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The Spectrum of Second Order Elliptic Operator  
and Useful Integral Inequality

DÔKU, Isamu
Faculty of Education, Saitama University

Summary
We consider the second order elliptic equation A(x, ∂)u(x)+q(x)u(x)=f(x), and also consider 

the integral inequality that provides us with a lower bound estimate of the associated quadratic 
form. In so doing, we need to introduce newly a positive continuous function λ(x) on the region in 
question. This type of estimate is quite very useful if we apply the result to the elliptic equation to 
obtain estimates of eigenfunctions for the equation. The principal purpose of this article is to settle 
down the positive continuous function λ(x) in a concrete manner. It suffices to involve the spectra 
of operator and the compactness argument in functional spaces, in order to realize the above-men-
tioned program.

Key Words:  spectra, second order elliptic operator, elliptic equation, integral inequality, compact-
ness argument.

1.  Introduction and notation
In this section we shall first explain the notation used throughout this article. We consider the 

second order elliptic operator
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1. Introduction and notation

In this section we shall first explain the notation used throughout this article. We consider

the second order elliptic operator

A ≡ A(x, ∂) = −
n∑

i,j=1

∂ja
ij(x)∂i = −

n∑
i=1

n∑
j=1

∂

∂xj
aij(x)

∂

∂xi
. (1)

We assume that the coefficients aij(x) of A are continuous bounded functions on Ω. The space

Mloc(Ω) consists of the functions u ∈ L1
loc(Ω) such that

lim
r→0

∫

Br(x0)∩Ω

|u(x)| · Φ(x) dx = 0, (2)

where we set Φ(x) = |x−x0|2−(n+δ) and Br(y) denotes the ball of radius r centered at y. For

u, v ∈ H1
loc(Ω), we define

∇Au(x) · ∇Av(x) =

n∑
i,j=1

aij(x)∂iu(x)∂jv(x) (3)

|∇Au(x)|2 = ∇Au(x) · ∇Aū(x) =
n∑

i,j=1

aij(x)∂iu(x)∂j ū(x). (4)

 (1)

We assume that the coefficients aij(x) of A are continuous bounded functions on Ω. The space 
Mloc(Ω) consists of the functions u ∈ L1

loc (Ω) such that
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n∑

i,j=1

aij(x)∂iu(x)∂j ū(x). (4) (4)
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The elliptic equation

 
The elliptic equation

A(x, ∂)u(x) + q(x)u(x) = f(x) (5)

is considered here, for complex valued functions q ∈ L1
loc(Ω) and f ∈ L2

loc(Ω). While, a

function u ∈ H1
loc(Ω) is said to be a solution to (5) if qu ∈ L1

loc(Ω) and

∫

Ω

(∇Au(x) · ∇Aφ(x) + q(x)u(x)φ(x))dx =

∫

Ω

f(x)g(x)dx (6)

for every φ ∈ C∞
0 (Ω). Let q ∈ L1

loc(Rn) and q−(x) := max(0,−Re{q(x)}) ∈ Mloc(Rn) and

assume that q is real valued. Then we set

P ≡ P (x, ∂) = A(x, ∂) + q(x) (7)

and define

(Pu, u) =

∫

Ω

(
|∇Au(x)|2 + q(x)|u(x)|2

)
dx (8)

for all u ∈ H1
loc(Ω). Notice that the integral (8) makes sense under these assumptions.

Our main aim of this article is to find out continuous functions λ(x) on Rn, not necessarily

positive but as large as possible, such that the following inequality

(Pφ,φ) ≥
∫

Ω

λ(x) · |φ(x)|2dx (9)

holds for all φ ∈ C∞
0 (Ω). In what follows, the norm ∥ · ∥ = ∥ · ∥2 denotes the norm in the usual

space L2(Rn). For any y ∈ Rn and R > 0, we define

ΛR(y;P ) := inf

{
(Pφ,φ)

∥φ∥2
: φ ∈ C∞

0 (BR(y)), φ ̸= 0

}
. (10)

It is interesting to note that ΛR(y;P ) can be identified with the lowest eigenvalue of the

self-adjoint realization of P in L2(BR(y)) under zero Dirichlet boundary conditions.

2. Principal result

We are going to prove a theorem which enables us to obtain non-constant λ functions,

quite similar as in (9) in §1 or similar as in (12) in the proceeding section §3. In Theorem 1

the functions λ(x) in question depend only on the direction x. As is well known, this type of

assertion would be in particular useful in applications of series of inequalities stated in §3, by
which we can get eigenfunction estimates of multiparticle Schrödinger operators.

