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Abstract 

The advancement of technology in research is increasing with several 

applications in robotics. Smart robotic wheelchair studies is one of them, which 

could provide user-friendly interfaces and/or autonomous functions that meet the 

needs of severely impaired users along with an aging society. Powered 

wheelchairs have been developed for people that lack muscle control (e.g., due to 

spinal cord injuries) and have difficulties in operating unpowered wheelchairs. 

However, many people have struggled in operating powered wheelchairs and in 

practice, are often accompanied by companions. For some wheelchair users, 

traveling by using wheelchairs may be a difficult task, especially when they are 

in dynamic environments where pedestrians move around in dense public areas 

such as at bus stops, airport terminals, shopping malls, and so forth. In addition, 

performing tasks such as boarding buses or climbing up a certain height is of 

great importance. Thus, to provide a better quality of life for individuals like the 

elderly, physically disabled, and mentally handicapped people, there are growing 

demands for advanced Smart Robotic wheelchairs that have independent 

mobility functions that can navigate and sense information from their 

environment and respond in useful ways without caregiver support. 

A large majority of the robotic wheelchair research to date has focused on indoor 

areas. Outdoor navigation should also be considered among environments people 

frequent. There are many possible functionalities for an advanced Smart 

Wheelchair in outdoor environments like the detection of outdoor terrain to run 

steadily, static and dynamic obstacles to avoid them, steps to climb up/down, and 

so forth. This thesis is specifically focused on navigation in outdoor crowded 
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environments to move smoothly among people along with bus and bus door 

detections to get on/off buses for transportation while considering practical 

issues such as sensors and the computational cost of the robotic wheelchair with 

real-time autonomous operations. To develop such wheelchairs, Computer 

Vision techniques are essential for detection and further analysis and also our 

system should run in real-time. Thus the system should have (1) High detection 

speed, which can be obtained by using simple algorithms using less 

computations and it should use a notebook laptop for portability since 

wheelchairs have a limited power source, (2) High accuracy, which we achieve 

by using a Neural Network, and (3) High precision measurement for detecting 

exact locations of necessary objects, relative to the wheelchair. 

To achieve these goals, this thesis first proposes a smart robotic wheelchair 

system that is able to detect pedestrians and also control the wheelchair 

movements to avoid pedestrians smoothly including user comfort in mind. This 

thesis presents a method for our Smart Wheelchair to maneuver around 

individual and multiple pedestrians by detecting and analyzing their interactions 

and predicted intensions with the wheelchair. Our Smart Wheelchair can obtain 

head and body orientations of pedestrians by using TensorFlow based OpenPose. 

Using a single camera, we infer the walking directions or next movements of 

pedestrians by combining face pose and body posture estimation with our 

collision avoidance strategy in real-time. Experimental results show our 

approach is promising. We collected data from a train station and also from our 

campus to evaluate our method. Moreover, we determine the relative distance 

between pedestrians and the wheelchair by detecting how much of the image 

frame the pedestrians occupy (we call this “coverage”), to maintain a safe 

distance from pedestrians. If the distance between a given pedestrian and 

wheelchair is nearly 1m (which indicates 60% coverage of the pedestrian in the 

camera image), the wheelchair stops and processes the next frame and gets 

directions until it sees a clear path. For an added layer of safety for the user, we 

also use a LiDAR sensor for detection of any obstacles out of the camera field of 

view to avoid collisions in advance. The final system results in autonomous 
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navigation that generates wheelchair movements that are safe and comfortable to 

the wheelchair user and other people in real-time multi-person scenarios. 

In addition, we propose a bus boarding wheelchair system that can precisely 

detect bus and bus doors (open-door and close-door) using Convolutional Neural 

Networks (CNN) based image recognition. This is an extension of our ongoing 

work on a bus boarding wheelchair system in terms of the camera processing, 

vision component. For that, the YOLO Dark-net based object detection approach 

is employed. The system needs to operate in real-time for proper detection 

despite our wheelchair platform having limited power. Therefore, we modified 

one of the YOLO versions called Tiny-YOLO to run at a fair amount of speed 

around 10FPS on our notebook PC. For accurate detection of buses with open 

and closed bus doors, we trained our image recognition system with 1,800 

different images for each of these classes. The overall precision of the system 

was measured using the Intersection of Union (IoU) method and we achieved an 

overall 70% average result in detection. Once our system can detect a given bus 

with an open door using our fast and modified Tiny-YOLO, we then apply a 

Hough line transform algorithm to get accurate and precise localization of the 

open door lines. To evaluate the performance of our proposed method, we also 

compare the accuracy of our modified Tiny-YOLO and our proposed combined 

detection method with the original ground truth. Moreover, we achieved an 

average 90% IoU, which was a significant improvement over the modified Tiny-

YOLO. This information is indispensable for our bus-boarding robotic 

wheelchair to board buses. In real experiments with a bus, we also see the 

effectiveness in detecting the buses and bus doors. Consequently, we propose a 

Smart Wheelchair that can detect buses and precisely recognize bus doors, 

whether they are opened or closed for automated boarding before receiving any 

bus boarding commands.  

Finally, we demonstrated successful operation of the proposed smart robotic 

wheelchair system using our method, which grants freedom of movement 

through pedestrian in urban environments.  
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Chapter 1 Introduction 

1.1 Motivation 

In today’s world, the elderly and disabled are increasing day by day. According to [1], 

8.5% of the world’s population are aged over 65 and not all of them live a healthy life. 

Moreover, about 15% of the people in the world are disabled [2]. So, there are growing 

demands for wheelchairs that can support them. Powered wheelchairs have been 

developed for people that lack muscle control (e.g., spinal cord injury) and have 

difficulties in operating unpowered wheelchairs. Most people with 

cognitive/motor/sensory impairments, whether due to disability or disease or aging, rely 

on power wheelchairs for their mobility needs. However, clinical studies show a 

significant number of such people have found difficulties in operating their powered 

wheelchairs [18]. Among 200 practicing clinicians in the U.S. 40% of their patients find it 

hard or impossible to control powered wheelchairs [6]. 

