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Chapter 1

Nuclear shell-model study in the northeast

region of 208Pb

1.1 Introduction

In the first chapter, twenty three nuclei in the neutron-rich (N ≥ 126) and proton-rich (Z ≥ 82)

region of a doubly magic core of 208Pb are studied. Each nucleus has up to four valence neutrons and

up to five valence protons. These numbers are limited by the power of a private shell-model code and

computational resources that we can utilize. As described below, some nuclei in this region have been

analyzed theoretically. However, in most of studies only a few nuclei are considered and there were no

systematic shell-model calculations in this mass region. We construct an effective Hamiltonian that

systematically reproduce low-energy spectra, E2 transition strengths, and electromagnetic moments

of all the nuclei considered. Nuclear structures especially of isomeric states, long-lived excited states,

are analyzed in terms of the shell-model wavefunctions. This work is based on Ref. [1].

Structure of heavy nuclei has not been studied enough compared to that of light nuclei. Recent

experimental situation on some of heavy nuclei (Z ≥ 82, N > 126) is as follows. The 212Bi nucleus

was studied using a 238U beam, and two isomers with long half-lives of 25 min and 7.0 min were

confirmed [2]. However, the number of observed states in this nucleus is limited so that the spins

and parities of only a few states are assigned. The level structure of 213Po was studied through the
18O+208Pb reaction using the γ multidetector array [3]. The level scheme was built up to about

2.0 MeV of excitation energy and spins were assigned up to 25/2 using the triple γ coincidence data.

The constructed level scheme was compared with an empirical shell-model calculation. The 211Pb

nucleus was studied through the deep-inelastic reactions between a beam of 208Pb ions and a 238U

target [4]. Spins and parities of high-spin states including three high-spin isomers were identified.

Configurations of several states were assigned by comparing them with a shell model calculation

using empirical interactions. High-spin states of 210Pb and 211Bi were studied using deep-inelastic

collisions of a pulsed beam of 208Pb ions on a 238U target [5]. Configurations of some isomers were

discussed and analyzed.
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Nuclei with a few valence nucleons have been studied theoretically using the shell model approach.

The 210Bi nucleus is a system with one valence neutron and one valence proton outside the doubly

magic core 208Pb and it is relatively easy to analyze theoretically [6–10]. It is an intriguing nucleus

to study the interaction between a neutron and a proton. One of the theoretical problems on

this nucleus is associated with the fact that the spin-parity of the experimental ground state is

1− with the (νg9/2 ⊗ πh9/2) configuration. The 0−, 1−, · · · , 9− states with the (νg9/2 ⊗ πh9/2)

configuration are observed in this nucleus. From the Nordheim strong coupling rule [10, 11], the

0− state should be the lowest among the states with the (νg9/2 ⊗ πh9/2) configuration. However,

as mentioned, the experimental observation is different from this theoretical prediction. It was

concluded in theoretical studies using empirical two-body interactions that tensor-force components

are necessary to reproduce the ground state [6–8].

Recently, precise calculations employing the interaction delivered from the NN potential were

performed and good agreements with the experimental data were obtained [10]. The (πh9/2⊗νg9/2),

(πf7/2⊗νi11/2), (πh9/2⊗νi11/2), (πf7/2⊗νg9/2), and (πh9/2⊗νj15/2) configurations in the low-lying

states of 210Bi, 212Bi, 212At, 216At, and 216Fr were compared with the experimental results [12]. The

structure of the low-lying states and transition rates of 210Pb and 210Bi were calculated using a

conventional shell-model approach with a central Gaussian-shaped interaction [13]. Although orders

of energy levels of several states were reversely predicted, transition rates and M1-E2 branching

ratios were well reproduced.

1.2 Theoretical framework

Systematic studies are carried out for even-even, odd-mass, and doubly-odd nuclei around the

double magic 208Pb nucleus using a shell-model framework. For neutron single-particle levels, seven

orbitals above the magic number 126, the 1g9/2, 0i11/2, 0j15/2, 2d5/2, 3s1/2, 1g7/2, and 2d3/2 orbitals,

are taken into account. For proton single-particle levels, all the six orbitals in the major shell between

the magic numbers 82 and 126, 0h9/2, 1f7/2, 0i13/2, 2p3/2, 1f5/2, and 2p1/2 orbitals, are taken into

account.

The single-particle energies ετ (τ = ν or π) employed in the present calculations are listed in

Table 3.1, which are extracted from the experimental energy levels of 209Bi (for proton single-

particle energies) and 209Pb (for neutron single-particle energies). As for the neutron 0j15/2 and

0i11/2 orbitals and the proton 0i13/2 and 1f7/2 orbitals, the single-particle energies are assumed to

be changed linearly with the numbers of valence neutrons and protons. They are determined in units

of MeV as follows:

ϵν(j15/2) = −0.050Nν − 0.160Nπ + 1.473, (2.1)

ϵν(i11/2) = −0.070Nν − 0.050Nπ + 0.849, (2.2)

ϵπ(i13/2) = −0.050Nπ + 1.659, (2.3)

ϵπ(f7/2) = −0.170Nν + 0.050Nπ + 0.846, (2.4)
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Table 1.1: Adopted single-particle energies ετ for neutrons (τ = ν) and protons (τ = π) in units of

MeV. The single-particle energies for the neutron 0j15/2 and 0i11/2 orbitals and the proton 0i13/2 and

1f7/2 orbitals are changed linearly with the numbers of valence neutrons (Nν) and valence protons

(Nπ). Definitions of ϵν(j15/2), ϵν(i11/2), ϵπ(i13/2), and ϵπ(f7/2) are given in the text.

j 1g9/2 0i11/2 0j15/2 2d5/2 3s1/2 1g7/2 2d3/2

εν 0.000 ϵν(i11/2) ϵν(j15/2) 1.567 2.032 2.491 2.538

j 0h9/2 1f7/2 0i13/2 2p3/2 1f5/2 2p1/2

επ 0.000 ϵπ(f7/2) ϵπ(i13/2) 3.119 2.826 3.634

where Nν and Nπ represent the numbers of valence neutrons and valence protons, respectively. The

number dependence is introduced for a better reproduction of the low-lying states of odd-mass nuclei.

As an effective interaction, an extended pairing plus quadrupole-quadrupole interaction is em-

ployed. The effective shell-model Hamiltonian is given by

Ĥ = Ĥν + Ĥπ + Ĥνπ, (2.5)

where Ĥν , Ĥπ, and Ĥνπ represent neutron, proton, and neutron-proton interactions, respectively.

The interactions among like nucleons are expressed as

Ĥτ = Ĥcτ + Ĥhτ . (2.6)

The first term Ĥcτ (τ = ν or π) represents the conventional pairing interactions, which consist

of spherical single-particle energies, the monopole-pairing (MP ) interaction, and the quadrupole-

pairing (QP ) interaction,

Ĥcτ =
∑
jm

εjτ c
†
jmτ cjmτ −G0τ P̂

†(0)
τ P̂ (0)

τ −G2τ P̂
†(2)
τ · ˆ̃P (2)

τ . (2.7)

The second term Ĥhτ in Eq. (2.6) represents higher-order interactions, which consist of higher

multipole-pairing (HMP ) interactions,

Ĥhτ = −
∑

L=4,6,8,10

GLτ P̂
†(L)
τ · ˆ̃P (L)

τ . (2.8)

The adopted two-body interaction strengths are listed in Table 3.2. Only one set of strengths is

adopted for all the nuclei considered. Detailed definitions of the interactions are given in Ref. [14].

Only for the proton part, an additional pairing interaction with spin 8 between two protons in the

0h9/2 and 1f7/2 orbitals (MP -8) is added to Eq. (2.6). It is explicitly defined as

Ĥ(8)(πh9/2f7/2) = −G(8)
πh9/2f7/2

P̂ †(8)
π

(
h9/2f7/2

)
· ˆ̃P (8)

π

(
h9/2f7/2

)
, (2.9)

with

P̂
†(8)
Mπ

(
h9/2f7/2

)
=
[
c†h9/2

c†f7/2

](8)
M
, (2.10)
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Table 1.2: Strengths of adopted two-body interactions between neutrons (ν-ν) and those between

protons (π-π). G0 and G2 indicate the strengths of the monopole (MP ) and quadrupole-pairing

(QP ) interactions, respectively. GL (L = 4, 6, 8, 10) denote the strengths for higher multipole-

pairing (HMP ) interactions. The strengths of the MP and HMP interactions are given in units of

MeV. The strengths of the QP interactions are given in units of MeV/b4, where b is the oscillator

parameter.

G0 G2 G4 G6 G8 G10

ν-ν 0.102 0.008 0.425 0.500 0.500 0.450

π-π 0.145 0.013 0.400 0.400 −0.600 0.000

and the strength is taken as G
(8)
πh9/2f7/2

= 0.50 MeV. Here, two protons in the 0h9/2 and 1f7/2 orbitals

are coupled with spin 8, which is the maximum spin available between these two orbitals, and positive

parity. c†j is the nucleon creation operator in the orbital j. The necessity of this interaction was

discussed and its effects were analyzed in Ref. [15].

The interaction between neutrons and protons Ĥνπ consists of the quadrupole-quadrupole (QQ)

interaction, which is given as

Ĥνπ = −κνπQ̂ν · Q̂π, (2.11)

where the strength is taken as κνπ = 0.080 MeV/b4. Here harmonic-oscillator states are used as the

single-particle basis states with the oscillator parameter b =
√
ℏ/Mω.

The number occupancy v2j is defined as

v2j ≡ ⟨Ψ (Iπi ) |n̂j |Ψ (Iπi )⟩ , (2.12)

where n̂j is the number operator in the orbital j and |Ψ (Iπi )⟩ is the i-th eigenstate of the Hamiltonian

in Eq.(5) for a specific nucleus.

In this mass region, shell-model dimensions for diagonalization are too large to perform full cal-

culations without truncation. Thus it is necessary to truncate the shell-model dimensions. In this

study, the same truncation scheme adopted in Sec. IIB of Ref. [14] is taken for all the nuclei. All

calculations are performed with the truncation of Lc = 500. Here the definition of Lc is the same

as given in Sec. IIB in Ref. [14]. This truncation is found to be sufficient for reproducing low-lying

energy levels and electromagnetic transitions among low-lying states after checking the effect of

truncation by increasing Lc = 500 to Lc = 1000.

In this paper, E2 transition rates, magnetic moments, and quadrupole moments are also calculated.

For E2 transition rates and quadrupole moments, the effective charges are taken as eν = 1.00e for

neutrons and eπ = 1.50e for protons. For magnetic moments, the gyromagnetic ratios of orbital

angular momentum are taken as gℓν = 0.00 and gℓπ = 1.00, and the gyromagnetic ratios of spin are

taken as gsν = −2.87 and gsπ = 2.79. These effective charges and gyromagnetic ratios are adjusted
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to reproduce the experimental data for single-closed nuclei on the whole. Further details of the

electromagnetic transition operators are presented in Ref. [14].

1.3 Numerical results

In this section, the results are given for each nucleus. Energy spectra, E2 transition rates, magnetic

moments, and quadrupole moments are calculated. For energy spectra, up to four observed energy

levels from the yrast state are shown for each spin-parity. As for the theoretical states, the two

lowest energy levels are shown for each spin-parity in general.

1.3.1 Pb isotopes

Here 210−212Pb isotopes are discussed. Figure 1.1 shows the theoretical energy spectrum of 210Pb

in comparison with the experimental data [16, 17]. The 210Pb nucleus is a system with two valence

neutrons outside the doubly magic core 208Pb. This nucleus tells us information about the inter-

actions between two neutrons. The calculation reproduces the yrast band well. In particular the

narrow energy gap between the 4+ and 6+ states and that between the 6+ and 8+ states are well

reproduced. The 6+ and 8+ states are isomers with half-lives of 49 ns and 201 ns, respectively [16].

The 2+1 , 4+1 , 6+1 , and 8+1 states mainly consist of the (νg29/2) configuration, although the structure of

the ground (0+1 ) state is not simple. In the ground state the occupation numbers (v2j ) are 1.28, 0.35,

and 0.21 for the neutron 1g9/2, 0i11/2, and 0j15/2 orbitals, respectively. The 10+1 state consists of

the (νg9/2i11/2) configuration, which explains the large energy gap between the 8+1 and 10+1 states.

The 12+1 and 14+1 states consist of the (νj215/2) configuration.

Figure 1.1 shows the theoretical energy spectrum of 212Pb in comparison with the experimental

data [16, 19]. In 212Pb the spins and parities of only several states are assigned in experiment. The

yrast band up to spin 8 is well reproduced and the unobserved 10+1 state is calculated at 1.633 MeV.

In 210Pb and 212Pb the almost degenerate 3−1 , 4−1 , · · · , 12−1 states are predicted at 2.682 MeV

and around 2.69 MeV, respectively in theory. However, the experimental 3−1 states are located at

1.870 MeV and 1.820 MeV, respectively. These octupole one-phonon states are constructed by the

particle-hole excitations [20,21], which are beyond the present shell-model framework. The low-lying

3− states made by core excitations are also seen in Pb isotopes in the mass 210 region as discussed

in Ref. [15].

Figure 1.1 shows the theoretical energy spectrum of 211Pb in comparison with the experimental

data [16,18]. Low-lying states are well reproduced. A (27/2+) state is observed at 1.679+x MeV with

x unknown and its half-life is 159 ns [16]. The 27/2+1 state is calculated at 1.554 MeV and consists

of the (νg29/2i11/2) configuration, which is consistent with the result in Ref [4]. The (21/2+) state

observed at 1.193 MeV is also an isomer with a half-life of 42(7) ns and decays to the (17/2+) state

observed at 1.056 MeV [16]. Both the initial and the final states consist of the (νg39/2) configuration
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Figure 1.1: The theoretical energy spectrum of Pb isotopes (Shell model) in comparison with

experimental data (Expt.). The experimental data are taken from Refs. [16–19]. The squares and

diamonds represent experimental positive and negative parity states, respectively. The x marks and

pluses represent theoretical positive and negative parity states, respectively.

in theory.

Calculated results for B(E2) values and electromagnetic moments of Pb isotopes are given in

Tables 1.3 and 1.4 in comparison with the experimental data [4, 16–19]. Most of the B(E2) values

are well reproduced in the calculation. The largest discrepancy between the experimental value and

the theoretical one is seen in the B(E2; 2+1 → 0+1 ) value of 210Pb. The calculated result is 2.2 times

larger than the experimental one. The calculated B(E2; 10+1 → 8+1 ) values of 210Pb and 212Pb are

much smaller than the other transition rates among the yrast states. The 8+1 state consists of two

neutrons in the 1g9/2 orbital. However, one neutron needs to be excited to the 0i11/2 orbital to make

the 10+1 state and the configuration is changed from the 8+1 state to the 10+1 state. The E2 transition

rate from the isomeric 21/2+1 state to the 17/2+1 state, B(E2; 21/2+1 → 17/2+1 ), is well reproduced.
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Table 1.3: The calculated B(E2) values in units of W.u. for Pb isotopes (Calc.) in comparison with

the experimental data (Expt.) [4, 16–19]. ∗Using theoretical transition energy of 29 keV [4].

B(E2)

210Pb Expt. Calc.

2+1 → 0+1 1.4(4) 3.130

4+1 → 2+1 4.8(9) 3.435

6+1 → 4+1 2.1(8) 2.450

8+1 → 6+1 0.7(3) 1.056

10+1 → 8+1 0.154

212Pb Expt. Calc.

2+1 → 0+1 5.535

4+1 → 2+1 1.353

6+1 → 4+1 0.766

8+1 → 6+1 0.303

10+1 → 8+1 0.186

211Pb Expt. Calc.

5/2+1 → 9/2+1 2.870

7/2+1 → 9/2+1 4.924

11/2+1 → 9/2+1 0.052

13/2+1 → 9/2+1 3.125

21/2+1 → 17/2+1 1.36(23) 2.290

27/2+1 → 23/2+1 1.0+2
−3

∗
1.583

For the quadrupole moment of the 9/2+1 state in 211Pb, the experimental value (0.087) has a large

error (0.062). So at the moment we cannot have any definite conclusion about the discrepancy

between the theoretical value and the experimental one.

1.3.2 Bi isotopes

Here 210−213Bi isotopes are discussed. Figure 1.2 shows the theoretical energy spectrum of 211Bi in

comparison with the experimental data [16,18]. Low-lying negative parity states are well reproduced.

The (25/2−) state observed at 1.257 MeV is an isomer with a half-life of 1.4 µs and decays to the

(21/2−) state at 1.227 MeV by the E2 transition [16]. Both the 25/2−1 and 21/2−1 states consist of

the (νg29/2⊗πh9/2) configuration. In the 25/2−1 state, two neutrons in the 1g9/2 orbital are stretched

to have spin 8. The maximum spin in the (νg29/2 ⊗ πh9/2) configuration is 25/2. The spin-parity of

the state observed at 0.767 MeV is assigned as (9/2, 11/2)−. The theoretical 9/2−2 and 11/2−1 states

are predicted at 0.944 MeV and 0.799 MeV, respectively. Thus the spin-parity of this ambiguous
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Table 1.4: The results of magnetic dipole moments µ in units of µN and electric quadrupole moments

Q in units of eb for Pb isotopes (Calc.) in comparison with the experimental data (Expt.) [16–19].

µ Q

210Pb Expt. Calc. Expt. Calc.

2+1 −0.343 +0.016

4+1 −0.969 +0.015

6+1 −1.872(90) −1.602 −0.137

8+1 −2.496(64) −2.360 −0.433

10+1 −0.207 −0.677

212Pb Expt. Calc. Expt. Calc.

2+1 −0.316 −0.123

4+1 −0.894 −0.086

6+1 −1.469 −0.093

8+1 −2.182 −0.176

10+1 −0.187 −0.511

211Pb Expt. Calc. Expt. Calc.

5/2+1 −0.842 −0.040

7/2+1 −1.095 −0.332

9/2+1 −1.4037(8) −1.380 +0.087(62) −0.177

11/2+1 +1.167 −0.338

13/2+1 −1.658 −0.228

state is suggested to be 11/2−.

Figure 1.2 shows the theoretical energy spectrum of 213Bi in comparison with the experimental

data [16, 22]. In 213Bi, only the 9/2−1 and 7/2−1 states are definitely assigned in experiment. The

states observed at 0.593 MeV and 0.759 MeV are assigned as (5/2, 7/2, 9/2)− and (5/2−, 13/2−),

respectively. The 5/2−1 and 13/2−1 states are calculated at 0.682 and 0.818 MeV, respectively. Thus it

is inferred that the states at 0.593 MeV and 0.759 MeV are spin-parity 5/2− and 13/2−, respectively.

Figure 1.2 shows the theoretical energy spectrum of 210Bi in comparison with the experimental

data [16,17]. The 210Bi nucleus is a system with one neutron and one proton outside the doubly magic

core 208Pb. This nucleus tells us information on the interactions between neutrons and protons. The

value of the strength parameter κνπ = 0.08 MeV/b4 adopted in the present study is slightly larger

in magnitude than κνπ = −0.06 MeV/b4, which had been throughout used for nuclei with neutrons

less than 126 and protons more than 82 [15]. The energy spectra for low-lying states of 210Bi are

compared with two choices of κνπ in Fig. 1.3. As seen in the figure, the experimental spectra are

better reproduced with the strength of κνπ = 0.08 MeV/b4.
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Figure 1.2: Same as Fig. 1.1, but for Bi isotopes. The experimental data are taken from Refs. [16–

19,22]. Each ambiguous state with only one possible set of spin-parity in experiment is shown with

parenthesis, while each ambiguous state with more than two possible sets of spin-parity is shown

separately with square bracket.

The spin-parity of the ground state is 1− in experiment. From the Nordheim strong coupling

rule [10,11], the 0− state should be the lowest among the states with the (νg9/2⊗πh9/2) configuration.

However the 0−1 , 1−1 , · · · , 8−1 states with the (νg9/2⊗πh9/2) configuration are as a whole well described

in our calculation. Thus it is suggested that the quadrupole-quadrupole interaction between the

neutron and the proton is the main part of the interaction, although some tensor-force components

might be necessary to reproduce the ground state. In our calculation the 1−2 , 2−3 , 3−3 , 4−3 , 5−3 , 6−3 ,

7−2 , and 8−2 states consist of the (νg9/2 ⊗ πf7/2) configuration, whereas the 1−3 , 2−2 , 3−2 , 4−2 , 5−2 , 6−2 ,

7−3 , 8−3 , 9−2 , and 10−1 states consist of the (νi11/2 ⊗ πh9/2) configuration.

Figure 1.2 shows the theoretical energy spectrum of 212Bi in comparison with the experimental

data [16, 19]. In 212Bi negative parity states are densely observed and calculated below 0.5 MeV.
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Figure 1.3: Comparison of the low-lying energy levels of 210Bi with those by the strength parameter

κνπ = 0.06 MeV/b4, which are indicated by the filled circles. This value of κνπ = 0.06 MeV/b4 is the

same in magnitude as used in Ref. [15].

In theory the spin-parity of the ground state is 2−. The lowest members of the 0−1 , 1−1 , · · · , 9−1

states mainly consist of the (νg29/2i11/2⊗πh9/2) configuration in our calculation, whereas the second

lowest members of the 1−2 , 2−2 , · · · , 8−2 states mainly consist of the (νg29/2i11/2⊗πf7/2) configuration.

Positive parity states are calculated above 1.0 MeV.

Calculated results for B(E2) values and electromagnetic moments of Bi isotopes are given in

Tables 1.5 and 1.6 in comparison with the experimental data [16–19, 22]. As for B(E2) transition

rates, experimental data are given only for 211Bi. The calculated B(E2) value from the isomeric

25/2−1 state to the 21/2−1 state, B(E2; 25/2−1 → 21/2−1 ), is 2.533 W.u. Most of experimental values

for the electromagnetic moments are well reproduced. However, the small experimental value of

the magnetic moment for the 1−1 state of 210Bi is hardly reproduced without precisely adjusting the

gyromagnetic ratios.

1.3.3 Po isotopes

Here 211−214Po isotopes are discussed. Figure 1.4 shows the theoretical energy spectrum of 212Po

in comparison with the experimental data [16, 19]. The 212Po nucleus is a system with two valence

neutrons and two valence protons. The narrow energy gap between the yrast 6+ and 8+ states is

well reproduced. The 0+1 , 2+1 , · · · , 8+1 states mainly consist of the (νg29/2 ⊗ π(h29/2)0+) configuration.

In contrast, the 10+1 state consists of the (νg9/2i11/2 ⊗ π(h29/2)0+) configuration. The 12+1 and 14+1

states consist of the (νg29/2 ⊗ π(h29/2)L+) configuration with L greater than zero. These structures

are analyzed in Sec. 1.4.

In recent years, negative parity states have been experimentally observed below 2.5 MeV [23,24].

The observed 4−, 6−, and 8− states are strongly connected to the yrast 4+, 6+, and 8+ states by
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Table 1.5: Same as table 1.3, but for Bi isotopes. The experimental data are taken from Refs. [16–

19,22].

B(E2)

211Bi Expt. Calc.

7/2−1 → 9/2−1 1.07(10) 0.624

9/2−2 → 7/2−1 >0.00015 0.392

9/2−2 → 9/2−1 >0.0031 0.747

11/2−1 → 9/2−1 3.405

13/2−1 → 9/2−1 3.984

21/2−1 → 17/2−1 1.44(11) 4.682

25/2−1 → 21/2−1 2.533

213Bi Expt. Calc.

7/2−1 → 9/2−1 0.857

9/2−2 → 7/2−1 4.276

9/2−2 → 9/2−1 0.807

11/2−1 → 9/2−1 3.417

13/2−1 → 9/2−1 8.816

210Bi Expt. Calc.

3−1 → 1−1 3.489

3−1 → 2−1 0.015

0−1 → 2−1 14.438

212Bi Expt. Calc.

3−1 → 2−1 1.905

0−1 → 2−1 7.964

the E1 transitions, respectively. In Ref. [27], it was suggested that these negative parity states are

constructed by the α-particle coupled to 3− states of 208Pb (the coupled-channels of α + 208Pb(3−1 )).

Another description of these states was suggested in Ref. [28]. They pointed out a possibility that

these negative parity states consist of two-neutron excitations in 210Pb coupled to the collective 3−

state in 208Pb times 210Po(g.s.) (|[210Pb(J+)⊗210Pb(3−)]I− ⊗210Po(g.s.)⟩), where J and I represent

angular momenta of states in 210Pb and 212Po, respectively. These negative parity states are out of

the present shell-model framework.

The experimental (18+) state at 2.922 MeV is an isomer with a half-life of 45.1(6) s [16], which

mainly decays to the ground state, 3− and 5− states in 208Pb by the α decay and partially decays

to the (14+) state at 2.885 MeV in 212Po by the E4 transition. The configuration of the 18+1 state is

(νg9/2i11/2 ⊗ πh29/2), which is in contrast with the (νg29/2 ⊗ πh29/2) configuration of the 14+1 and the
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Table 1.6: Same as table 1.4, but for Bi isotopes. The experimental data are taken from Refs. [16–

19,22].

µ Q

211Bi Expt. Calc. Expt. Calc.

7/2−1 +4.5(7) +4.147 −0.623

9/2−1 (+)3.79(7) +3.647 −0.687

11/2−1 +2.698 −0.463

13/2−1 +2.978 −0.559

213Bi Expt. Calc. Expt. Calc.

7/2−1 +4.095 −0.778

9/2−1 +3.717(13) +3.584 −0.60(5) −0.853

11/2−1 +3.325 −0.775

13/2−1 +3.218 −0.880

210Bi Expt. Calc. Expt. Calc.

1−1 −0.04451(6) +0.218 +0.136(1) +0.199

5−1 +1.530(45) +1.286 −0.034

7−1 +2.114(49) +1.834 −0.349

9−1 2.728(42) +2.336 −0.471(59) −0.754

212Bi Expt. Calc. Expt. Calc.

1−1 0.41(5) +0.457 0.1(3) +0.144

2−1 +0.734 +0.253

3−1 +0.880 +0.261

5−1 +1.276 −0.025

7−1 +1.792 −0.440

9−1 +2.286 −0.796

16+1 states. The theoretical energy of the 16+1 state is lower than the energy of the 18+1 state so that

the 18+1 state can easily decay to the 16+1 state by the E2 transition. Therefore we cannot explain the

long half-life of the (18+) state. In order to achieve the situation that the 18+1 state decays to the 14+1

state rather than the 16+1 state, we artificially lower the single-particle energy of the neutron 0i11/2

orbital as εν(i11/2) = 0.1 MeV, and also reduce the strength of the monopole-pairing interaction

between neutrons as G0ν = 0.095 MeV. The result is shown in Fig. 1.5. The spin-parity of the state

observed at 1.249 MeV is not assigned, but theoretically it is suggested to have a spin-parity of 10+.

The calculation suggests that the (18+) state at 2.922 MeV corresponds to the theoretical 18+1 state,

while the unassigned state at 1.249 MeV and the 10+ state at 1.833 MeV each corresponds to the

10+1 and the 10+2 states, respectively. We do not pursue this problem further, but the choice of the
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Figure 1.4: Same as Fig. 1.1, but for Po isotopes. The state at 1.249 MeV is not shown in the

figure since the spin-parity is not assigned in experiment. The experimental data are taken from

Refs. [16, 19,22–26].

strengths of the interactions certainly affects the spectra of the neighboring nuclei and we need to

investigate their effects on those nuclei. This is a future problem.

Figure 1.4 shows the theoretical energy spectrum of 214Po in comparison with the experimental

data [16, 26]. In 214Po, only the 0+, 2+, and 4+ states are observed in the yrast band. The 6+1 , 8+1 ,

and 10+1 states are calculated at 1.465, 1.645, and 1.754 MeV, respectively. The state observed at

1.275 MeV is assigned as (3−) [29]. The theoretical first 3−1 state is calculated at 2.584 MeV. The

experimental (3−) state is supposed to be an octupole one-phonon state by the core excitation [29].

It is known in this mass region that the octupole correlation is crucial. The (2−) state observed at

1.995 MeV is also considered to be a coupled state with the octupole and quadrupole phonon states.

In our model space, all the negative parity states are calculated above 2.5 MeV.

Figure 1.4 shows the theoretical energy spectrum of 211Po in comparison with the experimental
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Figure 1.5: Same as Fig. 1.4, but with εν(i11/2) = 0.1 MeV and G0ν = 0.095 MeV. The spin-parity

of the state at 1.249 MeV indicated by a triangle is not assigned in experiment, but it is suggested

to have a spin-parity of 10+ in this calculation.

data [16,18]. Low-lying states are well reproduced. The 25/2+ state observed at 1.462 MeV in 211Po

is an isomer with a half-life of 25.2(6) s [18]. This state decays to the 17/2+ state at 1.428 MeV by the

E4 transition. The 25/2+1 and 17/2+ states consist of the same configuration of (νg9/2 ⊗π(h29/2)L+)

with L = 8 and L = 4, respectively. The 21/2+1 and 23/2+1 states, which are connected to the 25/2+

state by E2 or M1 transitions, are not observed. These states are calculated higher than the 25/2+1

state. This isomer is classified as a spin-gap isomer.

Figure 1.4 shows the theoretical energy spectrum of 213Po in comparison with the experimen-

tal data [3, 16, 22]. In 213Po, only positive parity states are observed and well reproduced in our

calculation. The lowest negative parity state, the 15/2−1 state, is calculated at 1.017 MeV.

Calculated results for B(E2) values and electromagnetic moments of Po isotopes are given in

Tables 1.7 and 1.8 in comparison with the experimental data [16, 18, 19, 22, 26, 30, 31]. In 212Po,

the calculated B(E2; 2+1 → 0+1 ) and B(E2; 6+1 → 4+1 ) values are much larger than the experimental

data. In 213Po, the theoretical calculation predicts large transition rates to the ground (9/2+1 ) state

from the 5/2+1 , 7/2+1 , and 13/2+1 states. In 211Po, the magnetic moment of the 15/2−1 state is

largely predicted in magnitude by a factor of 3.6 compared with the experimental data, whereas the

magnetic moment and the quadrupole moment of the ground (9/2+1 ) state are well reproduced. This

discrepancy suggests that the 15/2−1 state might be affected by the octupole excitation, namely the

coupling the ground (9/2+1 ) state with the octupole phonon state.
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Table 1.7: Same as table 1.3, but for Po isotopes. The experimental data are taken from Refs.

[16, 18,19,22,26,30].

B(E2)

212Po Expt. Calc.

2+1 → 0+1 2.6(3) 10.921

2+2 → 0+1 0.4(1) 0.246

2+2 → 2+1 0.3(2) 1.843

4+1 → 2+1 13.462

6+1 → 4+1 3.9(11) 11.047

8+1 → 6+1 2.30(9) 5.820

10+1 → 8+1 2.2(6) 1.280

214Po Expt. Calc.

2+1 → 0+1 18.451

4+1 → 2+1 25.205

6+1 → 4+1 20.832

8+1 → 6+1 5.445

10+1 → 8+1 0.000

0+2 → 2+1 0.159(10) 0.352

211Po Expt. Calc.

5/2+1 → 9/2+1 10.189

7/2+1 → 9/2+1 2.321

9/2+2 → 9/2+1 2.306

11/2+1 → 9/2+1 0.403

13/2+1 → 9/2+1 3.752

213Po Expt. Calc.

5/2+1 → 9/2+1 14.717

7/2+1 → 9/2+1 13.168

7/2+1 → 11/2+1 0.004

11/2+1 → 9/2+1 0.282

13/2+1 → 9/2+1 12.848
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Table 1.8: Same as table 1.4, but for Po isotopes. The experimental data are taken from Refs. [16,

18,19,22,26,31].

µ Q

212Po Expt. Calc. Expt. Calc.

2+1 +0.362 −0.070

4+1 +0.131 −0.198

6+1 −0.685 −0.423

8+1 −1.853 −0.769

10+1 −0.023 −1.141

214Po Expt. Calc. Expt. Calc.

2+1 +0.454 −0.399

4+1 +0.751 −0.682

6+1 +0.753 −0.853

8+1 +7.319 −1.441

10+1 +0.049 −1.005

211Po Expt. Calc. Expt. Calc.

7/2+1 −0.916 −0.501

9/2+1 −1.197(85) −1.343 −0.77(8) −0.591

11/2+1 +1.248 −0.623

13/2+1 +0.909 −0.357

15/2−1 −0.38(15) −1.382 −0.764

213Po Expt. Calc. Expt. Calc.

7/2+1 −0.936 −0.535

9/2+1 −1.251 −0.449

11/2+1 +1.230 −0.828

13/2+1 −0.856 −0.503

1.3.4 At isotopes

Here 212−215At isotopes are discussed. Figure 1.6 shows the theoretical energy spectrum of 213At in

comparison with the experimental data [16,22]. The spin-parity of the state observed at 0.341 MeV in
213At is assigned as (7/2−, 9/2−). The 7/2−1 and 9/2−2 states are calculated at 0.348 and 0.958 MeV,

respectively. Thus our calculation suggests that the spin-parity of this state is 7/2−.

Figure 1.6 shows the theoretical energy spectrum of 215At in comparison with the experimental

data [16,32]. The spin-parity of the state at 0.364 MeV in 215At is assigned as (13/2+1 ) [33]. However,

the 13/2+1 state is calculated at 1.332 MeV. Our calculation suggests that the spin-parity of the
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Figure 1.6: Same as Fig. 1.2, but for At isotopes. The experimental data are taken from Refs. [16,

19,22,26,32].

Table 1.9: Occupation numbers in some low-lying states of 215At.

ν 1g9/2 0i11/2 0j15/2 2d5/2 3s1/2 1g7/2 2d3/2

9/2−1 2.06 0.99 0.61 0.16 0.03 0.09 0.05

5/2−1 2.17 0.95 0.52 0.18 0.03 0.09 0.05

7/2−1 2.08 0.98 0.60 0.16 0.03 0.09 0.05

13/2+1 2.21 0.94 0.50 0.18 0.03 0.09 0.05

π 0h9/2 1f7/2 0i13/2 2p3/2 1f5/2 2p1/2

9/2−1 2.11 0.59 0.18 0.08 0.03 0.01

5/2−1 2.10 0.55 0.16 0.13 0.05 0.01

7/2−1 1.50 1.20 0.17 0.07 0.05 0.01

13/2+1 2.12 0.58 0.16 0.09 0.04 0.01
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state is 3/2−1 with the excitation energy of 0.402 MeV. A shell model study by Liang and others

suggested that the low-lying 9/2−1 , 5/2−1 , 7/2−2 , 13/2−1 , and 3/2−1 states have the (νg49/2 ⊗ πh39/2)

configuration [33]. However, it is shown in Table 1.9 that these states consist of not only the neutron

1g9/2 and the proton 0h9/2 orbitals.

Figure 1.6 shows the theoretical energy spectrum of 212At in comparison with the experimental

data [16, 19]. The (9−) state at 0.223 MeV is an isomer with a half-life of 0.119(3) s [16]. The 0−1 ,

1−1 , · · · , 9−1 states are members of the (νg9/2 ⊗ πh39/2) configuration. The calculation reproduces

the experimental situation such that the energy of the 9−1 state is lower than that of the 8−1 state.

The members of the second negative parity band, the 1−2 , 2−2 , · · · , 8−2 states, consist of the (νg9/2 ⊗
πh29/2f7/2) configuration. The 11+ state at 0.885 MeV is an isomer with a half-life of 18.7(7) ns and

decays to the (10−) state at 0.702 MeV by the E1 transition and the (9−) state at 0.223 MeV by the

M2 transition [16]. The 11+1 state mainly consists of the (νj15/2⊗πh39/2) configuration. The 6+1 , 7+1 ,

· · · , 18+1 states mainly consisting of the same configuration as the 11+1 state are located energetically

higher than the 11+1 state.

Figure 1.6 shows the theoretical energy spectrum of 214At in comparison with the experimental

data [16,26]. In 214At, only negative parity states are observed and densely located below 0.5 MeV.

The 0−1 , 1−1 , · · · , 9−1 states consist of the (νg29/2i11/2 ⊗ πh29/2f7/2) configuration.

Calculated results for B(E2) values and electromagnetic moments of At isotopes are given in

Tables 1.10 and 1.11 in comparison with the experimental data [16, 19, 22, 26, 32]. As for the E2

transitions, only two transition rates are measured in At isotopes. In 212At, the experimental values

of B(E2; 5−1 → 3−1 ) = 3.3(3) W.u. and B(E2; 15−1 → 13−1 ) = 3.1(3) W.u. are calculated as 4.715

W.u. and 4.295 W.u., respectively. As for electromagnetic moments, only the magnetic moments of

the 15−1 and 11+1 states in 212At are observed. The magnetic moment of the 15−1 state is 9.46(8) µN

in experiment and the theoretical result is +7.367 µN , which is a reasonable value. The magnetic

moment of the 11+1 state is 5.94(11) µN in experiment and the theoretical result is +1.874 µN , which

is 3.2 times smaller than the experimental data. The magnetic moment of the 11+2 state calculated at

1.417 MeV is +6.071 µN , which is very close to the experimental value. Thus the 11+1 and 11+2 states

might be reversely calculated compared to the experimentally observed states. In our calculation,

the 11+2 state, which consists of the (νg9/2 ⊗ πh29/2i13/2) configuration, is located 0.344 MeV higher

than the 11+1 state.

1.3.5 Rn isotopes

Here 213−216Rn isotopes are discussed. Figure 1.7 shows the theoretical energy spectrum of 214Rn in

comparison with the experimental data [16,26]. The yrast band is well reproduced in our calculation.

The spin-parity of the state observed at 1.332 MeV is not assigned (not shown in this figure). This

state decays to the 2+ state at 0.695 MeV. In our calculation, the 2+2 state is calculated at 1.626 MeV.

Considering this result and the comparison with neighboring nuclei such as 212Po and 216Rn, the
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Table 1.10: Same as table 1.3, but for At isotopes. The experimental data are taken from Refs. [16,

19,22,26,32].

B(E2)

213At Expt. Calc.

5/2−1 → 9/2−1 16.792

7/2−1 → 9/2−1 4.474

7/2−2 → 9/2−1 10.880

13/2−1 → 9/2−1 14.392

15/2−1 → 13/2−1 2.913

17/2−1 → 13/2−1 18.147

19/2−1 → 17/2−1 1.069

215At Expt. Calc.

5/2−1 → 9/2−1 33.195

7/2−1 → 9/2−1 0.003

7/2−2 → 9/2−1 18.121

13/2−1 → 9/2−1 26.498

212At Expt. Calc.

5−1 → 3−1 3.3(3) 4.715

8−1 → 9−1 2.079

15−1 → 13−1 3.1(3) 4.295

214At Expt. Calc.

3−1 → 1−1 2.598

5−1 → 3−1 8.861

spin-parity of the experimental state at 1.332 MeV is inferred to be 2+.

Figure 1.7 shows the theoretical energy spectrum of 216Rn in comparison with the experimental

data [16,34]. In 216Rn the spin-parity of the state at 1.838 MeV is assigned as (8+, 9+, 10+). The 8+2 ,

9+1 , and 10+2 states are calculated at 1.872, 2.217, and 2.369 MeV, respectively. Thus our calculation

suggests that the spin-parity of the state at 1.838 MeV is 8+. One of the peculiar features of

even-even nuclei in this region is the narrow energy gap between the 6+ and 8+ states in the yrast

band. In 216Rn, however, the narrow energy gap between the 6+ and 8+ states is not seen anymore

in experiment due to the evolution of quadrupole collectivity and the calculation reproduces this

feature. Some characteristic features of 214Rn and 216Rn are analyzed and discussed in Sec. 1.4.

Figure 1.7 shows the theoretical energy spectrum of 213Rn in comparison with the experimental

data [16, 22]. All the identified states are well reproduced. In 213Rn, the (25/2+) state is observed

at 1.664 + x MeV with x unknown. The 25/2+1 state is calculated at 1.670 MeV. Our calculation
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Table 1.11: Same as table 1.4, but for At isotopes. The experimental data are taken from Refs. [16,

19,22,26,32].

µ Q

213At Expt. Calc. Expt. Calc.

5/2−1 +2.584 −0.131

7/2−1 +3.708 −0.777

9/2−1 +3.669 −0.480

11/2−1 +3.397 −0.354

13/2−1 +4.099 −0.533

15/2−1 +2.592 −0.595

17/2−1 +3.993 −0.625

19/2−1 +2.169 −0.786

215At Expt. Calc. Expt. Calc.

5/2−1 2.484 −0.413

7/2−1 4.019 −1.026

9/2−1 3.555 −0.850

11/2−1 4.441 −1.019

13/2−1 4.040 −0.994

212At Expt. Calc. Expt. Calc.

1−1 +0.121 +0.121

2−1 +0.376 +0.226

3−1 +0.726 +0.195

15−1 9.46(8) +7.367 −0.837

11+1 5.94(11) +1.874 −0.971

11+2 +6.071 −1.081

214At Expt. Calc. Expt. Calc.

1−1 +0.261 +0.120

2−1 +0.513 +0.186

3−1 +0.825 +0.344

shows that the ground 9/2+1 state, the 11/2+1 state at 0.622 MeV, and the 15/2−1 state at 0.837 MeV,

mainly consist of the (νg9/2⊗πh39/2f7/2), (νi11/2⊗πh39/2f7/2), and (νj15/2⊗πh39/2f7/2) configurations,

respectively. These energies are very close to the single-particle energies for the neutron 1g9/2, 0i11/2,

and 0j15/2 orbitals, which are given as 0.0 MeV, 0.579 MeV, and 0.783 MeV, respectively. This

indicates that one valence neutron in the specific single-particle orbital determines nature of each

state, namely, its spin and parity.
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Figure 1.7: Same as Fig. 1.2, but for Rn isotopes. The experimental data are taken from Refs. [16,

22,26,32,34].

Figure 1.7 shows the theoretical energy spectrum of 215Rn in comparison with the experimental

data [16, 32]. In 215Rn, the spin of the positive parity state observed at 0.214 MeV is assigned as

(7/2, 9/2)+. The 7/2+1 and 9/2+2 states are calculated at 0.301 MeV and 0.795 MeV, respectively.