Theorem 1. Let g(ω) be a continuous function on Sn−1 such that g(ω) < K(ω) = K(ω;P )

for all ω ∈ Sn−1. Then there exists C > 0 such that

∫

ΩC

(
|∇Aφ(x)|2 + g(x)|φ(x)|2

)
dx ≥

∫

ΩC

g

(
x

|x|

)
|φ(x)|2dx (11)

 (5)

is considered here, for complex valued functions q ∈ L1
loc (Ω) and f ∈ L2

loc (Ω). While, a function u 
∈ H1

loc (Ω) is said to be a solution to (5) if qu ∈ L1
loc (Ω) and
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and the infimum is taken over all absolutely continuous paths γ : [0, 1] → Ω such that γ(0) = y and 
γ(1) = x. For E ⊂ Ω, let ρλ(x, E) := inf{ρλ(x, y): y ∈ E}. Then if Ω ∪ {∞} is the one point 
compactification on Ω, we define for x ∈ Ω,

 

and the infimum is taken over all absolutely continuous paths γ : [0, 1] → Ω such that γ(0) = y

and γ(1) = x. For E ⊂ Ω, let ρλ(x,E) := inf{ρλ(x, y): y ∈ E}. Then if Ω ∪ {∞} is the one

point compactification on Ω, we define for x ∈ Ω,

ρλ(x, {∞}) := sup
K

{ρλ(x,Ω \K) : K is a compact subset of Ω }. (20)

We may apply the above-mentioned inequality results to measure the decay of solutions to

Au + qu = 0. If q(x) = q1(x) − µ, then we can thereby obtain estimates for eigenfunctions

of A + q1 with eigenvalue µ. However, in order to apply the aforementioned results, the real

part of the quadratic form associated with the operator A + q need be positive on C∞
0 (Ω).

Moreover, we must find a positive continuous function λ(x) such that the quadratic form in

question is strongly positive on C∞
0 (Ω) in the sense that

　
∫

Ω

λ(x)|φ(x)|2 dx � Re

∫

Ω

(
|∇Aφ(x)|2 + q(x)|φ(x)|2

)
dx (21)

holds for all φ ∈ C∞
0 (Ω). That is why we have the following technical key lemmas.

Lemma 2. ΛR(x;P ) is a continuous function of (x,R) on Rn × R+.

Furthermore, we can get another assertion.

Lemma 3. ΛR(x;P ) = ΛR(x;A + q) is also continuous in (aij) in the sense that if Am = −∑n
i,j=1 ∂ja

ij
m∂i (where (aijm(x)) has all the properties of (aij(x)) for m = 1, 2, . . . ), and if

lim
m→∞

|aij(x)− aijm(x)| = 0 (22)

uniformly on compact sets, then ΛR(x;Am + q) converges to ΛR(x;A+ q) uniformly for x in

compact subsets.

4. Proofs of key lemmas

Proof of Lemma 2. First of all we shall show that ΛR(x) ≡ ΛR(x;A+ q) is an everywhere

finite upper semicontinuous function. According to Schechter’s lemma [15] (1971) (cf. Theo-

rem 7.3, p.138), when q ∈ Mδ,loc(Ω), for every ε > 0 and every compact subset K of Ω, there

exists a constant C(ε,K) > 0 such that for θ = 1− (δ/2)

∥ |g|1/2φ ∥ � ε∥Λθφ∥+ C(ε,K)∥φ∥ (23)

holds for all φ ∈ C∞
0 (Ω) with suppφ ⊂ K. As a simple corollary for the case δ = 0, we have

the following estimates.

Lemma 4. Let g ∈ Mloc(Ω). Then for any ε > 0 and every compact subset K of Ω, there exist

positive constants C1(ε,K) and C2(ε,K) such that

∥ |g|1/2φ ∥ � ε∥∇φ∥+ C1(ε,K)∥φ∥, (24)
∫

Ω

|g(x)| · |φ(x)|2 dx � ε

∫

Ω

n∑
i=1

|∂iφ(x)|2 dx+ C2(ε,K)

∫

Ω

|φ(x)|2 dx (25)

 (20)
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holds for all  ∈ C0
∞(Ω). That is why we have the following technical key lemmas.

Lemma 2. ΛR(x; P ) is a continuous function of (x, R) on Rn × R+.
Furthermore, we can get another assertion.

