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The L?-representations of the Second Variations and the

Lojasiewicz Inequalities for Decomposed Mobius Energies

Katsunori Gunji

Abstract

Knot energies, one of which is the Mobius energy, are constructed to measure the well-
proportionedness of the knot. The best-proportioned knot in the given knot class may be
determined by the gradient flow of the energy. Indeed, Blatt showed the global existence
and convergence of the gradient flow of the Md&bius energy near stationary points. The
Lojasiewicz inequality played an important role in proving the results. The inequality can
be proved by properties of L?-representation of the first and second variations. On the other
hand, Ishizeki and Nagasawa showed that the Mobius energy can be decomposed into parts
keeping the Mdbius invariance and each part has the L2-representation of the first variation.
In this thesis, we discuss the L?-representation of the second variation for each decomposed
part of the Mobius energy, and derive it explicitly. As a consequence of it and Chill’s theory,
the Lojasiewicz inequality is derived from the representations.

Keywords: the Mobius energy, decomposed Mobius energies, the second variation, the
Lojasiewicz inequality.
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1 Introduction

1.1 Knot energy and its minimizer

Let f be a closed curve in R™ parametrized by the arc-length parameter s. We define the

Moébius energy £ of f, whose length is L, by

E(f) = \//(]R/[:Z)2 <%(f)d81d82,

1 1
IAFIR Z(F(s1), £(52))*

where

A (f)
Hereafter we use the notation
Av = V1 — V2, U; = v(si), As = S1 — Sa,

where s1,82 € R/LZ,v : R/LZ — R™. Also Z(f(s1), f(s2)) means the distance along the curve
f between f(s1) and f(s2). Without loss of generality, we may assume |As| < % Then we can
write Z(f(s1), f(s2)) = |As| simply. This energy is originally introcduced by O’Hara [13] under



the motivation to compose energies which are well-behaved for the loop f € R? and blow up for

curves with self-intersections. Indeed, he defined as

0= [, (i 70 ~ 0 )

for n = 3, a,p > 0, which is called O’Hara’s energy. One of the main purposes of studying the

knot energy is to consider a minimizing problem in a fixed knot type. The energy &, , avoids
the deformation with self intersection. However, knot-type changings may occure with pull-tight
phenomena which are vanishments of tangles. O’Hara revealed that this problem does not occure

in the case of ap > 2 and the minimizer exists in any knot types.

Theorem 1.1 ([14]) Let a knot K. be a connected sum of K and a small tangle T.. A difference
of energy D(e) = E(ap)(Ke) —E(a,p)(K) behaves as follows in a pull-tight process T. — {a point}:
1. D(e) blows up when ap > 2. 2. D(e) converges a positive constant when ap = 2. 3. D(e)

vanishes when ap < 2.

Theorem 1.2 ([15]) Let n = 3. There exists a minimizer (under rescaling) of £, for any knot

types if and only if ap > 2.

The energy £ considered in this thesis is £ 1, which is not the case of Theorem 1.2. That is,
the existence of minimizers is not clear. We have only a partial answer.
Freedman-He-Wang showed that the energy £ is invariant not only under scaling but also

under Mo6bius tranformation.

Theorem 1.3 ([5]) Let f be a simple closed curve in R® and let T be a Mdbius transformation
of R¥U{oc}. If To f CR3, then E(T o f) =E.

Making use of the property, if the knot-type is prime, pull tight can be suitably scaled without

changing energy level and a minimizer exists.

Theorem 1.4 ([5]) Let K be an prime knot. There exists a simple closed curve fy in R® with
knot-type K such that E(f ) < E(F) for any other closed curve f in R® of same knot type.

On the other hand, the existsnce of minimizers is still open for a composit knot type. Kusner-
Sullivan conjectured composit knot types do not have minimizers [12]. Several mathematicians
made approaches to this problem.

Blatt showed the regularity of f whose knot energy is finite.

Theorem 1.5 ([1]) Let f € CYY(R/LZ) be an embedded regular curve parametrized by arc-
length. Then E(f) < oo if and only if f € H%(R/L‘Z) NWL(R/LZ) and f is bi-Lipschitz.

Here we say a function f is bi-Lipschitz in R/£Z when there exists a constant b > 0 such that,

for any s1,s9 with s1 # so mod L,

1£(s1) = f(s2)llrn

|51 — s2]

< < b.

Also we call b the bi-Lipschitz constant.



1.2 Variational formulae and decomposition of Mobius energy

We use § to mean the first variation of a energy F, that is
d
SE(f¢] = —E(f +<¢)
€ e=0
He [7] gave the variational formulae for the Mébius energy as follows. Note that x € R/LZ

means a general parameter.

Theorem 1.6 ([7]) Let f € C**(R/Z) be a simple curve and let 0 < o < 1. Then for any
¢ € H2(R/Z), it holds that

sefo)= [ GO S s,
G(f)(a)
=2 /R/Z { QPTT%?Z;V—(?WK%T» - T <||ff(/9£f)ll)ms )} ||f<o!1f>l(jc?<|fi>||§s e
where
Py = -v SO

Theorem 1.7 ([7]) Let f € C>*°(R/Z) be a simple curve. Then there exists a pseudo-differential

operator L whose order is less than 2 such that

H(f.9) =2 Ppi(-A) Ppio + Lo,

where Ay is a Laplacian with respect to arc-length parameter s.

Ishizeki-Nagasawa showed that £(f) is decomposed into three parts which keep the Mdbius

invariance.
Theorem 1.8 ([8],[9],[10]) Let f € H2(R/Z) N W be bi-Lipschitz. There holds

E(f) =&(f) +&(F) +4,

// d81d82 (Z = 1,2),
(R/LZ)2

AT (§-
M — =7 1Re
= aragie,
2 T(s1) - T(s2) Af-7(s1)
M = det ,
)= agiE ( Af-r(s2)  IAFIR. )
where T = f' = % Moreover, let
_ L (-
dRE R V=

be the inversion with respect to sphere with center ¢ and radius r. The following assertions hold:



1. Bach energy & is invariant under the dilation.

2. If f € WYNR/LZ), then E1(F) + E2(F) = E1(p) + Ea(p).

3. If e ¢ Im f and E(f) < oo, then &(f) = &1(p), E2(f) = E2(p)-

b If f € CYNR/LZ) and ¢ € Im f, then E1(F) = E1(p) + 272, Ex(F) = Ea(p) — 272,

Furthermore, they showed that the first and second variations of &; are given as (bi-)linear
operators on W2 (R/Z) N Wh*(R/Z), and the first variations have the L2-representations in
their paper [9, 11].

We use §2 to mean
32
10e9

E(f+e1¢+e2v)

£1=0,e2=0

Ishizeki-Nagasawa gave the density functions of first and second variations of Md&biius energy

associated with the Lebesgue measure dsidss.

Theorem 1.9 ([9]) Let f € H2(R/Z) N W™ be bi-Lipschitz. There holds
vogplel= [[ apgldnds
CCE(F)]d ] = //(R/LZ)2 A ()b, Pldsidss,

_Qf-Q¢ 24(F)Af-AP

R E I V] - v
Qi Qe+ Qof Qo 2.46(F)AF- A
G V] - V]
Q6 Qv S(F.8)-S(F) 2 (DIGASF - Ay
AN = 57, AT, 17T
C(PWIAF A 246(F)AG- AY
AR AT
e
+ Sl(fv(i))SZ(fv,l;b) + gQ(fvd))Sl(fa’lp)
SAF TR
C(PIGALAG G (HEIAF A 2a(F)Ad- Ay
A7, 57T IAFZ.

where

Qu=1v| —v), Quu=(-1)"12{v)—(Rf- 7 Ruv},

_ |As|Av N ,
Rv = TAfa s Rv = 2(1:1 + vy),

S(u,v) = Ru-Qu + Qu - Ru, gi(u,v) = Ru - Q;v + Q;u - Ruv.

Also we use the decomposition

Qi = (—1)""1(Q2ip + Q:i),
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where

Q2ip = 2T ¢,
A¢
2
Q2z¢—_2Tf E7
Ty (1Al > A
s (nAfan As @

Let A, denote the Laplacian with respect to the arc-length parameter s. Ishizeki-Nagasawa gave

the L2-representation of 4&;.

Definition 1.1 Let ¢ € H3(R/LZ). The third order pseudo-differential operators L; : H*(R/LZ)
— L32(R/LZ), (i = 1,2) are given by

k|
Lig=2m(-2)1¢ ~ 43 |28 i ()i o) oon + 526~ &),
keZ
5 k|®
L2¢:—§w<—As>f¢+§Z T s @ i)
kEZL
b Bt (6B,

where

si (t) = _/t sn/i)\d)\, or(s) = %exp (271,”68> , @(s) = (s + g)-

Theorem 1.10 ([11]) Let f € H*(R/LZ) be bi-Lipschitz continuous and let ¢ € L*(R/LZ).
Then there exist a mapping G; : H*(R/LZ) — L*(R/LZ) such that

0&(Flol = (Gi(f), D) L2/ c2)
for each i € {1,2}. Moreover, there exists N; : H¥(R/LZ) — L*(R/LZ) such that
Gi(f)=Lif + Ni(f),
and for any o € (0, 3), there ezists a constant Co(|| f| ga-o) such that
IN:(F)llz2 < Calllfllz-<)
for each i € {1,2}.

We call the function G;(f) L?-gradient.
In this thesis, we will extend the result [11] to the existence of the L2-representaion of the

second variation, whose proof takes up a substantial part of the thesis.

Theorem 1.11 Let f € H3(R/LZ) be a bi-Lipschitz continuous function and ¢ € H3(R/LZ),
¥ € L2(R/LZ). Then

where

Prv=v—(v-7)T.



Furthermore, for any « € (0, %)7

IN:{(O) D 22w/ cz) < Clflas—o®/czylPl m3—o®/cz)
holds.

Theorem 1.11 will be proven in §§3—4 after the preliminaries (in §2).

1.3 The Lojasiewicz inequality

Let V, W be a pair of Banach spaces which satisfies V < W, and let || - || denote a norm of
W. Let E be a functional on V', and we write E’ for the Fréchet derivative of E. Let v € V. If
there exist 6 € (0,%),c > 0 and a neighborhood U C V of u such that there holds

|E(v) = E(u)|'™" < cl|E'(v) |w

for any v € U, then we say that E satisfies the Lojasiewicz inequality in the neighborhood U.
We call 0 the Lojasiewicz exponent.

The Lojasiewicz inequality is used for asymptotic analysis of evolution equations. For example,
the following fact is known. Let V), W be a pair of Hilbert spaces satisfying V < W. For a
continuous function F from V to W, we consider the dynamical system

d
Zu(t) + F (u(t)) =0, ¢>0. M)

Now we let Ry = [0,00). We define the w-limit set w(u) of u € C(R4,V) in V as

ww) =) J{u()}

t>0 s>t

ll-llv

Chill-Haraux-Jendoubi [4] showed the following theorem.

Theorem 1.12 [4, Chill-Haraux-Jendoubi, Theorem 7.] Let u € CY(R.,V) be a solution
of (1). We assume the following.

1. There exist a functional £ € C*(V,R) and a constant o such that for any u € V satisfying
Fev,
(€' (u), F(u))vr,v = all€ (u)llv | F(w)|w-

2. Under the above condition, if p € V satisfies £'(p) = 0, then F(p) = 0 holds.

3. There ezist a function ¢ € w(u) and a constant 6 € (0,3] such that € satisfies the

Lojasiewicz inequality near ¢ for the exponent 6.
Then there holds lim;_, o u(t) = ¢ in V. In addition to 1-3, we assume the following condition.

4. There exists a constant 8 such that for any uw € V' satisfying F € V,

(& (w), Fu)vry = BlIE (W)l



Then

O (e™) 6=13),
Ju(t) - el = { oo

m
—~
=
N[
~—
~

holds.

In this thesis, we will show the Lojasiewicz inequality for the decomposed M&bius energies
in §5, which is an application of Theorem 1.11. Blatt analyze the asymptotic behavior of the

gradient flow.

Theorem 1.13 ([2]) Let f, be a local minimizer of £ in C*(R/Z). Then for any 3 > 0, there
exists a neighborhood V' of fo in C*8 such that for all f; € V, the heat flow

of
= -G(f)

with nitial data f; exists for all times and converges to f. satisfying E(fo) = E(fy) after

suitable reparametrization

Here G is the L2-representation of the first variation of £ given by He as above. Note that
we use a general parameter x € R/Z instead of s € R/LZ. In order to prove this theorem, he

showed that £(-) satisfies the Lojasiewicz inequality.

Theorem 1.14 ([2]) Let a function f, € C°(R/Z) be a stationary point of &; for i € {1,2}.
Then there exist 0 € (0,3),0 > 0,c > 0 such that if a function f € H*(R/Z) satisfies ||f —
E(F) = EF)l' ™0 < CUG(SF) 2R /2)

follaswyz) < o, the inequality
e ( | 6@ d)
R/Z

holds for some exponent 6 € (0, %) and constant C > 0 independent of f.

2
Rn

f'(@)

We will show similar estimates for the decomposed energies.

Theorem 1.15 Let a function f, € C*(R/Z) be a stationary point of & for i € {1,2}. Then
there exist 6 € (0, 3),0 > 0,¢ > 0 such that if a function f € H*(R/Z) satisfies || f—follr2®/z) <
o, the inequality

E(F) = E(F)I' 0 < el|Gi(F)l 22 ry2
holds.

