran-

dom sequences. These set of data points are generated with varying the distribution

(density). For example, the density of data points set D=0.002 indicates that two

data objects exist on every 1000 links. Table 3.3 describes the relationship between

the data points density and the number of data points in each set of data points in

small map used in the all experiment of the RkNN queries. Among the values, the

bold values represent the default values.

Table 3.1: Road network maps used in all experiments for performance evaluation
Map Name # of Nodes # of Edges Area Size Adj. List BBDT IBDT
Small Map 16,284 24,914 168 km2 1.5 MB 1.1 MB 4.1 MB
Medium Map 81,233 109,373 284 km2 6.8 MB 4.5 MB 17.4 MB
Large Map 465,245 638,282 3,797 km2 39.7 MB 26.1 MB 100.8 MB

Table 3.2: Data size (MB) of SMPV structure for each road map
Map Name Border Nodes Inner Nodes Subgraph Numbers
Small Map 1,780 14,504 100
Medium Map 7,496 73,737 350
Large Map 43,418 421,827 3000

Table 3.3: List of the density of distribution of objects utilized for performance
evaluation for RkNN queries

Type of object set Setting

Number of data objects in P set (density)
24(0.001), 48(0.002), 124(0.005),
249(0.01),498(0.02),1245(0.05)

Number of rival objects in S set (density)
24(0.001), 48(0.002), 124(0.005),
249(0.01), 498(0.02),1245(0.05)

Experimental Results

In this section, we focus on the performance study of the BRkNN query. Figure

3.9 compares the performance of proposed method and the Eager approach for
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BRkNN query when the density of rival objects set S and objects of interest set

P were set to 0.002 and the number of k values was varied from 1 to 10. Figure 3.9

shows the results for small, medium and large map respectively. In these figures,

the horizontal axis represents the varying k values and the vertical axis represents

the processing time measured in second (s). The Eager approach for all maps

increased the processing time when the k value was increased because the search

areas were enlarged gradually. In contrast, although the proposed approach linearly

increased with k values, it took only about one second when the k value was set

to 10. According to the observation, the tendency of both approaches for BRkNN

query were almost the same for all road network maps.
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Figure 3.9: Processing time comparison for BRkNN query with varying k values
(a) conducted on small map, (b) conducted on the medium map, (c) conducted on
the large map.

Next, we changed the experimental setting with varying objects of interest
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set P density, the rival objects set S was fixed to 0.002 and k value to 3. The

performance results are shown in Figure 3.10. Clearly, the SMPV approach still

outperformed with the lower processing time while the Eager approach was increas-

ing sharply. We observed one thing from this experiment was the trend of both

approaches were going with stable conditions. However, the processing time for

SMPV approach rose slightly when the density was distributed densely specifi-

cally, D= 0.05. This was due to the reason that when the candidates of BRkNN

were found from P , the candidate of p was required to verify whether each candidate

object was truly BRkNN of q or not. If the density of P was high, the existence of

objects in P within the candidate subgraph might be increased and several invoking

times of verification function caused increase in the processing time. Similar results

were found in all maps.

We also conducted the experiments with varying the rival objects set S. We

set the objects of interest set P and k value as 0.002 and 3 respectively. In this

experiment, 200 query objects are randomly selected and set as a query point and

the average processing time is measured as shown in Figure 3.11. We evaluated the

performance for all maps. According to the experimental results, when the density

of S was low, searching had to be done broad range, so the Eager algorithm needed

long processing time. Conversely, when the rival objects set density was high, the

searching area became smaller and the processing time decreased. The proposed

approach showed the stable result means it was independent of the rival objects set

density.
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Figure 3.10: Processing time evaluation on varying the density of data point set (a)
evaluated on the small map, (b) evaluated on the medium map, (c) evaluated on
the large map.
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Figure 3.11: Performance evaluation with processing time on varying the density of
rival objects set (a) assessed on the small map, (b) assessed on the medium map,
(c) assessed on the large map.
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3.4 Summary

In this chapter, we studied the algorithms for answering the snapshot type reverse k

nearest neighbor (RkNN) queries on road network using distance pre-computation

approach. Our studies covered for two types of RkNN queries: monochromatic

RkNN and bichromatic RkNN queries. Although RkNN query is strongly related

to the kNN query, unlike kNN query, RkNN finds the set of objects of interest

that have the query as their nearest neighbors. There is no fixed data size in the

set RNN(q) which may contain points that are not the closest point of q. Thus,

generally, RNN query needs to visit all data points. Due to this reason, RNN

queries on the road network distance require long processing time and cause a

large number of node expansions especially when the data points are distributed

sparsely. To address this problem, we presented an effective and efficient techniques

by adopting the SMPV structure and IER strategy for fast kNN queries.

The SMPV structure is constructed with small road network subgraphs and

materialized distance tables that performed on each subgraph. The usage data

amount of SMPV structure is lesser than the conventional hierarchical network

distance materialization. Our proposed method expands the searching area in con-

centric circles. In our method, performing rangeNN function only on border nodes

of subgraph and adapting IER to process rangeNN and verify reduce the overall

processing time. We conducted extensive experiments to show the performance of

our approaches. The experimental results indicated that our proposed approach is

10 to 100 times faster in processing time when the number of k is large and data

points are distributed sparsely on the road network. For BRkNN query, although,

the processing time of our proposed algorithm rose slightly when the density of

data points (P set) distributed densely, our algorithm was stable in both sparse

and dense distribution of rival objects (S set) on road networks. Next, we extended

our knowledge on spatial queries with snapshot query type to continuous query

type.



CHAPTER 4

Safe-Region Generation Method for Versatile

Continuous Vicinity Queries

In chapter 3, our studies mainly focused on the snapshot spatial queries with static

query objects. With the upsurge in availabilities and popularities of the mobile

communications and real-time location information management, scalable compu-

tational capabilities of mobile objects are becoming essential in location-aware ap-

plications. Location monitoring is an essential and complex function to process

the moving queries generated by moving objects (MO). In spatial database with

moving objects, a query requires to monitor and evaluate continuously according to

the current location of query object. Hence, in this chapter, we broaden our studies

on the spatial queries over moving objects and present our techniques on solving

the continuous queries efficiently in road networks.

4.1 The Approaches for Continuous Queries

There are several approaches studied on continuous queries for moving objects in

SNDB since 2000s. Generally, we can classify the studies for continuous queries

61
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based on three main categories: 1) sort of queries, 2) types of distances (Euclidean

and road network), and 3) mobility of queries and data objects.

In the literature, varieties of continuous queries have been proposed (we men-

tioned various continuous queries for both Euclidean and road network in the chap-

ter 2). These queries vary according to the mobility of the query objects and data

objects. When we study about continuous queries, we must consider the client-

server perception in term of the communication cost between server and moving

object. In continuous query, mobile objects report their position to the server

whenever their position changes, and the server re-evaluates and updates the query

result. When the frequency of communication between the server and mobile ob-

ject becomes high, the performance in monitoring declines thus, requires a more

sophisticated methods to optimize the processing time.

One of the most effective optimization techniques to manage location informa-

tion of the moving objects is by employing an efficient spatial indexing structures.

Several processing techniques have been extensively studied utilizing spatial index

structures [17], [27], [30], [86]. However, the index structure for querying the moving

objects are not effective for frequent location updates. A structure should handle

frequent location updates and also process the query fast enough according to the

movement of the object.

To overcome this limitation, a threshold based algorithm is presented in [44]

which intends to minimize the communication cost. A threshold value is transmit-

ted to eachMO and when the moving distance exceeds the threshold value, theMO

issues an update. Cheng et al. [53] studied a time-based location update technique

to improve the temporal data consistency for the objects by only maintaining the

correctness of data that are relevant to the execution of continuous queries. How-

ever, in his method, an object sends the location updates repeatedly to the server

when it is enclosed by a query region. As a result, that approach deteriorates the

query performance.
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The next approach for continuous queries is Q-index [23] in which queries

are indexed by an R-Tree and avoids the periodical updates from moving objects

by introducing the concept called safe-region. They generated the safe-region for

each moving object. The moving object needs to monitor all queries whose regions

intersect with its assigned domain and report to the server only when the query

moves out from the region. In [29], a region based spatial queries called nearest

neighbor and window queries for dynamic environment is presented. They proposed

construction of the safe-region using time parameterized (TP ) queries [24] uses R-

Tree index structure. There are assorted studies for varieties of spatial continuous

queries specifically range queries [43] [46] [73], kNN queries [57] [65], and reverse

kNN queries [66] [78] [80] [92] using the safe-region approach.

Among several studies for continuous queries described previously, the method-

ology which guarantees not missing any changes in the result and produces the

up-to-date query result is safe-region approach. In addition, safe-region does not

need any assumption and the server updates require only when the query exits the

valid region; this reduces the excessive overhead on the server side. The previous

research works with the safe-region are mainly targeted only for the specific type

of spatial query. Specifically, their approaches are covered only for range query and

kNN queries. To overcome this limitation, Ohsawa et al. [95] proposed the versa-

tile safe-region generation method for continuous queries including the set− kNN ,

ordered− kNN , RkNN and distance range queries.

As an extended version of [95], [98] is proposed with the performance im-

provement. In extended version, we enhanced the methodology of determination

of border point of safe-region to generate the compact and efficient safe-region. In

addition, we conducted several extensive experiments with the simulation of the

mobile query object. Our studies for the continuous queries are mainly targeted

for queries in which query objects are moved freely while data objects are static

condition which is frequently encountered in most of the location-aware applica-

tions. In the subsequent section, we discuss the basic principles of the safe-region
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and proposed methodologies that are applicable for various vicinity spatial queries.

4.2 The Basic Principles of Safe-Region Generation

In general, a safe-region is a region where the query point can move without chang-

ing the query answer. A typical example of the safe-region is Voronoi diagram (V D)

[14]. The V D is a well-known space decomposition determined by the distance to

a given set of points. In a V D, each object of the dataset lies within a cell called

Voronoi cell (Voronoi region). The Voronoi region of an object has a property that

any point lies in it is always closer to that object than any other object in the

dataset.

For a kNN query, Voronoi diagram can be generalized to the kth order Voronoi

diagram (kV D) and k order Voronoi regions (V R) can be treated as the safe-region

(SR). Each cell region is associated with the set of k nearest neighbors. To illustrate

with the simple example, Figure 4.1(a) shows a set of points P= {p1, p2, p3, p4, p5, p6}
in a 2-dimensional (2D) space and Figure 4.1(b) is the 1(k = 1) order Voronoi

diagram which is the simplest SR. In the above example, q falls in V R1 and p1

is the nearest neighbor of q. The query point remains valid as long as it stays in

V R1. This V R1 (gray region) is called the safe-region. When the query point moves

across the boundary of V R1 to V R5, the NN of q will change to p5.

However, the V D has the following major limitations: 1) expensive precom-

putation: the kV D requires to precompute all V D cells and access to all the data

points. Both computation and storage cost are high. 2) The V D cannot deal

efficiently the update operations. The original concept of V D is not feasible to gen-

erate the dynamic safe-region efficiently. Thus, novel methodologies for safe-region

generation that are adaptable for the multiple types of dynamic continuous queries

such that it can avoid unnecessary location probes to the objects in the vicinity

(i.e., the objects which overlap with the current query region) are essential. In this

chapter, we propose the safe-region which can be used for various vicinity queries.
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Figure 4.1: (a) A set of data points P . (b) A simple safe-region with the Voronoi
diagram.

4.3 Safe-Region for Vicinity Queries

Before we discuss about the safe-region for vicinity queries, we will explain about

what are the vicinity objects and queries. Generally, the objects which lie within

the current region specified by the query object are called the vicinity objects. The

queries which probe these vicinity objects are called the vicinity queries. Remark-

ably, the results of all the vicinity queries have the mutual results between them.

The example of the vicinity queries is explained with Figure 4.2.

Figure 4.2 demonstrates four types of vicinity queries namely distance range

query, set−kNN query, ordered−kNN query and RkNN query. In Figure 4.2(a),

the data point p1 to p4 belongs to a data object set P , and a to d represent the

query objects. We deal with the 2 nearest neighbors (2NN) of each query point.

For query point a, the 2NN are p1 and p4, and for b are p2 and p1. When the

order of the query result is taken into account which is called the ordered− kNN

query, the result of query a and b are different. Otherwise, the order of the query

result is ignored which is called the set− kNN query, the query results of a and b

are the same with any order of the result. This is the main difference between the

set − kNN and ordered − kNN queries. Furthermore, the result of 2NN of the



66 Efficient Algorithms for Spatial Queries

query object c is p4 and p1; consequently, p1 is a common data object for all 2NN

of the query a, b and c.

When the p1 is set as a query object and invokes 2NN query from p1, a, b,

and c will be included in the result as shown by thick circles in Figure 4.2(a). This

type of query is called the reverse kNN query. In set− kNN and ordered− kNN

queries, the space is partitioned into non-overlapping regions. Contrarily, the space

is divided into mutually overlapping regions in RkNN query as shown in Figure

4.2(a). The next vicinity query is called the distance range query as shown in

Figure 4.2(b). In the Figure 4.2(b) x, y, and z are query points and p5 to p7 are

data objects. The radius of dotted area which centers of each data objects is r. The

area in bold line shows the common region in which the range query result is p5,

p6 and p7. Therefore, if a object lies inside this region and invokes distance range

query from these objects, each query will give the same query result.

(a)
(b)

circle of query object a

circle of query object b

circle of query object c

circle of object of interest p 1

circles of objects of interest 
P5, p6, p7 with radius r

Figure 4.2: (a) Examples of the vicinity queries including set−2NN , ordered−2NN
and R2NN queries. (b) Example of the distance range query.

Our objective is to generate a safe-region for these vicinity queries to apply in

a dynamic environment. Here, we outline some definitions for the safe-regions of
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each vicinity query.

Definition 4.1. Safe-region (SR) for vicinity queries. SR is a region around the

current location of moving object (MO) in which the query result is same as long

as MO lies inside. A query on a road network probes the objects that lie inside the

query’s current safe-region whose query result is always same is called a vicinity

query. This type of queries includes set − kNN , ordered − kNN , RkNN and

distance rang query.

Definition 4.2. Safe-region for set− kNN query (SRs). SRs is a region in which

kNN query is invoked anywhere inside the region returns the same set of data points

with any distance order.

Definition 4.3. Safe-region for ordered − kNN query (SRo). SRo is a region in

which kNN query is invoked anywhere inside the region returns the same result

with the same distance order.

Definition 4.4. Safe-region for RkNN query (SRr). SRr is a region in which

kNN query is invoked anywhere in the region always contain a specified given data

point.