Lemma 3. ΛR(x; P ) = ΛR(x; A + q) is also continuous in (aij) in the sense that if Am = −∑n
i,j=1 

∂jam
ij ∂i (where (amij (x)) has all the properties of (aij(x)) for m = 1, 2, ...), and if

 

and the infimum is taken over all absolutely continuous paths γ : [0, 1] → Ω such that γ(0) = y

and γ(1) = x. For E ⊂ Ω, let ρλ(x,E) := inf{ρλ(x, y): y ∈ E}. Then if Ω ∪ {∞} is the one

point compactification on Ω, we define for x ∈ Ω,

ρλ(x, {∞}) := sup
K

{ρλ(x,Ω \K) : K is a compact subset of Ω }. (20)
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hold for all  ∈ C0
∞(Ω) with supp  ⊂ K. Here we have
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∥∇u∥ =
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Ω
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i,j=1

|∂iu(x)|2 dx
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Consequently, it follows immediately from the above lemma 4 that there exists a constant

CΩ = C(Ω, A) > 0 such that

∫

Ω

q−(x)|φ(x)|2 dx � 1

2

∫

Ω

|∇Aφ(x)|2 dx+ C(Ω, A)

∫

Ω

|φ(x)|2 dx (27)

holds for every φ ∈ C∞
0 (Ω), where ε = min(1/2, δ/2) with δ > 0. This integral inequality

yields to

(Pφ, φ) =

∫

Ω

(
|∇Aφ(x)|2 + q+(x)|φ(x)|2 − q−(x)|φ(x)|2

)
dx

≥ 1

2

∫

Ω

(
|∇Aφ(x)|2 + q+(x)|φ(x)|2

)
dx− C(Ω, A)

∫

Ω

|φ(x)|2 dx (28)

for every φ ∈ C∞
0 (Ω). The above inequality (28) implies in particular that ΛR(x) ≥ −C(Ω, A)

whenever BR(x) ⊂ Ω. Since Ω is an arbitrary bounded open set, for a fixed point (x0, R0) in

Rn × R+, a routine work leads with ease to a fundamental estimate

(Pψ, ψ) � ΛR0(x
0, A+ q) + ε (29)

for a properly chosen function ψ ∈ C∞
0 (BR0(x

0)) and a number ε > 0. With ψ defined as

zero in Rn \ BR0(x
0), it is clear that suppψ ⊂ BRj (x

j) for j large enough, with respect to a

sequence {(xj , Rj)}j satisfying (xj , Rj) → (x0, R0) as j → ∞. Hence, it follows that

ΛRj (x
j ;A+ q) = inf{(Pφ, φ); φ ∈ C∞

0 (BRj (x
j)), ∥φ∥ = 1 }

� (Pψ,ψ) � ΛR0(x
0, A+ q) + ε. (30)

Letting j → ∞ and then ε → 0, we can finally get

lim sup
j→∞

ΛRj (x
j ;A+ q) � ΛR0(x

0;A+ q), (31)

which proves that ΛR(x;A+ q) is an upper semicontinuous function.

Next we shall show that ΛR(x;A+ q) is a lower semicontinuous function. The proof of this

part goes almost similarly as mentioned above. The only difference consists of the follow-

ing point, namely, compactness argument in functional spaces. We need to introduce some

functional spaces. H1
00(Ω) denotes the completion of C∞

0 (Ω) in the H1(Ω) norm: i.e.

H1
00(Ω) := C∞

0 (Ω)
∥·∥H1(Ω) , (32)

 (26)
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Next we shall show that ΛR(x;A+ q) is a lower semicontinuous function. The proof of this

part goes almost similarly as mentioned above. The only difference consists of the follow-

ing point, namely, compactness argument in functional spaces. We need to introduce some

functional spaces. H1
00(Ω) denotes the completion of C∞
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for a properly chosen function ψ ∈ C∞
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0)) and a number ε > 0. With ψ defined as

zero in Rn \ BR0(x
0), it is clear that suppψ ⊂ BRj (x

j) for j large enough, with respect to a

sequence {(xj , Rj)}j satisfying (xj , Rj) → (x0, R0) as j → ∞. Hence, it follows that
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Next we shall show that ΛR(x;A+ q) is a lower semicontinuous function. The proof of this

part goes almost similarly as mentioned above. The only difference consists of the follow-

ing point, namely, compactness argument in functional spaces. We need to introduce some

functional spaces. H1
00(Ω) denotes the completion of C∞

0 (Ω) in the H1(Ω) norm: i.e.

