Interpolation between the
isoperimetric ratio and curvature for
plane curves and an application to
curvature flows with non-local terms
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Abstract

Several inequalities for the isoperimetric ratio for plane curves are
derived. In particular, we obtain interpolation inequalities between
the deviation of curvature and the isoperimetric ratio. As applica-
tions, we study the large-time behavior of some geometric flows of
closed plane curves without a convexity assumption.
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1 Introduction

It is an interesting problem to study the behavior of plane curves evolving
in time. A famous and basic problem is the curve-shortening flow. Since the
first variation of length is the curvature, the flow is governed by

(1.1) O.f = —6L(f) = k.

Here f : R/LZ — R? is a function which image represents the curve, L is its
total length, and & is the curvature vector. This equation is also called the
curvature flow. It was proposed to describe the motion of grain boundary
in annealing of metal by Mullins [14]. Annealing is slowly warming and
cooling down. Metal is generally not a single structure as a whole because
the orientation of the crystal may be different, even though the composition
is the same. Part of a single structure is called the grain, and its boundary
is called the grain boundary. By annealing, small grains are vaporized and
it can be deformed into a metal close to a single structure only with large
grains. The mean curvature flow is used to describe the grain boundary
motion at this time.

Thereafter the equation (1.1) was first studied by Gage-Hamilton [7] and
Grayson [9]. They proved that a simple closed convex initial curve remains
so along the flow, and the evolving curve becomes more and more circular
and shrinks to a point in a finite time.

Then a number of papers have been devoted to the study of curvature
flow under some geometric constrains, for example, area-preserving or length-
preserving, which prevent the curve shrink into a point. The curvature flow
with area constrain is

(1.2) 8tf:m—%(/0Ln.uds)v,



and the flow with length constrain is

1 [r
(1.3) hf =k — (%/0 HmH2ds> v,

where s is arc-length parameter, and v is the inner unit normal vector. Be-
sides these, there is a flow like the following,

(1.4) hf =K — %l/.

This is the gradient flow of the isoperimetric ratio. Along these flows, the
curve is driven by the curvature together with non-local term. Hence they
are called the non-local curvature flows. Jiang-Pan [11] and Gage [6] proved
that a simple closed convex initial curve remains so along (1.4) and (1.2)
respectively, and the evolving curve converges to a circle in each non-local
curvature flows, see Section 4. To put it simply, their method is the fol-
lowing. Since changing the tangential component of velocity does not affect
the shapes of the evolving curves, they choose a suitable component so that
tangential angle does not depend on time t. Moreover the curve can be pa-
rameterized by tangential angle 6, because of convexity. That is, let define
the tangential angle 6 by

cosf(s) = f'(s) - ey.

When the curve is strictly convex, the function 0(s) is monotone decreasing.
Therefore we use it as a spacial variable instead of s. For example the
curvature flow equations (1.2), (1.3) and (1.4) are transported into

2
1.5 Ok = K2O?k + K> — 27K
( ) 0 L )
1 L
(1.6) Ok = K203k + K? (KJ— 2—/ /<¢2ds) )
T Jo
L
1.7 Ok = K°0; P —k?
(1.7) ik = K- 0Kk + K 5"

where Kk = k- v is the curvature. These are parabolic equations of second or-
der for k. They obtained conclusions, utilizing general properties of parabolic
equations, for example the maximal principle. The key of this method is to
parametrize the curve by tangential angle. Therefore it can not been uti-
lized when initial curve is not convex. Now there is little results in non-local
curvature flows, when initial curve is not convex. However, since the grain
boundaries described above are not always convex, we would like to know the



behavior of evolving curves not assuming convexity. To do this, we consider
as follows.

Let f = (f1, f2) : R/LZ — R? be a function such that Imf is a closed
plane curve with rotation number 1 and the variable of f is the arc-length
parameter. The unit tangent vector is 7 = (f], f3). Let v = (—f3, f]) be
the inward unit normal vector, and let & = f” be the curvature vector. The

(signed) area A is given by
1 L
A=—= / f-vds.
0

2

The curvature kK = K - v is positive when Im f is convex. Since the curve has
rotation number 1, the deviation of curvature is

- 1/L d 2w
KR=K— — kKds =Kk — —.
L J, L

For a non-negative integer ¢, we set
L
[K _ L2€+1/ ’/%(E)|2d3,
0

which is a scale invariant quantity (cf. [2]). It is important to estimate I,
for the global analysis of evolving curves. We get the Gagliardo-Nirenberg

inequalities
L o q_t

L <crpil, m,

where 0 £ ¢ < m and C is constant and independent of L. These are very
useful but only they are not sufficient to estimate [y because these inequalities
use Iy. Hence we need a different type of inequality to estimate I, for £ = 0.
The purpose of this paper is to prove the new interpolation inequalities

by using isoperimetric ratio. Hereafter we call the isoperimetric ratio,
2

not A The curve along the flow (1.2) or (1.3) is expected to converge to
7r

a circle when the initial curve is close to a circle (in some sense) even if it
is not convex. If it is true, the isoperimetric ratio converges to 1 as t — oo.
Taking it into consideration, we introduce the quantity

LQ

4T A
I 1=1——,
12
which is also scale invariant, and is non-negative by the isoperimetric in-
equality.



We assume it holds that

d
—1 CvI; <1,
dt0+ 111 = o

for some evolving curve, where C; is a constant. Because of Wirtinger’s
inequality

there exists A > 0 such that
IO g Ce_)‘t
1
if C7 > s However we can not prove exponential decay of I, as above
7r
when ¢ < Pk If we can estimate Iy using [_4, then it is expected that we
T
can prove exponential decay of I regardless of C; when I_; — 0.
Of course, £ = 0 implies Im f is a round circle, which attains the minimum
I_; = 0. This suggests that I_; can be dominated by certain quantities
involving k. Indeed, we have we have

L*—4zA 1 [*
L? L2 J,

L
- —%/0 R(f - v)ds

= —%/OL/%(f—%/OLfds>'uds

I

I,= (=Lf-k+2nf v)ds

and
<L

from which we obtain

However, we can write

= —%/OLR
1 [* I I
X{(f—z/o fds)-l/—z/o (f—z/o fds)'uds}ds.

(et f o f ) v

4
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when & = 0 vanished identically, it seems that the above inequality can be
improved. In Section 2, we will show an improved version

in Theorem 2.1.

The converse inequality seems not to hold; the reason will be clarified in
Section 2. However, I can be estimated by use of I_; with the help of x and
its derivative

1
L 2
L <12, [LS/ (37 + ()2} ds}
0

(see Theorem 2.2). Combining this inequality and the Gagliardo-Nirenberg
inequality, in Theorem 3.1 we will show interpolation inequalities satisfied
by I_y, I, and I,,, for 0 < ¢ < m:

m—~4 m—£ £+1
L<C <If L+ Imﬁm“) .

Here the constant C' depends on ¢ and m but not on & nor L.
In section 4, we give applications of our inequalities to the analysis of the
large-time behavior of some non-local curvature flows for closed plane curves.
In the final section, we consider the higher order curvature flow

(1.8) ouf = (1)@ R)w.

This flow is the area-preserving flow (1.2) when m = 0.
When m = 1, the flow (1.8) is

(1.9) of =—(02k)v.

This flow was proposed by Mullins [14] and we call it curve diffusion flow.
The flow is a fourth-order parabolic partial differential equation. Hence we
do not expect convexity to be preserved along the flow. Indeed, Giga and Ito
[8] showed the existence of a simple closed strictly convex plane curve that
becomes non-convex in finite time under the flow. Also, Escher-Ito [4] and
Chou [1] proved that evolving curves may develop singularities in finite time
even when the initial curve is smooth.

On the other hand, there are some results for large-time behavior. Chou
[1] showed that the evolving curve converges exponentially to a circle assum-
ing the global existence of the flow. Moreover Elliott—Garcke [3] and Wheeler
[19] showed the global existence and investigated the large-time behavior for
initial data close to a circle.

Hence we investigate the large-time behavior of (1.8) assuming the global
existence of the flow.



2 Preliminaries

For the vector-valued function f = (fi, f2) : R/LZ — R?, we define a
complex-valued function by

f=h+ifa.
We expand f by the Fourier series
f = Z f(k)(plﬁ
keZ

where
2miks

or(s) = ﬁexp ( I ) ;
) L\*
The series Z kY f(k)|? is related to (2—)

L
F(k) = /0 fords.