We will show Theorem 1.15 by use of abstract theory developed by Chill [3] in §5. To apply it
we need the analyticity of the first variation and the Fredholm property of the second variation.
They follow from the L2-representation of the first and second variations.

This thesis is based on [6] with the addition of details.



2 Preliminaries

Let X be a normed function space comprising of functions on R/LZ. We denote the norm
|-l x@®/cz) by |- [|x in §§2-5. Similarly when X is a Hilbert space, we denote the inner product

(*s)x(r/cz) simply by (-,-)x.
We write {As # 0} for the set

{As # 0} = {(s1,52) € (R/LZ)?|s1 # 53 (mod L)}

In this section, we will see the asymptotic behavior near As = 0 of several functions on
{As # 0} which compose the integrand of the second variation of &;. Furthermore we will show
that certain combinations of these functions become integrable and are dominated by the norms

of f and ¢.
Definition 2.1 For h: {As # 0} — R™ and a > 0, we use the notation
h(s1,s2) = O(As)* as As — 0

to mean

h '
sup |h(s1,52)|rn -
s17#52 |$1 - 82|a

Definition 2.2 Let i € {1,2},a,b € R,u € C*(R/LZ,R"). When v,w € L*(R/LZ,R™), we

set

P00 0, ), ) 1= | et bOmu L,
i s Uy 1,92) - (AS)3 [ 79

and when v € L*(R/LZ,R), we set

Do, 0)(1,80) = vy 222U T D
q; , 1,52) ¢ i (As)3 .

Definition 2.3 Let f € H3(R/LZ) be a bi-Lipschitz continuous function and let ¢ be a function
on R/LZ, and let i,j € {1,2}, and k € N. We define A;; and 4" by

1 |As|
ME(f) = < — 1) )
)= G s

Lemma 2.1 Then the following assertions hold.
(i) If ¢ € CL1(R/LZ), there holds

A

Y
2?2 g o(),
1 ||Ag /
—_— || — O, < 1,1
s a9, <lolens
A
swp |[22] < @llon
51782 R7



for each i=1,2.
(ii) Let o € (0,1). If ¢ € H>=*(R/LZ), there holds

A¢d 1,
ANs @+ O(As)2 7,
1 Ad)
sup ———— <lollz2--o,
51782 |AS|77Q
Ag
sup ||——| <[ @llmz--
s17#82 As R
for each i =1,2.
Proof (i) To prove this inequality note that
1 ‘m o H . ¢3 &,
[As| i As| R
< C||¢||c1,1-
The remaining statements follow from the inequality.
(i) Using H2~® < C'*2~* we have
1 A 1 [
_— ﬁ _ ; < H ¢3 ¢z dS
|As|z= || As R |As|’_“ R
< CII¢||H2—a,

where C' is a constant dependent on «. Similary to (i), we can obtain the statements.

Lemma 2.2 Then the following assertions hold.
(i) If ¢ € CLL(R/LZ), there holds

Aii
AZ]S = (rb; + O(As),
Aijd
sup - < ll¢llcr,
S1782 |AS| ’ R
Z]¢
sup ||—— < |lo|lcr
. e (8 ol

for each i=1,2.
(ii) Let o € (0,1). If ¢ € H>=*(R/LZ), there holds

N i
ﬁ = ¢; + O(As)277,
1 A ¢
sup i, ] ¢ < ||¢||H2*“7
S17£82 |AS|2 R™
sup || —==| < |[|@]lz2-a
31¢52 AS R

for each i =1,2.

10



Proof The assertion is obvious from Lemma 2.1.

We denote the curvature vector by k = f”.

1Y and let f € H3™ be bi-Lipschitz continuous, and let b be the

Lemma 2.3 Let a € (0,5
bi-Lipschitz constant of f. Then

i =15 oagiee,
1 i1
sup ——— A (f) — ————| < C(b, “a
e )~ £ OO Se)
for any i € {1,2}.
Proof Since k is bounded in the norm || - ||, and since

S1 S1
wmm@=/ /(PWyMMwm

1 S1 S1 9
= 5/ / |73 — T4||gndssdsy
S2 S2
1 S1 S1 Sa Sa
= 5/ / / / K5 - Kgdssdsgdssdsy,
S2 S2 S3 53

2= I AF Izl < ClFN s
k

( |As| )k_l_( |As| _1> 1( |As| )l
IAf||rn A l [Af||rn

) (.ffi'w - ) (L

we have )
sup ——|(As
s17#82 |A5|4 ‘( )

Moreover, we have

Il
=)

[A5] Af
N = AT
2 k—1 l
(D)~ [AFR 1 Z('M)
(As)? IAFlzn +|\Af\|§n =\ [Aflr-)
[As| [As|? =
we obtain
1 ( |As| >’“
sup =1 <CO, [ fllms-—o)-
siss [As2 [\ [[AFf|rn
Using
S1 S1 S4 S4 A 4
/ / / / ds5d56d33d54:( )
S2 S2 S3 S3 6
we obtain

”"‘31”]12%" (A$)4

2= IAfIIR —

8)" =
1 S2 S2 S4 S4
= */ / / / (K/5 cKRg — Kj - Kli)d55d86d83d$4
2 S1 S1 S3 S3
1
T2

/ / / { K5 — Kl) ke — Ky - ( Ke — "-31)} dS5dSGd83d84

0(A

11



Since |s5 — s, |s¢ — si| < |As|, we have

ks — killrn < Mmsﬁ—a
|85 — 8|27

< O f|lpro—a | As] 27,
and hence it holds that

2 2 [ 4
(As)” = [[Af|n (As)*| < C([|f | rra—<)-

12

sup —————
51782 |AS|4+%7Q

Therefore, we obtain

///(f)_llml\n%n 11 kiRl [As? IIMII%V( |As|? _1)
12 [AfllR.  |Asf? 12 [[Afz. 12 \|Afl&-
1 1 l|Kil|Zn
= (A2 — ||Af2. — TR (A )4
AT (&0 - 1a71 ~

112 2
+WMW{IA% _%7
12 | AFIE-
[l
sup ————— M - —=\| < b, 3—a ).
S Aaie (f) B O, 1 F Nl zz5-)

O

Lemma 2.4 Let f € H> *(R/LZ) be bi-Lipschitz continuous with a € (0,3), let b be the bi-
Lipschitz constant of f, and let ¢ € H3=*(R/LZ). Then, for i,j,k,1 € {1,2}, the following

assertions hold:

TFp = (_Tl)iq&;'As + O(As)%_a = O(As),

The  (~1)i
KNG

L2 g < CO)l e

1
sup
51782 |AS|%7(X

Furthermore there holds

_lmlR (As)?

T f -1 = ; +O(As)E* = O(As)?,
L |Tff i lsilze
T L + <C(b 3—a
5?171'}5)2 |AS|§_a (A$)2 6 ( )||¢HH
for and
2. (As)? 5
TFf 1= Iz (As)® Rg( °) + O(As)2 ™™ = O(As)?,
1 TFf T kil
. i - <C(b 5ea
eV o R
fori#£j.

12



Proof Since

//d54d53 )(AS),

we have
o - e - {(nﬁn') 1} 2820 E Ry
) {(nA'in') 1} R RO
ST
-{( Hiiﬁ;n AL e e
=0(A

Moreover, as 7(s) - k(s) = 0,
1 S1 S3
TlofT] = 7/ / R4'Tjd$4d83
As J,,
AS /92 / Ky - — T4)d84d83
s1
=% ,/32 -/S /54 Ky - ksdssdsydss = O(As)?.

On the other hand, we have

1 .
S1 S3 Sj 6
/ / / d55d54d83: 1
5 Jon Jou (s (6 #)).

Consequently it holds that

1+ (As) 2. (As)?
TOf i+ ||K’l||]R S _ As/ / / Ky - Ks d55d84d8 4 HK’lH]R6( S)

6
81 S3
AS/ / / {K’4 K5 — HK’ Sl H]Rn}dS5dS4d83

—OAS e

and if ¢ # j, there holds

«(As) 1 k(512
T f - 7(s) — HML = / / / Ky - Ksdssdsydss —
3 As so Jsi Jsa .

Rn (As)?

1 S1 S3 Sj
= As {ks- ks — ||Ki][fn } dssdsadss
= O(As)3 .

13



Therefore, we obtain

As| k
TFf 1 = ( | ) T°f -7
o afle) 07

— o) (IR L o)
T NED Y
and for i # 7,
1z, = Il BT oag i
O
We denote
Q20 = 2(As).4(f) {(71 'Tz)% + (if -7-2) ¢>’1} —AAs () (if -7-2) %.

Lemma 2.5 Let a € (0, %) and let f € H3™ be bi-Lipschitz continuous, and let ¢ € H3~2.
For each i,j € {1,2}, it holds that

Qj’j’ = (=11 + O(As) 7,

S R Gt 1y SOOIl
Qs _ nnﬂgmg 1 O(asa,

i |As|1;a o e SOOI

Furthermore we have

0 ~ . [Quf A¢ Af Q¢
ale2¢< As '”)m*(m‘“) As

L
| 2 <Q21f _n) (Af .72) 22 4 Que.

IAF[ln \ As As

14



Proof The assertions follow from Lemma 2.4 and

%@qu — 9. (-1) { (71 T2)A+ (A -T2)¢,  2AAF-T)(AS - TQ)M,}

||Af||]R" 1Al
Gtz ()
?,

“aotinge et (3 m) at)
4 (Af Ad 4 [ (As)t [Af Af Ad
As(As T)AS_AS{A 12, (m'“)‘l}(m T)As
2 Af 2 (Af b _ A0
302 2 () -2
+2 -

i - Homo 32 (30 m) o)

G SOV ENEY

As As As

2T A6 (A 210
o As As As 2 As

2 (A5)2 A¢ Af ’
T As { AR, 1} {(“ TR T (As '”) ¢1}

AT ) (AF ) A

As As As
_ Q~21f._l_ A¢+<f7_>Q21¢
“\As ) As As ' ?) As

2(As)* [Qorf Af Ad -
+ AR, ( As .7'1> (As .7-2> As + Q2.

Lemma 2.6 Let « € (0, %) and let f € H3™ be bi-Lipschitz continuous and, let ¢ € H3~2.
Then

O

II¢”HR

Mo () = +0(As)E 7,

H¢£'||Rn
2

sup AMa(P) + < O, 1@l a—o).-

81?562 |AS|7_OL

Proof The assertion is derived from Lemma 2.5 as

Q19 Q20
A= AR,
1019 Q29 LY S (As)? QD¢ Qa0
2 As As 2 IAf]3. As  As
_ 1 1o ” 1o 1 (AS)Q Qld) Q2¢
_ ”d’é”]?{" + O(As)%ia + O(A8)2
[ ES

=- =0t O(As)z~7,

15
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Lemma 2.7 Let o € (0, %) and let f € H3~% be bi-Lipschitz continuous. For all k € N and
i € {1,2}, we have

-«

k
MF(F) = Ellmllfxn + O(As)?2
Proof The assertion follows from

|As[2t _1_( Asf? _1)2( s )
IAFIE [AFIE. 1A Fllze

I o~
- O

_(AsP 1) 1+ 0(As)2)!
(a7 2 (1408

1
= {(AS)212 ||I£1

2, + O(As)ia} (k + O(As)?)

2+ O(As)3 ™,

k
=(A9)* |,

Lemma 2.8 Let a € (0, %) and let f € H3~% be bi-Lipschitz continuous. Then it holds that

TS 1) )

o) = LT L

ds1

Proof Since s is arc-length parameter, we have

0 0 1 1
957 =55, { IAfI2. ~ <As>2}
- —2Af cT1 2
AR Ay

_2As)" [ AF IS O 1
_IIAfllﬁin{ As 1“}<As>3 2{||Af||ﬁ§n 1}<As>3

{2 00) )4

TTAfIE A As AspP T As
:_2T14f'7'1 _2///4(f)
(As)3 As

Lemma 2.9 Let ¢ € H® and ¢ € C%. Then it holds that

Agb// B 1
//(]R/Lz)2 w ’ ¢1d$1d82 - _§<L1¢7 ¢>L2~

Proof According to [11, Proposition 3.1],

// Ao - AYdsidsy = (L1¢, ) 2
(R/LZ)?

(As)?
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holds. Now we have

/.o g Ao

[ . Gt tnon - //AM S - Whdsidss
LS i [
2 [, iae e
(et (semamse
2(¢(8+6) ()> EEEE

- 0 A¢
2//AS|>E (881 > A'(bdsldsz

A1/)dsld52 + O( )

(

A
:‘2//AS.ZE{<§§>2 (ig }dwdsdes +0(0)

{

Bs)? + 0} -ap1dsidsy + O(e).

|
1\3

Therefore we obtain

eJ0

lim//As>E A¢ -ap dsidsy = <L1¢a¢>L2

Lemma 2.10 For any ¢, € H3, it holds that

// M $rdsidss = (Lo, )e
(R/LZ)2 (As) !

S

Furthermore, the following assertions hold:

// <p611,b(u7 v, w)(sh 52) - p;»b(u’ v, w)(SQa 81)) : ’lpldSldSQ
(R/LZ)2

_a+b
4

(v Low)w, ) 2,

J o (ar o ns) - a8 o)(sa,50) - 6 dsuds
(R/LZ)?