H1
00(Ω) := C∞

0 (Ω)
∥·∥H1(Ω) , (32)
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Consequently, it follows immediately from the above lemma 4 that there exists a constant

CΩ = C(Ω, A) > 0 such that
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2

∫
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|∇Aφ(x)|2 dx+ C(Ω, A)

∫

Ω

|φ(x)|2 dx (27)

holds for every φ ∈ C∞
0 (Ω), where ε = min(1/2, δ/2) with δ > 0. This integral inequality

yields to

(Pφ, φ) =
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for every φ ∈ C∞
0 (Ω). The above inequality (28) implies in particular that ΛR(x) ≥ −C(Ω, A)

whenever BR(x) ⊂ Ω. Since Ω is an arbitrary bounded open set, for a fixed point (x0, R0) in
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0, A+ q) + ε (29)

for a properly chosen function ψ ∈ C∞
0 (BR0(x

0)) and a number ε > 0. With ψ defined as

zero in Rn \ BR0(x
0), it is clear that suppψ ⊂ BRj (x

j) for j large enough, with respect to a

sequence {(xj , Rj)}j satisfying (xj , Rj) → (x0, R0) as j → ∞. Hence, it follows that

ΛRj (x
j ;A+ q) = inf{(Pφ, φ); φ ∈ C∞

0 (BRj (x
j)), ∥φ∥ = 1 }

� (Pψ,ψ) � ΛR0(x
0, A+ q) + ε. (30)

Letting j → ∞ and then ε → 0, we can finally get

lim sup
j→∞

ΛRj (x
j ;A+ q) � ΛR0(x

0;A+ q), (31)

which proves that ΛR(x;A+ q) is an upper semicontinuous function.

Next we shall show that ΛR(x;A+ q) is a lower semicontinuous function. The proof of this

part goes almost similarly as mentioned above. The only difference consists of the follow-

ing point, namely, compactness argument in functional spaces. We need to introduce some

functional spaces. H1
00(Ω) denotes the completion of C∞

0 (Ω) in the H1(Ω) norm: i.e.
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0 (Ω)
∥·∥H1(Ω) , (32)

 (30)
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j) for j large enough, with respect to a

sequence {(xj , Rj)}j satisfying (xj , Rj) → (x0, R0) as j → ∞. Hence, it follows that

ΛRj (x
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j)), ∥φ∥ = 1 }
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Letting j → ∞ and then ε → 0, we can finally get
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ΛRj (x
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Next we shall show that ΛR(x;A+ q) is a lower semicontinuous function. The proof of this

part goes almost similarly as mentioned above. The only difference consists of the follow-

ing point, namely, compactness argument in functional spaces. We need to introduce some

functional spaces. H1
00(Ω) denotes the completion of C∞

0 (Ω) in the H1(Ω) norm: i.e.

H1
00(Ω) := C∞

0 (Ω)
∥·∥H1(Ω) , (32) (32)

where

 

where

∥u∥2H1(Ω) :=

∫

Ω

(
n∑

i=1

|∂iu(x)|2 + |u(x)|2
)

dx. (33)

Next the space H1
0q+(Ω) of functions is defined as

H1
0q+(Ω) := {u ∈ H1

00(Ω); q
1/2
+ u ∈ L2(Ω)}, (34)

where q+ is the positive part of the function q. It is known that H1
0q+(Ω) is a Hilbert space

under the norm ∥| · ∥|, which is defined by

∥|u∥|2Ω := ∥u∥2H1(Ω) + ∥q1/2u∥2L2(Ω). (35)

Then it is quite obvious that C∞
0 (Ω) is dense in H1

0q+(Ω). Thanks to Rellich’s compactness

theorem [1] (1965) (cf. Theorem 3.8), it follows that weak convergence: weak-limj→∞ φj = u

in H1
0q+(Ω) yields to strong convergence: φj → u strongly in L2(Ω). On this account, one

may conclude that

(Pu, u)Ω � lim inf
j→∞

(Pφj , φj) � lim inf
j→∞

ΛRj (x
j ;A+ q). (36)