/ kds. To see this we need

T 0
kEZ
some expression of f¢~Vf7in terms of k£ and its derivatives. Set
Fp=feop.

Lemma 2.1 [t holds that
(2.1) Fi=f-t+if v, FE,=ikFi 1+ F,_, for (=2

Proof. Firstly, since T = (f{, f3) and v = (—f3, f]), we have
F=(fi+tif)(fi—ifs)=f-7+if v

The recurrence relation is derived from

Fy= fUVF = (fO0F) = fOF = B = fOF T = Fy — Py

and

Fy=f"f = (f{+ifs)(fi—ifs) = = (1F'1P) +i(=f fs+ f5 1) = if" v = ik,
O

N | —

Proposition 2.1 For ¢ = 2, it holds that

(2.2) > Ef(k))? = =it (%)Z/OL kE)_yds.

kEZ



Proof. Tt follows from the recurrence relation in Lemma2.1 that

L L
/ Frds = z/ kEy_1ds.
0 0

On the other hand,

L ¢ R
[ s =0, =it () Swticor

Corollary 2.1 We have

2.3) S MR = 2,

(2.4) > RIS = (%) / Cwas - 2
(2.5 S RIFR = (%) [ nis= 1
(2:6) S HIF = (L) [ was

2.7) SRR = () [ was

(28) S K1 = (%) [t oy

Remark 2.1 If k > 0 everywhere, it holds that

Sitr =2 [y yas
21 o K '

kEZ

In particular if x is a constant, then

sy Lo [Tds
S HimE= - [

K
kcZ 0



Proof of Corollary 2.1. Since

L L
/ FldSZi/ f-vds=-2iA,
0 0

p L [t . L [ LA
Zklf(k)l2=—./ f’fds:—_/ Frds — =2

kEZ

Thus (2.3) follows. The relations (2.4)-(2.8) are consequence of (2.2) and
(2.1). Indeed,

2 oL 2 4L
SRR = i (%) / mdszi(%) / f(f T4 if ) ds

keZ

we obtain

and

L L L
/ kf-Tds=— f-V’dSZ/ T-vds =0,
0 0 0

L L L
//{f-uds:/ f-T/dS:—/ T-17ds= —L.
0 0 0

Thus (2.4) holds. Since f is parametrized by the arc-length, we have F, =
1’12 = |IF/|I*> = 1. Tt follows from (2.1) that

Fy =ik, Fy=—-r>+ir/, F5=-3c"+i(—r>+r").

Hence we obtain

L L L L
/ kFyds = / Kkds = 2m, / kF3ds = 2/ k2ds,
0 0 0 0
L L
/ kFyds = —/ K3ds, / kFsds = —z/ {FJ + ( }ds
0 0 0

Consequently (2.5)—(2.8) are obtained from (2.2).

Corollary 2.2

1_1_—Zk —1)|f(k

kEZ

Proof. We obtain
ArA  Ar? (L3 LA 4
[,=1-2 :l<———) W S k(e = D)If(k

L2 L3 \ 472 T
keZ

from (2.4) and (2.3). O



Since k(k — 1) = 0 for k € Z, we obtain the isoperimetric inequality
I_1 2 0 from this corollary, which is essentially the proof by Hurwitz [10].

Corollary 2.3
167 3 PYPIN
Io=—5 K k=1Ifk)

kEZ

Proof. The assertion is derived as

L L L or L
]OzL/ /%st:L/ /f/%ds:L(/ /QQdS—f/ /i'dS)
0 0 0 0

A V()

kEZ

using (2.6) and (2.5). O

Since k(k — 1) £ k3(k — 1) for k € Z, we have

(2.9) LS55 ) KE=DIfRP =5
kez
We set R
9= 3" VA - Df (k)
kez
and then (2.9) is
2 L* o
lglze = 5119 l1z2-

This is Wirtinger’s inequality with the best constant. Therefore it is reason-
able to think that (2.9) cannot be sharpened. However, the function f is not
an arbitrary one, but satisfies | f/| = 1, and this suggests that we may be able

to improve the constant in (2.9). Indeed, we can show an improved version
by use of (2.4) and (2.5).

Theorem 2.1 We have

Iy
I_1§§ g%a.

Equality never holds except the trivial case k = 0.

Proof. First observe that (2.4) and (2.5) imply

SORIFR)P =D K f (k)

k€eZ keZ



Hence

Zk —1)|f(k Zk —1)(k+1)|f (k)

k€EZ keZ

- 167 )2 = 167T

k=1 (k+ DI (k)

keZ kez
Consequently we obtain

b, QL_ka(k_zxk _ D)+ DIFR)E 2 0,

kEZ

because k(k —2)(k —1)(k+1) 20 for k € Z.

For the equality case, assume that f satisfies [ | = 8—02. It follows from
7T

the previous paragraph that

f= Z f(k)SOk

k=-1

Since |f'|? = 1 and since ¢,p; = Léwk,g, we have

2 .
> 2 fke

47 2 2 R
=Y KR (OnE

kf=—1

From this we find that, in particular,

0= Y KK = -2ff.
_1§k§§?iigzgz

On the other hand, it follows from (2.4) and (2.6) that

2
0= =R = =2/ + 4L
k=—1
Therefore f_; = f, = 0. Consequently f = fowo + fig1, which implies Im f

is a round circle. Hence & = 0. ]

10



We remark that it is impossible to show
E(k—1)<Ck(k—1) for keZ,

and this implies that there is no hope to see Iy < CI_;. Thereupon we give
an estimate of Iy in terms of /_; with the help of k and its derivative.

Theorem 2.2 The mtegml/ {Ii R+ ( }ds s non-negative, and it holds

that .
IO§I_é{ /{/1/-@4— }dsr.

Equality never holds except the trivial case k = 0.

Proof. By Cauchy’s inequality we have

s {Zk 1)k }{Zk*” SN |}

kEZ keZ

{Zk5 - D|f(k |}2,

kEZ

(NI

and (2.7) and (2.8) show that

> k=1 f(k)] = (;)6/5{5%(/{’)2—2;53}613

= (%)6/L{/{3%+ )*} ds.

Assume that f satisfies the equality case in the assertion. It follows from
the equality condition of Cauchy’s inequality that fr = 0 except k£ = 0 and
1. Consequently Im f is a round circle, and £ = 0. 0J

3 Interpolation inequalities

In this section we derive several interpolation inequalities from Theorem 2.2.

Theorem 3.1 Let 0 < ¢ < m. There exists a positive constant C' = C({,m)
independent of L such that

m—4L 41
Ig§0<l 7 I, —|—Im+llm+1)
holds.

11



Proof. When ¢ = m, the assertion is clear.
Let £ < m. Then m = 1. The Gagliardo-Nirenberg inequality shows

1
. Lo b (il 1) Lfq 1 (s 1.1
(3.1) <L(J+1)p1/ |/~€(J)|pd8) §C(j,m,p)[%m(] p+2>[02{1 mli=3+3)}
0

for p 2 2 and j £ m. Here C(j, m,p) is independent of L. Combining this

and Wirtinger’s inequality Iy < 4—12, we have
T

L 13 L 1s 3
L3/ F'ds < CI2 13 £ O3, Lg/ |&|*ds < CIFIE < CI7.
0 0

Therefore
L ) L 2 3
L3/ HSRdS:L?’/ (/%+—7T> Fds
0 0 L
L L L
< C(L3/ %4ds+L2/ |I?L|3dS+L/ %2d5>
0 0 0

3
= C(I%+If +11>.
Consequently the inequality in Theorem 2.2 implies
Iy < CI2, (11 n Jf) :

which is the assertion with ¢ =0, m = 1.
Putting p = 2 in (3.1), we have

J

i1
(3.2) L<OGm) il ™.
Combining these with j = 1 and Young’s inequality, we have
1 L g1 £ 1(1-31) m m_ 1
L=Cr2 (Inly "+ Lirlys ™ ) Selg+Co | 12 Ly + 17 I )
where € is an arbitrary positive number. Consequently we obtain

Lh<C (1’5}Im + fﬂfﬂfn’s“) ,

which is the assertion with £ =0, m = 2.
Let ¢ = 1. Using the above inequality and (3.2) with j = ¢, we obtain