_a+b
T

<L2’u,, U’l/J>L2

17



Proof Using result of [11, section 2], we have

(Laop, ¥) 1, dsidss

// Q21¢ : Q22¢ + Q22¢> : Qzﬂ/’
(R/LZ)? 2(As)?

Q21¢ QQZUJ Q22¢ Q21¢
//R/cz)z 2(As)? dordds> //R/cz)z 2(As)? dordsz

/ / Qué- Qo
— 5 SldSQ.
(R/LZ)? AS

It follows from the definition of Qgg that

Q219 - Q221 _ Q210 - Ph B Q- AP
/‘/A3>5 (As)? T @y 1t 2//As>a (As)? T (As Grds2 2//As>a (As)? T (asyp Usidse

We perform the integration by parts on the first intrgration of the right hand side. To do this,

we calculate the derivative as follows:

0 Qué _%Qﬂd’ n 2Q219
Jsg (As)2 (As)? (As)3

22 (P60 -50)  Gue
- B9)? T Ay
_2 <¢A(22) o (22?2) 2Q91¢
(As)? (As)?
2Q21¢ + Q22¢
B (As)3

18



Hence we have

/ / Qué-vh, .
|As|>e (As)?
Q216 8
//A~;|>E As)? sy (—Avp)dsidsa
so=s1+L/2
= —/ Q216
R/LZ (As)? s
9 [ Quo
+ //IAsl>a 3752 <(A8)2> - Apdsidss

- _ / Q219(s1, 51 2+ L)2) (h(s1) —(sy + L£/2)) — %fﬁre) ((s1) — P(s1 +€))
R/LZ (£/2) c

Q21¢(51, S1 — 6)

A

Q21¢ S2=81—¢€
+ (As)2 . A’lp] ) d81

so=s1—L/2

Q210(s1,51 — L/2)
(L£/2)?

“(P(s1) —P(s1 —¢)) —

// 2@21¢+ Qa2 - Adpdsydss
|As|>e AS

: (1/’(51) - ’¢(S1 - E/Z))} d31

—— [ {1 0@ ) (1 + O + (@ + O ) (8 + 0} doy
R/LZ

// 2@21¢+ Qa2 - Adpdsydss
|As|>e AS

—0(e 77& // 2Q21¢+Q22¢ - Adpdsydss.
|As|>e AS

We have used Lemmas 2.5 and 2.1 at the fourth equality. Therefore we have

// Q16 - Q221/’d81d82
|As|>e AS

20210 + Q220 B Q219 - At
—2//A§>E - Avpdsidss 2//AS>E " dsidsy

(As)3 (As)3
O(e)2~
// 2Q21¢ + 2Q22¢  Apdsydss + O(e)i—0
|As|>e AS

for any a € (0, 3). Consequently it holds that

2Qz1¢+ 2sz¢
(L 2 = =" . Avdsd
(Laop, ) 1, //]R/LZ)2 Pdsidsy

S

// 2Q21¢+ 26222(1) by dsidsy — // M Podsidsy
(R/LT)? (R/LZ)?

S S

// 2Q21d)+ Qngd) apydsydsy — // M P dsidssy
(R/LZ)? ! (R/LZ)2 —(As)? '

S

Q21¢+Q22¢
=4 - dsidss.
//R/LZ)2 “Prdsidsy

S
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Using this relation, we obtain

// ®/C2) (PT’b(U,U,w)(Sl,SQ) 7pg,b(u7v,w)(52731)> -4 dsyds,
R/LZ

aQa1u + bQoou  aQaou + bQs1u
//(R/CZ)2 { (As)? - —(Asp? } ~v1(wy - Py)dsidsy

=(a+b) //(R/LZ)z W {(w1 - ¥y)v1}dsids;

_a+b
4
a+b

= ((v- Lou)w, )2,

(Lo, (w - )v) 2

and
J (e ns) - a8 (o) (sa,50)) - 6, dsadse
(R/LT)2
:// ” aQa1u + bQau _ aQaott + bQa1u b dsydss
(R/LZ)2 (A8)3 —(AS)?’ 1

Q21U+Q22U
= by, —=—— == dsid
//(R/cz)2(a+ Jor (As)3 Wrdsrdsy

_a+b
T4

<L2u7 ’U’l,b>L2

Let a > 0 and u € L*((R/LZ)? R). When there exists a limit @ such that

a(s) = lﬂu(ra s),

we define F(u,a,t) and E(u, ) by

[u(s1, s2) — Uil

E(u,a,i) = sup As| + [Jull oo (m/£2)2)

517582

E(u,a) =sup{E(u,a, 1), E(u,,2)}.

Lemma 2.11 Let o, 3 € (0,1) and i € {1,2} and that u,v € L®((R/LZ)?,R). Assume that

there exists lim u(r, s), im v(r, s) and that u,v satisfy
S—T S—T
E(u,a,i) < oo, E(v,8,1) < c0.

Then there exists a function N € L?(R/LZ) such that the following assertions hold.
(i) For any v € L*(R/LZ),

lim// u(s1;52) (81’82)¢id81d82 = (N,¥) 2
|As|>e As

el0

(ii) There exists a positive constant C' = C(a, ) such that

N[> < CE(u, o, i) E(v, B, 4).
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Proof Without loss of generality, we may assume that ¢ = 1. Put @(r) = lim u(r,s) and
S—T

s1+L/2—¢
o(r) = lim v(r, s). Let ¢ € L*(R/LZ) and £ > 0. Noting that / ——dsy =0, we have
s—=r 51—[:/2-'1-6 AS

// U(Sl,SQ)’U(Sl,SQ)wldSIdSQ

|As|>e As

- / /Sl+£/26 u($1’52)”(51,$2)d52 - /Sl+£/2€ oy dsa | 1dsy
R/LZ s1—L/2+e As s1—L/2+e As

Sl+£/27€ U(Sl 82)1}(51 52) - ﬂl’f)l
= : ’ dsy | rds,
/R/LZ </slz:/2+s As

and we obtain the estimate
s1+L/2—¢
sup /
$1€ER/LZ J s1—L/2+¢ As
s1+L/2—e wls o _ 5
1,52 U1 ~ U(S1, S2 U1
o [ (o) g ()
S1€ER/LL S s1—L)2+4¢€ S S

s1+L/2-¢ 1 |u(sy,s2) — 1 (s, 82) — 01
< sup / < ! lv(s1,s2)] + 1] ! )d.92
s1€R/LZ ) s1—r)24e \|AS[IT |As|> ’ |As|1=F |As|?

s1+L/2—¢ dss s1+L/2—¢ dss
< sup / — +/ A 1-3 E(uaaal)E(Uvﬁvl)
sleR/L‘Z< si—c/24e |As|te si—rj24e |As[PP

< CE(u,a,1)E(v,5,1).

u(s1, s2)v(s1,52) — U101

d32

dSQ

for any € > 0. Lebesgue’s convergence theorem implies that

Lol

Hence Fubini’s theorem implies that there exists a function

u(s1, 52)v(s1,82) — U101
As

d52> |w1|d51 < 00.

._ u(s1, s2)v(s1, 82) — u(s1)0(s1) .
N(Sl) E /]R/ﬁZ As d 2

Since 1 is arbitrary, N € L? holds. From the above calculation N satisfies (ii) and

lim//A | “(51’521;(51’52)%@15152 = (N, ¥) 2.
s|>e

eJ0

O

Corollary 2.1 Let o, 3 > 0 and i € {0,1} and u,v : (R/LZ)> — R. Assume that there exist

lim w(r, s), lim v(r, s) and u,v satisfy
S—T S—T
E(u,a) < 00, E(v, ) < 0.

Then there exists a function N € L*(R/LZ) such that the following assertions hold.
(i) For any v € L*(R/LZ),

lim //|A - WAU)CZSM@ = (N,9) 2.

el0 S
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(ii) There exists a positive constant C' = C(a, ) such that
N2 < CE(u,a)E(v, ).

Proof Put a(r) = li_r>n u(r, s) and 0(r) = 1i_r>n,v(7“, s). Let ¢ € L?(R/LZ,R). Using Lemma 2.11,
there exist N1, No € L?(R/LZ,R) such that

. u(s1, s2)v(s1,52) B
lglig//Aﬂza s Y1dsidse = (N1,¢) 2,

. u(s1, 52)v(s1, 52) _
161&1 //ASle s odsidsy = (Na,¥) 12,

and
INillLz < CE(u,a)E(v, B).

Letting N = N7 — N3, we obtain

. u(sy,52)v(s1, s
hm// (51, 52)0(5182) A1) sy — (N1, )12 — (N, o) 1
0 |As|>e As

= <N7w>L27

and
IN|lzz < CE(u,a)E(v, ).

When ¢ is a scalar function, we define Qiqu similarly to Qijq&

Lemma 2.12 Let a € (0,3), ¢ € H® and u: {As # 0} — R. Assume that there exist a number
B> 0 and functions v,w',w* € L>°(R/LZ,R) such that

u(s1,82) = v(s;) + Asw'(s;) + O(As)F,

or any i € {1,2}. If the function h; : (R/LZ)? — R is given b
Y J g Y

hj(51752) = u(s1, s2),

(As)?

for j € {1,2}. Then there exists an L? function N; such that

. 1
lim // (hj(Sl, Sg)A’(/J)dSldSQ = *<’U,1L2¢ + Nj, ¢>L2,
=40 )| as|>e 4

for any v € L*(R/LZ,R) and any j € {1,2}. Moreover, the estimate

u—"v
13,122 < ol B (“5 )

holds.

22



Proof Firstly, we show the case j = 1. We decompose h; as

Q21¢v_+i Q216 u(s1, s2) — v;
(As)3™" " As \ As As ’

h1(81,82)

and the formula holds for each i € {1,2} from the assumption. Now we have

Qo1 1 Qarou(sy,s2) —
JIAN
//As>s 81’32 Vdsids, = //As|>s { 3 A As As As Vadsids;

Q219 1 Qa1 u(sy, s2) —
//A9|>s { )3 Yt AT A As }w2d51d32

_// Q219 + Qo2¢ n 1 Quou(si,s2) — v
a |As|>e AS)B YU AS As As
1 ;
+A—SQA22;5 uls2 Zlg }wldsldSQ. (2.1)

From the assumption, we have

u(s1,82) — v1 u(s2,81) — v1
1 |u(sy, s2) —v1 1 u—v
—wll<E B <
vl v BN vl A
and ) ( )
U(S2,82) — U1 2 u—v
—w| < E B < .
s R | < B (U8) <o

Using Lemma 2.10 for the first term of right-hand side of (2.1) and using Corollary 2.1 for the

remaining term, we can conclude that there exists an L? function N; such that

eJ0

lim //AS>E(h1(51,82)A¢)d81d52 = i(UszZH- N1, ¥) 2

1N < Clléls E( ,/3>

Similarly, we can show that there exists an L? function Ny such that

el0

lim//AsZa(hg(sl,SQ)Aw)dsldSQ = i<1}L2¢+NQ7’(/J>L2

u—v
Nollr2 < sca ) [ —— .
I¥allzs < Cllols— 8 (“25)
0

Lemma 2.13 Let a > 0 and ¢ € C'({s1 # s2}), ¥ € CHR/LZ). If there exists a bounded
function € : R/LZ — R such that

C(s1,82) - A =& + O(As)?,
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then

// C(s1,82) - Pidsidsy
|As|>e
//As|>5 (831 > (s1,82) - Atpdsidsy + O(e%)

Proof Integrating by parts, we have

// C(s1,82) - Y dsidsy
[As|>e
// 817 82 (A’lp) d81d82
|As|>e

/ ([c<sl,32> AR+ [Cls1,52) - ApJEE? ) dsy
R/LZ

0
- //|As|>5 8781 (C(Sla 52)) . A’lpdsldSQ

= / {C(s—e,8) (Y(s—e) —(s)) —C(s = L/2,5) - (h(s — L/2) —1p(s))
R/LZ

as € — +0.

+C(s +L£/2,8) - (h(s + L/2) —4(s)) = C(s +&,5) - (P(s +¢) —9(s))} ds

//As|>E (831 > (s1,82) - Atpdsidsy

= /R/EZ {C(s—c,5) - (P(s—e) —(s)) —C(s+e,5) - (YP(s+¢) —9(s))} ds
//As|>5 <851 > (s1,82) - Atpdsidss

/R/ﬁzw $)+ O(e)” — £(s) + O(e))ds — / /R/W <851 ) o1, 52) - Atpelsydss

//AS|>€ (881 ) 81,82) . A¢d81d82

as € — 0.

Lemma 2.14 Let a > 0 and ¢ € C'({s1 # s2}), ¥ € CY(R/LZ). If

C(s1,82) = —((s2,51),
and if there exists a bounded function & : R/LZ — R such that

C(s1,52) - Ay =& + O(As)“,

// C(s1,82) - Avp'dsidss
|As|>e
//Asl>e {<581 > (81, 52) = (08516) (52’31)}'¢1d51d82+0(e“)

then

as € — +0.
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Proof Using Lemma 2.13 we have

— // ¢(s1,82) - ,¢/2d81d82
|As|>e
//As|>5 (831 ) S92, 81) - Atpdsidss + O(e®)

as € — +0. Therefore it follows that

// C(s1,82) - Ap'dsyds,
|As|>e
//A > {(331 ) 51,82) - (8881C> (82,81)} - Apdsidss _1_0(604).