Thus the spin of the state observed at 0.214 MeV is suggested as 7/2. The spin of the negative parity

state observed at 0.291 MeV is assigned as (7/2, 9/2, 11/2)−. However, the calculation predicts no

negative parity states below 0.7 MeV. The 15/2−1 state, which is not observed in experiment, is

calculated at 0.733 MeV.

Calculated results for B(E2) values and electromagnetic moments of Rn isotopes are given in

Tables 1.12 and 1.13 in comparison with the experimental data [16, 22, 26, 32, 34]. In 214Rn, the

observed B(E2; 6+1 → 4+1 ) and B(E2; 8+1 → 6+1 ) values are much smaller, whereas the calculation

predicts large B(E2) values. The magnetic moments of 213Rn are well reproduced.



26 Chapter 1 Nuclear shell-model study in the northeast region of 208Pb

Table 1.12: Same as table 1.3, but for Rn isotopes. The experimental data are taken from Refs. [16,

22,26,32,34].

B(E2)

214Rn Expt. Calc.

2+1 → 0+1 >0.032 17.380

4+1 → 2+1 >0.28 23.101

6+1 → 4+1 3.8+17
−9 21.614

8+1 → 6+1 3.3+3
−1 15.905

10+1 → 8+1 2.9(7) 5.921

12+1 → 10+1 >0.0064 4.820

14+1 → 12+1 15.829

16+1 → 14+1 ≤4.4(3) 11.260

18+1 → 16+1 0.71(5) 0.722

13−1 → 11−1 0.93(8) 0.099

216Rn Expt. Calc.

2+1 → 0+1 28.567

4+1 → 2+1 40.613

6+1 → 4+1 40.704

8+1 → 6+1 9.671

10+1 → 8+1 3.111

213Rn Expt. Calc.

7/2+1 → 9/2+1 3.676

11/2+1 → 9/2+1 0.415

13/2+1 → 9/2+1 8.619

17/2+1 → 13/2+1 4.536

21/2+1 → 17/2+1 1.68(16) 2.287

215Rn Expt. Calc.

7/2+1 → 9/2+1 18.315

11/2+1 → 9/2+1 0.467

13/2+1 → 9/2+1 22.646
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Table 1.13: Same as table 1.4, but for Rn isotopes. The experimental data are taken from Refs. [16,

22,26,32,34].

µ Q

214Rn Expt. Calc. Expt. Calc.

2+1 +0.449 −0.370

4+1 +0.378 −0.601

6+1 −0.248 −0.772

8+1 −0.969 −0.992

10+1 +0.135 −1.364

216Rn Expt. Calc. Expt. Calc.

2+1 +0.612 −0.629

4+1 +1.021 −0.890

6+1 +1.138 −1.046

8+1 +5.923 −1.135

10+1 +0.236 −1.298

213Rn Expt. Calc. Expt. Calc.

5/2+1 −1.955 −0.526

7/2+1 −0.892 −0.427

9/2+1 −1.293 −0.718

11/2+1 +1.285 −0.756

21/2+1 4.73(11) +3.797 −0.880

25/2+1 7.63(25) +5.367 −0.660

15/2−1 −1.373 −0.909

31/2−1 9.90(8) +5.313 −0.796

215Rn Expt. Calc. Expt. Calc.

7/2+1 −0.725 −0.636

9/2+1 −1.130 −0.700

11/2+1 +1.294 −1.136

13/2+1 −0.489 −0.820

1.3.6 Fr isotopes

Here 214−217Fr isotopes are discussed. Figure 1.8 shows the theoretical energy spectrum of 215Fr

in comparison with the experimental data [16,32]. In 215Fr, energy levels of low-lying negative parity

states are well reproduced. A (13/2+) state is observed at 0.835 MeV in experiment. However, the

13/2+1 state is calculated at 1.224 MeV, which is 0.409 MeV higher than the experimental one.
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Figure 1.8: Same as Fig. 1.1, but for Fr isotopes. The experimental data are taken from Refs. [16,

26,32,34,35].

Figure 1.8 shows the theoretical energy spectrum of 217Fr in comparison with the experimental

data [16,35]. In 217Fr, the spins and parities of the states observed at 0.209 and 0.275 MeV are not

assigned (not shown in this figure). The 7/2−1 , 7/2−2 , and 5/2−1 states are calculated at 0.182, 0.342,

and 0.462 MeV. Thus it is suggested that two of these states correspond to the experimental states

at 0.209 and 0.275 MeV. The experimental energy levels of high-spin states, 13/2−1 , 15/2−1 , 17/2−1 ,

21/2−1 , and 25/2−1 states, are not reproduced well in comparison to other Fr isotopes. These states

look like members of a quadrupole vibrational band on the ground 9−1 state. In the present analysis

of adjusting the two-body effective interactions, we have not included 217Fr since it is a complicated

system with five valence protons and two neutrons. The quadrupole-quadrupole interactions between

like particles and/or the hexadecapole-hexadecapole interactions between a neutron and a proton

might be necessary for a better reproduction.

Figure 1.8 shows the theoretical energy spectrum of 214Fr in comparison with the experimental
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data [16,26]. In 214Fr, low-lying negative parity states are well reproduced. The (8−) state observed

at 0.122 MeV is a spin-gap isomer with a half-life of 3.35(5) ms [16]. This state disintegrates only

by the α-decay. The 0−1 , 1−1 , · · · , 9−1 states mainly consist of the (νg9/2 ⊗ πh49/2f7/2) configuration.

The 6−1 , 7−1 , and 9−1 states, which are connected to the 8−1 state by E2 or M1 transitions, are

calculated higher than the 8−1 state. As mentioned above, the calculation reproduces the situation

that the 9−1 state is slightly higher than the 8−1 state. The 9−1 state is indeed unfavored in the

(νg9/2 ⊗ πh49/2f7/2) configuration, in which at least one proton pair with angular momentum 0

have to be broken in the 0h9/2 orbital. The 10−2 , 11−1 , 12−1 , · · · , 15−1 states are admixtures of the

(νg9/2 ⊗ πh59/2) and (νg9/2 ⊗ πh49/2f7/2) configurations.

Figure 1.8 shows the theoretical energy spectrum of 216Fr in comparison with the experimental

data [16,34]. In 216Fr, the spin-parity of the state observed at 0.142 MeV is assigned as (0−, 1−, 2−).

The 0−1 , 1−2 , and 2−2 states are calculated at 0, 0.129, and 0.172 MeV, respectively. Thus it is inferred

that the spin-parity of the state at 0.142 MeV is 1− or 2−. The experimentally observed (9−) state

with an unknown energy is calculated at 0.117 MeV.

Calculated results for B(E2) values and electromagnetic moments of Fr isotopes are given in

Tables 1.14 and 1.15 in comparison with the experimental data [16, 26, 32]. The experimental

B(E2; 19/2−1 → 15/2−1 ) value of 215Fr is 0.6(4) W.u. The calculated B(E2) value of the same

transition is 17.221 W.u., which is much larger than the experimental one. The 15/2−2 state is calcu-

lated 0.181 MeV higher than the 15/2−1 state. The B(E2) value from the 19/2−1 state to the 15/2−2

state is calculated as 0.015 W.u. Therefore the calculated 15/2−1 and 15/2−2 states might be largely

admixed. The electromagnetic moments are well reproduced except for the magnetic moment of

the 11+1 state in 214Fr. The magnetic moment of the 11+2 state is calculated as 2.982µN . It is thus

difficult to resolve the discrepancy even if the 11+1 and 11+2 states are reversely predicted in our

calculation. However, it should be noted that the experimental 11+ state is ambiguous with respect

to spin and parity.

1.4 Discussion

In this section, structure of some even-even nuclei is investigated. The expectation numbers of

pairs for the yrast states are calculated using the pair-truncated shell model (PTSM) [36–38]. In the

present scheme, the building blocks are angular momenta zero (S), two (D), and four (G) collective

pairs, and also non-collective (H) pairs. The S, D, and G pair-creation operators are defined as

S† =
∑
j

αjA
†(0)
0 (jj), (4.1)

D†
M =

∑
j1j2

βj1j2A
†(2)
M (j1j2), (4.2)

G†
M =

∑
j1j2

γj1j2A
†(4)
M (j1j2), (4.3)
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Table 1.14: Same as table 1.3, but for Fr isotopes. The experimental data are taken from Refs. [16,

26,32].

B(E2)

215Fr Expt. Calc.

5/2−1 → 9/2−1 16.474

7/2−1 → 9/2−1 3.610

7/2−2 → 9/2−1 20.475

13/2−1 → 9/2−1 17.350

19/2−1 → 15/2−1 0.6(4) 17.221

19/2−1 → 15/2−2 0.015

23/2−1 → 19/2−1 12(5) 14.100

27/2−1 → 23/2−1 1.1(8) 6.365

27/2−2 → 23/2−1 0.002

217Fr Expt. Calc.

5/2−1 → 9/2−1 28.245

7/2−1 → 9/2−1 1.883

7/2−2 → 9/2−1 32.920

13/2−1 → 9/2−1 28.429

214Fr Expt. Calc.

5−1 → 3−1 3.336

8−1 → 9−1 4.374

15−1 → 13−1 0.68(24) 0.221

216Fr Expt. Calc.

3−1 → 1−1 1.372

5−1 → 3−1 5.789

where the pair creation operator of two nucleons in the orbitals j1 and j2 with total angular mo-

mentum J and magnetic quantum number M is constructed as

A
†(J)
M (j1j2) =

[
c†j1c

†
j2

](J)
M

. (4.4)

The structure coefficients α, β, and γ are determined by variation.

The H pair creation operators for neutrons are defined as

H
†(K)
Mν =



[
c†j15/2 c

†
j15/2

](K)

M
, K = 0, 2, 4, · · · , 14,[

c†g9/2 c
†
g9/2

](K)

M
, K = 0, 2, 4, 6, 8,[

c†g9/2 c
†
i11/2

](K)

M
, K = 1, 2, 3, · · · , 10,

(4.5)
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Table 1.15: Same as table 1.4, but for Fr isotopes. The experimental data are taken from Refs. [16,

26,32].

µ Q

215Fr Expt. Calc. Expt. Calc.

7/2−1 +4.010 −0.664

9/2−1 +3.690 −0.183

11/2−1 +3.546 −0.329

13/2−1 +4.089 −0.366

19/2−1 3.1(9) +2.560 −0.771

23/2−1 3.8(12) +2.211 −1.001

217Fr Expt. Calc. Expt. Calc.

7/2−1 +4.084 −0.878

9/2−1 +3.625 −0.464

11/2−1 +3.705 −0.627

13/2−1 +4.165 −0.577

214Fr Expt. Calc. Expt. Calc.

1−1 +0.232 +0.119

8−1 +2.145 −0.610

9−1 +2.472 −0.608

14−1 +8.5(4) +7.412 −0.318

14−2 +6.013 −1.339

11+1 +5.62(7) +1.905 0.82(22) −0.874

11+2 +2.982 −1.217

216Fr Expt. Calc. Expt. Calc.

1−1 +0.275 +0.138

3−1 +0.743 +0.277

5−1 +1.414 −0.059

and those for protons are defined as

H
†(K)
Mπ =



[
c†i13/2 c

†
i13/2

](K)

M
, K = 0, 2, 4, · · · , 12,[

c†h9/2
c†h9/2

](K)

M
, K = 0, 2, 4, 6, 8,[

c†h9/2
c†f7/2

](K)

M
, K = 1, 2, 3, · · · , 8.

(4.6)

Using the S, D, G, and H pair-creation operators, a many-body wavefunction of like nucleons can
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Figure 1.9: (a) The neutron expectation numbers of collective pairs for 212Po and 214Po. The S,

D, and G indicate S-pair, D-pair, and G-pair, respectively. (b) The neutron expectation numbers

of non-collective (g9/2)2-pair [(g9/2)2] and g9/2i11/2-pair (g9/2i11/2). The definitions of noncollective

pairs are given in the text. (c) The proton expectation numbers of collective pairs for 212Po.

be constructed as

|Ψ(Iη)⟩ =
(
S†)ns

(
D†)nd

(
G†)ng

(
H†)nh |−⟩ . (4.7)

The number of valence nucleon pairs, ns+nd+ng+nh, is fixed for a specific nucleus. The Hamiltonian

for this truncated space (PTSM space) is set identical to the present shell-model Hamiltonian. The

consistency between the results with the two methods (SM and PTSM) was discussed concerning the

energy levels of the 82Se nucleus up to 6 MeV in Ref. [39]. In Ref. [40] the energy levels of the 208Rn

nucleus up to 3.5 MeV in the SM are compared with those in the PTSM. The good correspondence

between the SM and the PTSM is seen.

Figure 1.9 shows the expectation numbers of pairs for the yrast states up to spin 10 in 212Po. This

nucleus is a system with two neutrons and two protons outside the doubly magic core 208Pb. It

is seen that the proton wavefunction mainly consists of the S-pair, and the contributions from the
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Figure 1.10: The same as Fig. 1.9, but for 214Rn and 216Rn.

D-pair and the G-pair are small for all the spins. The maximum contribution except from the S-pair

is 0.357 pairs of the D-pair in the 2+1 state. Thus the total excitation is mainly determined by the

neutron part. Up to the 8+1 state, the states consist of the (νg9/2)2I+ (I = 0, 2, · · · , 8) configuration.

One neutron needs to be excited to the 0i11/2 orbital to make the 10+1 state since the maximum spin

of two neutrons in the 1g9/2 orbital is eight. Therefore, the 10+1 state consists of the (νg9/2i11/2)10+

configuration. In this mass region, the strength of the neutron monopole-pairing is smaller than that

of protons. Thus the configuration mixing of neutrons is preferred.

Figure 1.9 shows the expectation numbers of pairs for the yrast states up to spin 10 in 214Po. This

nucleus is a system with four neutrons and two protons outside the 208Pb core. Similar to 212Po, the

proton part mainly consists of the S-pair for all the spins. For the neutron part, the ground state

consists of two neutron S-pairs. For the Iπ = 2+1 , 6+1 , 8+1 , and 10+1 states, two neutrons are coupled

to the S-pair, and the other two neutrons are coupled to pairs with spin I. For the 2+1 state, the

expectation numbers of the neutron D-pair and the proton D-pair are 0.787 and 0.349, respectively.

This result means that the 2+1 state mainly consists of the neutron D-pair. For the 4+1 state, the
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expectation numbers of the neutron D-pair, the neutron G-pair, and the proton D-pair are 0.623,

0.462, and 0.291, respectively. Thus it is inferred that the 4+1 state consists of mixtures of two types

of pair structures. The first one consists of one neutron S-pair, one neutron D-pair, and one proton

D-pair which are coupled with spin 4 [Sν(DνDπ)4+ ]. The second one consists of one neutron S-pair,

one neutron G-pair, and one proton S-pair (SνGνSπ).

Figure 1.10 shows the expectation numbers of pairs for the yrast states (except 6+ and 8+) in
214Rn. Those numbers for the 6+2 and 8+2 states are shown instead of those for the 6+1 and 8+1 states,

which are reversely reproduced in order in the PTSM calculations, compared to those in the SM

calculations. This nucleus is a system with two neutrons and four protons outside the 208Pb core.

For all the spins, four protons are coupled to the S-pairs and the spins are mainly determined by the

neutron part. Similar to 212Po, the yrast states up to spin 8 consist of the (νg9/2)2I+ configuration

and the 10+1 state consists of the (νg9/2i11/2)10+ configuration.

Figure 1.10 shows the expectation numbers of pairs for the yrast states in 216Rn. This nucleus

is a system with four neutrons and four protons outside the 208Pb core. Similar to the other three

even-even nuclei, 212Po, 214Po, and 214Rn, the ground state consists of two neutron S-pairs and two

proton S-pairs, and the 2+1 state mainly consists of one neutron S-pair, one neutron D-pair, and

two proton S-pairs. For the 4+1 state, the expectation numbers of the neutron D-pair, the neutron

G-pair, and the proton D-pair are 0.810, 0.330, and 0.582, respectively. The 4+1 state has a similar

structure with the 4+1 state in 214Po. The structure of the 6+1 state, however, is different from

the other three nuclei. The expectation numbers of the neutron D-pair, the neutron G-pair, and

the neutron (g9/2)26+ -pair are 0.811, 0.492, and 0.135, respectively. The expectation number of the

neutron (g9/2)26+ -pair is small and that of the neutron D-pair is large compared to the other three

nuclei. This indicates that the nucleus shows an aspect of a collective feature.

The low-lying nuclear structures of nuclei with a few valence nucleons outside the doubly magic

core 208Pb are generally determined by the single-particle motion of the valence nucleons. However,

as the number of valence nucleons increases, collective features appear. The collectivity of 216Rn is

also seen in the energy spectrum as discussed in Sec. 1.3.5.

A specific feature of even-even nuclei in this mass region is the narrow energy gap between the

6+1 and 8+1 states (e.g. see 210Pb in Fig. 1.1). This small energy gap occurs due to the alignment of

two neutrons. In this mass region, the yrast states up to spin 8 in even-even nuclei consist of the

two neutrons in the 1g9/2 orbital. In the 8+1 state, the spin of two neutrons in the 1g9/2 orbital is

stretched and the energy of the 8+1 state is lowered. However, the narrow energy gap between the

6+1 and 8+1 states is not seen in 216Rn anymore (see Fig. 1.7).

1.5 Summary

In the present study, the large-scale shell-model calculations have been carried out for even-even,

odd-mass, and doubly odd nuclei of 82Pb, 83Bi, 84Po, 85At, 86Rn, and 87Fr isotopes in the neutron
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rich region around the double magic 208Pb nucleus.

For neutron single-particle levels, seven orbitals above the magic number 126, 1g9/2, 0i11/2, 0j15/2,

2d5/2, 3s1/2, 1g7/2, and 2d3/2 orbitals, have been taken into account. For proton single-particle levels,

all the six orbitals in the major shell between the magic numbers 82 and 126, 0h9/2, 1f7/2, 0i13/2,

2p3/2, 1f5/2, and 2p1/2 orbitals, have been taken into account. The particle number dependence of

the single-particle energies of the neutron 0j15/2 and 0i11/2 orbitals and the proton 0i13/2 and 1f7/2

orbitals have been assumed. They are changed linearly so as to reproduce the energy levels of low-

lying states of the odd-mass nuclei. As for the effective two-body interaction, higher multipole-pairing

interactions among like nucleons and the quadrupole-quadrupole interaction between neutrons and

protons are employed in addition to the conventional pairing interactions. Only one set of the

strengths of the two-body interactions has been adopted in all the nuclei considered.

Energy spectra, E2 transition rates, magnetic moments, and electric quadrupole moments have

been calculated and compared with the experimental data. Good agreements with experimental

data have been obtained not only for even-even and odd-mass nuclei, but also for doubly-odd nuclei.

Comparing our results and the experimental data, spins and parities of experimentally ambiguous

states have been suggested.

Nine isomeric states are analyzed in terms of the shell-model configurations. Four isomeric states

appearing in this region are classified as the spin-gap isomers, which do not take gamma transitions

with low-spin changes, such as E2 or M1 transitions, because of the large spin difference between

initial and final states. The other five states become isomers even if they decay by the E2 transition.

They become isomers since the energy gaps between the initial and final states are small.
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Chapter 2

One octupole-phonon model in the

proton-rich region of 208Pb

2.1 Introduction

Octupole correlations play an important role in determining the low-lying structure of nuclei

throughout the periodic table [41, 42]. Nuclei around the double-magic nucleus 208Pb provides an

ideal laboratory to study the concept of octupole-phonon vibrations in nuclear systems because the

first excited 3− states of these nuclei have long been interpreted as collective one-octupole-phonon

states. In fact large electric octupole transition probabilities between low-lying 3− states and the

ground 0+ states have been experimentally observed in 208Pb [43,44], 206Pb [45,46], and 210Pb [47].

High-spin alternating parity band was also discovered in 216Rn [48]. Microscopically, they result

from the long-range, octupole-octupole interaction between nucleons occupying pairs of orbitals

with ∆j = 3 and ∆l = 3. One-octupole-phonon and multi-octupole-phonon excitations around
208Pb have been studied in theory by many authors [20,49–56].

The nuclear shell model is one of the most successful models in nuclear structure. In our previous

studies [1,14,15,57], low-lying states in the mass number A = 130 and 200 regions were systematically

reproduced in the nuclear shell model. The octupole-phonon states which arise from one-particle

one-hole excitations across the magic cores were excluded in the previous framework of the nuclear

shell model, where the number of the shell-model configurations was limited due to the computational

feasibility.

The octupole vibration and deformation are closely related to the parity (P ) odd nuclear moments.

The nuclear Schiff moments and the magnetic quadrupole moments can be largely enhanced in

deformed nuclei, for example 225Ra [58], 161Dy, and 237Np [59]. Moreover, an additional enhancement

mechanism due to the coexistence of collective quadrupole and octupole modes was suggested, and

the effect has been confirmed in RPA-based calculations [60, 61]. Another enhancement mechanism

of the CP violating interactions due to α-cluster structures is expected in light nuclei [62–64].

In spherical nuclei the nuclear Schiff moment of 129Xe [65–67] and nuclear dipole moments of
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129Xe [68,69] and 199Hg [70] are precisely calculated in the nuclear shell model.

In this paper the shell-model states and one-octupole-phonon states are unified by introducing an

octupole phonon, which is helpful to identify the octupole vibrational states based on the shell-model

configurations. The model is applied to various nuclei around the 208Pb nucleus.

This paper is organized as follows. In Sec. 3.2 theoretical framework is given where the collective

octupole phonon (f -boson) is introduced. In Sec. 2.3 numerical results are given. Finally summary

is given in Sec. 3.4.

2.2 Theoretical framework

A phenomenological model is introduced in this paper to describe collective octupole-phonon

excitations based on the shell-model (SM) states. In this model a collective octupole-phonon (f -

boson) weakly couples with each shell-model state. The total Hamiltonian reads

Ĥ = ĤSM + Ĥf + ĤSM−f , (2.1)

where ĤSM is the shell-model Hamiltonian for valence neutrons and protons. The explicit form of the

shell-model Hamiltonian and the strengths of the interactions are given in Ref. [15] for the neutron

number N ≤ 126 and in Ref. [1] for N > 126. In these works, the shell-model configurations involve

all the valence nucleons and all the single-particle orbitals in each one-major shell.

The f -boson one-body Hamiltonian is given as

Ĥf = εff
† · f̃ , (2.2)

where f† and f̃µ = (−1)3−µf−µ are the f -boson creation and annihilation operators, respectively,

with angular momentum 3 and negative parity. As will be discussed in detail, the single f -boson

energy εf is introduced as a phenomenological parameter.

The interaction between one f -boson and each shell-model state is simply assumed to be a dipole-

type with a coupling constant α:

ĤSM−f = α ISM ·Lf , (2.3)

where ISM indicates the angular momentum in the valence space and Lf is the angular momentum

of the f -boson that is defined as

L
(1)
f =

√
14
[
f†f̃

](1)
. (2.4)

This dipole-type interaction represents the Coriolis force that does not admix the pure shell-model

states with the one-octupole-phonon excited states. Then f -boson state coupled with each shell-

model state is explicitly constructed as

|Iπk ; J⟩f = [|f⟩ ⊗ |Iπk ⟩SM]
(J)

, (2.5)
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where |Iπk ⟩SM is the kth eigenstate with spin I and parity π of the shell-model Hamiltonian within

the valence space. Here the shell-model states |Iπk ⟩SM are given by diagonalizing the shell-model

Hamiltonian as

ĤSM |Iπk ⟩SM = ESM(Iπk ) |Iπk ⟩SM . (2.6)

The total angular momenta J of the f -boson state coupled with the shell-model Iπk state are given

by

J = |I − 3| , |I − 3| + 1, . . . , I + 3. (2.7)

It should be noted that the f -boson state coupled with the shell-model Iπk state has the opposite

parity to the corresponding shell-model state. The energy of the f -boson state coupled with the

shell-model Iπk state is given as

Ef (Iπk ; J) = ESM(Iπk ) + εf +
1

2
α [J (J + 1) − I (I + 1) − 12] . (2.8)

As for the single f -boson energies εf , the excitation energies of the 3−1 states are adopted if they

are experimentally known. Those values are εf = 2.648 and 1.870 MeV for 206,210Pb, respectively,

and εf = 2.387, 1.537, and 1.275 MeV for 210,212,214Po, respectively. For other nuclei where any 3−

states are not observed, linearly optimized values with mass number A given in MeV as

εf = −0.121A+ 27.3, (2.9)

are employed. Here the neutron-closed, proton-closed, and deformed nuclei are excluded in the

process of optimization.

Fig. 2.1(a) shows the ratio (R4/2 = E(4+1 )/E(2+1 )) of the excitation energy of the experimental 4+1

state to that of 2+1 state. In the lead region the value is in between one and two, indicating that these

nuclei are spherical. In heavy Ra and Th isotopes, the ratio changes from two to 3.3, which indicates

that these nuclei exhibit vibrational to rotational nature as the valence neutron number increases.

Fig. 2.1(b) shows the experimental excitation energies of the 3−1 states. It is shown in the figure that

there is a strong correlation between two quantities (R4/2 and E(3−1 )). The deformation feature

appears in the A ≥ 224 region, whose nuclei are not treated in the present paper. As for the Coriolis

coupling strength, an optimum choice is α = −0.02 MeV throughout all the nuclei considered.

The electric octupole (E3) transition operator is simply given as

Oµ = ef

(
f (3)†µ − f̃ (3)µ

)
, (2.10)

where ef represents the effective charge of the collective f -boson. Here it is assumed that the

contributions to E3 transition probabilities from valence nucleons are small, compared with the

collective contributions. The reduced transition probabilities are then given by

B(E3; (Ik; J)f → I ′k′) = e2f δI,I′δk,k′ . (2.11)
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Figure 2.1: (a) Ratio of the excitation energy of the 4+1 state to that of the 2+1 state, and (b)

Excitation energies of the 3−1 states for proton-closed (red), neutron-closed (green), deformed (violet),

and other open-shell (blue) nuclei. The dot-dash line indicates the single f -boson energy εf as a

function of mass A. A more detailed discussion on the optimized parameters of the single f -boson

energy εf is given in the text.

As shown in Table 2.1, large B(E3) values of the ground 0+ states to the 3−1 states are measured with

good accuracy for 206Pb [45, 46], 208Pb [43, 44], and 210Pb [47], which demonstrates the collective

nature of the 3−1 states.

2.3 Numerical results

As noted in the formalism, the shell-model Iπk state indicates |Iπk ⟩SM, while |Iπk ; J⟩f is referred

to as the f -boson Jπ′
state coupled with the shell-model Iπk state. Here the f -boson state has the

opposite parity π′ to the parity π of the corresponding shell-model state.

In the following calculations it should be noted that in the case of 206,210Pb and 210Po the shell
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Table 2.1: Experimental B(E3) values in units of W.u. Excitation energies (Exc.) are given in units

of MeV. The Weisskopf unit for the electric octupole transition is given as Bsp(E3) = 5.940 ×10−2A2

in units of e2fm6 [42]. In the last column type of each electric octupole transition is given. Ambiguous

type is enclosed in parentheses.

Jπ Exc. Iπ Exc. B(E3; Jπ → Iπ) Type

206Pb 3− 2.648 0+ 0 36 (2) [45,71] collective

7− 2.200 4+ 1.998 0.28 (3) [71] non-collective

7− 2.200 4+ 1.684 0.361 (8) [16] non-collective

12+ 4.027 9− 2.658 0.137 (12) [71] non-collective

208Pb 3− 2.615 0+ 0 34.0 (5) [43,44,72] collective

210Pb 3− 1.870 0+ 0 26 (6) [17,47] collective

3− 2.828 0+ 0 14 (4) [17,47] (collective)

11− 2.512 8+ 1.278 21 (2) [73] (collective)

214Rn 13− 2.676 10+ 1.928 44 (8) [74] collective

212At 18+ 2.250 15− 1.605 24 (1) [75] *1 collective

22− 3.506 19+ 2.264 29 (9) [19,75] collective

25− 4.772 22+ 4.547 26.8 (14) [19,75,76] collective

214Fr 11+ 0.638 8− 0.122 10 (4) [26,77] (non-collective)

14− 1.661 11+ 0.638 25 (5) [26,77] collective

model configuration space involves only two-particle (hole) configurations. However, in the case of
212,214Po and also Rn, At and Fr isotopes the shell-model configuration space includes all particles

in the valence shells.

Figure 2.2 shows the energy spectra of 82Pb isotopes (206, 210Pb). The 206Pb nucleus consists of

two valence neutron holes out of the doubly magic core of 208Pb. The valence space consists of six

neutron orbitals, 2p1/2, 2p3/2, 1f5/2, 1f7/2, 0h9/2, and 0i13/2. Thus, the lowest spin among all the

negative parity states in the valence space is two, and the 1− states were out of the shell-model

configurations. As shown in Fig. 2.2, the experimental negative-parity states with spin 2 and spin 3

cannot be described in the shell-model framework either. In fact, the shell-model 2−1 and 3−1 states

are predicted at 5.735 MeV (not shown in the figure) and 4.660 MeV, respectively. Without any

kinds of core-excitations, low-spin negative-parity states cannot be reproduced.

In the present framework, where collective octupole-phonon excitations are taken into account,

the one-to-one correspondence between theory and experiment for all the negative-parity states with

spin I ≤ 3 is well retained with the single f -boson energy as εf = 2.648 MeV. As shown in Table 2.1,

the experimental B(E3) value from the 7−1 state to the 4+1 state, and that from the 12+1 state to

the 9−1 state, are both one order of magnitude smaller than the single-particle estimate. In fact our
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Figure 2.2: Theoretical energy spectra including collective octupole-phonon (f -boson) excitations for

Pb isotopes in comparison with experimental data [16,17,71,73]. As for the f -boson states indicated

with filled circles, only the lowest state for each spin-parity is displayed unless the corresponding

state is observed. The 1−, 2−, 3−, 4−, and 5− states in 206Pb and the 3−2 state and 5−2 state in
210Pb are ones of the exceptions.

calculation suggests that the 7−1 and 12+1 states correspond to the pure shell-model states, which are

not related to the octupole-phonon excitations.

The 210Pb nucleus consists of two valence neutrons out of the doubly magic core of 208Pb. Exper-

imental energy levels and electromagnetic properties of low-lying states were well reproduced in the

previous shell-model study except for the 3−1 state observed at 1.870 MeV [1]. The most plausible

explanation for the 3−1 state is that this state is the one-octupole-phonon excitation across the 208Pb

core on top of the ground 0+ state. Recognizing that the 3−1 state is a collective octupole-phonon

excited state (f -boson state), a number of f -boson states, not only on top of the ground state, but

also on top of other shell-model states such as the 2+1 and 4+1 states, should be observed. The energy

difference between such kind of an f -boson state and the corresponding shell-model state should

be not so much different from the excitation energy of the 3−1 state if the f -boson state and the

shell-model state are weakly coupled. It is indeed assumed weak in this work.

In the present framework, there should be an f -boson 3− state coupled with the shell-model 2+1

state, which is predicted at 2.753 MeV with the configuration of
[
|f⟩ ⊗ |2+1 ⟩

](3)
. In the previous shell-

model calculation [1], the 3−2 was predicted at 2.682 MeV with the configuration of (νg9/2j15/2). The

experimental B(E3) values in Table 2.1, some of which were obtained by Coulomb excitations [17,47],

are helpful to identify the structure of the experimental 3−2 state. It is shown from Eq. (2.11) that

the theoretical B(E3) value from the f -boson 3− state to the shell-model 0+1 state should be exactly

zero if the f -boson 3− state is excited from the shell-model 2+1 state. Taking into account the above,
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we have the following assumption for the experimental 3−1 , 3−2 and 3−3 states as∣∣∣3̃−1 ⟩ = α
∣∣f ⊗ 0+1

⟩
+ β

∣∣3−1 ⟩SM (3.1)∣∣∣3̃−2 ⟩ = β
∣∣f ⊗ 0+1

⟩
− α

∣∣3−1 ⟩SM (3.2)∣∣∣3̃−3 ⟩ =
∣∣f ⊗ 2+1

⟩
(3.3)

where α2 + β2 = 1. Here the coefficients α and β may be calculated through the octupole-octupole

interaction between the valence nucleons and the octupole phonon. In this case a sum rule is obtained

through Eq. (2.11), B(E3; 3−1 → 0+1 ) +B(E3; 3−2 → 0+1 ) = e2f .

Another possibility is that the experimental 3−1 and 3−2 states arise from two different kinds

of collective-octupole modes with respect to neutron and proton degrees of freedom, namely fν

and fπ. In fact there should be two kinds of excitations expressed as |f1⟩ = α|fν⟩ + β|fπ⟩ and

|f2⟩ = β|fν⟩−α|fπ⟩ where α2 +β2 = 1. However, this possibility is low, considering the fact that in
208Pb the 3−1 state appears at 2.615 MeV, but the 3−2 state appears at 4.051 MeV, which is rather

high in energy. In order to avoid the complexity, this possibility is not discussed further, but left as

a future problem. In this paper only one kind of collective mode characterized by the first 3− state

is assumed.

Figure 2.3 shows the energy spectra of 84Po isotopes (210, 212, 214Po). The 210Po nucleus consists of

two valence protons in the shell model. In the previous shell-model study [15], the experimental 3−1 ,

(11−2 ), (12−1 ), 13−1 , and 14−1 states and some 5−, 6−, and 7− states were not reproduced. Adopting the

excitation energy of the experimental 3−1 state as the single f -boson energy εf , all the experimental

5−, 6−, 7−, and 11− states are well reproduced except for the 5−1 state. The 5−1 state is supposed

to have nature of a single-particle excitation across the core. Here it should be noted in mind that

the experimental 5−1 state appearing at 3.198 MeV in 208Pb. In contrast neither of the (12−1 ), 13−1 ,

and 14−1 states are reproduced in the present framework. The f -boson 12−, 13−, and 14− states

are actually predicted more than 6 MeV higher in energy (not shown in the figure). These high-

spin states seemingly have nature of single-particle excitations across the core on top of the pure

shell-model states. For example, the 14−1 state is so constructed that the lowest 6− particle-hole

excitation across the core is coupled to the shell-model 8+1 state. The excitation energy of 6− state

in 208Pb is 3.920 MeV. Therefore 5−, 4−, and 6− one particle-one hole excitations are necessary for

the description of the (12−1 ), 13−1 , and 14−1 states

For 212Po, the negative-parity states with spins lower than 11 were reported by the EUROBALL

collaboration [23,24]. The authors assumed that the (3−1 ), (5−1 ), (7−1 ), and (9−1 ) states mainly consist

of one-octupole-phonon excitations based on an analogy of the shell-model study in 148Gd [78].

In the previous shell-model calculations of 212Po [1], all the negative-parity states were predicted

high in energy compared with experiment. The shell-model 3−1 state was calculated at 2.430 MeV

whereas the experimental 3−1 state is observed at 1.537 MeV. Adopting the excitation energy of the

experimental 3−1 state as the single f -boson energy εf , not only the experimental (3−1 ), (5−1 ), (7−1 ),
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Figure 2.3: The same as Fig. 2.2, but for Po isotopes. The experimental data are taken from Refs.

[16, 17,19,23–26] .

and (9−1 ) states, but also the (11−1 ) and (13−1 ) states are well reproduced.

In contrast it is impossible in the present study to reproduce the low-lying (4−), (6−), and (8−)

states just below the excitation of 2 MeV. Based on enhanced E1 transition probabilities, the EU-

ROBALL group pointed out that these states may have α + 208Pb cluster structure, which are out

of the present framework. A further study is necessary to draw a definite conclusion.

Concerning the 214Po nucleus in Fig. 2.3, the experimental 1−1 , (2−1 ), and (3−1 ) states were out of

the shell-model framework [1]. In the present calculation with the f -boson they are reproduced with

the single f -boson energy as εf = 1.275 MeV, where the excitation energy of the experimental 3−1

state is adopted. The first f -boson 2− and 1− states, and the second 1− state are coupled with the

shell-model 2+1 , 2+1 , and 4+1 states, respectively.

Figure 2.4 shows the energy spectra of 86Rn isotopes (214, 216Rn). In 214Rn and 216Rn, 3− states

have not been observed to date. In 214Rn a low-lying state with unassigned spin and parity is

observed at 1.331 MeV (not shown in the figure), which is rather high in energy for the positive-



2.3 Numerical results 45

Figure 2.4: The same as Fig. 2.2, but for Rn isotopes. The experimental data are taken from Refs.

[16, 26,34].

parity states predicted in the previous shell-model framework. Thus this state is presumed as the

collective octupole-phonon excited state. As for the single f -boson energies, linearly optimized values

of εf = 1.406 MeV and 1.164 MeV in Eq. (2.9) are adopted for 214Rn and 216Rn, respectively. The

shell-model 11−1 , 13−1 , 19−1 , 20−1 , and 22+1 states of 214Rn were calculated [1] slightly high in energy

in comparison with experiment. In the present framework with f -boson, the experimental 13−1 , 19−1 ,

(20−1 ), and 22+1 states are preferably reproduced. The experimental B(E3; 13−1 → 10+1 ) value of

44(8) W.u. shown in Table 2.1 is considerably larger than the single-particle estimate. Therefore it

is inferred that the experimental 13−1 state mainly consists of the f -boson state,
[
|f⟩ ⊗ |10+1 ⟩

](13)
.

The experimental (18)− state at 3.579 MeV with ambiguity in spin cannot be well reproduced both

in the previous shell-model calculation and the present framework with f -boson. A two-octupole-

phonon state on top of the shell-model 12−1 state at 2.389 MeV may correspond to the (18)− state.

In 216Rn, the 13−1 , 15−1 , 17−1 , and 19−1 states were observed through the 208Pb (18O, 2α2n) re-

action [48]. These negative-parity states and the 16+1 state at 3.238 MeV are well reproduced in

the present framework. The first f -boson 13−, 15−, 17−, 19−, and 16+ states are so constructed

by the octupole-phonon excitation on top of the shell-model 10+1 , 12+1 , 14+1 , 16+1 , and 13−1 states,

respectively.

Figure 2.5 shows the energy spectrum of 212
85At. One of the almost degenerate (12+1 ) and (12+2 )

states (at 1.262 MeV and 1.283 MeV), and the (13+1 ) state are well reproduced in the present

framework. As shown in Table 2.1, B(E3) values larger than 20 W.u. are measured for the (18+1 ),

(22−1 ), and (25−1 ) states, which demonstrates that these states are mainly constructed by the collective

octupole-phonon excitations. In the present framework with εf = 1.648 MeV, some f -boson 18+

and 22− states appear close to the experimental (18+1 ) and (22−1 ) states in energy. In contrast, the

(25−1 ) state cannot be reproduced in the present framework. The (25−1 ) state with ambiguity of
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Figure 2.5: The same as Fig. 2.2, but for 212At. The experimental data are taken from Refs. [16,19].

Figure 2.6: The same as Fig. 2.2, but for 214Fr. The experimental data are taken from Refs. [16,26].

spin-parity can be thought to be a two-octupole-phonon state on top of the one-octupole-phonon

22+1 state predicted above 4.273 MeV. Spin and parity of the (25−1 ) state should be confirmed in

experiment.

Figure 2.6 shows the energy spectrum of 214
87Fr. Low-lying (11+) and (12+) states are well re-

produced. In the present framework, the (11+1 ) state, where B(E3; 11+ → 8−) = 10(4) W.u.

is observed, preferably corresponds to the shell-model 11+1 state. The neutron configuration of

the shell-model 11+1 state consists of the (νj15/2) orbital while that of 8−1 state consists of the

(νg9/2) orbital. The experimental B(E3) value is not so different from the single-particle estimate

of B(E3; 0j15/2 → 1g9/2) = 4.84 W.u. , assuming the neutron effective charge of eν = e. Another

possibility is to assume that the experimental 11+1 and 11+2 states are mixtures of the shell-model
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11+1 state and the first f -boson 11+ state as∣∣∣1̃1+1

⟩
= α

∣∣f ⊗ 8−1
⟩

+ β
∣∣11+1

⟩
SM

(3.4)∣∣∣1̃1+2

⟩
= β

∣∣f ⊗ 8−1
⟩
− α

∣∣11+1
⟩
SM

(3.5)

where α2 + β2 = 1.

As shown in Table 2.1, the value of B(E3; 14− → 11+) = 25(5) W.u. is reasonably large so that the

(14−1 ) mainly consists of f -boson states. In the present framework, the lowest two f -boson 14− states

and the shell-model 14−1 state are calculated approximately at the same energy of the experimental

(14−1 ) state. However, the higher f -boson 14− state is excluded since this state is constructed by an

octupole-phonon excitation on top of the shell-model 12+1 state and then it cannot contribute to the

E3 transition (see the discussion on the 3−2 state of 210Pb). In contrast, the lower f -boson 14− state

is constructed on the shell-model 11+1 state, and then cause a large E3 transition to the shell-model

11+1 state. In conclusion, it is inferred that the (14−1 ) state is a mixture of the f -boson 14− state

coupled with the shell-model 11+1 , and the shell-model 14−1 state.

Through the present study, it is found that, among the experimental states whose B(E3) values

were measured, the 3−1 state of 206Pb, the 3−1 state of 208Pb, the 3−1 state of 210Pb, the 13−1 state

of 214Rn, the 18+1 , 22−1 , and 25−1 states of 212At, and the 14−1 state of 214Fr are mainly constructed

by the collective octupole-phonon excitations. Using these experimental B(E3) values, the effective

charge of the collective f -bosons is evaluated as

e2f = (8.1 ± 0.7) × 104 e2fm6, (3.6)

which corresponds to 31 ± 2.7 W.u. for the B(E3; 3− → 0+) transition with A = 208.

