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In this study, we proposed a simple and effective image denoising method by introducing a unique tool named image
power spectrum sparsity. The finding of image power spectrum sparsity as one kind of image characteristic is original as
far as we know.

Image denoising, the fundamental preprocessing step of image processing, has played an important role in recent
years. Image denoising is the process of reducing the unwanted noise to obtain the original image from a noisy
image. The better the preprocessing, the higher the image quality, resulting in more suitable images for the targeted
applications. Image denoising is important because the images are corrupted by unwanted noise in various ways. For
example, the photos taken with a digital camera in low-light situations always include noise distributed with random
attributes, which is called white noise. Imperfect electrical sensors embedded in a digital camera also generate white
noise. The white noise degrades the quality of the image and produces unwanted artifacts which are the main obstacle
for further image processing applications. To reduce such noise, many researchers have proposed different denoising
methods based on linear and nonlinear filtering techniques.

For the linear filtering, Wiener filter (WF) is one of the effective filters for removing the additive white Gaussian
noise. WF is designed to minimize the mean-square error between the original image and the processed signal. WF also
has been implemented in several domains such as spatial domain, frequency domain and wavelet domain. The WF in the
spatial domain requires the knowledge of the associated autocorrelation and cross-correlation functions of the input and
the desired images. The frequency domain WF and the wavelet-based WF also require the knowledge of the image and
noise. Assuming the noise and original image as a prior knowledge is, however, impractical. Therefore, WF in the blind
condition has been proposed in recent years. These methods need to estimate the noise and image power spectra which
are complex and time consuming.

To avoid the complicated process of power spectrum estimation, a WF' in the blind-condition which uses multiple
images and averages the results obtained from the restored images of the WF was also proposed by another group.

However, this method still requires long computational time. The computational time is one of the concerned problems



because in the real time image processing, at least 30 frames need to be executed in one second. Therefore, the
computational time is the important feature to measure the performance of the denoising algorithm. Thus, it is necessary
to consider denoising methods which are effective for both performance and computational time.

Therefore, we consider a simple and effective method for image denoising in blind condition without the prior
knowledge of noise level. In order to provide good performance with the shortest computational time, we proposed a
spectral subtractive (SS)-type WF which is directly derived from the extension of one-dimensional signal processing to
two-dimensional signal processing. The SS-type WF only needs the noise variance to estimate the original image. To
improve the performance of SS-type WF, we proposed a parametric WF(PWF) by adding two adjustable parameters. In
order to estimate the noise variance, a simple noise variance estimation method is proposed.

In our proposed method, the image is assumed to be degraded by additive white Gaussian noise. To calculate the noise
variance, the observed noisy image is transformed into the frequency domain and the power spectrum is calculated. As
most of the power spectrum of the white Gaussian noise occupies the higher frequencies whereas most of the image
frequencies occupies the lower frequencies, the variance of the noise can be obtained from the higher-frequency part
of the image power spectrum. The higher frequencies of the degraded image exist in the boundary region of the image
power spectrum. Thus, we estimate the noise variance by averaging the boundary region of the observed noisy image
power spectrum. The noise level of the image can be estimated by various methods such as filtering based approach and
block-based approach. However, all these methods are complicated and time-consuming. The proposed noise variance
estimation method is simpler and ecasier. Although there can be overestimation and underestimation of noise level
depending on the image types, this problem can be overcome by the two parameters introduced in the PWF.

Preliminary experiments with some trained images are conducted to measure the performance of PWF and WF. It
is observed that PWF with the best parameters set provides better performance than WF. However, finding the best
parameters set for PWF is time consuming. Thus, it is necessary to set the best parameters automatically to reduce
computational time.