AR [ [ T R
S (T T R

//A5|>a {( $1 ) (s1,52) = (8381C> (5%51)} - Atpdsidsy
//ASZE 2 { (aaslc) (51,52) = (5;4) (s2, 81)} pydsidss + O(e%).

Since

we obtain

O

A stated in §1, Ishizeki-Nagasawa gave us the L?-representation of the first variation §&; in
[11]. To show Theorem 1.11, we need the L2-representation not only of §&; but also of §2&;. To
do this, we decompose 7 (f)[®, ] into the following five parts

¥l = > )9

(o) = Tt

Hmun¢¢4=—sumiféfﬂq
fﬁdfﬂ@dﬂ2g“1&ﬁﬁ£-Aw7
Huu(f)[é, 4] = —Q%(Jc'ﬁg/’f]%f A
Hmun¢¢4=_2%ﬁﬁf§;Aw’

and J4(f)[¢, 1] into the following five parts
5
¥l =3 Ho()[6.9)
i=1
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Q19 Q2 + Q20 - Q19

Ha (£)[¢. 9] = 2 AFIE. :

Hys(f)[g, 9] = Sl(f’d’)g?(f’;ﬁ)AJ}%an, ¢)§1(f,¢)’
Has(f) 9. 9] = —2%0”' |>£¢;1%{ Ay

Hos(£)[, 9] = —2%<f| |>E]|A%f A¢

Hos(£)[¢ 9] = — Mzﬁ?}fﬂgﬁ- N

For Banach spaces X and Y, we write #(X,Y) for the set of all bounded linear operators from
X to Y. Also, we set

// Hz](f)[¢71,b]d81d82 = Kzg
(R/LZ)?
We would like to identify a mapping Hy; : H*~*(R/LZ) — B(H?~*(R/LL), L*(R/LZ)) which

satisfies

Kij = (Hi;(£)[P],¥)12r/c2)

under appropriate conditions. Such a mapping will be called the L?-representation of K;;. We
will show the existence and estimates of the L2-representation of K7; in §3 and of Ky; in §4

respectively.

3 The L -representation of the second variation of &

3.1 The L*representation of Ki;

We use the decomposition

Hyi(£)[¢, Y] = Hin (f)[@, 9] + Hiz(F)d, ],

Qe -Qy AP -AY
H111[¢a ¢] = (AS)Q = (AS)Q )

Huo(f)[@, 9] = A (f)Qo - Q = A (f)A¢' - AY,

and give the L?-representation of each part.

Proposition 3.1 If ¢, € H?, then
// Hyi1[¢,v]ds1dsy = (L1, 1) 2.
(R/LZ)?
The proof is the same as [11, Proposition 3.1].

Lemma 3.1 Let a € (0, %) Then there erxists a mapping N1 : H>~® — B(H3>~% L?) such

that, for any bi-Lipschitz function f € H3~® and functions ¢, € H>, we have

/ / Hiso(£)[d ¥ldsidss = (N11a(F)[], ) 1z
(R/LZ)?
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Moreover N112(f)[¢] satisfies
IN112(F)[B]l[2 < C ([ F|ma—o) [| Dl rra—o-

Proof Let us set

1 1 )
et = { a7 = a2

Lemma 2.3 implies that

hi12(s1,82) = A (f) AA(i/ As=0(As) (As—0).
We can calculate the partial derivative of hi12 and Lemma 2.4 implies that
- (iials1,52)) = oo (A)AG + () o (85),
0s1 0s1 0s1
- T A + ()]
= O(1).

Since it holds that

hiia(s2,51) = { = A1f|]§n - (7;9)2 } (—A¢")

= — hi12(s1, 52),

using Lemmas 2.14, we obtain

// Hllz(f)[¢7¢]d81d32
(R/LZ)2

=lim // h112(81, 82) . A’ll)ldsldSQ
|As|>e

€10
=— // 2 { (ahuz) (51,82) — (ahnz) (82781)} - dsidss.
(R/LZ)? 0s1 0s1
Letting
u(sy, s2) = 111427:97—1, v(s1,82) = Aqu/,
we have

u(s1,52) — 0
As

lim u(sy,s2) =0, sup
So—>S1 825531

\ < O|1 1%,

v(s1,52) — ¢"(s1)

lim v(s1,s2) = @], sup < C|lo|lgs-«
Jim (o1, 52) = g, sup | P I
from Lemma 2.4 and 2.1. Using Lemma 2.11 for the first termof 8%1

there exists a mapping Nyqp : H37% — B(H?>~*, L?) such that

lim //AS% Hy1o(f) [, ¥)dsidsy = (N112(F)[@], %) 12,

el0

and

IN12(H)[Plllz2 < CUIFllas-)lI@l oo

27
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Using Young’s inequality, we have

’ / / Husa ()b, Wldsidss| < [|Nvia(F)[b]]]22 9] 2
(R/LZ)?

for any € H3. O

3.2 The L*representation of K,
Hi2(f)[¢, %] can be written as
—S(f,®)5(f. ¥)

Huiz(f)[é. 9] = IAF]2.
s g SUOAT
_ Ao Ay — A (F)S(f, @)RSf - Ay IAFIIEn e

Now we use the functions

hi21(s1,82) = ‘SW7
haza(s1,52) =~ (£)S(f, #)RF.
hi23(s1, 52) = —m_

For v € C' we define Hy9 by

// Hiok(f)[@,2p]dsidsy = lim // hiok(s1,82) - Avp'dsidss
(R/LZ)? el0 |As|>e

for k=1,2 and

// Hi23(f)[, %]ds1dsy = lim // hia3(s1,82) - Ryp'dsydso.
(R/LZ)? el0 J S as|>e

Lemma 3.2 Let « € (0, %) There exists a mapping N2y : H>=% — B(H3~%,L?) such that,

for any bi-Lipschitz function f € H3 and functions ¢, € H3, we have
J[. o, i P blndss = (1 F 6 47 a1+ (N (F)10) )1
Morcover N1sy(f)[¢)] satisfies
N (DIll52 < C (11l 9]l

Proof We have

~(Rf - Q¢+ QF - ke) (Rf - M)
@5y
= —(r(s2) - @"(52) + R(s2) - @' (52)) (7 (52) - ¥/ (52)) + O(As)?

hi21(s1,82) - A =
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as s1 — So, and
0
=—h121(51, 82
851 ( ’ )

_ o SERS S(f.¢)5k  25(f. $)RS

(As)? (As)? (As)3
(371 Qo+ RF -0\ + w1 RO+ 3QF - #) RE  (f.9)4m  25(f.0)Rf
- (AP T @ (As)

and

hm(sm):_{Rf-(—Q¢)|+Ai|2 ) RORE

Using Lemma 2.14, we obtain
hm// h121(51,52)A’¢11d51d52
el0 |As|>e
=—1 h , h , -pidsid
Elﬁ)l//Asx {(851 121> (81 52 ( 121) S2, 51 } Pdsidsy
L 2S(r,p)Rf  2S(f,¢")Rf | 25(f,¢)RT
B lslinol //As>6 { (As)? " (As)? - (As)? Yrdsidsz

= lim // h1211(s1, 52) - P ds1dsa,
b0 as|>e

where . o )
28(r, o) Rf  2S(f,¢)Rf | 25(f ¢)RT
h =
1211(81, 82) (As)? + (As)? + (As)?
Now we give estimates of S(v, 'w)fiw for u, v, w € C?. Using Lemma 2.1, we have
1 || S(u,v) Au/ o+ Av'
su - . :
Sﬁé}; |As| As As 1! L As
1 A’ I rw A
— sup ’ u vy vy uy—uy Av
s17#82 ‘AS| 2 2 As Rn
< 2fullcz2[lvlc=,
and , ,
- / Uy — Uy
_ = < .
2 g el =[5t < e
Hence
1 || S(u,v)Rw Au/ Av’
s | (R vt g G ) wd < ullvlelwle:

holds. Overall we have
1 A¢p 1 (AT A"
Rz =23 (A ¢+ 1'As> 1+2A(As'¢/1/+“' As )T
1 A¢/ 1_q
255 < AS>T1+O(AS)

- 1 AK, ’ A¢)N 1_4




and

. - i ﬁ ¢’_|_ Ad)/,
YW As\As AP As )T

Using Lemma 2.9 for the first term of (2.2), and Lemma 2.11 for remaining term of hya11, we

higi1 —2

< O las-)lPllgs-«[IFllc=-

R”

can conclude that hjs;; is integrable on R/LZ and there exists a mapping N : H3—«
PB(H3~< L?) such that

/ / haoa (s1, 82) - prdsidss = —(Lif - &+ 7 Du)r, e + (Nioa (£) ], ) e
(R/LZ)2

and

N(Lif -+ 7 Lad)7lle2 < (ClIfllms) |@llms,  INw21(H)llle> < (ClIfllas) [|l|as-
O

Lemma 3.3 Let a € (0, %) Then there exists a mapping Nia : H3™® — B(H3~% L?) such

that, for any bi-Lipschitz function f € H3~® and functions ¢, € H3~%, we have
// Hiz(f)[@, lds1dse = (N122(f)[@], ¥) L2
(R/LZ)?
Moreover N oo (f)[@] satisfies
IN122(£)[@]l] 12 < C (£ mra-<) [| Dl oo

Proof Since we have

hiza(s1,82) - P(s2) = — M (F)S(f, ®)RF - (s2) = O(As),

and
hi2o(s2,81) = =M (—S(f, @) Rf = —h122(51, 52),

using Lemma 2.14
// hi2a(s1, s2) - Avp'dsids,
|As|>e

= -2 //ASZE { <6881h122) (81,82) — (ailhlzg) (82781>} . ¢1d81d82. + 0(8)

Moreover we have

7 0 .
Gy (2han(si ) = 5 (~24(F)S(f. 9)RF )
=2 () S DRT —20(5) 1 (S(F.0)) RS
—2.0(0)5(5.6) 5 ()
— T TS GRS

—#(F) (K1 Qo+ 2R - 1 + 200 R+ QF - &) RS
— A (F)S(f. $)m1

=0(1) + O(As) + O(As)

= 0Q).
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We used Lemmas 2.4, 2.1, 2.3 for the second line from the last. Therefore (%hlgg) (s1,82)

and (a%lhuQ) (s2,81) are bounded in (R/LZ)?. The assertions hold since Fubini’s theorem and

Holder’s inequality imply that the function

0 0
51— iz { (851h122) (s1,82) — (351}“22) (82,81)} dss

belongs to L2. O

Lemma 3.4 Let o € (0, %) For any bi-Lipschitz continuous function f € H3~® and functions
@, € H3%, there exists a mapping N 123 : H3=% — B(H3~, L?) such that

// Hia3(f)[@, ¥lds1dse = (N123(f)[@], ¥) L2
(R/LT)?
Moreover N1a3(f)[@] satisfies

IN123(F)[@]l|2 < C([|F[l1z5-2) | Dl| 3o
Proof Using the notation

P + Y,

Ag =

we have

// hi23(s1,52) - Ri/idsldsQ
|As|>e

1
= // (h123(s1,52) + hi23(52,51)) - 5’1/1/10781d52
|As|>e
0
= // 2h123(s1, 52) - Dar (Avp) dsidso
|As|>e 51
= / {hi23(s —¢&,5) - ((s — ) +9P(s)) — hias(s +¢,5) - ((s +¢) +9P(s))} ds
R/LZ
// 267 h123(81,82)) . A’l,[)dsldSQ.
|As|>e US1
Since Lemma 2.1 implies that

hi23(s1,82) = — As T As

= —(7(s2) - ¢ (52) + K(s2) - & (s2))K(52) + O(As)?2,

(As)? e QO QF - AT
IAFIE. <Rf T As R¢)As

it follows that
/ {h123(s —&,8) - (P(s—e)+Y(s)) —hias(s+e,5)  (P(s+e)+ Q/J(s))}ds
R/LZ
— [ {60679+ w(5) - S 5)mls) - 0l — ) + (5) + O(eH)
R/LZ
+(1(s) - @ () + K(s) - &' () {K(s) - ((s +e) +(s))} + Oe) % } ds
= / (1(5) - @" () + K(s) - &' (5)) (—9p(s — €) + (s +¢))ds + O(c )
R/LZ

= O0(e?).
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On the other hand, since

9 (h123(s1,52))

881
65 ( (f7¢)) T (f7¢)[«)5 ( T) < 8 )
1 | 7 A
A FIE A FIE (£:9) 55, (1871l A
(5 Qo+ RE Gl +m RO+ QS AT g1 gy,
AFI2. 1AFI2.
L 2(AF ) S(F,9)AT
IAFT ’

we obtain

//As>g { 0s1 (h12s(s1, 82)) - Ai/»'} dsidss
//As|>s { (381’1123> (s1,82) + <881h123) (s2, 51)} apydsidss

|As|>e [AFI[zn IAF [z~

2(Af-QF)S(f, 9)Qf
IAF g

Now the integrand is absolutely integrable on (R/LZ)?. Therefore the assertion follows from

} . ’l/)ldsldSQ

Fubini’s theorem. O

3.3 The L*representation of K

Lemma 3.5 Let a € (0,3). Then there exists a mapping N3 : H*=* — B(H3~,L?) such

that, for any bi-Lipschitz function f € H3~® and functions ¢, € H3~%, we have
// Hi3(f)[¢p, Yldsidsa = (N13(f)[P], ) L2
(R/LZ)?
Moreover N13(f)[¢] satisfies
IN15(F) [l 2 < C (|| fllrs-o) |@l| -

Proof Assume that v € H3. Define

29 (f)PlASf '

a2 = A g
R’VL

Then we have

// Hi3(f)[@,v]ds1dsy = // hi3(s1,52) - Atpdsidss.
|As|>e [As|>e

Using Lemmas 2.3 and 2.1, we can show the estimate

(s AT
A = (AT By

= [IKillgn + O(As)2 77,
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thus we have

hus(s1, s0) = 2QFf - Qp — 4.4, (f)Af - A

A
1AFT !
2 (Qf Q¢ Af Ao\ Af
m(m'mlﬁﬂf)asm)m*@@sf

Ag (i O = 2l millenTi - )T+ O(As)E 70,
and

1
his(s1,82) — — (ki - @ —

sup ————— " 9k g Ty - DTS
51?51;)2 |AS|%_O( As [ H ’L”Rn 7 d)z) 7

< O f =)@l s

R!L
Corollary 2.1 implies that there exists a mapping N3 : H37® — Z(H3~“, L?) such that

// Hy3(f)[@,¥ldsidsy = (N13(f)[@], ) 2,
(R/ 22

and

INw(H)@llee < CUFllas-)llDl oo

3.4 The L*representation of K,

Lemma 3.6 Let a € (0, %) Then there exists a mapping N4 : H3~% — B(H>~*, L?) such
that, for any bi-Lipschitz function f € H? and functions ¢, € H3~%, we have

/ / Hu(F) $ldsidss = (27 - &) Lo f + N1a(£)[], )12
(R/LZ)?