2.4 Summary

A model is proposed for the octupole vibrational states based on the nuclear shell model. In this

model, one-octupole-phonon representing the collective octupole vibration across the magic core is

introduced onto the microscopically calculated shell-model states. The model is applied to various

nuclei around 208Pb nucleus. Both pure shell-model states and octupole vibrational states are well

reproduced. The type of each electric octupole transition is classified by either collective or non-

collective nature. The electric octupole transition probabilities between the octupole vibrational

states and the pure shell-model states are consistent with the simple estimate in Eq. (2.11). The

effective charge for the f -boson is obtained in comparison with the experimental data.

In this work we have introduced only one-octupole-phonons. There is some indication of two-

octupole-phonon states. For instance in 214Rn, a two-octupole-phonon state coupled with the shell-

model 12−1 state may correspond to the (18)−1 state. Two-phonon states should be included in the

future. Also we need to introduce other high angular momentum excitations such as 5− and 4−,

which have energies of 3.197 and 3.475 MeV in 208Pb. In this work we have only considered the
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Coriolis coupling between the shell-model states and the octupole phonon states. The model needs

to be expanded by introducing other effective interactions that couple both the pure shell-model

states and the f -boson states coupled with the shell-model states.
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Chapter 3

Shell-model study in the southwest region of
208Pb

3.1 Introduction

Nuclear shell model is one of the most successful models to study the nuclear structure. All the

energy levels can be described with reliable effective interactions and enough large model spaces. A

nuclear effective interaction for the southwest region of 208Pb (Z < 82, N < 126) was developed by

Kuo and Herling in the G-matrix prescription of realistic NN -interactions (Ref. [8] and references

therein). The realistic effective interaction has been modified thanks to the revision of single-particle

energies and newly observed levels since the original work in 1971 [79–81].

Experimental energy levels are successfully reproduced in shell-model calculations with the use of

revised two-body matrix elements for 202,204,206Tl [82–84], 202−204,206Hg [81,82,85,86], and 204Pt [86].

On the other hand, recent experiment gives new levels and electromagnetic transition strengths also

in 201Hg [87], 201,202Pt [88], which have not been studied in the nuclear shell model due to a large

number of configurations.

The electric dipole moment (EDM) of 199Hg atom has been explored in the last 30 years [89–94].

The present upper limit updated in 2016 [94] is the most precise experiment among all the atoms.

The EDMs of diamagnetic atoms such as 199Hg are contributed from the nuclear Schiff moment and

CP -odd nucleon-electron interactions through the nucleon spin. The nuclear Schiff moment of the
199Hg nucleus has been calculated using the simple shell model [95] the random phase approximation

(RPA) [96–98] and the quasi-particle RPA (QRPA) [99, 100]. The numerical results of the nuclear

Schiff moment of 199Hg are largely model-dependent. The nucleon spin of the 199Hg nucleus has

been predicted from the experimental value of the magnetic moment [101] and calculated in a pair-

truncated shell model (PTSM) [70].

In previous papers [1, 15], we performed large-scale shell-model calculations for even-even, odd-

mass, and doubly-odd nuclei in the neutron deficient region of 208Pb (Z ≥ 82). In those works, low-

lying energy spectra, B(E2) values, and electromagnetic moments of 56 nuclei were systematically
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reproduced.

In this paper, we study the southwest region of 208Pb (Z ≤ 82, N ≤ 126) with a multipole-

pairing plus quadrupole-quadruple interaction. First we develop a nuclear effective interaction to

reproduce the low-lying energy levels of nuclei near the doubly closed shell of 208Pb. Structure of

nuclei in the southwest region are revealed by comparing theoretical energy spectra, B(E2) values,

and electromagnetic moments with the experimental data.

This paper is organized as follows. The general framework of the present shell-model study is

given in Sec. 3.2. Energy spectra and electromagnetic properties are presented and compared with

the experimental data for each nucleus in Sec. 3.3. Finally this work is summarized in Sec. 3.4.

3.2 Theoretical framework

In the present paper large-scale shell-model calculations are performed for even-even, odd-mass,

and doubly-odd nuclei in the southwest (N < 128 and Z < 82) region of 208Pb. All the single-

particle levels in the one-major shells, neutron 2p1/2, 2p3/2, 1f5/2, 1f7/2, 0h9/2, and 0i13/2 orbitals

and proton 2s1/2, 1d3/2, 1d5/2, 0g7/2, and 0h11/2 orbitals are taken into account. The single-particle

energies ετ (τ = ν or π) employed in the present calculations are listed in Table 3.1. These values

are extracted from the excitation energies of low-lying states in 207
81Tl126 and 207

82Pb125. It is assumed

for a better reproduction of the low-lying states in odd-mass nuclei that the single-particle energies

of the intruder orbitals, νi13/2 and πh11/2, depend on the numbers of valence nucleons. The values

are explicitly given in units of MeV as

ϵν(i13/2) = −0.07Nν − 0.05Nπ + 1.703, (2.1)

ϵπ(h11/2) = 0.03Nπ + 1.318, (2.2)

where Nν and Nπ are the numbers of neutron and proton holes, respectively

A multipole-pairing plus quadrupole-quadrupole interaction is employed as an effective interaction.

The effective shell-model Hamiltonian is classified as

Ĥ = Ĥν + Ĥπ + Ĥνπ, (2.3)

where Ĥν , Ĥπ, and Ĥνπ represent neutron, proton, and neutron-proton interactions, respectively.

The interactions among like nucleons are expressed as

Ĥτ =
∑
jm

εjτ c
†
jmτ cjmτ −

∑
L=0,2,4,6,8,10

GLτ P̂
†(L)
τ · ˆ̃P (L)

τ − κτ : Qτ ·Qτ : . (2.4)

Detailed definitions of the interactions are given in Ref. [14].

The interaction between neutrons and protons Ĥνπ consists only of the quadrupole-quadrupole

(QQ) interaction, which is given as

Ĥνπ = −κνπQ̂ν · Q̂π, (2.5)
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Table 3.1: Adopted single-hole energies ετ for neutrons (τ = ν) and protons (τ = π) in units of

MeV. The single-particle energies for the neutron 0i13/2 and the proton 0h11/2 orbitals are changed

linearly with the numbers of valence neutrons (Nν) and valence protons (Nπ). The nucleon number

dependence of εν(i13/2) and επ(h11/2) are given in the text.

j 2p1/2 1f5/2 2p3/2 0i13/2 1f7/2 0h9/2

εν 0.000 0.570 0.898 εν(i13/2) 2.340 3.415

j 2s1/2 1d3/2 0h11/2 1d5/2 0g7/2

επ 0.000 0.351 επ(h11/2) 1.683 3.474

Table 3.2: Strengths of adopted two-body interactions between neutrons (ν-ν) and those between

protons (π-π). G0 and G2 indicate the strengths of the monopole (MP ) and quadrupole-pairing

(QP ) interactions, respectively. GL (L = 4, 6, 8, 10) denote the strengths for higher multipole-

pairing (HMP ) interactions. The strengths of the MP and HMP interactions are given in units of

MeV. The strengths of the QP interactions are given in units of MeV/b4, where b is the oscillator

parameter.

G0 G2 G4 G6 G8 G10 κ

ν-ν 0.145 0.013 0.70 0.50 1.10 2.00

π-π 0.145 0.013 2.00 2.20 4.00 1.00 0.05

where the strength is taken as κνπ = 0.07 MeV/b4. Here harmonic-oscillator states are used as the

single-particle basis states with the oscillator parameter b =
√
ℏ/Mω.

In this mass region, shell-model dimensions for diagonalization are too large to perform full cal-

culations without truncations. Thus it is necessary to truncate the shell-model dimensions. In this

study, the same truncation scheme adopted in Sec. IIB of Ref. [14] is taken for all the nuclei. All

calculations are performed with the truncation of Lc = 500. Here the definition of Lc is the same

as given in Sec. IIB in Ref. [14]. This truncation scheme is found to be sufficient for reproducing

low-lying energy levels and electromagnetic transitions among low-lying states after checking the

effect of truncation by increasing Lc = 500 to Lc = 1000.

In this paper, E2 transition rates, magnetic moments, and quadrupole moments are also calculated.

For E2 transition rates and quadrupole moments, the effective charges are taken as eν = −0.85e for

neutrons and eπ = −1.50e for protons. For magnetic moments, the gyromagnetic ratios of orbital

angular momentum are taken as gℓν = 0.00 and gℓπ = 1.00, and the gyromagnetic ratios of spin are

taken as gsν = −1.91 and gsπ = 2.79. These effective charges and gyromagnetic ratios are adjusted

to reproduce the experimental data for single-closed nuclei on the whole. Further details of the

electromagnetic transition operators are presented in Ref. [14].
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Table 3.3: The calculated B(E2) values in units of W.u. for Tl isotopes (Calc.) in comparison with

the experimental data (Expt.) [16,71,102–105].

B(E2)
206Tl Expt. Calc.

2−1 → 0−1 2.22(14) 1.749

2−2 → 0−1 0.13(4) 0.213

4−1 → 2−1 1.2(3) 3.586

(7)+1 → (5)+1 1.25(8) 0

205Tl Expt. Calc.

3/2+1 → 1/2+1 6.1(10) 7.187

5/2+1 → 1/2+1 2.7(10) 1.805

5/2+1 → 3/2+1 5.9(12) 6.545

204Tl Expt. Calc.

(0−)1 → 2−1 ∼0.1 0.954

(4−)1 → 2−1 >0.10 3.290

203Tl Expt. Calc.

3/2+1 → 1/2+1 7.9(3) 7.927

5/2+1 → 3/2+1 0.55(13) 0.691

5/2+1 → 1/2+1 9.9(10) 8.060

3.3 Numerical results

In this section, energy spectra, E2 transition rates, magnetic moments, and quadrupole moments

are given for each nucleus. For energy spectra, up to four observed energy levels from the yrast state

are shown in figures for each spin-parity. As for the theoretical states, the two lowest energy levels

are shown for each spin-parity in general.

3.3.1 Tl isotopes

Figure 3.1 shows the energy spectra of 81Tl isotopes with one to five valence neutron holes. The
206Tl nucleus is a system with one neutron hole and one proton hole outside the doubly closed core of
208Pb. The strength of the quadrupole-quadrupole interaction κνπ = 0.07 MeV/b4 between neutron

and proton is phenomenologically determined to reproduce the energy spectrum of 206Tl. In the

present calculations the 0−1 state is located slightly higher than the 1−1 state comprise a degenerate

doublet with the (νp1/2 ⊗ πs1/2) configuration. In contrast the 1−1 state is experimentally measured



3.3 Numerical results 53

0 2 4 6 8 10 12
0

1

2

3

4

5

(   )
(   )

(   )(   )
(   )

(   )(   )(   )(   )

(   )

(   )

(   )

 Expt. (pos.)
 Expt. (neg.)
 Shell model (pos.)
 Shell model (neg.)

E 
(M

eV
)

I

206Tl

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

1

2

3

4

5

(   )

(   )

(   )

(   )

(   )(   ) (   )

(   )

 Expt. (pos.)
 Expt. (neg.)
 Shell model (pos.)
 Shell model (neg.)

E 
(M

eV
)

2I

205Tl

0 2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

4

5

6

7

(   )

(   )

(   )
(   )

(   )

(   )
(   )

(   )

(   )
(   )

(   )

(   )

(   )

(   )
(   )

(   )

(   )

(   )

(   )

 Expt. (pos.)
 Expt. (neg.)
 Shell model (pos.)
 Shell model (neg.)

E 
(M

eV
)

I

204Tl

1 3 5 7 9 11 13 15

0

1

2

3

(   )(   )

(   )

(   )
(   )

(   )

(   )
(   )

(   )

(   )

(   )
(   )(   )(   )

(   )

 Expt. (pos.)
 Expt. (neg.)
 Shell model (pos.)
 Shell model (neg.)

E 
(M

eV
)

2I

203Tl

0 2 4 6 8 10 12

0

1

2

3

(   ) (   )
(   )

(   )

 Expt. (pos.)
 Expt. (neg.)
 Shell model (pos.)
 Shell model (neg.)

E 
(M

eV
)

I

202Tl

Figure 3.1: The energy spectra of 81Tl isotopes compared with the experimental data [16,71,102–

105]. The 0−2 state in 206Tl, high-spin states in 204Tl, and the (0−1 ), (1−1 ), and (3−1 ) states in 202Tl,

were recently reported [83,84,106].
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Table 3.4: The results of magnetic dipole moments µ in units of µN and electric quadrupole moments

Q in units of eb for Tl isotopes (Calc.) in comparison with the experimental data (Expt.) [16, 71,

102–105].

µ Q
206Tl Expt. Calc. Expt. Calc.

(5)+1 4.27(6) +5.745 +0.519

(7)+1 <2.45 +0.423 +0.453

205Tl Expt. Calc. Expt. Calc.

1/2+1 +1.638 +1.247

3/2+1 −0.080(45) +0.387 0.74(15) +0.326

+0.02(12) *1

5/2+1 +2.2(7) +1.552 +0.443

(5/2)−2 0.71(15) +4.304 −0.54(20) +0.021

5/2+17 +0.217 −0.072

25/2+1 +6.80(10) +5.908 +0.848

204Tl Expt. Calc. Expt. Calc.

2−1 0.09(1) −0.086 +0.173

7+1 +1.187(6) +0.239 +0.509

203Tl Expt. Calc. Expt. Calc.

1/2+1 +1.622 +1.296

3/2+1 +0.16(5) +0.557 +0.320

5/2+1 2.6(11) +1.482 +0.072

202Tl Expt. Calc. Expt. Calc.

2−1 0.06(1) −0.185 +0.032

7+1 +0.90(4) +0.297 +0.417

with an excitation energy of 305 keV from the ground 0−1 state.

Both the 1−1 and the 0−1 states mainly consist of the (νp1/2⊗πs1/2) configuration with probabilities

more than 90%. The structure of other low-lying negative-parity states are classified as follows. The

1−2 and 2−1 states, the 2−2 and 3−1 states, and the 3−2 and 4−1 states mainly consist of the (νp1/2⊗πd3/2),

(νf5/2 ⊗ πs1/2), and (νf5/2 ⊗ πd3/2) configurations, respectively.

Theoretical B(E2) values and electromagnetic moments are compared with the experimental data

in Tables 3.3 and 3.4, respectively. The magnetic moments in the 5+1 and the 7+1 states are con-

sistent with the experimental data, whereas the B(E2; (7)+1 → (5)+1 ) value is not. The 7+1 and 5+1

states mainly consist of the (νi13/2 ⊗ πs1/2) and (νp1/2 ⊗ πh11/2) configurations, respectively. The
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configurations, (ν+ ⊗ π+) and (ν− ⊗ π−), are never admixed with the effective interactions that are

employed in the present study. Thus, the 7+1 and 5+1 states are not connected in the E2 channel.

Although the present framework has its drawbacks, the dominant configurations are consistent with

another shell-model study that successfully represents the B(E2; (7)+1 → (5)+1 ) value [?]. It is then

concluded that the quadrupole-quadrupole interactions play a major role to determine the structure

of odd-odd nuclei.

In 205Tl, the experimental energy spectrum, B(E2) values, and electromagnetic moments are re-

produced well except for the electromagnetic moments of the (5/2)−2 state, which were experimentally

measured once [108]. The authors assigned a spin-parity of 5/2+ on the measured level at 2.63 MeV.

In the present calculations several 5/2+ states are predicted around 2.6 MeV. The electromagnetic

moments of a calculated state at 2.823 MeV are µ = 0.217µN and Q = −0.072 eb. We then conclude

that 5/2+ is preferable to the spin-parity assignment of the state where the electromagnetic moments

were measured.

In 204Tl, a lot of states have been discovered in experiment. As shown in Fig. 3.1, the energy

spectrum is systematically reproduced in this study. On the other hand, the magnetic moment of

the theoretical 7+1 state is more than 4 times smaller than the experimentally measured value. The

7+3 state predicted at 1.541 MeV has a large magnetic moment of 5.871 µN in theory. The theoretical

7+3 state is never mixed with the 7+1 for the same argument on the 7+1 state in 206Tl does not decay to

the 5+1 state in the E2 channel. These inconsistencies may indicate that the mixing of the (ν+⊗π+)

and (ν− ⊗ π−) type configurations is crucial.

In 203Tl, the experimental energy spectrum, B(E2) values, and electromagnetic moments are well

reproduced. Comparing the energy spectrum with experiment, some low-lying 11/2− states which

are uncertain in spin-parity should be positive parity states.

In 202Tl, it has been repeatedly confirmed that the 7+1 state is an isomeric state and the weighted

average of the half-life is 591 µs [16, 105]. The long half-life can be theoretically understood in the

situation that the 6+1 state is the lowest positive-parity state followed by the 7+1 state with a little

energy difference of 11 keV.

3.3.2 Hg isotopes

Figure 3.2 shows the energy spectra of 80Hg isotopes. The experimental data of 206Hg nucleus,

which has two neutrons outside the doubly closed core of 208Pb, is helpful to determine the two-body

interactions between neutrons. All the experimentally observed states are identified as theoretical

states in one-to-one correspondence if the spins and parities are uniquely assigned. The (10+1 ) state

observed at 3.723 MeV is an isomeric state with a half-life of 92 ns. This isomer is caused by the

small energy gap between the (10+1 ) and the (8+1 ) states and the small B(E2; 10+1 → 8+1 ) value,

which are reproduced well as shown in Fig. 3.2 and Table 3.5, respectively. Table 4.2 shows the

electromagnetic moments of the 80Hg isotopes. The magnetic moment and the electric quadrupole
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Figure 3.2: Same as Fig. 3.1, but for Hg isotopes. The experimental data are taken from ENSDF [16]

and Nuclear Data Sheets [71, 102–105, 109]. High-spin states in 205,204,203Hg are reported in Ref.

[81, 85,110].



3.3 Numerical results 57

Table 3.5: The calculated B(E2) values in units of W.u. for Hg isotopes (Calc.) in comparison with

the experimental data (Expt.) [16,71,86,102–105,109].

B(E2)
206Hg Expt. Calc.

2+1 → 0+1 > 2.7 × 10−4 5.732

4+1 → 2+1 4.457

6+1 → 4+1 0.088

8+1 → 6+1 2.027

10+1 → 8+1 0.99(18) 0.853

204Hg Expt. Calc.

2+1 → 0+1 11.96(9) 13.836

4+1 → 2+1 17.0(13) 17.375

6+1 → 4+1 20(3) 14.910

8+1 → 6+1 3.425

10+1 → 8+1 0.002

202Hg Expt. Calc.

2+1 → 0+1 17.34(14) 17.378

2+2 → 2+1 5.6(15) 5.887

2+2 → 0+1 0.087(21) 0.061

4+1 → 2+1 26.5(8) 20.815

6+1 → 4+1 ∼25 17.302

8+1 → 6+1 12.876

10+1 → 8+1 0.025

201Hg Expt. Calc.

1/2−1 → 3/2−1 25(9) 0.000

1/2−2 → 3/2−1 4(4) 23.454

1/2−2 → 3/2−2 3(+4 −3) 0.030

1/2−2 → 5/2−1 46(22) 5.674

3/2−2 → 1/2−1 10(6) 0.359

3/2−2 → 3/2−1 20(9) 0.253

5/2−1 → 3/2−1 2.4(8) 0.414

7/2−2 → 3/2−1 10.9(5) 5.471

7/2−2 → 3/2−2 13.5(6) 3.502

7/2−2 → 5/2−2 9.4(21) 13.265

9/2−2 → 5/2−2 >0.010 15.511



58 Chapter 3 Shell-model study in the southwest region of 208Pb

Table 3.6: The results of magnetic dipole moments µ in units of µN and electric quadrupole moments

Q in units of eb for Hg isotopes (Calc.) in comparison with the experimental data (Expt.) [16, 71,

102–105,109].

µ Q
206Hg Expt. Calc. Expt. Calc.

2+1 +2.098 +0.419

4+1 +4.165 +0.224

6+1 +6.884 +0.003

8+1 +9.302 +0.240

10+1 +11.627 +0.650

5−1 5.45(5) +5.186 0.74(15) +0.557

205Hg Expt. Calc. Expt. Calc.

1/2−1 +0.601 +0.306 0

204Hg Expt. Calc. Expt. Calc.

2+1 0.67(9) +0.984 0.40(20) +0.636

4+1 +2.731 +0.723

6+1 +3.635 +0.716

8+1 +4.082 +0.440

10+1 −1.359 +0.512

203Hg Expt. Calc. Expt. Calc.

5/2−1 +0.849 +0.818 +0.343(36) +0.356

202Hg Expt. Calc. Expt. Calc.

2+1 +0.82(6) +0.997 1.01(13) +0.624

4+1 1.36(27) +1.809 +0.841

6+1 +2.268 +0.992

8+1 +3.802 +0.845

10+1 −1.335 +0.756

201Hg Expt. Calc. Expt. Calc.

3/2−1 −0.560 −0.396 +0.387(6) +0.366
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moment of the 5−1 state in 206Hg are reproduced well in theory.

In 205Hg, the 13/2+1 state is an isomeric state with a very long half-life of 1.09 ms. The 13/2+1

state is described in this study as∣∣205Hg; 13/2+1
⟩

=
√

0.43
∣∣νi13/2 ⊗ πs21/2

⟩
+

√
0.33

∣∣νi13/2 ⊗ πd23/2
⟩

+
√

0.09
∣∣νi13/2 ⊗ πh211/2

⟩
+ others. (3.1)

Comparing this state with the configuration of the 0+1 state in 206Hg,∣∣206Hg; 0+1
⟩

=
√

0.47
∣∣πs21/2⟩+

√
0.35

∣∣πd23/2⟩+
√

0.10
∣∣πh211/2⟩+

√
0.07

∣∣πd25/2⟩+
√

0.02
∣∣πg27/2⟩, (3.2)

it is found that the 13/2+1 state can be simply depicted as
∣∣νi13/2⟩⊗ ∣∣206Hg; 0+1

⟩
. The 13/2+1 state is

located at the significantly low energy since the 0i13/2 is the only positive-parity orbital for neutron.

The 13/2+1 state can decay to the 7/2−1 and 9/2−1 states with B(E3; 13/2+1 → 7/2−1 ) = 1.14(7) W.u.

and B(M2; 13/2+1 → 9/2−1 ) = 0.00047(3) W.u, respectively. In theory, the 7/2−1 and 9/2−1 states

mainly consist of the
∣∣νp1/2 ⊗ π(d3/2d5/2)4+

⟩
and

∣∣νp1/2 ⊗ π(d3/2d5/2)4+
⟩

configurations with prob-

abilities of 40.9% and 36.5%, respectively. The neutron 2p1/2 orbital is not connected to the 0i13/2

orbital in the E3 and M2 operators, so that the transitions are very rare.

The dominant configuration in the 13/2+1 state,
∣∣νi13/2 ⊗ πs21/2

⟩
, with a probability of 43.2% can

be connected with a configuration of
∣∣νf7/2 ⊗ πs21/2

⟩
in the E3 channel, and with a configuration

of
∣∣νh9/2 ⊗ πs21/2

⟩
in the M2 channel. However, those probabilities are 0.7% in the 7/2−1 state and

0.2% in the 9/2−1 state, respectively.

In 204Hg, all the large B(E2) values from the 2+1 , 4+1 , and 6+1 states and the electromagnetic

moments of the 2+1 state are reproduced well. The (2−1 ) state has been experimentally observed at

1.829 MeV, but the theoretical 2−1 state is calculated at 3.073 MeV. It is difficult in the present

framework to explain such a low-lying negative-parity state, and positive-parity states are densely

populated around the experimental (2−1 ) state.

In 203Hg, all the low-lying states and the electromagnetic moments of the ground 5/2− state are

reproduced well. Another low-lying negative-parity state has been confirmed in experiment with an

excitation energy of 0.369 MeV. M1 transitions from this state to the 3/2−1 state was measured in
202Hg(d, pγ) reaction [111]. The spin is suggested as (1/2, 3/2, 5/2). It is inferred in the present

calculations that the 1/2−2 state predicted at 0.257 MeV corresponds to the experimental low-lying

state.

In 202Hg, the excitation energies of the yrast band and all the electromagnetic properties are

reproduced well. The excitation energies of the yrare band are too high in comparison with the

experiment. Since the 202Hg has four neutron holes, lower single-particle levels are important in

determining the nuclear structure. In particular, the dependence of the coupling strengths on single-

particle levels, which is neglected in this study, can be crucial.
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Table 3.7: The calculated B(E2) values in units of W.u. for Pt isotopes (Calc.) in comparison with

the experimental data (Expt.) [86].

B(E2)
204Pt Expt. Calc.

2+1 → 0+1 6.014

4+1 → 2+1 0.005

6+1 → 4+1 0.039

8+1 → 6+1 0.125

10+1 → 8+1 0.80(8) 0.102

7−1 → 5−1 0.017 → 0.0034 *1 0.529

7−2 → 5−2 0.098

In 201Hg, the B(E2) values have been measured in muonic X-ray spectroscopy [112], Coulomb

excitations [113, 114], and 201Tl electron capture decay [87]. As shown in Table 4.2, some collective

values are not reproduced in the present calculations.

3.3.3 Au isotopes

Figure 3.3 shows the energy spectra of 79Au isotopes. All the correct spins and parities of the

ground states are reproduced except for 205Au. In 205Au, the 1/2+1 state is calculated with a slightly

lower energy than the 3/2+1 state, which is the ground state in experiment. In 203, 201, 200Au, some

low-lying states have been observed. Comparing the energy spectra between experiment and theory,

it is seen that all the excited states are reproduced well. In 200−205Au, any B(E2) values and

electromagnetic moments have not been measured in experiment.

3.3.4 Pt isotopes

Figure 3.4 shows the energy spectra of 78Pt isotopes. In 204Pt, three isomeric states, (5−1 ), (7−1 ),

and (10+1 ), have been discovered with half-lives of 5.5µs, 55µs, and 146 ns, respectively [86]. In this

study the 5−1 state is the second lowest negative-parity state and the energy gap between the lowest

one (the 4−1 state) is as narrow as 57 keV. The long half-life of the (7−1 ) state, where the excitation

energy is unknown in experiment, is expected to be caused by a narrow energy gap between the 7−1

and the 5−1 states of 17 keV and the small B(E2; 7−1 → 5−1 ) value as shown in Table 3.7.

In 203Pt, the spin and parity of the ground state are assigned as (1/2−) with uncertainty. In the

present study, the spin-parity of the ground state is calculated as 1/2− and all the excited states

are predicted higher than 0.5 MeV. Thus, the spin-parity assignment on the ground state is strongly

supported.
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Figure 3.3: Same as Fig. 3.1, but for Au isotopes. The experimental data are taken from ENSDF [16]

and Nuclear Data Sheets [102–105, 109, 115]. In the recent experiment [110, 116–118], the 11/2−1 ,

(11/2−2 ), (13−1 ), (15/2+)1, and 19/2+1 states in 205Au, the (1/2−1 ) and (1/2−1 ) states in 204Au, the

(1/2+2 ), (1/2+3 ), and (7/2+1 ) states and the 7/2+1 state in 201Au are discovered.
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Figure 3.4: Same as Fig. 3.1, but for Pt isotopes. The experimental data are taken from ENSDF [16]

and Nuclear Data Sheets [103–105,109,115,119]. The (1+1 ) and (2+2 ) states in 202Pt are reported in

Ref. [118]. The (6+1 ) and (8+1 ) states in 200Pt are reported in Ref. [120].
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In 202Pt, the (1+1 ), (2+1 ), (2+2 ), (4+1 ), and (7−1 ) states have been observed with the uncertain

assignments on the spins and parities. These excited states are well reproduced in the present

calculations.

In 201Pt, the γ-ray transitions have been observed once [88]. They assigned the (5/2−), (9/2−),

(13/2−), (15/2+), and (19/2+) to observed levels. The ground (5/2−) state and the (15/2+)1 states

are reproduced well in the present study, whereas the (9/2−) and (13/2−) states are not. In 199Pt, the

(7/2)−1 state was observed at 0.032 MeV [121]. This state is not described in the present framework

and low-lying states with other spins are already assigned.

3.4 Summary

In the present study, the large-scale shell-model calculations have been carried out for even-even,

odd-mass, and doubly odd nuclei of 82Pb, 81Tl, 80Hg, 79Au, and 78Pt isotopes in the proton-deficient

and neutron-deficient region around the double magic core of the 208Pb nucleus.

For neutron single-particle levels, seven orbitals above the magic number 126, 1g9/2, 0i11/2, 0j15/2,

2d5/2, 3s1/2, 1g7/2, and 2d3/2 orbitals, have been taken into account. For proton single-particle levels,

all the six orbitals in the major shell between the magic numbers 82 and 126, 0h9/2, 1f7/2, 0i13/2,

2p3/2, 1f5/2, and 2p1/2 orbitals, have been taken into account. The particle number dependence of

the single-particle energies of the neutron 0j15/2 and 0i11/2 orbitals and the proton 0i13/2 and 1f7/2

orbitals have been assumed. They are changed linearly so as to reproduce the energy levels of low-

lying states of the odd-mass nuclei. As for the effective two-body interaction, higher multipole-pairing

interactions among like nucleons and the quadrupole-quadrupole interaction between neutrons and

protons are employed in addition to the conventional pairing interactions. Only one set of the

strengths of the two-body interactions has been adopted in all the nuclei considered.

Energy spectra, E2 transition rates, magnetic moments, and electric quadrupole moments have

been calculated and compared with the experimental data. Good agreements with experimental

data have been obtained not only for even-even and odd-mass nuclei, but also for doubly-odd nuclei.

Comparing our results and the experimental data, spins and parities of experimentally ambiguous

states have been suggested.

Nine isomeric states are analyzed in terms of the shell-model configurations. Four isomeric states

appearing in this region are classified as the spin-gap isomers, which do not take gamma transitions

with low-spin changes, such as E2 or M1 transitions, because of the large spin difference between

initial and final states. The other five states become isomers even if they decay by the E2 transition.

They become isomers since the energy gaps between the initial and final states are small.
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Chapter 4

Nuclear Schiff moment of 199Hg

4.1 Introduction

The Planck 2015 results on the Cosmic microwave background provide the baryon-to-photon ratio

in the universe of η = nb/nγ = (6.09 ± 0.06) × 10−10 [122, 123], which is consistent with the result

from the light-element abundances η = (5.8− 6.6)× 10−10 [124,125]. In order to realize the baryon-

abundant universe, the CP -violation is required as well as the baryon number violating process.

In the Standard Model of particle physics, the CP -violation arises from the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. However, it is well known that the CP -violating phase is too small to

produce the baryon-antibaryon asymmetry [126–129]. This is one of the noticeable problems that

should be explained in physics beyond the Standard Model.

The permanent electric dipole moments (EDMs) of elementary particles and composite particles

are CP -odd observables. The neutron EDM has been directly explored [130–134], and the recent

upper limit is |dn| < 3.6 × 10−26e cm. The electron EDM has been measured in 133Cs [135, 136],
205Tl [137, 138] atoms, and some molecules [139–141]. The present situation is |de| < 1.1 × 10−29e

cm. The atomic EDM of 199Hg has been experimentally searched many times [89–94, 142]. The

constraint of
∣∣d (199Hg

)∣∣ < 7.4 × 10−30e cm has been given so far.

The diamagnetic atoms such as 199Hg are mainly contributed from the nuclear Schiff moments.

The Schiff moment of 199Hg has been calculated within some kinds of mean-field approximation

[95–100, 143, 144]. In the first calculation [95], non-collective one-particle one-hole excitations due

to the P , T -odd nuclear interactions are considered. The authors take a Woods-Saxon potential as

the mean field. The spin-orbit and isovector interactions are considered in addition to the Woods-

Saxon potential as an isoscalar part in Ref. [96–98, 143, 144]. They take into account collective

excitations in the manner of the random phase approximation (RPA). Fully self-consistent mean

fields including pairing correlations are treated in Ref [99, 100]. They take Skyrme interactions as

P , T -even interactions.

In this paper, we perform the shell-model calculations of 199Hg and 200Hg with the use of a newly

developed effective interactions. The energy spectra, E2 transition strengths, and electromagnetic
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moments are systematically reproduced for excited states as well.

4.2 Nuclear Schiff moment

The P , T -odd π-N interactions are generally given as

LπNN =
∑

N=p,n

[
3∑

a=1

g
(0)
πNNNτ

aNπa + g
(1)
πNNNNπ

0 +

3∑
a=1

g
(2)
πNN

(
NτaNπa − 3Nτ3Nπ0

)]
,

(2.1)

where GF is the Fermi coupling constant, Fµν the electromagnetic field tensor, and a denotes the

isospin components. The non-relativistic potentials of the P , T -odd π-N interactions are given

as [145–147]

V
(PT )
T=0 = F0 (τ1 ·τ2) (σ1 − σ2)·rf(r) (2.2)

V
(PT )
T=1 = F1

[
(τz1 − τz2 ) (σ1 + σ2) + (τz1 + τz2 ) (σ1 − σ2)

]
·rf(r) (2.3)

V
(PT )
T=2 = F2 (3τz1 τ

z
2 − τ1 ·τ2) (σ1 − σ2)·rf(r), (2.4)

where

f(r) =
e−mπr

mπr

(
1 +

1

mπr

)
, (2.5)

and

F0 = − m2
π

8πmN
g
(0)
πNNgπNN , (2.6)

F1 = − m2
π

16πmN
g
(1)
πNNgπNN , (2.7)

F2 = − m2
π

8πmN
g
(2)
πNNgπNN , (2.8)

with the pion mass mπ and the nucleon mass mN . The CP -odd π-N interaction couplings are given

within the standard model as [63]

g
(0)
πNN = −1.1 × 10−17,

g
(1)
πNN = −1.3 × 10−17,

g
(2)
πNN = 3.3 × 10−21. (2.9)

Adopting the standard value of the CP -even π-N coupling [63] of

gπNN = 14.11 ± 0.20, (2.10)

we have

G
(0)

π ≡ −g(0)πNNgπNN = 1.6 × 10−16,

G
(1)

π ≡ −g(1)πNNgπNN = 1.8 × 10−16,

G
(2)

π ≡ g
(2)
πNNgπNN = 4.7 × 10−20. (2.11)
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The nuclear Schiff moment (NSM) caused by the asymmetry of the charge distribution in a nucleus

is expressed as

S
(1)
ch =

1

10

A∑
i=1

ei

(
r2i r

(1)
i − 5

3

⟨
r2
⟩
ch
r
(1)
i − 2

3
⟨Qij⟩ r(1)j

)
. (2.12)

The NSM is classified as

S =
∑

T=0,1,2

ST , (2.13)

where the isospin components of NSM due to the PT -odd interactions are defined as

ST =

⟨
I−g.s.

∣∣S(1)
0

∣∣I+k ⟩⟨I+k ∣∣V (PT )
T

∣∣I−g.s.⟩
Eg.s. − Ek

+ c.c. (2.14)

Since the ground state of 199Hg has a spin-parity of 1/2−, all the excited states with a spin-parity

of 1/2+ should be taken into account as intermediate states. Eg.s. and Ek indicate the energies of

the ground state and the kth excited state with a spin-parity of 1/2+, respectively.

In this paper, the intermediate states are expressed only by one-particle-one-hole configurations

defined as∣∣I+k ⟩ =
∣∣ψ(ph)

(ij)L;I

⟩
= N

[[
c†πic̃πj

](L) ⊗
∣∣I−g.s.⟩](I), (2.15)

where c†πim and cπjm are proton (π) creation and annihilation operators, respectively. The spherical

tensor accompanied with cπjm is defined as c̃πjm = (−1)j−mcπjm. The single-particle orbital i

should have the opposite parity to that of the single-hole orbital j. Moreover, the creation and

annihilation operators are coupled only with L = 0, 1 in order to let the excited states have the same

spin I as the ground state. The proton orbitals between the magic numbers 50 and 82 are 2s1/2,

1d3/2, 1d5/2, 0g7/2, and 0h11/2. Thus, there are no combinations of two orbitals satisfy the above

conditions within the valence space.

All the single-particle orbitals of the harmonic oscillator potential are taken into account as the

contributions to the one-particle-one-hole excited states. As the excited energies Ek, the energy

differences of the Nilsson single-particle energies outside the valence space and the adopted single-

particle energies within the valence space are employed.

4.3 Numerical results

In the previous chapter, 201−206Hg nuclei are studied in the nuclear shell model with a newly

developed effective interaction. In order to perform the shell-model calculation of the 199Hg nucleus,

the lower four single-neutron orbitals, 2p1/2, 2p3/2, 1f5/2, and 0i13/2, are taken into account. The

single-particle energies and the two-body interaction strengths are given in the previous chapter.

Figure 4.1 shows the energy spectra of 200Hg and 199Hg.
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Figure 4.1: The energy spectra of 200Hg and 199Hg calculated in the nuclear shell model, which are

compared with the experimental data [16,115,119].

Table 4.1: The calculated B(E2) values in units of W.u. for 200Hg (Calc.) in comparison with the

experimental data (Expt.) [16,115].

B(E2)
200Hg Expt. Calc.

2+1 → 0+1 24.57(22) 15.017

4+1 → 2+1 37.8(6) 15.880

6+1 → 4+1 46(4) 14.691

8+1 → 6+1 41(14) 12.530

2+2 → 0+1 0.23(6) 0.009

2+2 → 2+1 2.4(6) 4.160

9−1 → 7−1 25.1(10) 15.477

As shown in Fig. 4.2, the experimentally measured values of the electromagnetic moments are well

reproduced with the present parameters. The same quenching factors as the previous chapter are

taken for the effective operators. It is also found that the results are little depend on the monopole

pairing strengths for the neutron p3/2 and f5/2 orbitals.

We adopt another truncation process to get wavefunctions of 200Hg and 199Hg. The lowest 100

eigenstates in each neutron or proton system are labeled as
∣∣ψ(ν)

i

⟩
or
∣∣ψ(π)

j

⟩
. The CP -even effec-

tive Hamiltonian is diagonalized in the 104 bases, which are given as
∣∣ψ(ν)

i

⟩
⊗
∣∣ψ(π)

j

⟩
. The energy

convergence is discussed for mass A = 130 region [14].
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Table 4.2: The results of magnetic dipole moments µ in units of µN and electric quadrupole moments

Q in units of eb for Hg isotopes (Calc.) in comparison with the experimental data (Expt.) [16,115,

119].

µ Q
200Hg Expt. Calc. Expt. Calc.

2+1 0.65(5) +0.996 +1.09 +0.583

4+1 1.02(16) +1.266

199Hg Expt. Calc. Expt. Calc.

1/2−1 +0.506 +0.298 0

5/2−1 +0.88(3) +0.719 +0.95(7) −0.025

3/2−1 −0.56(9) −0.625 +0.50(12) +0.252

5/2−2 +0.80(9) +0.677

13/2+1 −1.015 −0.912 +1.2(5) +0.624

Figure 4.2: Electromagnetic moments.

Table 4.3: The numerical results of the nuclear Schiff moment in units of 10−3efm3. The one-particle-

one-hole excitations from the valence space are shown in the first line. The second and third lines

correspond to those from the core to the valence space and to beyond the valence space, respectively.

a0 a1 a2

valence 25.9 25.1 49.3

core −0.9 −0.8 −1.36

over-shell 1.0 1.1 2.3

sum 26.0 25.4 50.2
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The results shown in Table 4.3 are given in the form as

S =
∑

T=0,1,2

aT g
(T )g. (3.1)

For all the components T = 0, 1, 2, the contributions of one-particle-one-hole excitations from the

valence space are dominant, whereas those from the core region are comparable in 129Xe. In the
199Hg nucleus the valence space of proton is almost fully occupied, whereas the 129Xe nucleus has

only four valence protons, so that there are large energy gaps from the core in 199Hg.

Each component of aT is 30% smaller than the result in the simple shell model [95]. In the simple

shell model, they employed contact CP -odd interactions and the Woods-Saxon potential as the mean

field. In addition to those points of difference, it is crucial to decrease the Schiff moment that a lot

of configurations within the valence space are admixed. The population of the
∣∣νp1/2f65/2 ⊗ πs21/2

⟩
configuration is only 2.4% in the 1/2−1 state.

The sensitivity of the results on the energy denominator is checked by using the Nilsson values

also for the valence orbitals. In this case the isoscalar component is a0 = 29.0× 10−3efm3. The spin

of the ground state in 199Hg is not reproduced with the adopted effective interactions. As shown

in Fig. 4.3, the actual spin of 1/2 is realized by introducing the monopole pairing for the νp3/2 and

νf5/2 orbitals (SM2 and SM3). The NSMs are a0 = 33.2 × 10−3efm3 and a0 = 34.1 × 10−3efm3,

respectively. Thus, the accuracy of the results would be estimated as 30%.

The nuclear Schiff moment produces the P , T -odd electrostatic potential such as

ϕ (r) = −4πS ·∇δ (r) . (3.2)

The interaction violates the parity conservation in atoms and induces the atomic EDM. The EDM

of 199Hg atom has been calculated as [148]

d
(
199Hg

)
= −2.8 × 10−17

(
S

e fm3

)
e cm. (3.3)

If the SM2 result for the NSM of 199Hg is adopted, the atomic EDM is given as

d
(
199Hg

)
= 3.15 × 10−34e cm. (3.4)

The QCD θ-term contributes to the CP -odd couplings. The coupling constants are evaluated in

the chiral effective field theory as

g(0)π = (0.015 ± 0.003) θ, g(1)π = 0.003 θ, (3.5)

whereas the isotensor coupling is suppressed [149,150]. The SM2 results and the experimental upper

limit on the 199Hg atomic EDM provide the constraint on the θ-term as
∣∣θ∣∣ < 6.63 × 10−10.

The upper limit on the magnitude of the neutron EDM of 3.6 × 10−26ecm [134] provides
∣∣θ∣∣ <

1.3 × 10−10, which is the most limited value.
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Figure 4.3: Low-lying states of 199Hg in which the monopole pairing interactions peculiar to the νp3/2

and νf5/2 orbitals are adopted (SM2, SM3). SM1 shows the results with the original interactions.

