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Abstract

Several inequalities for the isoperimetric ratio for plane curves are
derived. In particular, we obtain interpolation inequalities between
the deviation of curvature and the isoperimetric ratio. As applica-
tions, we study the large-time behavior of some geometric flows of
closed plane curves without a convexity assumption.
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1 Introduction

It is an interesting problem to study the behavior of plane curves evolving
in time. A famous and basic problem is the curve-shortening flow. Since the
first variation of length is the curvature, the flow is governed by

(1.1) ∂tf = −δL(f) = κ.

Here f : R/LZ → R2 is a function which image represents the curve, L is its
total length, and κ is the curvature vector. This equation is also called the
curvature flow. It was proposed to describe the motion of grain boundary
in annealing of metal by Mullins [14]. Annealing is slowly warming and
cooling down. Metal is generally not a single structure as a whole because
the orientation of the crystal may be different, even though the composition
is the same. Part of a single structure is called the grain, and its boundary
is called the grain boundary. By annealing, small grains are vaporized and
it can be deformed into a metal close to a single structure only with large
grains. The mean curvature flow is used to describe the grain boundary
motion at this time.

Thereafter the equation (1.1) was first studied by Gage-Hamilton [7] and
Grayson [9]. They proved that a simple closed convex initial curve remains
so along the flow, and the evolving curve becomes more and more circular
and shrinks to a point in a finite time.

Then a number of papers have been devoted to the study of curvature
flow under some geometric constrains, for example, area-preserving or length-
preserving, which prevent the curve shrink into a point. The curvature flow
with area constrain is

(1.2) ∂tf = κ− 1

L

(∫ L

0

κ · ν ds

)
ν,
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and the flow with length constrain is

(1.3) ∂tf = κ−
(

1

2π

∫ L

0

∥κ∥2ds
)
ν,

where s is arc-length parameter, and ν is the inner unit normal vector. Be-
sides these, there is a flow like the following,

(1.4) ∂tf = κ− L

2A
ν.

This is the gradient flow of the isoperimetric ratio. Along these flows, the
curve is driven by the curvature together with non-local term. Hence they
are called the non-local curvature flows. Jiang-Pan [11] and Gage [6] proved
that a simple closed convex initial curve remains so along (1.4) and (1.2)
respectively, and the evolving curve converges to a circle in each non-local
curvature flows, see Section 4. To put it simply, their method is the fol-
lowing. Since changing the tangential component of velocity does not affect
the shapes of the evolving curves, they choose a suitable component so that
tangential angle does not depend on time t. Moreover the curve can be pa-
rameterized by tangential angle θ, because of convexity. That is, let define
the tangential angle θ by

cos θ(s) = f ′(s) · e1.

When the curve is strictly convex, the function θ(s) is monotone decreasing.
Therefore we use it as a spacial variable instead of s. For example the
curvature flow equations (1.2), (1.3) and (1.4) are transported into

∂tκ = κ2∂2
θκ+ κ3 − 2πκ2

L
,(1.5)

∂tκ = κ2∂2
θκ+ κ2

(
κ− 1

2π

∫ L

0

κ2ds

)
,(1.6)

∂tκ = κ2∂2
θκ+ κ3 − L

2A
κ2,(1.7)

where κ = κ ·ν is the curvature. These are parabolic equations of second or-
der for κ. They obtained conclusions, utilizing general properties of parabolic
equations, for example the maximal principle. The key of this method is to
parametrize the curve by tangential angle. Therefore it can not been uti-
lized when initial curve is not convex. Now there is little results in non-local
curvature flows, when initial curve is not convex. However, since the grain
boundaries described above are not always convex, we would like to know the
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behavior of evolving curves not assuming convexity. To do this, we consider
as follows.

Let f = (f1, f2) : R/LZ → R2 be a function such that Imf is a closed
plane curve with rotation number 1 and the variable of f is the arc-length
parameter. The unit tangent vector is τ = (f ′

1, f
′
2). Let ν = (−f ′

2, f
′
1) be

the inward unit normal vector, and let κ = f ′′ be the curvature vector. The
(signed) area A is given by

A = −1

2

∫ L

0

f · ν ds.

The curvature κ = κ · ν is positive when Imf is convex. Since the curve has
rotation number 1, the deviation of curvature is

κ̃ = κ− 1

L

∫ L

0

κ ds = κ− 2π

L
.

For a non-negative integer ℓ, we set

Iℓ = L2ℓ+1

∫ L

0

|κ̃(ℓ)|2ds,

which is a scale invariant quantity (cf. [2]). It is important to estimate Iℓ
for the global analysis of evolving curves. We get the Gagliardo-Nirenberg
inequalities

Iℓ ≤ CI
ℓ
m
m I

1− ℓ
m

0 ,

where 0 ≦ ℓ ≦ m and C is constant and independent of L. These are very
useful but only they are not sufficient to estimate I0 because these inequalities
use I0. Hence we need a different type of inequality to estimate Iℓ for ℓ ≧ 0.

The purpose of this paper is to prove the new interpolation inequalities

by using isoperimetric ratio. Hereafter we call
4πA

L2
the isoperimetric ratio,

not
L2

4πA
. The curve along the flow (1.2) or (1.3) is expected to converge to

a circle when the initial curve is close to a circle (in some sense) even if it
is not convex. If it is true, the isoperimetric ratio converges to 1 as t → ∞.
Taking it into consideration, we introduce the quantity

I−1 = 1− 4πA

L2
,

which is also scale invariant, and is non-negative by the isoperimetric in-
equality.
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We assume it holds that

d

dt
I0 + C1I1 ≦ I0

for some evolving curve, where C1 is a constant. Because of Wirtinger’s
inequality

I0 ≦
I1
4π2

,

there exists λ > 0 such that
I0 ≦ Ce−λt

if C1 >
1

4π2
. However we can not prove exponential decay of I0 as above

when C1 ≦
1

4π2
. If we can estimate I0 using I−1, then it is expected that we

can prove exponential decay of I0 regardless of C1 when I−1 → 0.
Of course, κ̃ ≡ 0 implies Imf is a round circle, which attains the minimum

I−1 = 0. This suggests that I−1 can be dominated by certain quantities
involving κ̃. Indeed, we have we have

I−1 =
L2 − 4πA

L2
=

1

L2

∫ L

0

(−Lf · κ+ 2πf · ν) ds

= − 1

L

∫ L

0

κ̃(f · ν)ds

= − 1

L

∫ L

0

κ̃

(
f − 1

L

∫ L

0

f ds

)
· ν ds

and ∣∣∣∣f − 1

L

∫ L

0

f ds

∣∣∣∣ ≦ L

from which we obtain
0 ≦ I−1 ≦ I

1
2
0 .

However, we can write

I−1 = − 1

L

∫ L

0

κ̃

×
{(

f − 1

L

∫ L

0

f ds

)
· ν − 1

L

∫ L

0

(
f − 1

L

∫ L

0

f ds

)
· ν ds

}
ds.

Since (
f − 1

L

∫ L

0

f ds

)
· ν − 1

L

∫ L

0

(
f − 1

L

∫ L

0

f ds

)
· ν ds = 0
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when κ̃ = 0 vanished identically, it seems that the above inequality can be
improved. In Section 2, we will show an improved version

0 ≦ I−1 ≦
I0
8π2

in Theorem 2.1.
The converse inequality seems not to hold; the reason will be clarified in

Section 2. However, I0 can be estimated by use of I−1 with the help of κ and
its derivative

I0 ≦ I
1
2
−1

[
L3

∫ L

0

{
κ3κ̃+ (κ̃′)2

}
ds

] 1
2

(see Theorem 2.2). Combining this inequality and the Gagliardo-Nirenberg
inequality, in Theorem 3.1 we will show interpolation inequalities satisfied
by I−1, Iℓ and Im for 0 ≦ ℓ ≦ m:

Iℓ ≦ C

(
I

m−ℓ
2

−1 Im + I
m−ℓ
m+1

−1 I
ℓ+1
m+1
m

)
.

Here the constant C depends on ℓ and m but not on κ̃ nor L.
In section 4, we give applications of our inequalities to the analysis of the

large-time behavior of some non-local curvature flows for closed plane curves.
In the final section, we consider the higher order curvature flow

∂tf = (−1)m(∂2m
s κ̃)ν.(1.8)

This flow is the area-preserving flow (1.2) when m = 0.
When m = 1, the flow (1.8) is

∂tf = −(∂2
s κ̃)ν.(1.9)

This flow was proposed by Mullins [14] and we call it curve diffusion flow.
The flow is a fourth-order parabolic partial differential equation. Hence we
do not expect convexity to be preserved along the flow. Indeed, Giga and Ito
[8] showed the existence of a simple closed strictly convex plane curve that
becomes non-convex in finite time under the flow. Also, Escher–Ito [4] and
Chou [1] proved that evolving curves may develop singularities in finite time
even when the initial curve is smooth.

On the other hand, there are some results for large-time behavior. Chou
[1] showed that the evolving curve converges exponentially to a circle assum-
ing the global existence of the flow. Moreover Elliott–Garcke [3] and Wheeler
[19] showed the global existence and investigated the large-time behavior for
initial data close to a circle.

Hence we investigate the large-time behavior of (1.8) assuming the global
existence of the flow.
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2 Preliminaries

For the vector-valued function f = (f1, f2) : R/LZ → R2, we define a
complex-valued function by

f = f1 + if2.

We expand f by the Fourier series

f =
∑
k∈Z

f̂(k)φk,

where

φk(s) =
1√
L
exp

(
2πiks

L

)
, f̂(k) =

∫ L

0

fφkds.

The series
∑
k∈Z

kℓ|f̂(k)|2 is related to

(
L

2π

)ℓ ∫ L

0

κℓds. To see this we need

some expression of f (ℓ−1)f ′ in terms of κ and its derivatives. Set

Fℓ = f (ℓ−1)f ′.

Lemma 2.1 It holds that

(2.1) F1 = f · τ + if · ν, Fℓ = iκFℓ−1 + F ′
ℓ−1 for ℓ ≧ 2.

Proof. Firstly, since τ = (f ′
1, f

′
2) and ν = (−f ′

2, f
′
1), we have

F1 = (f1 + if2)(f
′
1 − if ′

2) = f · τ + if · ν.

The recurrence relation is derived from

Fℓ = f (ℓ−1)f ′ =
(
f (ℓ−2)f ′

)′ − f (ℓ−2)f ′′ = F ′
ℓ−1 − f (ℓ−2)f ′f ′f ′′ = F ′

ℓ−1 − Fℓ−1F3

and

F3 = f ′′f ′ = (f ′′
1 + if ′′

2 )(f
′
1− if ′

2) =
1

2

(
|f ′|2

)′
+ i(−f ′′

1 f
′
2+f ′′

2 f
′
1) = if ′′ ·ν = iκ.

□

Proposition 2.1 For ℓ ≧ 2, it holds that

(2.2)
∑
k∈Z

kℓ|f̂(k)|2 = −i1−ℓ

(
L

2π

)ℓ ∫ L

0

κFℓ−1ds.
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Proof. It follows from the recurrence relation in Lemma2.1 that∫ L

0

Fℓds = i

∫ L

0

κFℓ−1ds.

On the other hand,∫ L

0

Fℓds = ⟨f (ℓ−1), f ′⟩L2 = −iℓ
(
2π

L

)ℓ∑
k∈Z

kℓ|f̂(k)|2.