A m m_ 1 1_£ m—2¢ m—f 41
L <CIy (]21[m + Imflm“) <C <If I + I"a“m“) :

12



4 Applications to non-local flows

We give applications of our inequalities to the asymptotic analysis of ge-
ometric flows of closed plane curves. Two of the flows are the flow (1.4)
studied by Jiang-Pan [11], and the area-preserving curvature flow (1.2) con-
sidered by Gage [6]. We also consider the length-preserving curvature flow
(1.3). If the initial curve is convex, then the flows exist for all time keep-
ing the convexity, and the curve approaches a round circle; this was shown
in [11, 6, 12]. The local existence of flows without a convexity assumption
was shown by Sevcovic-Yazaki [18]. However, the large-time behavior for
this case is still open. It seems finite-time blow-up may occur for some non-
convex initial curves [13], but, on the other hand, the global existence for
a certain initial non-convex curve was shown in [18]. Escher-Simonett [5]
showed the global existence and investigated the large-time behavior of the
area-preserving curvature flow for initial data close to a circle and without a
convexity assumption. In this section, we investigate the large-time behavior
of the flow without a convexity assumption assuming the global existence.
Firstly we consider the general flows

(4.1) of =hv,

1 L
where h = k + p(L, A,W). Here W := 5/ x*ds is the elastic energy and

0
@ is a smooth function of L, A and W. We assume the global existence of
solutions. Observe that the equation which f satisfies is

atf = asz.f - SO(L7A7 W)Rasfa

r=(1 )

Since this is a parabolic equation with a non-local term, we may assume that
f is smooth for t > 0 as long as the solution exists. Hence by shifting the
initial time, we may assume that the initial data is smooth.

Let P¥(%) be any linear combination of the type

where

PER)= > g 00O R

with universal, constant coefficients ¢;, ;. for &k € NU {0} and n € N.
Similarly we define P} as a universal constant.
For the flows (1.2), (1.3), we can show the following.

13



(1) I_; decays exponentially ast — oo : [} < C_je .

(2) Iy is integrable on [0, 00) : / Ipdt < 0.
0

(3) L(t) is strictly positive on [0, 00) and there exists positive constant L.,
such that L(t) converges to L.

(4) A(t) is strictly positive on [0, 00) and there exists positive constant A,
such that A(t) converges to An.

(5) There exist positive constants C1,--- ,Cy independent of initial data
and t such that

d Cl 02 2 03 3 C’4
EIO + ﬁh + ﬁlo < ﬁlo + ﬁ]—l'

(6) There exist 1 S a<5,1<5<5,7 20,0 20 such that

d 2 L =
VR A ST
0 n=1

dt
B
aer1 (L b —(B—n) pl = b
+ L a1 8S/<ZL P.(R)ds R°ds
0 — 0

These are ingredients for proving the convergence of flow to a circle. We shall
show this fact in subsection 4.1. And we shall see that (1)-(6) hold true for
the flow (1.2), (1.3) respectively in the subsection 4.1-4.3.

(e

4.1 General flows

Here we consider the large-time behavior of solutions to (4.1) under the
assumption (1)—(6). Firstly we prove the exponential decay of I, for ¢ €
Nu {0}.

Theorem 4.1 Assume that f is a global solution of (4.1) such that the initial
rotation number is 1 and the initial (signed) area is positive. Moreover we
assume (1)=(6). Then, for each ¢ € NU {0}, there exist Cy > 0 and Ay > 0

such that

]g(t) é Cge_ket.

14



Proof. We firstly consider when ¢ = 0. It is obvious that there exists T}

satisfying
e 04 —\t 02
—e dt < —/.
[T g

1

C
Furthermore, there exists To = T) such that Iy(T3) < %, because of (2).
3

C
We would like to show [y(t) < 52 for t 2 T;. To do this, we argue by

3
contradiction. Then there exists T3 > T5 such that

I()(t) < % fort € [TQ,Tg), and ]Q(Tg) = %
03 C’3

It follows from (1) and (5) that

d Cy
_[ S_ -\t
a0 = 12

for t € [T, T3]. Hence

T g Ch < 0, Ch
Iy(T3) = Io(T: —Iydt < —— e Mt < ==,
olT3) = Io{ 2)+/T2 dt " <203+/T1 ¢ " a

C
This contradicts Io(T3) = 52 Consequently [ is uniformly bounded, and
3

(5) implies

d Oy Cy
— I+ —1; < —e M,
g0t v = et

Thus the assertion for £ = 0 with some positive A\g has been proved.
Next we show the exponential decay of I, for £ € N. Set

L ,
Jiop = {L“*’“)p‘l / |a§/%|pds} :
0

By the Gagliardo-Nirenberg inequalities we have
0 1-0
(4.2) Jop S CJ) 505" = CIAI?

for k € {0,1,...,m}, p = 2. Here C is independent of L, and 6 = % (k: — i +
[0, 1].

)¢

N =

15



Since Pf(k) = cdtk and L, A are uniformly bounded by (3)—(4), we have

L2€+1

C
[ e ptwas) = i,

/0 " (0%) (%)7 L@ Pl(7) ds

When a = 2, by Holder’s inequality, we have

L a
L2 / 0%k Y L™ Pl(R)ds
0 n=2

L2€+1

(07

— |3 g / (067) L~ P (7)ds

n=2 0

A

C
E ﬁjﬂ,n—kljjl,n—i—l e Jjn,n-l—la

]1++]n:n
Ji 207]7120

and (4.2) yields

0(j,n+1) 1—60(j,n+1) ) 1 ) 1 1
Jj7"+1 é C’If—}—lz [O ? ) 0(]7” + 1) = E J— TL— +=1.

Hence applying Young’s inequality, we obtain
C 20451 p(n—1)4F3
L25+1/0' 8€KZL a—n Pf( )dS < L2 Igi(le+1) .[ 2(0+1)

C’ 2¢(n—1)4n+3
L2 Ig+1 + LZI o

for any € > 0. The second term is a function decaying exponentially. When

B 2 2, we have
L
(/ /%st)
0

L\ rt B
L+ (Z) / 0%k Y L~ Pl(R)ds
0 n=2
CE 2¢(n—1)+n+3
(LQ Tppr + 1, ) 15

L2

g

for any € > 0 same ways as above. Hence we obtain

d 2
(43) alg%— ﬁl£+l
C C ot1 C 2€(nfl_):n+3
< ple+ i+ pla+ gl

o CE 2Z(n51_)+n+3 .
+Slnli+ 5L I

16



Taking e small and ¢ large, the terms %Ig+17 %] ¢+11¢ are included into the

C 2¢(n—1)4n+3
left-hand side of (4.3) from exponential decay of Iy. The terms L—;I 0o "
C 2¢(n—1)4n+3
L—;IO >=nI§ are functions decaying exponentially. Furthermore we have

from Theorem 3.1

C C

S Y < S LN L o
L2 = L2 —14e+1 —1 4441 = L2 —1 {41 el—1

Y

C C [ .1 e\ 0T
_[a-i-l g (IE1IE+1 4 [f+12 [él-ﬁ)

2t L2
C % o+l o+1 o+1 7o0+1
ﬁ ([_1+€) [€+1 +C€ [71

A

C 1
for any € > 0. Taking € small and ¢ large, the terms I {(Ifl + e) I[+1},
C 1 o+1
T2 {(Ifl + 6) I;jll} can be absorbed into the left-hand side of (4.3).

The terms C.I_;, C°1I7T! are functions decaying exponentially. Therefore
(4.3) and Wirtinger’s inequality imply

d C

— I+ =1, < Ce ™

attTpie=Ce

which shows the exponential decay of I,. 0

It follows from Theorem 4.1 that £ uniformly converges to 0 as ¢ — oc.

This implies that Imf converges to a circle. The precise statement is as
follows.

Theorem 4.2 Let f be as in Theorem 4.1, and let f(s,t) = Zf(k)(t)gpk(s)

kEZ
be the Fourier expansion for any fized t > 0. Set )
1 N A
t) = RE0)(1),3F(0)(1)),
c(t) L(t)( f0)(@), 3 (0)())

and define r(t) = 0 and o(t) € R/27Z by

F)(#) = VI (1) exp (2'2”"“)> .