Moreover

[IN14(£)[@lllz2 < C ([ fl3—) @] 3o
holds.

Proof We decompose Hi4 as

<G Af-A
_ —2(Af-A¢) (QF - AY) L 2(Af AP) AT, (Af - Ay)
IAF Iz [ravale

= hi41(s1,52) - AP’ + hyaa(s1, s2) - Ap.
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‘We have

// hii(s1,82) - A'dsidss
|As|>e
= // 2h141(s1, 82) - P ds1dss
|As|>e
= // 2h141(51,52) - 8i (Av') dsidso
|As|>e S1
- / {2h141(s —e,8) - ((s— ) — (5)) — 2haar(s +e,8) - ((s +¢e) — ¢(s))}ds
R/LZ

0
— // 87 (2’1141(31, 82)) . A¢d$1d82
|As|>e 051

Since

2h141(s —e,8) - (P(s—e) —(s)) — 2h141(s +&,8) - (P(s+¢&) — P(s))
= —4(7(s)- ¢'(5)) (kls) - /() + O(e)2 ™ +4(7(s) - /() (r(s) - ¥'(s)) + Oe) >~
=0(e)2
the integral on the boundary of the interval converges to 0 as € — +0. Since
0
757 (2h1n(s1,52)) = IIAfIIR A A0)QF + (AF - #1) QF + (AF - A¢) k1 }
n 16 (Af-A) (Af-f1)Qf
IAFIIR ’

it follows that
0
= (2h141(51,52)) - Avpdsidsy
|As|>e 0s1

9 0
- //As|>5 { (8312’7’141> (s1,82) — (8812hl41> (52,81)} -ap dsidso

// { (AT-AP)Qf A(Af - AY)Qf A(Af-A¢) AR
|As|>e

[AF|2 IAfIE IAfIR
16 (Af - A¢) (Af - AF)QF
3 1AFIS } Prdsidss.

Also,
(55 30) e
{(ﬁsf) Zs) if}A +{Tl'<(§j)2 ils) As}
+ 71 (;51( )

S(RER) R (R B A S
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in conjunction with Lemma 2.1, it follows that

0 0
(8812h141> (s1,52) — (82hl41> (s2,51)

() & (L) 5 (DS

As As ) (As)2 T\ As As (As)2}
16(As)® (Af A¢ AT\ AT
TTAFIE (As ) (As ) (B5)2
e @) m | o Aol o
=TT A, ° O(As)™27% = T As T O(As)
f A\ Ak I AWAY N Ak
4( As As> (As)? 4(“ As) as ) 5
+ 16(71 - W&(sﬁ FK1)K1 I O(AS),%,Q
(kg R A (rae )k
N As As
+ 16(’7’1 . ¢/1)(7-1 . F\'/l)l"il

As

f Ag o\ Ak
4<As As)As 4<Tl->

/ K —%—a
As | As 4 (Tl d)l) (As)? +0(4s)
Now, the function

2 Ag)"3—¢
S + O(As)

L (TF B9 ) 9%\ Ak
(As As)As (“'A >As

is square-integrable in R/LZ and we have

li dsid L
Elﬂf)l //R/EZ As “Prdsidsg = ( 1fs) e
from Lemma 2.9. Using Fubini’s theorem and Lemma 2.11, we have
// Hi41(f)[@, Y]dsids:
(R/LZ)?
=2((1- ¢ ) L1 f, ) 12

+/ / C4(AT-A9)QF  4A(Af-AY)QF
R/LZ |JR/LZ

_4(Af-A¢) AR
1AF IAF I IAF
L I6(AF-AG)(Af-AHQF  A(wi- ) f1 4(Ti¢1) fy
IAFI% As As
~16(7y - @) (71 - K1)K1 _4 T f Ag\ Ak
As As As ) As

() )

Next we calculate the integral of hi4a(s1,s2). We have

// hiso(s1, s2) - Atpdsidsy = // 2h142(51, 52) - P ds1dsa,
|As|>e |As|>e
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where

2(Af - A)|IAT|R. Af

h142(51,52) =

IAF IR
_ 2A89)° (Af AN ATIR. AF 1
AfIS. \As  As ) (As)2 As As’

Using Lemma 2.1, it holds that

T1

As)z—o 1
nxg T O(As)

hisa(s1,82) = 2(71 - @) k1]fn
Therefore the function

;
Pas(s1, 52) = 271 ) w20 5

is integrable is with respect to ss. Noting that

—dss =0,
/As|>a As ?

we have

// H142(f)[¢a w]dﬁdsz
(R/LZ)2

8_1}15:0//&>E 142 81,82 ( ¢1)|| K1

2Af - AP|AT|RAF / ) A"'}
71 @) |AK||gn — ¢ ds2| - ¥qds
]R/LZ [ R/CZ{ IAFIR- 4 (- ¢h) Akl As [ ds2| Yrds

= (N1a(f)[@): V) L2(r/22)

Rn K} ’1!11d82d81

where

Nulel = [

R/LZ,

. 2
{2Af A¢>||AGT\R”Af _4(7_1 )”AK”R”A }d82
IAFIRn

Moreover, Lemma 2.11 implies that

INwu (APl < CUIFllms-=) |l azs-o-

3.5 The L*representaion of K5

Lemma 3.7 O Let o € (0,3). Then there exists a mapping N5 : H3~* — ZB(H®~*,L?) such
that, for any bi-Lipschitz function f € H>~% and functions ¢ € H3~ 1 € L?, we have

J[ mst)ie vidsidse = (Nwa(Fl). 9).0
(R/LZ)?
Moreover N15(f)[@] satisfies

N (PPl < CUFllms-o) |l 5o
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Proof If we define
_240(F)A¢

his(s1,52) = HAf”g )
Rn

then we have

// Hi5(f)[@,]ds dsy = // 2hi5(s1,52) - P dsidss.
|As|>e |As|>e

Now, it holds that

M(H)AG 1 (As)' AP Ag

IAFIIR 2As [|Af[lk [ As [gn As
1 A7) Ap 1, . |AT)

=3 | Bs |y as T2 D) A
and Lemma 2.1 implies that
1 ATl A¢ s L
sup ————— ||||—— —— — ||K1||gn»

51;5}5)2 2|AS|§7Q HAS Rn AS || 1|R ¢1 Rn

Using Lemma 2.11 for the first term and Fubini’s theorem for second term, we obtain the asser-

tions.
O

3.6 The L*representation of the second variation of &

We obtain the L2-representation of §2&; from the results obtained above in Proposition 3.1

through to Lemma 3.7.

Theorem 3.1 Let o € (0,3). Then there exists a mapping N1 : H>=* — B(H3~*,L?) such

that, for any bi-Lipschitz function f € H® and functions ¢, € H?, we have

0*E(£)[p, %] = (PrLigp — (Lo f - )7 +2(1 - ¢') L1 f + N1(£) (9] 9) 12,
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where

2 1/
Nl = [ {0 A (0)0 ()|

[
Qf Qo\ - Q
*/W{(?As As) i *(27(51)

)%
(S )i (5 ) )
+/R/£Z[A25{(A . )Rﬂ(gf) R )Rf+< f ﬁ)}?f
+((§f) R¢>RT} 4"”"(51) S()() 27‘(81)%]2”8(51);4,(51)
_2“(81)-1( 1)E(51 )]dSQ
4

v [ A @i e st ons
— () (5(s1) - Qe+ 2R - ¢(s1) + 26(s1) - RS + QF - ¢'(51)) RS
M) 8) (o) f

+/ {(S(T,¢)+S(f,¢’))'62f S(f,¢) - Ar
R/LZ

IAFIR. S
2(5(f,9) - QF) (Af-QF)
’ 1A, }as
%(f)l9l ~fr(s) -0 (s k(s 2. (7(s1) - d(s 7(s1) s
+/R/£Z |:4|A.f||]2Rn { ( 1) (o) ( 1)+|| ( 1)||R”( ( 1) d)( 1))} As dsa
+/ 4(AT-A9)QF  A(Af-AY)Qf  4(Af-A¢) AR
R/LZ IAFR I1Afl% 1Afl%
16 (Af-Ag) (AF-Af)QS n 4(k(s1) - @' (s1)) f(s1) L 4(7(s1) - @"(s1)) f(s1)
IAFIR As As
_16(7(s1) - @' (s1))(T(51) - K(51))K(51)
As

T{f Ad Ve Ak
(4 A As) s <4T(51) ) A15> As
(QAf'A(ZS)H?T”R"Af —4(7(s1) - &' (1)) Akl 27 s,

IAFIIE

o e G ) ¢’<sl>} dss.

Moreover, N1 satisfies

N (A2 < C ([ fllms-o) 1@l oo

Furthermore, we can extend the domain of the linear form

P 0261 (F) (b, ] = (PELigp — Li(f - 7)¢' + N1(f)[@], )12

to ¢ € L2
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4 The L’-representation of the second variation of &

4.1 The L*-representation of Ky,

We decompose the integrand Hs; of Kop as

Hi (£)[b, Y] = Hau (f)[@, %] + Hoz(F)[d, Y],
Q10 Qo + Qocp - Q12h
2(As)? ’

Q19 Q2p + Q20 - Q19
2 b

Hoy1[¢p, ] =

H212(f)[¢71/’} = ///(f)

and give the L?-representation of each part.
Proposition 4.1 Let ¢, € H3. Then we have
I Halow) = Lag i
(R/LZ)?
The proof is the same as [8, Proposition 3.1], so we omit the details.

Proposition 4.2 Let o € (0,3). Then there exists a mapping Naip : H3™% — B(H3~, L?)

such that, for any bi-Lipschitz function f € H3~% and functions ¢, € H3~%, we have
// Ho12(f)[@, ldsidsy = (N oo (f)[@), ) 2.
(R/L7)?
Moreover Na12(f)[¢] satisfies
IN212(F)[@]l[2 < C (£l a-<) [| Dl oo

Proof Let € > 0. Interchanging the variables s; and so, we have

//AS,>€ Hao[h, p)dsydss

// Q1¢ Q2¢+Q2¢ Qﬂ’bds ds,
As|>€

Q1¢ Q2¢ Q2¢'Q1¢
s1ds <20 21V 1syd
//As|>g/// P 51 2+//As|>5 5 s1dssy
// Q2¢ Ql'l/JdSlng
As|>s
, (Af-T1) }
A
00 {1 R A
(Af'Tl) ~
dsds — BT T 5,6 - Apdsd
//As|>g Q2¢ 17b1 51052 //AS|>€ f) HA,fHH%n Q2¢ 'l,b 51d82

—// h2121(81752) 1/)1d81d32 +// h2122(81,82) A¢d81d82,
|As|>e |As|>e

where

hoi21(s1, 82) = 2.4 (£)Qa2,
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—2.4(f)(Af - T1)Q20
IAF e '

First of all, we estimate ha121(s1, S2). Since it holds that

ha122(s1,82) =

h2121(81, 82) = O(As)a

using Lemma 2.13, we have

//IA - ho121 (51, 82) - P dsidsy
:/ {ho121(s —&,5) - (P(s —€) —P(s)) — hor21(s +¢,8) - ((s+¢) —p(s))} ds
R/LZ

0
- // ‘ <851h2121> (s1,82) - Apdsidss.
|s1—s2]|>€

Since hap2; is bounded in (R/£Z)? and since 1(s + &) — 1)(s) — 0 uniformly as e — 0,
//c {hai21(s —€,5) - ((s — &) =%(s)) —harai(s +&,5) - (Y(s +) —9P(s))}ds = 0
R/LZ

as € — 0. Lemmas 2.3-2.5 and 2.8 imply that

0
(881’12121) (817 82)

-2 (&%(f)) Q20+ 2.4() (821@@)

—2(T{'f - 711) —2(I7f-12) A (Af 217¢
(ATQzﬁb‘FZ///(f) [1A5As - (As '7'2) Als

2 (As)? Ag Af ,
T As {n%n - 1} {<“ TR T (As '”) ¢’1}

Ay (af ) 8]

=2

As As As
AT f 1) Qs —(I0f-T2)Ap  (AF _\ TV
ST As *4//’“)[ As AS(AS'”)AS

1 ( (As)? Ap [(Af .
35l IAFIE p{mm 3+ (30 m) ot
AT -7 (Af_ ) M]

As As T2 As
—0(1).