Furthermore, the following estimate

(Pu0, u0)BR0
(x0) = (Pu, u)Ω � lim inf

j→∞
ΛRj (x

j ;A+ q) (37)

can be derived easily from (36). Consequently, the claim u0 ∈ H1
0q+(BR0(x

0)) is verified by

the fact u0 ∈ H1
00(BR0(x

0)), since we have q
1/2
+ u0 ∈ L2(BR0(x

0)). That is why in terms of

the denseness
C∞

0 (BR0(x
0)) �→ H1

0q+(BR0(x
0)) (38)

and ordinary argument of convergence, it can be shown that

ΛR0(x
0;A+ q) � lim inf

j→∞
ΛRj (x

j ;A+ q), (39)

which concludes that ΛR(x;A + q) is a lower semicontinuous function, and thus establishes

that ΛR(x;A+ q) is continuous. �
Proof of Lemma 3. Now we are going to show that if Am(x, ∂) := −

∑
i,j ∂ja

ij
m∂i, (m =

1, 2, . . . ) is a sequence of operators satisfying the same conditions as A and if aijm → aij as

m → ∞ uniformly on compact sets, then ΛR(x;Am + q) converges to ΛR(x;A+ q) uniformly

in x on compact sets. For a compact set K in Rn and a fixed constant R > 0, we may assume

that

(Pφ, φ) ≥ ∥φ∥2 and

∫

Ω

q−(x)|φ(x)|2 dx � (Pφ, φ) (40)

 (33)
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aij(x) as m → ∞ uniformly for x ∈ Ω, we may deduce that there exists a sequence of positive
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aij(x)
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(41)

for all x ∈ Ω, m = 1, 2, . . . . Hence, we may combine (40) with (41) to get

(Pmφ,φ) ≥ (1− 2εm)(Pφ, φ). (42)

From this estimate, we can derive the subtler estimate

(1− 2εm)ΛR(x;P ) � ΛR(x;Pm) � (1 + 2φm)ΛR(x;P ) (43)

for every x ∈ K and m = 1, 2, . . . ., which implies that ΛR(x;Pm) converges to ΛR(x;P )

uniformly on K. This finishes the proof. �

5. Fundamental estimate

Moreover, we can derive the following fundamental estimate: namely, under the above-

mentioned conditions on P , for any ε > 0, there exists a positive constant Rε > 0 such

that

(Pφ,φ) ≥
∫

Rn

(ΛR(x;P )− ε)|φ(x)|2 dx (44)

holds for all φ ∈ C∞
0 (Rn) and for any R ≥ Rε.

The proof of (44) is easy, hence omitted. Rigorouly, we nned the discussions on approxima-

tion of metrics and completeness.

6. The bottom of spectrum and essential spectrum

We begin with giving definitions of Λ(P ) and Σ(P ). As a matter of fact, the quantity

Λ(P ) is defined by

Λ(P ) := inf

{
(Pφ,φ)

∥φ∥2
: φ ∈ C∞

0 (Rn), φ ̸= 0

}
, (45)

while, the quantity Σ(P ) is also defined in a similar way by

Σ(P ) := sup
K

inf

{
(Pφ,φ)

∥φ∥2
: φ ∈ C∞

0 (Rn \K), φ ̸= 0

}
, (46)

where the supremum is taken over the family of compact subsets K in Rn. Λ(P ) will be shown

to be equal to the bottom of the spectrum of the self-adjoint realization of the operator P on

L2(Rn); on the other hand, Σ(P ) will be shown to be equal to the essential spectrum of the

self-adjoint realization of P on L2(Rn) when Σ(P ) > −∞. In general, both quantities may

take on the value −∞.
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 (42)



‒ 501 ‒

From this estimate, we can derive the subtler estimate

 

for every φ ∈ C∞
0 (Ω), taking inequalities (27) and (28) into consideration. Since aijm(x) →

aij(x) as m → ∞ uniformly for x ∈ Ω, we may deduce that there exists a sequence of positive

numbers {εn} with εm → 0 (as m → ∞), such that

(1− εm)
(
aij(x)

)
�

(
aijm(x)

)
� (1 + εm)

(
aij(x)

)
(41)

for all x ∈ Ω, m = 1, 2, . . . . Hence, we may combine (40) with (41) to get
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(1− 2εm)ΛR(x;P ) � ΛR(x;Pm) � (1 + 2φm)ΛR(x;P ) (43)

for every x ∈ K and m = 1, 2, . . . ., which implies that ΛR(x;Pm) converges to ΛR(x;P )

uniformly on K. This finishes the proof. �

5. Fundamental estimate

Moreover, we can derive the following fundamental estimate: namely, under the above-

mentioned conditions on P , for any ε > 0, there exists a positive constant Rε > 0 such

that

(Pφ,φ) ≥
∫

Rn

(ΛR(x;P )− ε)|φ(x)|2 dx (44)

holds for all φ ∈ C∞
0 (Rn) and for any R ≥ Rε.

