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Abstract
In this study, we proposed some image processing techniques based on image

power spectrum sparsity. Firstly, we proposed a simple and effective image denois-

ing method by introducing a unique tool named image power spectrum sparsity.

The finding of image power spectrum sparsity as one kind of image characteristic

is original as far as we know.

In image processing, image denoising plays an important role because images

are corrupted in various ways especially by the unwanted noise because of the

sensor of the camera or the low light situation. The degradation of image quality

due to the unwanted noise leads to an obstacle for further image applications. In

order to overcome the obstacle due to noise, the noise should be suppressed from

the observed noisy image. Many researchers have proposed various image denoising

techniques. Most techniques assume that the noise level is known in prior which is

impractical in the real world situation. Image denoising method in blind condition

is important to be practically in used.

For this requirement, many researchers proposed image denoising methods in

blind conditions in recent years. However, these methods need complex technique

to estimate the original image from the noisy image which is time-consuming. Re-

cently, there are many image denoising methods based on deep learning neural

networks. Although, these methods can provide better performance, the compu-

tational cost is very high. Computational time is also one of the most important

performance to be considered for real time image processing applications, such as

object recognition and computer vision. Therefore, we consider a simple and ef-

fective method for image denoising without the prior knowledge of noise level. In

this case, we consider Wiener filter (WF ) which is widely used in the linear image

denoising technique. WF is effective for removing noise from the image degraded

by white noise. Wiener filter can be implemented in several domains, for example,

the spatial domain, the frequency domain, and the wavelet domain. Implementing

WF in the frequency domain provide a better performance than the other two

domains. However, implementing WF in the frequency domain needs to estimate

both the power spectra of the original image and the noisy image. Therefore, a

high computational time is required. In order to provide a good performance with

the shortest computational time, we proposed a spectral subtractive(SS )-type

WF which is derived from one-dimensional signal processing to two-dimensional

signal processing. The SS -type WF only need the noise variance to estimate

12



the original image. To improve the performance, a parametric WF (PWF ) is

proposed by adding the two adjustable parameters. A better performance result

can be obtained using the best parameters set in PWF . However, finding the best

parameters set is time consuming. Thus, it is necessary to set the best parameters

set automatically to reduce computational time.

While analyzing the best parameters set, it is observed that, the sparser the

image frequency components contained in the image power spectrum, the larger the

parameters value. To know the amount of image frequency components containing

in the image, we proposed a unique tool named image power spectrum sparsity(S).

Interestingly, it is found that the image with the larger S need the larger parameters

set whereas the image with the smaller S need a smaller parameters set. It is

also observed that S value of the whole image is common to every noise level

which means that we can directly calculate the S from the observed noisy image.

Therefore, to find the best parameters set automatically from the observed noisy

image, we divide the image into three different groups depending on the S value

and set the parameter values for each group. The experimental results showed that

the proposed method provides better performance with the shortest computational

time among the WF methods.

The finding of S gives a motivation to partially fulfill the requirements of noise

level estimation which still needs to be improved for the accuracy of rich-texture

images and the computational time. Noise level estimation plays an important role

to a variety of image processing algorithms because it can improve the performance

of the applications obviously. Many researchers have developed noise estimation

techniques using single image and multiple images based on the filtering-based

approach and block-based approach. Among the noise level estimation methods,

block-based approach is one of the effective one. Many researchers proposed noise

level estimation methods to overcome overestimation and underestimation of noise

level based on the block-based approach. However, they need a complex method

and long computational time. Realizing the advantage of S that can tell the

amount of frequency components contained in an image, we proposed a block-

based noise level estimation on the weak-texture image patch based on S. The

results showed that the proposed method provides better performance especially

for rich-texture images with the shortest computational time among the block-

based methods.

Furthermore, to show the effectiveness of the S that can widely be applied in

image processing techniques, a unique method for edge component detection is

13



also investigated. When most of the edge detection emphasizes to improve the

quality of the edge detection with the fixed edge size, for object tracking which

does not require all of the image detailed parts, a flexible edge component detection

technique is required so that the data to be stored is significantly reduced. Thus,

we proposed a flexible edge component detection algorithm by dividing the image

into sub-blocks and applying the S and threshold parameter to determine the edge

component. It is observed that, the proposed method is effective with its flexible

edge size by choosing the desired window size and threshold parameter so that the

data to be stored is dramatically reduced.
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Chapter 1
Introduction

1.1 Background

Vision plays a vital role of human senses to contact with the environment. Thus,

there is no doubt that images play the most important role in our daily life.

Nowadays, there is almost no technical area which is not related in some way

by Digital Image Processing(DIP ) [1]. A large number of applications of DIP

has been widely used in diverse spectrum of human activities such as automatic

visual inspection system, remotely sensed scene interpretation, biomedical imag-

ing techniques, defense surveillance (e.g., content based image retrieval, moving-

object tracking, and image and video compression) [52]. The processing sequence

of DIP involves from low-, mid- and high-level processes. The low-level, im-

age pre-processing, comprises primitive operations such as noise reduction, image

restoration, image enhancement in which both the input and output are images.

The mid-level processing receives images as input and produces part of the re-

gions as output where it operates on the images by segmentation(partitioning the

image into objects or regions), description and classification (recognition of each

individual object). The high-level processing involves image analysis and object

recognition which make senses to perform the cognitive functions associated with

vision.

To obtain a desired result for high-level processing of image processing, the

image preprocessing step is the main fundamental step which is inevitably needed.

The preprocessing step is important because the images are often degraded in

various ways such as the defocused camera, the atmospheric degradation caused

by fog, the motion of the object and the focal plane of the lens of the camera

15



1.2 Problem Statements and Objectives 16

during the capturing of the image. Especially, one of the common sources of image

quality degradation is due to the unwanted noise which is caused by imperfect

electrical senor or thermal noise. These noises are often called white Gaussian noise

which is randomly distributed and spatially uncorrelated. The certain quantity of

unwanted noise obscures the image detailed parts and significantly degrades the

image quality. Such noisy images produce a burden to be applied for further

processing to be applied in different application areas such as artistic, scientific

and commercial applications, medical imaging and computer vision. Thus, the

process of image denoising is obviously needed to eliminate noise from the noisy

image.

After the preprocessing step, the mid-level of image denoising, image edge

detection, is the important step to obtain the important image feature for high-

level computer vision algorithms. Image edge detection can significantly reduce

the amount of data to be stored as it filters out unnecessary information while it

preserves the important parts of the image. In order to improve the performance

of the image applications, image edge detection technique also plays an important

role.

1.2 Problem Statements and Objectives

Image denoising plays a vital role in an image pre-processing. Different denoising

algorithms especially for images degraded for white noise has been proposed by

many researchers in recent years. Although these algorithms fulfilled to reduce re-

quirements such as eliminating noise while preserving image detailed parts, these

algorithms need complex arithmetics and long computational time. Although com-

putational time is not so much obvious for one image, for video processing, which

need to process at least 30 frames per second, the computational time becomes one

of the most important feature. Thus, to fulfill the computational requirements, an

effective algorithm which is simple with the short computational time is inevitably

needed.

Without limitation to image preprocessing, for further image processing appli-

cations, the mid-level processing named image edge detection which is an important

step for computer vision algorithms also needed to be considered. When most of

the edge detection algorithms emphasize to improve the accuracy of edge detection

with a fixed edge size, for object tracking which does not require the detailed image

parts, an algorithm which can dramatically reduce the data to be stored becomes
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necessary. Therefore, in this study we aims at:

1. Finding to develop a denoising method which is simple and effective with

the short computational time.

2. Developing an improved noise level estimation method based on the previous

finding.

3. Developing a flexible edge component detection method to show that the

study can be extensively used.

1.3 Overviews

Many researchers have developed image denoising algorithms in different perspec-

tives to reduce noise effectively from the noisy image based on linear and non-linear

denoising methods. The linear denoising method with the averaging process such

as the mean filter or average filter are simple and fast. However, it can produce

blurry images [4] when the image contains the detailed image parts.

The Gaussian filter which uses the convolution operator also has the same effect

as the mean filter that determines the smoothing by the standard deviation of the

Gaussian distribution. The Median filter is a non-linear filter which replaces each

pixel in an image with the median value of its surrounding. The assumption that

adjacent pixels are similar to each other and averaging them results in the less loss

of detail. However, it is relatively expensive and complex computation [10].

The Wiener filter is one of the effective linear filters for removing the additive

white Gaussian noise. WF is designed to minimize the mean-square error between

the original image and the processed signals [5]. WF also has been implemented

in several domains such as spatial domain [3], frequency domain [6] and wavelet

domain [11]. The Wiener filter in the spatial domain requires the knowledge of

the associated autocorrelation and cross-correlation functions of the input and

the desired images. The Frequency Domain Wiener filter and the wavelet-based

Wiener filter [16] also require the knowledge of the image and noise. Assuming the

noise and original image as a prior knowledge is impractical. Therefore, a Wiener

filter in the blind condition [21], [22] has been proposed. A method to estimate the

noise and image power spectra while preserving some of the image details using

the edge-map based approach was proposed in [22]. However, all these methods

require complex arithmetics to estimate the power spectra for both image and

noise.

To reduce the complex computation, a Wiener filter in the blind-condition



1.3 Overviews 18

which uses multiple images and averages the results obtained from the restored

images from the Wiener filter has been proposed in [23]. However, long compu-

tational time is still required. The computational time is one of the concerned

problems because in the real time image processing, at least 30 frames are needed

to be executed in one second. Therefore, the computational time is the important

feature to measure the performance of the denoising algorithm. Thus, it is neces-

sary to consider a denoising method which is effective for both performance and

computational time.

In this study, first of all, we consider a simple and effective method for the image

denoising technique. The proposed denoising technique is based on the Spectral

subtractive(SS ) type WF which only needs the noise variance to estimate the

original image. The performance of the SS type WF is improved by introducing

some parameters namely Parametric WF(PWF ). In order to reduce computa-

tional time for PWF a unique tool named image power spectrum sparsity, S, is

proposed in this study. The image power spectrum sparsity is unique and also

effective for noise level estimation as it can indicate the image frequencies amount

contained in the image. It is observed that the image power spectrum sparsity is

unique and effective image characteristics for image denoising.

After realization of the effectiveness of S, we propose a simple and effective

image noise level estimation technique because noise level estimation is impor-

tant and has high effect for image processing algorithms. When most of the noise

level estimations require complex computation with long computational time, the

proposed noise level estimation technique based on S solves the complex compu-

tation problem and provides short computational time among block-based noise

level estimation methods.