Secondly, Lemmas 2.3 and 2.5 imply that hojso is bounded. From Corollary 2.1, there exists a
mapping Nojo : H37% — B(H3~, L?) such that, for any bi-Lipschitz function f € H3~ and

functions ¢, € H3>~®, we have the representation

lim //IA‘eIZE hoi2(s1, 82) - Yidsidss = (Na1o(f)[@], ¥) 12,

el0

and the estimate

[N212()[@ll > < CUIF o) | 13-
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4.2 The L’-representation of Ky

We can calculate Koo as

Koo ZIim//lA N Hyo(f) [, ]ds1dsy

0
—lim 51(f7¢)‘§2(f71/))+’§2(f?¢)§1(.fa’¢')
- [ iz 2||Af||in e

. S2 f7 Sl .fa’(/))
:hm// ds ds +11m// dsids
10 AM 2\|Af||Rn T Ag|>e 2||Af|\Rn o
. Sl f7 Sl .fa’(/))
:hm// ds ds +11m// dsids
10 AM 2\|Af||Rn e Alze 2||Af|\Rn o

) )S1(f, )
:hm// dsi1dss.
210 ) ) asze ||Af||Rn e

We decompose the integrand on the last line into two parts as

So(f, 9)51(f )

RS
5a(F.¢)(RF- Qi + OLf - Rep)
IAfI2
:§2<f,¢>[ As| qu{ ,_<Af-n>A¢} As| ( M’ﬂ
A, [TAfle s 2\ AR, S T Tafe \@7

NAFIR [AF (e IAfIEAs — As As

So(f. @) |As| 2Af T)Af  Qif 2|As|So(f, @) A /
— _ A 218502\, @) )
{ * } v ( IAFIE. As) e
=ho91 (51, 82) - A + hoga(s1, s2) - P,

where

h221(51782)

So(f. @) |As| [ 2AAf-T)AF  Quf
IAFIZ IAfle | 1AFIE.As — As [

2|1As[Sa(f, @) Af

e N RV

Lemma 4.1 Let « € (0, %) Then there erxists a mapping Nooy : H>~* — B(H3>~% L?) such
that, for any bi-Lipschitz function f € H3~® and functions ¢, € H3~%, we have

// (P221(s1,82) - Avp)dsidsy = %((T Lo+ @ - Lof)T,9) 12 + (Nao1 (f)[@], ) 12
(R/LZ)?

Moreover

N 221 (F)[@]l|2 < C ([ Flm5-) [Pl 3
holds.

41



Proof The integrand hso1 can be rewritten as

1 |As| 4 2(Af-T1)Af O f
hoo = S _
A FTE Tasle ’¢){ S As}
1 |As| 5 s C2Af - T)AF | Ouf
AT TAfls (G20 F Qe R@{ A As}
_ 1 (Aep (Af A¢) C2Af-T)AF | Oif
TAFTE. TATIE, \as Q28+ QS { BFE.As T As}

_ 28 (AJ“,ﬁ){Af Qe | Qof A¢}Af

[AF]%n As (As) " (As) As [ As

(As)* [AFf Qi | Qof A | Ouf
IAFIn As

As (As)? T (As)2 As

2(As)% <Af Tl){Af Q¢ | Quf A¢} Af

“IATIS, As (As)3 ' (As)® As [ As

2(As)° (Af.ﬁ){Af Q220 | Qaaf A¢} Af

+

IAFIIEn As (As)P " (AsP As [ As
i 1 (As)* [AF Q29 n Qof A¢ | Qif
As |Afllg. | As As As As || As’

Now we put
hoo1 = haoi1 + haoio,

where

2(As)0 (Af_T){Af Qo | Qnf A¢} Af

h2211:||Af||]%n As (As)P " (AsP As [ As’

1 2(As)® (Af T1) {Af Q2n¢  Quf A¢} Af
As [|Af]IS. As

h2212

As (As)? + (As)?  As
1 (As)! {Af Q2 Oof A¢}Q1f

AsTAFIL \As  As " As As ( As

Now we verify that hosqq satisfy the assumptions of Lemma 2.12. We have

o — Q22¢.H 2(As)° (Af - Af
27\ (As)? IAF]S. \ As As

Qaf A¢\ 2(As)® (Af Af
*{((Asw ) [AFIE. ( N )} As’

and Lemma 2.4 implies that

& a0,
As)® (A A
Ml(é‘ﬁ) AJ; ~1+ 0+ as )¢”+0(As) )T

x (1; + As( Ol ! + O(As) )

=(7; -T1)T;i + As(— )i + O(As)3t
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Moreover, Lemmas 2.1 and 2.5

1 . )
A [(As)hooia = 2(71 - 71) {(=1) " 7i - ) + (1) ki i} T

_ (Ti . ¢2/ + K- ¢;) K'i’
< Ol fls-allpl 5o

From the above, we can apply Lemma 2.12 to hgo1; and Lemmas 2.5, Corollary 2.1 to hosio and
thus we can find Nao11(f)[@], N2212(f)[¢] such that

el0

lim// hao11 - Avpdsidsy = 1<(7’ Lo+ @' - Lof)T,¥) 2 + (Noo11 (F)[d],9) 12,
|As|>e

el0

lim // haoia - Adsidse = (Nag12(F)[@], ) 2.
|As|>e

Moreover it holds that
[N2211(F)[D]| 22 < Cllfllza-alldl gra-a,

[N2212(F)[@lll > < Cll fllzz5-o | 125

The assertions follow from the fact that hos; = hao11 + haoio. O

Lemma 4.2 Let o € (0,3). Then there exists a mapping Naso : H>=* — B(H3~*,L?) such

that, for any bi-Lipschitz function f € H>~% and functions ¢, € H>~%, we have

// h222(81, Sg) . A’l/)dSldSQ = —<;<T . L2¢)T + 3(T . sz)(¢/ . T)T + g(d), . LQf)T, ¢>L2
(R/LZ)2
+ (Nax(f)[0], ).

Moreover
[[N222(f)[D]l|r2 < C ([|[Fllms-a) ||| ra-a
holds.

Proof We compute hoss - Atp as follows:

h222(81,52)'A1/J=”Z|?83| (Rf - Q20+ Qof - R¢>< ! A¢>
RTL

R (3 ) 5 o0 2} (3 o)
”AfH]:ls{{" ||Af||Rn Q2¢ HAfHR" QQf As ¢

_2(As) H_Q2¢+ Qof A\ (Af A¢>
CAFIE. s As As  As As  As

=2(T1 - @ + k1 @) (T1 - P)) + O(As)

From Lemma 2.13, we have

// h222(81, 32) '1/1/1d81d82
|As|>e

// (8h222> (51, 32) . A¢d$1d$2 + O(E)%ia.
|As|>e 51
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By using Lemma 2.5, the derivative of hoso may be calculated as follows.

2

0 _ ~ 0Q2¢  0Qaf A /
Cnglh222(81»32) *m (Tl'Q2¢+Af' s, + D, ~A¢+Q2f~¢1> Af

L 2UAS Qb+ Qof - Ad)T1  S(AF-T1)(AS Qo+ Qof - AG)AS
NG IAF]Sn
271 Qod+Quf - PAS
NG

2 0Q2¢ 2 905 f
— | Af- A CAd | A
AT < T o ) T a7 ( P51 ¢’> !

L AAS Q20+ Q2f - AP)T1 8(AS - T1)(Af - Q29 + Qof - AP)AS

[AF Iz [raval:®
_ o 2(m Q229 + Qaaf - $AS _2(T1- Qo+ Quaf - 91AS
IAS I IAS I

* TS {(Qﬁsf 'T2> (52-a7) + (5L -72) (C?Ej . Af)
+||2i?”$|§ (lesf 'Tl> (if'ﬁ) (if-Af) +Q2¢.Af}Af
+ 5L {(Qfsf '”) (32 -20)+ (3L m) (@i;f .A¢>
+||2A(?7%4n (Qilsf 'Tl> (ii'”) (if-mb) +sz~A¢>} Af

_2Af Q¢+ Quaf - Ad)Ty n B(ASf - T1)(AS - Qe+ Quaf - AG)AS

IAS I IAF 5
_2(Af- Q2¢ + Quaf - Ad)T) " S8(Af -71)(Af - Qo + Qaaf - AP)AS
IAF g IAF &

=h9921(51, 82) + ha22a(s1, $2),

where hgo9q consists of terms of order O(As)”, and we let hgsgo be the remaining terms. That
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is,

h _ 2 Qa0 + Qo f - PAS
e IAFIE.

Tl {(Qfsf '”) (52-ar)+ (L) (Q;{j’-Af)
v (Qﬁsf 'Tl) (32 (52 f)} af
AT {(Qilf T)(Af Ad’) (if Ta) (Q&f -Ad))
At <Qi2f 'Tl> (327 (F-20) } Af

_ 2(AF - Qa9+ Qaaf - Ag)Ty
IAF Izn

2 (As)! <7-1 . Q22¢+ Qoo f ¢/1> Af

8(AF - T1)(Af - Qo+ Quf - AG)AF
[AFlI5n

(As)? [AF e As As As

2 (As)! Qo f Ap Af
T B AR {2< As '”) <As As)
+ Af - Q216 H+Q21f A¢

As As As ' As As

Jr4(As)4 QQlf.T (A.f T)(M Af) Af
AflL. \ As 1)\ As As As) [ As

2 (As)? <Af ' Q22¢+ Qaaf A¢> -

C(As)Z[JAf[E. \ As As As As

n 8  (As) H.T Af Q226 Q22f Agp\ Af
(As)Z|AfS. \As ')\ As As As As | As’
h _2(71- Qo+ Quaf - PDAF | (2Q20- AF)AF | (2Qa2f - AP)AS
2222 = +

IAF]E 1Al JAf]A
C2(Af - Qo+ Quaf - AP)T: n 8(Af-T1)(Af - Qo+ Quf - A¢)Af
IAF], IAFIS,

_ 2 (As) . Qn¢  Qnf Lo+ % H+Q2f Agp | Af
T As|AF|E. Y (As)2  (As2 TH As  As As [ As

2 (As)? {Af Q22¢+Q22f Aﬁb}
~ As[lAf]E. (As)? ~ (As)> As

" 8 (As)® (Af o Af Qn¢  Qnf A9 Af
As |Af]S. \ As As (As)2 " (As)2 As [ As’
Firstly, we consider the integrability of hsso1. We have

(AS)Qn 9
=1+ 0O(As
1AFIE (8s)

for n € N. From Lemma 2.2,

T1=To+ (As)ky + O(As) 2%, ¢} = ¢l + (As)gly + O(As)T 7.
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hold since T, ¢ € H?>~*. Lemma 2.4 implies

A —1) 3
A—i =T;+ (As)( 2) + O(As)z ™.

Hence, each term of

2 (As)t - Q22¢ Q22f L ﬂ
(As)? [Af[E. \"" As !

satisfies the assertions of Lemma 2.12. Secondly, using Lemmas 2.1, 2.4, we have

A¢p Af

(—1)1' " 3_, (_1)i s
TS 7_{(1) + (As) 9 1 (As)? }{TZ+(A3) 5 ki + O(As) }
= - Ti + (As) (_21) (¢ ki + @l - Ti) + O(As)2 72,
Af
AL T =1+ 0(8s)

Thus each term of remaining part of hooo1 satisfies the assertions of Lemma 2.12. Using Lemma
2.12 for hago;, we obtain that there exists an L? function Nag91(f)[¢] such that

lim// (—haoa1) - Atpdsidss <1(T Lop+ ¢ - Lof)T — (T-Laf) (@' - T)T
|As|>e

it
T Lag - Laf)T 27 Laf)(@ T
S L+ @ Laf)r—2r Lab+ ¢ Lof)r
+ Nago1(f)[@], ) 12
(5 L) = (- L) )T = 56 Laf)T )
+ (Na221(f)[@], ) 12,

+

and there exists a constant C(|| f|| gs-«) such that the estimate

[N 2221 ()@l L2 < CUI Sl o)l @]l 13-

holds.
Next, we consider the integrability of hosss. Using Lemmas 2.1, 2.3, 2.7 we have

G sapirra3e+ (om) o) -ewin (5r) B2

(ni!u@ +O(As)7 a) (14 O(A)) (¢, + O(As)) + (1 + O(A5))($, + O(As))}

—a (2 o) 14 0ase) + o)

2”’%“1}@

il g1 4 g - $+ O(As)ie

= *”REPR” o)+ oms)%-a.
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In addition to Lemma 2.5, the following estimates hold:

sup 1 2(As)* e Qa2 Quof o+ Q20 Af n Qaf Ag | AS
sitss |As| T || IAF]E. VAs)2 (As2 TP As T As T As  As [ As

12
+8HHZHR” (Ti . ¢1)Tz

3 R
< C(Pl@llms-—e,

1 2(As)! {Af Qn¢ | Qnf A¢} Al §n

su T — - c—— ¢ T1+ Ti @;)T;
S A [ TTAIE Uas o2 T e B ST T I
< C()@l s,

L [[S@9° (S N\ [AF Quo | Quf AS\AS Slwli
oo |As]ie [TAFIS, \As 7 \As (As)2 7 (As2 AsfAs 3 O
< C(H)lPllms—--

Hence Corollary 2.1 implies that there exists an L? function Naz22(f)[¢] such that
lim // (—ha222) - Atpdsidsy =(Naza2(F)[d], ) L2,
40 JJas|>e
and there exists a constant C(|| f||gs-«) such that the estimate
[N 2222(F)[Bll| > < CU|F N sz5-) | Dl 115
holds.