The proof of (44) is easy, hence omitted. Rigorouly, we nned the discussions on approxima-

tion of metrics and completeness.

6. The bottom of spectrum and essential spectrum

We begin with giving definitions of Λ(P ) and Σ(P ). As a matter of fact, the quantity

Λ(P ) is defined by

Λ(P ) := inf

{
(Pφ,φ)

∥φ∥2
: φ ∈ C∞

0 (Rn), φ ̸= 0

}
, (45)

while, the quantity Σ(P ) is also defined in a similar way by

Σ(P ) := sup
K

inf
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∥φ∥2
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, (45)
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self-adjoint realization of P on L2(Rn) when Σ(P ) > −∞. In general, both quantities may
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where the supremum is taken over the family of compact subsets K in Rn. Λ(P ) will be shown to 
be equal to the bottom of the spectrum of the self-adjoint realization of the operator P on L2(Rn); 
on the other hand, Σ(P ) will be shown to be equal to the essential spectrum of the self-adjoint re-
alization of P on L2(Rn) when Σ(P) > −∞. In general, both quantities may take on the value 
−∞.

It is easy to see that Λ(P ) = limR→∞ ΛR(x; P ) for any x ∈ Rn. Note that this limit exists 
since ΛR(x; P ) is a decreasing function of R. Then the relationship between Σ(P ) and ΛR(x; P ) 
can be given by the following lemma.

Lemma 5. We have

 

It is easy to see that Λ(P ) = limR→∞ ΛR(x;P ) for any x ∈ Rn. Note that this limit

exists since ΛR(x;P ) is a decreasing function of R. Then the relationship between Σ(P ) and

ΛR(x;P ) can be given by the following lemma.

Lemma 5. We have
Σ(P ) = lim

R→∞
lim inf
|x|→∞

ΛR(x;P ). (47)

Proof. Let K be a compact subset in Rn, and R > 0 fixed. Clearly, BR(x) ⊂ Rn \K for |x|
sufficiently large. Then we can get easily

inf

{
(Pφ, φ)

∥φ∥2
: φ ∈ C∞

0 (Rn \K), φ ̸= 0

}
� lim inf

|x|→∞
ΛR(x;P ). (48)

Moreover, by the definition of Σ(P ), it follows immediately that

Σ(P ) � lim
R→∞

lim inf
|x|→∞

ΛR(x;P ). (49)

Here we may apply the fundamental estimate result stated in the previous section §5, to obtain

(Pφ,φ) ≥
∫

Rn

(ΛR(x;P )− ε)|φ(x)|2 dx (50)

for all R ≥ Rε and φ ∈ C∞
0 (Rn). On the other hand, a simple calculation with (50) leads to

the estimate
Σ(P ) ≥ lim

R→∞
lim inf
|x|→∞

ΛR(x;P )− 2ε. (51)

Hence, we can easily deduce from (49) and (51) the statement in Lemma 5. �

Now let us introduce a new functionK(ω) = K(ω, P ) which, roughly speaking, approximates

the lower bound of the quadratic form (Pφ,φ). Let Sn−1 = {ω ∈ Rn : |ω| = 1 }. For

ω ∈ Sn−1, 0 < ε < π, and N > 0, we define

Γε,N
ω := {x ∈ Rn : ⟨x, ω⟩ > |x| cos ε, |x| > N }, (52)

Σε,N (ω) := inf

{
(Pφ, φ)

∥φ∥2
: φ ∈ C∞

0 (Γε,N
ω ), φ ̸= 0

}
, (53)

K(ω) ≡ K(ω, P ) := lim
ε→∞

lim
N→∞

Σε,N (ω), (54)

where ⟨·, ·⟩ denotes the usual inner product in Rn. Note that the limit in (54) exists and K(ω)

may take the value +∞. The following is the main assertion in this section.

Proposition 6. (i) K(ω) is a lower semicontinuous function of ω on Sn−1.

(ii) The following holds:
Σ(P ) = min{K(ω) : ω ∈ Sn−1 }. (55)

 (47)

Proof. Let K be a compact subset in Rn, and R > 0 fixed. Clearly, BR(x) ⊂ Rn \ K for |x| 
sufficiently large. Then we can get easily
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