□

Corollary 2.1 We have∑
k∈Z

k|f̂(k)|2 = LA

π
,(2.3)

∑
k∈Z

k2|f̂(k)|2 =
(

L

2π

)2 ∫ L

0

κ0ds =
L3

4π2
,(2.4)

∑
k∈Z

k3|f̂(k)|2 =
(

L

2π

)3 ∫ L

0

κ ds =
L3

4π2
,(2.5)

∑
k∈Z

k4|f̂(k)|2 =
(

L

2π

)4 ∫ L

0

κ2ds,(2.6)

∑
k∈Z

k5|f̂(k)|2 =
(

L

2π

)5 ∫ L

0

κ3ds,(2.7)

∑
k∈Z

k6|f̂(k)|2 =
(

L

2π

)6 ∫ L

0

{
κ4 + (κ′)2

}
ds.(2.8)

Remark 2.1 If κ > 0 everywhere, it holds that

∑
k∈Z

k|f̂(k)|2 = L

2π

∫ L

0

1

κ

{
1−

(
f ′f̄
)′}

ds.

In particular if κ is a constant, then

∑
k∈Z

k|f̂(k)|2 = L

2π

∫ L

0

ds

κ
.
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Proof of Corollary 2.1. Since∫ L

0

F1ds = i

∫ L

0

f · ν ds = −2iA,

we obtain ∑
k∈Z

k|f̂(k)|2 = L

2πi

∫ L

0

f ′f̄ ds =
L

2πi

∫ L

0

F1ds =
LA

π
.

Thus (2.3) follows. The relations (2.4)–(2.8) are consequence of (2.2) and
(2.1). Indeed,∑
k∈Z

k2|f̂(k)|2 = −i−1

(
L

2π

)2 ∫ L

0

κF1ds = i

(
L

2π

)2 ∫ L

0

κ (f · τ + if · ν) ds,

and ∫ L

0

κf · τ ds = −
∫ L

0

f · ν ′ds =

∫ L

0

τ · ν ds = 0,∫ L

0

κf · ν ds =

∫ L

0

f · τ ′ ds = −
∫ L

0

τ · τ ds = −L.

Thus (2.4) holds. Since f is parametrized by the arc-length, we have F2 =
|f ′|2 = ∥f ′∥2 = 1. It follows from (2.1) that

F3 = iκ, F4 = −κ2 + iκ′, F5 = −3κκ′ + i
(
−κ3 + κ′′) .

Hence we obtain∫ L

0

κF2ds =

∫ L

0

κ ds = 2π,

∫ L

0

κF3ds = i

∫ L

0

κ2ds,∫ L

0

κF4ds = −
∫ L

0

κ3ds,

∫ L

0

κF5ds = −i

∫ L

0

{
κ4 + (κ′)2

}
ds.

Consequently (2.5)–(2.8) are obtained from (2.2).

Corollary 2.2

I−1 =
4π2

L3

∑
k∈Z

k(k − 1)|f̂(k)|2.

Proof. We obtain

I−1 = 1− 4πA

L2
=

4π2

L3

(
L3

4π2
− LA

π

)
=

4π2

L3

∑
k∈Z

k(k − 1)|f̂(k)|2

from (2.4) and (2.3). □
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Since k(k − 1) ≧ 0 for k ∈ Z, we obtain the isoperimetric inequality
I−1 ≧ 0 from this corollary, which is essentially the proof by Hurwitz [10].

Corollary 2.3

I0 =
16π4

L3

∑
k∈Z

k3(k − 1)|f̂(k)|2.

Proof. The assertion is derived as

I0 = L

∫ L

0

κ̃2ds = L

∫ L

0

κκ̃ ds = L

(∫ L

0

κ2ds− 2π

L

∫ L

0

κ ds

)
=

16π4

L3

∑
k∈Z

k3(k − 1)|f̂(k)|2,

using (2.6) and (2.5). □

Since k(k − 1) ≦ k3(k − 1) for k ∈ Z, we have

(2.9) I−1 ≦
4π2

L3

∑
k∈Z

k3(k − 1)|f̂(k)|2 = I0
4π2

.

We set
g =

∑
k∈Z

√
k(k − 1)f̂(k)φk,

and then (2.9) is

∥g∥2L2 ≦
L2

4π2
∥g′∥2L2 .

This is Wirtinger’s inequality with the best constant. Therefore it is reason-
able to think that (2.9) cannot be sharpened. However, the function f is not
an arbitrary one, but satisfies |f ′| ≡ 1, and this suggests that we may be able
to improve the constant in (2.9). Indeed, we can show an improved version
by use of (2.4) and (2.5).

Theorem 2.1 We have

I−1 ≦
I0
8π2

.

Equality never holds except the trivial case κ̃ ≡ 0.

Proof. First observe that (2.4) and (2.5) imply∑
k∈Z

k2|f̂(k)|2 =
∑
k∈Z

k3|f̂(k)|2.
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Hence

I−1 =
4π2

L3

∑
k∈Z

k(k2 − 1)|f̂(k)|2 = 4π2

L3

∑
k∈Z

k(k − 1)(k + 1)|f̂(k)|2,

I0 =
16π4

L3

∑
k∈Z

k2(k2 − 1)|f̂(k)|2 = 16π4

L3

∑
k∈Z

k2(k − 1)(k + 1)|f̂(k)|2.

Consequently we obtain

I0
8π2

− I−1 =
2π2

L3

∑
k∈Z

k(k − 2)(k − 1)(k + 1)|f̂(k)|2 ≧ 0,

because k(k − 2)(k − 1)(k + 1) ≧ 0 for k ∈ Z.

For the equality case, assume that f satisfies I−1 =
I0
8π2

. It follows from

the previous paragraph that

f =
2∑

k=−1

f̂(k)φk.

Since |f ′|2 ≡ 1 and since φkφℓ = L
1
2φk−ℓ, we have

1 =

∣∣∣∣∣
2∑

k=−1

2πik

L
f̂(k)φk

∣∣∣∣∣
2

=
4π2

L2

2∑
k,ℓ=−1

kℓf̂(k)f̂(ℓ)φkφℓ

=
4π2

L
3
2

3∑
m=−3

∑
k−ℓ=m

−1≦k≦2,−1≦ℓ≦2

kℓf̂(k)f̂(ℓ)φm.

From this we find that, in particular,

0 =
∑

k−ℓ=3
−1≦k≦2,−1≦ℓ≦2

kℓf̂(k)f̂(ℓ) = −2f̂2f̂−1.

On the other hand, it follows from (2.4) and (2.6) that

0 =
2∑

k=−1

k2(k − 1)|f̂(k)|2 = −2|f̂−1|2 + 4|f̂2|2.

Therefore f̂−1 = f̂2 = 0. Consequently f = f̂0φ0 + f̂1φ1, which implies Imf
is a round circle. Hence κ̃ ≡ 0. □
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We remark that it is impossible to show

k3(k − 1) ≦ Ck(k − 1) for k ∈ Z,

and this implies that there is no hope to see I0 ≦ CI−1. Thereupon we give
an estimate of I0 in terms of I−1 with the help of κ and its derivative.

Theorem 2.2 The integral

∫ L

0

{
κ3κ̃+ (κ̃′)2

}
ds is non-negative, and it holds

that

I0 ≦ I
1
2
−1

[
L3

∫ L

0

{
κ3κ̃+ (κ̃′)2

}
ds

] 1
2

.

Equality never holds except the trivial case κ̃ ≡ 0.

Proof. By Cauchy’s inequality we have

I0 ≦
16π4

L3

{∑
k∈Z

k(k − 1)|f̂(k)|2
} 1

2
{∑

k∈Z

k5(k − 1)|f̂(k)|2
} 1

2

=
8π3

L
3
2

I
1
2
−1

{∑
k∈Z

k5(k − 1)|f̂(k)|2
} 1

2

,

and (2.7) and (2.8) show that∑
k∈Z

k5(k − 1)|f̂(k)|2 =
(

L

2π

)6 ∫ L

0

{
κ4 + (κ′)2 − 2π

L
κ3

}
ds

=

(
L

2π

)6 ∫ L

0

{
κ3κ̃+ (κ̃′)2

}
ds.

Assume that f satisfies the equality case in the assertion. It follows from
the equality condition of Cauchy’s inequality that f̂k = 0 except k = 0 and
1. Consequently Imf is a round circle, and κ̃ ≡ 0. □

3 Interpolation inequalities

In this section we derive several interpolation inequalities from Theorem 2.2.

Theorem 3.1 Let 0 ≦ ℓ ≦ m. There exists a positive constant C = C(ℓ,m)
independent of L such that

Iℓ ≦ C

(
I

m−ℓ
2

−1 Im + I
m−ℓ
m+1

−1 I
ℓ+1
m+1
m

)
holds.
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Proof. When ℓ = m, the assertion is clear.
Let ℓ < m. Then m ≧ 1. The Gagliardo-Nirenberg inequality shows

(3.1)

(
L(j+1)p−1

∫ L

0

|κ̃(j)|pds
) 1

p

≦ C(j,m, p)I
1

2m(j−
1
p
+ 1

2)
m I

1
2{1− 1

m(j−
1
p
+ 1

2)}
0

for p ≧ 2 and j ≦ m. Here C(j,m, p) is independent of L. Combining this

and Wirtinger’s inequality I0 ≦
I1
4π2

, we have

L3

∫ L

0

κ̃4ds ≦ CI
1
2
1 I

3
2
0 ≦ CI21 , L2

∫ L

0

|κ̃|3ds ≦ CI
1
4
1 I

5
4
0 ≦ CI

3
2
1 .

Therefore

L3

∫ L

0

κ3κ̃ ds = L3

∫ L

0

(
κ̃+

2π

L

)3

κ̃ ds

≦ C

(
L3

∫ L

0

κ̃4ds+ L2

∫ L

0

|κ̃|3ds+ L

∫ L

0

κ̃2ds

)
≦ C

(
I21 + I

3
2
1 + I1

)
.

Consequently the inequality in Theorem 2.2 implies

I0 ≦ CI
1
2
−1

(
I1 + I

1
2
1

)
,

which is the assertion with ℓ = 0, m = 1.
Putting p = 2 in (3.1), we have

(3.2) Ij ≦ C(j,m)I
j
m
m I

1− j
m

0 .

Combining these with j = 1 and Young’s inequality, we have

I0 ≦ CI
1
2
−1

(
I

1
m
m I

1− 1
m

0 + I
1

2m
m I

1
2(1−

1
m)

0

)
≦ ϵI0 + Cϵ

(
I

m
2
−1Im + I

m
m+1

−1 I
1

m+1
m

)
,

where ϵ is an arbitrary positive number. Consequently we obtain

I0 ≦ C

(
I

m
2
−1Im + I

m
m+1

−1 I
1

m+1
m

)
,

which is the assertion with ℓ = 0, m ≧ 2.
Let ℓ ≧ 1. Using the above inequality and (3.2) with j = ℓ, we obtain

Iℓ ≦ CI
ℓ
m
m

(
I

m
2
−1Im + I

m
m+1

−1 I
1

m+1
m

)1− ℓ
m

≦ C

(
I

m−ℓ
2

−1 Im + I
m−ℓ
m+1

−1 I
ℓ+1
m+1
m

)
.

□
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4 Applications to non-local flows

We give applications of our inequalities to the asymptotic analysis of ge-
ometric flows of closed plane curves. Two of the flows are the flow (1.4)
studied by Jiang-Pan [11], and the area-preserving curvature flow (1.2) con-
sidered by Gage [6]. We also consider the length-preserving curvature flow
(1.3). If the initial curve is convex, then the flows exist for all time keep-
ing the convexity, and the curve approaches a round circle; this was shown
in [11, 6, 12]. The local existence of flows without a convexity assumption
was shown by Ševčovič-Yazaki [18]. However, the large-time behavior for
this case is still open. It seems finite-time blow-up may occur for some non-
convex initial curves [13], but, on the other hand, the global existence for
a certain initial non-convex curve was shown in [18]. Escher-Simonett [5]
showed the global existence and investigated the large-time behavior of the
area-preserving curvature flow for initial data close to a circle and without a
convexity assumption. In this section, we investigate the large-time behavior
of the flow without a convexity assumption assuming the global existence.