While analyzing the best parameters set, it is observed that the sparser the image frequency components contained
in the image power spectrum, the larger the parameters value. Therefore, to know the image frequency component

containing in the image, we proposed a unique tool named image power spectrum sparsity(.S) which can be calculated

directly from the observed noisy image power spectrum. As most of the image frequencies are concentrated in the
horizontal region and vertical region, S is calculated by dividing the sum of the whole power spectrum of the image
by the sum of the horizontal region and vertical region of the image power spectrum. The concept of image power
spectrum is original as far as we know. Interestingly, it is found that the image with the larger S needs the larger
parameters set whereas the image with the smaller S value needs smaller parameters set. It is also observed that S value
of the whole image is common to every noise level which means that S can directly be calculated from the observed
noisy image. To find the best parameters set automatically, the relationship between the best parameters and the S value
is considered and the image is divided into three different groups depending on the S value. Then, the best parameters
from the preliminary experiments are averaged for each group. In this way, the best parameters can be set automatically
without time consuming. To demonstrate the performance, the proposed method is compared with the state-of-the-art
methods by applying on testing images. The average computational time is also compared to verify the performance of
the proposed method. The experimental results showed that the proposed method provides a better performance with the

shortest computational time among the WF methods.



The finding of S gives a motivation to partially fulfill the requirements of noise level estimation method which still
needs to improve the accuracy for rich image texture image and the computational time. Noise level estimation plays
an important role to a variety of image processing algorithms because it can affect the performance of the applications
obviously. Many researchers have developed noise estimation techniques using single image and multiple images
based on the filtering-based approach and block-based approach. Among the noise level estimation methods, block-
based approach is one of the effective ones. In the block-based approach, images are divided into a number of sub-
blocks with different sizes. The sub-block with the smallest standard deviation is taken as the noise level of the image.
Many researchers proposed noise level estimation methods to overcome overestimation and underestimation of noise
level based on the block-based approach. There are block-based methods that take the image structure into account
by applying a number of masks to determine homogeneous sub-block and calculating the noise variance from that
homogeneous sub-block to overcome overestimation for rich texture images. These block-based approaches give some
accuracy of noise level estimation. However, long computational time is required depending on the number of masks to
measure the homogeneity of each sub-block. Another block-based approach considered the weak-texture image patch
by considering the gradients of the sub-blocks and statistics and calculating the noise level using principal component
analysis. This approach gives high noise level estimation accuracy with stability for different images. However, the
algorithm is complicated and long computational time is required.

In order to improve the computational time with some degree of accuracy for noise level estimation, we proposed
a unique block-based approach using the image power spectrum sparsity. In the proposed method, the noisy image is
firstly obtained. The noisy image is then sub-divided into sub-blocks. Each sub-block is transformed into the frequency
domain and the image power spectrum is calculated. To find the low texture-image sub-block, the concept of power
spectrum sparsity is considered. When S for the whole image is considered, if the image occupies the lower frequency
parts more than the higher-frequency parts of the image power spectrum, the S value can be the large. Otherwise, S will
be small. Furthermore, there will be a condition where the S value can be largest. For example, when we consider the
power spectrum sparsity for the image sub-block, S can be the largest value when there is no image frequency in the
horizontal and vertical regions or when the image sub-block is flat with the same image-texture (i.e. homogeneous).
Extending this idea can be applied to find the weak-texture image patch. Thus, the image sub-block with the highest
power spectrum sparsity is selected as the weak-texture image patch for the whole image. From the selected weak-
texture image sub-block, the noise level is calculated. Calculating the noise variance by averaging boundary region of
the high-frequency regions of the image power spectrum can result overestimation of noise because most of the image
frequencies are also eliminated while averaging the boundary region. Therefore, the noise variance is calculated by
sub-dividing the selected weak-texture sub-block with the smallest window size and averaging the boundary region by
omitting the regions where the image frequencies are concentrated. Finally, the noise level is obtained by taking the
square root of the estimated noise variance. To verify the effectiveness of the proposed method, different images that
can be found in the real-world situation are applied. The experimental results showed that the proposed method provides
a better performance especially for the noise level around the standard deviation 15 and 20. Futhermore, the proposed
method provides the shortest computational time among the block-based noise level estimation methods.

In summary, it is observed that the proposed method is simple and effective for image denoising. Because of the short
computational time, the proposed method is suitable for real time image processing applications. Moreover, the finding
of S is unique. Our proposed method has shown that S is a useful and effective tool that can improve the performance of

image denoising. Therefore, it is also expected that S can widely be used in image processing as needed.
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