Definition 4.5. Safe-region for distance range query (SRd). SRd is a region where

distance range query with the distance (r) and a query point is invoked anywhere in

SRd contains the same set of data points.

According to the above definitions 4.2 to 4.4, we can define the vicinity queries

relationship based on the kNN queries (except the distance range query). The

set− kNN , ordered− kNN and RkNN queries satisfies the following condition:

SRo ⊆ SRs ⊆ SRr

In addition, according to the above condition, we can estimate the size of the

safe-region of each vicinity query; for instance SR of the set and ordered kNN is

the subset of SR of the reverse kNN means all objects in set and ordered kNN

queries are contained in the set of RkNN . The size of the SR of RkNN will be
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the largest among three kNN queries. The SR size of ordered − kNN query will

be the smallest. The proof of the SR size of each query is presented in the next

sections.

4.4 The Strategy and Architecture of Our Proposed

Safe-Region Generation for Vicinity Queries

In this section, initially, we present the processing flow of each vicinity queries,

then we discuss our strategies for safe-region generation applicable for the vicinity

queries and some requisites of our approach.

4.4.1 Distance Range Query

Range queries arise naturally and frequently in location-aware applications such as

a query that applies to keep track the number of people who entered a specific region

(e.g. building). Several processing techniques for range query processed with both

static and dynamic objects have been proposed (described in previous chapters).

There are several variations of the range queries. Given a set of data object P

and a query object q, a query search space around the query object (such as taxi,

building) is called the circular range query. Another variation of the range query

which returns the objects that lie within the rectangle around the query location is

called the rectangular range query.

In our strategy, we consider a set of data object P , a mobile query object q

and a positive range value r (network distance). Specifically, our strategy on range

query is mainly based on the network distance between data object and q that

lies within the range r i.e., every objects that dist(p, q) ≤ r. Thus, such query is

called distance range query. R-Tree [4] is utilized to index the data objects in our

approach.

Algorithm 4.1 explains the processing procedure of the distance range query
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using a pseudo code. This algorithm retrieves the nearest data objects within the

specified range r. In algorithm, we need to define two types of objects called internal

objects and external objects. The purpose of defining these objects is to define the

border point of the safe-region. The detail explanation of the border point and

safe-region construction are presented in section 4.4.3 and 4.4.5. The objects which

lie inside the range r are called the internal objects and only internal objects will

contribute as the actual results of the distance range query. The objects which lie

outside the range r are called the external objects. However, when the number

of external objects will be arbitrary large. For such a case, in order to restrict

the space, only the objects within the distance 2r of the query are defined as the

external objects.

Line 2 and 3 initialize the auxiliary list to store the internal and external ob-

jects. Each internal and external objects are stored as a A∗ record including the

data point p and the minimum shortest distance between q and p. Line 4 retrieves

the nearest neighbor of query point and finds the minimum network distance be-

tween NN and q using A∗ algorithm (Algorithm 4.3) stated in line 7. We state

the original A∗ approach in Algorithm 4.3. Later, we describe how we can enhance

A∗ for performance issue. The NN object that lies inside the range r is stored in

InObj set. In line 8 to 20, the algorithm retrieves incrementally the other possible

data points inside the range r. If there are no other data points in range r, the

incremental data point searching probes inside the range 2r and stores the objects

as the external objects. After accumulating all internal and external objects, the

internal objects are returned as the result data objects.

4.4.2 Continuous kNN query on Road Network

The common tasks for the vicinity queries regarding spatial network are finding the

k nearest neighbor from the query object and finding the shortest path between any

two points. The existing algorithms for kNN queries were described in Chapter 2.

To the best of our knowledge, Papadias et al. [26], for the first time, introduced
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Algorithm 4.1 Distance Range Query Algorithm

1: function DistanceRange(q, r)
2: InObj ← List < AStar > ()
3: ExObj ← List < AStar > ()
4: p = Euclidean−NN(q)
5: CAStar cas=new CAStar(p,q)
6: Ha ← cas.PriorityQueue
7: Dist=cas.ShortestPath(q,Ha) ▷ Algorithm 4.3
8: while Dist<r do
9: InObj.add(cas)

10: p = Euclidea−NN(q)
11: cas=new CAStar(p,q)
12: Ha ← cas.PriorityQueue
13: Dist = cas.Shortestpath(q,Ha) ▷ Algorithm 4.3
14: end while
15: while Dist ≤ 2r do
16: ExObj.add(cas)
17: cas=new CAStar(p,q)
18: Ha ← cas.PriorityQueue
19: Dist = cas.ShortestPath(q,Ha) ▷ Algorithm 4.3
20: end while
21: end function

some frameworks for nearest neighbor queries in network space by defining an ar-

chitecture that integrates the Euclidean and spatial network information. One of

the framework called the Incremental Euclidean Restriction (IER) can achieve high

efficiency to probe the k candidate data points.

In our approach, we adopt the IER strategy to search kNN data points for

a moving query. Further, we assume there is a spatial index: R-Tree for the data

objects which is useful for all query types. Initially, the algorithm retrieves the

number of k candidates’ data point in Euclidean distance referring the R-Tree index.

And then, the road network distance between each candidate data point and the

query point is obtained by A∗ algorithm. Each data point with the minimum

network distance are sorted in ascending order according to their distance and

then data points are copied into topk data point list. The auxiliary vicinity object
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set (AV OS) with vicinity object of each k candidates’ data point are created for

efficient processing of the mobile query object.

Next, the query algorithm confirms the topk list by performing the following

iteration. Let the kth nearest data point from the topk list be pk and the distance

between pk and query object be Distk. The algorithm probes the next possible

nearest data points in R-Tree until dE(q, pi)>Distk is satisfied. We can summarize

the repetition process as follow:

1. Search ith (i>k) nearest data point pi in Euclidean distance.

2. Create the A∗ objects of ith nearest data point and store in the auxiliary

vicinity object set.

3. Calculate the road network distance between the query object and pi.

4. If the network distance of the ith data point is shorter than the Distk, the topk

will be updated with the data point having the minimum network distance.

When the next nearest data point does not satisfy the condition, the final topk set is

confirmed as an optimal kNN result of the query object and the result is returned.

The processing procedures described above are stated as pseudo code in Algorithm

4.2

Next, we continue the discussion of the calculation of the road network distance

using the A∗ algorithm in continuous kNN queries. Algorithm 4.3 outlines the

pseudo code of the A∗ algorithm to find the network distance between q and data

point p. We assume that two data point q and p on a road network are given and

the algorithm returns the minimum network distance dN(q, p). The A∗ algorithm
employs a heap (Ha) to extract the shortest path exploration. The heapHa manages

the record with the following format: < h, n, d > where n is the current notice node,

h is the heuristic cost calculated by dN(q, n) + dE(n, p), and d is the road network

distance from q to n. Records in the heap are ordered by the heuristic value.

Initially, in line 2, the closed set CSa is initialized. Next, the records from Ha are
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de-heaped. Line 4 calls the deleteMin() function which returns the record with

the minimum h value.

In Algorithm 4.3, we set the closed set CSa which keeps the expanded record

once as describe in line 9. To expand the neighbor node, expandNode function

is executed in line 10. The expanded nodes comprise a new record with the heap

format and en-heap in Ha outlined from line 11 to 13. The algorithm returns the

distance when the expanded node reaches the given data object p and then the

algorithm is terminated.

Algorithm 4.2 CkNN Algorithm

1: function CkNN(q, k)
2: *q is the query object & k is the number of NN objects
3: AV OS ← ∅, topk ← ∅
4: NNsetp1, .., pk = Eculidean−NN(q, k)
5: pnext, dE(pnext, q) = next− Euclidean−NN(q)
6: dEmax = dE(pnext, q)
7: for all p ∈ NNset do
8: AStar as=new AStar(p,q)
9: Ha ← as.PriorityQueue()

10: AV OS.add(as)
11: dN(p, q) = as.ShortestPath(q) ▷ Algorithm 4.3
12: topk.add(p.dN(p, q))
13: end for
14: repeat
15: pnext, dE(pnext, q) = next− Euclidean−NN(q)
16: dEmax = dE(pnext, q)
17: AStar as=new AStar(pnext, q) ▷ initialize object for A* Algorithm
18: Ha ← as.PriorityQueue
19: AV OS.Add(as)
20: dN(pnext, q) = as.ShortestPath(q,Ha) ▷ Algorithm 4.3
21: if dN(pnext, q) < dN(q, pk) then ▷ next NN is closer to q than kthNN
22: Replace kthNN (pk) with pnext
23: end if
24: until topk[k].dist > dEmax

25: return topk
26: end function
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Algorithm 4.3 A∗ algorithm
1: function ShortestPath(q,Ha)
2: CSa ← ∅
3: while Ha is not empty do
4: r ← Ha.deleteMin()
5: if CSa.contains(r.n) then continue
6: end if
7: if r.n == p then break
8: end if
9: CSa.add(r)

10: A← expandNode(r.n)
11: for all a ∈ A do
12: Dista ← r.h+ |l(r.n, a)|
13: Ha ← Ha∪ < Dista + dE(a, p), a,Dista >
14: end for
15: end while
16: return r.d
17: end function

4.4.3 Typical Principle of Safe-Region Generation

In order to compute the safe-region, firstly, we assume a large road network as

an undirected graph modeled by G(V,E,W ). V is the set of nodes (intersection)

(v ∈ V ), E is the set of edges (road segments) (e ∈ E), and W is the set of edge

weights (w ∈ W ). The edge weight is assumed as the length of the road segment in

our studies. Although, we assumed the road network as the undirected graph where

(v1, v2) ∈ E ⇔ (v2, v1) ∈ E for the simplicity of the explanation, we can apply for

the directed road networks where edges have a specific direction as well.

As mentioned, the process in generating a safe-region is the same as the gen-

eration of a high order Voronoi region on the road network map. As a simple

situation, a moving object continuously monitors two nearest neighbor (2NN) data

objects while it is moving on a road network. This simple situation is illustrated

in Figure 4.3. In the figure, a moving object q is represented as a white rectangle,

the white circles denote the data objects from p1 to p6. The query object probes
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the 2NN data points and generates the safe-region which is bounded within the

area represented by symbol x. In this example, the 2NN results of q are p1, p2 and

the safe-region is the part of the road segments shown by thick lines. All possible

places inside SR guarantee the 2NN result of q remains the same. Consequently,

we can formulate the query result in SR as follow:

Definition 4.6. Query Result (QR). QR is a collection of data points that satisfy

the query condition, which remains the same inside the safe-region.

Consider Figure 4.3, p1 and p2 are the members of QR. The objects p3, p4, p5

and p6 are the objects that lie nearer to the boundary of the safe-region than others

are called the rival objects. We define the rival objects as follow:

Definition 4.7. Rival Objects (RO). RO are the objects that determine the size of

the safe-region, in other words, they determine the border points of SR.

x

x

x

x

x

x

p2

p1

p4

p3

p5

p6

q

n1

n2

n3

n6

n5

n4

n8

n10

n7

n9

n11
1 1

1

1

2

4
4

2

14

3

1

4

1

3
3

8

5 3

1
1

2

1

2

1 13

1

n12

Figure 4.3: An example of a safe-region for set− 2NN query.

We continue with explaining the generation of the SR. SR generation starts

from the current position q, and gradually expands the region on the road network

until the QR result is same when query searching at the node v (∈ V ). The region

is expanded from the query point to the adjacent nodes similar to the Dijkstra’s

shortest path finding algorithm. The records of expanded nodes are inserted into
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the heap H with the following format:

<δ, n, p, l(p, n)>

where δ is the distance from q to n, n is the current notice node, p is the previous

visited data point and l(p, n) is the road segment between p and n. Heap is ordered

ascendingly with the minimum distance δ value.

In Figure 4.3, the 2NN of q is searched on road network, and we obtain the

result p1, p2 in QR by using the CkNN algorithm described in previous section.

The purpose of the rest of the operation is to find the SR in which the 2NN query

result is the same with QR and is defined as a SR of q. To construct the SR, the

road network nodes and road segments have to be expanded from the query object

gradually. The expanded nodes and segments return the same query result with

QR when 2NN is invoked from these nodes and segments are considered for SR. In

the example, the two records corresponding to two end nodes of the link on which

q exists are inserted into H. They are

<1, n8, q, l(q, n8)>,<1, n5, q, l(q, n5)>

Then, the record with the minimum cost is de-heaped from H. Thus, initially

<1, n8, q, l(n8, q)> is obtained from H. The cost of the two records in H are the

same in this example. However, we assume <1, n8, q, l(n8, q)> is de-heaped here.

And then, the 2NN at n8 is searched and checked whether the 2NN at n8 is the

same with QR or not. Here, the 2NN queried at n8 gives the same result with QR

of q, therefore n8 also lies in SR(q).

Similarly, the algorithm continues to search range expansion at the adjacent

nodes of n8, then n7 and n11 in Figure 4.3, and inserted into H.

<5, n7, n8, l(n8, n7)>,<5, n11, n8, l(n8, n11)>
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Here, we highlight the first value in the en-heaped records. Those values are

the δ values is the road network distance between q and n. In this stage, δ is the

sum of the values of the previous de-heaped record and current record. For instance,

for node n7, δ is 5 means the sum of the distance between q and n8 is 1 and the

distance between n8 and n7 is 4. Similarly, <1, n5, q, l(q, n5)> is de-heaped from H

and the similar distance calculation is applied at the node n5. For the node n5, the

following records are inserted into H:

<4, n4, n5, l(n5, n4)>,<4, n6, n5, l(n5, n6)>,<6, n2, n5, l(n5, n2)>

When the algorithm de-heaps the next record <4, n4, n5, l(n5, n4)>, the 2NN

are searched at node n4. Since the 2NN result at node n4 is the same as the QR,

the whole segment of l(n5, n4) is occupied in SR. Subsequently, beyond the node n4,

the next two records <8, n3, n4, l(n4, n3)> and <10, n10, n4, l(n4, n10)> are inserted

into H. The next de-heap record will be the <5, n6, n5, l(n5, n6)>. For the node n6,

the 2NN result does not return the same region as the QR. Therefore, we state the

whole segment l(n5, n6) is not included in SR and the border point of the SR will

exist on the segment l(n5, n6). To define the border point on a segment, we state

the following definition.

Definition 4.8. Border point of SR (BSR). BSR is a point x on a segment. Specif-

ically, the place on a segment that satisfies the equation dN(x,QRf ) = dN(x,ROn).