Firstly we consider the general flows

(4.1) ∂tf = hν,

where h = κ + φ(L,A,W ). Here W :=
1

2

∫ L

0

κ2ds is the elastic energy and

φ is a smooth function of L,A and W . We assume the global existence of
solutions. Observe that the equation which f satisfies is

∂tf = ∂2
sf − φ(L,A,W )R∂sf ,

where

R =

(
0 −1
1 0

)
.

Since this is a parabolic equation with a non-local term, we may assume that
f is smooth for t > 0 as long as the solution exists. Hence by shifting the
initial time, we may assume that the initial data is smooth.

Let P k
n (κ̃) be any linear combination of the type

P k
n (κ̃) =

∑
i1+···+in=k

ci1,...,in∂
i1
s κ̃ · · · ∂in

s κ̃

with universal, constant coefficients ci1,...,in for k ∈ N ∪ {0} and n ∈ N.
Similarly we define P k

0 as a universal constant.
For the flows (1.2), (1.3), we can show the following.
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(1) I−1 decays exponentially as t → ∞ : I−1 ≦ C−1e
−λt.

(2) I0 is integrable on [0,∞) :

∫ ∞

0

I0dt < ∞.

(3) L(t) is strictly positive on [0,∞) and there exists positive constant L∞
such that L(t) converges to L∞.

(4) A(t) is strictly positive on [0,∞) and there exists positive constant A∞
such that A(t) converges to A∞.

(5) There exist positive constants C1, · · · , C4 independent of initial data
and t such that

d

dt
I0 +

C1

L2
I1 +

C2

L2
I20 ≦ C3

L2
I30 +

C4

L2
I−1.

(6) There exist 1 ≦ α < 5, 1 ≦ β < 5, γ ≧ 0, σ ≧ 0 such that

d

dt
Iℓ+

2

L2
Iℓ+1 ≦ L2ℓ+1

∫ L

0

∂ℓ
sκ̃

α∑
n=1

L−(α−n)P ℓ
n(κ̃)ds

+ L2ℓ+1

(
L

A

)γ
(∫ L

0

∂ℓ
sκ̃

β∑
n=1

L−(β−n)P ℓ
n(κ̃)ds

)(∫ L

0

κ̃2ds

)σ

.

These are ingredients for proving the convergence of flow to a circle. We shall
show this fact in subsection 4.1. And we shall see that (1)–(6) hold true for
the flow (1.2), (1.3) respectively in the subsection 4.1–4.3.

4.1 General flows

Here we consider the large-time behavior of solutions to (4.1) under the
assumption (1)–(6). Firstly we prove the exponential decay of Iℓ for ℓ ∈
N ∪ {0}.

Theorem 4.1 Assume that f is a global solution of (4.1) such that the initial
rotation number is 1 and the initial (signed) area is positive. Moreover we
assume (1)–(6). Then, for each ℓ ∈ N ∪ {0}, there exist Cℓ > 0 and λℓ > 0
such that

Iℓ(t) ≦ Cℓe
−λℓt.

14



Proof. We firstly consider when ℓ = 0. It is obvious that there exists T1

satisfying ∫ ∞

T1

C4

L2
e−λtdt <

C2

2C3

.

Furthermore, there exists T2 ≧ T1 such that I0(T2) <
C2

2C3

, because of (2).

We would like to show I0(t) <
C2

C3

for t ≧ T2. To do this, we argue by

contradiction. Then there exists T3 > T2 such that

I0(t) <
C2

C3

for t ∈ [T2, T3), and I0(T3) =
C2

C3

.

It follows from (1) and (5) that

d

dt
I0 ≦

C4

L2
e−λt

for t ∈ [T2, T3]. Hence

I0(T3) = I0(T2) +

∫ T3

T2

d

dt
I0dt <

C2

2C3

+

∫ ∞

T1

C4

L2
e−λtdt <

C2

C3

.

This contradicts I0(T3) =
C2

C3

. Consequently I0 is uniformly bounded, and

(5) implies
d

dt
I0 +

C1

L2
I1 ≦

C4

L2
e−λt.

Thus the assertion for ℓ = 0 with some positive λ0 has been proved.
Next we show the exponential decay of Iℓ for ℓ ∈ N. Set

Jk,p =

{
L(1+k)p−1

∫ L

0

|∂k
s κ̃|pds

} 1
p

.

By the Gagliardo-Nirenberg inequalities we have

(4.2) Jk,p ≦ CJθ
m,2J

1−θ
0,2 = CI

θ
2
mI

1−θ
2

0

for k ∈ {0, 1, . . . ,m}, p ≧ 2. Here C is independent of L, and θ = 1
m

(
k − 1

p
+ 1

2

)
∈

[0, 1].
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Since P ℓ
1(κ̃) = c∂ℓ

sκ̃ and L,A are uniformly bounded by (3)–(4), we have

L2ℓ+1

∣∣∣∣∫ L

0

(∂ℓ
sκ̃)L

−(α−1)P ℓ
1(κ̃) ds

∣∣∣∣ = |c|
L2

Iℓ,

L2ℓ+1

∣∣∣∣∫ L

0

(∂ℓ
sκ̃)

(
L

A

)γ

L−(α−1)P ℓ
1(κ̃) ds

∣∣∣∣ (∫ L

0

κ̃2ds

)σ

≦ C

L2
Iσ+1
ℓ .

When α ≧ 2, by Hölder’s inequality, we have∣∣∣∣∣L2ℓ+1

∫ L

0

∂ℓ
sκ̃

α∑
n=2

L−(α−n)P ℓ
n(κ̃)ds

∣∣∣∣∣ =
∣∣∣∣∣

α∑
n=2

L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)L

−(α−n)P ℓ
n(κ̃)ds

∣∣∣∣∣
≦

∑
j1+···+jn=n
j1≧0,···jn≧0

C

L2
Jℓ,n+1Jj1,n+1 · · · Jjn,n+1,

and (4.2) yields

Jj,n+1 ≦ CI
θ(j,n+1)

2
ℓ+1 I

1−θ(j,n+1)
2

0 , θ(j, n+ 1) =
1

m

(
j − 1

n+ 1
+

1

2

)
.

Hence applying Young’s inequality, we obtain∣∣∣∣∣L2ℓ+1

∫ L

0

∂ℓ
sκ̃

α∑
n=2

L−(α−n)P ℓ
n(κ̃)ds

∣∣∣∣∣ ≦ C

L2
I

2ℓ+n−1
2

2(ℓ+1)

ℓ+1 I
ℓ(n−1)+n+3

2
2(ℓ+1)

0

≦ ϵ

L2
Iℓ+1 +

Cϵ

L2
I

2ℓ(n−1)+n+3
5−n

0

for any ϵ > 0. The second term is a function decaying exponentially. When
β ≧ 2, we have∣∣∣∣∣L2ℓ+1

(
L

A

)γ ∫ L

0

∂ℓ
sκ̃

β∑
n=2

L−(α−n)P ℓ
n(κ̃)ds

∣∣∣∣∣
(∫ L

0

κ̃2ds

)σ

≦
(

ϵ

L2
Iℓ+1 +

Cϵ

L2
I

2ℓ(n−1)+n+3
5−n

0

)
Iσ0

for any ϵ > 0 same ways as above. Hence we obtain

d

dt
Iℓ +

2

L2
Iℓ+1(4.3)

≦ C

L2
Iℓ +

C

L2
Iσ+1
ℓ +

ϵ

L2
Iℓ+1 +

Cϵ

L2
I

2ℓ(n−1)+n+3
5−n

0

+
ϵ

L2
Iℓ+1I

σ
0 +

Cϵ

L2
I

2ℓ(n−1)+n+3
5−n

0 Iσ0 .
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Taking ϵ small and t large, the terms
ϵ

L2
Iℓ+1,

ϵ

L2
Iℓ+1I

σ
0 are included into the

left-hand side of (4.3) from exponential decay of I0. The terms
Cϵ

L2
I

2ℓ(n−1)+n+3
5−n

0 ,

Cϵ

L2
I

2ℓ(n−1)+n+3
5−n

0 Iσ0 are functions decaying exponentially. Furthermore we have

from Theorem 3.1

C

L2
Iℓ ≦

C

L2

(
I

1
2
−1Iℓ+1 + I

1
ℓ+2

−1 I
ℓ+1
ℓ+2

ℓ+1

)
≦ C

L2

{(
I

1
2
−1 + ϵ

)
Iℓ+1 + CϵI−1

}
C

L2
Iσ+1
ℓ ≦ C

L2

(
I

1
2
−1Iℓ+1 + I

1
ℓ+2

−1 I
ℓ+1
ℓ+2

ℓ+1

)σ+1

≦ C

L2

{(
I

1
2
−1 + ϵ

)σ+1

Iσ+1
ℓ+1 + Cσ+1

ϵ Iσ+1
−1

}
for any ϵ > 0. Taking ϵ small and t large, the terms

C

L2

{(
I

1
2
−1 + ϵ

)
Iℓ+1

}
,

C

L2

{(
I

1
2
−1 + ϵ

)σ+1

Iσ+1
ℓ+1

}
can be absorbed into the left-hand side of (4.3).

The terms CϵI−1, C
σ+1
ϵ Iσ+1

−1 are functions decaying exponentially. Therefore
(4.3) and Wirtinger’s inequality imply

d

dt
Iℓ +

C

L2
Iℓ ≦ Ce−µt,

which shows the exponential decay of Iℓ. □

It follows from Theorem 4.1 that κ̃ uniformly converges to 0 as t → ∞.
This implies that Imf converges to a circle. The precise statement is as
follows.

Theorem 4.2 Let f be as in Theorem 4.1, and let f(s, t) =
∑
k∈Z

f̂(k)(t)φk(s)

be the Fourier expansion for any fixed t > 0. Set

c(t) =
1√
L(t)

(ℜf̂(0)(t),ℑf̂(0)(t)),

and define r(t) ≧ 0 and σ(t) ∈ R/2πZ by

f̂(1)(t) =
√
L(t)r(t) exp

(
i
2πσ(t)

L(t)

)
.

Furthermore we set

f̃(θ, t) = f(L(t)θ − σ(t), t), for (θ, t) ∈ R/Z× [0,∞).
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We assume that there exists c∞ ∈ R2 such that

∥c(t)− c∞∥ ≦ Ce−γt.

Then the following claims hold.

(A) The function r(t) converges exponentially to the constant
L∞

2π
as t →

∞: ∣∣∣∣r(t)− L∞

2π

∣∣∣∣ ≦ Ce−γt.

(B) There exists σ∞ ∈ R/2πZ such that

|σ(t)− σ∞| ≦ Ce−γt.

(C) For any k ∈ N ∪ {0} there exist Ck > 0 and γk > 0 such that

∥f̃(·, t)− f̃∞∥Ck(R/Z) ≦ Cke
−γkt,

where

f̃∞(θ) = c∞ +
L∞

2π
(cos 2πθ, sin 2πθ).

(D) For sufficiently large t, Imf̃(·, t) is the boundary of a bounded domain
Ω(t). Furthermore, there exists T∗ ≧ 0 such that Ω(t) is strictly convex
for t ≧ T∗.