Nowadays, there are a vast number of technologies, which improve the quality of life 

for many by providing independent mobility for individuals like the elderly, physically 

disabled, and mentally handicapped [3, 4, 5, 16, 17]. For some wheelchair users, traveling 

by using wheelchairs may be a difficult task, especially when they are in dynamic 

environments where pedestrians move around in dense public areas such as airport 

terminals, shopping malls, train stations, and so forth (Figure 1.1). Researchers have come 

up with “Smart Robotic Wheelchairs” that have user-friendly interfaces and autonomous 

functions that can navigate and sense information from their environment and respond in 

useful ways [19]. Therefore, Smart Wheelchairs should have high maneuverability and 

navigational intelligence with autonomy, which will provide safety and ease of operation 

to both users and pedestrians along with avoiding obstacles and maneuvering through 
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doorways or any narrow spaces, reducing the workloads of caregivers (Figure 1.2). Most 

recent Smart Wheelchairs are used in indoor environments but Smart Wheelchairs should 

provide autonomous functions in outdoor areas such as roads and other places to move 

around too. 

 

Figure 1.1– Wheelchairs in outdoor environments. 

 

 

Figure 1.2– To advance Smart Wheelchairs. 
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There are many possible functionalities for an advanced Smart Wheelchair in outdoor 

environments like detection of outdoor terrain to run steadily, avoid static and dynamic 

obstacles, steps to climb up/down, and so forth. The method in [20] investigated the 

primary concerns in developing outdoor safe navigation for Smart Wheelchairs by 

detecting any given terrain’s smoothness and recognizing categories of the terrain for a 

specified given path. One of the important functions of autonomous wheelchairs is to 

detect and avoid pedestrians in outdoor crowded environments to move smoothly among 

people. 

Researchers have developed many ways to detect people and avoid them for 

wheelchairs. For example, the approaches in [7, 8], detect pedestrians as static obstacles 

but only in indoor environments and a 2D grid safety map was given for navigation. Other 

approaches have assumed simple independent motions for pedestrians (e.g. constant 

velocity) [9] and avoid them using simultaneous localization and mapping (SLAM). In 

actual human occupied environments, pedestrian motions can exhibit a lot of variation. 

One of the main drawbacks of these methods is that their Smart Wheelchairs are not 

familiar with pedestrian behaviors and movements in real-world environments. Pedestrian 

behaviors in the real-world should be taken into account. One observation we have made 

is that when a wheelchair encounters pedestrians that are aware of it, the pedestrians try to 

make way for the wheelchair. Hence, when pedestrians are aware of the wheelchair, the 

wheelchair can generally maintain its current trajectory. Therefore consideration of how 

pedestrians interact with the wheelchair is essential to determining how the wheelchair 

should plan its path for navigating crowds.  

In our previous works [10, 11, 12], we considered the awareness levels of pedestrians 

by detecting face/head orientations towards the wheelchair and devised a Smart 

Wheelchair navigation strategy where head detection and the orientations of pedestrians 

was used for collision avoidance in indoor environments, using both RGBD and laser 

sensors. The experimental results in those studies showed that the wheelchair could detect 
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and avoid a single pedestrian by observing his/her awareness of the wheelchair. However, 

there are also situations in real-world environments where some pedestrians might not be 

aware of the wheelchair even though they are facing towards wheelchair. Therefore, to 

drive smoothly and successfully in dynamic environments among multiple pedestrians, 

using only awareness from face detection and orientations is insufficient for obtaining an 

acceptable amount of information for human avoidance. There are two ways to obtain 

information on the pedestrians’ movements. The first way is through interactions that 

indicate pedestrian awareness of the wheelchair and another is through pedestrian 

intensions, which can be obtained from body orientations predicting the next movements 

of the pedestrian. When people walk in any given environment, the personal spaces (PS) 

proxemics concept [13] needs to be considered. The PS proxemics concept indicates that a 

certain amount of boundary around people exists and people use this boundary space to 

protect themselves from collisions. Thus as long as people are aware of other pedestrians 

(or wheelchairs) in the environment, they will make an attempt at avoiding collisions by 

reorienting their bodies and moving along a new direction. We are interested in exploring 

such important circumstances, where we consider pedestrian awareness of the wheelchair 

along with predicting their intended future movements so that the wheelchair maneuvers 

smoothly and safely in an effective manner in crowded real-world environments, where 

pedestrians and the wheelchair can collaboratively pass each other. 

Additionally, in this thesis we investigate navigation in outdoor environments with bus 

and bus door detections to get on/off the buses for transportation while considering 

practical issues such as sensors and the computational cost of the robotic wheelchair with 

real-time autonomous operations. Furthermore, moving in an outdoor environment, 

wheelchair users sometimes also need to travel long distances and so might need an easy 

mode of transportation like riding buses or trains. If we consider this type of situation, 

there are still some difficult barriers for Smart Wheelchairs to overcome for stable 

autonomous operation. For autonomous operations in such environments where the 

wheelchair would have to climb up or down to certain heights, LiDAR processing is 
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essential for accurate measurement of heights and distances. In bus boarding, the 

wheelchair system needs precise detection of the bus door’s distance and the height of the 

bus doorstep for boarding on the bus. 

In our previous work [23], a single laser bidirectional sensing based approach to step 

detection and step height measurement was used by our Smart Wheelchair to detect bus 

doorsteps. Our wheelchair provides for autonomous movement in outdoor terrains and can 

climb onto steps like stairways or at bus doorways without any need for additional support 

from lifts/ramps. 