Furthermore we set

f0.t) = f(L({t)0 —o(t),t), for (0,t) € R/Z x[0,00).

17



We assume that there exists co € R? such that

le(t) — eool| £ Ce™ .

Then the following claims hold.

(A)

(D)

(E)

Lo
The function r(t) converges exponentially to the constant 5 0 t—
00! . T
t) — —=| < Ce ™.
r(t) 5, | = Ce

There exists 0o € R/27Z such that

lo(t) — 00o| £ Ce ™.

For any k € NU{0} there exist Cy, > 0 and i, > 0 such that

1F () = }.ooHCk(R/Z) < Cre ™,

where

foo(0) = Coo + gﬁ(cos 270, sin 276).
T

For sufficiently large t, Im]"(-, t) is the boundary of a bounded domain
Q(t). Furthermore, there exists T, 2 0 such that QU(t) is strictly convex
fort 2 T,.

Let D,_(cs) be the closed disk with center ¢ and radius ro. Then
we have

dr(2(t), Dy (€x0)) = Ce_’yta

where dy is the Hausdorff distance.

1
Let b(t) = — // x dx be the barycenter of )(t). Then we have
At) JJow

IA®)(B(t) — e@®))]| = Ce™.

18



Proof.  (A) It follows from Proposition 2.1 and Lemma 2.1 that

SOk (= DR = — it (%)m /OL kFyds

L\" r*
+ (2—) / kFy_1ds
T 0
L\ L
= —i = / kFyds
2m 0
L\" -
+it (2—) / Fds
™ 0
L\ L
= —i = / kF,ds
2w 0

for ¢ 2 2. Since F, is a constant, and since Fy, with ¢ 2 3 is a polyno-
mial function of x and its derivatives up to the (¢ — 3)rd order, they
are bounded functions of (s,t). Also L is bounded and & decays expo-
nentially as ¢ — oo. Therefore when ¢ is odd,

> KHfR)P

k0,1

<C < Cpe M,

DKk =Dk

keZ

By the Parseval identity and the Sobolev embedding theorem we have

|£6.6 = FOr000() = F1) (B0

é Cke_’\f’;t
CH(R/L(t)Z)

for any k. Using the expression of R2-valued functions, we have

f(s,t) =c(t) +r(t) <COS QW(SLZ;@)) , sin QW(SLZ;@))> + p(s,t),

lp(s Dllor@/Lwz = Chee Tkt

Since
27r(t) . 2n(s+o(t)) 2r(s 4+ o(t))
0sf(s,t) = ) (— sin ) , COS 10 ) + 0sp(s,t),
we have
(0 - 20| - 20120 1| = 2o, p(6.0) - (s, 0l - 1
< Ce M,

L
Therefore r(t) converges to 7., = 2—00 exponentially as t — oo.
T
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f(s,t+h)— f(s, 1)

(B) First we clarify the meaning of d;f, it is not lim

h—0

as one might expect. The variable s in f(s,t) is an element olflR/ L(t)Z,
on the other hand, the s in f(s,t+ h) is in R/L(t + h)Z. Hence the
above quotient is not well-defined. To address this, let us introduce a
function f on R/277Z x [0, 00) given by

Flut) = f (%2”15)

Then the variable u is independent of ¢, and J, f is given by

atfzhg(l) f(u,t—l—h}z—f(u,t)'

We define a complex-valued function f by
Flu,t) = (Rf (u,1), Sf (u, 1),
and note that the Fourier expansion of f is

2/ k( ;3 ) \/_Zf L(t) Bulte)

kEZ keZ

where

Therefore we have

0.f - x/‘§jdt¢_l (),

and

4%kw?d 2 3|4

keZ

by the Parseval identity. Since

2 2

L
- —1
2A

L
K— —V| =

2 2 2
0P = 10,71 = 0 1? = | —

decays exponentially and uniformly in spatial variable as t — oo, we

have
)

kEZ

2
< Ce

QLT
L)

~—

SR

20



for some C' > 0 and v > 0. In particular,

. 2
if(l)@) < 0672'}/15'
dt L(t) -
Also, it is not difficult to see that
i i 2, (2| L (2l 2
dt " dat \L(t)

Since 7(t) and L(t) converge exponentially to positive constants, so
does o(t) to some o, € R/27Z.

We have
F(0,1) = c(t) + r(t) (cos 2m0, sin 276) + p(6, 1)

= }’00(6’) +c(t) — e + (r(t) — 7o) (cos 270, sin 270) + p(0, 1),
where

PO, 1) = p(L(t)0 — (1), ).
Therefore the estimates for ¢(t), r(t), and p(-,t) yield

1F (1) = Focllor@zy S Cre ™.

The above estimate implies that Im}'(-, t) is the boundary of a bounded
domain €(¢) when t is sufficiently large. Since & converges to 0 uni-
formly, and since L goes to a positive constant L., as t — oo uniformly
in s,

2m

H:f—i—:‘i

is strictly positive for large t. Consequently 0€)(t) is a strictly convex
curve.

Let D,)(c(t)) be the closed disk with center ¢(t) and the radius r(t).
We have

di(SUt), Dy (o))
= du(2t), Driry(c(t))) + du(Drwy(e(t)), Driy(€xo))
+ di(Drt)(€x), Bro (€x0))
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For sufficiently large ¢ we show
1p( llcowyzy < Ir(D)]-
Hence D)y p(.)

Doy (€B) S Q) S Doty o) ogm,, (€(1))- Let
Sy (e(t)) be the closed circle with center ¢(t) and the radius r(¢). For

any € Imf(-,1) \ (Im}(-, )N Dr(t)(c(t))> we have
d(x, Dy (c(t))) = d(Srpy(e(t)), Se+1PC o w2 (e(t)))
= [|p(, )llco@/z)-
Furthermore, for any @ € Imf(-,t) N D, (c(t)), we have
d(z, vy (e(1)) < d(Srwy(e(t)), Sripy—ype.o) (e(t)))
= |lp(-, )llcow/z)-

lco®/z)

Therefore we obtain
dr (1), Dyy(e(t))) = ([P D)l cow/z)-

Moreover we clearly find that
dr (D) (e(t)), Dy (o))
dr (Drt)(€0)s Dy (€x0))

|e(t) = el
(t) = 7ool-

<|
< |r
Hence we show

dg(Qt), D, (cs)) < Ce™
for some C' > 0 and v > 0.

(b—c) ://Q(t)(a:—c)da:
We define

b= (bl,bg), C = (61,02), b:b1+ib2, Czcl—f—iCQ.

Clearly we have

From the divergence theorem, we have

Ab—c) = /Q(t){(xl — 1) 4 i(xe — o) pdx

_ %//Q@ div(((z1 — )2 i(ws — e2)?) dae
= - %/OL (i —e)?ilfa— )?) -vds

T %/0 {(fi = c)*(=0sfo) +i(fo — 2)°0s f1} ds.
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Since, for j =1, 2,

L
/ (fj —¢;)?0sfds =0,
0

we obtain

i L
A==~ [ {th-aren v
+ (fa = c2)*(0uf1 + iasf2)}ds

i L
= - _/ ’f - C|2asfd5'
2 0

It holds that

2mi(s+o) 2wi(s+o)

2
|f—C’2:‘7‘6 2 +p’ =712+ 2 Rpe” =+ |p|?

and r is independent of s. Hence we show

2mwi(s+o)

AL
A(b_C):_%/o {2T§Rpe 2 +]p]2}8sfds.

Therefore we have

1 L
A=l A=l <5 [ (ol + o) ds < Ce .
0

Thus we have shown each of the claims in the theorem.

In the following subsection, the assumptions (1)—(6) in Theorem 4.1 hold

for the gradient flow of the isoperimetric ratio (4.4) below, the area-preserving
flow (1.2), and the length-preserving flow (1.3). As a consequence, these
global flows converge to a circle in the sense of Theorem 4.2 even if the

initial curve is not convex.