(E) Let Dr∞(c∞) be the closed disk with center c∞ and radius r∞. Then
we have

dH(Ω(t), Dr∞(c∞)) ≦ Ce−γt,

where dH is the Hausdorff distance.

(F) Let b(t) =
1

A(t)

∫∫
Ω(t)

x dx be the barycenter of Ω(t). Then we have

∥A(t)(b(t)− c(t))∥ ≦ Ce−γt.
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Proof. (A) It follows from Proposition 2.1 and Lemma 2.1 that∑
k∈Z

kℓ(k − 1)|f̂(k)|2 = − i−ℓ

(
L

2π

)ℓ+1 ∫ L

0

κFℓds

+ i1−ℓ

(
L

2π

)ℓ ∫ L

0

κFℓ−1ds

= − i−ℓ

(
L

2π

)ℓ+1 ∫ L

0

κFℓds

+ i−ℓ

(
L

2π

)ℓ ∫ L

0

Fℓds

= − i−ℓ

(
L

2π

)ℓ+1 ∫ L

0

κ̃Fℓds

for ℓ ≧ 2. Since F2 is a constant, and since Fℓ with ℓ ≧ 3 is a polyno-
mial function of κ and its derivatives up to the (ℓ − 3)rd order, they
are bounded functions of (s, t). Also L is bounded and κ̃ decays expo-
nentially as t → ∞. Therefore when ℓ is odd,∣∣∣∣∣∑

k ̸=0,1

kℓ+1|f̂(k)|2
∣∣∣∣∣ ≦ C

∣∣∣∣∣∑
k∈Z

kℓ(k − 1)|f̂(k)|2
∣∣∣∣∣ ≦ Cℓe

−γℓt.

By the Parseval identity and the Sobolev embedding theorem we have∥∥∥f(·, t)− f̂(0)(t)φ0(·)− f̂(1)(t)φ1(·)
∥∥∥
Ck(R/L(t)Z)

≦ Cke
−γ′

kt

for any k. Using the expression of R2-valued functions, we have

f(s, t) = c(t) + r(t)

(
cos

2π(s+ σ(t))

L(t)
, sin

2π(s+ σ(t))

L(t)

)
+ ρ(s, t),

∥ρ(·, t)∥Ck(R/L(t)Z) ≦ Cke
−γ′

kt.

Since

∂sf(s, t) =
2πr(t)

L(t)

(
− sin

2π(s+ σ(t))

L(t)
, cos

2π(s+ σ(t))

L(t)

)
+ ∂sρ(s, t),

we have∣∣∣∣r(t)− L(t)

2π

∣∣∣∣ = L(t)

2π

∣∣∣∣2πr(t)L(t)
− 1

∣∣∣∣ = L(t)

2π
|∥∂sf(s, t)− ∂sρ(s, t)∥ − 1|

≦ Ce−γ1t.

Therefore r(t) converges to r∞ =
L∞

2π
exponentially as t → ∞.
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(B) First we clarify the meaning of ∂tf , it is not lim
h→0

f(s, t+ h)− f(s, t)

h
as one might expect. The variable s in f(s, t) is an element of R/L(t)Z,
on the other hand, the s in f(s, t + h) is in R/L(t + h)Z. Hence the
above quotient is not well-defined. To address this, let us introduce a
function f̄ on R/2πZ× [0,∞) given by

f̄(u, t) = f

(
L(t)u

2π
, t

)
.

Then the variable u is independent of t, and ∂tf is given by

∂tf = lim
h→0

f̄(u, t+ h)− f̄(u, t)

h
.

We define a complex-valued function f̄ by

f̄(u, t) = (ℜf̄(u, t),ℑf̄(u, t)),

and note that the Fourier expansion of f̄ is

f̄(u, t) =
∑
k∈Z

f̂(k)(t)φk

(
L(t)u

2π

)
=

√
2π
∑
k∈Z

f̂(k)(t)√
L(t)

ϕk(u),

where

ϕk(u) =
1√
2π

eiku.

Therefore we have

∂tf̄ =
√
2π
∑
k∈Z

d

dt

f̂(k)(t)√
L(t)

ϕk(u),

and ∫ 2π

0

|∂tf̄ |2du = 2π
∑
k∈Z

∣∣∣∣∣ ddt f̂(k)(t)√
L(t)

∣∣∣∣∣
2

by the Parseval identity. Since

|∂tf̄ |2 = ∥∂tf̄∥2 = ∥∂tf∥2 =
∥∥∥∥κ− L

2A
ν

∥∥∥∥2 = ∣∣∣∣κ̃− L

2A
I−1

∣∣∣∣2
decays exponentially and uniformly in spatial variable as t → ∞, we
have ∑

k∈Z

∣∣∣∣∣ ddt f̂(k)(t)√
L(t)

∣∣∣∣∣
2

≦ Ce−2γt
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for some C > 0 and γ > 0. In particular,∣∣∣∣∣ ddt f̂(1)(t)√
L(t)

∣∣∣∣∣
2

≦ Ce−2γt.

Also, it is not difficult to see that∣∣∣∣∣ ddt f̂(1)(t)√
L(t)

∣∣∣∣∣
2

=

∣∣∣∣ ddtr(t)
∣∣∣∣2 + 4π2r(t)2

∣∣∣∣ ddt
(
σ(t)

L(t)

)∣∣∣∣2 .
Since r(t) and L(t) converge exponentially to positive constants, so
does σ(t) to some σ∞ ∈ R/2πZ.

(C) We have

f̃(θ, t) = c(t) + r(t) (cos 2πθ, sin 2πθ) + ρ̃(θ, t)

= f̃∞(θ) + c(t)− c∞ + (r(t)− r∞) (cos 2πθ, sin 2πθ) + ρ̃(θ, t),

where
ρ̃(θ, t) = ρ(L(t)θ − σ(t), t).

Therefore the estimates for c(t), r(t), and ρ(·, t) yield

∥f̃(·, t)− f̃∞∥Ck(R/Z) ≦ Cke
−γ̃kt.

(D) The above estimate implies that Imf̃(·, t) is the boundary of a bounded
domain Ω(t) when t is sufficiently large. Since κ̃ converges to 0 uni-
formly, and since L goes to a positive constant L∞ as t → ∞ uniformly
in s,

κ =
2π

L
+ κ̃

is strictly positive for large t. Consequently ∂Ω(t) is a strictly convex
curve.

(E) Let Dr(t)(c(t)) be the closed disk with center c(t) and the radius r(t).
We have

dH(Ω(t), Dr∞(c∞))

≦ dH(Ω(t), Dr(t)(c(t))) + dH(Dr(t)(c(t)), Dr(t)(c∞))

+ dH(Dr(t)(c∞), Br∞(c∞))
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For sufficiently large t we show

∥ρ̃(·, t)∥C0(R/Z) ≦ |r(t)|.

Hence Dr(t)−∥ρ̃(·,t)∥C0(R/Z)
(c(t)) ⊆ Ω(t) ⊆ Dr(t)+∥ρ̃(·,t)∥C0(R/Z)

(c(t)). Let

Sr(t)(c(t)) be the closed circle with center c(t) and the radius r(t). For

any x ∈ Imf̃(·, t) \
(
Imf̃(·, t) ∩Dr(t)(c(t))

)
we have

d(x, Dr(t)(c(t))) ≦ d(Sr(t)(c(t)), Sr(t)+∥ρ̃(·,t)∥C0(R/Z)
(c(t)))

= ∥ρ̃(·, t)∥C0(R/Z).

Furthermore, for any x ∈ Imf̃(·, t) ∩Dr(t)(c(t)), we have

d(x, Sr(t)(c(t))) ≦ d(Sr(t)(c(t)), Sr(t)−∥ρ̃(·,t)∥C0(R/Z)
(c(t)))

= ∥ρ̃(·, t)∥C0(R/Z).

Therefore we obtain

dH(Ω(t), Dr(t)(c(t))) ≦ ∥ρ̃(·, t)∥C0(R/Z).

Moreover we clearly find that

dH(Dr(t)(c(t)), Dr(t)(c∞)) ≦ ∥c(t)− c∞∥,
dH(Dr(t)(c∞), Dr∞(c∞)) ≦ |r(t)− r∞|.

Hence we show
dH(Ω(t), Dr∞(c∞)) ≦ Ce−γt

for some C > 0 and γ > 0.

(F) Clearly we have

A(b− c) =

∫∫
Ω(t)

(x− c) dx.

We define

b = (b1, b2), c = (c1, c2), b = b1 + ib2, c = c1 + ic2.

From the divergence theorem, we have

A(b− c) =

∫∫
Ω(t)

{(x1 − c1) + i(x2 − c2)}dx

=
1

2

∫∫
Ω(t)

div(
(
(x1 − c1)

2, i(x2 − c2)
2
)
dx

= − 1

2

∫ L

0

(
(f1 − c1)

2, i(f2 − c2)
2
)
· ν ds

= − 1

2

∫ L

0

{
(f1 − c1)

2(−∂sf2) + i(f2 − c2)
2∂sf1

}
ds.
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Since, for j = 1, 2, ∫ L

0

(fj − cj)
2∂sfj ds = 0,

we obtain

A(b− c) = − i

2

∫ L

0

{
(f1 − c1)

2(∂sf1 + i∂sf2)

+ (f2 − c2)
2(∂sf1 + i∂sf2)

}
ds

= − i

2

∫ L

0

|f − c|2∂sf ds.

It holds that

|f − c|2 =
∣∣∣re 2πi(s+σ)

L + ρ
∣∣∣2 = r2 + 2rℜρe

2πi(s+σ)
L + |ρ|2

and r is independent of s. Hence we show

A(b− c) = − i

2

∫ L

0

{
2rℜρe

2πi(s+σ)
L + |ρ|2

}
∂sf ds.

Therefore we have

∥A(b− c)∥ ≦ |A(b− c)| ≦ 1

2

∫ L

0

(
2r|ρ|+ |ρ|2

)
ds ≦ Ce−γt.

Thus we have shown each of the claims in the theorem. □

In the following subsection, the assumptions (1)–(6) in Theorem 4.1 hold
for the gradient flow of the isoperimetric ratio (4.4) below, the area-preserving
flow (1.2), and the length-preserving flow (1.3). As a consequence, these
global flows converge to a circle in the sense of Theorem 4.2 even if the
initial curve is not convex.

4.2 The gradient flow of the isoperimetric ratio

We consider the large-time behavior of the flow (1.4) of closed plane curves,

when h = κ − L

2A
. Assume that f :

∪
t≧0

(R/L(t)Z× {t}) → R2 is a global

solution with initial rotation number 1. This is the gradient flow of
L2

4πA
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studied by Jiang-Pan [11]. Therefore along the flow,
4πA

L2
is non-decreasing.

Furthermore the (signed) area A is also non-decreasing, if the initial (signed)
area is positive. Indeed,

d

dt

4πA

L2
=

4π

L2

dA

dt
− 8πA

L3

dL

dt
=

8πA

L3

∫ L

0

∂tf ·
(
− L

2A
ν + κ

)
ds(4.4)

=
8πA

L3

∫ L

0

(
κ− L

2A

)2

ds ≧ 0,

(4.5)
dA

dt
= −

∫ L

0

∂tf · ν ds =

∫ L

0

(
−κ+

L

2A

)
ds =

−4πA+ L2

2A
≧ 0.

Since

(4.6)
dL

dt
= −

∫ L

0

∂tf · κ ds = −
∫ L

0

κ2ds+
πL

A
,

we find that L is non-increasing by Gage’s inequality if Imf is convex. Here
we do not assume convexity. We can prove the following theorem.