Nevertheless, using only LiDAR processing has some drawbacks. Before measurement 

of doorstep heights and distances, our wheelchair should be able to perform real-time 

operations like detecting bus doors and door positions accurately and precisely. 

Performing such real-time detection using only LiDAR would be difficult. Therefore, 

Smart Wheelchairs require a sensing system that can make use of cameras as well. This is 

because they could provide fast, precise, and accurate detection in conjunction with 

LiDAR processing for further reliability support. One of the main goals in this thesis is to 

focus on the vision part, involving camera processing for the bus boarding aspect of our 

Smart Wheelchair. In the camera processing part, the Smart Wheelchair at first needs to 

detect the presence of buses at bus stops. After detection of the bus, it must identify the 

bus doors and which door is open. If the wheelchair recognizes the open door accurately 

and precisely with approximate estimates of the bus door width, then further detection of 

appropriate and exact locations of that door with respect to itself can be performed by 

LiDAR processing for accurate boarding of the bus. 
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1.2 Objectives 

In this thesis we aim to acquire two of the most important functions for our advanced 

Smart Wheelchair. 

1. Pedestrian Avoidance: The Smart Wheelchair should work in crowded 

environments to move smoothly among many people. 

2. Bus and Bus Door Detection: The Smart Wheelchair should also have the ability to 

get on/off the bus for transportation (we focus on the Computer Vision part our 

wheelchair project in regards to bus boarding). 

To develop such a wheelchair, Computer Vision techniques are essential for detection 

and further analysis. In addition, our system needs to operate in real-time. Therefore, the 

system should have (1) high detection speed which can be achieved by using a simple 

algorithm for less computations and using a notebook laptop for portability since Smart 

Wheelchairs have a limited and low power source, (2) high accuracy which can achieved 

by using a deep neural network, and (3) high precision measurement of exact locations of 

detected objects with respect to the wheelchair. 

For pedestrian avoidance, we propose a method to enhance the movements of Smart 

Wheelchairs for severely impaired users by analyzing and detecting the intensions and 

interactions of individual and multiple pedestrians. In our experiments, we employ a 

system that is mostly based on one RGB camera for frontal observations. We use a 

Tensorflow based OpenPose [14] system to detect and obtain human skeleton data of the 

full body and different body parts, and estimate any given pedestrian’s body and face 

orientations. From this, we create a model for estimating the pedestrians’ awareness and 

next movements. Our study consists of three steps for analyzing both individual and 

multiple moving pedestrians. In the first step, we determine the head orientations to see if 

any given pedestrian is aware of the wheelchair or not. In the second step, we determine 

the body orientations for estimating the intended future movement directions of 
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pedestrians. Finally, we combine these two orientations (head and body) to determine a 

strategy for which direction our Smart Wheelchair should move in to avoid collisions with 

pedestrians in real-time. Moreover, we determine the relative distance between pedestrians 

and the wheelchair to check if the pedestrians are too close to the wheelchair, to maintain a 

safe distance away from pedestrians. During its maneuvers, for added safety, we also use a 

laser sensor that scans for surrounding objects that might collide with the wheelchair and 

generate steering commands for avoiding them by using our previous method described in 

[11]. 

For Bus and Bus Door detection, we propose a bus boarding wheelchair system that 

can get onto a bus using Convolutional Neural Network (CNN) based image recognition 

for reliable and precise localization of bus doors. This is a work on a bus boarding 

wheelchair system in terms of the camera processing, vision component. The visual 

processing work presented here is used in a smart six wheeled Bus-boarding Mobility 

Robot (BMR) wheelchair we developed in collaboration with Toyota Motor Corporation 

and the University of Tokyo [29]. Specifically, we use deep learning for image recognition 

to identify buses, open doors, and closed doors. Before boarding a given bus, for real-time 

detection operations, we modified the Tiny-YOLO model [30] to run faster than the 

original Tiny-YOLO in CPU mode. Once our system can detect a given bus with an open 

door using our fast and modified Tiny-YOLO, we then apply a Hough line transform 

algorithm to get accurate and precise localization of the door line. In the end, after 

determining the bus door’s position, we feed the information to our BMR wheelchair for 

LiDAR processing for fine-tuned estimates of bus doorway dimensions to complete the 

bus boarding process. 

1.3 Research Contributions 

This research resulted in an advanced Smart Wheelchair system with people avoidance 

features for maneuvering through crowed environments and bus door detection features 
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for bus boarding. The system works by letting the user just sit on the wheelchair around 

bus station. The detection of people and movement tasks of the wheelchair are taken care 

of by the vision camera, notebook laptop and built-in motorized system, reducing the 

workload of the user. Research contributions include the following: 

 An experimental paradigm for designing a detection system to detect people by 

only a vision system. (Chapter 4) 

 An experimental paradigm for studying how robotic wheelchairs can detect people 

by detection system. (Chapter 4) 

 An experimental paradigm for studying how to design a pedestrian avoidance 

system. (Chapter 4) 

 An experimental paradigm for studying how to measure the distance between the 

wheelchair and pedestrians. (Chapter 4) 

 An experimental paradigm for studying how a vision system uses classifications of 

different objects and this classification approach could be used. (Chapter 5) 

 An experimental paradigm for designing a new modified convolutional neural 

network for detecting Buses and Bus Doors in bus stations for boarding onto a 

given bus. (Chapter 5) 

 Finally, an experimental paradigm for describing the operation of the autonomous 

wheelchairs to find a bus and its bus door with precise measurement of the door for 

boarding. (Chapter 5) 

1.4 Organization of Sections 

Chapter 2 - Background 

Chapter 2 provides the background. This part concerns current state-of-the art techniques 

in Smart Wheelchairs. We provide an overview and discussion of different functions 

needed for advanced Smart Wheelchair. 
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Chapter 3 - Detection and CNN Networks 

In chapter 3, we explain our selected CNN networks among different types of CNN 

networks and their detections in terms of speed and accuracy. At the end of the chapter, 

we specifically focus on two types of objectives, one is on human pose and the other is on 

object detection techniques and methods. 