Furthermore, we also investigate to apply the finding of S to image edge de-

tection technique which is necessary for computer vision. There are various edge

detection algorithms trying to improve the performance of the edge detection meth-

ods by image gradient [53] - [55], [57], image entropy [62] - [63], and artificial neural

networks [64] - [66]. All the edge detection methods detect the image with the fixed

edge size. However, for object tracking which does not require image detailed parts,

a flexible edge size is effective to dramatically reduce the amount of data to be

stored. Therefore, we propose a flexible edge component detection method based

on S by dividing the images into sub-blocks. The window size of the image and the

threshold parameter are adjustable depending on the image type. The proposed

edge component detection algorithm is unique because of its own characteristic of
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flexible edge size that can significantly reduce the amount of data to be stored.

1.4 Organization of the Thesis

The background, the problem formulation and overviews of the thesis have been

described in this chapter. The rest of the thesis is organized as follows. In Chapter

2, the PWF and a unique tool named image power spectrum sparsity is proposed.

In Chapter 3, a method of noise level estimation based on image power spectrum

sparsity is proposed. Chapter 4 discusses image edge component detection based

on image power spectrum sparsity. Chapter 5 presents the conclusion and future

work of the thesis.



Chapter 2
Parametric Wiener Filter Based on Image
Power Spectrum Sparsity

In this chapter, a simple and effective denoising method of spectral subtractive(SS)

type Parametric Wiener Filter(PWF ) for blind condition is proposed. A simple

noise estimation method is used to estimate the noise variance directly from the

noisy image. Preliminary experiments with nine images from SIDBA are conducted

to find the best parameters for the PWF . The PWF gives the best performance

with the best parameters setting. However, in practice, it is difficult to know

the best parameters because the best parameters are changed according to the

characteristics of the image. To determine the estimated best parameters for the

PWF , therefore, a unique tool named image power spectrum sparsity, which is

not influenced by noise level, is proposed. The parameters for the PWF are set

according to the value of the power spectrum sparsity. To demonstrate the effec-

tiveness of the PWF , untrained images from SIDBA are used. The experimental

results show that the proposed method gives a good performance with the shortest

computational time to restore the image in blind condition.

2.1 Related Work

Image denoising, the fundamental preprocessing step of image processing, has

played an important role in recent years. Image denoising is the process of re-

ducing the unwanted noise to obtain the original image from a noisy image. The

better the preprocessing, the higher the image quality, resulting in more suitable

images for the targeted applications. The photos taken with a digital camera in

20
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low-light situations always include noise distributed with random attributes, which

is called white noise. Imperfect electrical sensors embedded in a digital camera also

generate white noise. The white noise degrades the quality of the image and pro-

duces unwanted artifacts.

To reduce such noise, many researchers have proposed linear and nonlinear fil-

tering techniques. Among the variety of filtering techniques, the Wiener filter(WF

), which is proposed by Nobert Wiener citeWiener is one of the most effective ap-

proaches to restore an image degraded by white noise. The WF is implemented

in several transform domains, for example, the spatial domain [3], [8], [9], the fre-

quency domain [6], and the wavelet domain [11] - [14]. While applying the WF ,

noise estimation is vital to accurately estimate the original image, when the infor-

mation of the original image and noise level is not known. Different methods of

estimating the noise variance for the WF in the spatial domain have been proposed

in Refs. [15] - [18]. Several power spectrum estimation methods have also been pro-

posed for estimating the noise in the frequency-domain WF [19] - [22]. Kobayashi

et al. [19] proposed Frequency band division processing(FBDP ) to estimate the

image and noise power spectra directly from the observed noisy image.

To cover the noise power spectrum from the low-frequency region in FBDP

, Furuya et al. [21] proposed a modified version by Averaging high−frequency

component(AHFC ). Suhaila and Shimamura [22] proposed an edgemap-based

WF that preserves fine details of images with an edge map technique and success-

fully estimated the noise power spectrum in both high- and low-frequency regions.

These WF s commonly require power spectrum estimation, which is complicated

and time-consuming.

To avoid the complicated process of power spectrum estimation, Yoo et al. [23]

proposed a so-called blindWF . This technique first applies ten random noises

to the corrupted image and restores the image by taking an average over the ten

images processed by the WF. The accuracy of this technique mainly depends on

the number of images to be averaged and the closeness between the generated and

real noise levels. This technique still needs a long computational time to restore the

image. Taking all the above requirements into account, in this chapter we propose

a simple and effective method called the parametric WF (PWF ), which takes

the shortest computational time among the WF methods to restore the image.

The contributions of this chapter are (1) to introduce a Spectral subtractive(SS

)-type WF for image denoising, (2) to derive a technique to simply estimate the

noise variance directly from the degraded image power spectrum, (3) to show the
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possibility of improving the WF performance by using the PWF , (4) to propose

a novel tool called image power spectrum sparsity as an image characteristic, and

finally (5) to apply the PWF in practice using the image power spectrum sparsity.

This chapter is organized as follows. Section 2.2 describes the PWF with the

noise variance estimation and the determination of the best parameters. Section 2.3

shows a method to calculate the power spectrum sparsity for parameter estimation.

Section 2.4 clarifies the implementation process of the proposed method. In Section

2.5, a performance comparison between the proposed method and the conventional

methods is conducted and discussed. Section 2.6 is devoted to a conclusion.

2.2 Parametric Wiener Filter

The image is assumed to be degraded by additive white Gaussian noise. The

degraded image is assumed to be obtained by

d(u, v) = x(u, v) + n(u, v) (2.1)

where d(u, v) , x(u, v) , and n(u, v) represent the Degraded image, the Original

image, and the White Gaussain noise, respectively.

2.2.1 Wiener Filter

The WF is one of the most effective approaches for image denoising and gives

the best estimate of the original image from the image degraded by additive white

Gaussian noise. The estimated image is obtained by filtering using

H(u, v) =
Px(u, v)

Px(u, v) + Pn(u, v)
(2.2)

where Pd(u, v) and Pn(u, v) represent the power spectra of d(u, v) and n(u, v) ,

respectively. Equation (2.2) can be changed to

H(u, v) =
Pd(u, v)− Pn(u, v)

Pd(u, v)
(2.3)

by extending one-dimensional signal processing of the WF in [24] into a two-

dimensional signal processing version, where Pd(u, v) represents the power spec-

trum of d(u, v). Equation (2.3) is an SS -type WF . In this study, the additive
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noise n(u, v) is assumed to be white Gaussian noise. In this case, Pn(u, v) is theo-

retically flat and represented here as

Pn(u, v) = η (2.4)

for simplicity, where η is the Variance of the noise. Substituting Eq. (2.4) into

Eq. (2.3), we obtain the formula

H(u, v) =
Pd(u, v)− η
Pd(u, v)

(2.5)

2.2.2 Parametric Wiener Filter (PWF )

The WF is improved by adding a parameter to the noise variance and by adjusting

the power of the frequency response. The idea of representing the power, γ, in the

WF was derived in Ref. [6]. However, in this study, combining the idea in [6] with

Eq. (2.5) and adding the constant β to η, a PWF is derived as

H(u, v) =

[
Pd(u, v)− β · η

Pd(u, v)

]γ
(2.6)

where β corresponds to the Weighted factor of the noise varianceand γ is the

Power of the frequency responseof H(u, v). The parameters β and γ are important

because variety of images can be found in the real world situation. For example,

if the images contain most of image part in the high frequency regions, which

is called high sparsity. For these kind of images, even the exact noise level is

known, subtracting the exact noise level from the noisy image can degrade the

image quality. However, if the image has less components in the high frequency

regions, which is called low sparsity, such as images with lot of weak-texture parts,

subtracting the exact noise level could not degrade much of the image component.

Therefore, it is necessary to set the small β for images with low sparsity and large

β for images with high sparsity. After subtracting the noise form the noisy image

power spectrum, the true power of the image power spectrum will also be reduced.

For this reason, the optimal parameter γ is important to enhance estimated image

power spectrum. Therefore, it is obvious that adjusting β and γ depending the

image type is important in order to obtain a better performance. The PWF

becomes the SS -type WF in Eq. (2.5) when the parameters β and γ are 1.
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Figure 2.1: Images from SIDBA
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2.2.3 Noise Variance Estimation

Figure 2.2: Estimation of noise variance

One major task in the use of Eqs. (2.5) and (2.6) is to estimate the variance of

the noise, η , from the degraded image. For this purpose, the characteristics of an

image can be seen easily by evaluating the power spectrum. The power spectrum

of the image is obtained by a discrete Fourier transform.

As the power spectrum of the image occupies the lower frequencies and the

power spectrum of the white Gaussian noise occupies the higher frequencies, the

variance of the noise can be obtained from the higher-frequency part of the power

spectrum. The higher frequencies of the degraded image exist in the boundary

region of the power spectrum. Thus, we calculate the mean of Horizontal top-most

boundary of image power spectrum; Ht(Pd(u, v)) , the Horizontal bottom-most

boundary of image power spectrum; Ht(Pd(u, v)) , the Vertical left-most boundary

of image power spectrum; Vl(Pd(u, v)) , and the Vertical right-most boundary of

image power spectrum; Vr(Pd(u, v)) as shown in Fig.2.2, without overlapping of

the corners. The variance of the noise is obtained as

η = mean
[
Vl, Vr, Ht, Hb

]
(2.7)
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where Vl , Vr , Ht , and Hb represent the means of Vl(Pd(u, v)), Vr(Pd(u, v)),

Ht(Pd(u, v)) and Hb(Pd(u, v)), respectively.

Table 2.1: Noise estimation on LENA

True Std Estimation

5 6.33 ± 0.01

10 10.71 ± 0.02

15 15.41 ± 0.09

Table 2.2: Noise estimation on BOAT

True Std Estimation

5 5.58 ± 0.01

10 10.15 ± 0.03

15 15.11 ± 0.09

Table 2.3: Noise estimation on CAMERAMAN

True Std Estimation

5 9.70 ± 0.02

10 12.84 ± 0.03

15 16.97 ± 0.08

Tables 2.1-2.3 show the mean and standard deviation for the estimation of the

standard deviation of noise on LENA, BOAT, and CAMERAMAN, respectively

(Fig.2.1). A white Gaussian noise was generated for ten individual trials for each

standard deviation of 5, 10, and 15 and added to each image. From each resulting

noisy image, the noise variance was estimated through Eq. (2.7). The standard

deviation of the noise variance was calculated as the square root of the noise

variance. The noise estimation is represented by the mean value of the ten standard

deviations ± the corresponding standard deviation value in Tables 2.1-2.3.