The experimental states are compared in the far left column.
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Appendix A

Racah algebra

A.1 Orthogonal functions

A.1.1 Legendre polynomials

The Legendre polynomials are defined through a generating function of

gP (t, x) =
1√

1 − 2tx+ t2
=

∞∑
n=0

Pn(x)tn. (A.1.1)

The generating function is expanded as

gP (t, x) =

∞∑
m=0

(2m− 1)!!

2mm!

(
2tx− t2

)m
=

∞∑
m=0

(2m− 1)!!

2mm!
tm

m∑
k=0

(
m

k

)
(2x)m−k(−t)k

=

∞∑
n=0

[n/2]∑
k=0

(2n− 2k − 1)!!

2k(n− k)!
(−1)k

(
n− k

k

)
xn−2ktn

=
∞∑

n=0

[n/2]∑
k=0

(−1)k
(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2ktn, (A.1.2)

where n = m + k and [n/2] indicates the maximum integer which does not exceed n/2. Thus the

Legendre polynomials can be expanded as

Pn(x) =

[n/2]∑
k=0

(−1)k
(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k. (A.1.3)

This expression is given also by the Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (A.1.4)

The Legendre polynomials are orthogonal as∫ 1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δmn, (A.1.5)
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which is given by∫ 1

−1

gP (t, x)gP (s, x)dx =
1

2
√
ts

∫ 1

−1

1√
1+t2

2t − x
√

1+s2

2s − x
dx

= − 1√
ts

[
ln

(√
1 + t2

2t
− x+

√
1 + s2

2s
− x

)]1
x=−1

=
1√
ts

ln
1 +

√
ts

1 −
√
ts

=

∞∑
n=0

2

2n+ 1
(ts)n. (A.1.6)

The associated Legendre polynomials are defined by the Legendre polynomials Pn(x) as

Plm(x) ≡ (1 − x2)m/2 d
m

dxm
Pl(x)

=
1

2ll!
(1 − x2)m/2 d

l+m

dxl+m
(x2 − 1)l. (A.1.7)

This can be expanded as

Plm(x) =
1

2ll!
(1 − x2)m/2

∑
n

(
l +m

n

)
dl+m−n

dxl+m−n
(x+ 1)l

dn

dxn
(x− 1)l

=
1

2ll!
(1 − x2)m/2

∑
n

(
l +m

n

)
l!

(n−m)!
(x+ 1)n−m l!

(l − n)!
(x− 1)l−n

=
1

2ll!
(1 − x2)m/2(l +m)!

∑
n

(
l

n−m

)(
l

n

)
(x+ 1)n−m(x− 1)l−n

Pl,−m(x) =
1

2ll!
(1 − x2)−m/2(l −m)!

∑
n

(
l

n+m

)(
l

n

)
(x+ 1)n+m(x− 1)l−n

= (−1)m
1

2ll!
(1 − x2)m/2(l −m)!

∑
n

(
l

n+m

)(
l

n

)
(x+ 1)n(x− 1)l−n−m

= (−1)m
1

2ll!
(1 − x2)m/2(l −m)!

∑
n′

(
l

n′

)(
l

n′ −m

)
(x+ 1)n

′−m(x− 1)l−n′
, (A.1.8)

where n′ = n−m, and then

Pl,−m(x) = (−1)m
(l −m)!

(l +m)!
Plm(x). (A.1.9)

The orthogonality is given as∫ 1

−1

Plm(x)Pl′m(x)dx =
2

2l + 1

(l +m)!

(l −m)!
δll′ . (A.1.10)
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A.1.2 Spherical harmonics

Spherical harmonics are defined as

Ylm(θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ)eimϕ, (A.1.11)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. The complex conjugate is given as

Y ∗
l,m(θ, ϕ) = (−1)mYl,−m(θ, ϕ). (A.1.12)

A.1.3 Jacobi polynomials

Jacobi polynomials are given through the Rodrigues formula as

P (α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β dn

dxn
(1 − x)n+α(1 + x)n+β , (A.1.13)

and then by the series expansion of

P (α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β

×
n∑

ν=0

(
n

ν

)
(−1)ν

(n+ α)!

(n+ α− ν)!
(1 − x)n+α−ν (n+ β)!

(β + ν)!
(1 + x)β+ν

=
(−1)n

2n

n∑
ν=0

(−1)ν
(
n+ α

ν

)(
n+ β

n− ν

)
(1 − x)n−ν(1 + x)ν

=
1

2n

n∑
ν=0

(
n+ α

ν

)(
n+ β

n− ν

)
(x− 1)n−ν(x+ 1)ν . (A.1.14)

The orthogonality is given as∫ 1

−1

dx(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)

=
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
δnm. (A.1.15)

A.1.4 Associated Laguerre polynomials

The associated Laguerre polynomials are defined by the Laguerre polynomials Ln(x) as

Lnl(x) =
dl

dxl
Ln(x), (A.1.16)

or through a generating function of

gL(t, x) =
(−1)l

(1 − t)l+1
exp

(
− xt

1 − t

)
=

∞∑
n=l

Lnl(x)
tn−l

n!
. (A.1.17)
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This can be expanded as

gL(t, x) =
(−1)l

(1 − t)l+1

∞∑
m=0

1

m!

(
− xt

1 − t

)m

=

∞∑
m=0

(−1)l+m

m!
xm

tm

(1 − t)l+m+1

=

∞∑
m=0

(−1)l+m

m!
xm

∞∑
k=0

(l +m+ k)!

k!(l +m)!
tk+m

=

∞∑
m=0

(−1)l+m

m!
xm

∞∑
n=m+l

n!

(n− l −m)!(l +m)!
tn−l

=

∞∑
n=l

n−l∑
m=0

(−1)l+m

m!
xm

n!

(n− l −m)!(l +m)!
tn−l, (A.1.18)

and thus the series expansions of associated Laguerre polynomials are given as

Lnl(x) =

n−l∑
m=0

(−1)l+m (n!)2

m!(n− l −m)!(l +m)!
xm, (A.1.19)

where Lnl(x) = 0 for n < l.

In order to derive recursion formulas,

ln gL(t, x) = ln(−1)l − (l + 1) ln(1 − t) − xt

1 − t

∴ ∂gL(t, x)

∂t
= [(l − x+ 1) − (l + 1)t] gL(t, x), (A.1.20)

and

tgL(t, x) =

∞∑
n=l

Lnl(x)
tn−l+1

n!
=

∞∑
n=l

nLn−1,l(x)
tn−l

n!
,

∂gL(t, x)

∂t
=

∞∑
n=l

(n− l)Lnl(x)
tn−l−1

n!
=

∞∑
n=l

n− l + 1

n+ 1
Ln+1,l(x)

tn−l

n!
,

t
∂gL(t, x)

∂t
=

∞∑
n=l

(n− l)Lnl(x)
tn−l

n!
,

t2
∂gL(t, x)

∂t
=

∞∑
n=l

n(n− l − 1)Ln−1,l(x)
tn−l

n!
(A.1.21)

are utilized. Substituting these series expansions to Eq. (A.1.20), we obtain(
1 − l

n+ 1

)
Ln+1,l(x) + (x+ k − 2n− 1)Lnl(x) + n2Ln−1,l(x) = 0. (A.1.22)

The associated Laguerre polynomials are orthogonal with a weight function xle−x as∫ ∞

0

Lnl(x)Lml(x)xle−xdx =
(n!)3

(n− l)!
δnm. (A.1.23)
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This orthogonality is derived from the relations of∫ ∞

0

gL(t, x)gL(s, x)xle−xdx =
1

(1 − t)l+1(1 − s)l+1

∫ ∞

0

exp

[
− 1 − ts

(1 − t)(1 − s)
x

]
xldx

=
1

(1 − t)l+1(1 − s)l+1
× l!

(
(1 − t)(1 − s)

1 − ts

)l+1

=
l!

(1 − ts)l+1

=
∞∑

n=0

(l + n)!

n!
tnsn

=

∞∑
n=l

n!

(n− l)!
tn−lsn−l, (A.1.24)

and

∞∑
n,m=l

tn−lsm−l

n!m!

∫ ∞

0

Lnl(x)Lml(x)xle−xdx. (A.1.25)

A.1.5 Sonine polynomials

Sonine polynomials are generalized Laguerre polynomials with α which is not limited to integers.

Those are defined through generating functions of

gS(t, x) =
1

(1 − t)α+1
exp

(
− xt

1 − t

)
=

∞∑
n=0

Snα(x)tn, (A.1.26)

where Re α > −1. The generating functions are expanded as

gS(t, x) =

∞∑
m=0

(−1)m

m!
xm

tm

(1 − t)α+m+1

=

∞∑
m=0

(−1)m

m!
xm

∞∑
k=0

Γ(α+m+ 1 + k)

k!Γ(α+m+ 1)
tm+k

=

∞∑
m=0

(−1)m

m!
xm

∞∑
n=m

Γ(α+ n+ 1)

(n−m)!Γ(α+m+ 1)
tn

=

∞∑
n=0

n∑
m=0

(−1)m

m!
xm

Γ(α+ n+ 1)

(n−m)!Γ(α+m+ 1)
tn. (A.1.27)

Thus the Sonine polynomials are expanded as

Snα(x) =

n∑
m=0

(−1)m
Γ(α+ n+ 1)

m!(n−m)!Γ(α+m+ 1)
xm, (A.1.28)

which are related to associated Laguerre polynomials Lnl(x) as

Lnl(x) = (−1)ln!Sn−l,l(x). (A.1.29)
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Here, the Gamma function defined as

Γ(x) =

∫ ∞

0

e−ttx−1dt, (A.1.30)

satisfies the recursion relation of Γ(x+ 1) = xΓ(x). The orthogonality of∫ ∞

0

Snα(x)Smα(x)xαe−xdx =
1

n!
Γ(α+ n+ 1)δnm (A.1.31)

is derived from the relations of∫ ∞

0

gS(t, x)gS(s, x)xαe−xdx =
1

(1 − t)α+1(1 − s)α+1

∫ ∞

0

exp

[
− 1 − ts

(1 − t)(1 − s)
x

]
xαdx

=
1

(1 − ts)α+1
Γ(α+ 1)

=

∞∑
n=0

1

n!
Γ(α+ n+ 1)tnsn, (A.1.32)

and

∞∑
n,m=0

tnsm
∫ ∞

0

Snα(x)Smα(x)xαe−xdx. (A.1.33)

A.2 Recoupling Coefficients

A.2.1 Clebsch-Gordan Coefficients

Let us consider the angular momentum operators J1 and J2, which follow the SU(2) algebra as

[J1i, J1j ] = iεijkJ1k, [J2i, J2j ] = iεijkJ2k. (A.2.1)

If those operators refer to independent systems, they are commute with each other as

[J1i, J2j ] = 0. (A.2.2)

The angular momentum operators of the combined system, which is defined as

J = J1 ⊕ J2, (A.2.3)

follow that

[Ji, Jj ] = iεijkJk. (A.2.4)

There are two different sets of simultaneous eigenstates in the combined system with respect to

(Γ,J2
1 , J1z,J

2
2 , J2z) and (Γ,J2

1 ,J
2
2 ,J

2, Jz), where Γ indicates other conservative quantities. The
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eigenstates are represented as |γ j1m1 j2m2⟩ and |γ j1 j2 j m⟩, which can be expanded with the

other through the unitary transformations as

|γ j1 j2 j m⟩ =
∑

m1m2

|γ j1m1 j2m2⟩ ⟨j1m1 j2m2| j m⟩ ,

|γ j1m1 j2m2⟩ =
∑
jm

|γ j1 j2 j m⟩ ⟨j m| j1m1 j2m2⟩ , (A.2.5)

where the Clebsch-Gordan (CG) coefficients are expressed by ⟨j1m1 j2m2| j m⟩ and the complex

conjugates by ⟨j m| j1m1 j2m2⟩. The CG coefficients have the unitary properties as∑
jm

⟨j1m′
1 j2m

′
2| j m⟩ ⟨j m| j1m1 j2m2⟩ = δm′

1m1
δm′

2m2
,

∑
m1m2

⟨j′m′| j1m1 j2m2⟩ ⟨j1m1 j2m2| j m⟩ = δj′jδm′mδ (j1j2; j) , (A.2.6)

where

δ (j1j2; j) =

 1 |j1 − j2| ≤ j ≤ j1 + j2

0 others
. (A.2.7)

The well-known phase convention of the CG coefficients, Condon-Shortley phase convention, is

defined as

⟨j1 j1 j2 j2| j1 + j2 j1 + j2⟩ = 1. (A.2.8)

This choice is very useful because all the CG coefficients are real. In the Condon-Shortley convention,

the CG coefficients have symmetric properties as

⟨j1m1 j2m2| j m⟩ = (−1)j1+j2−j ⟨j2m2 j1m1| j m⟩ , (A.2.9)

⟨j1m1 j2m2| j m⟩ = (−1)j1+j2−j ⟨j1 −m1 j2 −m2| j −m⟩ , (A.2.10)

⟨j1m1 j2m2| j m⟩ = ⟨j2 −m2 j1 −m1| j −m⟩ , (A.2.11)

and some explicit values are given as

⟨j m 0 0| j m⟩ = 1, ⟨j m j −m| 0 0⟩ =
(−1)

j−m

√
2j + 1

. (A.2.12)

A.2.2 Wigner 3-j Symbols

Wigner 3-j symbol is defined through the CG coefficients as(
j1 j2 j3

m1 m2 m3

)
= (−1)j1−j2−m3

⟨j1m1 j2m2| j3 −m3⟩√
2j3 + 1

, (A.2.13)

which has symmetry properties for even permutations of columns as(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j3 j1

m2 m3 m1

)
=

(
j3 j1 j2

m3 m1 m2

)
, (A.2.14)
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for odd permutations become equivalent by the multiplication of (−1)j1+j2+j3 as

(−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)

=

(
j2 j1 j3

m2 m1 m3

)
=

(
j1 j3 j2

m1 m3 m2

)
=

(
j3 j2 j1

m3 m2 m1

)
, (A.2.15)

and for negative directions of all the angular momenta J1, J2, and J3 as(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (A.2.16)

The CG-coefficients follow the similar symmetric properties, which are derived as

⟨j1m1 j2m2| j m⟩ = (−1)−j1+j2−m
√

2j + 1

(
j1 j2 j

m1 m2 −m

)

= (−1)−j1+j2−m
√

2j + 1

(
j2 j j1

m2 −m m1

)

= (−1)−j1+2j2−j−m1−m

√
2j + 1

2j1 + 1
⟨j2m2 j −m| j1 −m1⟩ , (A.2.17)

⟨j1m1 j2m2| j m⟩ = (−1)−j1+j2−m
√

2j + 1

(
j1 j2 j

m1 m2 −m

)

= (−1)−j1+j2−m
√

2j + 1

(
j j1 j2

−m m1 m2

)

= (−1)−2j1+j2+j−m2−m

√
2j + 1

2j2 + 1
⟨j −mj1m1| j2 −m2⟩ . (A.2.18)

A.2.3 Wigner 6-j symbol

Wigner 6-j symbols are defined as{
j1 j2 j12

j3 j j23

}
=

(−1)j1+j2+j3+j√
(2j12 + 1)(2j23 + 1)

⟨
(j1 j2) j12 j3 j

∣∣j1 (j2 j3) j23 j
⟩
. (A.2.19)

Since the phase of (−1)j1+j2+j3+j should be an integer, the inverse transformation is given as⟨
(j1 j2) j12 j3 j

∣∣j1 (j2 j3) j23 j
⟩

= (−1)j1+j2+j3+j
√

(2j12 + 1)(2j23 + 1)

{
j1 j2 j12

j3 j j23

}
. (A.2.20)

The unitary nature of∑
j23

⟨
(j1 j2) j12 j3 J

∣∣j1 (j2 j3) j23 J
⟩⟨
j1 (j2 j3) j23 J

∣∣j2 (j3 j1) j31 J
⟩

=
⟨
(j1 j2) j12 j3 J

∣∣j2 (j3 j1) j31 J
⟩

(A.2.21)
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gives the unitary properties for the 6-j symbols as

∑
j23

(−1)j12+j23+j31 (2j23 + 1)

{
j1 j2 j12

j3 j j23

}{
j2 j3 j23

j1 j j31

}

=

{
j3 j1 j31

j2 j j12

}
. (A.2.22)

Similar arguments give sum rules as

∑
J

(−1)j1+j2+J (2J + 1)

{
j1 j1 J ′

j2 j2 J

}
=
√

(2j1 + 1) (2j2 + 1)δJ′0, (A.2.23)

∑
J

(2J + 1)

{
j1 j2 J ′

j1 j2 J

}
= (−1)2(j1+j2), (A.2.24)

∑
J

(−1)2J (2J + 1)

{
j1 j2 J

j1 j2 J ′

}
= 1. (A.2.25)

The 6-j symbols are invariant by any permutation of columns{
j1 j2 j3

j4 j5 j6

}
=

{
j3 j1 j2

j6 j4 j5

}
=

{
j2 j3 j1

j5 j6 j4

}

=

{
j2 j1 j3

j5 j4 j6

}
=

{
j1 j3 j2

j4 j6 j4

}
=

{
j3 j2 j1

j6 j5 j4

}
, (A.2.26)

and against interchanges of the upper and lower arguments in each of any two columns, e.g.{
j1 j2 j3

j4 j5 j6

}
=

{
j1 j5 j6

j4 j2 j3

}
. (A.2.27)

If j23 = 0 in the definition, the 6-j symbols can be reduced as{
j1 j2 j12

j3 j 0

}
= δj1,jδj2,j3

{
j1 j2 j12

j2 j1 0

}
= δj1,jδj2,j3

(−1)j1+j2+j12√
(2j1 + 1)(2j2 + 1)

. (A.2.28)

A.2.4 Wigner 9-j symbol

The 9-j symbol is defined by the relation of

⟨(j1j2)j12, (j3j4)j34, J |(j1j3)j13, (j2j4)j24, J⟩

=
√

(2j12 + 1) (2j34 + 1) (2j13 + 1) (2j24 + 1)


j1 j2 j12

j3 j4 j34

j13 j24 J

 . (A.2.29)

The 9-j symbols are invariant under the transposition as
j1 j2 j3

k1 k2 k3

l1 l2 l3

 =


j1 k1 l1

j2 k2 l2

j3 k3 l3

 , (A.2.30)
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and have cyclic symmetry properties both for column and row as
j1 j2 j3

k1 k2 k3

l1 l2 l3

 =


k1 k2 k3

l1 l2 l3

j1 j2 j3

 =


j2 j3 j1

k2 k3 k1

l2 l3 l1

 , (A.2.31)

which are deduced from the property under an exchange of any two columns or rows as
j1 j2 j3

k1 k2 k3

l1 l2 l3

 = (−1)j1+j2+j3+k1+k2+k3+l1+l2+l3


k1 k2 k3

j1 j2 j3

l1 l2 l3

 . (A.2.32)

If J = 0, the 9-j symbols can be reduced to the 6-j symbols as
j1 j2 j12

j3 j4 j34

j13 j24 0

 = δj12,j34δj13,j24
(−1)j12+j13+j2+j3√
(2j12 + 1)(2j13 + 1)

{
j1 j2 j12

j4 j3 j13

}
,


j1 j2 j12

j3 j4 j34

0 0 0

 = δj12,j34δj1,j3δj2,j4
(−1)j12+j1+j2

√
2j12 + 1

{
j1 j2 j12

j2 j1 0

}

= δj12,j34δj1,j3δj2,j4
(−1)2(j1+j2+j12)√

(2j1 + 1)(2j2 + 1)(2j12 + 1)
. (A.2.33)

A.3 Representations of Rotations

A.3.1 Wigner D-matrix

The rotation operators with finite angles are generated through the SU(2) operator J as

D(α, β, γ) = eiγJzeiβJyeiαJz , (A.3.1)

where (α, β, γ) indicate a set of the Euler angles. The matrix elements of a rotation operator

D(α, β, γ) are symbolized as

D(j)
m′,m(α, β, γ) ≡ ⟨jm′ |D(α, β, γ)| jm⟩ , (A.3.2)

and the corresponding matrix is called Wigner D-matrix. Wigner d-matrix defined through the

D-matrix as

d
(j)
m′,m(β) ≡ D(j)

m′,m(0, β, 0). (A.3.3)

is also useful. In the representation where Jz is diagonal, the D-matrix is written as

D(j)
m′,m(α, β, γ) ≡ eim

′γd
(j)
m′,m(β)eimα. (A.3.4)
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Since the simplest representation of j = 1/2 is given by

Jx =
1

2

(
0 1
1 0

)
, Jy =

1

2

(
0 −i
i 0

)
, Jz =

1

2

(
1 0
0 −1

)
, (A.3.5)

the d-matrix is given as

d(j=1/2)(β) =

(
cos β

2 sin β
2

− sin β
2 cos β

2

)
. (A.3.6)

Here, we express the eigenfunctions by indipendent variables

χ↑ ≡ |j = 1
2 ,m = 1

2 ⟩, χ↓ ≡ |j = 1
2 ,m = − 1

2 ⟩, (A.3.7)

and the differential operators are defined as

∂↑ ≡ ∂

∂χ↑
, ∂↓ ≡ ∂

∂χ↓
. (A.3.8)

In this expression, the angular momentum operators are given as

Jx =
1

2
(χ↓∂↑ + χ↑∂↓) , Jy =

i

2
(χ↓∂↑ − χ↑∂↓) , Jz =

1

2
(χ↑∂↑ − χ↓∂↓) ,

J+ =
1

2
χ↑∂↓, J− =

1

2
χ↓∂↑,

J2 = j(j + 1), j =
1

2
(χ↑∂↑ + χ↓∂↓) . (A.3.9)

This expression leads to a useful way of representing the normalized eigenvectors of the angular

momentum as

u(j,m) =
χj+m
↑ χj−m

↓√
(j +m)!(j −m)!

, (A.3.10)

where the eivenvalues of J2 and Jz are j(j + 1) and m, respectively. The products mean the direct

products of spinors and this representation is called spinor representations. Finite rotations are

represented as

eiβJy =

(
cos β

2 sin β
2

− sin β
2 cos β

2

)
, (A.3.11)

so that the generating function of the d-matrix is derived as

D(0, β, 0)u(j,m) =

(
χ↑ cos β

2 − χ↓ sin β
2

)j+m (
χ↑ sin β

2 + χ↓ cos β
2

)j−m

√
(j +m)!(j −m)!

≡ gd(χ↑, χ↓)

=
∑
m′

χj+m′

↑ χj−m′

↓√
(j +m′)!(j −m′)!

d
(j)
m′m(β). (A.3.12)
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Expanding the generating function with χ↑ and χ↓,

gd(χ↑, χ↓) =
1√

(j +m)!(j −m)!

∑
kn

(
j +m

j +m− k

)(
j −m

n

)

× (−1)j+m−k

(
cos

β

2

)k+n(
sin

β

2

)2j−k−n

χj−m+k−n
↑ χj+m−k+n

↓

=
1√

(j +m)!(j −m)!

∑
m′n

(
j +m

j −m′ − n

)(
j −m

n

)

× (−1)j−m′−n

(
cos

β

2

)2n+m′+m(
sin

β

2

)2j−2n−m′−m

χj+m′

↑ χj−m′

↓ , (A.3.13)

where m′ = k −m− n, the Wigner d-matrix is explicitly given as

d
(j)
m′m(β) =

√
(j +m′)!(j −m′)!

(j +m)!(j −m)!

∑
n

(
j +m

j −m′ − n

)(
j −m

n

)

× (−1)j−m′−n

(
cos

β

2

)2n+m′+m(
sin

β

2

)2j−2n−m′−m

. (A.3.14)

Thus, it can be concluded that the d-matrix is real.

A.3.2 The symmetries of the d-matrix and the D-matrix

It is easily shown from Eq. (A.3.12) that

d
(j)
m′m(π) = (−1)j+mδm,−m′ , d

(j)
m′m(−π) = (−1)j−mδm,−m′ , (A.3.15)

and thus, for example,

d
(j)
m′m(β − π) =

∑
m′′

d
(j)
m′m′′(−π)d

(j)
m′′m(β) = (−1)j+m′

d−m′,m(β). (A.3.16)

Therefore,

d
(j)
m′m(β) =

∑
m′′

d
(j)
m′m′′(β + π)d

(j)
m′′m(−π) = (−1)j−md

(j)
m′,−m(β + π)

= (−1)m
′−md

(j)
−m′,−m(β). (A.3.17)

It follows from Eq. (A.3.14) that

d
(j)
m′m(−β) = d

(j)
mm′(β). (A.3.18)

Thus the complex conjugate of a D-matrix is given by

D(j)∗
m′m(α, β, γ) = e−im′γd

(j)
mm′(−β)e−imα = e−im′γd

(j)
m′m(β)e−imα = D(j)

m′m(−α, β,−γ)

= (−1)m
′−mD(j)

−m′,−m(α, β, γ), (A.3.19)

where Eq. (A.3.17) is utilized in the equality on the second line.
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A.3.3 D-matrix and orthogonal polynomials

Using Eqs. (A.1.8, A.3.14), we obtain

Pl,−m(cosβ)

=
1

2ll!
(sinβ)−m(l −m)!

∑
n

(
l

n+m

)(
l

n

)
(−1)l−n

(
2 cos2

β

2

)n+m(
2 sin2 β

2

)l−n

=
1

l!
(l −m)!

∑
n

(
l

n+m

)(
l

n

)
(−1)l−n

(
cos

β

2

)2n+m(
sin

β

2

)2l−2n−m

, (A.3.20)

d
(l)
m0(β) =

1

l!

√
(l +m)!(l −m)!

∑
n

(
l

l −m− n

)(
l

n

)

× (−1)l−m−n

(
cos

β

2

)2n+m(
sin

β

2

)2l−2n−m

, (A.3.21)

and then

d
(l)
m0(β) =

√
(l +m)!

(l −m)!
(−1)mPl,−m(cosβ) =

√
(l −m)!

(l +m)!
Pl,m(cosβ), (A.3.22)

where Eq. (A.1.9) is utilized in the second equality.

It follows from Eqs. (A.3.4), (A.3.22), and (A.1.11) that

D(l)
m0(α, β, γ) = (−1)m

√
4π

2l + 1
Ylm(β, γ) (A.3.23)

D(l)
0m(α, β, γ) =

√
4π

2l + 1
Ylm(β, α) (A.3.24)

D(l)
00 (α, β, γ) = Pl(cosβ). (A.3.25)

Using the definition of the 3-j symbols (A.2.13) and Eq. (A.3.19), the products of D-matrices are

given by

D(j1)
m′

1m1
(ω)D(j2)

m′
2m2

(ω)

= ⟨j1m′
1 |D(ω)| j1m1⟩ ⟨j2m′

2 |D(ω)| j2m2⟩

=
∑
jm′m

⟨j1m′
1 j2m

′
2| j m′⟩ ⟨j1m1 j2m2| j m⟩D(j)

m′,m(ω)

=
∑
jm′m

(−1)−2j1+2j2−m−m′
(2j + 1)

(
j1 j2 j

m′
1 m′

2 −m′

)(
j1 j2 j

m1 m2 −m

)
D(j)

m′,m(ω)

=
∑
jm′m

(−1)−2j1+2j2−2m(2j + 1)

(
j1 j2 j

m′
1 m′

2 −m′

)(
j1 j2 j

m1 m2 −m

)
D(j)∗

−m′,−m(ω)

=
∑
jm′m

(2j + 1)

(
j1 j2 j

m′
1 m′

2 m′

)(
j1 j2 j

m1 m2 m

)
D(j)∗

m′,m(ω). (A.3.26)
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It follows from Eq. (A.1.14) that

P
(m′−m,m′+m)
j−m′ (cosβ)

=

j−m′∑
ν=0

(
j −m

ν

)(
j +m

j −m′ − ν

)
(−1)j−m′−ν

(
sin

β

2

)2j−2m′−2ν (
cos

β

2

)2ν

(A.3.27)

Comparing with Eq. (A.3.14), we obtain

d
(j)
m′m(β) =

√
(j +m′)!(j −m′)!

(j +m)!(j −m)!

(
cos

β

2

)m′+m(
sin

β

2

)m′−m

P
(m′−m,m′+m)
j−m′ (cosβ). (A.3.28)

A.3.4 Integrals involving D-matrix

The D-matrix follows the orthogonality as

1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

dα sinβdβdγD(j1)∗
m′

1,m1
(α, β, γ)D(j2)

m′
2,m2

(α, β, γ)

= δj1j2δm′
1m

′
2
δm1m2

1

2j1 + 1
. (A.3.29)

Combining this result and the products of D-matrices given in Eq. (A.3.26),

1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

dα sinβdβdγD(j1)
m′

1,m1
(α, β, γ)D(j2)

m′
2,m2

(α, β, γ)D(j3)
m′

3,m3
(α, β, γ)

=

(
j1 j2 j3

m′
1 m′

2 m′
3

)(
j1 j2 j3

m1 m2 m3

)
(A.3.30)

is obtained. Thus, Eq. (A.3.25) is applied, in which m′
1 = m′

2 = m′
3 = 0, to give

1

8π2

∫ 2π

0

∫ π

0

sin θdθdϕYl1m1
(θ, ϕ)Yl2m2

(θ, ϕ)Yl3m3
(θ, ϕ)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)
. (A.3.31)

A.4 Tensor Operators

A.4.1 Definition of Irreducible Tensor Operator

The rotation operator with respect to a set of Euler angles ω = {α, β, γ} is given as

D(ω) ≡ D(α, β, γ) = eiγJzeiβJyeiαJz . (A.4.1)

The representations of rotation operators in terms of |jm⟩, which are eigenvectors of the angular

momentum operators J2 and Jz with eigenvalues of j and m, respectively, are given as

D(j)
m′m(ω) = ⟨jm′ |D(ω)| jm⟩ . (A.4.2)
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Thus,

D(ω)|jm⟩ =
∑
m′

|jm′⟩ ⟨jm′ |D(ω)| jm⟩ =
∑
m′

D(j)
m′m(ω)|jm′⟩. (A.4.3)

The irreducible tensor operator (ITO) T (k), which is a set of 2k + 1 operators T
(k)
q (q = −k,−k +

1, · · · , k − 1, k), is defined by the property of the transformation under rotations of the frame of

coordinates as

D(ω)T (k)
q D−1(ω) =

k∑
q′=−k

T
(k)
q′ D(k)

q′q(ω). (A.4.4)

The Hermite conjugate of the definition (A.4.4) is

D(ω)T (k)†
q D−1(ω) =

∑
q′

T
(k)†
q′ D(k)∗

q′q (ω) =
∑
q′

T
(k)†
q′ (−1)q

′−qD(k)
−q′−q(ω). (A.4.5)

Here, the complex conjugate of the D-matrix is given in Eq. (A.3.19). It can be shown from this

equation that T̃
(k)
q ≡ (−1)k−qT

(k)†
−q satisfies the definition of the ITO as

D(ω)(−1)k−qT
(k)†
−q D−1(ω) = (−1)k

∑
q′

T
(k)†
−q′ (−1)−q′D(k)

q′q(ω). (A.4.6)

The particle creation operator c†jm is one of the ITOs. That acts on the vacuum to create an

eigenstate of J2 and Jz as

c†jm|0⟩ = |jm⟩, (A.4.7)

so that

D(ω)c†jm|0⟩ =
∑
m′

|jm′⟩⟨jm′|D(ω)|jm⟩ =
∑
m′

D(j)
m′mc

†
jm′ |0⟩. (A.4.8)

If ITOs are operated on the eigenvectors of J2 and Jz, we have

D(ω)T (k)
q |jm⟩ =

∑
q′m′

D(k)
q′q(ω)D(j)

m′m(ω)T
(k)
q′ |jm′⟩. (A.4.9)

This means that the vector T
(k)
q |jm⟩ is transformed as the product representation D(k)⊗D(j) of the

rotation group.

The annihilation operator c̃jm = (−1)j−mcj−m is another ITO, which is shown by taking the

conjugate of this relation as

⟨0|cjmD†(ω) =
∑
m′

⟨jm|D†(ω)|jm′⟩⟨jm′| = ⟨0|
∑
m′

cjm′D(j)∗
m′m(ω)

= ⟨0|
∑
m′

cjm′(−1)m
′−mD(j)

−m′−m(ω). (A.4.10)
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In fact, it follows that

⟨0|c̃jmD†(ω) =
∑
m′

⟨0|c̃jm′D(j)
m′m(ω). (A.4.11)

The inverted expression is given as

cjm = (−1)j+mc̃j−m. (A.4.12)

A non-relativistic wavefunction is represented as

ϕnljm(r) = ⟨r|nljm⟩ = ilRnl(r)
∑
mlms

⟨
l ml

1
2 ms

∣∣ j m⟩Ylml
(θ, ϕ)χms

. (A.4.13)

The time-reversal of the single-particle wavefunction is given by multiplying the operator K taking

the complex conjugate and the unitary operator

iσ2 = e−iπσ2 (A.4.14)

in this order as shown in $ XX. That can be explicitly given as

ϕ′nljm(r) = Tϕnljm(r)

= (−i)lRnl(r)
∑
mlms

(−1)−ml(−1)−
1
2−ms

⟨
l ml

1
2 ms

∣∣ j m⟩Yl,−ml
(θ, ϕ)χ−ms

= (−1)l−m− 1
2 (−1)l+

1
2−jϕnlj,−m(r)

= (−1)j+mϕnlj,−m(r) (A.4.15)

where Y ∗
lml

(θ, ϕ) = (−1)−mlYl,−ml
(θ, ϕ) and iσ2χms

= (−1)−
1
2−msχ−ms

are used. For the many-

particle system,

A.4.2 Products of Irreducible Tensor Operators

Tensor products of two ITOs are given by

T (k)
q =

[
T (k1) ⊗ T (k2)

](k)
q

≡
∑
q1q2

T (k1)
q1 T (k2)

q2 ⟨k1 q1 k2 q2| k q⟩ . (A.4.16)

The scalar product is defined by

T (k) · T (k) ≡
∑
q

(−1)qT (k)
q T

(k)
−q , (A.4.17)

which is related to a tensor product as

T (k) · T (k) = (−1)−k
√

2k + 1
[
T (k) ⊗ T (k)

](0)
0
. (A.4.18)
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The inverse transformation to Eq. (A.4.16) is derived from the unitary properties of the CG coeffi-

cients in Eq. (A.2.6) as∑
kq

T (k)
q ⟨k q| k1 q1 k2 q2⟩ =

∑
kq

∑
q′1q

′
2

T
(k1)
q′1

T
(k2)
q′2

⟨k1 q′1 k2 q′2| k q⟩ ⟨k q| k1 q1 k2 q2⟩

= T (k1)
q1 T (k2)

q2 (A.4.19)

The propagators of the ITO products are given as⟨
0
∣∣T (k1)

q1 T (k2)
q2

∣∣0⟩ = δk1,k2δq1,−q2

∑
q′

⟨
0
∣∣T (k)

q′ T
(k)
−q′

∣∣0⟩ ⟨k1 q′ k1 − q′| 0 0⟩ ⟨0 0| k1 q1 k1 − q1⟩

= δk1,k2
δq1,−q2

(−1)k1−q1

√
2k1 + 1

⟨
0
∣∣[T (k) ⊗ T (k)

](0)
0

∣∣0⟩, (A.4.20)

where the condition of k = q = 0 reflects the rotational symmetry of the vacuum.

The recouplings of ITOs can be obtained by using a symmetric property in Eq. (A.2.11) as[
T (k1) ⊗ T (k2)

](K)

Q
= (−1)k1+k2−K

[
T (k2) ⊗ T (k1)

](K)

Q
, (A.4.21)

and then two single ITOs of rank k can be recoupled as[
T (k) ⊗ T (k)

](K)

Q
= (−1)K

[
T (k) ⊗ T (k)

](K)

Q
, (A.4.22)

and then odd K terms should be vanished.

For the recouplings of three ITOs, using the 6-j symbols, we get[[
T (k1) ⊗ T (k2)

](k12)

⊗ T (k3)

](K)

Q

=
∑
k23

(−1)k1+k2+k3+K
√

(2k12 + 1)(2k23 + 1)

{
k1 k2 k12

k3 K k23

}

×
[
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](k23)
](K)

Q

. (A.4.23)

This transformation and the inverse transformation are discovered by using the 9-j symbols as[[
T (k1) ⊗ T (k2)

](k12)

⊗ T (k3)

](K)

Q

=

[[
T (k1) ⊗ T (k2)

](k12)

⊗
[
1 ⊗ T (k3)

](k3)
](K)

Q

=
∑
k23

√
(2k12 + 1)(2k3 + 1)(2k1 + 1)(2k23 + 1)


k1 k2 k12

0 k3 k3

k1 k23 K


×
[[
T (k1) ⊗ 1

](k1)

⊗
[
T (k2) ⊗ T (k3)

](k23)
](K)

Q
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=
∑
k23

(−1)k1+k2+k3+K
√

(2k12 + 1)(2k23 + 1)

{
k23 K k1

k12 k2 k3

}

×
[[
T (k1) ⊗ 1

](k1)

⊗
[
T (k2) ⊗ T (k3)

](k23)
](K)

Q

=
∑
k23

(−1)k1+k2+k3+K
√

(2k12 + 1)(2k23 + 1)

{
k1 k2 k12

k3 K k23

}

×
[
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](k23)
](K)

Q

, (A.4.24)[
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](k23)
](K)

Q

=

[[
T (k1) ⊗ 1

](k1)

⊗
[
T (k2) ⊗ T (k3)

](k23)
](K)

Q

=
∑
k12

√
(2k1 + 1)(2k23 + 1)(2k12 + 1)(2k3 + 1)


k1 0 k1

k2 k3 k23

k12 k3 K


×
[[
T (k1) ⊗ T (k2)

](k12)

⊗
[
1 ⊗ T (k3)

](k3)
](K)

Q

=
∑
k12

(−1)k1+k2+k3+K
√

(2k23 + 1)(2k12 + 1)

{
k23 k2 k3

k12 K k1

}

×
[[
T (k1) ⊗ T (k2)

](k12)

⊗
[
1 ⊗ T (k3)

](k3)
](K)

Q

=
∑
k12

(−1)k1+k2+k3+K
√

(2k23 + 1)(2k12 + 1)

{
k3 k2 k23

k1 K k12

}

×
[[
T (k1) ⊗ T (k2)

](k12)

⊗ T (k3)

](K)

Q

. (A.4.25)

For k12 = 0,[[
T (k1) ⊗ T (k2)

](0)
⊗ T (k3)

](K)

Q

= δk1,k2δk3,K

∑
k23

(−1)2k1+2k3
√

2k23 + 1

{
k1 k1 0

k3 k3 k23

}

×
[
T (k1) ⊗

[
T (k1) ⊗ T (k3)

](k23)
](k3)

Q

= δk1,k2
δk3,K

∑
k23

(−1)3k1+3k3+k23

√
2k23 + 1

(2k1 + 1)(2k3 + 1)

×
[
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](k23)
](K)

Q

. (A.4.26)
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For k23 = 0,[
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](0)](K)

Q

= δk2,k3
δk1,K

∑
k12

(−1)2k1+2k2
√

2k12 + 1

{
k2 k2 0

k1 k1 k12

}

×
[[
T (k1) ⊗ T (k2)

](k12)

⊗ T (k2)

](k1)

Q

= δk2,k3
δk1,K

∑
k12

(−1)3k1+3k2+k12

√
2k12 + 1

(2k1 + 1)(2k2 + 1)

×
[[
T (k1) ⊗ T (k2)

](k12)

⊗ T (k2)

](k1)

Q

. (A.4.27)

For K = 0,[[
T (k1) ⊗ T (k2)

](k12)

⊗ T (k3)

](0)
0

= δk12,k3
(−1)k1+k2+k3

√
(2k3 + 1)(2k1 + 1)

{
k1 k2 k3

k3 0 k1

}

×
[
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](k1)
](0)
0

= δk12,k3
(−1)2k1+2k2+2k3

[
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](k1)
](0)
0

, (A.4.28)

and [
T (k1) ⊗

[
T (k2) ⊗ T (k3)

](k23)
](0)
0

= δk1,k23
(−1)k1+k2+k3

√
(2k1 + 1)(2k3 + 1)

{
k3 k2 k1

k1 0 k3

}

×
[[
T (k1) ⊗ T (k2)

](k3)

⊗ T (k3)

](0)
0

= δk1,k23
(−1)2k1+2k2+2k3

[[
T (k1) ⊗ T (k2)

](k3)

⊗ T (k3)

](0)
0

. (A.4.29)

By using the 9-j symbols,[[
T (k1) ⊗ T (k2)

](k12)

⊗
[
T (k3) ⊗ T (k4)

](k34)
](K)

Q

=
∑

k13k24

√
(2k12 + 1) (2k34 + 1) (2k13 + 1) (2k24 + 1)


k1 k2 k12

k3 k4 k34

k13 k24 K


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×
[[
T (k1) ⊗ T (k3)

](k13)

⊗
[
T (k2) ⊗ T (k4)

](k24)
](K)

Q

. (A.4.30)

For three single ITOs of rank 1,[[
T (1) ⊗ T (1)

](k12)

⊗ T (1)

](2)
Q

=

[[
T (1) ⊗ T (1)

](2)
⊗ T (1)

](2)
Q

δk12,2

= −5

{
1 1 2

1 2 2

}[
T (1) ⊗

[
T (1) ⊗ T (1)

](2)](2)
Q

= 5

{
1 1 2

1 2 2

}[[
T (1) ⊗ T (1)

](2)
⊗ T (1)

](2)
Q

= −1

2

[[
T (1) ⊗ T (1)

](2)
⊗ T (1)

](2)
Q

∴
[[
T (1) ⊗ T (1)

](2)
⊗ T (1)

](2)
Q

=

[
T (1) ⊗

[
T (1) ⊗ T (1)

](2)](2)
Q

= 0. (A.4.31)

A.4.3 Spherical Tensors

The coordinate vector is expressed in the spherical coordinates (r, θ, ϕ) as

r =

 x
y
z

 =

 r sin θ cosϕ
r sin θ sinϕ
r cos θ

 , (A.4.32)

and then

r =
√
x2 + y2 + z2, tan θ =

√
x2 + y2

z
, tanϕ =

y

x
. (A.4.33)