Chapter 4 - Pedestrian Avoidance 

In this chapter, our wheelchair maneuverability approach for pedestrian avoidance is 

discussed. People detection techniques and methods using their interactions and intensions 

with the wheelchair are also explained in this chapter. 

Chapter 5 - Bus and Bus Door Detections 

This chapter describes CNN based detection of a bus boarding Smart Wheelchair that can 

detect buses and bus doors precisely using a vision system. Our proposed method supports 

the Smart Wheelchair for precisely localizing the bus door, is also explained in this 

chapter. 

Chapter 6 - Conclusions and Future Work 

Finally, we conclude the thesis with a summary of our Computer Vision method using a 

deep neural network framework. This framework can be adopted in Smart Wheelchairs to 

make it more convenient to users, followed by a discussion on future works and feasible 

applications. 
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Chapter 2 Background 

The overall goal of this research is to create a smart robotic wheelchair that moves in a 

manner that is safe and socially acceptable to the humans and also detects buses and bus 

doors for boarding. As such, this thesis draws on work from many fields, including Smart 

Wheelchairs, human-robot interaction, and human information retrieval. 

We review the concepts and showcase the latest human-computer interface hardware, 

and Computer Vision innovations made in recent years. These tools grant people with 

disabilities not only mobility but also the necessary help and support to handle activities in 

daily life. We hope that the information gathered in this study will enhance awareness of 

the status of modern Smart Wheelchair technology and eventually increase the functional 

mobility and productivity of people who use powered wheelchairs (PWs). The rest of this 

chapter is organized to describe robotic wheelchairs with their hardware, and object 

detection functionalities. 

2.1 Smart Wheelchair Review 

The different types of wheelchairs can be broadly separated into manual wheelchairs and 

automatic wheelchairs (Figure 2.1). Manual wheelchairs need to be propelled or pushed by 

the user or a caregiver. When it comes to manual wheelchairs, there are both non-

motorized and motorized models (powered or electric wheelchairs) (Figure 2.1). As the 

name suggests, motorized wheelchairs have a motor and rechargeable battery and are 
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moved using a hand control on the armrest, requiring only minimal effort from the user. 

Automatic wheelchairs, provide the highest level of independence and convenience. They 

have a lever on the armrest to control the speed and direction, the inclusion of a motor 

makes navigating slopes easy, while the small turning circle allows use indoors and 

outdoors. Among automatic wheelchairs, there are two types, one is the semi-autonomous 

type and the other is the autonomous type (Figure 2.1). The autonomous type lets the 

wheelchair move automatically in known environments to a final destination that is pre-

selected by the user. The semi-autonomous type on the other hand lies in between both 

controllers in a sense that the computer performs short-term route planning and reactively 

avoiding obstacles, and the users’ only interrupt it when they wish to deviate from the 

plan. In such automatic wheelchairs, some researchers adds essential features to fully 

develop them into Smart Wheelchairs. 

 

Figure 2.1– Wheelchair Categories 
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In recent years, numerous methods have been introduced for developing smart robotic 

wheel chairs to accommodate the disabled. The trends in development can be broadly 

classed into three main areas: 1) Improvements to the assistive technology mechanics, 2) 

Improvements to the user-machine physical interface, 3) Improvements to shared control 

between the user and the machine. One of the key aspects of smart robotic wheelchairs is 

to provide independent mobility for users with severe impairments who cannot control the 

wheelchair by means of a standard joystick. Generally, the developed Smart Wheelchair 

platform highly depends on the user's profile (i.e. abilities and disabilities), and there is no 

single solution that is suitable for all users. Based on knowledge about what type of input 

medium that the users are able to run, we can gain insight about the appropriate level of 

assistance. 

2.2 Smart Wheelchair Hardware 

The basic components of a Smart Wheelchair are shown in Figure 2.2 and described as 

follows: 

 Control Unit: This controls the wheelchair movements (i.e. steering commands). 

 Wheels: Which have installed motor(s) in them. The drive system, which may be 

front-wheel, rear-wheel, center-wheel, or all-wheel-drive. 

 LiDAR: This is used for robust localization and map building to allow for high-

level decision making in environments. 

 Human Interface: The Smart Wheelchair users have a choice between hand 

joysticks, sip-n-puff controls, chin joysticks, or head joysticks for manually 

controlling the wheelchair. Higher Level Input for setting the goal, the path, and 

restrictions such as the speed of driving are also provided. Moreover their might be 

a touchscreen to further improve the ease-of-use of the Smart Wheelchair. 
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 Vision: We propose a realistic system (no lasers, just cameras) for navigation in 

outdoor environments with occlusion detection and avoidance. The goal is find the 

fastest and safest path that will prevent our wheelchair from getting stuck and 

injuring the user. 

Apart from the basic components of the Smart Wheelchair, our wheelchair also has 

common components like batteries and a seating system, which has also been upgraded. 

The first powered wheelchairs derived their power from two 24V wet cell batteries. But 

these batteries have to be removed from the wheelchair during travel on airplanes. They 

were eventually replaced by dry cell batteries. Seating systems are typically upgraded to 

include cushions that use foam, or air to prevent pressure sores. Backrests are typically 

padded with foam and can be motorized to tilt and recline. Lateral supports keep the user 

from tilting side-to-side. Footrests are either removable or motorized to accommodate a 

more comfortable reclining position. 