From Tables 2.1-2.3, it can be seen that CAMERAMAN has the largest noise

overestimation. This is because the parts of the image corresponding to grass
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are perceived as noise, which are concentrated in high-frequency regions. BOAT

has the smallest noise overestimation because the poles of the boat which can be

seen clearly, are concentrated at the low frequencies of the image power spectrum.

LENA has a small noise overestimation because the detailed parts of the image,

such as the feather of the hat, are concentrated in the high-frequency regions of the

image power spectrum. The noise level of the image can be estimated by various

methods such as a filtering-based approach [25], block-based approach [26], and

structure-oriented approach [27], [28]. However, all these methods are complicated

and time-consuming.

The calculation in Eq. (2.7) is not complicated implying that it is a simpler and

easier estimation method. However, the averaging process of the border regions

from the observed noisy image power spectrum can result in overestimation of

noise when the image parts are included in the higher-frequency regions. Although

there are some differences in the noise estimation values in Tables 2.1-2.3, these

differences are not serious as they are compensated by the coefficient of noise

variance, β, in the filter design of Eq. (2.6). Thus, a certain degree of estimation

error is permitted in the simple noise estimation method.

2.2.4 Best-Parameter Determination

A preliminary experiment is required for the PWF in order to determine the best

parameters. In our experiment, β is set from 0.1 to 3.6 and γ is set from 0.5 to

4.4 to find the best parameters in terms of the peak signal-to-noise ratio(PSNR).

Images from SIDBA (Fig.2.1) are tested by generating ten individual noises for

each standard deviation of 5, 10, and 15. These images were chosen to cover a

variety of images that can be seen in real-world situations. The parameter set

that provides the largest PSNR value for each image is then defined as the best

parameter set. Tables 2.4 and 2.5 show the best parameters for β and γ giving

the highest PSNR for the PWF and WF in the noise estimation case and in the

ideal case where the noise variance is known, respectively. It can be seen that the

PWF outperforms the WF in both cases. However, it is impractical to find the

best parameters by searching all the sets of parameters because it is extremely

time-consuming. Thus, estimating the best parameter set is a major issue for the

PWF . Nevertheless, a simple solution to this issue is successfully obtained in this

study, which will be discussed in the next section.
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2.3 Parameter Estimation

2.3.1 Power Spectrum Sparsity of an Image

The power spectrum is a representation of an image, which shows the magnitude of

various frequency components of the image by using the discrete Fourier transform.

According to the features of the image, different shapes of the power spectrum

exist at different distances and directions from the origin. Evaluating the power

spectrum is a useful tool to distinguish the features of an image.

Figure 2.3 shows different image power spectra plotted on a logarithmic scale.

Comparing Fig.2.3 with Tables 2.4 and 2.5, it is clearly observed that the more

image frequency components contained in Fig.2.3, the larger the values of pa-

rameters β and γ in Tables 2.4 and 2.5. For example, in Table 2.4, BOAT has

(β, γ) = (0.3, 4.4) for a standard deviation of 5, while TEXT has (β, γ) = (0.1, 2.2)

for the same standard deviation. In Fig.2.3, BOAT includes many of the high-

frequency components and some of the low-frequency components, but TEXT is

almost completely dominated by the low-frequency components. In Table 2.4,

LENA and BARBARA have medium values of parameters with (β, γ) = (0.2, 3.8)

and (β, γ) = (0.2, 4.4), respectively, for a standard deviation of 5. Both LENA

and BARBARA include an intermediate number of high-frequency components as

shown in Fig.2.3.

The power spectra of BRIDGE and LIGHTHOUSE in Fig.2.3 show that most

of the image parts are concentrated along the vertical and horizontal frequency

axes and in the low-frequency regions near the origin. These images have small

parameter sets, as shown in Tables 2.4 and 2.5, because most of the image parts,

such as the leaves in BRIDGE and the waves in LIGHTHOUSE, seem to be white

noise. The power spectrum of CAMERAMAN shows that most of the image parts

are included in the high frequencies but few parts are included in the low-frequency

regions. However, CAMERAMAN has a small parameter set, (β, γ) = (0.1, 2.1),

as shown in Table 2.4. These results show that the parameter sets depend on the

number of image frequency components contained in the power spectrum.
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Figure 2.3: Power spectra of images from SIDBA
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Table 2.4: Performance comparison of PWF and WF in terms of PSNR in noise
estimation case

std image PWF WF best parameters (β, γ)

5

LENA 35.23 34.86 (0.2, 3.8)
BOAT 36.33 36.21 (0.3, 4.4)

EARTH 36.84 36.58 (0.5, 3.8)
FACE 38.04 37.43 (0.6, 4.0)

AIRPLANE 34.77 33.59 (0.1, 4.0)
BARBARA 35.54 35.34 (0.2, 4.4)
BRIDGE 34.06 27.12 (0.1, 0.5)

BUILDING 35.44 34.80 (0.2, 3.0)
LIGHTHOUSE 34.42 29.68 (0.1, 0.7)

TEXT 34.80 32.57 (0.1, 2.2)
CAMERAMAN 34.57 32.16 (0.1, 2.1)

10

LENA 30.58 30.36 (0.4, 4.1)
BOAT 31.70 31.25 (0.5, 4.3)

EARTH 32.30 31.61 (0.6, 4.1)
FACE 33.73 32.34 (0.8, 4.0)

AIRPLANE 29.93 29.72 (0.3, 3.9)
BARBARA 30.49 30.29 (0.4, 3.8)
BRIDGE 28.60 26.08 (0.1, 2.1)

BUILDING 30.66 30.50 (0.3, 4.4)
LIGHTHOUSE 29.14 27.83 (0.1, 4.1)

TEXT 29.78 29.39 (0.2, 4.2)
CAMERAMAN 29.72 29.29 (0.2, 4.1)

15

LENA 28.23 27.70 (0.5, 4.4)
BOAT 29.22 28.37 (0.6, 4.4)

EARTH 29.92 28.64 (0.7, 4.4)
FACE 31.51 29.43 (0.9, 4.2)

AIRPLANE 27.49 27.20 (0.4, 4.4)
BARBARA 27.74 27.43 (0.5, 3.8)
BRIDGE 25.79 24.88 (0.1, 4.4)

BUILDING 28.12 27.76 (0.5, 4.0)
LIGHTHOUSE 26.42 26.02 (0.2, 4.4)

TEXT 27.23 27.03 (0.3, 4.4)
CAMERAMAN 27.26 27.05 (0.3, 4.4)
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Table 2.5: Performance comparison of PWF and WF in terms of PSNR in ideal
case

std image PWF WF best parameters (β, γ)

5

LENA 35.24 35.10 (0.3, 4.1)
BOAT 36.34 36.21 (0.4, 4.4)

EARTH 36.84 36.55 (0.5, 3.9)
FACE 38.04 37.43 (0.6, 4.0)

AIRPLANE 34.77 34.61 (0.2, 4.4)
BARBARA 35.54 35.43 (0.3, 4.4)
BRIDGE 34.23 33.96 (0.1, 4.1)

BUILDING 35.45 35.33 (0.3, 4.1)
LIGHTHOUSE 34.50 34.22 (0.1, 4.4)

TEXT 34.83 34.61 (0.2, 3.9)
CAMERAMAN 34.60 34.40 (0.2, 4.1)

10

LENA 30.59 30.29 (0.4, 4.4)
BOAT 31.69 31.16 (0.5, 4.4)

EARTH 32.31 31.57 (0.6, 4.3)
FACE 33.73 32.40 (0.7, 4.4)

AIRPLANE 29.94 29.73 (0.4, 4.0)
BARBARA 30.50 30.29 (0.4, 4.4)
BRIDGE 28.64 28.39 (0.2, 4.0)

BUILDING 30.66 30.44 (0.4, 4.4)
LIGHTHOUSE 29.14 28.94 (0.2, 4.4)

TEXT 29.79 29.62 (0.3, 4.4)
CAMERAMAN 29.72 29.54 (0.3, 4.4)

15

LENA 28.22 27.61 (0.6, 4.1)
BOAT 29.22 28.29 (0.6, 4.4)

EARTH 29.92 28.67 (0.7, 4.4)
FACE 31.52 29.59 (0.9, 3.9)

AIRPLANE 27.49 27.09 (0.5, 4.2)
BARBARA 27.74 27.35 (0.5, 4.2)
BRIDGE 25.81 25.60 (0.3, 4.1)

BUILDING 28.12 28.12 (0.5, 4.3)
LIGHTHOUSE 26.42 26.22 (0.3, 4.4)

TEXT 27.24 26.97 (0.4, 4.4)
CAMERAMAN 27.26 26.98 (0.4, 4.4)
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Figure 2.4: Different power spectra of BOAT

The shape of the power spectrum of the image changes with the noise level to

be included as shown in Fig.2.4. Most of the image parts in the higher-frequency

regions may be disrupted when the noise level increases. Thus, it is important to

define the power spectrum feature in a manner that is robust to the noise level

because prior knowledge about the noise level is not available in practice.
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Figure 2.5: Sparsity calculation using power spectrum

To define power spectrum characteristics that do not change according to the

noise level, a novel tool named image power spectrum sparsity, which indicates

the number of image frequency-components contained in the power spectrum, is

proposed in this section. The concept of image power spectrum sparsity is original

as far as we know. As most of the image frequency components are concentrated

along the horizontal and vertical axes of the power spectrum, image power spec-

trum sparsity can be calculated by dividing the sum of the whole power spectrum

of the image by the sum of the horizontal region and vertical region of the power

spectrum as

S =
PI

Ph + Pv
(2.8)

where PI , Ph and Pv are illustrated in Fig.2.5. Image power spectrum sparsity

in Eq. (2.8) gives a measure of the degree of sparseness in the power spectrum.

Therefore, when the power spectrum is sparser, a small value of S is obtained.

When the power spectrum is less sparse, a large value of S is obtained.