Where dN(x, y) shows the road network distance between x and y. QRf is the

furthest data point from x in query results (QR), ROn is the nearest data point to

x in rival objects (RO). In this example of Figure 4.3, QRf is p2 and ROn is p3.

By repeating the same process, all border points shown by x are determined.

4.4.4 Algorithms for Generating Safe-Region

The overall principle of the safe-region generation described in previous section is

outlined as a pseudocode in Algorithm 4.4. The heap H in line 4 controls the region
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expansion and the initial records at q are inserted intoH. In line 5, a closed set (CS)

is prepared to keep the road segment to avoid the duplicate check and RS is the

result set of the road segment included in the safe-region. In line 6, INITIALSET

function is executed to retrieve the kNN at q and the result is updated in QR.

This function mainly uses the CkNN algorithm to retrieve the NN result. In the

case of set-2NN query, the 2NN at q is set to QR (in this case, p1 and p2). The

procedure of the INITIALSET function for kNN based vicinity query is same

and only range query is differently implemented. The detail of this function for

general query types is explained in section 4.4.5.

Next, the algorithm iterates the H until the size of H becomes empty to gener-

ate the safe-region edges on the road segments from line 7 to 22. Initially, a record

with the minimum cost is de-heaped from H, and the road segment of the record,

r.l is checked whether it is already registered in CS. If r.l is in the CS, it means

that the segment has already been processed, and the rest of the processing steps

are skipped. Otherwise, r.l is added into the CS as stated in line 11. The node

from the current record should validate with the QR so as to define whether the

road segment occupy in the SR or not. In line 12, the current node r.n is checked

whether the query result at the node satisfy the query condition using the function

called VERIFY.

The query condition is that the result of kNN from the current node (r.n)

should be the same as the values in QR. However, VERIFY function will be

varied and implemented according to the vicinity query type. For example, for

ordered-kNN , if the query results from every expanded node (r.n) are identical,

the node r.n can expand to the next neighbor node for SR generation and the

expanded segments are included in SR. The adjacent road segments of the current

node are searched by referring to the adjacency list (see the line 13). The records

for all adjacent road segments are composed and en-heaped into H as outlined

in line 14 and 16. When the VERIFY function returns false, another function

ADDWITHCHECK calculates the part of the edge where the verify condition
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is satisfied and the satisfied parts is added into RS. The ADDWITHCHECK

function is presented in detail in the next section.

Algorithm 4.4 Safe-region Generation Algorithm

1: function SRG(q, k)
2: Input: q(current position of query object)
3: Result: safe-region
4: H ← ∅
5: CS ← ∅, RS ← ∅
6: CS ← INITIALSET (q)
7: H.enHeap(0, q, null, 0)
8: while H ̸= ∅ do
9: r ← H.deleteMin()

10: if CS contains r then continue
11: end if
12: CS ← CS ∪ r.l
13: if VERIFY(r.n,QR) then
14: nodes← AdjacentNode(r.n)
15: for all n ∈ nodes do
16: H ← H∪ < r.d+ |r.l|, n, r.n, n.l >
17: end for
18: RS ← RS ∪ ADD(r.l)
19: else
20: RS ← RS ∪ ADDWITHCHECK(r, k)
21: end if
22: end while
23: return RS
24: end function

4.4.5 Variation for Vicinity Queries

The principle and algorithm for the safe-region generation applicable for all vicinity

queries are presented in previous sections. We described some functions that are

executed while constructing the SR such as INITIALSET, VERIFY and AD-

DWITHCHECK. These functions have some variation for each vicinity query. In

this section, these variation are discussed.

In set− kNN and ordered− kNN query, INITIALSET(q) function returns
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the kNN objects of q. This function is simply achieved by executing the CkNN

algorithm 4.2 described above. In this function, we retrieve the k nearest objects of

the query object without considering the set or ordered or reverse value. After col-

lecting the kNN objects from the INITIALSET function, the VERIFY function

executes to verify vicinity query result separately. The function VERIFY(n,QR)

checks whether the kNN query result at node n accords to the result at q (the

objects in QR). To satisfy with the QR, the verify function requires to implement

differently according to the principle of each vicinity query.

Next, we discuss about the distance range query. The range query algorithm

initializes using the INITIALSET(q) function. In this function, a specified dis-

tance range D is given for instance 1km. This function returns the data objects

lying in a distance D from q. For the range query, the VERIFY(n,QR) function

requires the distance parameter in function as VERIFY(n,QR,D). This function

searches the data objects located in the distance range D from q, and returns true

if the result set exactly corresponds to QR. If other objects appear in the range

from a node or some objects disappear from the range, VERIFY returns false.

The INITIALSET and VERIFY functions in Algorithm 4.4 can be relevant to

generate the safe-region for any vicinity queries with minor modifications such as

adding the necessary parameters.

4.4.6 Determination of the Border of Safe-Region

In previous section, we stated that the safe-region is a collection of the road network

segments on which the query result remains the same with the value in QR of

mobile query object. Based on the discussion of the previous section regarding the

verification phase at the road network nodes, if the query condition is satisfied at

the node, we assumed the whole road segment ended at the node lies inside the

safe-region. On the contrary, when the query result at the expanded node does not

return the same result with QR of q, we described that the border of the safe-region

exists on the edge means the safe-region area will be completed at the border point
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without further expansion beyond the border.

In section 4.4.4, we defined the border point of a safe-region for all vicinity

queries. Algorithm 4.5 summarizes the calculation for the border position invoked

by the Algorithm 4.4. Initially, we need to collect the internal and external objects

from the node that do not satisfy the query condition. The searching of the internal

and external objects in Algorithm 4.5 is applied only for kNN based vicinity queries.

For the distance range query, the internal and external objects are searched in initial

phase as explained in section 4.4.1.

For kNN based vicinity queries, the internal objects are searched via the pre-

vious node and the external objects are retrieved from the current node as stated

in line 2 and 3. Alternatively, the internal objects are the objects from QR be-

cause they are probed from the previous node (node that satisfied query condition)

and the external objects are the rival objects (RO). The minimum distance from

external objects DExMin and the maximum distance from Internal objects DInMax

are examined in line 4 and 8. Line 10 examines the border position which satisfy

the definition 4.8. For distance range, ADDWITHCHECK function is needed to

implement with different parameter as outlined in Algorithm 4.6.

For a distance based range query, the algorithm checks the maximum network

distance between the node that satisfies the query condition for each internal object

as described in line 7. Then, line 9 calculates the InSplit position on the segment

(pl) which exists within the distance D minus the maximum distance of the internal

object to get the lower bound value. Similarly, to define the OutSplit position, the

algorithm examines the minimum network distance between the node and each

external object as described in line 11. In line 13, the OutSplit value is calculated

by extracting the range distance from the summation of the segment length and

minimum network distance. Finally, the actual split position (border position) is

defined with the minimum value of the InSplit and OutSplit in line 14. In line 15 and

16. ADDWITHCHECK function returns the valid segment to SRG Algorithm
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4.4.

Algorithm 4.5 Find the valid segment (kNN based Vicinity queries)

1: function ADDWITHCHECK (r, k)
2: Input:the record of the node that do not satisfy the query condition
3: Output:the valid segment
4: Polyline pl ← readPolyline(r.n) ▷ retrieve the segment that the node exists
5: previous← r.getPrevious()
6: current← r.getCurrent()
7: InObjp1, ..., pk ← CkNN(previous, k)
8: ExObjp1, ..., pk ← CkNN(current, k)
9: DInMax ← GetMaxDistance(InObj) ▷ QRf (x)

10: DExMin ← GetMaxDistance(ExObj) ▷ ROn(x)
11: borderPosition = ((DInMax +DoutMin + pl)/2)−DInMax

12: Segment = pl.split(borderPosition)
13: return Segment
14: end function

4.4.7 Improvement on Query Processing Time

In this section, we present an additional enhancement technique to improve (reduce)

the query processing time. The objects of interest on road network are typically

restricted by an underlying road network. Considering that when the data point

distribution is extremely sparse on the road network, it can suffer from long process-

ing time especially when we calculate the road network distance between objects.

In our study, the road network distance is calculated using A∗ algorithm (Algo-

rithm 4.3). As a drawback of A∗, when data points distribution is only one side

of the query object, the search areas overlap with each other. As we observed that

a node is visited several times while computing the distance when we search the

kNN of query object. Consequently, the efficiency of A* algorithm deteriorates

and it effects the overall query processing. To improve the performance issue, we

applied the idea of the single source multi-targets A∗ (SSMTA∗) [84]. The original
SSMTA∗ algorithm concurrently finds the shortest distance from a source(q) to

multiple target objects T . Basically, the processing flow of SSMTA∗ algorithm is
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Algorithm 4.6 Find the valid segment (distance range query)

1: function ADDWITHCHECK (r,D)
2: Input:the record of the node that do not satisfy the query condition
3: Output:the valid segment
4: Segment pl ← getSegment(r.n) ▷ retrieve the segment that the node exists
5: current← r.getCurrent()
6: for all p ∈ InObj do ▷ Get InObj from Algorithm 4.1
7: DInMax ← GetMaxDistance(InObj) ▷ QRf (x)
8: end for
9: InSplit = D + pl −DInMax

10: for all p ∈ ExObj do ▷ Get ExObj from Algorithm 4.1
11: DExMin ← GetMaxDistance(ExObj) ▷ ROn(x)
12: end for
13: OutSplit = DExMin + pl −D
14: borderPosition = GetMin(InSplit, OutSplit);
15: Segment = pl.split(borderPosition)
16: return Segment
17: end function

the same as the A∗ algorithm (chapter 2).

In Algorithm 4.4, CkNN query is invoked a large number of times. Firstly,

the query result (QR) with kNN objects set is initialized in the function called the

INITIALSET. In the following steps, CkNN algorithm is called by VERIFY

function to construct the verified region as a safe-region. In our approach, we

utilized the IER framework exploits kNN query in road network by integrating the

A∗ algorithm. Although, A∗ algorithm can perform efficiently to search the shortest

path, when it is repeatedly invoked a large number of times, it causes a drastic

increase in processing time. One crucial concern is applying a runtime distance

materialized path view to upgrade the performance especially in the verification

phase.

In the VERIFY function, the road network distance between each candidate

data point and a noticed node is calculated. The number of candidate data points

is not less than arbitrary k value and the number of invoking time of the VERIFY

function is same as the addition of the number of the nodes in the created SR and
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the nodes environs with the SR. This invoking process can be found when a source

position of the candidate data points set is fixed and the target nodes are changing

in a similar way of the SSMTA∗.

The A∗ algorithm repeatedly explores the search area in the road network for

each candidate data point. There is likelihood of checking the same node from the

different candidate. Therefore, we keep the expanded network nodes in the closed

set (CS) to reuse the processed records in A∗ algorithm. Once the records from H

are dequeued, these records are registered into CS. Since the distance of a dequeued

record has already been determined, CS has the shortest path distance. It means

that CS holds the materialized run-time distance view from an object to each node.

We can take this advantage to reduce the processing time in our technique.

Figure 4.4(a) shows the contents of H and CS after the road network distance

between a data point (p) and a node on the network have been searched by A*. In

the figure, the black rectangles express the contents of H, and white circles show the

records in CS. When the target node (n) moves to its neighbor node (n′), generally,

we need to apply A∗ algorithm to get the road network distance between p and n′

similar to the Figure 4.1(a). In our technique, we obtain the network distance using

one of the following options:

(option 1) If r.n has already been in CS, the distance between q and n can be

obtained by referring to d value in the record, that is r.d.

(option 2) Otherwise, recalculate the heuristic cost of all records in Ha for a new

target node n′ and then resume the search by A∗ algorithm.

After re-utilizing the content of H and CS with changing the target nodes n1

to n4, the number of records are plotted in Figure 4.4(b). The number of records

(shown by white circles) are reduced noticeably than the number of visited nodes

by repeating the pairwise A∗ algorithm four times.

We now discuss the method to apply the materialized run-time distance value
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Figure 4.4: (a) The content of the H and CS once invoking A∗ algorithm from
node n to p.(b) Instance of invoking A∗ algorithm for five time from n to n4 and
recycling the contents of CS.

to calculate the network distance. Let us recall the vicinity object described in

section 4.4.1 and 4.4.2. When a vicinity object is found, it is registered to the

candidate data point set (refer Algorithm 4.4) as an instance of the Vicinity Object

class. The pseudo code of this class is shown in Algorithm 4.7. This class has a

heap H, a closed set CS, and a data point origin. When a new instance is created

with the candidate data point, the function INITIALIZE is invoked to initialize

the H,CS, and origin.

To get the road distance for verification, DISTANCE(n) function calculates

the network distance between o and node n. First, CS is checked (line 9 and 10)

whether n is already processed or not. If n is found in CS, the function simply

returns the distance of the record (r.d). When the DISTANCE function is called

for the first time, H is empty. Line 11 checks H, and if it is empty, an initial record

for this data point is inserted. Otherwise, H value of all records in H are modified

according to the new target point n. This operation is necessary because heuristic

values of records in H are calculated from the preceding target node. Line 15 to 22

in Algorithm 4.7 are the same as the corresponding lines in Algorithm 4.3.

Function MODIFYWAVEFRONT alters the values of all the records in

H. Line 24 prepares new Htemp and initializes it by empty set. Lines 25 to 28

are iterated the through H till H is empty. The iteration is done by getting a
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record from H, recalculating the heuristic cost and adding into Htemp and then

finally transferring Htemp values to H. This function is called every time the target

point is changed. However, this function is executed in the main memory, without

referring to the adjacency list which is in the secondary drive. Therefore, this

function can be executed faster.
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Algorithm 4.7 Class Vicinity Object
1: Heap H
2: ClosedSet CS
3: Point origin;
4: function Initialize(o)
5: Input: Data object o;
6: CS ← ∅
7: H ← ∅
8: origin← o
9: end function

10: function Distance(n)
11: r ← CS.search(n)
12: if r ̸= null then
13: return r.d
14: end if
15: if H == ∅ then
16: H ← H∪ < dE(origin, n), origin, n >
17: else
18: ModifyWaveFront(n)
19: end if
20: while H is not empty do
21: r ← H.deleteMin()
22: if CS.contains(r.n) then continue
23: end if
24: if r.n == p then break
25: end if
26: CS.add(r)
27: A← expandNode(r.n)
28: for all a ∈ A do
29: Dista ← r.h+ |l(r.n, a)|
30: H ← H∪ < Dista + dE(a, p), a,Dista >
31: end for
32: end while
33: return r.d
34: end function
35: function ModifyWaveFront(n)
36: Htemp ← ∅
37: while H ̸= ∅ do
38: r ← H.deleteMin()
39: r.h← r.d+ dE(r.n, origin) ▷ modify the heuristic cost
40: Htemp ← Htemp ∪ r
41: end while
42: Htemp

43: end function
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4.5 Performance Study

In this section, we cover the extensive experimental studies conducted on both our

proposed and basic approaches for various continuous vicinity queries. First, we

describe the experimental settings. Then, we report on a comparison with our

proposed approach and existing approach.