4.2 The gradient flow of the isoperimetric ratio

L
when h = Kk — —

We consider the large-time behavior of the flow (1.4) of closed plane curves,

Assume that f : U (R/L(t)Z x {t}) — R? is a global

2A°

t=0

solution with initial rotation number 1. This is the gradient flow of

23



2
Furthermore the (signed) area A is also non-decreasing, if the initial (signed)
area is positive. Indeed,

studied by Jiang-Pan [11]. Therefore along the flow, z— is non-decreasing.

d4arA  4ndA StAdL 8mA [F
(4.4) _ 5 [ar (
0

dt 12 L2 dt I3 dt L3

A [E L\’
:8LL3 (n—ﬂ> ds 20,
0

L
—ﬂV + K‘;) ds

dA L L L —Ar A+ [?
(4.5) 7 /0 of - -vds /0 ( /€+2 >d$ =0

Since

dL L L L
4.6 — = Of -kds=— 2ds + —
(4.6) = /0 \f - Kds /0 wds + —,
we find that L is non-increasing by Gage’s inequality if Im f is convex. Here

we do not assume convexity. We can prove the following theorem.

Theorem 4.3 Assume that f is a global solution of (1.4) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then f satisfies

(1)~(6).
Proof. 1t follows from (4.5) that

i/ﬁ =1?>—471A > 0.
dt
The second derivative is
d? d dL dA
47) —A?= —(L? —4rA) =2L— — dr—
47 e ' mA) ar Tt
L L L
= / Of - (—2Lk +4nv)ds = / (m — —> (—2LFk)ds
0 0 2A
L
= —2L/ 72ds 0.
0
Therefore
0< Taz< @2
—dt T dt |,




We put Cy = iAQ

. Since the initial (signed) area is positive, so is A,

dt |,_,
and
A? < Cpt + A(0)%
Hence
tadt t dt
(4.8) /—g/ oo as t— oo
0 A 0 \/Cot+A(0)2

It follows from (4.4) that

d grA [T or L\’ 2T grA [T
—1 = —— 4+ —— ) ds=—-""1%, — —— R2ds.
! L3O<HL2A)S AT s
. . - . d 21 4
Solving the differential inequality EI 1 = —Z[ ~.,, we have
1.,(0)

0=s1,=

T =0 (t— o0).
14221 4(0) / 2

0

Also, (4.7) and Theorem 2.1 give us

4
dt

1672

(L* — 4mA) + T3

(L* — 47 A) <

L
(L* — 4mA) + 2L/ #*ds = 0.
0

.
~

Using Iy — 0 as t — oo and (4.8), we obtain

bt
0 < L? — 47 A < (L(0)* — 4w A(0)) exp (—167r2/0 ﬁ) —0 as t— oo.

Dividing both sides by L?, we have

167> , [*dt d , [t dt
0sI,=C 73 XD (—167r /O ﬁ) = —C% exp (—167r /O ﬁ) .

Integrating this with respect to ¢, we obtain

O§/ ]_1dt§0{1—exp <—167r2/ ﬁ)}
0 0

Integrating (4.5), we have

IA
Q

tL2
A=A — I dt £ C.
(0)+/02A dt = C
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Since A is non-decreasing and bounded from above, there exists a finite
limit A, = Jim A € (0,00). Hence lim [, =2 TAs € (0,00) exists, say
—00 — 00

L.,. Consequently, we obtain

¢
0< L? —47A < (L(0)* — 47 A(0)) exp (—167‘(‘2/0 %) < Ce ™,

L? — 47 A
0 é I_l = T é CG_M,
1 < 1 >
<A,—-A< — A%dt = L? —4xA)dt < Ce ™
0= A —AOO+A/t dt AOO+A/t( mA)dt = Ce,
L? —4rA+4n(A— A
‘L_Loo|:| ™ + 7T< m)léce—)\t
L+ Lo,

for some C' > 0 and A > 0. Hence we have (1), (3) and (4). Furthermore,
Integrating (4.7), we have
/ Iydt < C.
0

Hence (2) holds.
Next we consider the behavior of I,. Since

L 2 L
2
IozL/ </{——7r) ds:L/ k2ds — An?,
0 L 0
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we have

d dL %, d [*
—Iy= — ds 4+ L— 2d
@l T ), e g ),

L L
= / {—m/ k*ds + L (2V2k + ||n||§2n)} -0 fds
0 0

- by 2 3 L
:/0 {—/f/o f{ds—l—L(Qasn—l—/ﬁ)}(n—ﬂ)ds

2

L L L
_ 2 L 2 _ 2, 4 L 3
- </0 nds) —i—A/O /{dS—i—L/O { 2(0sk)" + K 2A/<¢}ds
L L 1 L 2
= — 2L/ (0s%)?*ds + L / ks — — (/ H2d8>
0 0 L \Jo

LQ L
24 J,

L L
= —2L / (0sF)2ds — ( / /z;%zs)
0 0
L L2 1672 27L
~4 R B N ~2
+/O{L/i+(8ﬂ' 2A)H+(L —A>/<;}ds.

By virtue of the Gagliardo-Nirenberg inequalities, we have

(4.9) ifo clpi i e (L*R* + L?|&|> + LR?) ds
dt 20 2= e

K2R ds

2

C 13 15
<5 (112102 VAL ¢ [0) .

Applying Young’s and Wirtinger’s inequalities, Theorem 2.1 and Theorem
3.1, we have

1 3
272
Il ]0

A

EIl + Ce]ga
15 5
III} < el + C.I}

A

e(Iy + Iy) + C.I < Cel, + C.I,
12, <11 + ]f) < (IE1 + e) I +CI,

=

Io

A

for any € > 0. Hence we show (5).
Next we show the exponential decay of I, for £ € N. Now observe that

d dL [* L
— I, = (204 1) L*— / (0fk)2ds + L / (0°R)?0,(ds)
dt dt J, 0

L
b oopeH / (0L7)(0,01F) ds.
0
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It follows from (4.6) and Theorem 4.3 that

L L L
(2e+1)L2fC;—L / (0fR)%ds = (20 + 1)L* (— / /izds—l-ﬂ) / (0'k)2ds
t 0 0 A 0

C
< e

Since 0y(ds) = —0,f - Kk ds, we have
L L
(4.10) L%“/ (0°R)?0,(ds) = L%H/ (0'k)? {—ka (H - —) } ds
L2£+2 L oo ~ 27T
o, (O4R) </€—|— f) ds

L2€+2 L
57 /(8ff%)2/%ds+£[z.
0

A

A

We can show

3 2
L
k ~ k+2 ~ —(8—n) pk —(2—n) pk(
(4.11) 0 0.k = 077K + g L PJ(R)+ — g L™= pPk(R)

by induction on k. Indeed, we have
L
_ a2 3 L2
Ok =05k + K 54"
3 12
_ 92 —(3—n) pO/ - —(2—n) pO/~
=0+ L Pn(/i)—i—AZL PO(7).

n=0 n=0

Hence (4.11) holds when k& = 0. Next we assume that

3 2
L
) ak~ _ 8k+2~ § L—(3—n)Pk‘ ~ -~ E L—(?—n)Pk ~
tYs s ,%_Fn:o n(ﬁ)+ Anzo n('%)
holds. Since

L
— 2 _
0,05 = 050; + (K, 2A/€) Os,
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we show

L
k1, _ k 2 _ k+1
0,0 k = 050,05k + (/4; 2AH> Tk

3
L
:ak+2~ L~ (3-n Pk - L~ (2— n)Pk
e R+ F R
3 L 2
L~ (3— nPk - - —(2— nPk -
+; (R) AZO (R)

2

3
L
k+2 ~ —(3—n) pk( —(2—n) pk(~
=0,k + E L P¥(R) + — E L P (R).

Hence (4.11) holds for k = 0. Since Pj(&) is a constant,

/L(af/%)P(f(/%) ds = 0.

Therefore we have

L
DL+ / (0L7)(0,0'F) ds
0

2

~ 5l +L2€+1/ (ZL (5= pl(5 ZL @=m pt (i >ds.

2042
2A
L
L
L%“/ (8f/%)ZP§(/%) ds. Hence we obtain
0

Here the term

L
/ (0%k)?F ds on the last line of (4.10) is included into
0

d 2
_[£+

L 3
I < L%“/ a%E LB P(R)ds
2 = S n
" L 0 o

L{ - 2
+ L%“Z ( / ORY L‘(Q‘”)Pf(/%)ds> :
0 n=1

Therefore we show (6) when « =3,5=2,7v=1,0 =0.