The image power spectrum sparsity in Eq. (2.8) gives a constant value for an

image including only white noise with a size of 256× 256 as

S =
256× 256× η

256× η + 256× η
=

256× 256× η
(2× 256)η

= 128 (2.9)
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Table 2.6: Values of image power spectrum sparsity

Image S
LENA 34
BOAT 111

EARTH 102
FACE 426

AIRPLANE 58
BARBARA 32
BRIDGE 27

BUILDING 33
LIGHTHOUSE 25

TEXT 22
CAMERAMAN 13

This means that the noise variance η is always canceled out in the numerator and

denominator of Eq. (2.8) regardless of the value of η. Since this feature is also

satisfied in a noisy image, where

Pd(u, v) = Px(u, v) + η (2.10)

the value of S is not influenced by the amount of noise and is only influenced by

the original image.

The power spectrum sparsity of the trained images can be seen in Table 2.6,

where the S value for each image is common regardless of the noise level as men-

tioned above. It is found that BOAT, EARTH, and FACE have comparatively

large values of S whereas CAMERAMAN, LENA, and BRIDGE have smaller val-

ues of S. LENA has an intermediate S value. Interestingly, it is observed in Tables

2.4 and 2.5 that BOAT, EARTH, and FACE have larger parameter values whereas

TEXT has the smallest one. LENA has intermediate values of the parameter set.

The relationship between S and the parameter values is next considered. Fig.2.6

shows the parameter set locations of β and γ in Table 2.4 for a standard deviation

of 5 with the S values. It can be seen that most of the S values less than 30 repre-

sented by green asterisks, have the smallest parameter values, while the S values

greater than or equal to 100 represented by red asterisks, have the largest parame-

ter values. The S values between 30 and 100 represented by yellow asterisks, have

intermediate parameter values. The relationship for the standard deviations of 10

and 15 also becomes similar to that for a standard deviation of 5 with increasing
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Figure 2.6: Three groups for S

Table 2.7: Spectrum sparsity classification and best parameter set

Class (β, γ)est (β, γ)ideal
S < 30 (0.2, 3.1) (0.3, 4.3)

30 ≤ S < 100 (0.3, 4.0) (0.4, 4.3)
S ≥ 100 (0.6, 4.2) (0.6, 4.2)

values of β and γ. This is because the parameter values increase when the noise

level increases, but the power spectrum sparsity is common for every noise level.

Extending this context, we found that the images can be classified according to the

value of S and the best parameter values in Table 2.4. The three different types of

images are grouped on the basis of the value of S by considering the border values

of S accordingly, as shown in Fig.2.6, which are typically S < 30, 30 ≤ S < 100,

and S ≥ 100. The three different typical types of image power spectrum sparsity

are shown in Fig. 2.7 with the value of S.

In order to estimate the best parameters for the PWF design in Eq. (2.6), we
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Figure 2.7: Three different typical types of image power spectrum sparsity

consider the relationship between the value of S and the best parameters obtained

from the preliminary experiments in both the noise estimation case and the ideal

case where the noise variance is known. Based on the S value, for images with

S < 30, the best parameters for these images for all three standard deviations are

averaged and set as the estimated best parameters. The same procedure is also

applied to the images where the S values are 30 ≤ S < 100 and S ≥ 100. As

a result, we have the following. In the noise estimation case, the estimated best

parameters for S < 30 are β = 0.2 and γ = 3.1, for 30 ≤ S < 100, they are β = 0.3

and γ = 4.0, and for S ≥ 100 they are β = 0.6 and γ = 4.2. In the ideal case, the

estimated best parameters for S < 30 are β = 0.3 and γ = 4.3, for 30 ≤ S < 100,

they are β = 0.4 and γ = 4.1, and for S ≥ 100, they are β = 0.6 and γ = 4.2.

These results are tabulated in Table 2.7.



2.4 Implementation of Parametric Wiener Filter 37

Figure 2.8: Block diagram of proposed method

2.4 Implementation of Parametric Wiener Filter

The main idea of the proposed method is to apply the PWF in practice with the

estimated best parameters according to the power spectrum sparsity of the image.

Figure 2.8 shows a block diagram of the proposed method used to implement it

in practice. Firstly, the power spectrum Pd(u, v) of the noisy image d(u, v) is

obtained by applying the Fast Fourier transform(FFT ). Then, the noise variance

η and power spectrum sparsity S are calculated directly from Pd(u, v). After that,

the input image is classified into one of the three groups depending on the value

of S, S < 30, 30 ≤ S < 100, and S ≥ 100. The corresponding estimated best

parameters β and γ are then found in Table 2.7 according to the group of S.

Finally, an estimate of the original image, x̂(u, v), is obtained by multiplying the

FFT of d(u, v) by the H(u, v) of PWF in Eq. (2.6) and implementing the inverse

FFT (IFFT ) of the resulting spectrum.
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2.5 Experimental Results

Images from Fig.2.1 are used for the experiments with ten individual trials in the

same way as in Section 2.5. Table 2.8 shows the performance of the proposed

method, the PWF , in terms of the PSNR. In Table 2.8, PWF (est) is the PWF

with noise variance estimation and PWF (ideal) is the PWF with knowledge of

the noise variance. Comparing Table 2.8 with Tables 2.4 and 2.5, we see that the

performance of the PWF in Table 2.8 is slightly worse than that in Tables 2.4

and 2.5, where the best parameter sets of (β, γ) are used for the PWF . However,

the PWF provides better performance than the WF in the noise estimation case.

The PSNR values of the PWF with noise estimation used to validate the above

are highlighted in bold characters in Table 2.8.

In Tables 2.4 and 2.5, there are certain differences between the PWF and

WF , indicating that the WF suffers from the overestimation of noise variance.

Table 2.8 shows that the PWF compensates for the tendency to overestimate

noise, resulting in a good performance. Carefully looking at Table 2.4, we further

notice that the difference between the PWF and WF is larger on images such

as BRIDGE, LIGHTHOUSE, TEXT, and CAMERAMAN. The S value of these

images is commonly less than 30. Comparing Table 2.8 with Table 2.4, we see

that the PWF compensates for the above difference and provides a reasonably

good performance (only for a standard deviation of 15, the PWF requires further

improvement). This is because the parameters sets for the PWF are selected

suitably according to the S values to be classified. In Table 2.8, it is observed

that the PWF with noise estimation performs almost the same as the PWF with

knowledge of the noise variance. These findings show that the power spectrum

sparsity S is a vital tool that can determine suitable parameters to obtain a better

performance when applying the PWF in practice.
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Table 2.8: Performance of PWF in terms of PSNR

std image PWF(est) PWF(ideal)

5

LENA 35.02 35.18
BOAT 36.10 36.23

EARTH 36.78 36.82
FACE 38.10 38.12

AIRPLANE 33.91 34.57
BARBARA 35.44 35.49
BRIDGE 30.24 33.92

BUILDING 35.09 35.38
LIGHTHOUSE 32.27 34.28

TEXT 34.28 34.67
CAMERAMAN 33.89 34.47

10

LENA 30.46 30.60
BOAT 31.76 31.80

EARTH 32.34 32.35
FACE 33.69 33.73

AIRPLANE 29.94 29.91
BARBARA 30.43 30.49
BRIDGE 27.98 28.52

BUILDING 30.61 30.67
LIGHTHOUSE 29.01 29.09

TEXT 29.71 29.77
CAMERAMAN 29.69 29.71

15

LENA 27.88 28.10
BOAT 29.23 29.26

EARTH 29.90 29.92
FACE 31.25 31.29

AIRPLANE 27.39 27.47
BARBARA 27.43 27.69
BRIDGE 25.77 25.60

BUILDING 27.91 28.07
LIGHTHOUSE 26.34 26.41

TEXT 26.76 27.17
CAMERAMAN 26.75 27.18
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Figure 2.9: Test images
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To demonstrate how effectively the PWF is applied in practice, the PWF is

compared with BM3D [29], NLM [30], MPostWF [22], and the blindWF [23]

in terms of the PSNR by using untrained images with a size of 256×256 (Fig.2.9)

as test images. BM3D and NLM are implemented under a non-blind condition

where the noise variance is given and MPostWF and PWF are implemented

under a blind condition where the noise variance estimation is required. BM3D

and NLM are implemented using the MATLAB source code available in Refs. [29]

and [30], respectively. The blindWF [23] is implemented by generating ten random

noise images with a variance of 0.01 in which only additive white noise is added.

The variance of 0.2 suggested in Ref. [23] is not adopted because it takes more

time and provides lower performance results than those for a variance of 0.01.

Figure 2.10 shows the PSNR performance comparison for BABOON for which

the value of S is 58. Figure 2.10 shows that the non-blind condition of BM3D and

NLM give a better performance result than MPostWF , the blindWF and the

PWF . However, Fig.2.10 also shows that the PWF gives a better performance

than MPostWF and the blindWF as the standard deviation of noise increases.

In Fig.2.11, for ARIAL with S=228, in the case of noise with a standard devi-

ation of 5, BM3D, MPostWF , and the PWF provide better performance than

NLM . When the noise increases to standard deviations of 10 and 15, the PWF

becomes slightly better than MPostWF . It is observed that the PWF outper-

forms the blindWF .
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Figure 2.10: PSNR performance comparison on BABOON (S = 58)
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Figure 2.11: PSNR performance comparison on ARIAL (S = 228)
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Figures 2.12-2.13 show the PSNR performance comparison on COUPLE with

S=83, CABINET with S=50, and GUILV with S=19, respectively. MPostWF

and the PWF have similar performance in Fig.2.12. It can be seen in Fig.2.14 that

the performance of the PWF is similar to that of and NLM which is implemented

under non-blind conditions, whereas MPostWF provides the lowest performance.

In Fig.2.13, BM3D and NLM give a better performance. However, the PWF

outperforms MPostWF and the blindWF as the noise increases.
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Figure 2.12: PSNR performance comparison on COUPLE (S = 83)
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Figure 2.13: PSNR performance comparison on GUILV (S = 19)
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Figure 2.14: PSNR performance comparison on CABINET (S = 50)
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Figure 2.15: PSNR performance comparison on CHAIR (S = 213)

Figure 2.15 shows the performance comparison on CHAIR with S=213. BM3D

and NLM provide better performance as they are calculated under the non-blind

condition. However, the PWF provides better performance than MPostWF and

the blindWF under the blind condition. Even under the blind condition, where

the noise is unknown, the PWF is effective because it gives a reasonably good

performance. This validates that the best parameter setting for the PWF using

the power spectrum sparsity is useful for restoring images.
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To show the visual effectiveness of the proposed method, we compare the the

visual comparison of the restored images between two state-of-the-arts methods;

BM3D and NLM in non-blind condition, Wiener filtering methods; MPostWF

and blindWF in blind-condition, and additionally with non-linear filtering method;

Median filter in blind condition.