4.5.1 Experimental Environment and Settings

All the experiments were run on PC with Intel Core i7-4770 CPU (3.4GHz) and

16GB memory. All of the spatial query algorithms were developed using Java

language. We evaluated our proposed approaches on two maps viz. a small map

consisting of the center part of the Saitama city, and a medium map that includes

the center of the city and rural area. The detail information of each road map is

described in Table 3.1. In our experiments, we assumed query object was moving

and objects of interest were static. The objects of interest were generated by pseudo-

random sequence on the road network links with various distribution of objects of

interest on road network. For instance, the density of 0.001 means an object of

interest exists once 1,000 road edges. We evaluated our experiments over 500 query

objects created by pseudo random sequence and averaged the data. Table 4.1

summarized the parameter values used in the all experiments.

4.5.2 Experimental Results

In all figures, “Prop(S)” represents our proposed method and “Basic(S)” denotes

the basic algorithm. In addition, “S” and “M” in the parentheses indicates the

small and medium maps, respectively. The basic algorithm for range query probes

the objects of interest within range “r” as internal object and “2r” as external

objects using similar way of IER strategy without considering the performance ef-

ficiency described in section 4.4.7. While generating safe-region, the basic algorithm
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Table 4.1: Parameters used in performance evaluation of continuous vicinity queries
Parameter Setting

Number of objects in each density 24(0.001), 48(0.002), 124(0.005),
of objects of interest 249(0.01),498(0.02),1245(0.05)

(in small map)

Number of objects in each density 109(0.001), 218(0.002), 546(0.005),
of objects of interest 1093(0.01),2187(0.02),5468(0.05)
(in medium map)

Range value (in km) 1, 2, 2.5, 3, 4, 5
Number of nearest neighbors (k) 1, 2, 3, 5, 7, 10

Default data object density 0.005
Default arbitrary k value 5

Default range value (in km) 3
Randomly generated query objects 500

needs to invoke A∗ algorithm several times in VERIFY function to calculate road

network distance. Due to this reason, the basic approach needs large processing

time. Similarly, the basic algorithm for kNN based vicinity queries searches kNN

by applying pairwise A∗ algorithm repeatedly. All of the experiment results are

average value evaluated with 500 queries.

Processing time comparison

Figure 4.5 shows the processing time comparison for safe-region generation of set−
kNN query. In Figure 4.5(a), the horizontal axis represents arbitrary “k” value-the

number of queried nearest neighbors from the query object. For this experiment,

the distribution of objects of interest on the road network was set to default value

of 0.005. As shown in the figure, the processing time of our proposed approach is

about two orders of magnitude less than that of the basic method in both small

and medium map. We then compared the processing time by varying the density of

objects of interest as shown in Figure 4.5(b). In this experiment, arbitrary “k” value

was default value. The results demonstrate that our approach still outperforms the

basic approach. In this experiment, we observed that the processing time decreased
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gradually when the data point density was dense. When the distribution of objects

of interest is dense, the road network distance calculation between two nodes and

two objects become shorter. Consequently, the average processing time decreases

when the density of objects of interest is dense.
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Figure 4.5: Processing time comparison to generate safe region for set−kNN query
(a) conducted by varying k value, (b) conducted by varying the density of objects
of interest.

Next, we analyzed the processing time for ordered− kNN query as shown in

Figure 4.6. As expected, the size of safe-region for ordered− kNN query becomes

smaller than set− kNN query, because the order of the distance is also considered

in ordered − kNN query. Accordingly, the processing time of proposed algorithm

in both maps becomes faster compared to the set − kNN query. For both maps,

our approach is more efficient than basic algorithm in all cases.

The processing time comparison for reverse k nearest neighbor (RkNN) query

was conducted and the outcomes are shown in Figure 4.7. In these experiments,

the nearest data point (p) of the current moving object position was searched, and

then the region where p was included in the kNN set was retrieved. The size

of the safe-region of RkNN query became the biggest among three types of the

nearest neighbor queries. Consequently, the processing time also became longer

than set−kNN and ordered−kNN queries. Nevertheless, our proposed algorithm

takes less processing time compared with basic algorithm.
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According to the experimental outcomes, the processing time of all kNN

queries became short while the density of the objects of interest increased. The

main reason is when the density of objects of interest was high, the road network

distance between a query object and the kNN objects became short. Therefore, the

search area in the road network also became small. The most processing time tak-

ing part to generate a safe-region was the calculation of the road network distance

between the query object and each vicinity object. Therefore, the processing time

decreased in accordance with the increase of the density of the objects of interest.
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Figure 4.6: Processing time comparison for generating safe region of the ordered−
kNN query (a) influence of various k value, (b) influence of various density of
objects of interest.
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Figure 4.7: Processing time comparison for generating safe region of the RkNN
query (a) effectiveness of changing k value, (b) effectiveness of changing density of
objects of interest.

The processing time to generate the safe-region for range query is shown in
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Figure 4.8. Though, the processing time depends on the size of the range (r). For

these experiments, we defined the range r is road network distance.
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Figure 4.8: Processing time comparison for generating safe-region of the distance
range query (a) effectiveness of varying the density of objects of interest (r was set
3km), (b) effectiveness of the varying the road network distance range (r) value.

Effectiveness of the enhancements on network node access

In Figure 4.9, we evaluate the effectiveness of the performance enhancement. In this

experiment, arbitrary “k” value was default value and we examined with varying

the density of the objects of interest. More specifically, “B” is the basic algorithm

which does not apply the enhancement for processing time described in section 4.4.7.

In this section, we mentioned that the main defect of A∗ algorithm. To address

this problem, we adopted the idea of SSMTA∗. In addition, when the algorithm

invoked recently A∗ algorithm to calculate distance while executing kNN query, it

caused a drastic increase in processing time. For this reason, we applied a runtime

distance materialized path view in our proposed approach to save network distance

calculation time and several nodes access.

Figure 4.9 shows that our algorithm is several order of magnitude better than

the basic algorithm in both road maps. The number of nodes access of basic algo-

rithm is quite high. it is 10 to 20 times higher than the I/O cost of our proposed

method. Our algorithm reduces not only the number of accessed nodes but also the

processing time described in previous experimental results. Except distance range
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query, when the density of objects of interest was gradually dense, the number of

accessed nodes deceased because the searching area was gradually small. In the

distance range query, when the density was dense, the number of invoking the dis-

tance calculation increases with the increase in the number of data objects in the

specified “r”.
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Figure 4.9: Comparison of the number of accessed nodes between proposed and
basic approach of each continuous vicinity query in (a) small map, (b) medium
map.

Verification of the theoretical analysis on the safe-region size

Figure 4.10 shows the average number of candidate objects to generate safe-region

for three types of kNN queries. For this experiment, we use default value for k=5.

The number of candidate objects increased according to the density of objects of

interest. Among three kNN based vicinity query, the number of candidates of

RkNN is the largest. We can define the size of the safe-region according to the

number of candidates in SR. In theoretical section 4.3, we mentioned that the size

of the SR of ordered − kNN is the smallest and the size of RkNN query is the

largest. The size of SR of each vicinity query is demonstrated in Figure 4.10. In

addition, the size of the safe-region depends on the requested query type and the

distribution of the objects of interest on the road network. When the objects of

interest are sparsely distributed around the vicinity of the query point, the size of

the safe-region becomes large. Contrarily, when the objects of interest are densely
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distributed, the size becomes small.
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Figure 4.10: The number of candidates comparison of various vicinity query (a)
evaluated on small map, (b) evaluated on medium map.

Effectiveness of the query request to server

When the query object moves fast, the moving query object needs to request a new

safe-region frequently to the server. On the contrary, the query object moves slowly

or stays at a position for a while, the frequency to request a new safe-region to the

server becomes low.

To evaluate the frequency of query request to the server, we conducted exper-

iments to investigate the average distance from neighboring queries to the server.

For the moving path of the moving objects, we used both real paths and randomly

generated paths for the moving objects in the experiments. To generate a path on

the road network, we randomly created a start point “s” and destination point “d”,

and a moving object started to move from “s” to “d” via the shortest route. When

a moving object arrived at “d”, a new destination point “d′” was set randomly and

the moving object continuously moved to new “d′” from the current location. By

repeating this process, travel paths of moving objects were generated. Besides, we

prepared 100 real paths.

Figure 4.11 shows the average trip distance between two neighboring queries

requested to the server to analyze how frequently mobile query object contacts to
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server by varying the density of the objects of interest. Two neighboring query

means for instance, initially, a moving object moves from randomly defined “s1” to

“d1”. When it reaches “d1”, the new destination “d2” is set and it travels from “d1”

(as “s2”) to “d2”. The queries that are invoked between two starts and destinations

are called neighbor queries. In these figures, the vertical axes represent the traveling

distance of a moving object within a safe-region and the horizontal axes denote the

density of objects of interest. The k value is set to default value. The experimental

results show that the average traveling distance decreases as density of objects

of interest increases. When the size of the safe-region decrease, the frequency to

request a new safe-region to the server increases. Consequently, the communication

cost becomes higher in such situation. As we explained previously, the size of the

safe-region of the RkNN query becomes the biggest comparing to the other kNN

queries.
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Figure 4.11: Average travel distance of moving object between two neighbor queries
on (a) small map, (b) medium map.

Effectiveness of mobility rate of query object

When a moving object moves with various velocity, the effect of velocity on the

performance of our approach and basic approach is examined in this section. We

proceed to examine the traveling distance between neighboring queries by varying

the velocity of the mobile query object in Figure 4.12. As we expected, the distance

between two neighbor queries will be decreased when a object moves rapidly to new
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position.
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Figure 4.12: Average travel distance of moving object between two neighbor queries
on (a) small map (b) medium map

While a mobile query object is moving along the randomly generated path, we

analyzed the query processing time of each vicinity query and the results of both

small and medium map are presented in Figure 4.13. We examined the performance

where the velocity of query object varied from 5 km/h to 50 km/h. We generated the

10 travel paths of moving query object randomly with various velocity (5-50 km/h)

and query processing was conducted with the distribution of object of interest set

to 0.005 and arbitrary k value set to 5. We assumed the query object moves along

the path with the same velocity. We measured the the processing time of each trip.

When a moving object moves from one position to another rapidly, it can cover

the long distance. In addition, the processing time increased with the increase in

the velocity of query object because the mobile query object left their respective

safe-region more often and new safe-region with updated query result required to be

recomputed more frequently. The more the new query requests to server, the more

the processing time consumes. However, our approach reduces the query processing

time more than 10 times compared with the basic algorithm in any map.

Figure 4.14 studied how our approach and existing approach behaves on the

network node expansion according to the varying velocity. Excluding the varying

velocity, the number of expanded node of the existing approach is larger than our
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Figure 4.13: Average query processing time for each vicinity query while executing
continuously in (a) small map (b) medium map

approach. Due to the performance enhancement described in section 4.4.7, our

approach saved a few hundreds of node expansion by reusing the content of heap

and closed set and adopting the SSMTA∗ approach. As we noticed that, among

three vicinity queries, RkNN query expanded several network nodes more than

other approaches.
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Figure 4.14: Average expanded nodes for each vicinity query while executing con-
tinuously in (a) small map (b) medium map

We next examine the communication count between server and mobile query

object upon the various velocity of query object. As we described the nature of each

vicinity query especially ordered− kNN , set− kNN and reverse kNN query. The

ordered− kNN query considers the distance order of each query result. Therefore,

the probability of the query result alteration is high compared with other vicinity
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query. When the velocity of mobile query object increases, the chance of query

result changes is high because the query object moves fast and thus the mobile

query object needs to contact the server frequently to get new query result with

new safe-region. However, the server contact number of set − kNN and reverse

kNN are relatively lesser than ordered − kNN query because set − kNN do not

consider the distance order in query result and Reverse kNN query result is valid

as long as a specified given object of interest lies in the safe-region. Figure 4.15

is illustrated how frequently each vicinity query requests new query result to the

server. As we expected as the mobile query object moves fast, the number of server

and mobile object communication increases as shown in Figure 4.15.
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Figure 4.15: Average new query with new SR requested count to server of each
vicinity query while executing continuously in (a) small map (b) medium map

4.6 Summary

In this chapter, we mainly studied the various vicinity query processing techniques

for dynamic environment. The query processing in a dynamic environment needs to

monitor and maintain the correctness of the query results until the query processing

is terminated or the loss of interest in the query result occurs. Therefore, the

frequent location updates from the moving objects incur in the server. In the

simplest case, whenever an object moves, it sends its new location to the server.

Obviously, this can be very wasteful, for instance if the moving object is within an
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area where it does not affect any query results. Making the informed decision when

to communicate update the query result becomes a key design issue to avoid such

problem.

Among the several options to accomplish with the optimal decision, the safe-

region is bounded by the road segments around the moving clients and needs to

re-compute when the certain events take place such as a new query is invoked, or

the moving object crosses its safe-region boundary. This strategy can reduce the

frequent location update issues and improve the scalability of the query processing

continuously. However, there is processing time deficiencies in some existing works

of the safe-region generation especially in spatial network. Therefore, we proposed

the fast safe-region generation for continuous vicinity queries.

The approach to generate the safe-region for vicinity queries including ordered−
kNN , set − kNN , RkNN and distance range queries were presented. While gen-

erating the safe-region around the mobile query object, the verification function

is invoked to confirm the query condition at each network node. This function

consumes large processing time. To shorten the processing time, we utilized IER

and the idea of SSMTA∗. We investigated a method that generate the run-time

materialization path view to achieve fast safe-region generation. Through the ex-

perimental studies we verified that, compared to the existing approach, our method

has an increased efficiency in terms of the processing time especially when data

objects are distributed sparsely. We observed that when the data point were dis-

tributed biasedly on road network, the size of the safe-region became large and

long processing time was necessary. In particular, the upper limit of the size of the

safe-region should be considered to avoid some exceptional cases.



CHAPTER 5

Continuous Trip Route Planning Queries

(CTRPQ)

A spatial query that finds an optimal trip route from a current position q to des-

tination d, visits exactly one data point from specified data point set in a trip is

called a trip route planning query. The optimal trip route can be measured by

several criteria such as the total distance of a trip route, the total traveling time or

the total toll fees. In this chapter, we will discuss the trip route planning queries

for both static and dynamic environments using our proposed strategies to improve

the average processing time.