 

Figure 2.2– Smart Wheelchair Hardware 
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To avoid obstacles, Smart Wheelchairs need sensors to acquire surrounding object or 

structure information around them. The ultrasonic acoustic range finder (i.e., sonar) is the 

most frequently used sensor by Smart Wheelchairs. Sonar sensors are very accurate for 

objects at an angle or head-on if there are no other sound frequencies around. However, 

sonar sensors are vulnerable to "cross-talk," which happens when the signal generated by 

one sensor produces an echo to a different sensor. We can find more accurate obstacle and 

drop-off detection with laser range finders (LRFs), which provide a 270◦ field of view. 

There are many experiments using LRF sensors. However, these LRFs are expensive, are 

large, and consume a large amount of power, which will make the Smart Wheelchair very 

difficult for production at a cheap rate for purchasing by the average user. 

A complete system with intelligent mobility aids to impaired users needs sensors that 

are accurate, small, lightweight, cheap and impervious to environmental conditions (e.g., 

lighting, precipitation, temperature) with also have low power requirements. 

Computer Vision is perhaps the most promising sensor technology. Cameras are much 

smaller than LRFs and, thus, much easier to mount in multiple locations on a wheelchair. 

Cameras can also provide much greater field of view coverage. The cost of the Smart 

Wheelchair with Computer Vision hardware will be significantly cheap by use of simple 

web cameras and Computer Vision software. These software continue to improve and can 

be updated, which makes successful implementation of a Smart Wheelchair based on 

Computer Vision increasingly likely. 

2.3 Detection Fundamentals 

There are many models, approaches, and techniques used in Computer Vision object 

detectors. Often times, various trade-offs for speed and accuracy between these factors 

need to be considered for real-life applications. Below, we detail some of these factors: 
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 Feature extractors: Takes an input dataset, propagates each example through a 

Convolutional Neural Network (in our case), and returns an array of dense feature 

vectors. Output strides for the extractor controls how the filter convolves around 

the input image pixel matrix. 

 Input image resolutions: It describes the image’s level of detail. Higher resolution 

mean more image detail. 

 Matching strategy and IoU threshold: This allows the network to predict high 

scores for multiple overlapping default boxes rather than requiring it to pick only 

the ones with maximum overlap. This is used to show how predictions are 

excluded in calculating loss. 

 Bounding box regression: The bounding box regressor, instead of predicting the 

bounding box location on the image, predicts the offset of the ground-

truth/predicted bounding box to the anchor box. 

 Training dataset: The training dataset or learning set is the material through which 

the computer learns how to process information. Data augmentation may also be 

used to get more data, by making minor alterations to the existing dataset. 

Examples of minor alterations include changes such as flips, translations, and 

rotations. 

 Prediction function: It takes an arbitrary set of measurements as a data-series and 

returns a prediction value generated by the trained DNN classifier. 

 Feature map layer for object detection: The Convolution layer uses a filter matrix 

over the array of image pixels and performs a convolution operation to obtain a 

convolved feature map layer. 

 Localization loss function: The localization loss is the loss between the predicted 

bounding box correction and the true values. The localization loss for the bounding 

box offsets the prediction and the classification loss for conditional class 

probabilities. 
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 Training configurations: Includes batch size, input image resize, learning rate, and 

learning rate decay. 

Detections and appropriate CNN network selections are discussed in the next chapter. 

2.4 Summary 

This chapter presented different types of wheelchairs. It focused on two main things: the 

hardware configuration of Smart Wheelchairs and our required properties and keypoints 

for detection of objects to avoid them. We also reviewed other types of Smart Wheelchairs 

and their sensor systems to detect obstacles. 
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Chapter 3 Detection and CNN Networks 

3.1 Overview 

CNNs are a class of deep artificial neural networks that are used primarily to analyze 

images. They can classify images, cluster them by similarity, and perform object 

recognition within scenes. For object recognition, these Neural Network algorithms can 

identify faces of individuals, different animals, households, vehicles, and many other 

aspects of visual data. Therefore, nowadays, convolutional nets in image recognition use a 

lot with the help of deep learning. Thus Computer Vision applications like self-driving 

cars, robotics, drones, security, medical diagnoses, and treatments for the visually 

impaired, CNNs are a major component. 

 

 

Figure 3.1– A convolutional neural network [34]. 
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Deep Neural Networks differ from classical single-hidden-layer neural networks in 

that they consist of multiple layers where data is processed in a multistep process for 

pattern recognition [34]. One example of layering of neural network is depicted in Figure 

3.1 

In this chapter, we present details on our CNN framework for detection of people and 

distinct objects. We also discuss our how we adapt existing a conventional deep neural 

networks to our needs. 

3.2 Pose Detection (OpenPose) 

Human pose detection is necessary for our wheelchair to detect of the actions and motions 

of pedestrians. Furthermore, different people may show different poses in executing the 

same action. All these factors will result in large intra-class appearance and pose 

variations, which confuse many existing action recognition algorithms. Human actions, 

particularly those involving whole-body and limb (e.g., arms and legs) movements, and 

interactions with their environment, which contain rich information about them. Therefore, 

if we know the pose of a person, we can further train machine learning models to make 

autonomous systems for our required applications. 

In this section, we investigate several open source deep learning models and code for 

pose estimation to find the most appropriate pose estimation method. 

1. DensePose 

It is based on DenseReg. (Dense Shape Regression) [33]. DensePose adopts the 

architecture of Mask-RCNN with the Feature Pyramid Network ((FPN) features, and 

ROI-Align pooling. Additionally, they introduce a fully-convolutional network on top 

of ROI-pooling. DensePose does not give limb (e.g., arms and legs) movements, it 

only provides outputs in terms of the whole body shape. 
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The goal of the model is to determine the surface location of each pixel, and its 

corresponding 2D parameterization of the part it belongs to (Figure 3.2). 

 

 

Figure 3.2– DensePose Detections [33]. 