Figure 2.16 and 2.17 shows the visual comparison between NLM , BM3D,

Median, blindWF , MPostWF and proposed methods for ARIAL and GUILV in

which the image is degraded by additive Gaussian white noise with std = 15,

respectively. Both ARIAL and GUILV have high detailed image structure. It is

seen that the two state-of-the-arts methods: NLM and BM3D provide significant

performance in eliminating noise while preserving the image in both ARIAL and

GUILV. The image restored by Median in ARIAL reduce the noise, however, it

provides some blurry effects compared with blindWF , MPostWF and Proposed

method. It is seen that MPostWF and proposed method provide fairly good

visual result whereas blindWF still need to eliminate some of the noise.
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(a)ARIAL (b)Noisy image (std =15)

(c)Restored by NLM (d)Restored by BM3D

(d)Restored by Median (e)Restored by blindWF

(f)Restored by MPostWF (g)Restored by Proposed

Figure 2.16: Performance comparison of restored images for ARIAL
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(a)GUILV (b)Noisy image (std =15)

(c)Restored by NLM (d)Restored by BM3D

(d)Restored by Median (e)Restored by blindWF

(f)Restored by MPostWF (g)Restored by Proposed

Figure 2.17: Performance comparison of restored images for GUILV
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Figures 2.18 shows the visual comparison between NLM , BM3D, Median,

blindWF , MPostWF and Proposed for BABOON in which the image is degraded

by additive white Gaussian noise with std = 15. BABOON has high detailed image

structure in the whole image. It is seen that, the images restored by NLM and

BM3D eliminate noise effectively. However, some of the smoothness is occurred

due to the elimination of the image detailed parts. The restored images by Median

and MPostWF eliminate noise effectively than blindWF and proposed method.

However, they also still produce some blurry effect in the detailed parts of the

image. Compared with blindWF , it is observed that proposed method reduce the

noise while it still provides some detailed parts of the image.
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(a)BABOON (b)Noisy image (std =15)

(c)Restored by NLM (d)Restored by BM3D

(d)Restored by Median (e)Restored by blindWF

(f)Restored by MPostWF (g)Restored by Proposed

Figure 2.18: Performance comparison of restored images for BABOON
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Figures 2.19 shows the visual comparison between NLM , BM3D, Median,

blindWF , MPostW and proposed method for CABINET degraded by additive

white Gaussian noise with std = 15. CABINET also has high detailed image

structure. The results in Fig. 2.19(c) and (d) show that NLM andBM3D eliminate

the noise effectively. However, they reduce the images detailed parts and produces

some artificial effects. For the images restored by Median, it is seen that the

blurry effect occur in the restored image. For the image restored by MPostWF

, it is observed that some artificial effect occurs because of the edge preservation

approach and the detailed parts of the image. The stored images by proposed

method shows that although the proposed still need to eliminate some noise, it

eliminate the noise more effectively than blindWF . It is noticeably observed that

the proposed method provides fairly good visual effect than the Median and and

blindWF .
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(a)CABINET (b)Noisy image (std =15)

(c)Restored by NLM (d)Restored by BM3D

(d)Restored by Median (e)Restored by blindWF

(f)Restored by MPostWF (g)Restored by Proposed

Figure 2.19: Performance comparison of restored images for CABINET
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Figure 2.20 shows visual comparison betweenNLM , BM3D, Median, blindWF ,

MPostWF and proposed methods for COUPLE in which the image is degraded

by additive Gaussian white noise with std = 15. COUPLE contains some flat and

some detailed image parts. BM3D and NLM provide visually good result by

eliminating noise while preserving the image detailed parts. It is seen that Median

provides blurry effect while eliminating the noise whereas MPostWF provides

fairly good visual result. Proposed method also provides fairly good result and

reduces the noises effectively compared with the blindWF .
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(a)COUPLE (b)Noisy image (std =15)

(c)Restored by NLM (d)Restored by BM3D

(d)Restored by Median (e)Restored by blindWF

(d)Restored by MPostWF (e)Restored by Proposed

Figure 2.20: Performance comparison of restored images for COUPLE
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Figure 2.21 shows visual comparison betweenNLM , BM3D, Median, blindWF ,

MPostWF and proposed methods for CHAIR where it is degraded by additive

Gaussian white noise with std = 15. CHAIR contains most of the flat parts in the

whole image. In CHAIR, NLM and BM3D eliminate noise while it preserve fine

detailed image parts. For the image restored by Median, it is observed that most

of the noise are still needed to be eliminated. Although blindWF , MPostWF and

proposed method also still need to reduce some of the noise, it is observed that

the proposed method provide a fairly good performance among the Wiener filter

methods.
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(a)CHAIR (b)Noisy image (std =15)

(c)Restored by NLM (d)Restored by BM3D

(d)Restored by Median (e)Restored by blindWF

(d)Restored by MPostWF (e)Restored by Proposed

Figure 2.21: Performance comparison of restored images for CHAIR



2.6 Conclusion 57

Table 2.9: Execution time in seconds

Method Maximum Minimum Average
BM3D 0.994 0.575 0.768
NLM 16.682 16.207 16.405

MPostWF 0.425 0.132 0.263
PWF 0.032 0.025 0.027

Blind WF 0.089 0.068 0.082

To show the further effectiveness of the PWF , the computational time is also

compared with some of the conventional methods. Table 2.9 shows the maximum

execution time, minimum execution time, and average execution time in seconds

for each algorithm applied to the images in Fig.3.6, which are measured on a 3

GHz Intel(R)Core(TM)i5-7400 CPU. The execution time slightly varies among the

images. Table 2.9 shows that the proposed method, the PWF , has the shortest

computational time, indicating that it is the simplest algorithm among the con-

ventional methods.

2.6 Conclusion

We have described a simple and effective blind image denoising method called

PWF in this chapter. To set the parameters automatically for the PWF we

proposed a unique tool named image power spectrum sparsity. The experimental

results showed that the PWF provides better performance than the MPostWF

and the blindWF method with the shortest computational time.



Chapter 3
Noise Level Estimation on Weak-Texture
Patch using Image Power Spectrum
Sparsity

Noise level estimation is important to improve the performance of different image

processing algorithms. Among different noise level estimation methods, block-

based approach is one of the effective approaches for estimating the noise level. A

noise level estimation method based on a weak-texture patch using image power

spectrum sparsity in the frequency domain is proposed in this chapter. The weak-

texture image patch is first selected according to the value of image power spec-

trum sparsity. From the selected weak-texture image patch, the noise variance is

estimated by selecting the frequency regions where the image frequency parts are

not concentrated. It is observed that the proposed noise level estimation method

is effective especially for images with high texture. Furthermore, the proposed

method provides the shortest computational time compared with the conventional

methods.

58
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3.1 Related Work

Noise level estimation is important to improve the performance of different image

processing algorithms. The degradation of image quality due to the unwanted

noise leads to an obstacle in image application fields. In order to overcome the

obstacle due to noise, the knowledge of the noise level plays an important role to

a variety of image processing algorithms such as image denoising [30], [29], image

edge detection [31] - [33], image compression [34] - [36], and image segmentation [37]

- [41]. Most of the algorithms assume that the noise level is known in prior which

is impractical in the real world situation. Furthermore, the accuracy of noise

level estimation can sometimes affect the quality of the image for different image

processing applications.

In order to estimate the noise level to be practically in use, many researchers

have developed noise estimation techniques using single image [42] - [44], or mul-

tiple images [45] based on the filtering-based approach [46], [25] and block-based

approach [43], [27] - [49]. In the filtering-based approach, the filtering technique

is first applied to the noisy image using different approaches such as high pass

filter, low pass filter, and so on. The variance of the filtered image is assumed as

the noise level in [25]. Assuming the difference between the noisy image and the

filtered image as the noise level has the issue especially for the image with rich

texture.

In the block-based approach, images are divided into number of sub-blocks with

different window sizes. The sub-block with the smallest standard deviation is then

taken as the noise level of the image [42]. Assuming the smallest standard deviation

as the noise level can not always give accurate noise level. Amer et al. [43] pro-

posed a block-based approach based on a structure-oriented noise variance method.

This method takes the structure of the image into account in order to determine

the homogeneous block of the image. [43] applied eight masks with window size

of 5 × 5 to measure the homogeneity for each block. The noise variance with the

most homogeneous block is taken as the noise level of the image. However, this

method still has the overestimation of the noise level for rich-texture images. To

overcome overestimation of noise level for images with rich-texture, Yi et al. [48]

applied twelve masks to check the homogeneity of the image sub-blocks. These

image structure-oriented block-based approaches give some accuracy of noise level

estimation among the block-based approaches. However, they still need high com-

putational time depending on the number of masks to measure the homogeneity
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of each sub-block.

Liu et al. [50] proposed a patch-based noise level estimation algorithm. The

low-rank patches are selected from a noisy image based on the gradients of the

patches and their statistics. Then, the noise level is calculated from the selected

patch using the principal component analysis. This algorithm gives high noise level

estimation accuracy with stability for different images. However, the algorithm is

complicated and long computational time is required.

In order to improve the computational time with some degree of accuracy

for noise level estimation, a unique block-based approach using the image power

spectrum sparsity is proposed in this chapter. (i) Firstly, the observed noisy image

is divided into sub-blocks. (ii) Each sub-block is transformed into the frequency

domain and the power spectrum sparsity is calculated. (iii) Homogeneity for each

sub-block is measured using the image power spectrum sparsity [67]. (iv) The

sub-block with the highest image power spectrum sparsity value is defined as the

weak-texture image patch with the homogeneity. (v) Finally, the variance of the

selected block is calculated.

This chapter is organized as follows. Section 3.2 discusses details about the pro-

posed method to find the weak-texture image patch using image power spectrum

sparsity and noise variance of the weak-texture image patch. Section 3.3 describes

the process of the proposed method with a flow diagram. The clarification of the

proposed method is shown by conducting experiments in Section 3.4. Section 3.5

draws a conclusion of this chapter.