Theorem 4.3 Assume that f is a global solution of (1.4) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then f satisfies
(1)–(6).

Proof. It follows from (4.5) that

d

dt
A2 = L2 − 4πA ≧ 0.

The second derivative is

d2

dt2
A2 =

d

dt
(L2 − 4πA) = 2L

dL

dt
− 4π

dA

dt
(4.7)

=

∫ L

0

∂tf · (−2Lκ+ 4πν) ds =

∫ L

0

(
κ− L

2A

)
(−2Lκ̃) ds

= − 2L

∫ L

0

κ̃2ds ≦ 0.

Therefore

0 ≦ d

dt
A2 ≦ d

dt
A2

∣∣∣∣
t=0

.
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We put C0 =
d

dt
A2

∣∣∣∣
t=0

. Since the initial (signed) area is positive, so is A,

and
A2 ≦ C0t+ A(0)2.

Hence

(4.8)

∫ t

0

dt

A
≧
∫ t

0

dt√
C0t+ A(0)2

→ ∞ as t → ∞.

It follows from (4.4) that

d

dt
I−1 = −8πA

L3

∫ L

0

(
κ̃+

2π

L
− L

2A

)2

ds = −2π

A
I2−1 −

8πA

L3

∫ L

0

κ̃2ds.

Solving the differential inequality
d

dt
I−1 ≦ −2π

A
I2−1, we have

0 ≦ I−1 ≦
I−1(0)

1 + 2πI−1(0)

∫ t

0

dt

A

→ 0 (t → ∞).

Also, (4.7) and Theorem 2.1 give us

d

dt
(L2 − 4πA) +

16π2

L2
(L2 − 4πA) ≦ d

dt
(L2 − 4πA) + 2L

∫ L

0

κ̃2ds = 0.

Using I−1 → 0 as t → ∞ and (4.8), we obtain

0 ≦ L2 − 4πA ≦ (L(0)2 − 4πA(0)) exp

(
−16π2

∫ t

0

dt

L2

)
→ 0 as t → ∞.

Dividing both sides by L2, we have

0 ≦ I−1 ≦ C
16π2

L2
exp

(
−16π2

∫ t

0

dt

L2

)
= −C

d

dt
exp

(
−16π2

∫ t

0

dt

L2

)
.

Integrating this with respect to t, we obtain

0 ≦
∫ t

0

I−1dt ≦ C

{
1− exp

(
−16π2

∫ t

0

dt

L2

)}
≦ C.

Integrating (4.5), we have

A = A(0) +

∫ t

0

L2

2A
I−1dt ≦ C.
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Since A is non-decreasing and bounded from above, there exists a finite
limit A∞ = lim

t→∞
A ∈ (0,∞). Hence lim

t→∞
L = 2

√
πA∞ ∈ (0,∞) exists, say

L∞. Consequently, we obtain

0 ≦ L2 − 4πA ≦ (L(0)2 − 4πA(0)) exp

(
−16π2

∫ t

0

dt

L2

)
≦ Ce−λt,

0 ≦ I−1 =
L2 − 4πA

L2
≦ Ce−λt,

0 ≦ A∞ − A ≦ 1

A∞ + A

∫ ∞

t

d

dt
A2dt =

1

A∞ + A

∫ ∞

t

(L2 − 4πA) dt ≦ Ce−λt,

|L− L∞| = |L2 − 4πA+ 4π(A− A∞)|
L+ L∞

≦ Ce−λt

for some C > 0 and λ > 0. Hence we have (1), (3) and (4). Furthermore,
Integrating (4.7), we have ∫ ∞

0

I0dt ≦ C.

Hence (2) holds.
Next we consider the behavior of I0. Since

I0 = L

∫ L

0

(
κ− 2π

L

)2

ds = L

∫ L

0

κ2ds− 4π2,
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we have

d

dt
I0 =

dL

dt

∫ L

0

κ2ds+ L
d

dt

∫ L

0

κ2ds

=

∫ L

0

{
−κ

∫ L

0

κ2ds+ L
(
2∇2

sκ+ ∥κ∥2R2κ
)}

· ∂tf ds

=

∫ L

0

{
−κ

∫ L

0

κ2ds+ L
(
2∂2

sκ+ κ3
)}(

κ− L

2A

)
ds

= −
(∫ L

0

κ2ds

)2

+
πL

A

∫ L

0

κ2ds+ L

∫ L

0

{
−2(∂sκ)

2 + κ4 − L

2A
κ3

}
ds

= − 2L

∫ L

0

(∂sκ̃)
2ds+ L

{∫ L

0

κ4ds− 1

L

(∫ L

0

κ2ds

)2
}

− L2

2A

∫ L

0

κ2κ̃ ds

= − 2L

∫ L

0

(∂sκ̃)
2ds−

(∫ L

0

κ̃2ds

)2

+

∫ L

0

{
Lκ̃4 +

(
8π − L2

2A

)
κ̃3 +

(
16π2

L
− 2πL

A

)
κ̃2

}
ds.

By virtue of the Gagliardo-Nirenberg inequalities, we have

d

dt
I0 +

1

L2
I20 +

2

L2
I1 ≦

C

L2

∫ L

0

(
L3κ̃4 + L2|κ̃|3 + Lκ̃2

)
ds(4.9)

≦ C

L2

(
I

1
2
1 I

3
2
0 + I

1
4
1 I

5
4
0 + I0

)
.

Applying Young’s and Wirtinger’s inequalities, Theorem 2.1 and Theorem
3.1, we have

I
1
2
1 I

3
2
0 ≦ ϵI1 + CϵI

3
0 ,

I
1
4
1 I

5
4
0 ≦ ϵI1 + CϵI

5
3
0 ≦ ϵ(I1 + I0) + CϵI

3
0 ≦ CϵI1 + CϵI

3
0 ,

I0 ≦ I
1
2
−1

(
I1 + I

1
2
1

)
≦
(
I

1
2
−1 + ϵ

)
I1 + CϵI−1

for any ϵ > 0. Hence we show (5).
Next we show the exponential decay of Iℓ for ℓ ∈ N. Now observe that

d

dt
Iℓ = (2ℓ+ 1)L2ℓdL

dt

∫ L

0

(∂ℓ
sκ̃)

2ds+ L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

2∂t(ds)

+ 2L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)(∂t∂

ℓ
sκ̃) ds.
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It follows from (4.6) and Theorem 4.3 that

(2ℓ+ 1)L2ℓdL

dt

∫ L

0

(∂ℓ
sκ̃)

2ds = (2ℓ+ 1)L2ℓ

(
−
∫ L

0

κ2ds+
πL

A

)∫ L

0

(∂ℓ
sκ̃)

2ds

≦ C

L2
Iℓ.

Since ∂t(ds) = −∂tf · κ ds, we have

L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

2∂t(ds) = L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

2

{
−κ

(
κ− L

2A

)}
ds(4.10)

≦ L2ℓ+2

2A

∫ L

0

(∂ℓ
sκ̃)

2

(
κ̃+

2π

L

)
ds

≦ L2ℓ+2

2A

∫ L

0

(∂ℓ
sκ̃)

2κ̃ ds+
C

L2
Iℓ.

We can show

(4.11) ∂t∂
k
s κ̃ = ∂k+2

s κ̃+
3∑

n=0

L−(3−n)P k
n (κ̃) +

L

A

2∑
n=0

L−(2−n)P k
n (κ̃)

by induction on k. Indeed, we have

∂tκ = ∂2
sκ+ κ3 − L

2A
κ2

= ∂2
s κ̃+

3∑
n=0

L−(3−n)P 0
n(κ̃) +

L

A

2∑
n=0

L−(2−n)P 0
n(κ̃).

Hence (4.11) holds when k = 0. Next we assume that

∂t∂
k
s κ̃ = ∂k+2

s κ̃+
3∑

n=0

L−(3−n)P k
n (κ̃) +

L

A

2∑
n=0

L−(2−n)P k
n (κ̃)

holds. Since

∂t∂s = ∂s∂t +

(
κ2 − L

2A
κ

)
∂s,
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we show

∂t∂
k+1
s κ = ∂s∂t∂

k
sκ+

(
κ2 − L

2A
κ

)
∂k+1
s κ

= ∂k+2
s κ̃+

3∑
n=0

L−(3−n)P k
n (κ̃) +

L

A

2∑
n=0

L−(2−n)P k
n (κ̃)

+
3∑

n=0

L−(3−n)P k
n (κ̃) +

L

A

2∑
n=0

L−(2−n)P k
n (κ̃)

= ∂k+2
s κ̃+

3∑
n=0

L−(3−n)P k
n (κ̃) +

L

A

2∑
n=0

L−(2−n)P k
n (κ̃).

Hence (4.11) holds for k ≧ 0. Since P ℓ
0(κ̃) is a constant,∫ L

0

(∂ℓ
sκ̃)P

ℓ
0(κ̃) ds = 0.

Therefore we have

2L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)(∂t∂

ℓ
sκ̃) ds

= − 2

L2
Iℓ+1 + L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

(
3∑

n=1

L−(3−n)P ℓ
n(κ̃) +

L

A

2∑
n=0

L−(2−n)P ℓ
n(κ̃)

)
ds.

Here the term
L2ℓ+2

2A

∫ L

0

(∂ℓ
sκ̃)

2κ̃ ds on the last line of (4.10) is included into

L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

L

A
P ℓ
2(κ̃) ds. Hence we obtain

d

dt
Iℓ +

2

L2
Iℓ+1 ≦L2ℓ+1

∫ L

0

∂ℓ
sκ̃

3∑
n=1

L−(3−n)P ℓ
n(κ̃)ds

+ L2ℓ+1L

A

(∫ L

0

∂ℓ
sκ̃

2∑
n=1

L−(2−n)P ℓ
n(κ̃)ds

)
.

Therefore we show (6) when α = 3, β = 2, γ = 1, σ = 0.

Theorem 4.4 Let f be as in Theorem 4.3, and we set f, c, r, σ, f̃ same as
Theorem 4.2. Then we show that there exists c∞ ∈ R2 such that

∥c(t)− c∞∥ ≦ Ce−γt.
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Proof. First observe that

c =
1

L

∫ L

0

f ds.

Since

∂tf = ∂s

(
∂sf − L

2A
Rf

)
,

we have ∫ L

0

∂tf ds = o.

Therefore the time-derivative of c is

d

dt
c =

1

L

∫ L

0

f∂t(ds)−
1

L2

dL

dt

∫ L

0

f ds

= − 1

L

∫ L

0

{
(∂tf · κ)− 1

L

∫ L

0

(∂tf · κ) ds
}
f ds

= − 1

L

∫ L

0

{
(∂tf · κ)− 1

L

∫ L

0

(∂tf · κ) ds
}(

f − 1

L

∫ L

0

f ds

)
ds.

Since

∂tf · κ = κ2 − L

2A
κ = κ̃2 − L

2A
(2I−1 − 1)κ̃− π

A
I−1

decays exponentially as t → ∞, and because∥∥∥∥f − 1

L

∫ L

0

f ds

∥∥∥∥
R2

≦ L ≦ C,

we find that c converges exponentially to a vector, say c∞, as t → ∞.
Consequently Imf converges to a circle with center at c∞. □

From Theorem 4.2 and Theorem 4.4, the claims (A)–(F) in Theorem 4.2
hold also for global solution of (1.4). Hence it converges exponentially to a

circle with center c∞ and radius
L∞

2π
.