The spherical components of r are defined as

r0 = z = r cos θ, r±1 = ∓ 1√
2

(x± iy) = ∓ 1√
2
r sin θe±iϕ, (A.4.34)

and then

x = − 1√
2

(r+1 − r−1) , y =
i√
2

(r+1 + r−1) . (A.4.35)

The differential operator is defined in the Cartesian coordinate as

∂

∂x
= sin θ cosϕ

∂

∂r
+

cos θ cosϕ

r

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ
,

∂

∂y
= sin θ sinϕ

∂

∂r
+

cos θ sinϕ

r

∂

∂θ
+

cosϕ

r sin θ

∂

∂ϕ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
, (A.4.36)
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and the spherical components are defined through

r ·∇ = r(1)µ ∇(1)
µ = r

(1)
0 ∇(1)

0 − r
(1)
+1∇

(1)
−1 − r

(1)
−1∇

(1)
+1. (A.4.37)

The explicit forms are given as

∇(1)
0 =

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∇(1)
±1 = − ∂

∂r
(1)
∓1

= ∓ 1√
2

(
∂

∂x
± i

∂

∂y

)
= ∓ 1√

2
e±iϕ

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ
± i

1

r sin θ

∂

∂ϕ

)
. (A.4.38)

Note that the differential operator, counterpart of each spherical components of r, is reversely defined

in the scalar product (e.g. ∇+1 corresponds to r+1). It follows the commutation relation of[
∇(1)

µ , r(1)ν

]
= (−1)µδµ,−ν ; µ, ν = 0,±1. (A.4.39)

A.4.4 Creation-Annihilation Operators

Let us consider multi-particle system. A two-particle system is given as

|ψ(2)
JM ⟩ =

[
c†j1 ⊗ c†j2

](J)
M

|0⟩ =
∑

m1m2

⟨j1m1 j2m2| J M⟩ c†j1m1
c†j2m2

|0⟩. (A.4.40)

The conjugate is

⟨ψ(2)
JM | = ⟨0|

∑
m1m2

⟨j1m1 j2m2| J M⟩ cj2m2cj1m1

= (−1)j1+j2+M ⟨0|
∑

m1m2

⟨j2 −m2 j1 −m1| J −M⟩ c̃j2−m2
c̃j1−m1

= (−1)j1+j2+M ⟨0|
[
c̃j2 ⊗ c̃j1

](J)
−M

. (A.4.41)

A three-particle system is made of the two-particle system as

|ψ(3)
JM ⟩ =

[[
c†j1 ⊗ c†j2

](J12)

M12
⊗ c†j3

](J)
M

|0⟩, (A.4.42)

and the conjugate is given as

⟨ψ(3)
JM | = (−1)j1+j2+j3+M ⟨0|

[
c̃j3 ⊗

[
c̃j2 ⊗ c̃j1

](J12)

−M12

](J)
−M

. (A.4.43)

Similarly, the conjugate of a many-particle system, which is defined as

|ψ(n)
JM ⟩ =

[
· · ·
[[
c†j1 ⊗ c†j2

](J12)

M12
⊗ c†j3

](J123)

M123

· · · ⊗ c†jn

](J)
M

|0⟩, (A.4.44)
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is given as

⟨ψ(n)
JM | = (−1)j1+j2+j3+···+jn+M ⟨0|

[
c†jn ⊗ · · ·

[
c̃j3 ⊗

[
c̃j2 ⊗ c̃j1

](J12)

−M12

](J123)

−M123

· · ·
](J)
−M

. (A.4.45)

The number operator in a j-shell defined by

Nτj =
∑
m

a†τjmaτjm, (A.4.46)

are related as[
ãτj ⊗ a†τj

](0)
0

=
∑
m

⟨j m j −m| 0 0⟩ ãτjma†τj−m

=
∑
m

⟨j m j −m| 0 0⟩
(

(−1)j−mδm,−m − a†τj−mãτjm

)
=
∑
m

⟨j −mjm| 0 0⟩ a†τj−mãτjm

=
[
a†τj ⊗ ãτj

](0)
0
, (A.4.47)[

a†τj ⊗ ãτj

](0)
0

=
∑
m

⟨j m j −m| 0 0⟩ a†τjmãτj−m

=
∑
m

(−1)j−m

√
2j + 1

a†τjm(−1)j+maτjm

= − 1√
2j + 1

Nτj . (A.4.48)

A.5 Matrix elements of tensor operators

A.5.1 Wigner-Eckart Theorem

The reduced matrix elements of an irreducible tensor operator T (k) are defined through the Wigner-

Eckart theorem as⟨
j′m′

∣∣∣T (k)
q

∣∣∣ jm⟩ = (−1)j−m ⟨j′m′ j −m| k q⟩√
2k + 1

⟨
j′
∣∣∣∣∣∣T (k)

∣∣∣∣∣∣ j⟩
= (−1)k−j+j′ ⟨k q j m| j′m′⟩√

2j′ + 1

⟨
j′
∣∣∣∣∣∣T (k)

∣∣∣∣∣∣ j⟩
= (−1)j

′−m′

(
j′ k j

−m′ q m

)⟨
j′
∣∣∣∣∣∣T (k)

∣∣∣∣∣∣ j⟩ . (A.5.1)

Let us consider that k is an integer. If j′ and j are integers, we have⟨
j′m′

∣∣∣T (k)
q

∣∣∣ jm⟩ = (−1)m
⟨j′m′ j −m| k q⟩

⟨j′ 0 j 0| k 0⟩

⟨
j′0
∣∣∣T (k)

0

∣∣∣ j0⟩ . (A.5.2)
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If j′ and j are half-integers, we have⟨
j′m′

∣∣∣T (k)
q

∣∣∣ jm⟩ = (−1)m
⟨j′m′ j −m| k q⟩⟨
j′ 1

2 j − 1
2

∣∣ k 0
⟩ ⟨j′ 12 ∣∣∣T (k)

0

∣∣∣ j 12⟩ . (A.5.3)

The unitary properties of the CG coefficients (A.2.6) enable us to get the alternative expressions as⟨
j′
∣∣∣∣∣∣T (k)

∣∣∣∣∣∣ j⟩ =
√

2k + 1
∑
mm′

(−1)j−m ⟨j′m′ j −m| k q⟩
⟨
j′m′

∣∣∣T (k)
q

∣∣∣ jm⟩ . (A.5.4)

The reduced matrix elements is computed in practice by choosing the easiest values of q,m,m′ to

evaluate the CG coefficients ⟨k′ q′| j′m′ j −m⟩. For example, the reduced matrix elements of rank-1

ITOs are computed with the use of the Wigner-Eckart theorem (A.5.1) with q = m = m′ = 0 as

⟨
l′
∣∣∣∣∣∣L(1)

∣∣∣∣∣∣ l⟩ =
√

2l′ + 1(−1)1−l+l′

⟨
l′0
∣∣∣L(1)

0

∣∣∣ l0⟩
⟨1 0 l 0| l′ 0⟩

=
√

2l′ + 1

⟨
l′m′

∣∣∣L(1)
q

∣∣∣ lm⟩
⟨ l m 1 q| l′m′⟩

= δll′
√
l(l + 1)(2l + 1), (A.5.5)

and ⟨
l′
∣∣∣∣∣∣Y (k)

∣∣∣∣∣∣ l⟩ = (−1)l
′

√
(2l′ + 1) (2k + 1) (2l + 1)

4π

(
l′ k l

0 0 0

)

= (−1)k
√

(2l′ + 1) (2k + 1)

4π
⟨ l′ 0 k 0| l 0⟩ . (A.5.6)

For the case of half-integer j, choosing q = 0,m = m′ = 1
2 ,

⟨
1
2

∣∣∣∣∣∣S(1)
∣∣∣∣∣∣ 12⟩ =

√
3

2
. (A.5.7)

Note that the reduced matrix elements of the identity are not one, but⟨
j′
∣∣∣∣1∣∣∣∣j⟩ = δj′j

√
2j + 1. (A.5.8)

A.5.2 Reduced matrix elements of tensor products

Let us consider tensor products of two ITOs T (k1) and T (k2). The matrix elements are given as⟨
J ′M ′

∣∣∣[T (k1) ⊗ T (k2)
](K)

Q

∣∣∣JM⟩
=
∑
q1q2

⟨k1 q1 k2 q2|KQ⟩
⟨
J ′M ′

∣∣∣T (k1)
q1 T (k2)

q2

∣∣∣JM⟩
=
∑
q1q2

⟨k1 q1 k2 q2|KQ⟩
∑

J′′M ′′

⟨
J ′M ′

∣∣∣T (k1)
q1

∣∣∣J ′′M ′′
⟩⟨
J ′′M ′′

∣∣∣T (k2)
q2

∣∣∣JM⟩, (A.5.9)
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and the reduced matrix elements are then given by using Eq. (A.5.4) as⟨
J ′
∣∣∣∣∣∣[T (k1) ⊗ T (k2)

](K)∣∣∣∣∣∣J⟩
=

√
2K + 1

∑
q1q2

⟨k1 q1 k2 q2|KQ⟩
∑

J′′M ′′

∑
M ′M

(−1)J−M ⟨J ′M ′ J −M |KQ⟩

×
⟨
J ′M ′

∣∣∣T (k1)
q1

∣∣∣J ′′M ′′
⟩⟨
J ′′M ′′

∣∣∣T (k2)
q2

∣∣∣JM⟩. (A.5.10)

A.5.3 Two different systems

Consider two tensor operators T (k1) and U (k2) which operate on different systems such as the

orbital part associated with (j1,m1) and the spin part (j2,m2). The reduced matrix element of a

tensor product is given by using⟨
(j′1 j

′
2) J ′M ′

∣∣∣∣[T (k1) ⊗ T (k2)
](K)

∣∣∣∣ (j1 j2) JM

⟩
=

∑
m′

1m
′
2m1m2

⟨j′1m′
1 j

′
2m

′
2| J ′M ′⟩ ⟨j1m1 j2m2| J M⟩

×
⟨
j′1m

′
1 j

′
2m

′
2

∣∣∣∣[T (k1) ⊗ T (k2)
](K)

∣∣∣∣ j1m1 j2m2

⟩
, (A.5.11)

as ⟨
(j′1 j

′
2) J ′

∣∣∣∣∣∣∣∣[T (k1) ⊗ T (k2)
](K)

∣∣∣∣∣∣∣∣ (j1 j2) J

⟩

=
√

(2J + 1)(2J ′ + 1)(2K + 1)


j′1 j1 k1

j′2 j2 k2

J ′ J K


⟨
j′1

∣∣∣∣∣∣T (k1)
∣∣∣∣∣∣ j1⟩⟨j′2 ∣∣∣∣∣∣T (k2)

∣∣∣∣∣∣ j2⟩ . (A.5.12)

In the case of U (k2) = 1, where k1 = K and k2 = 0,⟨
(j′1 j

′
2) J ′

∣∣∣∣∣∣T (K)
∣∣∣∣∣∣ (j1 j2) J

⟩
= δj′2j2δJ′J

√
(2J + 1)(2J ′ + 1)(2K + 1)(2j2 + 1)


j′1 j1 K

j2 j2 0

J ′ J K


⟨
j′1

∣∣∣∣∣∣T (K)
∣∣∣∣∣∣ j1⟩

= δj′2j2δJ′J

√
(2J + 1)(2J ′ + 1)(2K + 1)(2j2 + 1)

× (−1)j
′
1+j2+J+K√

(2j2 + 1)(2K + 1)

{
J ′ j′1 j2

j1 J K

}⟨
j′1

∣∣∣∣∣∣T (K)
∣∣∣∣∣∣ j1⟩

= δj′2j2δJ′J(−1)j
′
1+j2+J+K

√
(2J + 1)(2J ′ + 1)

{
J ′ j′1 j2

j1 J K

}⟨
j′1

∣∣∣∣∣∣T (K)
∣∣∣∣∣∣ j1⟩ . (A.5.13)
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Here, ⟨j2 ||1|| j2⟩ =
√

2j2 + 1 is used. In the case of T (k1) = 1,⟨
(j′1 j

′
2) J ′

∣∣∣∣∣∣U (K)
∣∣∣∣∣∣ (j1 j2) J

⟩
= δj′1j1δJ′J

√
(2J + 1)(2J ′ + 1)(2K + 1)(2j1 + 1)


j1 j1 0

j′2 j2 K

J ′ J K


⟨
j′2

∣∣∣∣∣∣U (K)
∣∣∣∣∣∣ j2⟩

= δj′1j1δJ′J

√
(2J + 1)(2J ′ + 1)(2K + 1)(2j1 + 1)

× (−1)j1+j2+J′+K√
(2j1 + 1)(2K + 1)

{
j′2 j2 K

J J ′ j1

}⟨
j′2

∣∣∣∣∣∣U (K)
∣∣∣∣∣∣ j2⟩

= δj′1j1δJ′J(−1)j1+j2+J′+K
√

(2J + 1)(2J ′ + 1)

{
j′2 j2 K

J J ′ j1

}⟨
j′2

∣∣∣∣∣∣U (K)
∣∣∣∣∣∣ j2⟩ . (A.5.14)

Let us consider one of the most typical functions as f(r)Yλµ(θ, ϕ). Using the reduced matrix elements

of Y (λ) (A.5.6) and the relation of

⟨ l′ 0λ 0| l 0⟩

{
j′ λ j

l 1
2 l′

}
=

(−1)j+l+
1
2√

(2l′ + 1)(2j + 1)

⟨
j′ 1

2 λ 0
∣∣ j 1

2

⟩
, (A.5.15)

we obtain⟨
n′,
(
l′ 12
)
j′
∣∣∣∣∣∣f(r)Y (λ)

∣∣∣∣∣∣n, (l 12) j⟩
= δj′j(−1)l

′+
1
2+j+λ

√
(2j + 1)(2j′ + 1)

{
j′ l′ 1

2

l j λ

}⟨
n′, l′

∣∣∣∣∣∣f(r)Y (λ)
∣∣∣∣∣∣n, l⟩

= δj′j(−1)l
′+

1
2+j+λ

√
(2j + 1)(2j′ + 1)

{
j′ l′ 1

2

l j λ

}

×
⟨
n′, l′

∣∣∣f(r)
∣∣∣n, l⟩× (−1)λ

√
(2l′ + 1)(2λ+ 1)

4π
⟨ l′ 0λ 0| l 0⟩

= δj′j(−1)l
′+

1
2+j

√
(2j + 1)(2j′ + 1)(2l′ + 1)(2λ+ 1)

4π

⟨
n′, l′

∣∣∣f(r)
∣∣∣n, l⟩

× (−1)j+l+
1
2√

(2l′ + 1)(2j + 1)

⟨
j′ 1

2 λ 0
∣∣ j 1

2

⟩
= δj′j(−1)l+l′

√
(2j′ + 1)(2λ+ 1)

4π

⟨
n′, l′

∣∣∣f(r)
∣∣∣n, l⟩ ⟨j′ 1

2 λ 0
∣∣ j 1

2

⟩
. (A.5.16)
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Appendix B

Nuclear effective interactions

B.1 Pairing interactions

Two-body interactions are generally given as

V =
1

2

∑
ijkl

Vijklc
†
i c

†
jclck, (B.1.1)

where two particles lying in single-particle levels k and l are scattered into levels i and j. The

two-body matrix elements Vijkl of the interactions V are anti-symmetrized as

Vijkl =
1

4

[
⟨ij |V | kl⟩ − ⟨ji |V | kl⟩ − ⟨ij |V | lk⟩ + ⟨ji |V | lk⟩

]
, (B.1.2)

which follow the relation of

Vijkl = −Vjikl = −Vijlk = Vjilk. (B.1.3)

Since an atomic nucleus is a spherically symmetric system, the angular momentum is one of the

good quantum numbers. The pairing operators of like-particles are defined as [14]

A†
κµJM (j1j2) =

[
c†j1 ⊗ c†j2

](J)
M

=
∑

m1m2

⟨j1m1 j2m2| J M⟩ c†j1m1
c†j2m2

, (B.1.4)

B†
JM (j1j2) =

[
c†j1 ⊗ c̃j2

](J)
M

=
∑

m1m2

⟨j1m1 j2m2| J M⟩ c†j1m1
c̃j2m2

. (B.1.5)

The conjugate operators are given as

AJM (j1j2) =
∑

m1m2

⟨j1m1 j2m2| J M⟩ cj2m2cj1m1

=
∑

m1m2

⟨j1m1 j2m2| J M⟩ (−1)j1+j2+m1+m2 c̃j2−m2
c̃j1−m1

= (−1)j1+j2+M
∑

m1m2

⟨j2 −m2 j1 −m1| J −M⟩ c̃j2−m2 c̃j1−m1

= (−1)j1+j2+M
[
c̃j2 ⊗ c̃j1

](J)
−M

. (B.1.6)



100 Appendix B Nuclear effective interactions

The nuclear interactions are assumed to conserve the rotational symmetry. The two-body interac-

tions are then expanded in terms of the scalar products of the irreducible tensor operators as

V =
∑

j1j2j3j4

∑
JM

GJ (j1j2j3j4)A†
JM (j1j2)AJM (j3j4)

=
∑

j1j2j3j4

∑
J

GJ (j1j2j3j4)
√

2J + 1(−1)j3+j4−J

[[
c†j1 ⊗ c†j2

](J)
⊗
[
c̃j4 ⊗ c̃j3

](J)](0)
0

, (B.1.7)

where the interaction strengths GJ (j1j2j3j4) satisfy the relations that

GJ (j1j2j3j4) = GJ (j3j4j1j2)

= −(−1)j1+j2−JGJ (j2j1j3j4)

= −(−1)j3+j4−JGJ (j1j2j4j3)

= (−1)j1+j2+j3+j4GJ (j2j1j4j3) . (B.1.8)

In order to calculate the matrix elements with respect to many-body wavefunctions, the Wick’s

theorem saying that any time-ordered products of creation and annihilation operators are given as

T
[
c1c2c

†
3 · · ·

]
= N

[
c1c2c

†
3 · · · + (all possible contractions)

]
. (B.1.9)

The contractions of two operators are defined as the difference of the time-ordered product and the

normal-ordered product. They are explicitly given as

cic
†
j = cic

†
j −N

[
cic

†
j

]
= cic

†
j + c†jci =

{
ci, c

†
j

}
= δij , (B.1.10)

cicj = 0, c†i c
†
j = 0. (B.1.11)

If two irreducible tensor operators are coupled with a rank J , the contraction is given as[
c̃j′ ⊗ c†j

](J)
M

=
∑
m′,m

⟨j′m′ j m| J M⟩ c̃j′m′c†jm

=
∑
m′,m

⟨j′m′ j m| J M⟩ (−1)j
′−m′

cj′,−m′c†jm

=
∑
m

⟨j −mjm| 0 0⟩ (−1)j+mδj′jδJ0δM0

= δj′jδJ0δM0

√
2j + 1. (B.1.12)

The reduced matrix elements of the contraction are given as

⟨
I ′
∣∣∣∣[c̃j′ ⊗ c†j

](J)
M

∣∣∣∣I⟩ =
(−1)I−MI

⟨I ′M ′
I I −MI | 0 0⟩

⟨
I ′M ′

I

∣∣[c̃j′ ⊗ c†j

](J)
M

∣∣IMI

⟩
= δI′Iδj′jδJ0δM0

√
(2I + 1)(2j + 1). (B.1.13)

The contractions of two operators in a product of more than two operators are defined as

cici1 · · · cinc
†
jcj1 · · · cjm = (−1)ncic

†
jci1 · · · cincj1 · · · cjm

= (−1)nδijci1 · · · cincj1 · · · cjm . (B.1.14)
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Since the two possible contractions of the two-body interactions are evaluated as

[[
c̃j′2 ⊗ c̃j′1

](J)
⊗
[
c†j1 ⊗ c†j2

](J)](0)
0

= −
∑
K

(2J + 1)(2K + 1)


j′2 j′1 J

j1 j2 J

K K 0


[[
c̃j′2 ⊗ c†j1

](K)

⊗
[
c̃j′1 ⊗ c†j2

](K)
](0)
0

= −(2J + 1)


j1 j2 J

j1 j2 J

0 0 0

× δj′2,j1δj′1,j2
√

(2j1 + 1)(2j2 + 1)

= −δj′2,j1δj′1,j2
√

2J + 1, (B.1.15)[[
c̃j′2 ⊗ c̃j′1

](J)
⊗
[
c†j1 ⊗ c†j2

](J)](0)
0

= (−1)j1+j2−J × δj′1,j1δj′2,j2
√

2J + 1, (B.1.16)

the propagators of the two-body interactions are given as

⟨
0
∣∣[[c̃j′2 ⊗ c̃j′1

](J)
⊗
[
c†j1 ⊗ c†j2

](J)](0)
0

∣∣0⟩
=

[[
c̃j′2 ⊗ c̃j′1

](J)
⊗
[
c†j1 ⊗ c†j2

](J)](0)
0

+

[[
c̃j′2 ⊗ c̃j′1

](J)
⊗
[
c†j1 ⊗ c†j2

](J)](0)
0

=
[
(−1)j1+j2−Jδj′1,j1δj′2,j2 − δj′2,j1δj′1,j2

]√
2J + 1. (B.1.17)

Let us construct two-particles states, which obey the orthonormalized condition of⟨
j1j2; J ′M ′∣∣j1j2; JM

⟩
= δJ′JδM ′M , (B.1.18)

where ∣∣j1j2; JM
⟩

= NA†
JM (j1j2)

∣∣0⟩ (B.1.19)

is a two-particle state and N is the normalization constant. The overlap is calculated as⟨
j1j2; J ′M ′∣∣j1j2; JM

⟩
= N 2

⟨
0
∣∣∣AJ′M ′ (j1j2)A†

JM (j1j2)
∣∣∣ 0⟩

= N 2(−1)j1+j2+M ′
⟨

0

∣∣∣∣[c̃j2 ⊗ c̃j1

](J′)

−M ′

[
c†j1 ⊗ c†j2

](J)
M

∣∣∣∣ 0⟩
= N 2δJ′JδM ′M

(−1)j1+j2+J

√
2J + 1

⟨
0

∣∣∣∣∣
[[
c̃j2 ⊗ c̃j1

](J)
⊗
[
c†j1 ⊗ c†j2

](J)](0)
0

∣∣∣∣∣ 0
⟩

= N 2δJ′JδM ′M

[
1 − δj1,j2(−1)j1+j2+J

]
. (B.1.20)

The whole tensor operator should be coupled with rank-0 due to the rotational symmetry of the

vacuum. The terms in the square bracket become two if j1 = j2, and the two-particle state is then
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orthonormalized as

∣∣j1j2; JM
⟩

=

√
1

1 + δj1,j2
A†

JM (j1j2)
∣∣0⟩. (B.1.21)

The two-body matrix elements of the tensor operator in the two-body interactions are given as

⟨0|AJ′0 (j1j2)

[[
c†j′1

⊗ c†j′2

](K)

⊗
[
c̃j′4 ⊗ c̃j′3

](K)
](0)
0

A†
J0 (j3j4) |0⟩

= (−1)J+K
∑
K′

√
2K ′ + 1

(2J + 1)(2K + 1)
⟨0|AJ′0 (j1j2)

×

[[
c†j′1

⊗ c†j′2

](K)

⊗
[[
c̃j′4 ⊗ c̃j′3

](K)

⊗
[
c†j3 ⊗ c†j4

](J)](K′)
](J)
0

|0⟩

= (−1)j1+j2+K
∑
K′

1

2J + 1

√
2K ′ + 1

2K + 1
δJ′,J

× ⟨0|

[[
c̃j2 ⊗ c̃j1

](J)
⊗

[[
c†j′1

⊗ c†j′2

](K)

⊗
[[
c̃j′4 ⊗ c̃j′3

](K)

⊗
[
c†j3 ⊗ c†j4

](J)](K′)
](J)](0)

0

|0⟩

= (−1)j1+j2+K
∑
K′

1

2J + 1

√
2K ′ + 1

2K + 1
δJ′,J

× ⟨0|

[[[
c̃j2 ⊗ c̃j1

](J)
⊗
[
c†j′1

⊗ c†j′2

](K)
](K′)

⊗
[[
c̃j′4 ⊗ c̃j′3

](K)

⊗
[
c†j3 ⊗ c†j4

](J)](K′)
](0)
0

|0⟩

= δJ′,JδK,J(−1)j1+j2+J 1√
2J + 1

×
[
(−1)j

′
1+j′2−Jδj1,j′1δj2,j′2 − δj2,j′1δj1,j′2

]
×
[
(−1)j3+j4−Jδj′3,j3δj′4,j4 − δj′4,j3δj′3,j4

]
, (B.1.22)

where the left four and the right four operators should be reduced separately among them in each

half. Thus, we have⟨
j1j2; J ′M ′∣∣V ∣∣j3j4; JM

⟩
= δJ′,JδM ′M

⟨
j1j2; J0

∣∣V ∣∣j3j4; J0
⟩

= δJ′,JδM ′M
1√

(1 + δj1j2) (1 + δj3j4)

∑
j′1j

′
2j

′
3j

′
4

∑
K

GK (j′1j
′
2j

′
3j

′
4)

√
2K + 1(−1)j

′
3+j′4−K

× ⟨0|AJ′0 (j1j2)

[[
c†j′1

⊗ c†j′2

](K)

⊗
[
c̃j′4 ⊗ c̃j′3

](K)
](0)
0

A†
J0 (j3j4) |0⟩

= δJ′,JδM ′M
1√

(1 + δj1j2) (1 + δj3j4)

∑
j′1j

′
2j

′
3j

′
4

(−1)j1+j2+j′3+j′4GJ (j′1j
′
2j

′
3j

′
4)

×
[
(−1)j

′
1+j′2−Jδj1,j′1δj2,j′2 − δj2,j′1δj1,j′2

]
×
[
(−1)j3+j4−Jδj′3,j3δj′4,j4 − δj′4,j3δj′3,j4

]
= δJ′,JδM ′M

4√
(1 + δj1j2) (1 + δj3j4)

GJ (j1j2j3j4) . (B.1.23)
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B.2 Monopole-pairing Interaction

The pair-creation operator P
(1,J)†
µ,M and the quadrupole operator Q

(1,2)†
τ,M are defined by

P
(1,J)†
µ,M =

∑
j1,j2

pJ (j1j2)A†
1µJM (j1j2) , Q

(1,2)†
µ,M =

∑
j1,j2

q (j1j2)B1µ,2M (j1j2) , (B.2.1)

with

p0 (j1j2) =

√
2j1 + 1

2
δj1j2 , (B.2.2)

p2 (j1j2) = q (j1j2) =
1√
5

⟨
j1

∣∣∣∣∣∣r2Y (2)
∣∣∣∣∣∣ j2⟩ =

1√
5

⟨
n1l1

∣∣∣∣r2∣∣∣∣n2l2⟩ ⟨l1j1 ∣∣∣∣∣∣Y (2)
∣∣∣∣∣∣ l2j2⟩ . (B.2.3)

In this paper, we adopt pJ = 1 for higher order (J > 2) pairing operators. The conjugate of

pair-creation operator is given by

P̃
(1,J)
µ,M ≡ (−1)MP

(1,J)
µ,−M

=
∑
j1,j2

pJ (j1j2) (−1)j1+j2
[
c̃j2 ⊗ c̃j1

](1,J)
µ,M

=
∑
j1,j2

pJ (j1j2) (−1)1+κ−MA1µJM (j1j2)

= (−1)J+1
∑
j1,j2

pJ (j1j2)
[
c̃j1 ⊗ c̃j2

](1,J)
µ,M

. (B.2.4)

Assuming that the effective interactions are Hermite and rotational, parity, and time-reversal

invariant, the isovector pairing (P ) interactions and the quadrupole-quadrupole (QQ) interactions

are given by

H
(pair)
µ,J = −gµJP (1,J)†

µ · P̃ (1,J)
µ = −gµJ(−1)J

√
2J + 1

[
P (1,J)†
µ ⊗ P̃ (1,J)

µ

](0)
0
, (B.2.5)

H
(QQ)
µ,µ′ = −χµµ′N

[
Q(2)†

µ ·Q(2)
µ′

]
= −

√
5χµµ′N

[[
Q(2)†

µ ⊗Q
(2)
µ′

](0)
0

]
. (B.2.6)

It should be noted that the scalar product is taken only for J-space except for isospin space.

µ = ±1 for the pairing interactions between like particles, and µ = 0 for isovector np pairing

interactions. µ = µ′ = ±1 for the QQ interactions between like particles, and (µ, µ′) = (+1,−1) or

(−1,+1) for those between neutron and proton. The phenomenological coupling strengths gJµ and

χµµ′ are determined to represent spectra and electromagnetic transition rates.

In the later sections we will utilize abbreviated forms of the pairing interactions as

H
(pair)
µ,J = −gµJP (1,J)†

µ · P̃ (1,J)
µ

= −gµJ
∑
M

(−1)M
∑
j1,j2

pJ (j1j2)A†
1µJM (j1j2)

∑
j3,j4

pJ (j3j4) (−1)1+κ−MA1µJ−M (j3j4)

= −gµJ(−1)1+κ
∑

j1,j2j3,j4

pJ (j1j2) pJ (j3j4)
∑
M

A†
1µJM (j1j2)A1µJ−M (j3j4) , (B.2.7)
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or

H
(pair)
µ,J = −gµJP (1,J)†

µ · P̃ (1,J)
µ

= gµJ(−1)J
∑

j1j2j3j4

pJ (j1j2) pJ (j3j4)
[
c†j1 ⊗ c†j2

](1,J)
µ

·
[
c̃j3 ⊗ c̃j4

](1,J)
µ

≡
∑

j1j2j3j4

Gµ(j1j2, j3j4; J)
[
c†j1 ⊗ c†j2

](1,J)
µ

·
[
c̃j3 ⊗ c̃j4

](1,J)
µ

, (B.2.8)

where

Gµ(j1j2, j3j4; J) = gµJ(−1)JpJ (j1j2) pJ (j3j4) . (B.2.9)

Since the Hermitian nature of the Hamiltonian and the reality of the CG coefficients,

Gµ(j1j2, j3j4; J) = Gµ(j3j4, j1j2; J). (B.2.10)

For the monopole-pairing interactions between like particles,⟨
j1j2; J

∣∣∣H(pair)
µ=±1,J

∣∣∣ j3j4; J
⟩

= gµJ(−1)J+M
∑
j′1,j

′
2

p0 (j′1j
′
2)
∑
j′3,j

′
4

p0 (j′3j
′
4)
⟨
j1j2; J

∣∣∣A†
1µJM (j′1j

′
2) ·A1µJM (j′3j

′
4)
∣∣∣ j3j4; J

⟩
=

gµJ√
2J + 1

p0 (j1j2) p0 (j3j4)
√

1 + (−1)Jδj1j2

√
1 + (−1)Jδj3j4 . (B.2.11)

B.3 Quadrupole-Quadrupole interactions

The quadrupole-quadrupole (QQ) interaction between like nucleons is given by a normal-ordered

form of

H(QQ)
τ=ν,π = N

[
Q(2) ·Q(2)

]
= N

[√
5
[
Q(2) ⊗Q(2)

](0)
0

]
, (B.3.1)

where the quadrupole operator is defined as

Q(2) =
∑
j1j2

Qj1,j2

[
c†j1 ⊗ c̃j2

](2)
. (B.3.2)
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The QQ interaction can be decomposed as

H(QQ) =
√

5
∑

j1j2j3j4

Qj1,j2Qj3,j4N

[[[
c†j1 ⊗ c̃j2

](2)
⊗
[
c†j3 ⊗ c̃j4

](2)](0)
0

]

= −
√

5
∑

j1j2j3j4

Qj1,j2Qj3,j4

∑
K

5(2K + 1)


j1 j2 2

j3 j4 2

K K 0


×
[[
c†j1 ⊗ c†j3

](K)

⊗
[
c̃j2 ⊗ c̃j4

](K)
](0)
0

= −5
∑

j1j2j3j4

Qj1,j2Qj3,j4

∑
K

(−1)K+j2+j3
√

2K + 1

{
j1 j2 2

j4 j3 K

}

×
[[
c†j1 ⊗ c†j3

](K)

⊗
[
c̃j2 ⊗ c̃j4

](K)
](0)
0

= −5
∑

j1j2j3j4

Qj1,j2Qj3,j4

∑
K

(−1)j3+j4
√

2K + 1

{
j1 j2 2

j4 j3 K

}

×
[[
c†j1 ⊗ c†j3

](K)

⊗
[
c̃j4 ⊗ c̃j2

](K)
](0)

. (B.3.3)

Here the reduced matrix elements of the spherical harmonics is given by

⟨
l′
∣∣∣∣∣∣Y (k)

∣∣∣∣∣∣ l⟩ = (−1)l
′

√
(2l′ + 1)(2k + 1)(2l + 1)

4π

{
l′ k l

0 0 0

}
, (B.3.4)

⟨
l′
∣∣∣∣∣∣C(k)

∣∣∣∣∣∣ l⟩ = (−1)l
′√

(2l′ + 1)(2l + 1)

{
l′ k l

0 0 0

}
. (B.3.5)

Then

Qj1,j2 = − 1√
5

⟨
j1

∣∣∣∣∣∣Q(2)
∣∣∣∣∣∣ j2⟩ = (−1)j1−j2Qj2,j1 . (B.3.6)

There is only one contracted term given by⟨
0
∣∣H(QQ)

ττ ′

∣∣0⟩
=

√
5
∑

j1j2j3j4

Qj1,j2Qj3,j4

⟨
0
∣∣[[a†τj1 ⊗ ãτj2

](2)
⊗
[
a†τ ′j3

⊗ ãτ ′j4

](2)](0)∣∣0⟩
= −

√
5
∑

j1j2j3j4

(−1)j3+j4Qj1,j2Qj3,j4

⟨
0
∣∣[[a†τj1 ⊗ ãτj2

](2)
⊗
[
ãτ ′j4 ⊗ a†τ ′j3

](2)](0)∣∣0⟩

=
√

5
∑

j1j2j3j4

(−1)j3+j4Qj1,j2Qj3,j45


j1 j2 2

j4 j3 2

0 0 0

 δj1j4δj2j3

×
⟨
0
∣∣[[a†τj1 ⊗ ãτ ′j4

](0)
⊗
[
ãτj2 ⊗ a†τ ′j3

](0)](0)∣∣0⟩
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=
c

5
∑
j1j2

Qj1,j2Qj2,j1

{
j1 j2 2

j2 j1 0

}⟨
0
∣∣ [a†τj1 ⊗ ãτ ′j1

](0) ∣∣0⟩√2j2 + 1δττ ′

= −5
∑
j1j2

Qj1,j2Qj2,j1

{
j1 j2 2

j2 j1 0

}
1√

2j1 + 1
Nτj1

√
2j2 + 1δττ ′

= −5
∑
j1j2

(−1)j1+j2Qj1,j2Qj2,j1

1

2j1 + 1
Nτj1δττ ′

= 5
∑
j1j2

(Qj1,j2)
2 1

2j1 + 1
Nτj1δττ ′ . (B.3.7)

The octupole-octupole interaction is similarly given as

H(Octupole) = N
[
Q̂(3) · Q̂(3)

]
, (B.3.8)

where

Q̂(3) =
∑
j1j2

Q
(3)
j1,j2

[
c†j1 ⊗ c̃j2

](3)
(B.3.9)

are octupole operators. Then,

H(Octupole) =
√

7
∑

j1j2j3j4

Q
(3)
j1,j2

Q
(3)
j3,j4

N

[[[
c†j1 ⊗ c̃j2

](3)
⊗
[
c†j3 ⊗ c̃j4

](3)](0)
0

]

= −
√

7
∑

j1j2j3j4

Q
(3)
j1,j2

Q
(3)
j3,j4

∑
K

7(2K + 1)


j1 j2 3

j3 j4 3

K K 0


×
[[
c†j1 ⊗ c†j3

](K)

⊗
[
c̃j2 ⊗ c̃j4

](K)
](0)
0

= 7
∑

j1j2j3j4

Q
(3)
j1,j2

Q
(3)
j3,j4

∑
K

(−1)j2+j3+K
√

2K + 1

{
j1 j2 3

j4 j3 K

}

×
[[
c†j1 ⊗ c†j3

](K)

⊗
[
c̃j2 ⊗ c̃j4

](K)
](0)
0

= 7
∑

j1j2j3j4

Q
(3)
j1,j2

Q
(3)
j3,j4

∑
K

(−1)j3+j4
√

2K + 1

{
j1 j2 3

j4 j3 K

}

×
[[
c†j1 ⊗ c†j3

](K)

⊗
[
c̃j4 ⊗ c̃j2

](K)
](0)
0

. (B.3.10)
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B.4 Neutron-proton monopole-pairing interactions

B.4.1 Isovector-pairing

Let us consider the monopole-pairing interaction between neutron and proton. Since

A†
0010 (jj) =

1√
2

∑
mτ

⟨j m j −m| 0 0⟩
⟨

1
2 τ

1
2 − τ

∣∣ 1 0
⟩
c†τjmc

†
−τj−m

=
1

2

∑
mτ

⟨j m j −m| 0 0⟩ c†τjmc
†
−τj−m

=
1

2

∑
m

⟨j m j −m| 0 0⟩
(
c†νjmc

†
πj−m + c†πjmc

†
νj−m

)
=
[
c†νj ⊗ c†πj

](0)
0
, (B.4.1)

A0010 (jj) =
1

2

∑
m

⟨j m j −m| 0 0⟩ (cπj−mcνjm + cνj−mcπjm)

= −1

2

∑
m

⟨j m j −m| 0 0⟩ (c̃πjmc̃νj−m + c̃νjmc̃πj−m)

= −
[
c̃νj ⊗ c̃πj

](0)
0
, (B.4.2)

the neutron-proton pairing interaction is given as

H
(pair)
J=0,µ=0

= −1

2
g00

∑
j1≤j2

P †
0010 (j1j2)

∑
j3≤j4

P0010 (j3j4)

=
1

2
g00
∑
jj′

√
(2j + 1) (2j′ + 1)

[
c†νj ⊗ c†πj

](0)
0

[
c̃νj′ ⊗ c̃πj′

](0)
0

=
1

2
g00
∑
jj′

√
(2j + 1) (2j′ + 1)

[[
c†νj ⊗ c†πj

](0)
⊗
[
c̃νj′ ⊗ c̃πj′

](0)](0)
0

= −1

2
g00
∑
jj′

√
(2j + 1) (2j′ + 1)

×
∑
K

(2K + 1)


j j 0

j′ j′ 0

K K 0


[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c†πj ⊗ c̃πj′

](K)
](0)
0

= −1

2
g00
∑
jj′

√
(2j + 1) (2j′ + 1)

×
∑
K

(2K + 1)
(−1)2K√
2K + 1

{
j j 0

j′ j′ K

}[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c†πj ⊗ c̃πj′

](K)
](0)
0

= −1

2
g00
∑
jj′

√
(2j + 1) (2j′ + 1)



108 Appendix B Nuclear effective interactions

×
∑
K

√
2K + 1

(−1)K+j+j′√
(2j + 1) (2j′ + 1)

[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c†πj ⊗ c̃πj′

](K)
](0)
0

= −1

2
g00
∑
K

√
2K + 1

∑
jj′

(−1)K+j+j′
[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c†πj ⊗ c̃πj′

](K)
](0)
0

. (B.4.3)

B.4.2 Isoscalar-pairing

The isoscalar pairing interaction is defined by

Hτ=0 = −
∑
j1≤j2

∑
j3≤j4

∑
J

kJ (j1j2, j3j4)
∑
M

A†
JM00 (j1j2)AJM00 (j3j4) . (B.4.4)

Here we adopt kJ (j1j2, j3j4) = k0 as a phenomenological constant common to any J . The isoscalar

pairing operator is expressed as

A†
JM00 (j1j2) =

∑
m1m2

∑
τ

⟨j1m1 j2m2| J M⟩
⟨

1

2
τ

1

2
− τ

∣∣∣∣ 0 0

⟩
1√

1 + δj1j2
c†τj1m1

c†−τj2m2

=
∑

m1m2

⟨j1m1 j2m2| J M⟩ 1√
1 + δj1j2

1√
2

[
c†νj1m1

c†πj2m2
− c†πj1m1

c†νj2m2

]
=

1√
2 (1 + δj1j2)

[[
c†νj1 ⊗ c†πj2

](J)
M

+ (−1)j1+j2−J
[
c†νj2 ⊗ c†πj1

](J)
M

]
. (B.4.5)

If τ ̸= τ ′, using cτjm = (−1)j+mc̃τj−m,([
c†τj1 ⊗ c†τ ′j2

](J)
M

)†

=
∑

m1m2

⟨j1m1 j2m2| J M⟩
(
c†τj1m1

c†τ ′j2m2

)†
=
∑

m1m2

⟨j1m1 j2m2| J M⟩ cτ ′j2m2cτj1m1

= −
∑

m1m2

(−1)j1+j2−J ⟨j1 −m1 j2 −m2| J −M⟩

× (−1)j1+m1 c̃τj1−m1
(−1)j2+m2 c̃τ ′j2−m2

= −(−1)J+M
[
c̃τj1 ⊗ c̃τ ′j2

](J)
−M

. (B.4.6)

Thus,

AJM00 (j1j2) = − (−1)J+M√
2 (1 + δj1j2)

[[
c̃νj1 ⊗ c̃πj2

](J)
−M

+ (−1)j1+j2−J
[
c̃νj2 ⊗ c̃πj1

](J)
−M

]
, (B.4.7)
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and

Hτ=0 = −k0
∑
j1≤j2

∑
JM

A†
JM00 (j1j2)AJM00 (j1j2)

= k0
∑
j1≤j2

∑
JM

1√
2 (1 + δj1j2)

[[
c†νj1 ⊗ c†πj2

](J)
M

+ (−1)j1+j2−J
[
c†νj2 ⊗ c†πj1

](J)
M

]

× (−1)J+M√
2 (1 + δj1j2)