Theorem 4.4 Let f be as in Theorem 4.3, and we set f,e,r,o, f same as
Theorem 4.2. Then we show that there exists coo € R? such that

le(t) — exl] £ Ce ™.
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Proof. First observe that

1 L

c= Z/o f ds.
Since I

ouf = 0, (asf - ﬂRf) ,
we have
L
/ 0 f ds = o.
0

Therefore the time-derivative of ¢ is
d 1 [ 1 dL [F
—c= — ds) — —— d
at© L/O Or(ds) L2dt/0 I ds
1 [F 1 [F

o faro- far ) (- o)

L . L .
atf-K,:K;2—ﬂ/€=/€2—ﬂ(QI_l—l)/{—Z[_l

decays exponentially as ¢ — 0o, and because

ez e

we find that ¢ converges exponentially to a vector, say c.,, as t — oo.
Consequently Im f converges to a circle with center at c. O

Since

<L<c,
]RQ_ N

From Theorem 4.2 and Theorem 4.4, the claims (A)—(F) in Theorem 4.2
hold also for global solution of (1.4). Hence it converges exponentially to a
circle with center ¢, and radius 2—00

T

4.3 The area-preserving curvature flow

In this subsection we consider the area-preserving flow (1.2) when h = x —

1 b
—/ kds. Assume that f : U (R/L(t)Z x {t}) — R? is a global solution
0

L
20
with initial rotation number 1. Since the rotation number 1, the integral of

30



k is 2. It is well-known that if the initial curve is convex, then any solution
of (1.2) converges to a round circle as t — oo as proved by Gage [6]. In this
subsection, we give a proof of this fact without the convexity assumption
assuming the global existence.

Theorem 4.5 Assume that f is a global solution of (1.2) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then f satisfies

(1)(6).

Proof. We find (4) holds clearly bacause (1.2) is the area-preserving flow.

Since . .

dL

—:—/ &gf-k;ds:—/ &2ds,
we have

L £ L(0).
From this, the area-preserving property, and Theorem 2.2, we have
d dL L
4.12 —(L? —47A) = 20— = —2L | &3%ds = —2I,
(a12) mA) dt /0 s 0
1672 1672
< - L? — 47 A) < — L? — 47 A).

Therefore

L2 — 47 A < (L(0)2 — 47 A(0)) exp (— Ll?g)Qt) |

Hence we show (1). Therefore we have tlim L =2,/7A(0), and
—00

- L2 —4rA_ _ L0}~ 47A(0) [ 167*
‘L 2,/ A(O)‘ =15 A0 WETT) p( L(O)2t).

Hence we obtain (3). Furthermore, from (4.12), we have (2).

A
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Next we consider when ¢ = 0. We have

d d L
—Iy=— (L 2ds — 4n?
dt° dt(/OKS W>

dL [* d [t
= — ds+ L— *d
it |, K as + di s K- as

L L
= / {—K,/ k*ds + L (2Vik + Han@n)} - O f ds
0 0

L L
— / {—n/ /<;2ds+L(23§/<;+/<;3)}/%ds
0 0
L L L L
= —/ des/ /%2ds—|—L/ ﬁgl%d3+—2L/ (05k)*ds
0 0 0 0
L L L L
= —2L/ (8571)2ds+/ &2ds (L/ n2ds—47r2) +L/ K*R ds
0 0 0 0
L L 2 2 L
4
Y / (9,7)2ds — ( / /”%2ds) - Rds
0 0 L Jo

L 2 3
Ny 67 _ 1272 . 8
—l—L/O /<;</£3—|—%/<a2—|— LZK—F%)CZS.

By calculation, we have

d 4r? 1 2 c [(*
—Ih+ —hh+=Ih+=L <= LP&* + L?|R| + LE?) ds.
dt L2 2 12 .2 0 ( )

Since we have the same form as (4.9), we have (5).
Next we consider the behavior of I, for ¢ € N. We can show

3
(4.13) 00kF = Ok + ) L~ Pl(R)
n=1

by induction on k. Indeed, we have

Ok = O2F + Rk’

3
=02+ Y L~ P(R).
n=1
Hence (4.13) holds when k = 0. Next we assume that

3
0,08k = PR+ L™ PE(R)
n=1
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hold. Since
@83 == (958t + Fm@s,

we show

0,0" Kk = 0,0,0%k + FrOF K
3 3
— 8§+2/-€ + Z L—(S—n)P:-i-l(/%) + Z L_(3_n)P,]f+1(l~€)

n=1 n=2

3
=0F 2+ LG PE (i),

n=1
Hence (4.13) holds for k£ = 0. Hence we have
d 20dL [* serr [* a0z s
EI@ =(20+1)L = (OsR)*ds + 2L 0RO 0 K ds
0 0
L
e / (0L7)%0,(ds)
0
L L L
= —(20+1) / ids / (0'k)%ds — 2L} / (05 R)ds
0 0 0

L 3 L
+ L2 / Ok Yy L~ I Pi(R)ds — L / (03F)*Fik ds.
0 n=1 0

By calculation, we have

d 2 2041 v : —(3—n) pl 5
Tt 5l S L /0 asﬁ;l L P'(%)ds.
Therefore we have (6) when « =3, =1,7=0,0 =0. O

Theorem 4.6 Let f be as in Theorem 4.5, and we set f,e,r, o, f same as
Theorem 4.2. Then we show that there exists coo € R? such that

le(t) — cool| £ Ce™ .
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Proof. The time-derivative of c is
d 1 1 dL
o= || - [ a
1 E
-1 [Horw-1 [0f wa}s
L L
= —%/0 {(atf-ke)—%/o (th-k;)ds} (f—l/ fds)

Since

decays exponentially as t — oo, we find that ¢ converges exponentially to a
vector, say €., as t — 0o in the same way as Theorem 4.4. Consequently
Im f converges to a circle with center at c.. [l

From Theorem 4.5 and Theorem 4.6, the claims (A)—(F) in Theorem 4.2
hold also for global solution of (1.2). Hence it converges exponentially to a

. . . oo
circle with center ¢, and radius o
T

4.4 The length-preserving curvature flow

In this subsection we consider the length-preserving flow (1.3) when h = x —
1 [k
Py rx*ds. Assume that f : U (R/L(t)Z x {t}) — R? is a global solution
T Jo
t20
with initial rotation number 1. Ma-Zhu [12] proved that if the initial curve
is convex, then any solutions of this flow converge to a round circle as ¢t —
oo. We have the same results for area-preserving curvature flow without
convexity assumption assuming the global existence. In this subsection, we
give a proof of this fact.

Theorem 4.7 Assume that f is a global solution of (1.3) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then f satisfies

(1)(6).

Proof. We find (3) holds clearly because (1.3) is the length-preserving flow.
Since

dA L L [ I
4.14 2 o ovds = = | m2ds = 0
(4.14) dt /0 f -vds 2m /0 AT o
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from Theorem 2.1, we have

d 4 dA 2 1672
] == <] .
dt- ' L2 dt L2’ = L2

L(0)?

7

Therefore we have (1) and find tlirn A=
—00

ing (4.14), we obtain (2).
Next we consider the behavior of Iy. By calculation, we have

d d g
—Ih=— (L *d
at dt( /0 " 8)
L
_ L/ 2V + || |2ek) - O, F ds
OL 1 L
:L/ 2(0%F + K°) (/%——/ /Z;st) ds
0 21 Jo
:—2L/ (0s )dS—FL/IilidS——/ 3ds/
B 2 6r _, 1277 _,
= L2[1+L/0 </€+LI€—|—L2 )ds

L (*(_, 67_, 8 L,
~ 5 i <Ii +fl<é +F ds/o K-ds.