4.3 The area-preserving curvature flow

In this subsection we consider the area-preserving flow (1.2) when h = κ −
1

L

∫ L

0

κ ds. Assume that f :
∪
t≧0

(R/L(t)Z× {t}) → R2 is a global solution

with initial rotation number 1. Since the rotation number 1, the integral of
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κ is 2π. It is well-known that if the initial curve is convex, then any solution
of (1.2) converges to a round circle as t → ∞ as proved by Gage [6]. In this
subsection, we give a proof of this fact without the convexity assumption
assuming the global existence.

Theorem 4.5 Assume that f is a global solution of (1.2) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then f satisfies
(1)–(6).

Proof. We find (4) holds clearly bacause (1.2) is the area-preserving flow.
Since

dL

dt
= −

∫ L

0

∂tf · κds = −
∫ L

0

κ̃2ds,

we have
L ≦ L(0).

From this, the area-preserving property, and Theorem 2.2, we have

d

dt
(L2 − 4πA) = 2L

dL

dt
= −2L

∫ L

0

κ̃2ds = −2I0(4.12)

≦ − 16π2

L2
(L2 − 4πA) ≦ − 16π2

L(0)2
(L2 − 4πA).

Therefore

L2 − 4πA ≦ (L(0)2 − 4πA(0)) exp

(
− 16π2

L(0)2
t

)
.

Hence we show (1). Therefore we have lim
t→∞

L = 2
√
πA(0), and

∣∣∣L− 2
√

πA(0)
∣∣∣ ≦ L2 − 4πA

L+ 2
√

πA(0)
≦ L(0)2 − 4πA(0)

4
√

πA(0)
exp

(
− 16π2

L(0)2
t

)
.

Hence we obtain (3). Furthermore, from (4.12), we have (2).
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Next we consider when ℓ = 0. We have

d

dt
I0 =

d

dt

(
L

∫ L

0

κ2ds− 4π2

)
=

dL

dt

∫ L

0

κ2ds+ L
d

dt

∫ L

0

κ2ds

=

∫ L

0

{
−κ

∫ L

0

κ2ds+ L
(
2∇2

sκ+ ∥κ∥2R2κ
)}

· ∂tf ds

=

∫ L

0

{
−κ

∫ L

0

κ2ds+ L
(
2∂2

sκ+ κ3
)}

κ̃ ds

= −
∫ L

0

κ2ds

∫ L

0

κ̃2ds+ L

∫ L

0

κ3κ̃ ds+−2L

∫ L

0

(∂sκ)
2ds

= − 2L

∫ L

0

(∂sκ̃)
2ds+

∫ L

0

κ̃2ds

(
L

∫ L

0

κ2ds− 4π2

)
+ L

∫ L

0

κ3κ̃ ds

= − 2L

∫ L

0

(∂sκ̃)
2ds−

(∫ L

0

κ̃2ds

)2

− 4π2

L

∫ L

0

κ̃2ds

+ L

∫ L

0

κ̃

(
κ̃3 +

6π

L
κ̃2 +

12π2

L2
κ̃+

8π3

L3

)
ds.

By calculation, we have

d

dt
I0 +

4π2

L2
I0 +

1

L2
I0 +

2

L2
I1 ≦

C

L2

∫ L

0

(
L3κ̃4 + L2|κ̃|3 + Lκ̃2

)
ds.

Since we have the same form as (4.9), we have (5).
Next we consider the behavior of Iℓ for ℓ ∈ N. We can show

(4.13) ∂t∂
k
s κ̃ = ∂k+2

s κ̃+
3∑

n=1

L−(3−n)P k
n (κ̃)

by induction on k. Indeed, we have

∂tκ = ∂2
s κ̃+ κ̃κ2

= ∂2
s κ̃+

3∑
n=1

L−(3−n)P 0
n(κ̃).

Hence (4.13) holds when k = 0. Next we assume that

∂t∂
k
s κ̃ = ∂k+2

s κ̃+
3∑

n=1

L−(3−n)P k
n (κ̃)
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hold. Since
∂t∂s = ∂s∂t + κ̃κ∂s,

we show

∂t∂
k+1
s κ = ∂s∂t∂

k
sκ+ κ̃κ∂k+1

s κ

= ∂k+2
s κ̃+

3∑
n=1

L−(3−n)P k+1
n (κ̃) +

3∑
n=2

L−(3−n)P k+1
n (κ̃)

= ∂k+2
s κ̃+

3∑
n=1

L−(3−n)P k+1
n (κ̃).

Hence (4.13) holds for k ≧ 0. Hence we have

d

dt
Iℓ = (2ℓ+ 1)L2ℓdL

dt

∫ L

0

(∂ℓ
sκ̃)

2ds+ 2L2ℓ+1

∫ L

0

∂ℓ
sκ̃∂t∂

ℓ
sκ̃ ds

+ L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

2∂t(ds)

= − (2ℓ+ 1)

∫ L

0

κ̃2ds

∫ L

0

(∂ℓ
sκ̃)

2ds− 2L2ℓ+1

∫ L

0

(∂ℓ+1
s κ̃)2ds

+ L2ℓ+1

∫ L

0

∂ℓ
sκ̃

3∑
n=1

L−(3−n)P ℓ
n(κ̃)ds− L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

2κ̃κ ds.

By calculation, we have

d

dt
Iℓ +

2

L2
Iℓ+1 ≦ L2ℓ+1

∫ L

0

∂ℓ
sκ̃

3∑
n=1

L−(3−n)P ℓ
n(κ̃)ds.

Therefore we have (6) when α = 3, β = 1, γ = 0, σ = 0. □

Theorem 4.6 Let f be as in Theorem 4.5, and we set f, c, r, σ, f̃ same as
Theorem 4.2. Then we show that there exists c∞ ∈ R2 such that

∥c(t)− c∞∥ ≦ Ce−γt.
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Proof. The time-derivative of c is

d

dt
c =

1

L

∫ L

0

f∂t(ds)−
1

L2

dL

dt

∫ L

0

f ds

= − 1

L

∫ L

0

{
(∂tf · κ)− 1

L

∫ L

0

(∂tf · κ) ds
}
f ds

= − 1

L

∫ L

0

{
(∂tf · κ)− 1

L

∫ L

0

(∂tf · κ) ds
}(

f − 1

L

∫ L

0

f ds

)
ds.

Since

∂tf · κ = κκ̃ = κ̃2 +
2π

L
κ̃

decays exponentially as t → ∞, we find that c converges exponentially to a
vector, say c∞, as t → ∞ in the same way as Theorem 4.4. Consequently
Imf converges to a circle with center at c∞. □

From Theorem 4.5 and Theorem 4.6, the claims (A)–(F) in Theorem 4.2
hold also for global solution of (1.2). Hence it converges exponentially to a

circle with center c∞ and radius
L∞

2π
.

4.4 The length-preserving curvature flow

In this subsection we consider the length-preserving flow (1.3) when h = κ−
1

2π

∫ L

0

κ2ds. Assume that f :
∪
t≧0

(R/L(t)Z× {t}) → R2 is a global solution

with initial rotation number 1. Ma-Zhu [12] proved that if the initial curve
is convex, then any solutions of this flow converge to a round circle as t →
∞. We have the same results for area-preserving curvature flow without
convexity assumption assuming the global existence. In this subsection, we
give a proof of this fact.

Theorem 4.7 Assume that f is a global solution of (1.3) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then f satisfies
(1)–(6).

Proof. We find (3) holds clearly because (1.3) is the length-preserving flow.
Since

(4.14)
dA

dt
= −

∫ L

0

∂tf · νds = L

2π

∫ L

0

κ̃2ds =
I0
2π

,
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from Theorem 2.1, we have

d

dt
I−1 = −4π

L2

dA

dt
= − 2

L2
I0 ≦ − 16π2

L(0)2
I−1.

Therefore we have (1) and find lim
t→∞

A =
L(0)2

4π
. Hence we have (4). Integrat-

ing (4.14), we obtain (2).
Next we consider the behavior of I0. By calculation, we have

d

dt
I0 =

d

dt

(
L

∫ L

0

κ2ds

)
= L

∫ L

0

(
2∇2

sκ+ ∥κ∥2R2κ
)
· ∂tf ds

= L

∫ L

0

2(∂2
s κ̃+ κ3)

(
κ̃− 1

2π

∫ L

0

κ̃2ds

)
ds

= − 2L

∫ L

0

(∂sκ̃)
2ds+ L

∫ L

0

κ3κ̃ ds− 1

2π

∫ L

0

κ3ds

∫ L

0

κ̃2ds

= − 2

L2
I1 + L

∫ L

0

(
κ̃4 +

6π

L
κ̃3 +

12π2

L2
κ̃2

)
ds

− L

2π

∫ L

0

(
κ̃3 +

6π

L
κ̃2 +

8π3

L3

)
ds

∫ L

0

κ̃2ds.

Hence we obtain

d

dt
I0 +

3

L2
I20 +

2

L2
I1

=
1

L2

∫ L

0

(L3κ̃4 + 6πL2κ̃3 + 8π2Lκ̃2)ds

− 1

2πL2

(
L2

∫ L

0

κ̃3ds

)(
L

∫ L

0

κ̃2ds

)
.

The first term on the right-hand side is estimated above by(
I

1
2
−1 + ϵ

)
I1 +

Cϵ

L2
(I30 + I−1)

in the same way as Theorem 4.3. Moreover we have, by Young’s inequality,

− 1

2πL2

(
L2

∫ L

0

κ̃3ds

)(
L

∫ L

0

κ̃2ds

)
≦ C

L2
I

1
4
1 I

5
4
0 I0 =

C

L2
I

1
4
1 I

9
4
0

≦ ϵ

L2
I1 +

Cϵ

L2
I30 .
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Taking ϵ sufficiently small, we have

d

dt
I0 +

3

L2
I20 +

4π2

L2
I0 +

C1

L2
I1 ≦

C2

L2
I30 +

C3

L2
I−1.

Hence we show (5).
Next we consider the behavior of Iℓ for ℓ ∈ N. We can show

(4.15) ∂t∂
k
s κ̃ = ∂k+2

s κ̃+
3∑

n=1

L−(3−n)P k
n (κ̃) +

2∑
n=1

L−(2−n)P k
n (κ̃)

∫ L

0

κ̃2ds

by induction on k. Indeed, we have

∂tκ = ∂2
sκ+ κ3 − κ2

2π

∫ L

0

κ2ds

= ∂2
sκ+ κ3 − κ2

2π

∫ L

0

κ̃2ds+
4πκ2

L

= ∂2
s κ̃+

3∑
n=1

L−(3−n)P 0
n(κ̃) +

2∑
n=1

L−(2−n)P 0
n(κ̃)

∫ L

0

κ̃2ds.