4.3 The L%-representation of Ky

Rn

Lemma 4.3 Let o € (0,1). Then there exists a mapping Nog : H>~* — B(H3>~, L?) such

)2

that, for any bi-Lipschitz function f € H>~% and functions ¢, € H>~%, we have

/ / Hos(f) [, ¢ldsidss = (Nos(£)[), 1) 2.
(R/LZ)?

Moreover
I[Nz (F)@NllLz < C (| fllms—o) [|@l] 3o
holds.
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Proof Observe that

‘//ASZE Has(f)[¢: ¥ldsidss

- 24, GIAS - Avp
= //A IAfIR, e

// 2 Qif - Qe+ Qof - Q19 24L(F)AS - Ag
|As|>e ||A

I3, 2[AfI2 IAf]2
// { (Quf - Q)Af  (Qaf - Qd)AS | A(£)(AF - Ap)AS
|As|>e

) Af . A1,bd51d32

IAFIz IAFIIR IAfIIz

(Qlf Q2¢)Af (QZfQ1¢)Af
T 2B Agpdsyds, — (Qf - QLe)Af
//As>s HAJ':”4 Ydsidsz //IAs>a HA.fHﬁlg Pdsidss

LIB)AF - AB)AS
// . IIAfH4 Atpdsids,

S HAf||4 v [ SR A

AM(F)(AF - A)AS
- Adsd
//A 1A Wisids

201f - Q2d)Af 1M6(F) (DS - Ap)AF
= A A
//As>a ”A-fHR ¢d81d82 + //As>a ”AfH% 'Q/JdSldSQ

:// ha3i(s1,52) - Atpdsydsy + // ha3a(s1,52) - Avpdsyds,,
|As|>e |As|>e

where

} . A’I,bdsldSQ

2(Q1f - Qo) Af
IAflE

h231(81,52) = -

4.4 Af-Ad)A

Now, we have
2Q1f - Q)Af
IAfIR

2 (As)* [Quf Q2¢ Af
CAs|AfIE N As  As ) As

h231(517 52) = -

_ 7{1 + (As)2 ()} (CQAIZ ' ng) %

2 Qlf Q20 Af Qif Q20
As ( As As ) As 2///4('1:) < As  As ) af
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and

A(F)(AF - AP)AS

h232(81782) =

IAfI&
4 (As) Af A\ Af
=~ asjapr ) (m | m) As

) Af Ag\ Af
== L+ (APt (f) #6(f) <As ‘ As> As

4 Af A¢\ Af Af A
- talf) (3230 S e (B 52 ar

Using Lemmas 2.1, 2.6 and 2.5, we know that there exists a constant C(f) such that

(Qlf , Qm) Af

1
sup (ki - @7)T

81782 |A8|éia

() (Af - A‘b) LISV T R,

i| < 33—«
As  As ) As il < C(H)llollms-e,

< C()lglle

sup

s15£82 |Ag|%*a As As ) As 2

<Ol oo

for i € {1,2}. Since ha31 and hass satisty the assumption of Corollary 2.1, we obtain the claimed
assertions.
O

4.4 The L*-representation of Ky,
We decompose Hay[¢, ] as follows:
_2%(H)[Y]Af-Ad

Hyy =

1AFTE.
__2(Af-A9) Qif - Qop + Qaf - Q1 2406(F)(AF - Avp)
AR, AT AT
_2Af-Ag) [ { /_(Af-fz)m/!}
N R S VN S
[ (AFr)ARY] | AAS - AG).(fIAF
Bl {””1 TSI H T A A
[2AAf - Ag) i L AAT - AG).M(F)AS
_2AF-AR)Qef | 2AAf-AQQOS
I TN
Setting

2(Af - AQ)(AS - T1)Qof
IAF 5 ’

AAS - A¢).4(f)AS
IAF ’

h241(51, 82) =

hoss(s1,82) =
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Af-A@)Q
hoas(s1,52) = —W,
we have

AAS - AG)(-AF - 75)(—C1f)
[AFIE.
_2AAF-AG)AS - T)(C1f)
IAFIE. ’

2AAS - AD)(-Crf)

[AFIE.
_2AAf AP S

IaflE.

h241(82, 81) =

hoas(s2,81) = —

Then, we can calculate
// Hoy(f)[d,]ds1dsy
|[As|>e
= // (—hoa1(s2,51) + haa1(s1, 52) + hasa(s1, 52)) - Apdsidsy
|As|>e
+ // (hoas(s1, 82) - Y} + hoas(s2, 51) - Py)dsidss
|As|>e
:// (—h241(52, 51)) . AI/JdSldSQ + // ’7;241(517 82) . A’l/)dsldSQ
|[As|>e |As|>e
+ // h242(817 s2) - Apdsidsy
|As|>e

+ // hoas(s1, s2) - Yidsidss + // hoyz(s2,s1) - Yhdsidss
|As|>e |As|>e

:// (—h241(51,52)) - (—Av)dsidsy + // ha41(s1,52) - Atpdsidsy
|As|>e

|As|>e

+ // hosz(s1,52) - Avpdsydsy
|As|>e

+ // hoas(s1, 82) - Yidsidss + // hoas(s1, 82) - Y dsidss
|As|>e |As|>e

:// 2h241($17 52) . A¢d81d82 + // h242(817 52) . A'lpd«SldSQ
|As|>e |As|>e

+ // 2hoy3(s1, 52) - P dsidss.
|As|>e

Lemma 4.4 Let o € (0,3). Then there exists a mapping Nag : H>=* — B(H3~*,L?) such
that, for any bi-Lipschitz function f € H>~% and functions ¢, € H>~%, we have

// 2h341(s1,82) - Apdsidsy = —((7- @' ) Lo f . ¥) 12 + (Noa1 (F)[@], ) 2.
(R/LZ)?

Moreover
[IN241(F)[Dl|r2 < C ([|Flls-a) ||l rrs-a
holds.
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Proof We decompose the integrand hoy4; as

2(Af-A¢>)(Af~7—1)Q2f
1AFE. ]
_ 2 (As) (Af A¢> (Afﬁ) Qsf

T(As)2 Af]G. \As  As )\ As As

2 (A (Af Aqb) (Af T)szf
(As)2[Af]S. \As As)\As ') As
2 (As)® (Af Ag Af,T)szf

As [[AFIE. As 1) (As)?

As  As
=hos11 + haaio,

h241(81,$2) =

where hoy11 is the term of O(As)*Q, and hoy412 contains the remaining term. That is,

2(As)° (Af A¢> (Af~7-1) Qo f

hosi1(s1,52) = —

IAFIS. \As  As ) \ As (As)
hoia(s1, 52) = 2 (As)° (Af Aq&) <Af o, ) Qo f
PEL ST TASASS, \As  As ) \As ') (As)?”

Lemmas 2.1 and 2.5 imply that
e (32 (%)
—20+ 097 [+ @9 n s oaai} - {ors 9 e ot ]

X (1171 + O(As)?)
=2+ ) + (A8) (1) (i - @ + 71 ¢) + O(As) 0,

and
1

sup T C(Hlelc
81782 |AS|§_O‘

(As)8 (Af A¢ f Quf  |kil3. /
IAF I ( ) (AS T1> (As)2 SR (15 @3)Ti| <

As As
< C(Hll zrs-a

for i € {1,2}. Applying Lemma 2.12 and Corollary 2.1 to ho411 and hagio respectively, we can
conclude that there exists an L? function Nag1(f)[¢p] such that

lim // 2h41(s1, 52) - Apdsidsy = —((7- @) Laf, ) 12 + (Naay (f)[@], ) 2.
As|>e

el0

Moreover
[N241(£)[@]l[L2 < C ([ f]]ms-<) ||@l| -

holds.
O

Lemma 4.5 Let a € (0,3). Then there exists a mapping Noso : H>=% — B(H3~ L?) such

that, for any bi-Lipschitz function f € H3~ and functions ¢, € H3>~*, we have

/ / hasa(s1, 52) - Avpdsidsy = (Noas(£)[] - 1) 2.
(R/LT)?
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Moreover

IN242(F)[@lllz2 < C([flls-2) |l | 125
holds.

Proof We have
AAS - Ag) A (f)AS

h242($1,52) =

1AFTE.
_ 4 (AS)4 Af Ag¢ Af
As [ASI (As | A) () Ry

and Lemmas 2.1 and 2.6 imply that

1 4(As)t (Af Atﬁ) Af i1
su i —— | Mo(f)— —A(Ti - D) (———)Ti| < C 3-a
for ¢ € {1,2}. Hence the assertion follows from Corollary 2.1.
U

Lemma 4.6 Let a € (0,3). Then there exists a mapping Nosz : H>=® — B(H3~, L?) such

that, for any bi-Lipschitz function f € H3~ and functions ¢, € H3>~%, we have
J[ - ohanlsr,se) pidsidss = (376 Laf +3(m-9) (7 Laf)m, ) o+ (Nasa ()84
(R/LZ)?

Moreover

IN243(f)[@]ll2 < C (| fl|z3-o) || Pl 2
holds.

Proof By a simple calculation, we have

2(Af - A¢)(Qaf - Ay)

hoss(s1,82) - A =

IAF Iz
_2As)t (A AN (Qaf Ay
CAfE. \As  As As  As

=2(71 - ¢}) (K1 - P}) + O(As)E

Hence we have

// hoas(s1, s2) - Y dsidss
|As|>e

0 1
= — // <881h243) (81,82) . A’llldsldSQ + O(Ef_a)
|As|>e
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from Lemma 2.13. Using Lemma 2.5, we can calculate the derivative of hoy3 as

2 6@21‘}

[Af]%n
8(AF-T1)(Af - AP)Qaf
[AF]Sn

2 |As|t Ap Af Q2f
T a2 AT (“ As T s ¢’1) As

hays(s1,82) = —

Bor {(Tl Agp+ Af - ¢)Q2f + (AF - Ag)

As As
2 |As]t (Af A¢ Q21f'7_ ﬁ—&- ﬂ-r Qa f
(As)Z|AF[IA. \As ~As As 2] As T\ As 7)) As

2(As) Qa1 f Af AV
NPV < As '”) (55 m2) a5 s }

8 |As|® ﬂ T ) H % Q2f
As)? [|AF(§- ' As

+ As As

_ |As|t (T A¢> Af ¢)Q22f
T A\ As T 1) As
2 |As|? r % Af ¢! Quf
(As)AaflE. 'Y 1) "As

+

As
2 |As|* H % Q21f Af H_T Qaf
(As)2 [AF[E. \As ~As As As T\ 2as T2) Al

2(As)* [ Qauf Af Af
+||AfH4n ( As '7'1> (AS'T2>+Q2f}
_ 8 Asf (Af oy ) (Af . A¢) Qo f

(As)? [|AFIRn YJ\As As) As

il (A1) (82,48 Qus
SRS As Bs) As

=ha431(81, $2) + haas2(s1, s2),

where hoy31 consists of terms of order (Q(As)”7 and hog32 contains the remaining terms. That

is,

IASI4< Agp Af )szf

h =Y, 24
200 =2 T R Y A9 ) ey

_ 9 [As|* (Af A(ﬁ) Q21f.7_ H+ H.T Qaf
[Af]L. \As As (Asp ] As As %) (As)

+2(AS)4 C~221f._’_ Af - Af
IAflE. \(As)3 1) \Aas %) As
g Al (Af T)(Af_&b) Qoo f
IAF]G. Y)\As  As

2 |A3|4 A¢ Af Q22f
i <A ae (7 A )
8 |As|° (Af - ) (Af A¢) Qauf 2 |As|* Q2f_

~ As ||Af]S.. As As ) (As)2 As||Af|E. As
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Using Lemmas 2.1, 2.2 and 2.4, we have

2|As|* Ap Af
i (7505 )
=21+ 0(As)) {{T + (As)ki + O(As) i} {qbé +(As) (_21)1 o) + O(As)éa}

rr @ ot} (o + a9l +0@nt)]

=27, - §; + (As) {1 * (_21)1} (Ti - @7 + Ki- b)),

“2As|! (AF A\ Af
TAFTE <As | As) As

=-201+ O(As)2) {(Tz - ;) + (As) (_21)1 (1i-@7) + (As) Stok (ki - @) + O(As)ga}

x (T +(As) (_21)1m- + O(As)ga)
=27 )T — (As) (1) {(Ti - @) + ki - )T — i - i} + O(As)2 7,