Hence we obtain

d 3

. Hence we have (4). Integrat-

2

— I+ =+ =1,
a2 =
1
=73 (L3/?;4 + 6mL*&® + 87 L&) ds

1 L L
— 5 <L2/ /'%3d5> <L/ /%2ds>.
2rL 0 0

The first term on the right-hand side is estimated above by

(121+6> ]1+§2(]3+I_ )

in the same way as Theorem 4.3. Moreover we have, by Young’s inequality,

1 2 L~3 L~2 ¢ ¢
~573 (L/O /ﬁds) (L/O R2ds <§[41410 L2[414

C 3
= L2]1 + ﬁ]
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Taking e sufficiently small, we have

d 3 2, 42 Cy Cy 5 Cs
E[O + L2I L2 IO + ﬁ[]_ — ﬁ[o + ﬁ[,l

Hence we show (5).
Next we consider the behavior of I, for € N. We can show

3 2 L
(4.15) QO =0k + > LG PEE) + Y LT P(R) / 72ds
0

n=1 n=1

by induction on k. Indeed, we have

W2 (L
Ok = 0%k + K® — — / K2ds
2m Jo

2 L 2
4
:(9?/@—1—/13—,1/ R2ds + 0
L
m+§ L=G=m po(g +§jL (2=m) pO( //%st.
n=1

Hence (4.15) holds when k& = 0. Next we assume that

L
0,0F R = OF 2k + ZL (B=n) pk (i ZL—<2—">P:(/%) / 72ds
n=1 0

holds. Since .
0,05 = 050; + (/@2 — i/ KJst) 0s,
2 Jo

L
0,0" K = 0,0,0F Kk + (/@2 — i/ /@2ds) Ol

we show

L
—8k+2~+ZL (3— nPk—f—l +ZL (2— n)Pk—H( )/ RQdS
0

n=1 n=1

L
+ZL 3n)pk+1 +ZL (2— nPkJrl( )/ 2ds
0

n=1 n=1

L
_ak‘-ﬁ-Z/{_{_ZL (83— nPk+1 +ZL (2— n)Pk+1( )/ /%QdS.
0
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Hence (4.15) holds for k£ = 0. Hence we have

d L L
L= 2L+ / 0'k0,0%k ds + L*+! / (0%R)?0,(ds)
0 0

L L 3
= — 2! / (041 k) ds + 20! / 0%k Y L~ ® M Pl(k)ds
0 =

0
L
+ 2L2f+1/ a%ZL @) pf(i )ds/ 72ds
0 0

L2£+1 L L
—L%H/ (0%R)?Rr ds + 5 / (af/%)Q/{ds/ &*ds
0 0 0

™

2 L >
= — =l + 207 / 'R Z L™= PY(R)ds

N 0
L
+ 2L2”1/ a%ZL @) pf(g )ds/ R2ds.
0 0
Therefore we obtain (6). O

Theorem 4.8 Let f be as in Theorem 4.7, and we set f,e,r, o, ]~‘ same as
Theorem 4.2. Then we show that there exists coo € R? such that

le(t) — exl| = Ce™™.

Proof. The time-derivative of ¢ is

1 dL
—c— /fat ﬁdt/ fds

_ _f/o {(atf K) — f/o (8tf-n)ds}fds
1

Since

2m Jo L L

decays exponentially as t — oo, we find that ¢ converges exponentially to a
vector, say €, as t — oo in the same way as Theorem 4.4. Consequently
Im f converges to a circle with center at c.. O
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From Theorem 4.7 and Theorem 4.8, the claims (A)—(F) in Theorem 4.2
hold also for global solution of (1.3). Hence it converges exponentially to a

circle with center ¢, and radius 2—00
T

5 Higher order curvature flow

In this section, we consider the higher order curvature flows (1.8). This is
the H~"-gradient flow of length. Indeed, for any ¢ € H™™ | we have

iL(f + epv)

de - —/OL Rpds = —/OL{(—l)mc‘?;”R} (8, ™) ds

_ _FAL[a;m{<—1W%ﬁm%}}(a;m¢>d8

=~ (~1)" ", )

Since (1.8) is a parabolic equation, f is smooth for ¢ > 0 as long as the
solution exists. Hence by shifting the initial time, we may assume the initial
data is smooth. Then we have the following theorem.

e=0

Theorem 5.1 Assume that f is a global solution of (1.8) such that the initial
rotation number is 1 and the initial (signed) area is positive. Then for each
¢ e NU{—1,0}, there exist Cy > 0 and Xy > 0 such that

]g(t) § Cge_két.

Proof. We have
dL - o [ ey "2
—=—[ Of rds=(—-1)" (02"R) kds = — (O'R)" ds
dt 0 0 0
1
= " Lamrilm
dA L L
— = _/ Of -vds = (—1)m+1/ (02") ds = 0.
t 0 0

When ¢ = —1, we have
d d ( 47TA) _ 8mAdL 8TA

@t T @\ =——=———1,5-
e~ dt L? L3 dt L2(m+2)Im: Al

where \_; is a positive constant. Hence, the exponential decay of I_; follows.
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Next we consider the behavior of Iy. Since

Ok = (=1)™O*™ 2k + (—1)"K20*™R,

we have
d dL L ) L L
— Iy = — /%ds+L/ 2/%8/%ds+L/ &%0,(ds)
e’ dt o ! o "
Im IO L~ m 92m+2 m .2 92m o 2 dL
== —Wf+2L/O K{(—l) 83 :‘i—i‘(—l) m@s Ii‘f“ﬁa ds

L
+ (—1)m+1L/ R RO fds
0

IOIm g m+1 )2 m g . . 2m .,
= _W_2L (85 /-@) ds+ (—1)"L Rk (2k — R) 05" R ds
0 0
Iyl,, 1

©72mA1)  [2(m+1) It

+(=D)"L /OL/% (m + 2%) {2 (/%+ 2%) —~ n} 07" ds.

Hence we find
(5.1)

d Iyl ) S e (T 6Ty 8T\ -
Elo_{— 7,2(m+1) - I2m+1) (1) L/O K "‘f“ "_F’f Ok ds.

Then terms on the right-hand side of (5.1) are
L L
(—1)mL/ PO R ds = L/ P (k)0 & ds,
0 0

L L
(—1)m67r/ /%2852mf?;ds:67r/ Py (R)O™F ds,
0 0

B 872
T [2(m1) ™

871'2 L 871'2 L )
—1)’”—/ RO R ds = — O"R)" ds
( T ), T ), (
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by use of integration by parts. Hence we show, by using Young’s inequality,

L
‘L/'%%@@%%
0
C m
< T2 Z Z Imadeadjadm—k—ja
=0 k+j=¢
4m+1 3 4k+1 4(m—k)+3 4541 4(m—j)+3
4(m+l) 4(m+1 4(m+1) (m+1) 4(m+1) 4(m+1)
= L2(m+1 Z Z m+12 Jm+12 J02 Jm+12 Jo
=0 k+j=¢
4(m—k—7)+1 4(k+j)+3
4(m+1) 4(m+1)
X Jmive  Jog
2m+1 2m+3
C m—+1 J m—+1
= LZ(m-i-l) m+1,2¢0,2
C 2m+1 2m—+3

_ 2(m+1) 72(m+1)
T2 (m+1)Im+1 Iy

C m
S Fatmrn (I + C™)

for any € > 0 and appropriate constant C.. Similarly we also have
L
67r/ P (R)0TR ds
0

C m
< T2t Z Im 3k 3 m—k3

6m+1 5 6k+1 6(m—k)+5 6(m—k)+1 6k+5
2 : 6(m+1) 6(m+1) 6(m+1) 6(m+1) 6(m+1) 6(m+1)
m+1) m+1,2 Jm+1 2 J J, +1,2 J

m

C 4m+1 2m+45
J2(m+1)J2(m+1)
= LQ(m+1) m+1,2
4dm+1 2m+5
— C I4(m+1)[4(m+1)
J2(m+1) “m+l 20

C 2m+5
é W <€Im+1 + CeIO 3 ) .

Therefore we have

d IO-[m 2]m—&—l C
—_ <
dtlo + 7,2(m+1) + [2(m+1) = [2(m+1)

By using Young’s inequality and Theorem 3.1, we obtain

+

(dmﬂ FO O )

2m—+5 2m+3 m+1 m+1 1

2
IO 3 :IO Iog éEIO—FCIO_GIO—i—C (1 Im+1+fm+2fnngii)

m—+1

I +€) Ly + Cool

A

EI() + Ce

/N
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where €,¢ > 0 and C. and C.. are appropriate constants. Similarly, for
m = 1, we have

m+1

1 1 m+l 1
I,<C (1311m+1 s ]T;”ﬁ) <C (131 + e> Lper + CI_y.