Definition 5.1. Trip Route Planning Query (TRPQ). Given N categories of data

point sets Ci(1 ≤ i ≤ N), a current position q and a destination d, TRPQ retrieves

the minimum cost route while visiting each data point pi selected one each from

Ci(pi ∈ Ci) during the trip from q to d.

The trip routes are denoted by R1...N(q, d). The subscript [1, ..., N ] shows each

data point visits in predefined order from category one to category N . The trip

route visits from the first category is denoted by RN(q) for the simplicity. Table

5.1 summarizes the notations which frequently appear in this chapter.

99
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Several variation of TRP queries have been proposed in [38], [39], [59], [50].

In the first type [38], this query specifies only the visiting categories called a trip

planning query (TPQ). In second sort [39], both visiting categories and orders

are specified. It is called an optimal sequence route (OSR) query. The spatial

condition when the start and destination locations are same point, is called a multi

type nearest neighbor (MTNN) query [50]. The MTNN query needs to select a

sequence of data points that gives the shortest trip route length. The next sort of

query covers the studies of [38] and [39] and combines with an additional idea to

retrieves the trip routes involving several destinations based on some traveling rules,

namely a multi-rule partial sequence route (MRPSR) query. For example, a user

plans a short trip around the town including ATM , gas station and supermarket.

MRPSR query [59] applies traveling constraints that a user needs to visit ATM

first to withdraw money before going to the next places to find the route with the

relatively shortest traveling distance.

5.1 Snapshot Trip Route Planning Queries

We explained the characteristics of the general snapshot queries on spatial network

in the chapter 1 and 2. In this section, we will mainly discuss the trip route

planning query for static environment. We discuss some existing approach and our

new approach for snapshot TRPQ in this section.

5.1.1 TRPQ Using Progressive Neighbor Exploration (PNE) Ap-

proach

Suppose Ci be a category of the data points to be visited, S be a sequence of Ci to

specify the visiting order S = C1, C2, ..., Cn where n is the number of category. A

query retrieving an optimal sequence routes from the start to destination visiting

each category according to the given sequence S is called the optimal sequenced

route (OSR) query and was proposed by Sharifzadeh et al. [39]. PNE is based
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Table 5.1: Frequently used symbols in chapter 5

Notation Meaning

N
The number of categories to be visited

Ci
The visiting data point category (1 ≤ i ≤ N)

Cfrom
The category which starts from

p11
p1(∈ C1) from the category 1

p12
p1(∈ C2) from the category 2

q
The current position of the moving object

d
The destination of the moving object

dE(x, y)
The Euclidean distance between x and y

dN(x, y)
The road network distance between x and y

RN(q)
The optimal sequenced route starting at q, visiting N kinds of data,
then terminated at the destination d

LN(q)
The total trip route length of RN(q)

RE
N(q)

The optimal sequenced route searched in
Euclidean distance

LE
N(q)

The total trip route length of RE
N(q)

R2,...,N(p, d)
The partial OSR starts from p and ends at d,
visiting each data point from C2 to CN

L2,...,N(p, d)
The total length of R2,...,N(p, d)

on finding the distinct categories of nearest neighbors progressively to construct

the optimal route from start point to destination. Originally, PNE algorithm

is proposed to apply for OSR query on road network with a specified sequence

category. PNE utilizes INE [26] to search the nearest neighbor objects from

visiting category efficiently. Generally, PNE retrieves a nearest data point from
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the first visiting category (p1k ∈ Ck). Then, the search continues with the next

nearest point of p1k from the next category Ck+1. In parallel, the next nearest

point p2k(∈ Ck) of the first category Ck is also searched from p1k. Repeating these

procedures, the search is terminated when N types of categories are found and the

destination d is reached. In PNE, nearest neighbor searching starts from every

visited data point of each category causing a massive node expansion. In addition,

PNE expands the search area using the way similar to the Dijkstra’s algorithm,

consequently, PNE requires a long processing time and blemishes the performance.

To improve the performance in finding the optimal route, a different approach for

TRPQ is presented in the next section.

5.1.2 TRPQ with A* Algorithm

To solve the PNE problem, Htoo et al. [83] proposed a new approach for OSR

query based on the A∗ algorithm called OSRA. The A∗ algorithm is one of the

renowned algorithm to find the shortest route given start and destination points.

OSRA algorithm utilizes the advantages of A∗ algorithm to address the OSR query

problem. In OSRA algorithm, a search path starts at q then finds the p11 from the

first category C1. In parallel, the searching from q finds another data point from C1

in the same way as the PNE. Figure 5.1 illustrates the optimal route searching of

OSRA approach. In the figure, while the search path starts at q and visits the data

points p11 and p21 , then the searching route reaches a node na. This route is called

the partial route and denoted as PR1,..,2(q, na). A partial route (PR) starting from

a point s visiting the i types of data points and reaching a node n is denoted as

PR1,...,i(s, n). The length of the PR is denoted as LPR1,...,i(s, n).

The node expansion from the network node na makes a reference with the

adjacency list to get all adjacent nodes n and the following record is composed for

each adjacent node. These composed records are inserted into a heap H as below:

<Cost, Ci, L, n, na, Pprev>
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where Ci is the next visiting category, L is the partial route length, LPR1,...,i(s, na)

is the length of PR, and Cost is L + dE(n, d). Pprev is the last visited data point

that belongs to Ci−1. The heap is ordered by Cost value. The value of na from the

previous expanded node keeps restoring the trip route path by backtracking form

n to q.

Generally, the shortest path search algorithms such as Dijkstra’s and A∗ algo-
rithm register the de-heaped records in a closed set (CS). To avoid the duplicate

node expansion, before storing the de-heaped record into CS, de-heaped record

from H is checked whether it has already been included in CS. In practice, CS

is implemented by a hash table or balanced binary tree. Each record in CS is as-

signed a key with a combination of the current node (n) and the previous visited

data point Pprev because a node on the road network needs to be accessed multiple

times when the previous visited data point is different. For example, the search

path targeting to C1 is starting from q finds the data point p11 and p12 belonging to

C1. After that, the next search targeting category C2 starts from both of them.

The searching from two data points are performed independently. Therefore,

a node that has been expanded by another search get expanded again which causes

a rapid increase in processing time. By repeating the DeleteMin which de-heaps

the record with minimum value, operation on H and the node expansion, the search

area is gradually enlarged. The search is terminated when the extracted record from

H reaches the destination d. Although OSRA algorithm avoids circular expansion

for all directions from start point by adopting the A∗ approach, due to the nature

of OSR query, the same node gets expanded more than once. In addition, OSRA

algorithm runs fast when the distribution of all data points from all categories is

similar. In contrast, when the data point distribution of each category varies, there

is a great effect on the processing time which increases the processing time.
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Figure 5.1: An example of optimal sequence route query using A∗ algorithm.

5.1.3 Sparse Category First Algorithm for TRPQ

Htoo et al. [83] indicated the problem of OSRA algorithm described in previous

section that when the data point distribution differs largely, the sparsest data point

category must be determined first to shorten the processing time. In [83], Htoo et

al. assumed the densities of the data points sets were known in advance. However,

this assumption does not satisfy for every real scenario. Therefore, the investigation

methodology of the density of the data point set distribution on road network is

presented in this section. The next section discusses how to solve the snapshot

TRPQ problem using the sparse category first (SCF ) algorithm.

We summarize the processing procedures of the SCF algorithm for trip route

query in the following steps:

Step 1 First, the algorithm searches the shortest path connecting start position q

and destination d utilizing the A∗ algorithm as shown in Figure 5.2(a). After

the algorithm defines the shortest path without any visited data points, the

contents of the heap (H) and the closed set (CS) are kept for the next steps.

Step 2 In next step, the algorithm identifies the sparse data point set among the

categories N . The algorithm probes the data points in each category by
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expanding the node n between q and d bounded by an ellipse region whose

focal points are q and d. Every time a data point is found in this procedure,

the category of the found data point is marked as a visited data point. The

above searching continues until at least one data point from all categories

are noticed. Then, it determines the last marked category Cl. Cl considers

the most sparsely distributed category around the shortest path connecting

between q and d. In Figure 5.2(b), the sparse category Cl is denoted with

stars, and the first found data point is v1.

Step 3 The problem to find the trip route can be solved by dividing into two

sub-problems; one is finding the partial route from q to v1 through l− 1 data

points selected each in Ci(1 ≤ i ≤ l−1), and the other one is finding the route

from v1 to d through N − l data points selected each in Cj(l + 1 ≤ j ≤ N).

Then, it merges the results of two partial trip routes. Finally, the route

q → x→ v → y → d is found as illustrated in Figure 5.2(c). Suppose, a trip

route be TR and the total length of the route TR be L. In this step, the

trip route TR does not guarantee to be an optimal shortest route. So, the

algorithm examines this in the next step.

Step 4 The node expansion as described in step 2 continues until it satisfies the

condition: dN(q, n) + dE(n, d) ≤ L. The found data points from sparse cate-

gory Cl are added into a candidate data point set Cand as the l
th visiting data

point.

Step 5 When we find the new candidate from the Cl, it searches the trip route via

the lth visiting data point using the same way of step 3. Then, the shortest

trip route is returned as a result. In Figure 5.2(d), the data point v2 from Cl

is found and inserted into the Cand. The partial trip routes from q to v2 and

v2 to d are retrieved and the total trip route length is compared with TR to

find the shortest trip route.

For our optimal trip route, we present the following lemma that validates the
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optimal shortest trip route.

Lemma 5.1. The shortest trip route visits one of the data points in Cand as the lth

visiting data point.

Proof. Suppose, the shortest trip route visits a data point p ( ̸∈ Cand) as the l
th data

point. The total length of the partial route from q to p and the next partial route

from p to d must be shorter than the first found trip route in Step 3, therefore the

following equation stands.

L1,...,l−1(q, p) + Ll+1,...,N(p, d) < L (5.1)

When L1,...,l−1(q, p) ≥ dN(q, p) and Ll+1,...,N(p, d) ≥ dN(q, p) stands, the follow-

ing equation is satisfied.

dN(q, p) + dN(p, d)>dN(q, p) + dE(p, d) (5.2)

However, we assumed that p is not included in Cand, therefore, dN(q, p) +

dE(p, d)>L and then

dN(q, p) + dN(p, d)>L (5.3)

The proof of this lemma is by contradiction.

5.1.4 Euclidean Based TRPQ

TRP query adopting the Euclidean restriction strategy is considerably fast in query

processing. This approach is proposed by Ohsawa et al. [82]; in this approach the

candidates for OSR in the Euclidean space is gathered, and then verified those

candidates in the road network distance using a R-Tree spatial index. Although the

length of the trip route in Euclidean distance gives the lower bound of it in the road
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Figure 5.2: The processing flow of Sparse Category First algorithm when TRPQ
visits four data categories: (a) search the shortest route between q and d, (b)
retrieves the object from sparse category among four data categories (c) retrieves
the optimal route via object from sparse category, and (d) next possible optimal
route via object from sparse category.

network distance, the shortest OSR in Euclidean distance is not always the shortest

in road network distance. Let the shortest route in Euclidean space be Sr and the

verified route in road network is LN(Sr). The shortest routes less than LN(Sr)

have the potential to be the shortest route in the spatial network. Therefore, all of

the OSR routes in Euclidean space less than LN(Sr) must be retrieved and any

OSR candidates in Euclidean space greater than LN(Sr) can be safely pruned. All

OSRs whose length are less than LN(Sr) can be determined using an incremental

search strategy. The searching process is controlled by a heap, and the optimal route

is found when the heap becomes empty. This algorithm can find the trip route in

two or three orders of magnitude faster in road network distance. Therefore, the

trip route searched in Euclidean space can be used for pruning the search space in

the road network.
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5.2 Continuous Trip Route Planning Query

We discussed about the TRPQ in a static environment in the preceding section. In

this section, we discuss about the continuous TRP query with an effective moni-

toring technique to provide up to date query result which is a crucial function for

any continuous query invoked by a moving objects.

In contrast to the regular queries on static environment that are evaluated

only once, a continuous query has to be monitored and evaluated to preserve the

freshness and update the query result continuously according to the current location

of moving object (MO). The nature of continuous queries can be designated as

client-server model. In this model, the clients (moving objects) issue queries to

the server for the computation of the queries. Imagine a simple TRPQ example,

a user driving a car (MO) in an unfamiliar city wants to know the nearest gas

station from the current location. The client (car) sends the query to the LBS

server and obtains the query result with the nearest gas station. However, when

the MO ignores the result and keeps driving to the destination, the query result

becomes invalid, and MO needs to request again the same query to the server. To

avoid this problem, the result can automatically update with the distance or time

interval, however, when the distance or time interval between the repeated query is

short, the MO will get the same result as the previous query. On the other hand,

MO may overlook the optimal result. One of the big challenges for the continuous

queries is to update the valid data continuously.

The traditional approach of using the index on the moving object locations suf-

fers from the constant update of the index and re-evaluation of all query whenever

the objects moves. The approaches for the continuous queries in the road network

continuously monitors the distance between a query and a data object or queries

are repeated periodically have been proposed. However, these approaches are not

efficient because when the frequency of request and update become high, the work-

load on the server becomes high. To overcome the server workload problem, the
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safe-region method for several types of location-dependent queries has been pro-

posed in [23], [65], [73], [80], and [81]. When a MO issues a spatial query to the

server, the server generates a safe-region which is an area such that the reported

result is valid as long as the MO remains within the safe-region. By the time the

MO leaves the safe-region, a new query result and safe-region are needed to request

to the server. However, these safe-region generation method cannot be directly

applied for continuous trip route query because their methodologies cannot achieve

the CTRPQ with multiple stopovers efficiently. To the best of our knowledge, our

strategies to address CTRPQ problem in road network with safe-region is the first

attempt.

As discussed, TRP query consumes a lot of processing time even while it is

invoked with the static objects compared with other spatial queries. Nevertheless,

we studied some TRPQ algorithms in section 5.1.2 and 5.1.3. These algorithms

can perform proficiently to retrieve the optimal TR. These algorithms are the

foundation of our work for the continuous TRPQ in searching the optimal TR.

In addition, we need a novel approach to process TRP query with the moving

objects. It was observed that the safe-region approach accomplishes efficiently in

several continuous spatial queries because it reduces the overall computation time

as the query needs to re-evaluate only when MO leaves the safe-region. Figure 5.3

shows an example of simple CTRPQ with generated safe-region. In this example,

before reaching to the destination d, three data points c1, c2 and c3 selected from

three distinct categories, are specified to visit. The color line shows the optimal

trip route and the marked region is defined with the plus signs as a safe-region.