—2|As|?
IAF &

(32 ::) =20+ 09+ o9
= -2+ 0(As)?,

—2|As|* <Af A¢> 2|As|* (Af. >Af
[AF|IEn IAF||En ) As

As As
—— 21+ 092 {(ri- 0+ @9 Gl i 0+ (240 S (s 00) + 0291

AST

2 2

x 2(1+ O(As)*)(1+ O(As)?) {Tz‘ + (As) (—21)i Ki + O(As)ga}
= —A(1; - )T — 2(As) (1) {(1i - @) + ki - $)Ti — Ti P} + O(As)F 7,
—8lAslt (A (A A
[yl (AS 1) (As As)
=—8(1 + O(As)?)(1 + O(As)?)
: {(T" ¢+ (89) (721)1 (i - &) + (As) (721)2 (ki - ) + O(As)%a}

= = 87 8)) — A(Ds) (=)' (T - ¢ + i §) + O(A5)2 77,

thus we know that each term of hoy31 satisfies the assertions of Lemma 2.12. Hence, we obtain
that there exists an L? function Nay31(f)[¢] such that

lim // (—2h2431) . A'lpd51d32
|As|>e

10

=—2((7- ¢ ) Lof )12
(- @) (T Lof)T + (T @) Lof +2(7 - @) (T - Laf)T,9) 12
+4((1 - ¢ )Laf,b) 2 + (Naazi (£)[@), ¥) 2

=(3(1 - ¢ )Lof +3(T - &) (7 - Laf)T, %) 12 + (Noaz1 (f) (@], ¥) 12,
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and there exists a constant C' such that the estimate

1N 2431 (F)[@]l| 2> < C ([l 3-) [|@]] 12

holds. On the other hand, Lemmas 2.1, 2.5 and estimate of ng imply that there exists a
constant C(f) such that

1 2| As|* < A¢p Af )szf 4|k /
su T T + " - Ti @
S e e ™ A T ) e s O
C(H) B rrs-e,
oup b | S (A1) (5289 Quf ALl f
sitss |As2= || [[AS]S. As  As ) (As)?2 ||AFf|E. As
8llkallfn oy 2lmillge
3 (TZ ¢z’)71 3 Ti .
C(F)ll @l ms-a

for i € {1,2} Corollary 2.1 implies that there exists an L? function Nay32(f)[¢] such that

lim //AS|ZE(—}L2432) . A'lﬂdslng :<N2432(.f)[¢]7 ’¢J>L27

el0

and there exists a constant C' such that the estimate

1N 2432 (F)[@ll> < C (| Fl|z5-2) || D] 22

holds. From the above estimates, the claimed assertion follows.

4.5 The L’-representation of Ky

Lemma 4.7 Let a € (0,1). Then there exists a mapping Nos : H>=* — B(H?*~*,L?) such

that, for any bi-Lipschitz function f € H3~ and functions ¢, € H3>~*, we have
// Hos(f)[p, Yldsidsa = (Nas(f)[P] - ) 2.
(R/LZ)?

Moreover
[[N25(£)[@lllz2 < C ([ flls—a) | @] s-a
holds.

Proof Observe that

//As>s P wldsids = //|As|ze<h25(sl’82) - Atp)dsydss,

where

2.4(f)A¢

Pas(s1,52) = = A fp
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Now, we have

has(s1,82) = — Q/ili;ﬁfqb
- () 5
= 2 mNFE - L) 32
S A e VAT AT IS
Lemmas 2.1 and 2.6 imply that there exists a constant C(f) such that
s i [ 52 - (gt )| <COrlole

<CH)bll -

for i € {1,2}. Hence we get the claimed assertions from Corollary 2.1.

4.6 The L*-representation of the second variation of &,

From Proposition 4.1 to Lemma 4.7, we can conclude that §2&, has the L2-representaion.

Theorem 4.1 There exists a mapping No : H3> — B(H3,L?) such that, for any bi-Lipschitz
function f € H? and functions ¢, € H3, we have

32E2(£) [, ¥] = (Pr Lagp — (Lof - )7 +2(1 - ¢) Lo f + Na2(£) 9], ).

Moreover, N satisfies
IN2(H)[@]l|z2 < C([|f]lm2) || @] ms.

Furthermore, we can extend the domain of the linear form

Y > 026 ()9, 9]

to 1 € L2

5 Proof of the Lojasiewicz inequalities

In this section, we prove the Lojasiewicz inequality for each functional &;. We define H;(f) €
B(H3,L?) as

Hi(f)[¢] = PrLi¢p = (Lif - @)+ 2(7 - ¢ Lif + Ni(£)[¢],
for any ¢ € H*(R/Z). For f, € C'(R/Z), we define function spaces
HR/2)}, = { Py f| f € H®R/2)},

L*(R/Z)}, = {Pf%of‘ fe LQ(R/Z)}.
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Lemma 5.1 Assume that the bi-Lipschitz continuous function f, € C*°(R/Z) is a stationary
point of &. Then H,;(f,) is a Fredholm operator from H3(R/Z)}-6 to L?eé) (R/Z)*.

Proof Using the results of §3 and §4, the linear map H1(f,), H2(f,) are represented by

H(f0)[#] = 27PF, (—A,)? ¢ + Ri(fo) o,

Hs(fo)l¢] = _gﬁpﬁ)(—As)%qs + Ra(fo) @,

where each R;(f,) is a pseudo-differential operator whose order is less than 3.
First, we show that (—A,)? is a Fredholm operator from H3(R/Z);6 to LQ(R/Z)]%G. For a
function v € H3(R/Z,R) and v € H3*(R/Z,R"™), if we define

3
2

(—A5)2 (uv) — ((—AS)%u> v = F(u,v),

then we have
[F(u, v)|z2 < Cllul|m2||v] s

Now, let {I/i}?;f be a family of C'*° functions which constitute a basis of the normal plane to

the vector fg(s) for each parameter s. Then, for any function ¢ € HB(R/Z)}-,O, we obtain

n—1
p=> dwi, di=¢ v

i=1

Hence, we have

_|_
T
R
L— |
3
|
_
—
0
>
@
wlw
—
s
R
N
|
/N
0
>
@
jw
&
N——
S
—
—_

=Y (a0t vi+ Py, TSF(@,W).
i=1

i=1

Now we define a mapping from H? (IR/Z);;6 to L? (R/Z)j;6 by

Then, ¢ — Z?:_ll ((—As)%qﬁi) v; is a Fredholm operator. In fact, considering the ordinary
differential equation

(_As)%¢ =0,

we obtain that ¢ = const. Therefore, we can conclude

Ker((—As)%) = {c € H*(R/Z)| c is a constant function}.
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Next, using 1
f=rreu o, on=- [ rau
we can get a direct sum decomposition
L*(R/Z) = M, & My,
M, ={f € L*(R/Z)|C(f) =0}, My ={ce L*(R/Z)|cis a constant function}.

Here, we have

e

My = Rg((=As)2),

and thus

(N

Coker((—Ag)2) = M.

Since
Ker((—A,)?), Coker((—A,)?)

% is a Fredholm operator

are finite dimensional subspaces of L?(R/Z), we can conclude that (—Ay)
from H3(R/Z);6 to LQ(R/Z)E.

Finally, note that R;¢, F(¢:,v;) are pseudo-differential operators of order less than 3 with
respect to ¢. From the Rellich-Kondrachov compactness theorem, we have H*(R/Z) € L*(R/Z).
Hence, a pseudo-differential operator of order less than 3 is a compact operator from H3(R/ Z)J%6
to L2(R/ Z)]%[,). Moreover, a sum of a Fredholm operator and a compact operator is a Fredholm
operator.

Now, H;(f)[¢] is a sum of a Fredholm operator and a compact operator, hence is a Fredholm

operator from H%R/Z)h to LQ(R/Z)]%B. -
af
If we let || == = v(z), then ds = vy(x)dx holds.
z || gn

Lemma 5.2 Assume that the bi-Lipschitz continuous function f, € C*(R/Z) is a stationary
point of &;. Then G; is an analytic function from HZS(R/Z)j;6 to LQ(R/Z)}-6 on some neighbour-
hood of fo in || - ||gs.

Proof Let f € H3*(R/Z). If we choose o > 0 sufficiently small, under the condition ||f —
Follas < 9, f is bi-Lipschitz continuous. That is, there exists b > 0 such that

1AFe o,
s~

Here, s = s(x) is the arc-length parameter. Note that the mapping H3(R/Z) > f — s € CY(R/Z)

is analytic. According to [11], we have

i) =taf-2 [

R/Z

{(Ai)Q(Tzélf : T(Sl))AT — ///(f)li(sl)} 7(372)(13:2

o[ AT & (- Jimelk ) rion (e
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Since the linear term L; has an L?-estimate

[L1£llL2 < Cll S,

the mapping L, : H3(R/Z) — L?(R/Z) is analytic.
Next, we note that the mapping
fr 37
As’
from H?’(R/Z)}-{) to C((R/Z)?) is analytic, and since z — z~! is analytic on z € [b,o0), we

obtain that the mapping from H?’(]R/Z)}-6 to C((R/Z)?) given by

(As)?
I = 1ar12.

is analytic. Next, if we take a function u € C((R/Z)?), then we have

/ u(-, x2)y(z2)des SC/ u(-, x2)y(z2)dws
R/7Z R/Z

L2 L

< COllull o (®r/z)?)-
Therefore, the mapping

u— u(-, x2)y(x2)dzs
R/Z

is an analytic mapping from C((R/Z)?) to L*(R/Z).
Finally, we define a mapping from HB(R/Z)]%(J to L2(R/Z) by

r a5 (G040« (57— w0 2(e)den

Then the abave mapping is quadratic and we have

[ a (G2 +wten) - (GE = ston)) s(aapae

AT
As

L2

(/]R/Z W ’Y(xS)d.’L'3|> |’Y(l’2) |d.’I]2

Ak
|As[l/2—a

<C

+ K(s1)

1
/]R/Z |As|1/2+a

A
< CHA: + K(s1)

Lo

L= ((R/Z)?)
< C ISl 1 Fll 2o
< Clfll5ps

Le=((R/2)?)

which implies that it is bounded. Hence, the mapping is analytic.
Now, T;f, T]’f -1(s1), A (f), #1(f) can be expressed by use of four arithmetic operations

with f, T, AA{, az, ||(fA||82) and there holds
1 1
e CAGRE L
_ laT]E. |AT|. (AT AT
 2As )+ 2As As +rls1) As K(s1) )
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Noting these facts, we obatain that G is an analytic mapping from H3(R/Z)]%6 to L2(R/Z)
On the other hand, it is shown that

1
fo

Go(f) = Lof + N,
Néz)(f) :_4/ (As)? {Tff.‘r(sl) 9 f . T2f - 1(s2) Tlof}dSQ

vz [|AF|§n (As)?  As (As)?  As
T'f -r(s) T9f | T0f-7(s2) T f
B 4/M [ (As)2  As T (As?  As

+2{(TYf - T(s2)) + l}zwji‘sf} dss

L Afor(s) =T - 7(s
_4/]R/Z(AS)3 |:T1f (1) T2f (2)

+2{(Tf - 7(s2)) + 1HTPF - (1)) + TV f - 7(52) —

ol sl m(or)dse

i [T g (e gz} s

n [11]. Note that .#2(f) can be expressed by four arithmetic operations or these combination

of f, T, AAS , AA:. A similar argument to the case of G lead to the analiticity of Gs. O

We state a lemma by Chill [3] to prove the Lojasiewicz inequalities.

Lemma 5.3 [3, Chill, Corollary 3.11.] Let V and W be a pair of Banach spaces which satisfy
Ve W < V' and let E be a functional near 0 in V. E" denotes the second order Frechét
derivative of E. If

Vo = Ker(E"(0))

and P denotes a projection of V onto V, then we assume
V=VWweW, Vi=Ke(P).

In addition, we give conditions as follows:

1. P(W)C W,

2. E' e CHV,W),

3. Rg(E"(0)) = Ker(P)NW,

4. E' is an analytic mapping from V to W,

5. dimV, < oo.

1

Then the functional E satisfies the Lojasiewicz inequality near 0 for an exponent 6 € (0, 3).

Theorem 1.15 Assume that the bi-Lipschitz function f, € C*°(R/Z) is a stationary point of
&i. Then there exist 6 € (0,3),0 > 0,c > 0 such that if a bi-Lipschitz function f € H3(R/Z)
satisfies |f — follus < o, the inequality

E(F) = E(F)' ™" < el Gilf)llze
holds.
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Proof Applying Lemma 5.3 to the case V = HS(R/Z)]%{), W = LQ(R/Z)]%B, we obtain that
& H?’(]R/Z)Jf-6 — R satisfies the Lojasiewicz inequality. That is, there exist 6 € (0,1), 6 > 0

such that if a bi-Lipschitz function f € I{S(R/Z)j;6 satisfies ||| gz < &, it holds that

Ei(fo+ @) —E(Fo)l' ™ < cllGi(fo + )llre.

Using [2, Lemma A.9], if there exists o > 0 such that || f(z) — fq(z)
then

rr < o for any z € R/Z,

1)l > 5

for any x € R/Z, and there exists a diffeomorphism ¥ on R/Z and a function ¢ € H? (]R/Z)J%6
such that

foVl=Ffy+o,
1@llms < ClIf = Follas-
If we choose o > 0 sufficiently small, we have
1
9

d
Hd:c(foqj)

Rn

and hence we get

E(F) = E(F)' ™0 = |E:(fo + @) — E(F)'
1/2
<c (/ 1Gi(fo+ ¢)($)Ilﬁndw>
R/Z

4
dx

2
R™

(f o W)(x)

1/2
dx
R’n

< 2c (/R/Z |Gi(fo+ &) ()]

= 2¢|Gi(f)l[ >
O
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