 

2. AlphaPose 

AlphaPose [35] is a multi-person pose estimator, and claims to be the first open source 

system (Figure 3.2). AlphaPose performs both pose estimation and pose tracking on 

images, videos, or lists of images. AlphaPose uses a regional multi-person pose 

estimation (RMPE) framework to facilitate pose estimation in the presence of 

inaccurate human bounding boxes. AlphaPose has some limitations like its processing 

speed is very slow compared to other detectors and uses lots of GPU power. 

The limitation of this detection method is that it cannot detect occulated very well. 

And the missing person detector also cause missing detection of human pose. 
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Figure 3.3– AlphaPose Detections [35]. 

 

Figure 3.4– OpenPose Detections [14]. 
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3. OpenPose 

OpenPose [14] in Figure 3.4 is a real-time multi-person key-point detection library for 

body, face, and hands estimation by the CMU Perceptual Computing Lab. It also has 

TensorFlow based implementation of the Human Body Pose which is much faster than 

other detector. This approach uses Part Affinity Fields (PAFs) [36], to learn to 

associate body parts with individuals in the image. 

The OpenPose algorithm pipeline is shown in Figure 3.5. The process starts form 

grabbing an image form the camera and processing it in a neural network. The output of 

the network returns a tensor consisting of 57 matrices. In the next process, a heatmap and 

PAFs are used to extract the location of the body parts containing 18 matrices and couples 

the parts into pairs covering 38 matrices. After receiving body parts, non-maximum 

suppression (NMS) applied to get peak values. Lastly, a bipartite graph is used to get the 

right connections between pairs with the help of line integral weights and using merging 

operations, we get the output detected image. Here, the assignment algorithm is used to get 

the highest score. 

For our pedestrian avoidance system we used the OpenPose detector as our base 

system. Details of our methods are described in Sec. 4.3. 
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Figure 3.5– OpenPose Pipeline [36]. 
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3.3 Object Detection (YOLO) 

In recent times, Convolutional Neural Networks have been used in many applications of 

Computer Vision and have outperformed many algorithms in visual perception or object 

recognition [24,25], but most of these networks need specialized, high-powered, costly 

hardware (e.g. NVIDIA GPUs) to achieve high performance [26]. There are various kinds 

of CNN algorithms for object detection, such as R-CNN, Faster R-CNN, Mask R-CNN, 

SSD, YOLO (Figure 3.6), and from their speed vs. accuracy trade-offs we found that 

YOLO (You Only Look Once) is best for fast detection [27,28], compared to other. 

 

 

Figure 3.6– Various kinds of CNN algorithms for object detection. 

Standard YOLO version requires GPUs but there is a tiny version for the CPU called, 

Tiny-YOLO that can be implemented in low-powered machines like those of Smart 

Wheelchairs with a tolerable limited speed in processing and it has 30 layers of network 

structure as shown in Figure 3.7. 



3.3 Object Detection (YOLO)  

 

24 

 

 

Figure 3.7– Tiny-YOLO network structure. 

YOLO model has several advantages over classifier-based systems. It applies a single 

neural network to the full image. This network divides the image into regions and predicts 

bounding boxes and probabilities for each region as shown in Figure 3.8. These bounding 

boxes are weighted by the predicted probabilities. This makes it extremely fast, more than 

1000x faster than R-CNN and 100x faster than Fast R-CNN. The YOLO model can 

processes images in real-time at 45 FPS on GPUs like the GeForce GTX Titan X by 

NVIDIA.  

 

Figure 3.8– Bounding box predictions by YOLO. 
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We note that although YOLO has faster detection speeds, the bounding boxes of 

detected objects sometimes do not give accurate and precise values of the object locations 

according to ground truth in real-time applications. In addition Tiny-YOLO detection 

accuracy and precision is less than original YOLO version. Therefore, we approach a 

modification to the Tiny-YOLO network layers. Our modified Tiny-YOLO network is 

explained briefly in the Sec. 5.3.1. 

3.4 Summary 

In this chapter we discussed about different types of detections. Our focus on human pose 

detection and several pose detection methods are described in this chapter. Nevertheless, 

we found that Tensorflow based OpenPose detection model is best suit for the base of our 

solution to the pedestrian avoidance issue. In addition, we also discover the suitable object 

detector model as Tiny-YOLO version which we will use as a base network for our bus 

and bus door detection problem for our bus boarding Smart Wheelchair. 
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Chapter 4 Pedestrian Avoidance 

4.1 Overview 

In this chapter, we explain our proposed method to enhance the movements of Smart 

Wheelchairs for severely impaired users by analyzing and detecting the intensions and 

interactions of individual and multiple pedestrians. We use an RGB camera to take images 

and process the images with Tensorflow based on the OpenPose system to detect the 

intensions and interactions of pedestrians with our proposed method. 

 

Figure 4.1– Gaze and body orientation of a pedestrian. 
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Our study consists of three steps for analyzing moving pedestrians. In the first step, we 

determine the human gaze for pedestrians’ awareness of the Smart Wheelchair and in the 

second step, we determine the body orientations for estimating the intended future 

movement directions of pedestrians (Figure 4.1). Finally, we apply a strategy for which 

direction our Smart Wheelchair should move to avoid collisions, based on these 

orientations. The system architecture, methods, and results are given below. 

 

Figure 4.2– Our wheelchair system for pedestrian avoidance. 
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4.2 System Outline 

In our proposed system, the Smart Wheelchair needs to have a wide enough range to sense 

the environment so that it can detect the various types of hazards in real environments. We 

use a combination of an RGB camera and laser sensor and evaluate its effectiveness in 

perceiving all possible types of obstacles that exist in outdoor environments and developed 

our robotic wheelchair as shown in Figure 4.2. 