Although the MO veers from the optimal route, the route is still optimal until

the current position is in the safe-region. Therefore, the MO only needs to target

to the first visiting point (c1) on the route if the user is still in the safe region.

Safe-region based solution for CTRPQ reduces the number of queries even MO

veers the query route while MO is in the safe-region. In the following sections, we

present an efficient and effective techniques to monitor MO to process TRP queries
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continuously using the concept of safe-region.

d

s

c2

c3

c1

Figure 5.3: An example of safe-region which is marked with plus symbols (the color
thick line is the optimal trip route between“ s”and“ d”, bold circles are denoted
as start and destination, black rectangles are data objects of the visiting category
1, the black polygons are data objects of the visiting category 2 and stars are data
objects of the visiting category 3)

5.3 The Strategies to Generate Safe-Region for Con-

tinuous TRPQ

On the continuous trip route planning queries, the current position of a moving

object (MO) changes continually. When a MO at q issues a query to a server, the

server searches the optimal TR with generated safe-region (SR) and sends the result

to the MO as illustrated in Figure 5.4. In this example, the optimal TR is visiting

the two data points p11 and p21 from category C1 and C2 (N = 2) respectively with

the uniquely specified visiting order. The MO always checks whether it is inside the

SR. When MO leaves SR, it requests a new optimal TR with the corresponding

SR. On the other hand, when the MO follows the route and reaches p1 which

belongs to the first visiting category on the optimal route, the MO issues a new
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query with relating safe-region from p11 and the visiting category number is reduced

to N − 1(C2). This procedure is repeated until the MO reaches the last visiting

category(CN). After the MO passes through the data point from the final category,

the SR generation is not necessary and the problem is converted into the shortest

path search between the current position and the destination. For the sake of

simplicity, we define the first visiting data point as p11 from category C1.

q

d

p2
1

p3
1

p 1

p2
p3

2

safe-region

Figure 5.4: Safe region and rival objects in CTRPQ.

A formal definition and properties regarding the trip route and safe-region are

given below:

Definition 5.2. Safe-region (SR). A SR is a collection of road segments on which

TRP queries issued at any point in the region gives the same result. In other words,

in the safe-region, RN(q) = RN(q
′), where q is the initial position of MO and q′ is

any position in SR.

While the MO abide in the SR, no new query is necessary even MO veers the

first queried trip route. The SR of TR satisfies the following properties.

Property 5.1. Let the first visiting data point on the TR searched from a position

q be p1(∈ C1). The first visiting data point searched from any other position (q′) in

the SR is identical with p1.

Proof. Property 5.1 is proved by contradiction. If the first visiting point of the

query from q′ is p′1 (̸= p1), the TR queried from q′ becomes RN(q
′) ( ̸= RN(q)). This

result contradicts the definition of SR. Therefore, this property holds.
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Property 5.2. When a TR is given, the rest of the route after visiting the data

point in the first category (C1) is uniquely determined except the case for plural TR

giving the same length.

Proof. The queried TR is the optimal (the shortest route). Therefore, if the first

visiting data point (p1) is given, the rest of the TR is uniquely determined.

According to the property 5.2, it is enough to search the area to find the safe-

region on the road network where the first visiting data point for the TRs is same.

By property 5.1, the first visiting data points are different on the TRs queried in

the SR. On the contrary, the first visiting data points that are different on the

TRs are queried by two end points (network nodes) of a network link across the SR

border. In this case, the shortest TR queried from a node included in the SR goes

through p1 (∈ C1), and the shortest TR queried from the other node of the link

goes through the other data point p′ (∈ C1). Hereafter, p′ is called a rival object

(RO). For example, in Figure 5.4, p13, p
1
4 and p23 are rival objects against p11.

Definition 5.3. Minimal Rival Objects Set. Minimal rival objects set is the set of

necessary and sufficient rival objects to form an SR.

5.3.1 Typical Approaches for Safe-Region Generation

This section presents the typical approach to achieve the safe-region generation for

the continuous TRP query.

Based on the property 5.2, the trip route queried by q always pass through a

data point p11 from C1 as the first visiting category in the safe-region (refer Figure

5.4). The SR to be generated is a region where the first visiting point on TR is

p1(p
1
1). The SR can be generated by expanding the region from p1. While generating

the SR, each expanded node must check and verify whether the first visiting point

on the queried TR is p1 or not. The node expansion is done using the same way

of the Dijkstra’s shortest path algorithm. Each records for the node expansion can
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be controlled by heap (H) with the following format of record <cost, n, l>. Here,

n is a current noticed node, cost is a road network distance between the expanded

data point (p1) and n: dN(p1, n), and l is a road segment where one edge is n and

the other is adjacent visited node. The records in H is stored in ascending order of

the cost value. During the node expansion, each dequeued record from H is added

to the closed set (CS) to avoid the duplicate node expansion.

Suppose, the de-heaped record from H is r, the TR starting from r.n (RN(r.n))

is searched by employing the algorithm described in section 5.1.2 or 5.1.3. First,

if the searched TR is with the first visiting data point p1, the link r.l is added

into the SR. Second, the adjacent links of r.n are obtained by referring to the

adjacency list, and the following procedure will be continued on each link. Let an

opposite end-point of r.n be nk and link be lk. A new record <n.cost+ |lk|, nk, lk>

is composed and inserted into H and CS. The above procedures are called the node

expansion. On the other hand, in the first stage, when the queried TR is not with

the first visiting data point p1, the further procedures do not continue because the

node is not included in the SR. Remarkably, even in this case, a part of the link r.l

can be included in the SR. Therefore, if the query condition for a part of the link

is satisfied, the part will be added into the SR.

Generally, the SR cannot be described as a closed region in the similar way as

the region formed by Voronoi decomposition. For example, when data points in C1

are distributed only around the center of the road network, the TR will contain the

same data point as the first visiting data point even when the query point is located

far away. In such a case, the SR becomes large, and the processing time suffers

drastically because the processing time is directly proportional to the number of

nodes contained in the SR. During the node expansion, we assume that the moving

object does not veer far away from the queried TR. Therefore, we set an upper

limit of the node number contained in SR. Thus, the node expansion for the SR

will terminate when the number of node is exceeded the upper limit, and then

send the generated SR to the moving object. The typical SR generation approach
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does not take into account the number of rival objects and the Definition 5.3 is

applicable. Consequently, the size of safe-region becomes large and the processing

time increases to generate the safe-region. Therefore, the definition 5.3 is required

to reduce the size of the safe-region and shorten the SR generation time effectively.

5.3.2 The Architecture of Our Proposed Strategies

The main concern about the typical safe-region generation approach is the large

size of SR and the deficiency on defining the number of the rival objects. In this

section, we present a theoretical analysis to evaluate the effectiveness of the safe-

region and propose two efficient approaches to generate the SR called the preceding

rival addition (PRA) and tardy rival addition (TRA).

Predictable number of rival objects (RO)

As we mentioned how the number of rival objects effects the size of safe-region

and the performance efficiency. If the minimal rival object set (MROS) is given

in advance, the safe-region can be obtained swiftly. In such cases, when the TR

starts from each object ro (∈ RO), R2,...,N(ro, d) and L2,...,N(ro, d) can be searched

in advance.

Suppose, the first visiting data object of the queried TR is p and the SR is

created around the data object (refer Figure 5.5). In figure, dp shows the length of

the trip between p and the destination d as (L2,...,N(p, d)). Five data points from

ro1 to ro5 are the rival objects of p. As described above, the length of TR from each

rival object (roi) to d (in figure di) can be calculated in advance. Consequently, the

SR can be created fast. We verify the TR length from n to the first visiting data

point with TR of other rival objects using the precomputed di. We assume that

n is included in the SR while the equation 5.4 stands. By applying the following

inequality, we generate SR.
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dN(p, n) + dp ≤ m
i
in{dN(roi, n) + di} (5.4)

In next section, we highlight two approaches to accumulate the minimum rival

objects.

n

d3

d1

d2

dp
d5

ro1

ro2

ro

p
ro5

q

d

safe-region

Figure 5.5: Minimal Rival Objects Set

Preceding Rival Addition (PRA)

Finding enough RO is necessary because it effects the shape and size of the safe-

region. When a TR is searched in Euclidean distance, we can obtain the candidate

of RO easily. The length of the TR in Euclidean distance gives the lower bound

of the TR in road network distance, LN(q) ≥ LE
N(q). Inside the SR, the length of

the TR starting from p1(∈ C1) and a length of another TR starting from p′ (∈ C1)

satisfies the following property:

Property 5.3. Let p1 be the first visiting point in a TR. When a network node n

is included in the safe-region of TR, a data point p′ (∈ C1) can be an RO if the

following inequality is satisfied.

L2,...,N(p1) + 2× dN(p1, n) ≥ LE
N(p

′
1) (5.5)

where the sub-script 2,...,N represents a route starting from the 2nd category to the

N th category.
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Proof. If the length of a TR passing through p′ is shorter than the TR passing

through p1, the following inequality is satisfied.

L2,...,N(p1) + dN(p1, n) ≥ L2,...,N(p
′
1) + dN(p

′
1, n) (5.6)

The triangle inequality implies that

dN(p
′
1, n) ≥ dE(p

′
1, p1)− dN(p1, n) (5.7)

Without loss of generality, from equation 5.6 and 5.7,

L2,...,N(p1) + dN(p1, n) ≥ L2,...,N(p
′
1) + dE(p

′
1, p1)− dN(p1, n) (5.8)

L2,...,N(p1) + dN(p1, n) ≥ LE
N(p

′
1)− dN(p1, n) (5.9)

L2,...,N(p1) + 2× dN(p1, n) ≥ LE
N(p

′
1) (5.10)

Therefore, the both side of the above inequality clearly follows.

The typical SR generation approach described in section 5.3.1. enlarges the

search area gradually from the first visiting data point and checks the queried TR

from each expanded node to verify the first visiting data point. These procedures

will proceed on every expanded node which deviate the performance efficiencies.

Therefore, we contrive a method to shorten the processing time to form an SR

by reducing the number of rival objects. While enlarging the SR, we retrieve all

possible RO that satisfy the property 5.3. We calculate the length of the TR

(i.e L2,...,N(p
′
1, d)) of each RO in advance. By employing the shortest path search

algorithm, the shortest TR starting from the expanded node n can be obtained by

searching between n and each rival object.

(i) Algorithm

We use R-Tree to index each data point category (Ci). R-Tree contains index
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to its entries and minimum bounding rectangle that contain all its data objects.

The detail description is given in Chapter 2. Algorithm 5.1 outlines the pseudo

code of the PRA algorithm for generating the SR. The parameter values in PRA

algorithm are q: the current position of the moving object, d: the destination of

the trip and N : the number of visiting categories during a trip. Initially, the lines

3 to 5 initialize a heap (H), the closed set (CS), the result set of the segments to

be included in SR and the set of the rival objects.

Next, the function called INITIALIZE is invoked. The main procedure of

this function can be summarized as follow:

1. Find the optimal TR starting from q to d visiting N categories using the

method of TRPQ explained in section 5.1.2.

2. Initialize the H with two records of the road link l on which the first visiting

data point of this TR (p1) exist. For instance, node a and b are the edges of

link l. la and lb are the parts of l is divided at p1. The composed two records

are described as follow:

<L2,...,N(a) + |la|, a, la>,<L2,...,N(b) + |lb|, b, lb>

3. Remove the found p1 from R-Tree.

The pseudo code of the INITIALIZE function is presented in Algorithm 5.2.

The entries from the H are de-heaped iteratively until the H becomes empty (line

6 to 22). A record with minimum d value is de-heaped from H described in line 8

and this record is registered into CS to avoid the duplicate accessing. In line 10,

ADDCANDIDATERO function is invoked from the node r.n de-heaped from H

to search the enough RO. To probe the RO, the Euclidean based TR (ETR) will

be retrieved from r.n until equation (5.6) is satisfied. The first visiting data point

from ETR will be added into the rival object set (ROS). In a special case, the first

visiting data point from the INITIALIZE function and the rival objects from the
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Algorithm 5.1 PRA

1: function PRA(q, d,N,Cfrom)
2: let Cfrom be C1

3: H ← ∅, CS ← ∅
4: SR← ∅, RO ← ∅
5: p1 ← INITIALIZE(q, d,N,H) ▷ Algorithm 5.2
6: while H not empty do
7: r ← H.deleteMin()
8: CS ← CS ∪ r
9: ADDCANDIDTERO(r, RO, p1) ▷ Algorithm 5.3

10: minDist←MINDISTINSET (r, RO) ▷ Algorithm 5.4
11: if minDist<r.d then
12: SR← SR ∪ CLIP (r.l,minDist)
13: else
14: SR← SR ∪ r.l
15: end if
16: for all e ∈ getAdjacentLinks(r.n) do
17: if e.l is not visited then
18: H.enHeap(< r.d+ |e.l|, e.next, e.l >)
19: end if
20: end for
21: end while
22: return SR
23: end function

first category are removed from C1 which means they are removed from R-Tree.

The pseudo code description of this function is presented in Algorithm 5.3.

Next, the algorithm examines the distance from the current node r.n to each

RO and determines the minimum distance among them in line 10 of Algorithm 5.1.

If the distance is smaller than r.d, it means a route visiting the RO is shorter than

the route visiting p1, in other words, r.n is not included in the SR. In this case, r.l

is divided into two segments, and the part TR passing through p1 which is shorter

than the rival object is added into SR (line 12). On the other hand, if the route

visiting p1 is shorter, the whole r.l is added into SR (line 14). All the adjacent

links of node r.n are obtained by referring to the adjacency list. The records of the

adjacent links are composed as shown in line 18 and inserted into H. The algorithm
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Algorithm 5.2 Initialize

1: function Initialize(q, d,N,H,Cfrom)
2: TR← RN(q, d, Cfrom)
3: p1 ← TR.p[Cfrom]
4: pl ← getNearestLinks(p1)
5: H.enHeap(< L2,...,N(pl[0]) + |pl[0]|, pl[0].n, pl[0] >)
6: H.enHeap(< L2,...,N(pl[1]) + |pl[1]|, pl[1].n, pl[1] >)
7: end function

Algorithm 5.3 AddCandidateRO for PRA

1: function AddCandidateRO(r, RO, p1)
2: TR← RE

N(p1, d)
3: next← TR.p[p1]
4: while 2 ∗ r.d>TR.length do
5: if next.p ̸∈ RO then
6: next.d← R2,..,N(next.p, d)
7: RO ← RO ∪ next
8: end if
9: RTree[p1].delete(next.p)

10: TR← RE
N(p1, d)

11: next← TR.p[p1]
12: end while
13: end function

stops when the heap becomes empty.