3.2 Noise Level Estimation

The image is assumed to be corrupted by additive white Gaussian noise in this

study. The degraded image is formulated by

d(u, v) = x(u, v) + n(u, v), (3.1)

where d(u, v), x(u, v) and n(u, v) represent the degraded image, the original image

and the additive white noise, respectively. n(u, v) is zero mean and variated in a

range of δ where δ is the standard deviation of random distribution of noise with

the same dimension as the image size. The purpose of the proposed method is to

estimate δ̂ , the standard deviation of the noise level.
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Figure 3.1: (a) Noisy image is divided into blocks (M = 32); (b) Fourier transform
of each block of (a)

3.2.1 Weak-Texture Image Patch

Estimating the noise level for the image with high-texture or rich-texture (i.e.

images with frequently changing intensities or images with detailed image parts)

can produce over estimation of the noise level. The effective way to estimate the

noise level is to search the image patch with weak-texture or same flat region with

homogeneity (i.e. image patch with unchanging intensities or image patch with the

same texture image parts. To find the weak-texture image patch, firstly, the noisy

image d(u, v) with 256× 256 is obtained. Then, it is divided into 8× 8 sub-blocks

with window size (M = 32) as shown in Fig. 3.1(a). Each sub-block d(j,k)(u, v)

where (j, k = 1, 2, .., 8) is transformed into the frequency domain, D(j,k)(u, v) ,

using fast Fourier transform (FFT) (Fig. 3.1(b)). Then, the power spectrum for

each sub-block is calculated as

P(j,k)(u, v) = |D(j,k)(u, v)|2. (3.2)

To find a weak-texture image patch, the power spectrum sparsity for each

sub-block D(j,k)(u, v) is calculated as in [67]. The idea of the power spectrum

sparsity in [67] is that the image occupies the lower-frequency regions than the

higher-frequency regions. Especially the image frequencies are concentrated at the

horizontal and vertical regions. Thus, [67] assumes that dividing the whole image

power spectrum by the horizontal and vertical regions of the image power spectrum

gives the image frequencies amount containing in the whole noisy image. Instead
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Figure 3.2: Power spectrum sparsity of image sub-block

of finding the whole image power spectrum sparsity, the power spectrum sparsity

for each divided sub-block can also be calculated by extending the idea of [67].

The power spectrum sparsity for each sub-block can be formulated as

S(j,k)(u, v) =
PD(j,k)(u, v)

PDh(j,k)(u, v) + PDv(j,k)(u, v)
, (3.3)

where PD(j,k)(u, v) , PDh(j,k)(u, v) and PDv(j,k)(u, v) represent the summation of

the whole sub-block region, the horizontal region and the vertical region of image

power spectrum of the corresponding sub-block, respectively. Fig. 3.3(a) shows the

power spectrum sparsity value calculated by (3.3) for each sub-block.

When we consider the power spectrum sparsity for the whole image, S, if the

image occupies the lower-frequency parts more than the higher-frequency parts

of the image power spectrum, S will be large. Otherwise, the S will be small.

Furthermore, there will be a condition where the S value can be largest. For

example, when we consider the power spectrum sparsity for the image sub-block,

S(j,k)(u, v) , it can be the largest value when there is no image frequency in the

horizontal and vertical regions or when the image sub-block is flat with the same
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Figure 3.3: (a)Calculate S of each sub-block; (b)Choose the sub-block with the
largest value of S

image texture(i.e. homogeneity). In such conditions, (3.3) will give the largest

value. Extending this idea can be applied to find the weak-texture image patch.

Therefore, the image sub-block with the maximum power spectrum sparsity is

calculated as

Pmax(u, v) = max(S(j,k)(u, v)), (3.4)

where Pmax(u, v) represents the image sub-block with the largest value of power

spectrum sparsity. This Pmax(u, v) is assumed as the weak-texture image patch

with the homogeneity of the whole image. Fig. 3.3(b) shows the selected sub-

block Pmax(u, v) with the largest power spectrum sparsity value representing as

the weak-texture image patch. After defining the weak-texture image patch, the

Pmax(u, v), it is necessary to calculate the noise variance to estimate the noise level.

The details about noise level estimation is discussed in the next section.

3.2.2 Noise Level Estimation

The weak-texture image patch is chosen as shown in Fig. 3.3 to obtain the noise

level with certain accuracy as it has been discussed in the previous section. [67]

estimates the noise variance by taking the boundary region of the whole image fre-

quency components, assuming that most of the image frequencies are concentrated

in the low-frequency regions whereas the noise frequencies are concentrated in the

high-frequency regions. Overestimation of noise can occur because most of the

image frequencies are also eliminated while averaging the boundary region. More-

over, the image frequencies are also concentrated in some of the diagonal region of
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Figure 3.4: (a)Low texture image patch;
(b)Noise variance estimation on (a)

the image power spectrum frequency components.

Fig. 3.4(a) shows the weak-texture image patch in which the image frequencies

are concentrated especially in the horizontal and vertical regions. It also shows

that the image frequencies are concentrated in the diagonal regions. Thus, it

is important to estimate the noise variance where the image frequencies are not

concentrated. Therefore, the variance of the noise is estimated by omitting the

regions where the image frequencies are concentrated as shown in 3.4(b). The

Pmax(u, v) is divided into N × N sub-blocks (N = 16) with the window size of

(M = 2). The smallest window size is chosen in order to avoid the over noise

estimation as much as possible. Then, the variance of the noise is calculated as

δ2 = mean[Pmax top, Pmax bottom, Pmax left, Pmax right] (3.5)

where Pmax−top , Pmax−bottom , Pmax−left and Pmax−right represent max
1≤u≤L,N−L≤u≤N

Pmax(u, 1)

(the top-most horizontal region), max
1≤u≤L,N−L≤u≤N

Pmax(u,N) (the bottom-most hor-

izontal region), max
1≤v≤L,N−L≤v≤N

Pmax(1, v) (the left-most vertical region) and

max
1≤v≤L,N−L≤v≤N

Pmax(N, v) (the right-most vertical region) of the Pmax(u, v) in which

L = 3. Finally, the estimated standard deviation of noise level is formulated by

δ̂ =
√
δ2. (3.6)
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Figure 3.5: Diagram of proposed method

3.3 Implementation of Proposed Method

Fig. 3.5 shows the process of the proposed method. Firstly, a noisy image, d(u, v),

is obtained. Then, d(u, v) is divided into 8× 8 sub-blocks with the window size of

32× 32. Each sub-block is transformed into the frequency domain using FFT and

the power spectrum of each sub-block is calculated through (3.2). Then the power

spectrum sparsity of each sub-block is calculated using (3.3). To define the weak-

texture sub-block, the sub-block with the largest power spectrum sparsity value,

Pmax(u, v), is searched by (3.4). Then, the variance of the noise is calculated from

the weak-texture sub-block by (3.5). Finally, the estimated standard deviation of

the noise level is obtained through (3.6).
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3.4 Experimental Results

To show the effectiveness of the proposed method, twelve images with 256 × 256

(from Fig. 3.6) are used. These images are selected to cover variety of images in the

real world situation. For example, the first three images have some weak-texture

and rich-texture regions whereas the other images have high-rich texture regions.

All the images are tested for 50 trials for each noise level. Firstly, we evaluate

the proposed method by subdividing the image into different window sizes. The

noise level is calculated on a weak-texture image sub-block as shown in Fig. 3.4 by

comparing with different noise variance estimation methods.

Table 3.1 shows estimated noise level of different window sizes for the standard

deviation varying from 5 to 20. N = 4, 8 and 16 where the image is subdivided into

4× 4 with window size (M = 64), 8× 8 with window size (M = 32) and 16× 16

with window size (M = 16) sub-blocks. Mean and Median represent the noise

variance estimation calculated by the mean and median value of the boundary

region in [67] of the image power spectrum from weak-texture image sub-block.

Proposed represents that the noise variance is calculated by (3.5). When looking

at the Mean noise variance estimation method with N = 4, N = 8, and N = 16

there is the largest over noise estimation for N = 4 compared with N = 8 and

N = 16. When we compare the Mean noise variance estimation method with

N = 8 with N = 16, there is still over noise level estimation for images with rich

texture such as BARBARA, BUILDING, BRIDGE, and BABOON. The reason

is that when the window size is larger, the more changing frequencies (high- and

low-frequency) parts can contain in the image block, especially for rich texture

images. Taking the mean of the whole boundary region of the image sub-block

eliminates the image frequency components and produces over noise estimation.

When the image is subdivided into N = 16 with a smaller window size, the noise

level estimation is effective for the image with high texture. However, there is

under noise level estimation such as for BUILDING due to the small window size.

While taking a look at N = 8 with Median noise level estimation method, it is

effective for the low noise level. Nevertheless, when the noise level increases, it

can be seen that there is under noise level estimation. When N = 8 with the

proposed noise level estimation with (3.5), it can be seen that it is effective for

various image types with different noise levels. Therefore, the proposed method

with N = 8 using (3.5) is one of the most effective ones for noise level estimation

in Table 3.1.
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Figure 3.6: Images from SIDBA



3.4 Experimental Results 68

Table 3.1: Performance comparison of estimated noise level with different window
sizes

True Image
N =4 N=8 N=16 N=8 N=8

std Mean Mean Mean Median Proposed

5

BARBARA 6.58 9.45 5.27 5.59 6.81
BOAT 5.46 5.19 5.12 4.79 5.24

BRIDGE 21.99 9.85 8.37 7.52 8.12
BUILDING 6.18 7.01 2.70 5.44 5.12

CAMERAMAN 5.51 5.25 5.30 4.75 5.42
ARIAL 9.52 5.38 5.77 5.25 5.04

BABOON 12.21 12.14 5.57 5.98 5.52
BLACK WHITE 5.01 4.95 4.85 4.30 5.01

CABINET 6.84 7.53 5.96 5.06 5.63
COUPLE 6.01 5.56 5.19 5.09 5.11
FACE 5.04 4.92 4.79 4.35 4.98
EARTH 5.46 5.53 5.06 4.74 4.94

10

BARBARA 10.81 12.67 10.16 9.53 10.98
BOAT 10.17 10.18 9.69 9.07 9.93

BRIDGE 20.84 12.93 11.92 9.07 11.80
BUILDING 10.62 11.05 5.51 9.06 9.92

CAMERAMAN 10.27 10.21 9.96 8.78 10.00
ARIAL 12.62 10.04 9.96 9.59 9.96

BABOON 14.81 14.71 10.40 9.97 10.17
BLACK WHITE 9.94 9.96 9.54 8.63 9.92

CABINET 11.01 11.40 10.47 9.14 10.35
COUPLE 10.46 10.26 9.91 9.34 10.14
FACE 10.07 10.08 9.66 8.68 10.17
EARTH 10.24 10.22 10.01 9.06 10.07

15

BARBARA 15.76 16.82 15.13 13.74 15.57
BOAT 15.11 15.07 14.71 13.33 15.25

BRIDGE 23.37 17.08 16.34 15.13 15.94
BUILDING 15.43 15.48 8.51 9.06 14.94

CAMERAMAN 15.29 15.10 14.88 12.03 15.07
ARIAL 16.80 14.80 14.90 14.01 15.15

BABOON 18.67 18.38 15.15 14.11 15.23
BLACK WHITE 14.50 14.94 14.48 13.02 15.16

CABINET 15.87 15.62 15.18 13.34 15.03
COUPLE 15.24 14.94 14.74 13.71 15.04
FACE 14.88 14.66 14.14 12.77 14.95
EARTH 15.15 15.04 14.92 13.20 15.13

20

BARBARA 20.65 21.54 19.76 17.97 20.60
BOAT 20.16 19.92 20.05 17.67 19.81

BRIDGE 25.82 22.25 21.58 19.46 20.95
BUILDING 20.17 20.34 10.83 16.07 19.78

CAMERAMAN 20.11 19.98 19.64 15.22 20.10
ARIAL 20.65 19.87 19.69 18.06 19.85

BABOON 20.16 22.42 20.11 18.36 20.08
BLACK WHITE 25.82 19.69 19.61 17.15 19.90

CABINET 20.17 20.53 20.17 17.56 20.08
COUPLE 20.11 20.27 19.99 17.70 20.12
FACE 19.58 19.11 18.20 16.25 19.14
EARTH 20.14 20.18 19.46 17.49 19.98
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To show the effectiveness of the proposed method, the proposed method is also

compared with the Yi [48] and Liu [50] methods by showing the estimated noise

level for different noise levels with the varying standard deviation from 5 to 30.