[[
c̃νj1 ⊗ c̃πj2

](J)
−M

+ (−1)j1+j2−J
[
c̃νj2 ⊗ c̃πj1

](J)
−M

]
=
k0
2

∑
j1≤j2

∑
JM

(−1)J+M

1 + δj1j2

[[
c†νj1 ⊗ c†πj2

](J)
M

+ (−1)j1+j2−J
[
c†νj2 ⊗ c†πj1

](J)
M

]

×
[[
c̃νj1 ⊗ c̃πj2

](J)
−M

+ (−1)j1+j2−J
[
c̃νj2 ⊗ c̃πj1

](J)
−M

]
=
k0
2

∑
j1≤j2

∑
JM

(−1)J+M

1 + δj1j2

[[
c†νj1 ⊗ c†πj2

](J)
M

[
c̃νj1 ⊗ c̃πj2

](J)
−M

+ (−1)j1+j2−J
[
c†νj1 ⊗ c†πj2

](J)
M

[
c̃νj2 ⊗ c̃πj1

](J)
−M

+ (−1)j1+j2−J
[
c†νj2 ⊗ c†πj1

](J)
M

[
c̃νj1 ⊗ c̃πj2

](J)
−M

+
[
c†νj2 ⊗ c†πj1

](J)
M

[
c̃νj2 ⊗ c̃πj1

](J)
−M

]
, (B.4.8)

where the anti-symmetric property is applied to get the last line. Using the explicit value of a CG

coefficient (−1)J+M =
√

2J + 1 ⟨J M J −M | 0 0⟩ for integer J , the first term is

∑
JM

(−1)J+M
[
c†νj1 ⊗ c†πj2

](J)
M

[
c̃νj1 ⊗ c̃πj2

](J)
−M

=
∑
J

√
2J + 1

[[
c†νj1 ⊗ c†πj2

](J)
⊗
[
c̃νj1 ⊗ c̃πj2

](J)](0)
0

= −
∑
J

√
2J + 1

∑
K

(2J + 1) (2K + 1)


j1 j2 J

j1 j2 J

K K 0


×
[[
c†νj1 ⊗ c̃νj1

](K)

⊗
[
c†πj2 ⊗ c̃πj2

](K)
](0)
0

= −
∑
J

(2J + 1)
∑
K

√
2K + 1(−1)j1+j2+J+K

{
j1 j2 J

j2 j1 K

}

×
[[
c†νj1 ⊗ c̃νj1

](K)

⊗
[
c†πj2 ⊗ c̃πj2

](K)
](0)
0

= −
∑
K

(−1)K
√

2K + 1
∑
J

(−1)j1+j2+J (2J + 1)

{
j1 j1 K

j2 j2 J

}

×
[[
c†νj1 ⊗ c̃νj1

](K)

⊗
[
c†πj2 ⊗ c̃πj2

](K)
](0)
0
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= −
∑
K

(−1)K
√

(2K + 1) (2j1 + 1) (2j2 + 1)δK0

[[
c†νj1 ⊗ c̃νj1

](K)

⊗
[
c†πj2 ⊗ c̃πj2

](K)
](0)
0

= −
√

(2j1 + 1) (2j2 + 1)
[
c†νj1 ⊗ c̃νj1

](0)[
c†πj2 ⊗ c̃πj2

](0)
, (B.4.9)

and the second term is∑
JM

(−1)j1+j2+M
[
c†νj1 ⊗ c†πj2

](J)
M

[
c̃νj2 ⊗ c̃πj1

](J)
−M

=
∑
J

(−1)j1+j2+J
√

2J + 1

[[
c†νj1 ⊗ c†πj2

](J)
⊗
[
c̃νj2 ⊗ c̃πj1

](J)](0)
0

= −
∑
J

(−1)j1+j2+J
√

2J + 1
∑
K

(2J + 1) (2K + 1)


j1 j2 J

j2 j1 J

K K 0


×
[[
c†νj1 ⊗ c̃νj2

](K)

⊗
[
c†πj2 ⊗ c̃πj1

](K)
](0)
0

=
∑
J

(−1)j1+j2+J (2J + 1)
∑
K

√
2K + 1(−1)J+K

{
j1 j2 J

j1 j2 K

}

×
[[
c†νj1 ⊗ c̃νj2

](K)

⊗
[
c†πj2 ⊗ c̃πj1

](K)
](0)
0

= (−1)j1+j2
∑
K

(−1)K
√

2K + 1
∑
J

(2J + 1)

{
j1 j2 J

j1 j2 K

}

×
[[
c†νj1 ⊗ c̃νj2

](K)

⊗
[
c†πj2 ⊗ c̃πj1

](K)
](0)
0

= (−1)j1+j2
∑
K

(−1)K
√

2K + 1

[[
c†νj1 ⊗ c̃νj2

](K)

⊗
[
c†πj2 ⊗ c̃πj1

](K)
](0)
0

. (B.4.10)

Similarly the third and the last terms are given as∑
JM

(−1)j1+j2+M
[
c†νj2 ⊗ c†πj1

](J)
M

[
c̃νj1 ⊗ c̃πj2

](J)
−M

= (−1)j1+j2
∑
K

(−1)K
√

2K + 1

[[
c†νj2 ⊗ c̃νj1

](K)

⊗
[
c†πj1 ⊗ c̃πj2

](K)
](0)
0

(B.4.11)

∑
JM

(−1)J+M
[
c†νj2 ⊗ c†πj1

](J)
M

[
c̃νj2 ⊗ c̃πj1

](J)
−M

= −
√

(2j1 + 1) (2j2 + 1)
[
c†νj2 ⊗ c̃νj2

](0)[
c†πj1 ⊗ c̃πj1

](0)
. (B.4.12)

The first and the last term are combined as

Hτ=0(14) = −k0
2

∑
j1≤j2

1

1 + δj1j2

√
(2j1 + 1) (2j2 + 1)

×
[[
c†νj1 ⊗ c̃νj1

](0)[
c†πj2 ⊗ c̃πj2

](0)
+
[
c†νj2 ⊗ c̃νj2

](0)[
c†πj1 ⊗ c̃πj1

](0)]
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= −k0
2

∑
j1≤j2

1

1 + δj1j2

√
(2j1 + 1) (2j2 + 1)

[
c†νj1 ⊗ c̃νj1

](0)[
c†πj2 ⊗ c̃πj2

](0)
− k0

2

∑
j1≥j2

1

1 + δj1j2

√
(2j1 + 1) (2j2 + 1)

[
c†νj1 ⊗ c̃νj1

](0)[
c†πj2 ⊗ c̃πj2

](0)
= −k0

∑
j1

(2j1 + 1)
[
c†νj1 ⊗ c̃νj1

](0)[
c†πj1 ⊗ c̃πj1

](0)
− k0

2

∑
j1 ̸=j2

√
(2j1 + 1) (2j2 + 1)

[
c†νj1 ⊗ c̃νj1

](0)[
c†πj2 ⊗ c̃πj2

](0)
= −k0

2

∑
j1,j2

√
(2j1 + 1) (2j2 + 1)

[
c†νj1 ⊗ c̃νj1

](0)[
c†πj2 ⊗ c̃πj2

](0)
= −k0

2
NνNπ, (B.4.13)

where

Nτ ≡
∑
τjm

c†τjmcτjm = −
∑
j

√
2j + 1

[
c†τj ⊗ c̃τj

](0)
0

(B.4.14)

is the number operator.

The second and the third terms are combined as

Hτ=0(23)

=
k0
2

∑
j1≤j2

1

1 + δj1j2
(−1)j1+j2

∑
K

(−1)K
√

2K + 1

×

[[[
c†νj1 ⊗ c̃νj2

](K)

⊗
[
c†πj2 ⊗ c̃πj1

](K)
](0)
0

+

[[
c†νj2 ⊗ c̃νj1

](K)

⊗
[
c†πj1 ⊗ c̃πj2

](K)
](0)
0

]

=
k0
2

∑
j1,j2

(−1)j1+j2
∑
K

(−1)K
√

2K + 1

[[
c†νj1 ⊗ c̃νj2

](K)

⊗
[
c†πj2 ⊗ c̃πj1

](K)
](0)
0

. (B.4.15)

The reduced matrix elements according to many-body bases

|(JνJπ) JM⟩ =
∑

MνMπ

⟨Jν Mν JπMπ| J M⟩ |JνMν⟩ |JπMπ⟩ , (B.4.16)

are given by

⟨J ||Hτ=0(23)|| J⟩

=
k0
2

∑
j1,j2

(−1)j1+j2
∑
K

(−1)K
√

2K + 1

⟨
J

∣∣∣∣∣
∣∣∣∣∣
[[
c†νj1 ⊗ c̃νj2

](K)

⊗
[
c†πj2 ⊗ c̃πj1

](K)
](0)∣∣∣∣∣

∣∣∣∣∣ J
⟩

=
k0
2

∑
j1,j2

(−1)j1+j2
∑
K

(−1)K
√

2K + 1 (2J + 1)


Jνf Jπf J

Jνi Jπi J

K K 0


×
⟨
JνfMνf

∣∣∣∣∣∣∣∣[c†νj1 ⊗ c̃νj2

](K)
∣∣∣∣∣∣∣∣ JνiMνi

⟩⟨
JπfMπf

∣∣∣∣∣∣∣∣[c†πj2 ⊗ c̃πj1

](K)
∣∣∣∣∣∣∣∣ JπiMπi

⟩
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=
k0
2

∑
j1,j2

(−1)j1+j2
∑
K

(−1)K
√

(2K + 1) (2J + 1)
(−1)Jνi+Jπf+J+K√
(2J + 1) (2K + 1)

{
Jνf Jπf J

Jπi Jνi K

}

×
⟨
JνfMνf

∣∣∣∣∣∣∣∣[c†νj1 ⊗ c̃νj2

](K)
∣∣∣∣∣∣∣∣ JνiMνi

⟩⟨
JπfMπf

∣∣∣∣∣∣∣∣[c†πj2 ⊗ c̃πj1

](K)
∣∣∣∣∣∣∣∣ JπiMπi

⟩
=
k0
2

∑
j1,j2

(−1)j1+j2
∑
K

√
2J + 1(−1)Jνi+Jπf+J

{
Jνf Jπf J

Jπi Jνi K

}

×
⟨
JνfMνf

∣∣∣∣∣∣∣∣[c†νj1 ⊗ c̃νj2

](K)
∣∣∣∣∣∣∣∣ JνiMνi

⟩
×
⟨
JπfMπf

∣∣∣∣∣∣∣∣[c†πj2 ⊗ c̃πj1

](K)
∣∣∣∣∣∣∣∣ JπiMπi

⟩
. (B.4.17)

B.4.3 Isospin

We evaluate the expectation value of isospin

T 2 = T+T− + T 2
z − Tz, (B.4.18)

where T± are ladder operators expressed in second quantized form as

T+ ≡
∑
jm

c†νjmcπjm =
∑
jm

(−1)j+mc†νjmc̃πj−m

=
∑
jm

(−1)j+m(−1)−j+m
√

2j + 1 ⟨j m j −m| 0 0⟩ c†νjmc̃πj−m

= −
∑
j

√
2j + 1

[
c†νj ⊗ c̃πj

](0)
0
, (B.4.19)

T− ≡
∑
jm

c†πjmcνjm = −
∑
j

√
2j + 1

[
c†πj ⊗ c̃νj

](0)
0
. (B.4.20)

First the uncontracted term is given as

T+T− =

−
∑
j

√
2j + 1

[
c†νj ⊗ c̃πj

](0)
0

−
∑
j′

√
2j′ + 1

[
c†πj′ ⊗ c̃νj′

](0)
0


=
∑
jj′

√
2j + 1

√
2j′ + 1

[[
c†νj ⊗ c̃πj

](0)
⊗
[
c†πj′ ⊗ c̃νj′

](0)](0)
0

=
∑
jj′

√
2j + 1

√
2j′ + 1

[[
c†νj ⊗ c̃πj

](0)
⊗
[
c̃νj′ ⊗ c†πj′

](0)](0)
0

= −
∑
jj′

√
2j + 1

√
2j′ + 1

∑
K

(2K + 1)


j j 0

j′ j′ 0

K K 0


×
[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c̃πj ⊗ c†πj′

](K)
](0)
0
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= −
∑
jj′

√
2j + 1

√
2j′ + 1

∑
K

(2K + 1)
(−1)j+j′+K

√
2K + 1

{
j j 0

j′ j′ K

}

×
[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c̃πj ⊗ c†πj′

](K)
](0)
0

= −
∑
jj′

√
2j + 1

√
2j′ + 1

∑
K

(2K + 1)
(−1)j+j′+K

√
2K + 1

(−1)j+j′+K√
(2j + 1) (2j′ + 1)

×
[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c̃πj ⊗ c†πj′

](K)
](0)
0

= −
∑
jj′

∑
K

√
2K + 1

[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c̃πj ⊗ c†πj′

](K)
](0)
0

=
∑
jj′

(−1)j+j′
∑
K

√
2K + 1(−1)K

[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c†πj′ ⊗ c̃πj

](K)
](0)
0

+
∑
jj′

(−1)j+j′
√

2j + 1δj,j′
[
c†νj ⊗ c̃νj′

](0)
0

=
∑
jj′

(−1)j+j′
∑
K

(−1)K
√

2K + 1

[[
c†νj ⊗ c̃νj′

](K)

⊗
[
c†πj′ ⊗ c̃πj

](K)
](0)
0

+Nν . (B.4.21)

The first term is same as a part of the isoscalar pairing interaction Hτ=0(23) except for the factor.

B.4.4 Tensor interaction

Under the rotational invariance and the parity invariance, possible two-body interactions except

of central forces are the spin-spin interactions proportional to s1 ·s2, and the tensor interactions

defined as[
s
(1)
1 ⊗ s

(1)
2

](2)
·
[
r(1) ⊗ r(1)

](2)
= (s1 ·r)(s2 ·r) − 1

3
(s1 ·s2)r2, (B.4.22)

where s1 and s2 indicate the spin matrices, and r = r1−r2 is the relative coordinate of two nucleons.

The right expression can be deduced as follows. Starting from the the first term of the right-hand,[[
s
(1)
1 ⊗ r(1)

](0)
⊗
[
s
(1)
2 ⊗ r(1)

](0)](0)
0

=
∑
k=0,2

(2k + 1)


1 1 0

1 1 0

k k 0


[[
s
(1)
1 ⊗ s

(1)
2

](k)
⊗
[
r(1) ⊗ r(1)

](k)](0)
0

=
∑
k=0,2

√
2k + 1

{
1 1 0

1 1 k

}[[
s
(1)
1 ⊗ s

(1)
2

](k)
⊗
[
r(1) ⊗ r(1)

](k)](0)
0

=
∑
k=0,2

√
2k + 1

3

[[
s
(1)
1 ⊗ s

(1)
2

](k)
⊗
[
r(1) ⊗ r(1)

](k)](0)
0
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=
1

3

[[
s
(1)
1 ⊗ s

(1)
2

](0)
⊗
[
r(1) ⊗ r(1)

](0)](0)
0

+

√
5

3

[[
s
(1)
1 ⊗ s

(1)
2

](2)
⊗
[
r(1) ⊗ r(1)

](2)](0)
0

=
1

9
(s1 · s2) r2 +

1

3

[
s
(1)
1 ⊗ s

(1)
2

](2)
·
[
r(1) ⊗ r(1)

](2)
. (B.4.23)

Here,
[
r(1) ⊗ r(1)

](1)
= 0 is used to abandon the k = 1 term in the first equality. This relation for

the rank-1 coupling of the same two tensor operators is deduced from the CG-coefficient properties

of

⟨1m1 1m2| 1M⟩ = −⟨1m2 1m1| 1M⟩ ,
⟨1m1 1m2| 1M⟩ = −⟨1 −m1 1 −m2| 1 −M⟩ . (B.4.24)

The second term in the right-hand is given as

[
s
(1)
1 ⊗ s

(1)
2

](2)
·
[
r(1) ⊗ r(1)

](2)
= 3

[[
s
(1)
1 ⊗ r(1)

](0)
⊗
[
s
(1)
2 ⊗ r(1)

](0)](0)
0

− 1

3
(s1 · s2) r2

= (s1 · r) (s2 · r) − 1

3
(s1 · s2) r2. (B.4.25)

B.5 Particle-Hole transformation for P+QQ interaction

B.5.1 Particle-Hole transformation

Here we consider n-particle states |n-particles⟩ in a single j-shell. The particle-hole transformation

operator Γ is defined by

Γ |n-particles⟩ = |n′-holes⟩ , (B.5.1)

where n′ = 2j + 1 − n is the number of holes in the same shell. Γ is an unitary operator, which

satisfies

Γ†Γ = ΓΓ† = 1, (B.5.2)

since Γ transforms one complete orthonormal set of |n-particles⟩ into another complete orthonormal

set of |n-particles⟩.
We define the hole operator as

b†jm ≡ −ΓãjmΓ†, (B.5.3)

which is accompanied with one-hole states

|jm⟩h ≡ b†jm|0⟩h. (B.5.4)

The hole annihilation operator can be constructed by the same expression as the particle’s as

b̃jm ≡ (−1)j−mbj−m = −(−1)2jΓa†jmΓ† = Γa†jmΓ†. (B.5.5)
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The hole vacuum state is defined by

|0⟩h ≡ Γ|full shell⟩p, (B.5.6)

where

|full shell⟩p =
1

Ω!
(S+)

Ω |0⟩ (B.5.7)

is the normalized full occupied state with J = 0. Here

S+ =
∑
m>0

(−1)j−ma†jma
†
j−m (B.5.8)

is the S-pair creation operator and Ω = j+ 1/2 is the degeneracy. It can be immediately shown that

b̃jm|0⟩h = 0. (B.5.9)

Thus it is revealed that the hole operators b†jm and b̃jm are ITOs. These states are related as follows:

0 = Γa†jm|full shell⟩p = Γa†jmΓ†Γ|full shell⟩p = b̃jm|0⟩h (B.5.10)

0 = Γb†jm|full shell⟩h = Γb†jm (B.5.11)

Let us consider the fermion characters. The hole operator is defined by c̃jm = (−1)j−mcj−m. The

anti-commutation relations are given by{
c̃jm, c

†
j′m′

}
= (−1)j−mδj,j′δm,−m′ . (B.5.12)

The contraction is then[
c̃jm ⊗ c†j′m′

](J)
M

=
∑
mm′

⟨j m j′m′| J M⟩ c̃jmc†j′m′

=
∑
m

⟨j m j −m| J M⟩ (−1)j−mδj,j′ . (B.5.13)

For any two-body interactions, J = 0, then[
c̃jm ⊗ c†j′m′

](0)
0

=
∑
m

⟨j m j −m| 0 0⟩ (−1)j−mδj,j′ =
√

2j + 1δj,j′ . (B.5.14)

B.5.2 Pairing Interactions

The pairing interactions are given by

H
(pair)
µ,J =

∑
j1j2j3j4

Gµ(j1j2, j3j4; J)
[
c†τj1 ⊗ c†τ ′j2

](J)
·
[
c̃τj3 ⊗ c̃τ ′j4

](J)
= (−1)−J

√
2J + 1

∑
j1j2j3j4

Gµ(j1j2, j3j4; J)

[[
c†τj1 ⊗ c†τ ′j2

](J)
⊗
[
c̃τj3 ⊗ c̃τ ′j4

](J)](0)
.

(B.5.15)
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Applying the particle-hole translation b†jm = −ãjm, b̃jm = a†jm,

H
(pair)
µ,J =

∑
j1j2j3j4

Gµ(j1j2, j3j4; J)
[
b†τj1 ⊗ b†τ ′j2

](J)
·
[
b̃τj3 ⊗ b̃τ ′j4

](J)
=

∑
j1j2j3j4

Gµ(j1j2, j3j4; J)
[
ãτj1 ⊗ ãτ ′j2

](J)
·
[
a†τj3 ⊗ a†τ ′j4

](J)
. (B.5.16)

First we consider the two-body interactions in the normal ordered form, namely, uncontracted term

in Eq. (B.5.16). That term is

H
(pair)
µ,J (hole; uncontracted) =

∑
j1j2j3j4

Gµ(j1j2, j3j4; J)
[
a†τj3 ⊗ a†τ ′j4

](J)
·
[
ãτj1 ⊗ ãτ ′j2

](J)
=

∑
j1j2j3j4

Gµ(j1j2, j3j4; J)
[
a†τj1 ⊗ a†τ ′j2

](J)
·
[
ãτj3 ⊗ ãτ ′j4

](J)
,

(B.5.17)

Here Gµ(j3j4, j1j2; J) = Gµ(j1j2, j3j4; J) readily obtained from the definition is used. This is the

same form as in the particle picture. Thus in the following we concentrate on one-body and constant

parts which are arisen by the particle-hole transformation.

In order to form the one-body part, we first consider the contraction of a†τj1 and ãτj3 . In this case

a†τ ′j2
and ãτj3 can be anti-commuted with each other. Thus this term can be recoupled as follows

[
ãτj1 ⊗ ãτ ′j2

](J)
·
[
a†τj3 ⊗ a†τ ′j4

](J)
= − (2J + 1)


j1 j2 J

j3 j4 J

0 0 0


[[
ãτj1 ⊗ a†τj3

](0)
⊗
[
ãτ ′j2 ⊗ a†τ ′j4

](0)](0)
δj1j3δj2j4

= − (2J + 1)
(−1)j2+j1+J

√
2J + 1

{
j1 j2 J

j2 j1 0

}

×
[[
ãτj1 ⊗ a†τj1

](0)
⊗
[
ãτ ′j2 ⊗ a†τ ′j2

](0)](0)
δj1j3δj2j4

= −
√

2J + 1(−1)j2+j1+J (−1)j1+j2+J√
(2j1 + 1)(2j2 + 1)

×
[[
ãτj1 ⊗ a†τj1

](0)
⊗
[
ãτ ′j2 ⊗ a†τ ′j2

](0)](0)
δj1j3δj2j4

=
c
−

√
2J + 1

(2j1 + 1)(2j2 + 1)

√
2j1 + 1

[
ãτ ′j2 ⊗ a†τ ′j2

](0)
δj1j3δj2j4

=

√
2J + 1

2j2 + 1
δj1j3δj2j4Nτ ′j2 , (B.5.18)

where =
c

means taking a contraction.
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The other contractions are given by the same way as

[
ãτj1 ⊗ ãτ ′j2

](J)
·
[
a†τj3 ⊗ a†τ ′j4

](J)
= −(−1)j3+j4−J

[
[ãτj1 ⊗ ãτ ′j2 ]

(J) ⊗
[
a†τ ′j4

⊗ a†τj3

](J)](0)

= (−1)j3+j4−J(2J + 1)


j1 j2 J

j4 j3 J

0 0 0


×
[[
ãτj1 ⊗ a†τ ′j4

](0)
⊗
[
ãτ ′j2 ⊗ a†τj3

](0)](0)
δj1j4δj2j3

= (−1)j1+j2−J(2J + 1)
(−1)j1+j2+J

√
2J + 1

{
j1 j2 J

j2 j1 0

}

×
[[
ãτj1 ⊗ a†τ ′j1

](0)
⊗
[
ãτ ′j2 ⊗ a†τj2

](0)](0)
δj1j4δj2j3

=
√

2J + 1
(−1)j1+j2+J√

(2j1 + 1)(2j2 + 1)

[[
ãτj1 ⊗ a†τ ′j1

](0)
⊗
[
ãτ ′j2 ⊗ a†τj2

](0)](0)
δj1j4δj2j3

=
c

(−1)j1+j2+J

√
2J + 1

(2j1 + 1)(2j2 + 1)

√
2j1 + 1δττ ′

[
ãτj2 ⊗ a†τj2

](0)
δj1j4δj2j3

= −(−1)j1+j2+J

√
2J + 1

2j2 + 1
Nτj2δττ ′δj1j4δj2j3 , (B.5.19)

[
ãτj1 ⊗ ãτ ′j2

](J)
·
[
a†τj3 ⊗ a†τ ′j4

](J)
=
c

(−1)j1+j2+J

√
2J + 1

(2j1 + 1)(2j2 + 1)

√
2j2 + 1δττ ′

[
ãτj1 ⊗ a†τj1

](0)
δj1j4δj2j3

= −(−1)j1+j2+J

√
2J + 1

2j1 + 1
Nτj1δττ ′δj1j4δj2j3 , (B.5.20)

[
ãτj1 ⊗ ãτ ′j2

](J)
·
[
a†τj3 ⊗ a†τ ′j4

](J)
=
c
−

√
2J + 1

(2j1 + 1)(2j2 + 1)

√
2j2 + 1

[
ãτj1 ⊗ a†τj1

](0)
δj1j3δj2j4

=

√
2J + 1

2j1 + 1
Nτj1δj1j3δj2j4 . (B.5.21)

For the monopole pairing interaction, J = 0 and j1 = j2, between like particles τ = τ ′, there are

no contributions to the one-body Hamiltonian.

For the quadrupole pairing interaction, J = 2, between like particles τ = τ ′, we take couplings as

G(j1j2, j3j4; 2) = Qj1,j2Qj3,j4 . (B.5.22)
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Thus we get

√
5
∑

j1j2j3j4

Qj1,j2Qj3,j4

×

[ √
5

2j2 + 1
Nτj2δj1j3δj2j4 − (−1)j1+j2

√
5

2j2 + 1
Nτj2δj1j4δj2j3

−(−1)j1+j2

√
5

2j1 + 1
Nτj1δj1j4δj2j3 +

√
5

2j1 + 1
Nτj1δj1j3δj2j4

]

= 5
∑
j1j2

Nτj2

2j2 + 1
(Qj1,j2)

2 {
1 − (−1)j1+j2(−1)j2−j1

}
+ 5

∑
j1j2

Nτj1

2j1 + 1
(Qj1,j2)

2 {
1 − (−1)j1+j2(−1)j2−j1

}
= 10

∑
j1j2

(Qj1,j2)
2

[
Nτj1

2j1 + 1
+

Nτj2

2j2 + 1

]
= 20

∑
j1j2

(Qj1,j2)
2 Nτj1

2j1 + 1
. (B.5.23)

For higher order multipole pairing interactions, J > 2, between like particles τ = τ ′, we retain the

property of pJ(j1j2) = pJ(j2j1). Thus we have a contribution

4 (2J + 1)
∑
j1j2

p2J (j1j2)
Nτj1

2j1 + 1
. (B.5.24)

B.5.3 Quadrupole Quadrupole Interaction

The QQ interactions for holes are rewritten by the particle-hole translation as

H
(QQ)
ττ ′ (hole) =

√
5
∑

j1j2j3j4

Qj1,j2Qj3,j4N

[[[
b†τj1 ⊗ b̃τj2

](2)
⊗
[
b†τ ′j3

⊗ b̃τ ′j4

](2)](0)]

= −5
∑

j1j2j3j4

Qj1,j2Qj3,j4

∑
K

√
2K + 1(−1)j3+j4

{
j1 j2 2

j4 j3 K

}

×
[[
b†τj1 ⊗ b†τ ′j3

](K)

⊗
[
b̃τ ′j4 ⊗ b̃τj2

](K)
](0)

= −5
∑

j1j2j3j4

Qj1,j2Qj3,j4

∑
K

√
2K + 1(−1)j3+j4

{
j1 j2 2

j4 j3 K

}

×
[
[ãτj1 ⊗ ãτ ′j3 ]

(K) ⊗
[
a†τ ′j4

⊗ a†τj2

](K)
](0)

= −5
∑

j1j4j2j3

Qj1,j4Qj2,j3

∑
K

√
2K + 1(−1)j2+j3

{
j1 j4 2

j3 j2 K

}

×
[
[ãτj1 ⊗ ãτ ′j2 ]

(K) ⊗
[
a†τ ′j3

⊗ a†τj4

](K)
](0)

. (B.5.25)
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We should consider two contracted terms which may be coupled with J = 0, given as

H
(QQ)
ττ ′ (hole; contraction of j1 and j3)

= 5
∑

j1j2j3j4

Qj1,j4Qj2,j3

∑
K

√
2K + 1(−1)j2+j3

{
j1 j4 2

j3 j2 K

}

× (2K + 1)


j1 j2 K

j3 j4 K

0 0 0


×
[[
ãτj1 ⊗ a†τ ′j3

](0)
⊗
[
ãτ ′j2 ⊗ a†τj4

](0)](0)
δj1j3δj2j4

= 5
∑
j1j2

Qj1,j2Qj2,j1

∑
K

√
2K + 1(−1)j2+j1

{
j1 j2 2

j1 j2 K

}

× (2K + 1)
(−1)K+j2+j1

√
2K + 1

{
j1 j2 K

j2 j1 0

}

×
[[
ãτj1 ⊗ a†τ ′j1

](0)
⊗
[
ãτ ′j2 ⊗ a†τj2

](0)](0)
= 5

∑
j1j2

Qj1,j2Qj2,j1

∑
K

(−1)K (2K + 1)

{
j1 j2 2

j1 j2 K

}{
j1 j2 K

j2 j1 0

}

×
[[
ãτj1 ⊗ a†τ ′j1

](0)
⊗
[
ãτ ′j2 ⊗ a†τj2

](0)](0)
= 5

∑
j1j2

Qj1,j2Qj2,j1

{
j1 j1 0

j2 j2 2

}[[
ãτj1 ⊗ a†τ ′j1

](0)
⊗
[
ãτ ′j2 ⊗ a†τj2

](0)](0)
=
c

5
∑
j1j2

Qj1,j2Qj2,j1

(−1)j1+j2√
(2j1 + 1)(2j2 + 1)

√
2j1 + 1δττ ′

[
ãτj2 ⊗ a†τj2

](0)
= −5

∑
j1j2

Qj1,j2Qj2,j1

(−1)j1+j2

2j2 + 1
δττ ′Nτj2

= 5
∑
j1j2

(Qj1,j2)
2 1

2j2 + 1
δττ ′Nτj2 , (B.5.26)

and

H
(QQ)
ττ ′ (hole; contraction of j2 and j4)

= 5
∑
j1j2

Qj1,j2Qj2,j1

{
j1 j1 0

j2 j2 2

}[[
ãτj1 ⊗ a†τ ′j1

](0)
⊗
[
ãτ ′j2 ⊗ a†τj2

](0)](0)
=
c

5
∑
j1j2

Qj1,j2Qj2,j1

(−1)j1+j2√
(2j1 + 1)(2j2 + 1)

√
2j2 + 1δττ ′

[
ãτj1 ⊗ a†τj1

](0)
= −5

∑
j1j2

Qj1,j2Qj2,j1

(−1)j1+j2

2j1 + 1
δττ ′Nτj1
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= 5
∑
j1j2

(Qj1,j2)
2 1

2j1 + 1
δττ ′Nτj1 . (B.5.27)

Then the contracted terms are written by using this relation as

5
∑
j1j2

(Qj1,j2)
2

(
1

2j1 + 1
Nτj1 +

1

2j2 + 1
Nτj2

)
δττ ′

= 10
∑
j1j2

(Qj1,j2)
2 1

2j1 + 1
Nτj1δττ ′ . (B.5.28)

B.6 Two-body matrix elements

B.6.1 Radial eigenfunctions in the spherically symmetric harmonic oscillator

The isotropic harmonic oscillator in the three-dimensional space is described with a potential of

V (r) =
1

2
mω2r2. (B.6.1)

In general, the wavefunctions decomposed as ψ(r) = Rl(r)Ylm(θ, ϕ) in a spherically symmetric

potential V (r) are given by

− 1

2m

d2χl(r)

dr2
+

[
V (r) +

l(l + 1)

2mr2

]
χl(r) = Eχl(r), (B.6.2)

where the radial part is defined as

Rl(r) =
χl(r)

r
. (B.6.3)

The angular components Ylm(θ, ϕ) are the spherical harmonics. For the harmonic oscillator potential,

in the limit of r → ∞, the centrifugal potential is negligible and the radial part is simply given as

χl(r) ∼ e−
1
2mωr2 , r → ∞. (B.6.4)

In the other limit of r → 0, it is found that

χl(r) ∼ rl+1, r → 0. (B.6.5)

Thus, an ansatz for the radial part defined as

χl(r) = rl+1e−
1
2mωr2f(r) (B.6.6)

is considered.

The radial part can be regarded as a function of z = r2, and the Schrödinger equation is then

given as

−2z
d2f(z)

dz2
+ {2mωz − (2l + 3)} df(z)

dz
+

2l + 3

2
mωf(z) = mEf(z). (B.6.7)
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The series expansion of f(z), which is explicitly given as

f(z) =

∞∑
k=0

akz
k,

df(z)

dz
=

∞∑
k=0

kakz
k−1 =

∞∑
k=0

(k + 1)ak+1z
k,

d2f(z)

dz2
=

∞∑
k=0

k(k + 1)ak+1z
k−1 =

∞∑
k=0

(k + 1)(k + 2)ak+2z
k, (B.6.8)

leads to the equations for the coefficients ak as

∞∑
k=0

zk
[
−2k(k + 1)ak+1 + 2mωkak − (2l + 3)(k + 1)ak+1 +

2l + 3

2
mωak

]
= mE

∞∑
k=0

akz
k,

(B.6.9)

and thus recursion relations as

ak+1

ak
=

E −
(
2k + 2l+3

2

)
ω

(2k + 2l + 3)(k + 1)
m (B.6.10)

are given. The series of f(z) should be zero at some k = n, so that the series will be converged in

the far distance. This requirement is realized if the eigenvalues are given as

E =
(
2n+ l + 3

2

)
ω. (B.6.11)

In order to get an explicit form of the eigenfunctions, the Schrödinger equation (Eq. (B.6.7)) is

rewritten by x = mωz = mωr2 as[
x
d2

dx2
+

(
2l + 3

2
− x

)
d

dx
+ n

]
f(x) = 0. (B.6.12)

Comparing this with the Sonine’s differential equation, it is found that f(x) is given with the Sonine

polynomial as f(x) ∝ Sn,l+1/2(x). Thus, the radial function is given as

Rnl(r) = Nx
l
2 e−

x
2 Sn,l+1/2(x), (B.6.13)

with normalization constant N . Using the orthogonality of the Sonine polynomials,∫ ∞

0

Rnl(r)Rn′l(r)r
2dr = |N |2

∫
xle−xSn,l+1/2(x)Sn′,l+1/2(x) × 1

2(mω)3/2
x
1
2 dx

=
|N |2

2(mω)3/2
Γ(n+ l + 3

2 )

n!
δn′n, (B.6.14)

and thus

Rnl(r) = (mω)
l
2+

3
4

√
2n!

Γ(n+ l + 3
2 )
rle−

1
2mωr2Sn,l+1/2(x)

= rle−
1
2mωr2

n∑
k=0

anlkr
2k, (B.6.15)
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where

anlk = (mω)
l
2+k+

3
4

√
2n!

Γ(n+ l + 3
2 )

(−1)kΓ(n+ l + 3
2 )

k!(n− k)!Γ(l + k + 3
2 )

= (mω)
l
2+k+

3
4

(−1)k

k!(n− k)!

√
2n!2n+l+1

(2n+ 2l + 1)!!
√
π

(2n+ 2l + 1)!!

(2l + 2k + 1)!!
2k−n

= (mω)
l
2+k+

3
4

(−1)k2k+1

k!(n− k)!

1

(2l + 2k + 1)!!

√
n!(2n+ 2l + 1)!!

2n−l
√
π

(B.6.16)

is obtained. A system of units in which m = ω = 1 is used below.

This phase convention of anlk satisfies

lim
r→0

Rnl (r) = lim
r→0

rlanl,k=0 > 0. (B.6.17)

0 ≤ k ≤ n. Another convension is given by multiplying (−1)n as

R′
nl (r) ≡ rle−

1
2 r

2
n∑

k=0

a′nlkr
2k,

a′nlk =
(−1)n+k

k! (n− k)!

2k+1

(2k + 2l + 1)!!

√
n! (2n+ 2l + 1)!!

2n−l
√
π

., (B.6.18)

so that

lim
r→∞

R′
nl (r) = lim

r→∞
rl+2ne−

r2

2 anl,k=n > 0. (B.6.19)

B.6.2 Matrix elements of r

In order to evaluate the matrix elements of r,

an,l+1,k =
(−1)k

k! (n− k)!

2k+1

(2k + 2l + 3)!!

√
n! (2n+ 2l + 3)!!

2n−l−1
√
π

=

√
2 (2n+ 2l + 3)

2k + 2l + 3
anlk, (B.6.20)

an−1,l+1,k =
(−1)k

k! (n− k − 1)!

2k+1

(2k + 2l + 3)!!

√
(n− 1)! (2n+ 2l + 1)!!

2n−l−2
√
π

=
n− k

2k + 2l + 3

2√
n
anlk (k < n) (B.6.21)
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are utilized. Here,

Rn,l+1 (r) = rl+1e−
1
2 r

2
n∑

k=0

an,l+1,kr
2k

= rl+1e−
1
2 r

2
n∑

k=0

√
2 (2n+ 2l + 3)

2k + 2l + 3
anlkr

2k,

Rn−1,l+1 (r) = rl+1e−
1
2 r

2
n−1∑
k=0

an−1,l+1,kr
2k

= rl+1e−
1
2 r

2
n∑

k=0

n− k

2k + 2l + 3

2√
n
anlkr

2k. (B.6.22)

Thus

rRnl(r) = rl+1e−
1
2 r

2
n∑

k=0

anlkr
2k =

√
n+ l +

3

2
Rn,l+1 (r) −

√
nRn−1,l+1 (r) (B.6.23)

is given for n ≥ 1.

On the other hand,

an+1,l−1,k+1 =
(−1)k+12k+2

(k + 1)!(n− k)!

1

(2l + 2k + 1)!!

√
(n+ 1)!(2n+ 2l + 1)!!

2n−l+2
√
π

= −
√
n+ 1

k + 1
anlk, (B.6.24)

an,l−1,k+1 =
(−1)k+12k+2

(k + 1)!(n− k − 1)!

1

(2l + 2k + 1)!!

√
n!(2n+ 2l − 1)!!

2n−l+1
√
π

= −2(n− k)

k + 1

1√
2(2n+ 2l + 1)

anlk (B.6.25)

lead to

Rn+1,l−1(r) = rl−1e−
1
2mωr2

n+1∑
k=0

an+1,l−1,kr
2k

= rl+1e−
1
2mωr2

n+1∑
k=0

an+1,l−1,kr
2(k−1)

= rl+1e−
1
2mωr2

n∑
k=0

an+1,l−1,k+1r
2k

= −rl+1e−
1
2mωr2

n∑
k=0

√
n+ 1

k + 1
anlkr

2k, (B.6.26)

Rn,l−1(r) = rl−1e−
1
2mωr2

n∑
k=0

an,l−1,kr
2k

= rl+1e−
1
2mωr2

n∑
k=0

an,l−1,kr
2(k−1)
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= rl+1e−
1
2mωr2

n−1∑
k=−1

an,l−1,k+1r
2k

= −rl+1e−
1
2mωr2

n∑
k=−1

2(n− k)

k + 1

1√
2(2n+ 2l + 1)

anlkr
2k

= −rl+1e−
1
2mωr2

n∑
k=0

2(n− k)

k + 1

1√
2(2n+ 2l + 1)

anlkr
2k, (B.6.27)

and thus, for l ≥ 1,

rRnl(r) = rl+1e−
1
2 r

2
n∑

k=0

anlkr
2k = −

√
n+ 1Rn+1,l−1(r) +

√
n+ l +

1

2
Rn,l−1(r). (B.6.28)

In summary, using the recursion relations as

rRnl(r) =

√
n+ l +

3

2
Rn,l+1 (r) −

√
nRn−1,l+1 (r) , n ≥ 1, (B.6.29)

rRnl(r) = −
√
n+ 1Rn+1,l−1(r) +

√
n+ l +

1

2
Rn,l−1(r), l ≥ 1, (B.6.30)

the matrix elements of r are given as

⟨n, l + 1|r|n, l⟩ =

√
n+ l +

3

2
, ⟨n− 1, l + 1|r|n, l⟩ = −

√
n, (B.6.31)

⟨n, l − 1|r|n, l⟩ =

√
n+ l +

1

2
, ⟨n+ 1, l − 1|r|n, l⟩ = −

√
n+ 1. (B.6.32)

B.6.3 Matrix elements of rl

The recursion relations in Eqs. (B.6.29) and (B.6.30) are utilized to calculate the matrix elements

of higher order factorials of r.

For n ≥ 2, using Eq. (B.6.29),

r2Rnl(r) =

√(
n+ l +

3

2

)(
n+ l +

5

2

)
Rn,l+2(r)

− 2

√
n

(
n+ l +

3

2

)
Rn−1,l+2(r)

+
√
n(n− 1)Rn−2,l+2(r). (B.6.33)

For n ≥ 1, using Eqs. (B.6.29) and (B.6.30),

r2Rnl(r) = −

√
(n+ 1)

(
n+ l +

3

2

)
Rn+1,l(r)

+

(
2n+ l +

3

2

)
Rnl(r)

−

√
n

(
n+ l +

1

2

)
Rn−1,l(r). (B.6.34)
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For l ≥ 2, using Eq. (B.6.30),

r2Rnl(r) =
√

(n+ 1)(n+ 2)Rn+2,l−2(r)

− 2

√
(n+ 1)

(
n+ l +

1

2

)
Rn+1,l−2(r)

+

√(
n+ l − 1

2

)(
n+ l +

1

2

)
Rn,l−2(r). (B.6.35)

The matrix elements of
⟨
n′l′
∣∣r2∣∣nl⟩ are given in Table B.1.