 

Figure 4.3– Our wheelchair sensor detection ranges and our defined “zones” to determine potential 

collisions. The LiDAR's range is shown as the orange arcs. 
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We use a BUFFALO BSW 200M series camera as a major sensing unit for a wide-

viewing angle of 120° and mount it 75cm above the ground in front of the wheelchair with 

a 0° inclination to get an aligned picture with the horizontal plane. This camera has a focal 

length of f=1.8mm with a max resolution of 1920×1080 at 30fps. For our experiments, we 

use 800×600 resolution image frames. 

Moreover, the wheelchair is equipped with a Laser Range Sensor (UTM-30LX by 

Hokuyo) with a coverage angle of 270° installed on the rear frame at 1.05m from the 

ground. In our experiment, we use our previous detection method in [11] as an added layer 

of safety to avoid unexpected obstacles and consider the maximum range of the laser 

sensor to be 5m and set a buffer for free space with a minimum range of 0.5m around the 

wheelchair to avoid collisions like in Figure 4.3. 

In Figure 4.3, we divided the field of view of our vision camera equally into three 

sections as middle (1 and 3), right (2 and 3) and left (2 and 3). Here, area number 1 is 

considered as the area with the most potential for collisions, while area number 2, is 

considered as the “moderate zone”. Area number 3 is considered less prone to collisions. 

Our Smart Wheelchair mainly runs in the forward, left, and right directions. 

4.3 Methodology 

Our Smart Wheelchair system primarily uses two procedures to control its speed along 

with avoidance of obstacles. At first, our system estimates the pedestrians’ head and body 

orientations and with the help of those estimates, we determine their intensions and 

interactions with the wheelchair. Secondly, we use our direction finding technique to 

select the direction at which the wheelchair will move autonomously to reduce the user’s 

workload. 
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Figure 4.4– Human keypoints extracted by OpenPose based on the COCO dataset model. 

4.3.1 Pedestrians’ Pose Estimation 

We used the “Tensorflow based OpenPose” [14] as discussed in Sec. 3.2, for pose 

estimation . The original OpenPose library runs on the Caffe deep learning framework, 

which is computationally intensive. On the other hand, Tensorflow is a very fast 

framework for real-time performance. The Tensorflow port of OpenPose allows for high-

speed performance at the cost of some loss in accuracy. However, we have found that this 

slight decrease in accuracy is a good trade-off for our real-world application. We used the 

pre-trained COCO dataset model [15] of OpenPose in our pro-gram with Tensorflow in 

Python on a Notebook GPU (NVIDIA GTX1070), which gives us detections speeds of 

around 10fps. The result is a network with a depth of 57 layers including 18 layers for 

body parts localization as shown in Figure 4.4, 1 layer for the background, and 19 layers 

for limbs information in each of the x and y directions. 
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Figure 4.5– Measuring head orientation (top) and body pose directions (bottom). 

We use the output data of detected body parts to determine head and body orientations. 

For head orientations, the detection step generates possible regions of the head using the 

neck, nose, two eyes, and two ears. In our detections, we take the nose, eyes, and neck to 

estimate various angles and make the observation that when a person turns his head left, 

the left eye angle is greater than the right eye angle with the connecting line from the left 

shoulder to left ear also vanishing and vice versa as in Figure 4.5 (top). Whereas, Figure 

4.5 (bottom) shows the body orientations, where the left, middle, and right images show 

that the person's body is posing in the left, forward, and right directions respectively. We 

use the coordinates of the neck, two shoulders, and two hips to estimate body orientations. 
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4.3.2 Intension and Interaction Evaluation 

In our system, we have found it effective to first divide the frame equally into three 

sections, namely, the middle, right, and left based on our defined zones in front of the 

camera in Figure 4.3. We then determine human awareness of the wheelchair using head 

orientations and the wheelchair’s movement direction is determined by combining the 

pedestrians’ awareness with their body positions and orientations. 

Whenever a wheelchair encounters pedestrians, the wheelchair can most likely 

maintain its path because the pedestrians usually give way for the wheelchair. However, 

this may depend on the pedestrians’ awareness of the wheelchair. If we assume a person 

does not tilt his/her head towards the ground or is not using a phone while walking, we can 

interpret that he/she may be clearly aware of the wheelchair's presence. We used this 

strategy for all persons detected by OpenPose and with their head orientations estimated 

by our method (Sec. 4.3.1). We point out some basic interactions of pedestrians to 

simplify our problem and assume the types of interactions with the wheelchair based on 

each frame and for how long any given pedestrian interacts with the wheelchair. The basic 

concept of our algorithm for determining the pedestrians’ awareness of the wheelchair 

depending upon the position in the frame and head orientations of pedestrians can be 

stated as: 

• Three conditions, when (1) the pedestrian's position is in the centre of the frame 

and the pedestrian is facing straight, (2) the pedestrian's position is in the right of the 

frame and facing left, and (3) the pedestrian's position is in the left of the frame and 

facing right, then our wheelchair upon detecting these conditions, con-siders the 

pedestrian as looking at the wheelchair i.e. aware of it and that the pedestrian will try 

to avoid the wheelchair. 

• For the rest of the positions and head orientations of the pedestrians, the wheel-

chair will assume that pedestrians are not looking at the wheelchair and unaware of it. 
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• If the pedestrian is looking at the wheelchair for a fraction of a second, the wheel-

chair will assume the pedestrian is unaware of it and will stop and process the next 

frame to get the head orientations to try to determine awareness. 

 

Figure 4.6– Detections process diagram of our Smart Wheelchair. 

Next, we compute body orientations from skeleton data and also count the pedestrians' 

positions in the frame, for determining human intensions. Basically, using the combination 

of pedestrian awareness and body positions in the frame and orientations, we determine 

the probable locations that pedestrians will move to in order to determine where the 

wheelchair should move as shown in Figure 4.6. 