Images from Fig. 3.6 are applied to show the effectiveness of each algorithm.

Fig. 3.7 shows the estimated noise level in standard deviation on CAMERA-

MAN. CAMERAMAN includes some weak- and high-texture image parts. It is

seen that the noise level estimation of the proposed method slightly produces over

noise estimation compared with the Liu’s method. However, the proposed method

gives a fairly good estimated noise level compared with the Yi’s method.

Fig. 3.8 shows the estimated noise level on BABOON. The whole image of

BABOON includes fine details compared with other images. The Yi’s method

produces over noise level estimation for every noise level. The proposed method

and the Liu’s method give similar noise level estimation whereas the proposed

method slightly gives better estimation than the Liu’s method.
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Figure 3.7: CAMERAMAN
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Figure 3.8: BABOON
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Fig. 3.9 describes CABINET with the same flat rich-texture. The Yi gives

under noise level estimation. Compared with the Liu, the proposed method gives

a small over estimated noise level whereas the Liu gives some under estimated noise

level for standard deviation around 20. The proposed method provides better noise

level estimation compared with the Liu.

Fig. 3.10 shows the estimated noise level on BRIDGE. BRIDGE also has rich-

texture. The comparison shows that the proposed method provides more accurate

noise level estimation whereas the other two methods give a large over estimation

for every noise level. This means that the proposed method is more effective for

images with rich-texture.
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Figure 3.9: CABINET
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Figure 3.10: BRIDGE
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To verify the performance of the proposed method, the average noise level esti-

mation with the standard deviation value from images in Fig. 3.6 is also compared.

Table 3.2 shows the estimated noise level with the standard deviation of the Yi,

Liu and the proposed method for the standard deviation of noise level varying

from 5 to 30. The results show that the Yi gives some over noise level estimation

with large standard deviation values for each noise level. It can be seen that, the

proposed method produces almost similar results with some accuracy compared

with the Liu.

To evaluate the performance of the proposed method, the absolute standard

deviation error ratio is also compared with the conventional methods. The absolute

standard deviation error ratio is calculated as

εabs =

1
K

∑K
k=1

∣∣∣δ̂k − δ∣∣∣
δ

(3.7)

where δ̂ is the estimated standard deviation noise level and δ is the true noise

level. In (3.7) K = 12 because twelve images from Fig. 3.6 are applied. Fig. 3.11

shows the absolute standard deviation error ratio. The results show that the pro-

posed method performs better than the conventional methods when the standard

deviation of noise level is around 15 and 20.

To demonstrate the effectiveness of the proposed method related with over and

under noise level estimation, the average error ratio is compared with conventional

methods. The average error ratio is calculated by

ε =
1
K

∑K
k=1(δ̂k − δ)
δ

(3.8)

Fig. 3.12 shows that the proposed method has some over estimation for the lower

noise level and under noise estimation for the higher noise level. The proposed

method provides a better performance for medium noise level when the standard

deviation is around 20 whereas the Yi provides a large over noise estimation and

Liu does slightly small under noise level estimation.
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Figure 3.11: Average value of absolute standard deviation error ratio
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Table 3.2: Average estimated noise level with standard deviation

True std
Yi [48] Liu [50] Proposed

Ave±std.dev Ave±std.dev Ave±std. dev
5 5.975 ± 0.89 5.12 ± 0.73 5.58 ± 0.91
10 10.70 ± 0.93 10.01 ± 0.73 10.28 ± 0.54
15 15.58 ± 1.00 14.98 ± 0.86 15.21 ± 0.28
20 20.49 ± 1.21 19.92 ± 0.91 20.03 ± 0.42
25 25.40 ± 1.28 24.76 ± 0.95 24.70 ± 0.78
30 30.08 ± 1.28 29.72 ± 0.88 29.34 ± 1.21

Table 3.3: Computational time in seconds

True std Yi [48] Liu [50] Proposed
5 0.219 0.153 0.038
10 0.219 0.158 0.038
15 0.220 0.161 0.037
20 0.222 0.166 0.037
25 0.222 0.167 0.038
30 0.221 0.162 0.037

All the above evaluation results show that the effectiveness of the algorithm

in their own way for different images. However, we further need to verify the

computational time because it is one of the most important features for noise level

estimation algorithms. Thus, we evaluate the computational time for the images

in Fig. 3.6 which is measured on a 3 GHz Intel(R)Core(TM)i57400 CPU. Table 3.3

shows the average computational time in seconds for all images in Fig. 3.6 between

the proposed method and the conventional methods for each standard deviation

of noise level. The results show that the computational time of the Yi is higher

than that of the Liu. However, it can obviously be seen that the proposed method

has the shortest computational time compared with the other two methods. This

is because the proposed method can search the weak-texture image patch by using

a simple method using the unique tool called image power spectrum sparsity and

simple noise variance estimation method.



3.5 Conclusion 76

3.5 Conclusion

We have proposed an effective block-based noise level estimation in this chapter. A

weak-texture image patch is calculated by a unique tool named called image power

spectrum sparsity. The experimental results showed that the proposed method

can provide a more certain accuracy for medium noise level with the shortest

computational time among the block-based noise level estimation methods.



Chapter 4
Flexible Edge Component Detection by
Image Power Spectrum Sparsity

This chapter discusses a unique method for edge component detection based on

image power spectrum sparsity. The edge size is flexible by changing block sizes

and threshold parameter to obtain the desired edge component. The image is

first divided into sub-blocks and power spectrum sparsity for each sub-block is

calculated. Based on the image power spectrum sparsity value, each block is

verified by the threshold value to determine the edge component. The experimental

results show that the proposed method is suitable for object tracking because of

the unique feature of flexible edge size which can dramatically reduce the data to

be stored.

77



4.1 Related Work 78

4.1 Related Work

Image edge detection is a fundamental tool which plays an important role in im-

age processing, machine vision, computer vision. Image edge is the sharp changes

in the brightness of the image which has the discontinuities of the image. The

discontinuities and changes describe image boundaries to know the important fea-

ture of the image. Image edge detection dramatically reduces the information to

store as it filters out useless information and preserves important features being

useful for image segmentation, object recognition and object tracking. A number

of edge detectors based on a single derivative such as Robert operator [?], Sobel

operatorArgyle, Prewitt operator [53] and Canny operator have been developed by

various researchers [52]. There are also edge detectors based on a second derivative

such as Laplacian operator and Laplacian of Gaussain(LOG) operator [56]. Among

these edge detectors, Canny operator is the optimal operator that can detect true

edge points with the minimum error. The Canny operator gaurantees edge de-

tection with three performance criteria : (i)good detection, (ii) good localization,

(iii) only one response to a single edge [57]. Many researcher has been proposed

edge detection algorithms [58] - [61] based on different approaches. The edge

detection algorithms based on artificial neural network are also developed to fulfill

the increasing requirements of the accuracy of algorithms in the image processing

fields [64] - [66].

All of the edge detection algorithms mentioned above can detect the image

edge with a fixed edge size. However, for object tracking which does not require

all of the detailed edge part, the edge detection algorithm with a flexible edge size

is necessary. By using the flexible edge size method, the data to be stored can be

dramatically reduced. Thus, in this chapter, we propose flexible edge component

detection algorithm. The basic idea of the proposed method is detecting the edge

component block by block in the frequency domain based on the image power

spectrum sparsity by changing the block-size and the threshold parameter. The

contribution of this paper is (i) to introduce a unique edge detection component

method by a unique tool named image power spectrum sparsity (ii) to show that the

edge size is flexible in its own feature so that the data to be stored is significantly

reduced.

The chapter is organized as follows. Section 4.1 describes details of the proposed

method. Section 4.2 discusses the experimental results and Section 4.3 draws a

conclusion of this chapter.
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4.2 Proposed Method

In our proposed method, we measure the edge component block by block. Firstly,

the input image x(u, v) with 256× 256, is divided into n×n sub-blocks x(j,k)(u, v)

where (j, k = 1, 2, ..., n) with the desired window size(M = 2, 4, 8) and (n =

256/M). Each sub-block x(j,k)(u, v) is transformed into the frequency domain,

X(j,k)(u, v) , by the fast Fourier transform (FFT ). The power spectrum for each

sub-block is calculated as

P(j,k)(u, v) = |X(j,k)(u, v)|2 (4.1)

Figure.4.1(a) and (b) show the input image divided into 64 × 64 sub-blocks with

the window size of M = 4 and the power spectrum of each sub-block of (a),

respectively.
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(a)Input image is divided into blocks (M = 4);

(b)Power Spectrum of each block of (a)

Figure 4.1: Power spectrum of for localized Fourier transform for GIRL
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4.2.1 Power Spectrum Sparsity

After finding the power spectrum for each sub-block, it is necessary to define the

edge component for each image power spectrum sub-block. In Fig.4.1(b), it can

be seen that the edge component of the power spectrum sub-block has more image

frequencies compared with the flat component which does not have image edge

component. Therefore, by estimating the amount of image frequencies contained in

the sub-block, the image edge can be calculated. To know the frequencies amount

contained in the sub-block, the idea of Power Spectrum Sparsity, S introduced

in [67] is applied. The power spectrum sparsity for each block is calculated as

S(j,k)(u, v) =
PD(j,k)(u, v)

PDh(j,k)(u, v) + PDv(j,k)(u, v)
, (4.2)

where PD(j,k)(u, v), PDh(j,k)(u, v) and PDv(j,k)(u, v) represent the summation of the

whole sub-block region, the horizontal region and the vertical region of image power

spectrum of the corresponding sub-block, respectively, as shown in Fig.4.2. The

image power spectrum sparsity S gives the image frequencies amount contained in

the image. For the image sub-block, S can be largest when it contains no image

frequency components in the horizontal and vertical region of the image power

spectrum sub-block, or when the image sub-block is flat with the same texture [67].