(ii) Obtaining the Minimum Rival Objects set

Algorithm 5.3 illustrates the ADDCANDIDATERO which obtains RO set

incrementally. Generally, the new objects which satisfy the Equation 5.5, are ob-

tained and added into RO. As we mentioned, the optimal TR on Euclidean distance

from p1 and visiting N categories is searched incrementally to assemble the RO in

line 2, and the first visiting data point (∈ C1) is assigned to the next variable.

Line 4 to 12 iterate to search new rival objects that satisfy the property 5.3 and

it is added into RO. Note that PRA approach removes the rival objects from the

R-Tree as described in line 9.

(iii) Analysis of the Minimum Road Network Distance
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The PRA algorithm analyzes the minimum network distance among the rival

objects. Algorithm 5.4 outlines the procedure of analyzing the minimum distance

between an expanded node r.n and each rival objects while the safe-region is grad-

ually enlarged. For calculating the network distance, the existing pairwise A∗ al-
gorithm can be applied. Though, A∗ algorithm is efficient enough to search the

shortest path (only distance) in the road network, the distance queries have to be

repeated several times. Therefore, we employ an efficient method to calculate the

distance with less processing time called on-the-fly network distance materialization

method.

We first start by describing the conventional pairwise A∗ algorithm before

describing our method. Suppose, two point a and b on the road network are given,

the network distance dN(a, b) is calculated by A∗ algorithm as explained in Chapter

4. In our pairwise A∗ algorithm, a heap (H) is used to retrieve the record with

minimum cost and the record format in H is <cost, n, dist> where cost is the value

of dN(s, n) + dE(n, d), n is the current noticed node, and dist is the road network

distance between s and n (dN(s, n)). Not only to prevent the duplicate searching

but also to reuse the record information, all de-heaped records are stored in closed

set (CS).

Initially, the heap is initialized with the record <dE(s, d), s, 0>, then the fol-

lowing steps are repeated.

Step 1 De-heap a record (r) with the minimum cost value from H.

Step 2 Inset r.n into CS only when it is not in CS.

Step 3 Obtain the adjacent nodes of r.n referring to the adjacency list until r.n

reaches d. For each adjacent node n′, compose the record as <dN(r.n, n
′) +

r.d+ dE(n
′, e), n′, dN(r.n, n

′) + r.d> and en-heap into H.

Step 4 When r.n reaches d, the path to d has been found, then return the r.d value

as the shortest path length.
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Now, to examine the road network distance between each RO and current node,

we adopt the pairwise A∗ algorithm and lemma 5.2 proposed in [84] and shown as

an example in Figure 5.6. In the figure, the space rectangle represents the node in

H and cross shows the nodes in CS. The Algorithm 5.4 details the road network

distance calculation between r.n and each rival object from RO.

Lemma 5.2. Let s be a start point, r.n be a current node and r.d is distance from s

to r.n. If a record r is included in a closed set CS, then r.d is the shortest distance

between s and r.n.

Proof. Suppose, np be an adjacent node of p on the shortest path. The dis-

tance between the s and p (dN(s, p)) can be calculated by the equation dN(s, p) =

dN(s, np) + dN(np, p). Here, dN(s, p) is the shortest distance on the road network.

Then dN(s, np) is also the shortest distance between s and np.

In Figure 5.6(a), the position of RO (p in figure) is fixed, on the other hand,

r.n moves around the surrounding area of q. Nodes n1 to n4 are the adjacent nodes

of q. Similarly, dN(ro, n1) to dN(ro, n4) are requested. In this situation, similar

operations are repeated when we apply A∗. This repetition can be avoided by

reusing the contents of H and CS. According to the lemma 5.2, the records in CS

have dN(ro, n) as distance value in the record. Therefore, if a destination node is

already in CS, dN(ro, n) can be obtained to refer r.d. In addition, the following

procedures are needed.

Step 1 Recalculate cost value of all the records in H by

cost = dN(ro, r.n) + dE(r.n, n)

Step 2 Resume the search procedure using recalculated H. Step(1) is executed

only for the nodes in the heap and no disk I/O is necessary, therefore, the

CPU time of this step is short.
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Figure 5.6(b) shows the status after the distance to n1 to n4 have been obtained.

As shown in this figure, the number of nodes in CS and H are considerably smaller

than five times of them in Figure 5.6(a). The difference of node expansion times is

directly proportional to the processing time.

Algorithm 5.4 minDistInSet

1: function minDistInSet(r, RO)
2: minDist← maxV alue
3: for all ro ∈ RO do
4: dist← AStar.ShortestPath(r, ro)
5: if dist>minDist then
6: minDist← dist
7: end if
8: end for
9: end function

n1

n2

n3
n4

q

p p

q

(a) (b)

Figure 5.6: To improve the efficiency of road network distance calculation, the
content of H and CS are reused instead of executing the similar operation.

Tardy Rival Addition (TRA)

In PRA, each ro (∈ RO) is retrieved by the trip route on Euclidean distance. The

TR from each ro to d visiting N − 1 categories must be determined in the road

network distance. The processing time becomes large with the increase in number

of RO. To search all possible ro incrementally, the found candidate RO must be

removed from R-Tree index. For data object deletion, R-Tree index is needed to be

copied into the main memory. When an R-Tree index is referred, a least recently
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used (LRU) buffer is used to improve the I/O response. Therefore, this deletion

is performed inside the buffer region to avoid the fact of soiling the R-Tree. To

avoid deletion procedure, we studied an approximate algorithm called tardy rival

addition algorithm.

(i) Algorithm

The overall processing of the TRA is the same with PRA. The main difference

is the function called ADDCANDIDTERO as described in Algorithm 5.5. In

comparing with PRA, TRA does not need to remove the rival object from the

R-Tree and the copy of the R-Tree is not necessary.

Algorithm 5.5 ADDCANDIDTERO for TRA

1: function AddCandidateRO(r, RO, p1)
2: next← NN(RTree[p1], r.n, p1)
3: RO ← RO ∪ next
4: end function

(ii) Obtaining Minimum Rival Objects Set

The principle of searching the minimal rival objects in TRA is finding the rival

objects by invoking the nearest neighbor query on road network distance targeting

to the first visiting category from the current notice node. The first visiting category

is the category that the SR is requested by the MO. While retrieving the RO, the

search area is gradually enlarged in the same way as the typical approach. The

nearest neighbor objects except the data point probed from the TR from the first

category are searched. And then, the found objects are inserted into RO set. In

this method, the RO search can be limited by the vicinity of the current location,

therefore, the number of the RO is likely to be reduced.

However, this method has possibility of missing the RO which makes an actual

shape of the SR. When the number of RO is not sufficient, the size of SR tends

to be enlarged compared with the actual SR size. Nevertheless, according to the

experimental results, the size of SR becomes a few percentage larger than the
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excepted size of SR. We can clarify the condition that overlooks the RO using the

Figure 5.7.

In Figure 5.7, when n1 and n2 are checked, the route passing through p1 is

considered the shortest because the RO has not been found, and then the expansion

is continued. When the node n4 is checked, the object ro1 is found as the first rival

object according to the NN result. The length of the TR passing through ro1 is

shorter than the TR passing through p1 from n4. Therefore, the n4 is not included

in the SR. However, nodes n1 and n2 have to verify whether they are included in

the SR because there is no rival object found when they are checked. Due to this

reason, a check is needed to trace back along the path to reach n4. When n1 is

verified, the n1 is closer to p1 than ro1. The condition of the line 11 from Algorithm

5.1 is false and the whole link from n1 will be included in SR. When n2 is checked,

the n2 is closer to ro1 than p1 and the query condition is true in line 11. In this

case, the border edge of safe-region will be on the link between n1 and n2. The

main defect of TRA is it does not guarantee to find enough RO to form an exact

shape of SR because some possible RO will be missed.

5
5

3 3
4

5p1

ro1n1
n2

n3

n4

n5

Border of SR

Figure 5.7: Safe-region generation by TRA.

5.4 Performance Study

In this section, we present the performance of each algorithms that we described

in previous sections. We experimented with several scenarios to analyze the per-

formance of the query processing and safe-region generation of each algorithms.

In the first section of experiments, we conducted for the static TRP query com-
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paring the performance of sparse category first (SCF ) algorithm with the OSRA

algorithm. These algorithms are presented in section 5.1.2 and 5.1.3. Next, we ex-

amined the performance of TRP query for continuous processing with safe-region.

We performed a comparative experimental study on three safe-region generation

approaches mentioned in section 5.3.

5.4.1 Experimental Environment and Settings

All of the experiments were performed on a PC with Intel Core i7-4770 CPU

(3.4GHz) and 16GB memory. All algorithms were implemented utilizing Java

language. We evaluated the performance efficiency on two maps viz. small map

consisting the center part of the Saitama city, and medium map is a medium size

map consisting the center of the city and rural area. The detail information of each

road map is described in Table 3.1. In addition, we described the environment of the

data object distribution on the road map; we generated 1000 start and destination

pairs samples randomly. Table 5.2 summarizes the parameter values used in the all

experiments for TRP query.

Table 5.2: Parameters used in performance evaluation of continuous trip route
planning queries

Parameter Setting

Relationship between number of data 24(0.001), 48(0.002), 124(0.005),
objects in each category and 249(0.01),498(0.02),1245(0.05)
the density of data objects

Default density of sparse data category 0.001
Default density of dense data category 0.02

Number of data object categories 2, 3, 4, 5
Randomly generated start and destination pair 1000

5.4.2 Performance Evaluation

(1) TRP query on static environment
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Figure 5.8 illustrates the performance of SCFA and OSRA approaches in

which the sparse data category was set as the first visiting data category (C1). We

defined the trip route visits the four data categories (C1 to C4) and sparse category

(C1) was 0.001 and C2 to C4 were 0.02. We set the start and destination points

are same which means a trip starts from “s” and visits the four categories then

returns back to “s”. In Figure 5.8, the horizontal axes show the trip route length

in kilometer and the vertical axes represent the processing time and CPU time in

second. The experimental results showed that the SCFA needed longer processing

time compared with the OSRA because SCFA needed extra processing time to

define the sparse data category.

When the distribution of data categories greatly varies and the sparse data

category was first visiting category, OSRA algorithm performed well. In the case

when the sparse category was first position, initially, OSRA started from “s” and

searched the data objects from the sparse data category concurrently and incremen-

tally until it reached the final destination. In this situation, the number of partial

route from “s” with sparse visiting category and expanded number of nodes were

less because the late arrival records from the sparse category were omitted. The

shortest route was considered as a optimal trip route. Consequently, the algorithm

accelerated the searching for the next category until reaching to destination (“d”).

When the sparse category was shifted to the next positions from Figure 5.9 to

Figure 5.11, the processing time and CPU time of the OSRA approach gradually

increased compared with SCFA approach. We can say that SCFA approach is

running with stable condition and does not depend on the position of the sparse

category. We noticed that the processing time of SCFA approach was relatively

high in some situation as shown in the figures. The main reason is that we generate

the start and destination sample pair and objects of interest on road network ran-

domly. Therefore, when the existence of objects of interest are very less between

the start and destination, a long network distance calculation time is required.

Consequently, the total processing time increased.
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Figure 5.8: When the sparse data category was in first position, OSRA and SCFA
approaches for snapshot TRPQ (a) processing time on small map (b) CPU time
on small map (c) processing time on medium map (d) CPU time on medium map.
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Figure 5.9: As the sparse data category was set at second position, OSRA and
SCFA approaches for snapshot TRPQ (a) processing time on small map (b) CPU
time on small map (c) processing time comparison on medium map (d) CPU time
comparison on medium map.
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Figure 5.10: The position of sparse data category was moved to third position and
OSRA and SCFA approaches for snapshot TRPQ (a) processing time compar-
ison on small map (b) CPU time comparison on small map (c) processing time
comparison on medium map (d) CPU time comparison on medium map.
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Figure 5.11: The position of sparse data category was changed to fourth position
and examined OSRA and SCFA approaches for snapshot TRPQ (a) processing
time on small map (b) CPU time on small map (c) processing time on medium
map (d) CPU time on medium map.

Figure 5.12 and 5.13 illustrate the average processing time of TR search. Figure

5.12 is the same experiment as the previous and illustrates the combination of

previous results throughout the position of sparse category. For this experiment,

we set the density sparse data category to 0.001. Figure 5.13 is the experimental

result of the density of sparse category changed to 0.002. The results approved that

OSRA has a great effect in processing time according to the sparse data category

position. On the other-hand, SCFA has relatively stable processing time over any

position of the sparse data category.
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Figure 5.12: For the trip that starts from “s” and comes back “s”, OSRA and
SCFA approaches varying the position of sparse data category (data object den-
sity=0.001) (a) processing time on small map (b) CPU time small map (c) pro-
cessing time on medium map (d) CPU time on medium map.
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Figure 5.13: For the trip that “s” and “d” are same,, OSRA and SCFA approaches
varying the position of sparse data category (data object density=0.002) (a) pro-
cessing time on small map (b) CPU time small map (c) processing time on medium
map (d) CPU time on medium map.

Next, we assumed the trip route as start and destination are different which

means the trip does not return back to start position and analyzed the processing

time of OSRA and SCFA. The experimental setting and procedures are same as

the previous experiments. The impact of the difference in start and destination

points are illustrated in Figure 5.14 and Figure 5.15. Our conclusion on the OSRA

and SCFA approach are still approved according to the results either destination

of the trip come back to origin or not. Figure 5.16 shows the impact of the position

of the sparse data category on the trip route with different start and destination
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position. We examined the efficiencies by setting the density of sparse data category

as 0.001 (Figure 5.16(a)-(b)) and 0.002 (Figure 5.16(c)-(d)). According to the result,

SCFA approach is suitable for the very sparse condition.
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Figure 5.14: OSRA and SCFA approaches for snapshot TRPQ (a) processing time
when sparse category is located at 1st position. (b) CPU time when sparse category
was located at 1st position (c) processing time when sparse category was located at
2nd position (d) CPU time when sparse category was located at 2nd position.
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Figure 5.15: OSRA and SCFA approach for snapshot TRPQ (a) processing time
when sparse category is located at 3rd position. (b) CPU time when sparse category
was located at 3rd position (c) processing time when sparse category was located
at 4th position (d) CPU time when sparse category was located at 4th position.
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Figure 5.16: (a) Processing time when the density of sparse data category was
0.001. (b) CPU time when when the density of sparse data category was 0.001. (c)
Processing time as the density of sparse data category was 0.002. (d) CPU time as
the density of sparse data category was 0.002.