Table B.1: Two-body matrix elements of
⟨
n′l′
∣∣r2∣∣nl⟩ are given.

l′ = l + 2 l l − 2

n′ = n+ 2
√

(n+ 1)(n+ 2)

n+ 1 −
√

(n+ 1)
(
n+ l + 3

2

)
−2
√

(n+ 1)
(
n+ l + 1

2

)
n

√(
n+ l + 3

2

) (
n+ l + 5

2

) (
2n+ l + 3

2

) √(
n+ l − 1

2

) (
n+ l + 1

2

)
n− 1 −2

√
n
(
n+ l + 3

2

)
−
√
n
(
n+ l + 1

2

)
n− 2

√
n(n− 1)

The same procedures are followed to get matrix elements of r3. For n ≥ 3, applying a recursion

relation in Eq. (B.6.29) to Eq. (B.6.33),

r3Rnl(r) =

√(
n+ l +

3

2

)(
n+ l +

5

2

)
rRn,l+2(r)

− 2

√
n

(
n+ l +

3

2

)
rRn−1,l+2(r)

+
√
n(n− 1)rRn−2,l+2(r)

=

√(
n+ l +

3

2

)(
n+ l +

5

2

)(
n+ l +

7

2

)
Rn,l+3(r)

− 3

√
n

(
n+ l +

3

2

)(
n+ l +

5

2

)
Rn−1,l+3(r)

+ 3

√
n(n− 1)

(
n+ l +

3

2

)
Rn−2,l+3(r)

−
√
n(n− 1)(n− 2)Rn−3,l+3(r). (B.6.36)

For n ≥ 2, applying a recursion relation in Eq. (B.6.30) to Eq. (B.6.33),

r3Rnl(r) =

√(
n+ l +

3

2

)(
n+ l +

5

2

)
rRn,l+2(r)
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− 2

√
n

(
n+ l +

3

2

)
rRn−1,l+2(r)

+
√
n(n− 1)rRn−2,l+2(r)

= −

√
(n+ 1)

(
n+ l +

3

2

)(
n+ l +

5

2

)
Rn+1,l+1(r)

+

√
n+ l +

3

2

(
3n+ l +

5

2

)
Rn,l+1(r)

−
√
n(3n+ 2l + 2)Rn−1,l+1(r)

+

√
n(n− 1)

(
n+ l +

1

2

)
Rn−2,l+1(r). (B.6.37)

For n ≥ 3, applying a recursion relation in Eq. (B.6.29) to Eq. (B.6.34),

r3Rnl(r) = −

√
(n+ 1)

(
n+ l +

3

2

)
rRn+1,l(r)

+

(
2n+ l +

3

2

)
rRnl(r)

−

√
n

(
n+ l +

1

2

)
rRn−1,l(r)

= −

√
(n+ 1)

(
n+ l +

3

2

)(
n+ l +

5

2

)
Rn+1,l+1(r)

+

√
n+ l +

3

2

(
3n+ l +

5

2

)
Rn,l+1(r)

−
√
n(3n+ 2l + 2)Rn−1,l+1(r)

+

√
n(n− 1)

(
n+ l +

1

2

)
Rn−2,l+1(r). (B.6.38)

This relation is identical to Eq. (B.6.37). For n ≥ 2, applying a recursion relation in Eq. (B.6.30) to

Eq. (B.6.34),

r3Rnl(r) = −

√
(n+ 1)

(
n+ l +

3

2

)
rRn+1,l(r)

+

(
2n+ l +

3

2

)
rRnl(r)

−

√
n

(
n+ l +

1

2

)
rRn−1,l(r)

=

√
(n+ 1)(n+ 2)

(
n+ l +

3

2

)
Rn+2,l−1(r)

−
√
n+ 1(3n+ 2l + 3)Rn+1,l−1(r)

+

√
n+ l +

1

2

(
3n+ l +

3

2

)
Rn,l−1(r)
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−

√
n

(
n+ l − 1

2

)(
n+ l +

1

2

)
Rn−1,l−1(r). (B.6.39)

For n ≥ 3, applying a recursion relation in Eq. (B.6.29) to Eq. (B.6.35),

r3Rnl(r) =
√

(n+ 1)(n+ 2)rRn+2,l−2(r)

− 2

√
(n+ 1)

(
n+ l +

1

2

)
rRn+1,l−2(r)

+

√(
n+ l − 1

2

)(
n+ l +

1

2

)
rRn,l−2(r)

=

√
(n+ 1)(n+ 2)

(
n+ l +

3

2

)
Rn+2,l−1(r)

−
√
n+ 1(3n+ 2l + 3)Rn+1,l−1(r)

+

√
n+ l +

1

2

(
3n+ l +

3

2

)
Rn,l−1(r)

−

√
n

(
n+ l − 1

2

)(
n+ l +

1

2

)
Rn−1,l−1(r). (B.6.40)

This is identical to Eq. (B.6.39). For n ≥ 2, applying a recursion relation in Eq. (B.6.30) to

Eq. (B.6.35),

r3Rnl(r) =
√

(n+ 1)(n+ 2)rRn+2,l−2(r)

− 2

√
(n+ 1)

(
n+ l +

1

2

)
rRn+1,l−2(r)

+

√(
n+ l − 1

2

)(
n+ l +

1

2

)
rRn,l−2(r)

= −
√

(n+ 1)(n+ 2)(n+ 3)Rn+3,l−3(r)

+ 3

√
(n+ 1)(n+ 2)

(
n+ l +

1

2

)
Rn+2,l−3(r)

− 3

√
(n+ 1)

(
n+ l − 1

2

)(
n+ l +

1

2

)
Rn+1,l−3(r)

+

√
n+ l − 3

2
Rn,l−3(r). (B.6.41)
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Appendix C

CP -odd nuclear moments

C.1 Schiff’s theorem

Let us consider a system consisting of non-relativistic point-like particles. It is well known that

the electric dipole moments (EDMs) of the ingredients are invisible at least directly with the use of

an external electric field Eext. The shielding effect was first indicated by L. I. Schiff [151], so that

the assertion is called Schiff’s theorem. The proof is given as follows.

The point-like particles interact with a homogeneous electric field Eext through the electric charges

ei and the EDMs di as

Vext = V
(charge)
ext + V

(edm)
ext ,

V
(charge)
ext =

∑
i

eiϕext(ri),

V
(edm)
ext = −

∑
i

di ·Eext. (C.1.1)

The constituent particles interact with each other as

Vint = V
(charge)
int + V

(edm)
int ,

V
(charge)
int =

1

2

∑
i ̸=j

eiej
|ri − rj |

,

V
(edm)
int = −

∑
i̸=j

di ·∇i
ei

|ri − rj |
. (C.1.2)

L. I. Schiff introduced a unitary operator of eiQ accompanied with a Hermite operator of

Q =
1

e

Z∑
i=1

di ·pi. (C.1.3)

The interactions due to the electric charges of the particles are transformed as

eiQV
(charge)
ext e−iQ ≃ V

(charge)
ext + i

[
Q,V

(charge)
ext

]
= V

(charge)
ext + V

(edm)
ext ,

eiQV
(charge)
int e−iQ ≃ V

(charge)
int + i

[
Q,V

(charge)
int

]
= V

(charge)
int + V

(edm)
int , (C.1.4)
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where the higher order terms of the EDMs are negligible. Thus, the Hamiltonian of this system can

be written as

H =
∑
i

p2
i

2mi
+ eiQV (charge)e−iQ, (C.1.5)

where the interaction terms due to charges are gathered as V (charge) = V
(charge)
ext + V

(charge)
int .

If the ingredients have no EDMs, the Hamiltonian can be written as

H0 =
∑
i

p2
i

2mi
+ V (charge). (C.1.6)

Let us denote the eigenstates of the unperturbative Hamiltonian H0 as |n⟩. The eigenstates of the

Hamiltonian H including EDMs are then written as eiQ|n⟩. Indeed,

HeiQ|n⟩ = eiQH0|n⟩ = Ene
iQ|n⟩ (C.1.7)

thanks to [pi, Q] = 0. Thus, it is concluded that the system is not affected by the EDMs. Here, it is

assumed that stationary states |n⟩ exist, which requires that the total charge of the system is zero.

Another intuitive explanation is given as follows [152]. The non-relativistic Hamiltonian for a

system consisting of point-like particles located at rk and with masses mk, charges ek, and intrinsic

EDMs dk is given as

H = H0 +Hd,

H0 =
∑
k

p2
k

2mk
+
∑
k

ekϕ(rk), Hd = −
∑
k

dk ·Eint(rk), (C.1.8)

where the charged particles induce the internal electric field Eint(rk) = −∇ϕ(rk) with the elec-

trostatic potential ϕ(rk). Considering the purely electrostatic interactions as above, the CP -odd

interaction is written as

Hd = −dk ·Eint(rk) = dk ·
∂ϕ

∂rk
= i

1

ek
[dk ·pk,H0] . (C.1.9)

The CP -odd interactions would be perturbatively treated with respect to CP -even interactions. Let

us denote the CP -conserving eigenstates of the system as |n⟩. The CP -mixed state is then given as

|n⟩ = |n⟩ +
∑
m

|m⟩⟨m|Hd|n⟩
En − Em

=

(
1 + i

∑
k

1

ek
dk ·pk

)
|n⟩. (C.1.10)

The interactions between the intrinsic EDMs and the internal electric field induce additional EDMs

as

⟨n|
∑
l

elrl|n⟩ = ⟨n|

(
1 − i

∑
k

1

ek
dk ·pk

)∑
l

elrl

(
1 + i

∑
k

1

ek
dk ·pk

)
|n⟩

= ⟨n|i
∑
kl

el
ek

[rl,dk ·pk] |n⟩

= −⟨n|
∑
k

dk|n⟩. (C.1.11)
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The expectatoin values of the intrinsic EDMs are given as

⟨n|dk|n⟩ = ⟨n|
∑
k

dk|n⟩, (C.1.12)

where the second order contributions in perturbation are neglected. Thus, the intrinsic EDMs cause

the rearrangement of the charge distribution to induce EDMs, which exactly cancel the intrinsic

EDMs of the ingredients.

C.2 Nuclear Schiff moment

Let us consider a finite-size nucleus with the charge distribution of ρq(r′), which is normalized as∫
ρq(r′)d3r′ = 1. (C.2.1)

The charge distribution of the nucleus causes the electrostatic potential

ϕcharge(r) = Ze

∫
d3r′

ρq(r′)

|r − r′|
= Ze

∫
d3r′ρq(r′)

[
1

r
+ r′ ·∇1

r
+O

(
r′2
)]
, (C.2.2)

where r′ indicating a position inside the nucleus is much smaller than r indicating the positions of

electrons in the atom. If the nucleus has a permanent EDM dN with the distribution of ρd(r′), the

EDM also contributes to the electrostatic potential in the form of

ϕedm(r) =

∫
d3r′ρd(r′)dN ·∇ 1

|r − r′|
. (C.2.3)

The first order contributions of r′/r in the electrostatic potential are given as

ϕ(1)(r) = ϕ
(1)
charge(r) + ϕ

(1)
edm(r)

= Ze

∫
d3r′ρq(r′)r′ ·∇1

r
+

∫
d3r′ρd(r′)dN ·∇1

r
. (C.2.4)

The Schiff’s theorem says that the expectation value of the first term with the P -mixed state can

be replaced by

Ze

∫
d3r′ρq(r′)⟨r′⟩′ ·∇1

r
= −

∫
d3r′ρd(r′)⟨dN ⟩·∇1

r
= −

∫
d3r′ρd(r′)⟨dN ⟩′ ·∇1

r
, (C.2.5)

where the bracket ⟨· · · ⟩′ means the expectation value with respect to the P -mixed state, and ⟨· · · ⟩
means that with respect to the P -even state. The EDM is T -odd and P -even, so that only the

dominant parity state plays a role as ⟨dN ⟩′ = ⟨dN ⟩. Here, one ignores the contribution from the

subdominant parity state, which is the second order term of parity-mixing perturbation. Thus, the

first order contributions are exactly canceled.

In the following, the charge distribution is simply denoted by ρ(r) and the nuclear EDM is ex-

pressed as

d = Ze

∫
r′ρ (r′) d3r′. (C.2.6)
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The nucleons are assumed as point-like particles located at r′. The electrostatic potential of a

nucleus is given as [153,154]

ϕ(r) = ϕcharge(r) + ϕedm(r), (C.2.7)

ϕcharge(r) = e

∫
d3r′

ρ(r′)

|r − r′|
, (C.2.8)

ϕedm(r) = d·∇ϕcharge(r) = (d·∇)

∫
d3r′

ρ(r′)

|r − r′|
, (C.2.9)

where ϕedm(r) is introduced instead of the coupling of the nuclear EDM and a homogeneous external

electric field. The electrons at r in an atom interact with the electrostatic potential, so that the

positions r′ in a nucleus are typically much smaller than r. In order to explore the leading order

contributions to the electrostatic potential, the elementary relations of

∂′if (|r − r′|) = −∂if (|r − r′|) ,
∂′i∂

′
jf (|r − r′|) = −∂i∂′jf (|r − r′|) = ∂i∂jf (|r − r′|) ,

∂′i∂
′
j∂

′
kf (|r − r′|) = −∂i∂′j∂′kf (|r − r′|) = −∂i∂j∂kf (|r − r′|) (C.2.10)

are helpful. It can be shown from the first line that the zeroth order term of ϕedm, which is given as

ϕ
(0)
edm(r) = d·∇1

r
, (C.2.11)

must vanish with the first order term of ϕcharge, which is given as

ϕ
(0)
charge(r) = −e

∫
d3r′ρ(r′)

(
∇1

r

)
·r′ = −d·∇1

r
. (C.2.12)

This equality means the Schiff’s theorem saying that the EDM of a nucleus as a point-like particle

is screened by the charge-induced dipole moment. The second line shows that the second derivative

of ϕcharge and the first derivative of ϕedm are also canceled. Thus, the leading order contributions

come from the third line and those are given as

ϕ(r) = −1

6
e

(
∂i∂j∂k

1

r

)∫
ρ(r′)r′ir

′
jr

′
kd

3r′ +
1

2Z
di

(
∂i∂j∂k

1

r

)∫
ρ(r′)r′jr

′
kd

3r′. (C.2.13)

Here, the spherical components of the vector r and the gradient operator ∇(1) are defined as

r±1 = ∓ 1√
2

(x± iy) , r0 = z ⇔ x = − 1√
2

(r+1 − r−1), y =
i√
2

(r+1 + r−1)

∇(1)
±1 = − ∂

∂r∓1
, ∇(1)

0 =
∂

∂r0
. (C.2.14)

The spherical components (µ, ν = 0,±1) follow the commutation relation of[
∇(1)

µ , r(1)ν

]
= (−1)µδµ,−ν . (C.2.15)

However, this relation is not related to the following argument since the spherical components of r′

are integrated out.
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The tensor product of ∂i∂jr
′
ir

′
j is given as

1

3

(
∇(1) · r′(1)

)(
∇(1) · r′(1)

)
=

[[
∇(1) ⊗ r′(1)

](0)
⊗
[
∇(1) ⊗ r′(1)

](0)](0)
0

=
∑
k=0,2

(2k + 1)


1 1 0

1 1 0

k k 0


[[

∇(1) ⊗∇(1)
](k)

⊗
[
r′(1) ⊗ r′(1)

](k)](0)
0

=
∑
k=0,2

√
2k + 1

{
1 1 0

1 1 k

}[[
∇(1) ⊗∇(1)

](k)
⊗
[
r′(1) ⊗ r′(1)

](k)](0)
0

=
∑
k=0,2

√
2k + 1

3

[[
∇(1) ⊗∇(1)

](k)
⊗
[
r′(1) ⊗ r′(1)

](k)](0)
0

=
1

3

[[
∇(1) ⊗∇(1)

](0)
⊗
[
r′(1) ⊗ r′(1)

](0)](0)
0

+

√
5

3

[[
∇(1) ⊗∇(1)

](2)
⊗
[
r′(1) ⊗ r′(1)

](2)](0)
0

=
1

9

(
∇(1) · ∇(1)

)(
r′(1) · r′(1)

)
+

√
5

3

[[
∇(1) ⊗∇(1)

](2)
⊗
[
r′(1) ⊗ r′(1)

](2)](0)
0

, (C.2.16)

and then

∂i∂jrirj =
1

3
∂i∂jr

′2δij +
√

5

[[
∇(1) ⊗∇(1)

](2)
⊗
[
r′(1) ⊗ r′(1)

](2)](0)
0

= ∂i∂j

[
1

3
r′2δij +

(
r′ir

′
j −

1

3
r′2δij

)]
=

1

3
∂i∂j

[
r′2δij +Qij

]
. (C.2.17)

The first term is an irreducible rank-0 tensor operator, and the remaining term is an irreducible

rank-2 tensor operator. The quadrupole moment is defined as

Qij =
(
3r′ir

′
j − r′2δij

)
, (C.2.18)

and the spherical components are given by

Q(2) =
√

6
[
r′(1) ⊗ r′(1)

](2)
. (C.2.19)

Actually, using explicit values of CG-coefficients as

⟨1 0 1 0| 2 0⟩ =

√
2

3
, ⟨1 1 1 − 1| 2 0⟩ =

√
1

6
, (C.2.20)
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it is found that

1√
6
Q

(2)
0 =

[
r′(1) ⊗ r′(1)

](2)
= ⟨1 0 1 0| 2 0⟩ r′0r′0 + 2 ⟨1 1 1 − 1| 2 0⟩ r′+1r

′
−1

=

√
2

3
z′2 −

√
1

6
(x′2 + y′2)

=

√
1

6

[
3z′2 − (x′2 + y′2 + z′2)

]
=

√
1

6
Qzz. (C.2.21)

The rank-2 part can be reduced further as

− 1√
3

(
d(1) · ∇(1)

)[[
∇(1) ⊗∇(1)

](2)
⊗
[
r′(1) ⊗ r′(1)

](2)](0)
0

=

[[
d(1) ⊗∇(1)

](0)
⊗
[[
∇(1) ⊗∇(1)

](2)
⊗
[
r′(1) ⊗ r′(1)

](2)](0)](0)
0

=
∑
k=1,3

(2k + 1)


1 1 0

2 2 0

k k 0


×

[[
∇(1) ⊗

[
∇(1) ⊗∇(1)

](2)](k)
⊗
[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](k)](0)
0

=
∑
k=1,3

√
2k + 1

{
1 1 0

2 2 k

}

×

[[
∇(1) ⊗

[
∇(1) ⊗∇(1)

](2)](k)
⊗
[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](k)](0)
0

=
∑
k=1,3

√
2k + 1

15

[[
∇(1) ⊗

[
∇(1) ⊗∇(1)

](2)](k)
⊗
[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](k)](0)
0

=
2

5

[[
∇(1) ⊗

[
∇(1) ⊗∇(1)

](0)](1)
⊗
[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](1)](0)
0

+

√
7

15

[[
∇(1) ⊗

[
∇(1) ⊗∇(1)

](2)](3)
⊗
[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](3)](0)
0

=
2

15

[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](1)
·∇(1)∇2

+

√
7

15

[[
∇(1) ⊗

[
∇(1) ⊗∇(1)

](2)](3)
⊗
[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](3)](0)
0

. (C.2.22)
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Here, [[
∇(1) ⊗∇(1)

](0)
⊗∇(1)

](1)
=

[[
∇(1) ⊗∇(1)

](0)
⊗
[
∇(1) ⊗ 1

](1)](1)

=
∑
k=0,2

3
√

(2k + 1)


1 1 0

1 0 1

k 1 1


[[

∇(1) ⊗∇(1)
](k)

⊗
[
∇(1) ⊗ 1

](1)](1)

=
∑
k=0,2

√
(2k + 1)

{
1 0 1

1 k 1

}[[
∇(1) ⊗∇(1)

](k)
⊗
[
∇(1) ⊗ 1

](1)](1)

=
∑
k=0,2

√
(2k + 1)

3

[[
∇(1) ⊗∇(1)

](k)
⊗
[
∇(1) ⊗ 1

](1)](1)
, (C.2.23)

namely,[[
∇(1) ⊗∇(1)

](2)
⊗∇(1)

](1)
=

2√
5

[[
∇(1) ⊗∇(1)

](0)
⊗∇(1)

](1)
(C.2.24)

is used. Using a CG-coefficient of

⟨1 0 2 0| 1 0⟩ = −
√

2

5
, (C.2.25)

we get[
d(1) ⊗

[
r′(1) ⊗ r′(1)

](2)](1)
0

= −
√

2

5
d
(1)
0

[
r′(1) ⊗ r′(1)

](2)
0

+ · · ·

= −
√

2

5

√
1

6
d
(1)
0 Q

(2)
0 + · · ·

= −
√

1

15
dzQzz + · · · . (C.2.26)

Another tensor product ∂i∂j∂kr
′
ir

′
jr

′
k is decomposed as(

∇(1) · r′(1)
)(

∇(1) · r′(1)
)(

∇(1) · r′(1)
)

= −3
√

3

[[[
∇(1) ⊗ r′(1)

](0)
⊗
[
∇(1) ⊗ r′(1)

](0)](0)
⊗
[
∇(1) ⊗ r′(1)

](0)](0)
0

= −
√

3

[[[
∇(1) ⊗∇(1)

](0)
⊗
[
r′(1) ⊗ r′(1)

](0)](0)
⊗
[
∇(1) ⊗ r′(1)

](0)](0)
0

−
√

15

[[[
∇(1) ⊗∇(1)

](2)
⊗
[
r′(1) ⊗ r′(1)

](2)](0)
⊗
[
∇(1) ⊗ r′(1)

](0)](0)
0

. (C.2.27)
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The first term is given as[[[
∇(1) ⊗∇(1)

](0)
⊗
[
r′(1) ⊗ r′(1)

](0)](0)
⊗
[
∇(1) ⊗ r′(1)

](0)](0)
0

= 3


0 0 0

1 1 0

1 1 0


[[[

∇(1) ⊗∇(1)
](0)

⊗∇(1)

](1)
⊗
[[
r′(1) ⊗ r′(1)

](0)
⊗ r′(1)

](1)](0)
0

=
√

3

{
0 0 0

1 1 1

}[[[
∇(1) ⊗∇(1)

](0)
⊗∇(1)

](1)
⊗
[[
r′(1) ⊗ r′(1)

](0)
⊗ r′(1)

](1)](0)
0

=

[[[
∇(1) ⊗∇(1)

](0)
⊗∇(1)

](1)
⊗
[[
r′(1) ⊗ r′(1)

](0)
⊗ r′(1)

](1)](0)
0

= − 1

3
√

3
∇2r′2 (∇·r′) , (C.2.28)

and the second term is given as[[[
∇(1) ⊗∇(1)

](2)
⊗
[
r′(1) ⊗ r′(1)

](2)](0)
⊗
[
∇(1) ⊗ r′(1)

](0)](0)
0

=
∑
k=1,3

(2k + 1)


2 2 0

1 1 0

k k 0


×

[[[
∇(1) ⊗∇(1)

](2)
⊗∇(1)

](k)
⊗
[[
r′(1) ⊗ r′(1)

](2)
⊗ r′(1)

](k)](0)
0

=
∑
k=1,3

(−1)k+1
√

2k + 1

{
2 2 0

1 1 k

}

×

[[[
∇(1) ⊗∇(1)

](2)
⊗∇(1)

](k)
⊗
[[
r′(1) ⊗ r′(1)

](2)
⊗ r′(1)

](k)](0)
0

=
∑
k=1,3

√
2k + 1

15

[[[
∇(1) ⊗∇(1)

](2)
⊗∇(1)

](k)
⊗
[[
r′(1) ⊗ r′(1)

](2)
⊗ r′(1)

](k)](0)
0

= − 4

15
√

15
∇2r′2 (∇·r′)

+

√
7

15

[[[
∇(1) ⊗∇(1)

](2)
⊗∇(1)

](3)
⊗
[[
r′(1) ⊗ r′(1)

](2)
⊗ r′(1)

](3)](0)
0

. (C.2.29)

In conclusion, we get

∂i∂j∂kr
′
ir

′
jr

′
k

=
3

5
∇2r′2 (∇·r′) −

√
7

[[[
∇(1) ⊗∇(1)

](2)
⊗∇(1)

](3)
⊗
[[
r′(1) ⊗ r′(1)

](2)
⊗ r′(1)

](3)](0)
0
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= ∂i∂j∂k

[
1

5
r′2
(
r′iδjk + r′jδki + r′kδij

)
+

{
r′ir

′
jr

′
k − 1

5
r′2
(
r′iδjk + r′jδki + r′kδij

)}]
.

(C.2.30)

The first term is an irreducible rank-1 tensor operator, and the remaining term is an irreducible

rank-3 tensor operator.

It has shown that the leading order contributions to the electrostatic potential are given as

ϕoctupole(r) = −1

6

(
∂i∂j∂k

1

r

)∫
eρ(r′)

[
r′ir

′
jr

′
k − 1

5
r′2
(
r′iδjk + r′jδki + r′kδij

)]
d3r′ (C.2.31)

ϕSchiff(r) = 4πS ·∇δ(3)(r), (C.2.32)

where ∇2(1/r) = −4πδ(3)(r) is used. The Schiff moment operator S is expressed as

Sk =
1

10

[∫
eρ(r′)r′2r′kd

3r′ − 5

3
dk
⟨
r2
⟩
ch

− 2

3
dj

∫
ρ(r′)Qjk(r′)d3r′

]
, (C.2.33)

where ⟨
r2
⟩
ch

=

∫
ρ(r′)r′2d3r′ (C.2.34)

is the charge mean square radius. The nuclear Schiff moment should be proportional to the nuclear

spin. Thus, the T -odd nuclear moment produces a P , T -odd electrostatic potential ϕSchiff. The

interactions of electrons with ϕSchiff mix atomic states of opposite parity, and then induce a P ,

T -odd atomic moment, atomic EDM.

If nucleons inside a nucleus are point-like particles, the charge distribution is given by

ρ (r) =

A∑
i=1

δ(3) (r − ri) . (C.2.35)

In this case, the Schiff moment operator without the third term is rewritten as

S =
1

10

A∑
i=1

ei

[
r2i ri −

5

3

⟨
r2
⟩
ch
ri

]
. (C.2.36)

In order to take into account the internal structure of nucleons, the positions of nucleons ri are

replaced with the positions of charges inside nucleons ri + ξ, and the terms are integrated with the

charge distribution ρ(ri + ξ). An integral over inside a nucleon can be carried out as∫
ρ(ri + ξ)d3ξ = 1, (C.2.37)

and the Schiff moment operator is then given as

S =
1

10

A∑
i=1

ei

∫
d3ξρ(ri + ξ)

[
(ri + ξ)

2
(ri + ξ) − 5

3

⟨
r2
⟩
ch

(ri + ξ)

]

=
1

10

A∑
i=1

ei

∫
d3ξρ(ri + ξ)

[(
r2i + 2ri ·ξ

)
ri + r2i ξ − 5

3

⟨
r2
⟩
ch

(ri + ξ)

]
+O

(
ξ2
)

= S(ch) + S(int), (C.2.38)
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where

S(ch) =
1

10

A∑
i=1

ei

[
r2i ri −

5

3

⟨
r2
⟩
ch
ri

]
,

S(int) =
1

10

A∑
i=1

[
2
(
ri ·d(n)

i

)
ri + r2i d

(n)
i − 5

3

⟨
r2
⟩
ch
d
(n)
i

]

=
1

6

A∑
i=1

[
r2i −

⟨
r2
⟩
ch

]
d
(n)
i +

1

5

A∑
i=1

[(
ri ·d(n)

i

)
ri −

1

3
r2i d

(n)
i

]
. (C.2.39)

The first term is induced by the charge asymmetry in a nucleus, and the second term is caused by

the nucleonic EDM. The nucleonic EDM is defined as

d
(n)
i = ei

∫
ρ (ri + ξ) ξd3ξ. (C.2.40)

C.3 Schiff moment calculations in the shell-model framework

In order to evaluate the expectation value of the nuclear Schiff moment, we express the Schiff

moment operator and the PT -odd interaction in the form of tensor operator as

S(1) =
∑
i′j

si′j

[
c†πi′ ⊗ c̃πj

](1)
+
∑
ij′

sij′
[
c†πi ⊗ c̃πj′

](1)
, (C.3.1)

V̂ (PT )
τ1τ2 =

∑
J

∑
i′jkl

v
(J)
i′jkl

[[
c†τ1i′ ⊗ c†τ2j

](J)
⊗
[
c̃τ1k ⊗ c̃τ2l

](J)](0)
0

+
∑
J

∑
ij′kl

v
(J)
ij′kl

[[
c†τ1i ⊗ c†τ2j′

](J)
⊗
[
c̃τ1k ⊗ c̃τ2l

](J)](0)
0

+
∑
J

∑
ijk′l

v
(J)
ijk′l

[[
c†τ1i ⊗ c†τ2j

](J)
⊗
[
c̃τ1k′ ⊗ c̃τ2l

](J)](0)
0

+
∑
J

∑
ijkl′

v
(J)
ijkl′

[[
c†τ1i ⊗ c†τ2j

](J)
⊗
[
c̃τ1k ⊗ c̃τ2l′

](J)](0)
0

(C.3.2)

where a single-particle level indicated with i′, j′, k′, l′ has the opposite parity to those of the others

in each term. Here, the Hermite conjugate of the first term in the Schiff moment operator is given

as (∑
i′j

si′j

[
c†πi′ ⊗ c̃πj

](1)
M

)†

=
∑
i′j

si′j ⟨ i′m′ j m| 1M⟩
(
c†πi′m′ c̃πjm

)†
=
∑
i′j

si′j ⟨ i′m′ j m| 1M⟩ (−1)j−m(−1)i
′+m′

c†πj−mc̃πi′−m′

=
∑
i′j

si′j(−1)i
′−j+M ⟨j −mi′ −m′| 1 −M⟩ c†πj−mc̃πi′−m′
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=
∑
i′j

si′j(−1)i
′−j+M

[
c†πj ⊗ c̃πi′

](1)
−M

. (C.3.3)

Thus, if the one-body matrix elements follow that

sij′ = (−1)−i+j′+Msj′i, (C.3.4)

the Schiff moment operator S
(1)
M is simply given as

S(1) =
∑
i′j

si′j

[
c†πi′ ⊗ c̃πj

](1)
+ h.c. (C.3.5)

The PT -odd interaction can be summarized as

V̂ (PT )
τ1τ2 = V̂ (PT1)

τ1τ2 + V̂ (PT2)
τ1τ2 , (C.3.6)

where

V̂ (PT1)
τ1τ2 =

∑
J

∑
i′jkl

ṽ
(J)
i′jkl

[[
c†τ1i′ ⊗ c†τ2j

](J)
⊗
[
c̃τ1k ⊗ c̃τ2l

](J)](0)
0

,

V̂ (PT2)
τ1τ2 =

∑
J

∑
ijk′l

ṽ
(J)
ijk′l

[[
c†τ1i ⊗ c†τ2j

](J)
⊗
[
c̃τ1k′ ⊗ c̃τ2l

](J)](0)
0

. (C.3.7)

The two-body matrix elements defined as

ṽ
(J)
i′jkl = v

(J)
i′jkl − (−1)i

′+j−Jv
(J)
ji′kl,

ṽ
(J)
ijk′l = v

(J)
ijk′l − (−1)k

′+l−Jv
(J)
ijlk′ (C.3.8)

follow that

ṽ
(J)
ijkl = (−1)i+j−J+1ṽ

(J)
jikl = (−1)k+l−J+1ṽ

(J)
jilk = (−1)i+j+k+lṽ

(J)
jilk. (C.3.9)

The Hermite conjugate of V̂ (PT ) is given as

V̂ (PT1)†
τ1τ2 =

∑
J

∑
i′jkl

ṽ
(J)
i′jkl

[[
c†τ1k ⊗ c†τ2l

](J)
⊗
[
c̃τ1i′ ⊗ c̃τ2j

](J)](0)
0

,

V̂ (PT2)†
τ1τ2 =

∑
J

∑
ijk′l

ṽ
(J)
ijk′l

[[
c†τ1k′ ⊗ c†τ2l

](J)
⊗
[
c̃τ1i ⊗ c̃τ2j

](J)](0)
. (C.3.10)

Thus, if ṽ
(J)
ijkl = ṽ

(J)
klij , we have V̂

(PT1)†
τ1τ2 = V̂

(PT2)
τ1τ2 and Hermite PT -odd interactions are given as

V̂ (PT )
τ1τ2 =

∑
J

∑
i′jkl

ṽ
(J)
i′jkl

[[
c†τ1i′ ⊗ c†τ2j

](J)
⊗
[
c̃τ1k ⊗ c̃τ2l

](J)](0)
0

+ h.c. (C.3.11)

Even if CP -odd hadronic interactions exist, they should be greatly suppressed in comparison to

the well-known CP -even hadronic interactions such as one-pion exchange. The ground state in the

CP -even effective Hamiltonian is expressed as∣∣ψg.s.; JM
⟩

=
∑
n

α(g.s.)
n

∣∣ψ(ν)
n ; Jπν

ν

⟩
⊗
∣∣ψ(π)

n ; Jππ
π

⟩
, (C.3.12)
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where
∣∣ψ(τ)

n

⟩
is the neutron (τ = ν) or proton (τ = π) part of the nth configuration with a spin-parity

of Jπτ .

In the perturbative manner, the nuclear Schiff moment can be calculated as

⟨
S
(1)
0

⟩
=
∑
τ1τ2

∑
k

⟨
ψg.s.; JM

∣∣S(1)
0

∣∣ψk

⟩⟨
ψk

∣∣V̂ (PT )
τ1τ2

∣∣ψg.s.; JM
⟩

Eg.s. − Ek
+ c.c., (C.3.13)

where
∣∣ψk

⟩
is the kth excited state with the same spin and the opposite parity to the ground state,

and Ek is the excited energy.
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C.4 Valence excitations

C.4.1 One-particle-one-hole excited states

First, we consider the case that i, j, k, l are single-particle levels in the valence space. The intruder

orbital is only the single-particle level which has the opposite parity to those of the other valence

orbitals. However, that has a large angular momentum compared with the others, and that cannot be

connected by the rank-1 Schiff moment operator. In fact, for 129Xe and 199Hg, the proton orbitals in

the valence space are 2s1/2, 1d3/2, 1d5/2, 0g7/2, and 0h11/2. Thus, the excited proton with i′, j′, k′, l′

should be in beyond the valence space. In order to emphasize this point, the proton creation and

annihilation operators for the high-lying orbitals outside the valence space are indicated as aπi′ and

a†πi′ instead of cπi′ and c†πi′ . This kind of excitation is called valence excitations.

As discussed above, all the excited states that can contribute to the nuclear Schiff moment are not

given in the nuclear shell model with only one harmonic oscillator shell. We take just one-particle-

hole excited states from the ground state, which is defined as∣∣ψ(ph)
i′j,L; IM

⟩
=
[[
a†πi′ ⊗ c̃πj

](L) ⊗
∣∣ψg.s.; J

⟩](I)
M

=
[[
a†πi′ ⊗ c̃πj

](L) ⊗ T (J)†
](I)
M

∣∣0⟩
=

∑
MLMJ

⟨LML J MJ | I M⟩
[
a†πi′ ⊗ c̃πj

](L)

ML
T

(J)†
MJ

∣∣0⟩ (C.4.1)

for the intermediate states in the perturbative formula (C.3.13). The ground state is created by

a weighted sum T
(J)†
MJ

of tensor products of creation operators, where each terms are coupled with

(J,MJ). Here, the norm of the ground state is given as⟨
ψg.s.; JMJ

∣∣ψg.s.; JMJ

⟩
=
⟨
0
∣∣(−1)J+M T̃

(J)
−MJ

T
(J)†
MJ

∣∣0⟩
= (−1)J+M ⟨J −MJ J MJ | 0 0⟩

⟨
0
∣∣[T̃ (J) ⊗ T (J)†](0)

0

∣∣0⟩
=

1√
2J + 1

⟨
0
∣∣[T̃ (J) ⊗ T (J)†](0)

0

∣∣0⟩. (C.4.2)

Thus, in order to normalize the ground state,⟨
0
∣∣[T̃ (J) ⊗ T (J)†](0)

0

∣∣0⟩ =
√

2J + 1, (C.4.3)

should be sustained. The excitation energies are approximately given as

E
(ph)
i′j = εi′ − εj , (C.4.4)

where εi indicates a single-particle energy in the Nilsson potential.