Hence (4.15) holds when k = 0. Next we assume that

∂t∂
k
s κ̃ = ∂k+2

s κ̃+
3∑

n=1

L−(3−n)P k
n (κ̃) +

2∑
n=1

L−(2−n)P k
n (κ̃)

∫ L

0

κ̃2ds

holds. Since

∂t∂s = ∂s∂t +

(
κ2 − κ

2π

∫ L

0

κ2ds

)
∂s,

we show

∂t∂
k+1
s κ = ∂s∂t∂

k
sκ+

(
κ2 − κ

2π

∫ L

0

κ2ds

)
∂k+1
s κ

= ∂k+2
s κ̃+

3∑
n=1

L−(3−n)P k+1
n (κ̃) +

2∑
n=1

L−(2−n)P k+1
n (κ̃)

∫ L

0

κ̃2ds

+
3∑

n=1

L−(3−n)P k+1
n (κ̃) +

2∑
n=1

L−(2−n)P k+1
n (κ̃)

∫ L

0

κ̃2ds

= ∂k+2
s κ̃+

3∑
n=1

L−(3−n)P k+1
n (κ̃) +

2∑
n=1

L−(2−n)P k+1
n (κ̃)

∫ L

0

κ̃2ds.
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Hence (4.15) holds for k ≧ 0. Hence we have

d

dt
Iℓ = 2L2ℓ+1

∫ L

0

∂ℓ
sκ̃∂t∂

ℓ
sκ̃ ds+ L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

2∂t(ds)

= − 2L2ℓ+1

∫ L

0

(∂ℓ+1
s κ̃)2ds+ 2L2ℓ+1

∫ L

0

∂ℓ
sκ̃

3∑
n=1

L−(3−n)P ℓ
n(κ̃)ds

+ 2L2ℓ+1

∫ L

0

∂ℓ
sκ̃

2∑
n=1

L−(2−n)P ℓ
n(κ̃)ds

∫ L

0

κ̃2ds

− L2ℓ+1

∫ L

0

(∂ℓ
sκ̃)

2κ̃κ ds+
L2ℓ+1

2π

∫ L

0

(∂ℓ
sκ̃)

2κ ds

∫ L

0

κ̃2ds

= − 2

L2
Iℓ+1 + 2L2ℓ+1

∫ L

0

∂ℓ
sκ̃

3∑
n=1

L−(3−n)P ℓ
n(κ̃)ds

+ 2L2ℓ+1

∫ L

0

∂ℓ
sκ̃

2∑
n=1

L−(2−n)P ℓ
n(κ̃)ds

∫ L

0

κ̃2ds.

Therefore we obtain (6). □

Theorem 4.8 Let f be as in Theorem 4.7, and we set f, c, r, σ, f̃ same as
Theorem 4.2. Then we show that there exists c∞ ∈ R2 such that

∥c(t)− c∞∥ ≦ Ce−γt.

Proof. The time-derivative of c is

d

dt
c =

1

L

∫ L

0

f∂t(ds)−
1

L2

dL

dt

∫ L

0

f ds

= − 1

L

∫ L

0

{
(∂tf · κ)− 1

L

∫ L

0

(∂tf · κ) ds
}
f ds

= − 1

L

∫ L

0

{
(∂tf · κ)− 1

L

∫ L

0

(∂tf · κ) ds
}(

f − 1

L

∫ L

0

f ds

)
ds.

Since

∂tf · κ = κ2 − κ

2π

∫ L

0

κ2ds = κ̃2 +
2π

L
κ̃− 1

L2

(
L

2π
+ 1

)
I0

decays exponentially as t → ∞, we find that c converges exponentially to a
vector, say c∞, as t → ∞ in the same way as Theorem 4.4. Consequently
Imf converges to a circle with center at c∞. □
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From Theorem 4.7 and Theorem 4.8, the claims (A)–(F) in Theorem 4.2
hold also for global solution of (1.3). Hence it converges exponentially to a

circle with center c∞ and radius
L∞

2π
.

5 Higher order curvature flow

In this section, we consider the higher order curvature flows (1.8). This is
the H−m-gradient flow of length. Indeed, for any φ ∈ H−m , we have

d

dϵ
L(f + ϵφν)

∣∣∣∣
ϵ=0

= −
∫ L

0

κ̃φ ds = −
∫ L

0

{(−1)m∂m
s κ̃}

(
∂−m
s φ

)
ds

= −
∫ L

0

[
∂−m
s

{
(−1)m∂2m

s κ̃
}] (

∂−m
s φ

)
ds

= − ⟨(−1)m∂2m
s κ̃, φ⟩H−m .

Since (1.8) is a parabolic equation, f is smooth for t > 0 as long as the
solution exists. Hence by shifting the initial time, we may assume the initial
data is smooth. Then we have the following theorem.

Theorem 5.1 Assume that f is a global solution of (1.8) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then for each
ℓ ∈ N ∪ {−1, 0}, there exist Cℓ > 0 and λℓ > 0 such that

Iℓ(t) ≦ Cℓe
−λℓt.

Proof. We have

dL

dt
= −

∫ L

0

∂tf · κ ds = (−1)m+1

∫ L

0

(
∂2m
s κ̃

)
κ̃ ds = −

∫ L

0

(∂m
s κ̃)2 ds

= − 1

L2m+1
Im,

dA

dt
= −

∫ L

0

∂tf · ν ds = (−1)m+1

∫ L

0

(
∂2m
s κ̃

)
ds = 0.

When ℓ = −1, we have

d

dt
I−1 =

d

dt

(
−4πA

L2

)
=

8πA

L3

dL

dt
= − 8πA

L2(m+2)
Im ≦ −λ−1I−1,

where λ−1 is a positive constant. Hence, the exponential decay of I−1 follows.
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Next we consider the behavior of I0. Since

∂tκ = (−1)m∂2m+2
s κ̃+ (−1)mκ2∂2m

s κ̃,

we have

d

dt
I0 =

dL

dt

∫ L

0

κ̃2ds+ L

∫ L

0

2κ̃∂tκ̃ds+ L

∫ L

0

κ̃2∂t(ds)

= − Im
L2m+1

I0
L

+ 2L

∫ L

0

κ̃

{
(−1)m∂2m+2

s κ̃+ (−1)mκ2∂2m
s κ̃+

2π

L2

dL

dt

}
ds

+ (−1)m+1L

∫ L

0

κ̃2κ∂2m
s κ̃ds

= − I0Im
L2(m+1)

− 2L

∫ L

0

(
∂m+1
s κ̃

)2
ds+ (−1)mL

∫ L

0

κ̃κ (2κ− κ̃) ∂2m
s κ̃ ds

= − I0Im
L2(m+1)

− 1

L2(m+1)
Im+1

+ (−1)mL

∫ L

0

κ̃

(
κ̃+

2π

L

){
2

(
κ̃+

2π

L

)
− κ̃

}
∂2m
s κ̃ ds.

Hence we find

d

dt
I0 +

I0Im
L2(m+1)

+
2Im+1

L2(m+1)
= (−1)mL

∫ L

0

(
κ̃3 +

6π

L
κ̃2 +

8π2

L2
κ̃

)
∂2m
s κ̃ ds.

(5.1)

Then terms on the right-hand side of (5.1) are

(−1)mL

∫ L

0

κ̃3∂2m
s κ̃ ds = L

∫ L

0

Pm
3 (κ̃)∂m

s κ̃ ds,

(−1)m6π

∫ L

0

κ̃2∂2m
s κ̃ ds = 6π

∫ L

0

Pm
2 (κ̃)∂m

s κ̃ ds,

(−1)m
8π2

L

∫ L

0

κ̃∂2m
s κ̃ ds =

8π2

L

∫ L

0

(∂m
s κ̃)2 ds =

8π2

L2(m+1)
Im,
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by use of integration by parts. Hence we show, by using Young’s inequality,∣∣∣∣L ∫ L

0

Pm
3 (κ̃)∂m

s κ̃ ds

∣∣∣∣
≦ C

L2(m+1)

m∑
ℓ=0

∑
k+j=ℓ

Jm,4Jk,4Jj,4Jm−k−j,4

≦ C

L2(m+1)

m∑
ℓ=0

∑
k+j=ℓ

J
4m+1
4(m+1)

m+1,2 J
3

4(m+1)

0,2 J
4k+1

4(m+1)

m+1,2 J
4(m−k)+3
4(m+1)

0,2 J
4j+1

4(m+1)

m+1,2 J
4(m−j)+3
4(m+1)

0,2

× J
4(m−k−j)+1

4(m+1)

m+1,2 J
4(k+j)+3
4(m+1)

0,2

≦ C

L2(m+1)
J

2m+1
m+1

m+1,2J
2m+3
m+1

0,2

=
C

L2(m+1)
I

2m+1
2(m+1)

m+1 I
2m+3
2(m+1)

0

≦ C

L2(m+1)

(
ϵIm+1 + CϵI

2m+3
0

)
for any ϵ > 0 and appropriate constant Cϵ. Similarly we also have∣∣∣∣6π ∫ L

0

Pm
2 (κ̃)∂m

s κ̃ ds

∣∣∣∣
≦ C

L2(m+1)

m∑
k=0

Jm,3Jk,3Jm−k,3

≦ C

L2(m+1)

m∑
k=0

J
6m+1
6(m+1)

m+1,2 J
5

6(m+1)

0,2 J
6k+1

6(m+1)

m+1,2 J
6(m−k)+5
6(m+1)

0,2 J
6(m−k)+1
6(m+1)

m+1,2 J
6k+5

6(m+1)

0,2

≦ C

L2(m+1)
J

4m+1
2(m+1)

m+1,2 J
2m+5
2(m+1)

0,2

=
C

L2(m+1)
I

4m+1
4(m+1)

m+1 I
2m+5
4(m+1)

0

≦ C

L2(m+1)

(
ϵIm+1 + CϵI

2m+5
3

0

)
.

Therefore we have

d

dt
I0 +

I0Im
L2(m+1)

+
2Im+1

L2(m+1)
≦ C

L2(m+1)

(
ϵIm+1 + CϵI

2m+3
0 + CϵI

2m+5
3

0 + Im

)
.

By using Young’s inequality and Theorem 3.1, we obtain

I
2m+5

3
0 = I

2m+3
3

0 I
2
3
0 ≦ ϵI0 + CϵI0 ≦ ϵI0 + Cϵ

(
I

m+1
2

−1 Im+1 + I
m+1
m+2

−1 I
1

m+2

m+1

)
≦ ϵI0 + Cϵ

(
I

m+1
2

−1 + ϵ′
)
Im+1 + Cϵ,ϵ′I−1

40



where ϵ, ϵ′ > 0 and Cϵ and Cϵ,ϵ′ are appropriate constants. Similarly, for
m ≧ 1, we have

Im ≦ C

(
I

1
2
−1Im+1 + I

1
m+2

−1 I
m+1
m+2

m+1

)
≦ C

(
I

1
2
−1 + ϵ

)
Im+1 + CϵI−1.

Taking ϵ, ϵ′ sufficiently small, we have

d

dt
I0 +

I0Im
L2(m+1)

+
C1Im+1

L2(m+1)
≦ C2

L2(m+1)
I2m+3
0 +

C3

L2(m+1)
e−λ−1t(5.2)

for sufficiently large t. Since

dL

dt
+

Im
L2m+1

= 0,

we have ∫ ∞

0

Imdt < ∞.

From Wirtinger’s inequlity, we obtain∫ ∞

0

Iℓdt < ∞

for ℓ ∈ {0,. . .,m}. From (5.2) and
∫∞
0

I0dt < ∞, we can show

I0Im
L2(m+1)

>
C2

L2(m+1)
I2m+3
0

for sufficiently large t. Hence we have

I0 ≦ C0e
−λ0t.