Taking €, € sufficiently small, we have

d Iyl Cilpia Co omis
(5_2) EIO + 72(m+1) 12(m+1) é [2(m+1) Io +

for sufficiently large t. Since

03 —A_1t
[2(m+1)

dL I,

o T =0
we have -
/ L, dt < oo.
0
From Wirtinger’s inequlity, we obtain
/ Iydt < o
0

for £ € {0,...,m}. From (5.2) and [;* Iydt < oo, we can show

Lol Co oy
[2(m+1) L2(m+1)70

for sufficiently large t. Hence we have
I() § Coei)\ot.

Next we consider the behavior of I, for £ 2 1. By direct calculations, we
have

d _ 20 dL r 0~\2 20+1 r 0~\2
—I, =020+ 1)L*— [ (9;7) ds+ L (0;7)" 0y(ds)
dt dt J, 0

L
Lort / (0'F) (0,0'7) ds
0

and
2zd_LLe~2 _ 2eLm~2 Le~2
(2¢+1)L o (0ik) ds= — (20+ 1)L (O'R)" ds (0sR)" ds
0 0 0
20+1
= — melg,

L L
ot [ (@) ads) = (-1t [T (o) rim s
0 0
1

L
= (—1)m L2 /0 (0lk) > L~ P2 () ds.

n=0
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We can show

2
(53)  B0LE = (1) (-1 S L)

n=0

by induction on . Indeed, since
Ok = (=1)™O*™ 2k + (—1)"K20*™R,
we have

0,05k = 0,05k = 0501k + (O f - K)Osk
_8 { m82m+2~_|_< )m 2827”/{}—1- <a2m )(as/%)
:( )ma2m+3/€_|_( )m2l-€ (85/4,) (agm ) (_ )m 2882m+1/~%
+(=1)"k (957R) (9aF)

n+1

_ ( >m82m+3 Z L2 nPQerl

Hence we obtain (5.3) when ¢ = 1. If (5.3) holds for ¢ = 1, since

(3t8£+1~ 55(?t3f/% + (@f . Ii)af/%

2
—o, {(—mmazm*“% Py Lo ”>P,3r#<n>}
n=0
+ (=1)" (957F) 05 (0;F)
2
_ (_1)m8§m+€+3%+ (_1)mZL (2— n)Pfff%H(/%),
n=0

we show (5.3) for £ + 1. Hence we have

L
22+ / (0'F) (9,0/F) ds
0

— 92041 /L (af-i—m—i—l/»%)Z ds
0

2

L
+ (=1)m2L* ! /0 (0R) Y L= P2 (7) ds

n=0
2
-~ s+ (728 [ 08) S 17

0
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Therefore we have

d 20+ 1 2
E]H—me[e + WImMH

2

L
— (—1)marH / (047) S L= PRz ds.
0

n=0

When n = 0, after integration by parts m times, using Theorem 3.1 and
Young’s inequality, we have

L
(—1)m2L*+! / (0LF) L2 PP (%) ds
0

L
20—1 m+0 ) 2 c
=cL /0 (00*°R) " ds = T2miD I,

< ¢ % m+le+2 2151%
= T2miD TASY PRI o R A

(L%l + 6) Lpyopr + C'EI_l} )

When n = 1, we have

L
(—1)m2L / (05k) L™ Py (k) ds

’ L 2m+¢L
_ (—1)m2r / S o (00) (05%) (92m+*7) ds.
0 k=0
We set

Ky = {ke{0,...,2m+ ¢} | max{k,2m +{ — k} >m + (},
Ky= {ke{0,....2m+(}| max{k,2m +/( —k} S m+(}.

If max{k,2m + ¢ — k} > m + ¢, then min{k,2m + ¢ — k} < m + ¢. When
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k € K;, from integration by parts max{k,2m+¢—k} —m — ¢ times, we have

L 2m-+L
(—1)m2L / S o (00) (047) (0P™H*5) ds
0 k=0
L
_ QL%/ § :(_1)max{k,2m+é—k}—€ (am—i—Z )Pm—&—f( )ds
0 keKy
L
meo 120 0~ k-~ 2m—+-0—k ~
+(—1maL / S o (00) (47) (02™H*5) ds
0 keKo
m~+L C
S oD 2 m+1) > E T s miew s Imes + Togay /T D/
keK, k'= keKs
m4-£ 6k’ +1 6(m+e—k")+5  6(m+L—kK)+1 6k’ +5
6(m+€+1) 6(m+£+1) 6(m+£+1) 6(m+£+1)
é m+1) z : z : m+é+12‘]0 Jm+€+l2 ‘]
keK1 k'=
6(m+0)+1 5
6(m—+0+1) T6(m+e+1)
Jm—f—Z—l—l 2 J
C m+5 6k+1 6(m+L— k)+5
+ JG(m+Z+1) JG(m+Z+1 JG m+£+1)J 6(m+£+1)
L2(m+1) m~+£0+1,2 m—+4+1,2 0,2
keKo
6(2m+e—k)+1 —6(m—k)+5
6(m+£+1) 6(m+0+1)
X it Jog
C 4(m+0)+1 2(m+£)+5
< J2(7n+£+1) J2(’m+€+l)
= L (m+]_) m+€+12
C’ 4(m+0)+1  2(m+£)+5

I4(m+f+1)[4(m+l+1)
- [2(m+41) m+l+1 =0

C’ 2(m+£)+5
<€Im+£+1 +Cd, °* > -

A

[2(m+1)

When n = 2, we have

2m—+~£

P2m+€ Z Z Ck,] a KJ )(82m+€ k— jK/)

a=0 k+j=a

We set

Koq = {(k,5) | k+j=c, max{k,j,2m+ ¢ —k — j} > m+ (},
Koo = {(k,j) | k+3j=a, max{k,j,2m+{—k —j} S m+(}.

If max{k,j,2m + ¢ —k — j} > m + {, the other terms are less than m + /.
When k € K, 1, from integration by parts max{k,j,2m+¢—k—j} —m—/
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times, we have

L 2m—+¢L
(—1ymarH / S°S e (05) (095) (27 HFIR) ds
0 a=0 k+j=a
L 2m+€
2L2€+1/ (_1)max{k,j,2m+f—k:—j}—€ (am-‘rf )Pm-i-f( )dS
,J)GKa 1
L 2m+€
+(—1)m2r / (9%F) (99R) (82 +t-+9R) ds
a=0 (kj VEKq,2

2m+-4 m4£

T Z Y0NS Tvadiadmecwiadmia

a=0 (k,j)eKa,1 B=0k'+j'=0

2m—+4
+ E E Joadkadjadomst—k—ja
: ( 7])EKC¥ 2
2m+-L m+L A(mae—k)+3 4/ 41 A(mte—j')+3
< 2 : 2 : § : 2 : 4(m+£+1) 4(m~+£0+1) 4(m+L0+1) 4(m—+£+1)
= m+1 m—+0+1,2 JO Jm+€+1,2 JO
a=0 (k,j)€EKa,1 B=0 k'+j'=8
a(mAL—k' —j)+1 Ak +5)+3  A(m4L)+1 3
4(m+£0+1) 4(m—+L0+1) 4(m+£+1) 4(m—+L+1)
X Jonteq12 Jo,2 nttr12 Jo2
2m—++4 Ak+1 4(m+L—Fk)+3
4(m+£+1) 4(m+é+l) 4(m+£+1) 4(m+£+1)
m+1) : : z : ‘]m+€+1 2 J ‘]m—l-f—i-l 2 JO
a=0 ’])GK(X 2
4541 4(m4+L—)+3  4@m+L—k—j)+1 —4(m—k—75)+3
I(m+e+1) A(m+e+1) A(m+e+1) 2(m+l+1)
X Jtir1s Jo2 i1 Jo2
C 2(m+0)+1  2(m+0)+3
_ J m+L£+1 J m—4+£+1
- L2(m+1 m+£+1,2 0,2
C 2(m+0)+1  2(m+£)+3
_ [2(m+£+1)[2(m+€+1)
- L (m+1) m—4£+1 0
C (m
+£)+3
é W <€]m+€+1 + O ] )

Taking € > 0 sufficiently small, we obtain

d 20+ 1 Ch Cs 2AmtH+5 2(m+0)+3
d_[ +L2(m+1 I IE+L2 m+1)Im+”1 s ,2(m+1) ([1 +h * +

for sufficiently large ¢ > 0. Hence we obtain

Ig § Cge_/\ét.
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From Theorem 5.1, the claims (A)—(F) in Theorem 4.2 hold also for global
solution of (1.8).
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