In the valence excitations, we have the anti-commutation relations of{
aπi′m′ , c†πjm

}
=
{
a†πi′m′ , cπjm

}
= 0 (C.4.5)
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Figure C.1: The valence excitations indicate the contributions of excitations from the valence space,

the single-proton orbitals between the magic numbers 50 and 82 for 129Xe and 199Hg, to the above

by the PT -odd interactions.

for all the combinations of i′ and j. The Hermite conjugate of the one-particle-hole operator is then

given as([
a†πi′ ⊗ c̃πj

](L)

ML

)†
=
(∑
m′m

⟨ i′m′ j m|LML⟩ a†πi′m′ c̃πjm

)†
=
∑
m′m

⟨ i′m′ j m|LML⟩ (−1)i
′+m′

(−1)j−mc†πj−mãπi′−m′

= (−1)L+ML
[
ãπi′ ⊗ c†πj

](L)

−ML
. (C.4.6)

The conjugates of one-particle-hole excited states are given as⟨
ψ
(ph)
i′j,L; IM

∣∣ =
⟨
0
∣∣ ∑
MLMJ

⟨LML J MJ | I M⟩ (−1)J+MJ T̃
(J)
−MJ

× (−1)L+ML
[
ãπi′ ⊗ c†πj

](L)

−ML

= (−1)J+L+M
⟨
0
∣∣[T̃ (J) ⊗

[
ãπi′ ⊗ c†πj

](L)
](I)
−M

≡ (−1)J+L+M
[⟨
ψg.s.; J

∣∣⊗ [ãπi′ ⊗ c†πj
](L)

](I)
−M

=
∑

MJML

(−1)L+ML ⟨J −MJ L −ML| I −M⟩
⟨
ψg.s.; JMJ

∣∣[ãπi′ ⊗ c†πj
](L)

−ML

(C.4.7)
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where T̃
(J)
MJ

= (−1)J−MJT
(J)
−MJ

are ITOs of rank-J . The overlaps of one-particle-hole excited states

are then given as⟨
ψ
(ph)
i′f jf ,L

′ ; I
′M ′∣∣ψ(ph)

i′iji,L
; IM

⟩
= δI′,IδM ′,M (−1)J+L′+M

⟨
0
∣∣[T̃ (J) ⊗

[
ãπi′f ⊗ c†πjf

](L′)
](I)
−M

[[
a†πi′i

⊗ c̃πji
](L) ⊗ T (J)†

](I)
M

∣∣0⟩
= δI′,IδM ′,M

(−1)J+L′−I

√
2I + 1

×
⟨
0
∣∣[[T̃ (J) ⊗

[
ãπi′f ⊗ c†πjf

](L′)
](I)

⊗
[[
a†πi′i

⊗ c̃πji
](L) ⊗ T (J)†

](I)](0)
0

∣∣0⟩. (C.4.8)

The matrix elements can be calculated as

⟨
0
∣∣[[T̃ (J) ⊗

[
ãπi′f ⊗ c†πjf

](L′)
](I)

⊗
[[
a†πi′i

⊗ c̃πji
](L) ⊗ T (J)†

](I)](0)
0

∣∣0⟩
= (2J + 1)(2I + 1)


J L′ I

0 I I

J J 0


×
⟨
0
∣∣[[T̃ (J) ⊗ 1

](J)
⊗
[[
ãπi′f ⊗ c†πjf

](L′) ⊗
[[
a†πi′i

⊗ c̃πji
](L) ⊗ T (J)†

](I)](J)](0)
0

∣∣0⟩
=
⟨
0
∣∣[T̃ (J) ⊗

[[
ãπi′f ⊗ c†πjf

](L′) ⊗
[[
a†πi′i

⊗ c̃πji
](L) ⊗ T (J)†

](I)](J)](0)
0

∣∣0⟩

=
∑
K

√
(2L′ + 1)(2I + 1)(2K + 1)(2J + 1)


L′ 0 L′

L J I

K J J


×
⟨
0
∣∣[T̃ (J) ⊗

[[[
ãπi′f ⊗ c†πjf

](L′) ⊗
[
a†πi′i

⊗ c̃πji
](L)

](K)

⊗
[
1 ⊗ T (J)†

](J)](J)](0)
0

∣∣0⟩
=
∑
K

√
(2I + 1)(2K + 1)(−1)2J+L+L′

{
I L J

K J L′

}

×
⟨
0
∣∣[T̃ (J) ⊗

[[[
ãπi′f ⊗ c†πjf

](L′) ⊗
[
a†πi′i

⊗ c̃πji
](L)

](K)

⊗ T (J)†
](J)](0)

0

∣∣0⟩
=
∑
K

√
(2I + 1)(2K + 1)(−1)2J+L+L′

{
I L J

K J L′

}
×
∑
M

⟨J −M J M | 0 0⟩
∑
Q,M ′

⟨KQJ M ′| J M⟩

×
⟨
0
∣∣T̃ (J)

−M

[[
ãπi′f ⊗ c†πjf

](L′) ⊗
[
a†πi′i

⊗ c̃πji
](L)

](K)

Q
T

(J)†
M ′

∣∣0⟩
=
∑
K

√
(2I + 1)(2K + 1)

2J + 1
(−1)2J+L+L′

{
I L J

K J L′

}∑
M

(−1)J+M
∑
Q,M ′

⟨KQJ M ′| J M⟩
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×
⟨
0
∣∣T̃ (J)

−M

[[
ãπi′f ⊗ c†πjf

](L′) ⊗
[
a†πi′i

⊗ c̃πji
](L)

](K)

Q
T

(J)†
M ′

∣∣0⟩
=
∑
K

√
(2I + 1)(2K + 1)

2J + 1
(−1)2J+L+L′

{
I L J

K J L′

}∑
M

∑
Q,M ′

⟨KQJ M ′| J M⟩

×
⟨
ψg.s.; JM

∣∣[[ãπi′f ⊗ c†πjf
](L′) ⊗

[
a†πi′i

⊗ c̃πji
](L)

](K)

Q

∣∣ψg.s.; JM
′⟩

=
∑
K

√
(2I + 1)(2K + 1)(−1)2J+L+L′+K

{
I L J

K J L′

}

×
⟨
ψg.s.; J

∣∣∣∣[[ãπi′f ⊗ c†πjf
](L′) ⊗

[
a†πi′i

⊗ c̃πji
](L)

](K)∣∣∣∣ψg.s.; J
⟩

=
∑
K

√
(2I + 1)(2K + 1)(−1)2J+L+L′+K

{
I L J

K J L′

}

× (−1)
∑

L′′L′′′

√
(2L+ 1)(2L′ + 1)(2L′′ + 1)(2L′′′ + 1)


i′f jf L′

i′i ji L

L′′′ L′′ K


×
⟨
ψg.s.; J

∣∣∣∣[[ãπi′f ⊗ a†πi′i

](L′′′) ⊗
[
c†πjf ⊗ c̃πji

](L′′)
](K)∣∣∣∣ψg.s.; J

⟩
=
∑
K

√
(2I + 1)(2K + 1)(−1)2J+L+L′+K

{
I L J

K J L′

}

× (−1)
√

(2L+ 1)(2L′ + 1)(2K + 1)


i′f jf L′

i′i ji L

0 K K


× δi′f ,i′i

√
2i′i + 1

⟨
ψg.s.; J

∣∣∣∣[c†πjf ⊗ c̃πji
](K)∣∣∣∣ψg.s.; J

⟩
= δi′f ,i′i

∑
K

√
(2L+ 1)(2L′ + 1)(2I + 1)(2K + 1)(−1)1+2J+i′i+ji+L

×

{
I L J

K J L′

}{
jf L′ i′i
L ji K

}⟨
ψg.s.; J

∣∣∣∣[c†πjf ⊗ c̃πji
](K)∣∣∣∣ψg.s.; J

⟩
. (C.4.9)

Thus, we have⟨
ψ
(ph)
i′f jf ,L

′ ; I
′M ′∣∣ψ(ph)

i′iji,L
; IM

⟩
= δI′,IδM ′,Mδi′f ,i′i

∑
K

√
(2L+ 1)(2L′ + 1)(2K + 1)(−1)1+3J+i′i+ji+L+L′−I

×

{
I L J

K J L′

}{
jf L′ i′i
L ji K

}⟨
ψg.s.; J

∣∣∣∣[c†πjf ⊗ c̃πji
](K)∣∣∣∣ψg.s.; J

⟩
. (C.4.10)

The spin of the one-particle-hole state is indicated with I, where I = J + L, J + L− 1, · · · , |J − L|
can be realized. However, since the PT -odd scalar interactions are assumed, only one-particle-hole

states with I = J and the same magnetic quantum number as the ground state can contribute to
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the Schiff moment. The overlaps of one-particle-hole states are finally given as⟨
ψ
(ph)
i′f jf ,L

′ ; JM
∣∣ψ(ph)

i′iji,L
; JM

⟩
= δi′f ,i′i

∑
K

√
(2L+ 1)(2L′ + 1)(2K + 1)(−1)1+2J+i′i+ji+L+L′

×

{
J L J

K J L′

}{
jf L′ i′i
L ji K

}⟨
ψg.s.; J

∣∣∣∣[c†πjf ⊗ c̃πji
](K)∣∣∣∣ψg.s.; J

⟩
, (C.4.11)

and the norms used to normalize the one-particle-hole states are given as⟨
ψ
(ph)
p′h,L; JM

∣∣ψ(ph)
p′h,L; JM

⟩
= (−1)1+2J+p′+h(2L+ 1)

∑
K

√
(2K + 1)

×

{
J L J

K J L

}{
h L p′

L h K

}⟨
ψg.s.; J

∣∣∣∣[c†πh ⊗ c̃πh
](K)∣∣∣∣ψg.s.; J

⟩
. (C.4.12)

C.4.2 PT -odd interactions

Since the matrix elements of PT -odd interactions can be taken as real, we have⟨
ψ
(ph)
p′h,L; JM

∣∣V̂ (PT1)
τ1τ2

∣∣ψg.s.; JM
⟩

=
⟨
ψg.s.; JM

∣∣V̂ (PT1)†
τ1τ2

∣∣ψ(ph)
p′h,L; JM

⟩
=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣[[c†τ1i ⊗ c†τ2j

](K)

⊗
[
ãτ1k′ ⊗ c̃τ2l

](K)
](0)
0

∣∣ψ(ph)
p′h,L; JM

⟩
=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣
×
[[
c†τ1i ⊗ c†τ2j

](K)

⊗
[
ãτ1k′ ⊗ c̃τ2l

](K)
](0)
0

[[
a†πp′ ⊗ c̃πh

](L) ⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣
×

[[[
c†τ1i ⊗ c†τ2j

](K)

⊗
[
ãτ1k′ ⊗ c̃τ2l

](K)
](0)

⊗
[[
a†πp′ ⊗ c̃πh

](L) ⊗
∣∣ψg.s.; J

⟩](J)](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣× (2J + 1)
√

2L+ 1


0 0 0

L J J

L J J


×

[[[[
c†τ1i ⊗ c†τ2j

](K) ⊗
[
ãτ1k′ ⊗ c̃τ2l

](K)
](0)

⊗
[
a†πp′ ⊗ c̃πh

](L)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣×∑
K′

√
(2K + 1)(2L+ 1)(2K ′ + 1)


K K 0

0 L L

K K ′ L


×

[[[
c†τ1i ⊗ c†τ2j

](K)

⊗
[[
ãτ1k′ ⊗ c̃τ2l

](K) ⊗
[
a†πp′ ⊗ c̃πh

](L)
](K′)

](L)

⊗
∣∣ψg.s.; J

⟩](J)
M
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=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣×∑
K′

√
2K ′ + 1

(2K + 1)(2L+ 1)
(−1)K+L+K′

×
√

(2K + 1)(2L+ 1)(2K ′ + 1)


k′ l K

p′ h L

0 K ′ K ′


× (−1)

[[[
c†τ1i ⊗ c†τ2j

](K)

⊗
[[
ãτ1k′ ⊗ a†πp′

](0) ⊗ [c̃τ2l ⊗ c̃πh
](K′)

](K′)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣×∑
K′

√
2K ′ + 1

(2K + 1)(2L+ 1)
(−1)K+L+K′

× (−1)k
′+h+K+K′

√
(2K + 1)(2L+ 1)

2k′ + 1

{
l K k′

L h K ′

}

× (−1)δτ1πδk′p′
√

2p′ + 1

[[[
c†πi ⊗ c†τ2j

](K)

⊗
[
c̃τ2l ⊗ c̃πh

](K′)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

= δτ1π
∑
K

∑
ijl

ṽ
(K)
ijp′l

⟨
ψg.s.; JM

∣∣×∑
K′

√
2K ′ + 1(−1)p

′+h+L+1

{
l K p′

L h K ′

}

×

[[[
c†πi ⊗ c†τ2j

](K)

⊗
[
c̃τ2l ⊗ c̃πh

](K′)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

= δτ1π
∑
K

∑
ijl

ṽ
(K)
ijp′l

⟨
ψg.s.; JM

∣∣×∑
K′

√
2K ′ + 1(−1)p

′+h+L+1

{
l K p′

L h K ′

}

×
∑

MLMJ

⟨LML J MJ | J M⟩
[[
c†πi ⊗ c†τ2j

](K)

⊗
[
c̃τ2l ⊗ c̃πh

](K′)
](L)

ML

∣∣ψg.s.; JMJ

⟩
= δτ1π

∑
K

∑
ijl

ṽ
(K)
ijp′l ×

∑
K′

√
2K ′ + 1(−1)p

′+h+L+1

{
l K p′

L h K ′

}

×
∑

MLMJ

⟨LML J MJ | J M⟩ × (−1)L
⟨LML J MJ | J M⟩√

2J + 1

×
⟨
ψg.s.; J

∣∣∣∣[[c†πi ⊗ c†τ2j

](K)

⊗
[
c̃τ2l ⊗ c̃πh

](K′)
](L)∣∣∣∣ψg.s.; J

⟩
= δτ1π

∑
K

∑
ijl

ṽ
(K)
ijp′l ×

∑
K′

√
2K ′ + 1

2J + 1
(−1)p

′+h+1

{
l K p′

L h K ′

}

×
⟨
ψg.s.; J

∣∣∣∣[[c†πi ⊗ c†τ2j

](K)

⊗
[
c̃τ2l ⊗ c̃πh

](K′)
](L)∣∣∣∣ψg.s.; J

⟩
= δτ1π

∑
K

∑
ijl

ṽ
(K)
jilp′ ×

∑
K′

√
2K ′ + 1

2J + 1
(−1)l+h+K+1

{
l K p′

L h K ′

}

×
⟨
ψg.s.; J

∣∣∣∣[[c†τ2j ⊗ c†πi

](K)

⊗
[
c̃τ2l ⊗ c̃πh

](K′)
](L)∣∣∣∣ψg.s.; J

⟩
. (C.4.13)
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The expression for between two protons is given by taking τ2 = π in the general form as⟨
ψ
(ph)
p′h,L; JM

∣∣V̂ (PT1)
ππ

∣∣ψg.s.; JM
⟩

=
∑
K

∑
ijl

ṽ
(K)
jilp′ ×

∑
K′

√
2K ′ + 1

2J + 1
(−1)l+h+K+1

{
l K p′

L h K ′

}

×
⟨
ψg.s.; J

∣∣∣∣[[c†πj ⊗ c†πi

](K)

⊗
[
c̃πl ⊗ c̃πh

](K′)
](L)∣∣∣∣ψg.s.; J

⟩
, (C.4.14)

and that for between neutron and proton is given as⟨
ψ
(ph)
p′h,L; JM

∣∣V̂ (PT1)
ππ

∣∣ψg.s.; JM
⟩

=
∑
K

∑
ijl

ṽ
(K)
jilp′ ×

∑
K′

√
2K ′ + 1

2J + 1
(−1)l+h+K+1

{
l K p′

L h K ′

}

×
⟨
ψg.s.; J

∣∣∣∣[[c†νj ⊗ c†πi

](K)

⊗
[
c̃νl ⊗ c̃πh

](K′)
](L)∣∣∣∣ψg.s.; J

⟩
=
∑
K

∑
ijl

ṽ
(K)
jilp′ ×

∑
K′

√
2K ′ + 1

2J + 1
(−1)l+h+K+1

{
l K p′

L h K ′

}

×
∑
NP

√
(2K + 1)(2K ′ + 1)(2N + 1)(2P + 1)


j i K

l h K ′

N P L


×
⟨
ψg.s.; J

∣∣∣∣[[c†νj ⊗ c̃νl

](N)

⊗
[
c†πi ⊗ c̃πh

](P )
](L)∣∣∣∣ψg.s.; J

⟩
=
∑
K

∑
ijl

ṽ
(K)
jilp′(−1)l+h+K+1

∑
K′

(2K ′ + 1)

{
l K p′

L h K ′

}

×
∑
NP

√
(2K + 1)(2N + 1)(2P + 1)

2J + 1


j i K

l h K ′

N P L


× (2J + 1)

√
2L+ 1


J ′
ν Jν N

J ′
π Jπ P

J J L


∑

ninfm

α(g.s.)∗
nf

α(g.s.)
ni

×
⟨
ψ(ν)
nf

; J
′π′

ν
ν

∣∣∣∣[c†νj ⊗ c̃νl

](N)∣∣∣∣ψ(ν)
m ; Jπν

ν

⟩⟨
ψ(π)
m ; J

′π′
π

π

∣∣∣∣[c†πi ⊗ c̃πh

](P )∣∣∣∣ψ(π)
ni

; Jππ
π

⟩
.

(C.4.15)

C.4.3 Schiff moment

It is assumed that the PT -odd interaction is scalar, so that we should take into account the

one-particle-hole states with spin J and the third component M .⟨
ψg.s.; JM

∣∣S(1)
0

∣∣ψ(ph)
p′h,L; JM

⟩



148 Appendix C CP -odd nuclear moments

=
⟨
ψg.s.; JM

∣∣∑
ij′

sij′
[
c†πi ⊗ ãπj′

](1)
0

[[
a†πp′ ⊗ c̃πh

](L) ⊗
∣∣ψg.s.; J

⟩](J)
M

=
⟨
ψg.s.; JM

∣∣∑
ij′

sij′
∑
J′M ′

⟨1 0 J M | J ′M ′⟩
[[
c†πi ⊗ ãπj′

](1)
⊗
[[
a†πp′ ⊗ c̃πh

](L) ⊗
∣∣ψg.s.; J

⟩](J)](J′)

M ′

=
⟨
ψg.s.; JM

∣∣∑
ij′

sij′
∑
J′M ′

⟨1 0 J M | J ′M ′⟩
∑
K

√
3(2K + 1)(2J + 1)


1 0 1

L J J

K J J ′


×
[[[

c†πi ⊗ ãπj′
](1) ⊗ [a†πp′ ⊗ c̃πh

](L)
](K)

⊗
∣∣ψg.s.; J

⟩](J′)

M ′

=
∑
ij′

sij′
∑
J′M ′

⟨1 0 J M | J ′M ′⟩
∑
K

√
3(2K + 1)(2J + 1) × (−1)1+2J+L√

3(2J + 1)

{
J L J

K J 1

}

× δJ′JδM ′M
(−1)K√
2J + 1

⟨
ψg.s.; J

∣∣∣∣[[c†πi ⊗ ãπj′
](1) ⊗ [a†πp′ ⊗ c̃πh

](L)
](K)∣∣∣∣ψg.s.; J

⟩
=
∑
ij′

sij′ ⟨1 0 J M | J M⟩
∑
K

(−1)1+2J+L+K
√

2K + 1

{
J L J

K J 1

}

×
⟨
ψg.s.; J

∣∣∣∣[[c†πi ⊗ ãπj′
](1) ⊗ [a†πp′ ⊗ c̃πh

](L)
](K)∣∣∣∣ψg.s.; J

⟩
=
∑
ij′

sij′ ⟨1 0 J M | J M⟩
∑
K

(−1)1+2J+L+K
√

2K + 1

{
J L J

K J 1

}

× (−1)i+j′
⟨
ψg.s.; J

∣∣∣∣[[ãπj′ ⊗ c†πi
](1) ⊗ [a†πp′ ⊗ c̃πh

](L)
](K)∣∣∣∣ψg.s.; J

⟩
=
∑
ij′

sij′ ⟨1 0 J M | J M⟩
∑
K

(−1)1+2J+L+K+i+j′
√

2K + 1

{
J L J

K J 1

}

× (−1)
√

3(2L+ 1)(2K + 1)


j′ i 1

p′ h L

0 K K


×
⟨
ψg.s.; J

∣∣∣∣[[ãπj′ ⊗ a†πp′

](0) ⊗ [c†πi ⊗ c̃πh
](K)

](K)∣∣∣∣ψg.s.; J
⟩

=
∑
ij′

sij′ ⟨1 0 J M | J M⟩
∑
K

(−1)2J+L+K+i+j′
√

3(2L+ 1)(2K + 1)

{
J L J

K J 1

}

× (−1)1+h+j′+K√
(2j′ + 1)(2K + 1)

{
i 1 j′

L h K

}

× δj′,p′
√

2p′ + 1
⟨
ψg.s.; J

∣∣∣∣[c†πi ⊗ c̃πh

](K)∣∣∣∣ψg.s.; J
⟩

=
∑
i

sip′ ⟨1 0 J M | J M⟩
∑
K

(−1)2J+L+i+h
√

3(2L+ 1)(2K + 1)

×

{
J L J

K J 1

}{
i 1 p′

L h K

}⟨
ψg.s.; J

∣∣∣∣[c†πi ⊗ c̃πh

](K)∣∣∣∣ψg.s.; J
⟩
. (C.4.16)
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C.5 Core excitations

C.5.1 One-particle-one-hole excited states

In the nuclear shell model, it is assumed that all the single-proton levels below the magic number

50 are fully occupied for 129Xe and 199Hg and then those protons ompose an inert core. In this

section, we consider the one-particle-one-hole excitations from the core to the valence space. The

excitated configurations are given as

∣∣ψ(ph)
ij′,L; IM

⟩
= −

[[
c†πi ⊗ d†πj′

](L) ⊗
∣∣ψg.s.; J

⟩](I)
M

= −
[[
c†πi ⊗ d†πj′

](L) ⊗ T (J)†
](I)
M

∣∣0⟩
= −

∑
MLMJ

⟨LML J MJ | I M⟩
[
c†πi ⊗ d†πj′

](L)

ML
T

(J)†
MJ

∣∣0⟩. (C.5.1)

Here, the proton annihilation operator in the core region is transformed to the proton-hole creation

operator as

c̃πjm → −d†πjm, c†πjm → d̃πjm. (C.5.2)

The proton creation and annihilation operators in the core region follow that{
cπim, d

†
πj′m′

}
=
{
c†πim, dπj′m′

}
= 0. (C.5.3)

The Hermite conjugate of the one-particle-hole operator is then given as([
c†πi ⊗ d†πj′

](L)

ML

)†
=
(∑
mm′

⟨ im j′m′|LML⟩ c†πimd
†
πj′m′

)†
=
∑
mm′

⟨ im j′m′|LML⟩ (−1)j
′+m′

(−1)i+md̃πj′−m′ c̃πi−m

= (−1)i+j′+ML+1
∑
mm′

⟨ im j′m′|LML⟩ c̃πi−md̃πj′−m′

= (−1)L+ML+1
[
c̃πi′ ⊗ d̃πj

](L)

−ML
. (C.5.4)

The conjugates of one-particle-hole excited states are given as⟨
ψ
(ph)
ij′,L; IM

∣∣ =
⟨
0
∣∣ ∑
MLMJ

⟨LML J MJ | I M⟩ (−1)J+MJ T̃
(J)
−MJ

× (−1)L+ML+1
[
c̃πi ⊗ d̃πj′

](L)

−ML

= (−1)J+L+M+1
⟨
0
∣∣[T̃ (J) ⊗

[
c̃πi ⊗ d̃πj′

](L)
](I)
−M

, (C.5.5)
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Figure C.2: The contributions of the excitations from the inert core to the valence space are called

core excitations.

and the overlaps are then given as⟨
ψ
(ph)
if j′f ,L

′ ; I
′M ′∣∣ψ(ph)

iij′i,L
; IM

⟩
= δI′,IδM ′,M (−1)J+L′+M+1

⟨
0
∣∣[T̃ (J) ⊗

[
c̃πif ⊗ d̃πj′f

](L′)
](I)
−M

[[
c†πii ⊗ d†πj′i

](L) ⊗ T (J)†
](I)
M

∣∣0⟩
= δI′,IδM ′,M

(−1)J+L′−I+1

√
2I + 1

×
⟨
0
∣∣[[T̃ (J) ⊗

[
c̃πif ⊗ d̃πj′f

](L′)
](I)

⊗
[[
c†πii ⊗ d†πj′i

](L) ⊗ T (J)†
](I)](0)

0

∣∣0⟩. (C.5.6)

The matrix elements can be calculated as

⟨
0
∣∣[[T̃ (J) ⊗

[
c̃πif ⊗ d̃πj′f

](L′)
](I)

⊗
[[
c†πii ⊗ d†πj′i

](L) ⊗ T (J)†
](I)](0)

0

∣∣0⟩
=
∑
K

√
(2I + 1)(2K + 1)(−1)2J+L+L′+K

{
I L J

K J L′

}

×
⟨
ψg.s.; J

∣∣∣∣[[c̃πif ⊗ d̃πj′f
](L′) ⊗

[
c†πii ⊗ d†πj′i

](L)
](K)∣∣∣∣ψg.s.; J

⟩
=
∑
K

√
(2I + 1)(2K + 1)(−1)2J+L+L′+K

{
I L J

K J L′

}
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× (−1)
√

(2L+ 1)(2L′ + 1)(2K + 1)


if j′f L′

ii j′i L

K 0 K


×
⟨
ψg.s.; J

∣∣∣∣[[c̃πif ⊗ c†πii
](K) ⊗

[
d̃πj′f ⊗ d†πj′i

](0)](K)∣∣∣∣ψg.s.; J
⟩

=
∑
K

(2K + 1)
√

(2L+ 1)(2L′ + 1)(2I + 1)(−1)2J+L+L′+K+1

{
I L J

K J L′

}

× (−1)if+j′f+L+K√
(2j′f + 1)(2K + 1)

{
L′ if j′f
ii L K

}

× δj′f ,j′i

√
2j′i + 1

⟨
ψg.s.; J

∣∣∣∣[c̃πif ⊗ c†πii
](K)∣∣∣∣ψg.s.; J

⟩
= δj′f ,j′i

∑
K

√
(2L+ 1)(2L′ + 1)(2I + 1)(2K + 1)(−1)1+2J+if+j′f+L′

×

{
I L J

K J L′

}{
L′ if j′f
ii L K

}⟨
ψg.s.; J

∣∣∣∣[c̃πif ⊗ c†πii
](K)∣∣∣∣ψg.s.; J

⟩
= δj′f ,j′i

∑
K

√
(2L+ 1)(2L′ + 1)(2I + 1)(2K + 1)(−1)1+2J+if+j′f+L′

×

{
I L J

K J L′

}{
L′ if j′f
ii L K

}
× δif ,iiδK,0

√
(2ii + 1)(2J + 1)

+ δj′f ,j′i

∑
K

√
(2L+ 1)(2L′ + 1)(2I + 1)(2K + 1)(−1)1+2J+if+j′f+L′

×

{
I L J

K J L′

}{
L′ if j′f
ii L K

}
× (−1)ii+if−K+1

⟨
ψg.s.; J

∣∣∣∣[c†πii ⊗ c̃πif
](K)∣∣∣∣ψg.s.; J

⟩
= δj′f ,j′iδif ,ii(−1)1+3J+I+L

√
2I + 1

+ δj′f ,j′i

∑
K

√
(2L+ 1)(2L′ + 1)(2I + 1)(2K + 1)(−1)2J+ii+j′f+L′+K

×

{
I L J

K J L′

}{
L′ if j′f
ii L K

}⟨
ψg.s.; J

∣∣∣∣[c†πii ⊗ c̃πif
](K)∣∣∣∣ψg.s.; J

⟩
, (C.5.7)

where
⟨
ψg.s.; J

∣∣∣∣1∣∣∣∣ψg.s.; J
⟩

=
√

2J + 1 is used. Since the above calculations provides⟨
ψ
(ph)
if j′f ,L

′ ; JM
∣∣ψ(ph)

iij′i,L
; JM

⟩
= δif ,iiδjf ,ji(−1)L+L′

+ δj′f ,j′i

∑
K

(−1)2J+ii+j′f+K+1
√

(2L+ 1)(2L′ + 1)(2K + 1)

×

{
J L J

K J L′

}{
L′ if j′f
ii L K

}⟨
ψg.s.; J

∣∣∣∣[c†πii ⊗ c̃πif
](K)∣∣∣∣ψg.s.; J

⟩
, (C.5.8)

the norms are given as⟨
ψ
(ph)
ph′,L; JM

∣∣ψ(ph)
ph′,L; JM

⟩
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= 1 +
∑
K

(−1)2J+p+h′+K(2L+ 1)
√

2K + 1

×

{
J L J

K J L′

}{
L′ p h′

p L K

}⟨
ψg.s.; J

∣∣∣∣[c†πp ⊗ c̃πp
](K)∣∣∣∣ψg.s.; J

⟩
. (C.5.9)

C.5.2 PT -odd interactions

The matrix elements of the PT -odd interactions with the one-particle-one-hole excited states,

which are contributed from the core excitations are calculated as⟨
ψ
(ph)
p′h,L; JM

∣∣V̂ (PT2)
τ1τ2

∣∣ψg.s.; JM
⟩

=
⟨
ψg.s.; JM

∣∣V̂ (PT2)†
τ1τ2

∣∣ψ(ph)
p′h,L; JM

⟩
=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣
×
[[
d†τ1k′ ⊗ c†τ2l

](K)

⊗
[
c̃τ1i ⊗ c̃τ2j

](K)
](0)
0

[[
c†πp′ ⊗ d̃πh

](L) ⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣
×

[[[
d†τ1k′ ⊗ c†τ2l

](K)

⊗
[
c̃τ1i ⊗ c̃τ2j

](K)
](0)

⊗
[[
c†πp′ ⊗ d̃πh

](L) ⊗
∣∣ψg.s.; J

⟩](J)](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣× (−1)k
′+l−K+1 × (−1)k

′+j−K′+1

×
∑
K′

(2K + 1)(2K ′ + 1)


l k′ K

i j K

K ′ K ′ 0


×

[[[
c†τ2l ⊗ c̃τ1i

](K′)

⊗
[
c̃τ2j ⊗ d†τ1k′

](K′)
](0)

⊗
[[
c†πp′ ⊗ d̃πh

](L) ⊗
∣∣ψg.s.; J

⟩](J)](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣× (−1)j+l−K−K′+1

×
∑
K′

(−1)i+k′+K+K′√
(2K + 1)(2K ′ + 1)

{
l k′ K

j i K ′

}

× (2J + 1)
√

2L+ 1


0 0 0

L J J

L J J


×

[[[[
c†τ2l ⊗ c̃τ1i

](K′) ⊗
[
c̃τ2j ⊗ d†τ1k′

](K′)
](0)

⊗
[
c†πp′ ⊗ d̃πh

](L)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣×∑
K′

(−1)i+j+k′+l+1
√

(2K + 1)(2K ′ + 1)

{
l k′ K

j i K ′

}
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×
∑
K′′

√
(2L+ 1)(2K ′ + 1)(2K ′′ + 1)


K ′ K ′ 0

0 L L

K ′ K ′′ L


×

[[[
c†τ2l ⊗ c̃τ1i

](K′)

⊗
[[
c̃τ2j ⊗ d†τ1k′

](K′) ⊗
[
c†πp′ ⊗ d̃πh

](L)
](K′′)

](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijk′l

ṽ
(K)
ijk′l

⟨
ψg.s.; JM

∣∣×∑
K′

(−1)i+j+k′+l+1
√

(2K + 1)(2K ′ + 1)

{
l k′ K

j i K ′

}

×
∑
K′′

√
(2L+ 1)(2K ′ + 1)(2K ′′ + 1) × (−1)K

′+K′′+L

(2L+ 1)(2K ′ + 1)

×


j k′ K ′

p′ h L

K ′′ 0 K ′′


× (−1)

[[[
c†τ2l ⊗ c̃τ1i

](K′)

⊗
[[
c̃τ2j ⊗ c†πp′

](K′′) ⊗
[
d†τ1k′ ⊗ d̃πh

](0)](K′′)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijl

ṽ
(K)
ijhl

⟨
ψg.s.; JM

∣∣× ∑
K′K′′

(−1)i+j+h+l+K′+K′′+L

√
(2K + 1)(2K ′′ + 1)

2L+ 1

{
l h K

j i K ′

}

× (−1)j+h+L+K′′√
(2h+ 1)(2K ′′ + 1)

{
K ′ j h

p′ L K ′′

}

× (−1)
√

2h+ 1

[[[
c†τ2l ⊗ c̃τ1i

](K′)

⊗
[
c̃τ2j ⊗ c†πp′

](K′′)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijl

ṽ
(K)
ijhl

∑
K′K′′

(−1)i+l+K′+1

√
2K + 1

2L+ 1

{
l h K

j i K ′

}{
K ′ j h

p′ L K ′′

}

×
⟨
ψg.s.; JM

∣∣[[[c†τ2l ⊗ c̃τ1i

](K′)

⊗
[
c̃τ2j ⊗ c†πp′

](K′′)
](L)

⊗
∣∣ψg.s.; J

⟩](J)
M

=
∑
K

∑
ijl

ṽ
(K)
ijhl

∑
K′K′′

(−1)i+l+K′+L+1

√
2K + 1

(2L+ 1)(2J + 1)

{
l h K

j i K ′

}{
K ′ j h

p′ L K ′′

}

×
⟨
ψg.s.; J

∣∣∣∣[[c†τ2l ⊗ c̃τ1i

](K′)

⊗
[
c̃τ2j ⊗ c†πp′

](K′′)
](L)∣∣∣∣ψg.s.; J

⟩
=
∑
K

∑
ijl

ṽ
(K)
ijhl

∑
K′K′′

(−1)i+l+K′+L+1

√
2K + 1

(2L+ 1)(2J + 1)

{
l h K

j i K ′

}{
K ′ j h

p′ L K ′′

}

× δτ2,πδj,p′
√

2p′ + 1δK′,LδK′′,0

⟨
ψg.s.; J

∣∣∣∣[c†τ2l ⊗ c̃τ1i

](L)∣∣∣∣ψg.s.; J
⟩

+
∑
K

∑
ijl

ṽ
(K)
ijhl

∑
K′K′′

(−1)i+l+K′+L+1

√
2K + 1

(2L+ 1)(2J + 1)

{
l h K

j i K ′

}{
K ′ j h

p′ L K ′′

}

× (−1)j+p′−K′′+1
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∣∣∣∣[[c†τ2l ⊗ c̃τ1i
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⊗
[
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⟩
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= δτ2,π
∑
K

∑
il

ṽ
(K)
ip′hl(−1)i+l+1

√
2K + 1

(2L+ 1)(2J + 1)

{
l h K

p′ i L

}
× (−1)p

′+h+L√
(2p′ + 1)(2L+ 1)

×
√

2p′ + 1
⟨
ψg.s.; J

∣∣∣∣[c†τ2l ⊗ c̃τ1i

](L)∣∣∣∣ψg.s.; J
⟩

+
∑
K

∑
ijl

ṽ
(K)
ijhl

∑
K′K′′

(−1)i+j+l+p′+K′−K′′+L
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2K + 1

(2L+ 1)(2J + 1)

×

{
l h K

j i K ′
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K ′ j h

p′ L K ′′

}

×
⟨
ψg.s.; J

∣∣∣∣[[c†τ2l ⊗ c̃τ1i

](K′)

⊗
[
c†πp′ ⊗ c̃τ2j

](K′′)
](L)∣∣∣∣ψg.s.; J

⟩
(C.5.10)

C.5.3 Schiff moment

The matrix elements of the Schiff moment operator with one-particle-one-hole excited states con-

tributed from the core excitations are calculated as⟨
ψg.s.; JM

∣∣S(1)
0

∣∣ψ(ph)
ph′,L; JM

⟩
= −

⟨
ψg.s.; JM

∣∣∑
i′j

si′j

[
d̃πi′ ⊗ c̃πj

](1)
0

[[
c†πp ⊗ d†πh′

](L) ⊗
∣∣ψg.s.; J

⟩](J)
M

= −
∑
i′j

si′j ⟨1 0 J M | J M⟩
∑
K

(−1)1+2J+L+K
√

2K + 1

{
J L J

K J 1

}

×
⟨
ψg.s.; J

∣∣∣∣[[d̃πi′ ⊗ c̃πj
](1) ⊗ [c†πp ⊗ d†πh′

](L)
](K)∣∣∣∣ψg.s.; J

⟩
=
∑
i′j

si′j ⟨1 0 J M | J M⟩
∑
K

(−1)2J+L+K
√

2K + 1

{
J L J

K J 1

}

× (−1)i
′+j
⟨
ψg.s.; J
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](L)
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K J 1

}

× (−1)
√

3(2L+ 1)(2K + 1)


j i′ 1

p h′ L

K 0 K


×
⟨
ψg.s.; J

∣∣∣∣[[c̃πj ⊗ c†πp
](K) ⊗

[
d̃πi′ ⊗ d†πh′

](0)](K)∣∣∣∣ψg.s.; J
⟩

=
∑
i′j

si′j ⟨1 0 J M | J M⟩
∑
K

(−1)2J+L+K+i′+j+1
√

3(2L+ 1)(2K + 1)

{
J L J

K J 1

}
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{
1 j i′
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}

× δi′,h′
√

2h′ + 1
⟨
ψg.s.; J
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](K)∣∣∣∣ψg.s.; J
⟩



C.6 Over-shell excitations 155

=
∑
j

sh′j ⟨1 0 J M | J M⟩
∑
K

(−1)2J+1
√

3(2L+ 1)(2K + 1)

×

{
J L J

K J 1

}{
1 j h′

p L K

}⟨
ψg.s.; J

∣∣∣∣[c̃πj ⊗ c†πp

](K)∣∣∣∣ψg.s.; J
⟩
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∑
j

sh′j ⟨1 0 J M | J M⟩
∑
K

(−1)2J+1
√

3(2L+ 1)(2K + 1)

×

{
J L J

K J 1

}{
1 j h′

p L K

}
× δj,pδK,0

√
(2p+ 1)(2J + 1)
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∑
j

sh′j ⟨1 0 J M | J M⟩
∑
K

(−1)2J+1
√
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×

{
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K J 1

}{
1 j h′
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}
× (−1)j+p−K+1

⟨
ψg.s.; J

∣∣∣∣[c†πp ⊗ c̃πj

](K)∣∣∣∣ψg.s.; J
⟩

= sh′p ⟨1 0 J M | J M⟩ (−1)2J+1
√

3(2L+ 1)(2p+ 1)(2J + 1)
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3(2J + 1)

(−1)1+p+h′√
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+
∑
j

sh′j ⟨1 0 J M | J M⟩
∑
K

(−1)2J+j+p−K
√

3(2L+ 1)(2K + 1)

×

{
J L J

K J 1

}{
1 j h′

p L K

}⟨
ψg.s.; J

∣∣∣∣[c†πp ⊗ c̃πj

](K)∣∣∣∣ψg.s.; J
⟩

= sh′p ⟨1 0 J M | J M⟩ (−1)p+h′+1
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∑
j

sh′j ⟨1 0 J M | J M⟩
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K
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√

3(2L+ 1)(2K + 1)

×

{
J L J

K J 1

}{
1 j h′
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}⟨
ψg.s.; J

∣∣∣∣[c†πp ⊗ c̃πj

](K)∣∣∣∣ψg.s.; J
⟩
. (C.5.11)

By exchanging the subscripts of the one-body matrix elements, we have⟨
ψg.s.; JM

∣∣S(1)
0

∣∣ψ(ph)
ph′,L; JM

⟩
= sph′ ⟨1 0 J M | J M⟩

+
∑
j

sjh′ ⟨1 0 J M | J M⟩
∑
K

(−1)2J+p+h′−K
√

3(2L+ 1)(2K + 1)

×

{
J L J

K J 1

}{
1 j h′

p L K

}⟨
ψg.s.; J

∣∣∣∣[c†πp ⊗ c̃πj

](K)∣∣∣∣ψg.s.; J
⟩
. (C.5.12)

C.6 Over-shell excitations

C.6.1 One-particle-one-hole excited states

Finally, we consider the excitations from the core region to beyond the valence space. Those kinds

of contributions are called over-shell excitations in this paper. The excitated configurations are given
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Figure C.3: The protons in the inert core can be excited beyond the valence space. Those contribu-

tions are indicated by over-shell excitations.

as ∣∣ψ(ph)
ij′,L; IM

⟩
= −

[[
a†πi ⊗ d†πj′

](L) ⊗
∣∣ψg.s.; J

⟩](I)
M

= −
[[
a†πi ⊗ d†πj′

](L) ⊗ T (J)†
](I)
M

∣∣0⟩
= −

∑
MLMJ

⟨LML J MJ | I M⟩
[
a†πi ⊗ d†πj′

](L)

ML
T

(J)†
MJ

∣∣0⟩. (C.6.1)

The notations of the creation and annihilation operators are the same as above subsections.

The overlaps of the one-particle-one hole excited states can be calculated as the same with the

core excitations. The results are given as⟨
ψ
(ph)
if j′f ,L

′ ; JM
∣∣ψ(ph)

iij′i,L
; JM

⟩
= δif ,iiδjf ,ji(−1)L+L′

, (C.6.2)

and it is found that those states are automatically normalized as⟨
ψ
(ph)
ph′,L; JM

∣∣ψ(ph)
ph′,L; JM

⟩
= 1. (C.6.3)
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P. Mayet, M. N. Mineva, A. Aprahamian, J. Benlliure, et al. Isomers in neutron-rich a ≈ 190

nuclides from 208 pb fragmentation. The European Physical Journal A-Hadrons and Nuclei,

Vol. 23, No. 2, pp. 201–215, 2005.

[89] S. K. Lamoreaux, J. P. Jacobs, B. R. Heckel, F. J. Raab, and N. Fortson. New constraints

on time-reversal asymmetry from a search for a permanent electric dipole moment of 199Hg.

Phys. Rev. Lett., Vol. 59, pp. 2275–2278, Nov 1987.

[90] J. P. Jacobs, W. M. Klipstein, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson. Testing

time-reversal symmetry using 199Hg. Phys. Rev. Lett., Vol. 71, pp. 3782–3785, Dec 1993.

[91] J. P. Jacobs, W. M. Klipstein, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson. Limit on the

electric-dipole moment of 199Hg using synchronous optical pumping. Phys. Rev. A, Vol. 52,

pp. 3521–3540, Nov 1995.

[92] M. V. Romalis, W. C. Griffith, J. P. Jacobs, and E. N. Fortson. New limit on the permanent

electric dipole moment of 199Hg. Phys. Rev. Lett., Vol. 86, pp. 2505–2508, Mar 2001.

[93] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson.

Improved limit on the permanent electric dipole moment of 199Hg. Phys. Rev. Lett., Vol. 102,

p. 101601, Mar 2009.

[94] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel. Reduced limit on the permanent electric

dipole moment of 199Hg. Phys. Rev. Lett., Vol. 116, p. 161601, Apr 2016.

[95] V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov. On the p-and t-nonconserving nuclear

moments. Nuclear Physics A, Vol. 449, No. 4, pp. 750–760, 1986.

[96] V. F. Dmitriev and R. A. Sen’kov. Schiff moment of the mercury nucleus and the proton dipole

moment. Phys. Rev. Lett., Vol. 91, p. 212303, Nov 2003.

[97] V. F. Dmitriev and R. A. Sen’kov. P-and t-violating schiff moment of the mercury nucleus.

Physics of Atomic Nuclei, Vol. 66, No. 10, pp. 1940–1945, 2003.

[98] V. F. Dmitriev and V. V. Flambaum. Relativistic corrections to the nuclear schiff moment.

Phys. Rev. C, Vol. 71, p. 068501, Jun 2005.

[99] J. H. de Jesus and J. Engel. Time-reversal-violating schiff moment of 199Hg. Phys. Rev. C,



164 References

Vol. 72, p. 045503, Oct 2005.

[100] Shufang Ban, Jacek Dobaczewski, Jonathan Engel, and A. Shukla. Fully self-consistent calcu-

lations of nuclear schiff moments. Phys. Rev. C, Vol. 82, p. 015501, Jul 2010.

[101] J. Engel and P. Vogel. Spin-dependent cross sections of weakly interacting massive particles

on nuclei. Phys. Rev. D, Vol. 40, pp. 3132–3135, Nov 1989.

[102] F.G. Kondev. Nuclear data sheets for A = 205. Nucl. Data Sheets, Vol. 101, p. 521, April

2004.

[103] C. J. Chiara and F. G. Kondev. Nuclear data sheets for A = 204. Nucl. Data Sheets, Vol. 111,

p. 141, January 2010.

[104] F. G. Kondev. Nuclear data sheets for A = 203. Nucl. Data Sheets, Vol. 105, p. 1, June 2005.

[105] S. Zhu and F. G. Kondev. Nuclear data sheets for A = 202. Nuclear Data Sheets, Vol. 109,

No. 3, pp. 699–786, 2008.

[106] N. Fotiades., R. O. Nelson, M. Devlin, and J. A. Becker. New levels and a lifetime measurement

in 202Tl. Phys. Rev. C, Vol. 76, p. 014302, Jul 2007.
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D. Rudolph, A. B. Garnsworthy, R. Hoischen, J. Gerl, H. J. Wollersheim, F. Becker, P. Bed-
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letly, G. Ilie, J. Jolie, G. A. Jones, M. Kmiecik, F. G. Kondev, R. Krücken, S. Lalkovski,

Z. Liu, A. Maj, S. Myalski, S. Schwertel, T. Shizuma, P. M. Walker, E. Werner-Malento, and

O. Wieland. Isomeric states observed in heavy neutron-rich nuclei populated in the fragmen-

tation of a 208pb beam. Phys. Rev. C, Vol. 84, p. 044313, Oct 2011.

[111] P. Zeyen, K. Euler, V. Grafen, C. Günther, M. Marten-Tölle, P. Schüler, and R. Tolle. Inves-
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C. Wheldon, T. R. Rodŕıguez, T. Alexander, G. de Angelis, N. Ashwood, M. Barr, G. Ben-

zoni, B. Birkenbach, P. G. Bizzeti, A. M. Bizzeti-Sona, S. Bottoni, M. Bowry, A. Bracco,

F. Browne, M. Bunce, F. Camera, L. Corradi, F. C. L. Crespi, B. Melon, E. Farnea, E. Fioretto,

A. Gottardo, L. Grente, H. Hess, Tz. Kokalova, W. Korten, A. Kuşoğlu, S. Lenzi, S. Leoni,
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Hernández-Rey, J. Hisano, A. Höcker, J. Holder, A. Holtkamp, T. Hyodo, K. D. Irwin, K. F.

Johnson, M. Kado, M. Karliner, U. F. Katz, S. R. Klein, E. Klempt, R. V. Kowalewski,

F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, J. Lesgour-

gues, A. Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T. M. Liss, L. Littenberg, K. S. Lugovsky,

S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano,

A. D. Martin, A. Masoni, J. Matthews, U.-G. Meißner, D. Milstead, R. E. Mitchell, K. Mönig,

P. Molaro, F. Moortgat, M. Moskovic, H. Murayama, M. Narain, P. Nason, S. Navas, M. Neu-

bert, P. Nevski, Y. Nir, K. A. Olive, S. Pagan Griso, J. Parsons, C. Patrignani, J. A. Peacock,

M. Pennington, S. T. Petcov, V. A. Petrov, E. Pianori, A. Piepke, A. Pomarol, A. Quadt,

J. Rademacker, G. Raffelt, B. N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli,

A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, R. A. Ryutin, C. T. Sachrajda,

Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A. J. Schwartz, D. Scott,

V. Sharma, S. R. Sharpe, T. Shutt, M. Silari, T. Sjöstrand, P. Skands, T. Skwarnicki, J. G.
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