(2) TRP query on dynamic environment

In the next section of the experimental evaluation, we analyzed the performance

of our approach for processing the TRP query continuously with safe-region. We

conducted the experiments with two scenarios:

(1) a trip starts from “s” and visits from 2 to 5 data categories then returns back

“ s”.

(2) a trip starts from “s” to “d” and stops from 2 to 5 visiting data categories.
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For first scenario, the start position and destination were same. While query

object is traveling, the algorithms continuously monitor the optimal trip route with

the visiting data categories using the safe-region. We made the comparison of three

safe-region generation approaches on processing time in Figure 5.17.

In Figure 5.17(a) is illustrated for the result of the experiment is conducted with

two data categories. We analyzed the processing time by increasing the number of

data categories from 2 to 5. The results are shown in Figure 5.17(b)-(d) respectively.

According to the experimental outcomes, TRA approach required least processing

time. When the distribution of the data object on the road map was sparse, the

processing time of PRA and TRA approaches were not much difference. However,

while the data distribution was gradually increased, the processing time of PRA

was more than TRA because PRA approach probed all possible rival objects among

dense distributed data. As can be seen from the result, the processing time of

basic approach (BA) was the highest among them. Remarkably, the trend of the

BA and other approaches were radically different. Because BA algorithm runs

snapshot TRP query continuously, it consumed huge processing time when the

data distribution was sparse. There was a consistent decrease in the processing

time with the increase in dense data distribution.
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Figure 5.17: Safe-region generation time comparison of three approaches for contin-
uous TRP query on small map (a) conducted the experiment with 2 data categories,
(b) conducted with 3 data categories, (c) conducted with 4 data categories, (d) con-
ducted with 5 data categories.

To make detail comparison of the processing time according to the various

travel distance between start and destination, we describe the experimental result

in Figure 5.18. In this experiment, we run the TRP query with 500 pairs of start

and destination that are generated randomly. Based on their various travel distance,

the processing time result of TRA and PRA are plotted. In this experiment, we

assumed that the trip starts “s” and returns back to the origin and conducted on

small map. In Figure 5.18, we confronted the impact of the SR generation time

with the sparse and dense visiting data categories. When the density of visiting

data category was dense, the trip route visiting data categories between random
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start and destination pair was gradually short and the SR generation time of each

approach was gradually increased.
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Figure 5.18: The detail SR generation time comparison between PRA and TRA
based on the various trip route length when (a) the density of the visiting data
category is 0.001, (b) the density of the visiting data category is 0.005

In second scenario, the start and destination location were different. We con-

ducted the experiments using the same procedures with the previous experiments.

According to the outcomes, TRA approach needed least processing time compared

with others as illustrated in Figure 5.19. To make a comparison between TRA and

PRA, we deduced that TRA approach ran fast without much depending on the

distribution of the data objects.

Similarly, to compare the individual processing time between our two proposed

algorithms for SR generation on the various trip route length, we conducted the

same experiment with the Figure 5.18. In this experiment, our trip plan is followed

with second scenario and the results are shown in Figure 5.20. According to the

result, the processing time was slightly increased compared with the Figure 5.18.

When “s” and “d” of a trip are same, the shortest path searching between the cur-

rent position and “d” are not necessary and the pervious expanded network nodes

and segments records inside CS can re-use to go back to the origin “s”. Conse-

quently, there is no more node expansion is occurred and we also save the processing
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Figure 5.19: For trip starts “s” and ends “d”, safe-region generation time compar-
ison for continuous TRP query on small map (a) conducted the experiment with
2 visiting categories, (b) evaluated with 3 visiting categories, (c) evaluated with 4
visiting categories, (d) evaluated with 5 visiting categories.

time. On the contrary, when “s” and “d” are different, the extra processing time is

required.

We noticed that the size of the safe-region generated by the TRA approach

was slightly larger with small percentage (3% to 7%) than the PRA approach as

illustrated in Figure 5.21. Note that the number of rival objects effect the size of the

safe-region. The PRA approach incrementally assembles the enough rival objects

until it satisfies the property 5.3. On the contrary, searching the rival object in

TRA approach failed to assemble the actual rival objects that we explained in
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Figure 5.20: The detail SR generation time comparison between PRA and TRA
based on the various trip route length when (a) the density of the visiting data
category is 0.001, (b) the density of the visiting data category is 0.005

theoretical sections. When the number of rival objects was not adequate, the size

of the safe-region intended to be large will be the main reason. In addition. we

investigated that the size of safe-region is slightly large when the number of visiting

data categories is less. When, the number of objects of interest existence on road

network is less and the more the number of road segment it expands, the more the

size of the SR it will be. The impact of the size of the SR according to the number

of visiting categories and the density of objects of interest distribution is illustrated

in Figure 5.21(a)-(d).

Finally, we compare the expanded node numbers while generating the safe-

region of the current visiting data category. We examined the number of the ex-

panded network nodes varying on the density of the visiting data category. In

section 5.3.2, we have described that the way of node expansion of TRA approach

is same as basic approach (BA). The average expanded node numbers of TRA

and BA are same as shown in Figure 5.22. The average expanded nodes of PRA

approach are slightly lesser than TRA and BA.
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Figure 5.21: Safe-region size comparison of PRA and TRA approaches on varying
the visiting data categories (a) evaluated with data point density was 0.005 (“s”=
“d”), (b) evaluated with the density of data point was 0.05, (c) evaluated with data
point density 0.005 (“s” ̸= “d”), (d) evaluated with the density of data point 0.05.
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Figure 5.22: The average number of expanded nodes comparison for SR generation
in CTRPQ when (a) start and destination of trip are same, (b) trip starts at “s”
and ends at“d”.
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5.5 Summary

The trip route planning query finds the optimal trip route with the multiple stopovers

during the start and destination. It is a kind of complex and time consuming query

even for static environments. Due to the rapid increase the number of location

aware devices, the studies of the spatial queries with the moving objects are be-

coming essential. The spatial queries are issued by the moving objects or need to

monitor the query result within a specified period to keep the latest query results

are called continuous queries. There are several methodologies applied to perform

the continuous query proficiently. Among them, safe-region approach is preferable

to reduce the work load due to the several request to the server. A safe-region is

an area in which the query result is valid as long as the moving object in it. The

moving object issues location updates to the server only when it moves out of the

safe-region.

In this chapter, we studied TRP queries for both static and moving objects.

For static TRPQ, sparse first category is presented as a new approach to address

the processing time issue when the distribution of data object is very sparse and the

distribution of data object are distinct among the several categories. For continuous

TRPQ, we mainly discussed the effective safe-region generation approaches. We

presented two SR generation methods called the preceding rival addition (PRA)

and tardy rival addition (TRA). Although the former approach (PRA) gives an

accurate safe-region, it needs moderate processing time. The later algorithm runs

fairly fast, however, it provides the approximate safe-region. We evaluated several

experiments for performance efficiencies of our proposed approach by comparing

with the typical safe-region generation approach.



CHAPTER 6

Conclusion and Future Work

With the rapid development in positioning technologies such as LBS application

and mobile technologies, tracking the spatial objects such as road information and

objects has become widespread in navigation systems. However, the main challenges

in spatial data processing are implementing efficient and robust network distance

calculation, efficiently manage the static or mobile objects location updates and

lessen the query processing time. To cover these challenges, initially, we studied

the snapshot RkNN queries for stationary spatial objects using the materialized

distance approach which is a kind of pre-computation approach utilizes the pre-

computed distance tables. To broaden our studies, we extended our knowledge

to process various spatial queries generated by the mobile query objects which is

more complex because query object is not static. In addition, due to mobile query

objects, its location and results are needed to be updated continuously to maintain

correctness optimal result. For a such kind of spatial queries which require update

frequently and heavy computation, in general, we focused to apply with on-the-fly

query processing approach. We studied prevalent spatial queries such as range, NN

queries and complex and time consumed query such as trip route query with mobile

query objects.
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Reverse k Nearest Neighbor Queries on Road Network

For static RkNN query, our studies covered two cases namely monochromatic

RkNN (MRkNN) and bichromatic RkNN (BRkNN) queries for road network.

The basic principle of our approach for the RkNN queries is to expand the search

area in concentric circles. The algorithm searches the data point in a circle with

the centered at the query point and radius equal to the distance between the query

point and the border node of the subgraph. The data points found within the range

need to examine whether they are the reverse data point of query object or not.

The range searching is invoked on the border node reduces the overall processing

time and the IER framework is adopted to perform searching and verifying the

query results. In addition, to compute the road network efficiently, we utilized

the distance materialization approach called SMPV structure which is a kind of

pre-computing approach. We compared our approach with the competitive method

called eager algorithm. According to the experimental evaluations of MRkNN and

BRkNN queries, eager algorithm requires longer processing time because the kNN

search is invoked on every visited node. It causes a large amount of node expansion

and consume longer processing time especially when the distribution data points

are sparse.

Our proposed strategy was verified with the experimental results that it can

retrieve the RkNN objects in road network quickly especially when the data point

distribution is sparse, and the arbitrary value k is large which is the main deficiencies

of the existing methods. The good point of Eager algorithm is that when the data

point density is high, it performs quickly as less searching range is necessary in the

road network. The processing time of our proposed approach does not depend on

the density of data point distribution. Therefore, when the data point is distributed

densely, our proposed approach does not have great effect. Hence, we can direct

the future work to advance towards an innovative approach by the combination of

our method and eager algorithm to obtain an efficient and adaptive query which

does not have direct impact due to data point distribution.
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Safe-Region Generation Method for Versatile Continuous Vicinity Queries

We also expanded our studies in continuous spatial queries. Unlike the snap-

shot queries, continuous queries need to be evaluated at every time instance in order

to ensure the correctness and validity of the query answer. In addition, if a query

object is mobile object whose location changes continuously with time, it requires

special handling from the database system. Using the traditional approaches such

as time-based, distance-based update strategy causes high communication cost be-

tween the server and mobile object and update rates which deteriorate the database

efficiencies. To guarantee providing an up-to-date query result and reducing the

server workload and communication cost, we studied about safe-region based con-

tinuous queries in second section of this thesis. Although, there are several related

researches works integrated with the safe-region and continuous queries there is

little interest on the safe-region generation applicable for multiple types of spa-

tial queries. Therefore, we proposed a versatile safe-region generation for various

vicinity queries including set− kNN , ordered− kNN , RkNN and distance range

queries.

In our approach, we assumed that query object moves in any direction and

the data objects are stationary. We constructed the safe-region corresponding to

the query object location which satisfies with the specific query types. Only when

the query object moves with invalid query condition (explained in chapter 4), the

moving object requests a new safe-region and query result to the server. During

the generation of the safe-region, the algorithm gradually expands the road network

node and segments from the mobile query objects until the query condition satisfied.

We guarantee that our approach does not access repeatedly the same network node

during the node expansion by keeping the expanded nodes in the closed set and

auxiliary object set. In addition, we proposed a run-time distance materialization

approach to advance the network distance calculation time. Note that a safe-region

corresponds to a region in a high order Voronoi diagram. Therefore, when the

data points are biasedly distributed, the size of the safe-regions is affected by the
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distribution of the data points located around the query point. When the data

points are distributed sparsely, the size of safe-region will enlarge due to the less

occurrence of the rival objects environ in the safe-region. Consequently, it increases

the processing time. One possible limitation of our approach is that it is a little

sensitive to the size of the safe-region. Therefore, practically, the upper limit of

the size of the safe-region should be considered to avoid such case. There are some

directions of future research: generalizing safe-region for more complicated spatial

queries and enhancing the approach to apply over the moving data objects.

Continuous Trip Route Planning Query (CTRPQ)

As next extended studies in this thesis, the trip route planning query (TRPQ)

for both static and continuous querying are presented. The TRPQ is applied to

retrieve the shortest trip route with multiple stopovers between start and desti-

nation. We have known that the main challenges of the trip route query either

in snapshot or continuous queries is the requirement of the large processing time

especially when the data points are distributed sparsely on the road network. To

solve this issue, first, we attempted for snapshot TRPQ and introduced the new

concept called sparse category first (SCF ) approach in order to shorten the pro-

cessing time on the sparse road network. Our proposed approach is intended to

apply when the data point distribution of each data point category is not the same.

The experimental results proved that our approach achieved our main purpose. For

these experiments, we made the performance comparison of SCF algorithm with

the OSRA∗ that probes the trip route based on the A∗ algorithm.

Additionally, there is no previous studies for TRP query to handle continu-

ous processing. We investigated continuous TRP query where a query object is

moving arbitrary directions and data objects on the road network are stationary.

The efficient way to update and monitor the MO continuously is using safe-region

approach, therefore, we proposed two approaches for generating the safe-region.

One is called preceding rival addition (PRA) which gives an accurate safe-region
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and next approach is named tardy rival addition (TRA) which can generate the

safe-region fast, but the safe-region is only for approximate. Although PRA can

generate the accurate safe-region, the processing time inclines linearly according to

the dense data point distribution on the road network. In contrast, TRA algorithm

does not depends on the distribution of the data objects. However, the safe-region

generated by TRA becomes about 3% to 7% larger than the safe-region of PRA.

The size of the safe-region is relating to the number of occurrence rival objects

environs the mobile query object.

We conducted several experiments to evaluate our proposed methods with the

basic algorithm called BA. The basic algorithm finds many redundant rival objects

when the density of the data point is high. This characteristic requires longer time

and declines the performance gradually. We guarantee that our approach does not

have duplicate accessing. PRA searches the rival objects in Euclidean distance,

and then compares the trip route length between the target object and the rival

objects until the equation is satisfied. PRA retrieves all rival objects while TRA

retrieves only those rival objects which lies in the neighborhood of the target objects.

Therefore, the processing time is short and the main issue of TRA is that it does

not guarantee to find the minimal rival objects. There are some possible directions

for future works: (1) examining our approaches on both query and data objects

are mobile, (2) Analyzing the TRA issue in finding the minimal rival objects and

providing the accurate safe-region efficiently, and (3) implementing in real world

location-aware devices.

In a nutshell, this thesis addresses several spatial queries algorithms to deal

with various spatial objects (static and moving object) in a road network. Our

approaches and proposals are targeted to address the main challenges in spatial

data processing for the various aspects of the spatial objects and spatial database.

According to the performance studies of our proposed approaches, the results indi-

cate that our methodologies are effective and feasible for lightweight location-based

service applications.
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