In other words, when the image frequencies are concentrated more in the horizontal

and vertical region of the image power spectrum of the sub-block (i.e, when the

image sub-block contain higher image frequencies), then the S will be smallest.

Therefore, we can detect the image edge region by choosing the smallest S value

of the whole image. Fig.4.3(a) and (b) show the image power spectrum for each

sub-block with the window size(M = 16) and S for each sub-block of (a). The

red sub-blocks in Fig.4.3 show some of the sub-block which has the high image

frequencies. It can be seen that the sub-block with the smaller S represent the

edge component of the image. Therefore, the edge component can be detected

based on the S.
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Figure 4.2: Power spectrum sparsity of the image sub-block

4.2.2 Edge component Determination by Thresholding

Applying the concept of S, the image sub-block with the higher frequencies can be

detected. In order to determine the edge component for the whole image, a simple

thresholding is calculated as

TH = t×minS (4.3)

where, minS represents the smallest S value of the image sub-block for the whole

image. t is the parameter to set the threshold value which is choosable based on

the image type. The image edge component is obtained by

x(j,k)(u, v) =

0, S(j,k)(u, v) ≤ TH

1, S(j,k)(u, v) > TH
(4.4)

The sub-block whose S value less than or equal to TH is defined as the edge

component by assigning zero and the sub-block whose S value greater than TH is

defined as non-edge component by assigning one. Finally, the image edge compo-

nent is obtained.
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Figure 4.3: (a) Image Power Spectrum with window size (M = 16); (b) Power
Spectrum Sparsity Value for each sub block
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4.2.3 Diagram of Proposed Method

The input image (256× 256) with the block size (M = 2, 4, 8) and the threshold

parameter(t) is obtained. The input image is first divided into sub-blocks with

the input block size. Each sub-block is transformed into the frequency domain

by the fast Fourier Transform(FFT ). Then, the power spectrum for each sub-

block is calculated by Eq.4.1. To know the image frequency amount contained

in each sub-block, the image power spectrum sparsity is calculated by Eq. 4.2.

To determine the image edge component, Eq. 4.3 is calculated with the input

threshold parameter. Finally, the image edge component is obtained by Eq. 4.4.

Figure 4.4: Block diagram of proposed method
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4.3 Experimental Results

To show the performance of the proposed method, the proposed method is com-

pared with Sobel operator, Prewitt operator and Canny operator for some images

with the size of 256× 256.

Fig.4.5 shows the performance comparison of edge detection for GIRL. It is

observed that Sobel and Prewitt operator miss some of the edge part to detect

whereas Canny operator detect all of the image edge parts. Fig.4.5(e) shows the

proposed method computed with the window size(M = 2) with the threshold

parameter (t = 40). It can be seen that the proposed method can detect the

edge component that the Sobel and Prewitt operator miss to detect. The Canny

operator detect all of the edge component however, the edge size is fixed. To

show the benefit of the proposed method, the results with different window sizes

are also shown in Fig.4.5(f) and Fig.4.5(g) in which the window sizes and the

threshold parameters are (M = 4, t = 20) and (M = 8, t = 15), respectively. The

larger window size needs the smaller parameter to get the image edge component.

By looking at image edge component with different window sizes, it is seen that the

proposed method can dramatically reduce the information to store. The important

image edge component can be detected by changing the threshold parameters

according to the image type.
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Figure 4.5: Comparison result of GIRL
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Fig.4.6 shows the performance comparison of edge detection for LENA. It is

observed that Sobel and Prewitt operator still need to detect some of the edge

parts whereas Canny operator detects all of the image edge parts. Fig.4.6(e)

shows that the proposed method computed with the window size (M = 2) with

the threshold parameter (t = 40). The results shows that the proposed method can

detect the edge components that Sobel and Prewitt operator miss to detect. The

Canny operator detect all of the edge component with the fixed the edge size. The

effectiveness of the proposed method are also measured with different window sizes

as shown in Fig.4.6(f) and Fig.4.5(g) in which the window sizes and the threshold

parameters are (M = 4, t = 20) and (M = 8, t = 15), respectively. It is observed

that Fig.4.6(f) need small threshold parameter compared with Fig.4.5 to detect

the image edge component.
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(a)Original Image (b)Sobel

(c)Prewitt (d)Canny

(e)Proposed(M = 2, t = 40) (f)Proposed(M = 4, t = 20)

(g)Proposed(M = 8, t = 10)

Figure 4.6: Comparison result of LENA
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Fig.4.6 shows the performance comparison of edge detection for PEPPER. It

is observed that Canny operator provides detailed edge parts detection compared

with parts Sobel and Prewitt operator that still need to detect some of the edge

part. Fig.4.6(e) shows that the proposed method computed with the window size

(M = 2) with the threshold parameter (t = 75). For PEPPER the threshold

parameter for window size (M = 2) is larger to detect the image edge component

because it contain less image detailed parts. The Canny operator detect all of

the edge component with the fixed edge size. The effectiveness of the proposed

method for PEPPER is also shown in Fig.4.7(f) and Fig.4.7(g) in which the window

sizes and the threshold parameters are (M = 4, t = 40) and (M = 8, t = 15),

respectively.

By looking at image edge component with different window sizes, it is obvious

that the proposed method can dramatically reduce the data to be stored. The

important image edge component can be detected by changing the threshold pa-

rameters according to the image type.
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(a)Original Image (b)Sobel

(c)Prewitt (d)Canny

(e)Proposed(M = 2, t = 75) (f)Proposed(M = 4, t = 40)

(g)Proposed(M = 8, t = 15)

Figure 4.7: Comparison of PEPPER
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4.4 Conclusion

A flexible edge component detection method using image power spectrum sparsity

has been proposed. The block-size is flexible and the threshold parameter is also

adjustable depending on different applications. The data to be stored can signifi-

cantly be reduced and the important edge component of the image can be detected

with the proposed method. The proposed method is suitable for edge component

detection which is applicable for object tracking where the detailed edge is not

necessary.



Chapter 5
Conclusion and Future Work

This Chapter concludes the thesis with a summary of our study. The future

research is also describe in this Chapter.

5.1 Summary of the Research

In this study, we have proposed image denoising and noise level estimation tech-

niques for denoising in the blind condition by proposing a unique tool named image

power spectrum sparsity S . We also apply S for image edge component detection

in which the edge size is flexible and useful for object detection.

For image denoising technique, instead of complex and time-consuming tech-

nique, we proposed a simple and effective technique with the short computational

time. We derived an SS type WF that only needs the noise variance in order to

estimate the original image. To improve the performance of WF , we proposed the

PWF by adding two parameters to WF . However, finding the best parameters

for PWF becomes one of the issues because of time-consuming problem. To reduce

the computational time, we considered to estimate the best parameters in practice.

This lead us to investigate the image power spectra sparsity which gives the certain

image frequency amount contained in an image. The main feature of S is observed

that S provides a certain value which remains the same for every noise level for

the whole image. The idea of S is original and unique as far as we know. Classify-

ing the images and determining the best parameters for PWF by S significantly

reduces the computational time and provides a fairly good performance.

Since we are aiming at improving the performance of image processing tech-

niques while reducing the computational time, the finding of S lets us realize that
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noise level estimation based on block-based approach can also be improved through

S both in performance and computational time. Therefore, we proposed a noise

level estimation technique based on the weak-texture image patch in which the

homogeneity of the image patch is calculated based on S . The results show that

the noise level estimation by S is simple and effective. It is observed that the

noise level estimation method using S provides certain accuracy of noise level es-

timation with the shortest computational time among the block-based methods

when the image is degraded by noise with standard deviation around 15 and 20.

Since computational time is one of the most important characteristics for real time

image processing applications, the proposed denoising and noise level estimation

algorithms is suitable for real time image processing applications.

Furthermore, to show the effectiveness of S that can be applied in image pro-

cessing technique, we applied the advantage of S to detect the image edge com-

ponent. Since S gives the amount of image frequency components, the detailed

parts of the image is distinguishable through the S value. Although almost all

image edge detection algorithms are aiming at detecting the detailed edge parts

with the fixed edge parts, distinguishing the image edge components by S using

threshold value has the high possibility to provide flexible edge components detec-

tion which will be more suitable for object tracking that does not require detailed

image edges. For this reason, we proposed an edge component detection technique

which is flexible by blocking images into sub-blocks in which the window size and

the thresholding parameter is also adjustable according to the image type. The

experimental results have shown that because of the unique feature of flexible edge

size, the proposed edge component detection method can dramatically reduce the

data to be stored.

In conclusion, the proposed noise level estimation technique can also be ap-

plied in the proposed image denoising technique so as to improve the performance

of Wiener filtering approach for image denoising. For this study, although the

proposed image edge component detection assumes that the image is clean image,

in the real world situation, the image is degraded by noise especially by additive

Gaussian white noise. Therefore, noise reduction is necessary to obtain accurate

edge component detection. The proposed noise level estimation and image de-

noising techniques can also be applied in the proposed edge component detection

method for noisy images. By combining the three proposed techniques; noise level

estimation, image denoising, image edge component detection, which are all based

on the unique tool named image power spectrum sparsity, a fairly good perfor-
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mance result is expected to be obtained.

5.2 Future Work

This study has shown some image processing techniques based on S. For future

work, the benefits of S can also be applied for image deconvolution techniques.

Furthermore, the S can be applied in tuning the noise level parameter for image de-

noising because the true noise level does not always provide the best performance.

In conclusion, as the experimental results has shown that the image processing

techniques by S provides a simple and unique feature and effective image pro-

cessing techniques, it is realized that S can widely be applied in image processing

techniques as needed.
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