Next we consider the behavior of Iℓ for ℓ ≧ 1. By direct calculations, we
have

d

dt
Iℓ =(2ℓ+ 1)L2ℓdL

dt

∫ L

0

(
∂ℓ
sκ̃
)2

ds+ L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
)2

∂t(ds)

+ 2L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
) (

∂t∂
ℓ
sκ̃
)
ds

and

(2ℓ+ 1)L2ℓdL

dt

∫ L

0

(
∂ℓ
sκ̃
)2

ds = − (2ℓ+ 1)L2ℓ

∫ L

0

(∂m
s κ̃)2 ds

∫ L

0

(
∂ℓ
sκ̃
)2

ds

= − 2ℓ+ 1

L2(m+1)
ImIℓ,

L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
)2

∂t(ds) = (−1)m+1L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
)2

κ∂2m
s κ̃ ds

= (−1)mL2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
) 1∑

n=0

L−(1−n)P 2m+ℓ
n+2 (κ̃) ds.
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We can show

∂t∂
ℓ
sκ̃ = (−1)m∂2m+ℓ+2

s κ̃+ (−1)m
2∑

n=0

L−(2−n)P 2m+ℓ
n+1 (κ̃)(5.3)

by induction on ℓ. Indeed, since

∂tκ = (−1)m∂2m+2
s κ̃+ (−1)mκ2∂2m

s κ̃,

we have

∂t∂sκ̃ = ∂t∂sκ = ∂s∂tκ+ (∂tf · κ)∂sκ
= ∂s

{
(−1)m∂2m+2

s κ̃+ (−1)mκ2∂2m
s κ̃

}
+ (−1)mκ

(
∂2m
s κ̃

)
(∂sκ̃)

= (−1)m∂2m+3
s κ̃+ (−1)m2κ (∂sκ)

(
∂2m
s κ̃

)
+ (−1)mκ2∂2m+1

s κ̃

+ (−1)mκ
(
∂2m
s κ̃

)
(∂sκ̃)

= (−1)m∂2m+3
s κ̃+ (−1)m

2∑
n=0

L2−nP 2m+1
n+1 (κ̃).

Hence we obtain (5.3) when ℓ = 1. If (5.3) holds for ℓ ≧ 1, since

∂t∂
ℓ+1
s κ̃ = ∂s∂t∂

ℓ
sκ̃+ (∂tf · κ)∂ℓ

sκ̃

= ∂s

{
(−1)m∂2m+ℓ+2

s κ̃+ (−1)m
2∑

n=0

L−(2−n)P 2m+ℓ
n+1 (κ̃)

}
+ (−1)mκ

(
∂2m
s κ̃

)
∂s
(
∂ℓ
sκ̃
)

= (−1)m∂2m+ℓ+3
s κ̃+ (−1)m

2∑
n=0

L−(2−n)P 2m+ℓ+1
n+1 (κ̃),

we show (5.3) for ℓ+ 1. Hence we have

2L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
) (

∂t∂
ℓ
sκ̃
)
ds

= 2L2ℓ+1

∫ L

0

(
∂ℓ+m+1
s κ̃

)2
ds

+ (−1)m2L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
) 2∑

n=0

L−(2−n)P 2m+ℓ
n+1 (κ̃) ds

= − 2

L2(m+1)
Im+ℓ+1 + (−1)m2L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
) 2∑

n=0

L−(2−n)P 2m+ℓ
n+1 (κ̃) ds.
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Therefore we have

d

dt
Iℓ+

2ℓ+ 1

L2(m+1)
ImIℓ +

2

L2(m+1)
Im+ℓ+1

= (−1)m2L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
) 2∑

n=0

L−(2−n)P 2m+ℓ
n+1 (κ̃) ds.

When n = 0, after integration by parts m times, using Theorem 3.1 and
Young’s inequality, we have

(−1)m2L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
)
L−2P 2m+ℓ

1 (κ̃) ds

= cL2ℓ−1

∫ L

0

(
∂m+ℓ
s κ̃

)2
ds =

c

L2(m+1)
Im+ℓ

≦ C

L2(m+1)

(
I

1
2
−1Im+ℓ+1 + I

1
m+ℓ+2

−1 I
m+ℓ+1
m+ℓ+2

m+ℓ+1

)
≦ C

L2(m+1)

{(
I

1
2
−1 + ϵ

)
Im+ℓ+1 + CϵI−1

}
.

When n = 1, we have

(−1)m2L2ℓ+1

∫ L

0

(
∂ℓ
sκ̃
)
L−1P 2m+ℓ

2 (κ̃) ds

= (−1)m2L2ℓ

∫ L

0

2m+ℓ∑
k=0

ck
(
∂ℓ
sκ̃
) (

∂k
s κ̃
) (

∂2m+ℓ−k
s κ̃

)
ds.

We set

K1 = {k ∈ {0, . . . , 2m+ ℓ} | max{k, 2m+ ℓ− k} > m+ ℓ} ,
K2 = {k ∈ {0, . . . , 2m+ ℓ} | max{k, 2m+ ℓ− k} ≦ m+ ℓ} .

If max{k, 2m + ℓ − k} > m + ℓ, then min{k, 2m + ℓ − k} < m + ℓ. When
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k ∈ K1, from integration by parts max{k, 2m+ ℓ−k}−m− ℓ times, we have

(−1)m2L2ℓ

∫ L

0

2m+ℓ∑
k=0

ck
(
∂ℓ
sκ̃
) (

∂k
s κ̃
) (

∂2m+ℓ−k
s κ̃

)
ds

= 2L2ℓ

∫ L

0

∑
k∈K1

(−1)max{k,2m+ℓ−k}−ℓck
(
∂m+ℓ
s κ̃

)
Pm+ℓ
2 (κ̃) ds

+ (−1)m2L2ℓ

∫ L

0

∑
k∈K2

ck
(
∂ℓ
sκ̃
) (

∂k
s κ̃
) (

∂2m+ℓ−k
s κ̃

)
ds

≦ C

L2(m+1)

∑
k∈K1

m+ℓ∑
k′=0

Jk′,3Jm+ℓ−k′,3Jm+ℓ,3 +
C

L2(m+1)

∑
k∈K2

Jℓ,3Jk,3J2m+ℓ−k,3

≦ C

L2(m+1)

∑
k∈K1

m+ℓ∑
k′=0

J
6k′+1

6(m+ℓ+1)

m+ℓ+1,2 J
6(m+ℓ−k′)+5

6(m+ℓ+1)

0,2 J
6(m+ℓ−k′)+1

6(m+ℓ+1)

m+ℓ+1,2 J
6k′+5

6(m+ℓ+1)

0,2

× J
6(m+ℓ)+1
6(m+ℓ+1)

m+ℓ+1,2 J
5

6(m+ℓ+1)

0,2

+
C

L2(m+1)

∑
k∈K2

J
6ℓ+1

6(m+ℓ+1)

m+ℓ+1,2 J
6m+5

6(m+ℓ+1)

0,2 J
6k+1

6(m+ℓ+1)

m+ℓ+1,2 J
6(m+ℓ−k)+5
6(m+ℓ+1)

0,2

× J
6(2m+ℓ−k)+1

6(m+ℓ+1)

m+ℓ+1,2 J
−6(m−k)+5
6(m+ℓ+1)

0,2

≦ C

L2(m+1)
J

4(m+ℓ)+1
2(m+ℓ+1)

m+ℓ+1,2 J
2(m+ℓ)+5
2(m+ℓ+1)

0,2

=
C

L2(m+1)
I

4(m+ℓ)+1
4(m+ℓ+1)

m+ℓ+1 I
2(m+ℓ)+5
4(m+ℓ+1)

0

≦ C

L2(m+1)

(
ϵIm+ℓ+1 + CϵI

2(m+ℓ)+5
3

0

)
.

When n = 2, we have

P 2m+ℓ
3 (κ̃) =

2m+ℓ∑
α=0

∑
k+j=α

ck,j
(
∂k
s κ̃
) (

∂j
s κ̃
) (

∂2m+ℓ−k−j
s κ̃

)
.

We set

Kα,1 = {(k, j) | k + j = α, max{k, j, 2m+ ℓ− k − j} > m+ ℓ} ,
Kα,2 = {(k, j) | k + j = α, max{k, j, 2m+ ℓ− k − j} ≦ m+ ℓ} .

If max{k, j, 2m + ℓ − k − j} > m + ℓ, the other terms are less than m + ℓ.
When k ∈ Kα,1, from integration by parts max{k, j, 2m+ ℓ− k− j}−m− ℓ
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times, we have

(−1)m2L2ℓ+1

∫ L

0

2m+ℓ∑
α=0

∑
k+j=α

ckj
(
∂k
s κ̃
) (

∂j
s κ̃
) (

∂2m+ℓ−k−j
s κ̃

)
ds

= 2L2ℓ+1

∫ L

0

2m+ℓ∑
α=0

∑
(k,j)∈Kα,1

(−1)max{k,j,2m+ℓ−k−j}−ℓckj
(
∂m+ℓ
s κ̃

)
Pm+ℓ
3 (κ̃) ds

+ (−1)m2L2ℓ+1

∫ L

0

2m+ℓ∑
α=0

∑
(k,j)∈Kα,2

(
∂k
s κ̃
) (

∂j
s κ̃
) (

∂2m+ℓ−k−j
s κ̃

)
ds

≦ C

L2(m+1)

2m+ℓ∑
α=0

∑
(k,j)∈Kα,1

m+ℓ∑
β=0

∑
k′+j′=β

Jk′,4Jj′,4Jm+ℓ−k′j′,4Jm+ℓ,4

+
2m+ℓ∑
α=0

∑
(k,j)∈Kα,2

Jℓ,4Jk,4Jj,4J2m+ℓ−k−j,4

≦ C

L2(m+1)

2m+ℓ∑
α=0

∑
(k,j)∈Kα,1

m+ℓ∑
β=0

∑
k′+j′=β

J
4k′+1

4(m+ℓ+1)

m+ℓ+1,2 J
4(m+ℓ−k′)+3

4(m+ℓ+1)

0,2 J
4j′+1

4(m+ℓ+1)

m+ℓ+1,2 J
4(m+ℓ−j′)+3
4(m+ℓ+1)

0,2

× J
4(m+ℓ−k′−j′)+1

4(m+ℓ+1)

m+ℓ+1,2 J
4(k′+j′)+3
4(m+ℓ+1)

0,2 J
4(m+ℓ)+1
4(m+ℓ+1)

m+ℓ+1,2 J
3

4(m+ℓ+1)

0,2

+
C

L2(m+1)

2m+ℓ∑
α=0

∑
(k,j)∈Kα,2

J
4ℓ+1

4(m+ℓ+1)

m+ℓ+1,2 J
4m+3

4(m+ℓ+1)

0,2 J
4k+1

4(m+ℓ+1)

m+ℓ+1,2 J
4(m+ℓ−k)+3
4(m+ℓ+1)

0,2

× J
4j+1

4(m+ℓ+1)

m+ℓ+1,2 J
4(m+ℓ−j)+3
4(m+ℓ+1)

0,2 J
4(2m+ℓ−k−j)+1

4(m+ℓ+1)

m+ℓ+1,2 J
−4(m−k−j)+3

4(m+ℓ+1)

0,2

=
C

L2(m+1)
J

2(m+ℓ)+1
m+ℓ+1

m+ℓ+1,2 J
2(m+ℓ)+3
m+ℓ+1

0,2

=
C

L2(m+1)
I

2(m+ℓ)+1
2(m+ℓ+1)

m+ℓ+1 I
2(m+ℓ)+3
2(m+ℓ+1)

0

≦ C

L2(m+1)

(
ϵIm+ℓ+1 + CϵI

2(m+ℓ)+3
0

)
.

Taking ϵ > 0 sufficiently small, we obtain

d

dt
Iℓ+

2ℓ+ 1

L2(m+1)
ImIℓ+

C1

L2(m+1)
Im+ℓ+1 ≦

C2

L2(m+1)

(
I−1 + I

2(m+ℓ)+5
3

0 + I
2(m+ℓ)+3
0

)
for sufficiently large t > 0. Hence we obtain

Iℓ ≦ Cℓe
−λℓt.

□
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From Theorem 5.1, the claims (A)–(F) in Theorem 4.2 hold also for global
solution of (1.8).
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