4.4 Autonomous Navigation 

Our Smart Wheelchair uses discrete actions (forward, right, left, slightly right, slightly left, 

slow down, and stop): at each time step, in order to avoid collisions and navigate 

efficiently and smoothly towards the goal. After detecting the awareness of the wheelchair 

and body orientations of the pedestrians with their position in the frame we determine 

which direction the wheelchair should move according to the decisions Table 4.1. 
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Table 4.1 – Decision matrix of wheelchair steering procedure for different scenarios. 

 Person Location 

 In Frame 

Body  

Orientation 

Right Middle Left 

Aware 

Right 

Move Forward 

Move Slightly Left Slow Down 

Straight Slow Down 

Move Forward 

Left Slow Down Move Slightly Right 

Unaware 

Right 

Move Forward 

Move Left Stop 

Straight Stop 

Move Forward  

Left Stop Move Right 

 

We also calculate the partially relative distance by how much the pedestrian is 

covering the frame, for some special cases where the pedestrian is unaware of the 

wheelchair and his/her position in the camera frame appears to be too close to the 

wheelchair. By that we can determine the closest potential collision and avoid the collision 

by stopping the wheelchair. To determine the distance (D) from the camera to a person, we 

consider the usual width of a pedestrian (Y), which is around 400mm and the number of 

pixels the person covers in the image frame (X) as in Figure 4.7. Then, the distance 

equation is: 

 𝐷 = 𝑓𝑌𝐴 𝑠𝑋⁄  (4.1) 
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where, f = 1.8mm is the focal length and s = 4.5mm is the sensor width of the camera.      

A = 800 pixel, is the camera frame width in pixels and X is the pedestrian’s width in 

pixels. We consider the 25% portions of the image frame on both the right and left sides as 

a safe area and the middle as the risky area (Figure 4.7). 

 

Figure 4.7– Distance Measurement Using the Camera 

While operating, if a pedestrian occupies the risky area for example in cases where 

pedestrian has his/her back facing the wheelchair and is not aware of it, then the 

wheelchair stops and waits for the person to clear the way. However, if pedestrians occupy 

the safe areas, the wheelchair will continue to move while performing our detection and 

manoeuvring algorithms. Finally, we use the laser sensor detection process from [11] for 

additional safety, to avoid any pedestrians or objects that are out the camera's range as 

shown in Figure 4.3. Experimental results of our method and discussions are given below. 
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4.5 Experimental Results and Discussion 

We first tested our method inside our lab as in Figure 4.8. We tested our method for a 

single person and attempted to estimate the interactions and intensions of his/her next 

move. Then, we conducted our tests for two persons in a group and analysed their 

behaviours as in Figure 4.8. To test the prediction accuracy, we extracted 2D trajectories 

from real-world pedestrian videos shot in a train station. In Figure 4.8, the estimated 

human trajectory is represented as the yellow colored arrows in the frames and the 

wheelchair moving direction is represented in red. Head directions are represented in blue. 

For planned slight movements of the wheelchair, we denote the arrow as curved otherwise, 

the movements are denoted as straight arrows. Black arrows indicate the slowing down or 

stopping of the wheelchair. 

We now show how our approach works when a pedestrian is too close to the 

wheelchair. For example, the measurement of distance is given in Figure 4.9. Here, the 

distance of the pedestrian is too close, almost 0.7m in front of the wheelchair. In this 

situation, the wheelchair would stop and process the next frame and get directions until it 

sees a clear path which is same as our previous work [10]. Figure 4.10 and Figure 4.11 

shows the detections by a laser sensor and our method respectively. 

In Figure 4.10 we used a laser sensor for our first safety priority and for testing our 

method in outdoor environments. However, later we did not use the laser sensor after we 

reprogramed our method. In our last setup, we used only vision camera to do the all 

sensing operations. Since we developed the distance measurement equation, now we can 

measure the distance of the person in front of the wheelchair. We experimented with our 

method to get quantitative results for evaluation. Our quantitative results are discussed 

below. 

We experimented on 50 trials and our smooth avoidance rate for our wheelchair 

movement is 75.4% as shown in Table 4.2, our wheelchair stopes 4.87% times and people 
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avoiding on their own is about 19.73% times. Therefore, we address this 24.6% results of 

our 50 trials as errors for our wheelchair. There are 18 basic types of scenarios from the 

Table 4.1 where we used all the possible scenarios at least 2 times. 

   

   

  

Figure 4.8– Wheelchair maneuvering directions for different combinations of human head and body 

orientations. 
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Figure 4.9– Distance measurement using camera when a pedestrian is too close. 

 

Figure 4.10– In a train station, detection of pedestrians with a laser sensor. Here the wheelchair is in the 

middle, yellow circle denotes the detected pedestrian, the light blue arrows represent their directions and 

red is for static obstacles like walls. 
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Figure 4.11– In a train station, detection of pedestrians with our method. 

In Table 4.2, the errors are due to delays during the acquisition of data/images. 

Another reason for the false detection of the TensorFlow based OpenPose is due to the 

failure to obtain gaze along with body orientation data. Also, sometimes this OpenPose 

version yields fluctuating body parts data in each frame. This fluctuation might have been 

caused by the resolution of the video frame, since we used 800×600 resolution images. 

Therefore, further improvements need to be devised in later research. 

Table 4.2 – Results of 50 trials on outdoor experiments. 

Trials 

 

On Average 

Smooth 

Avoidance of 

Wheelchair 

ERROR 

People Avoiding 

on Their Own 
Wheelchair Stops 

50 75.4% 19.73% 4.87% 
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(a) Right and Left 

  

(b) Forward and Stop 

Figure 4.12–Detection Final Results with Smooth Avoidance 
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Figure 4.12 shows the final detection result of our experiments where the wheelchair 

avoids pedestrians smoothly and carefully. Figure 4.12(a) shows the turning moments of 

the wheelchair to the right or left. It also can be seen, that our system can avoid people 

from behind as shown in the Figure 4.12(a)(bottom right). Figure 4.12(b) displays the 

forward and stop moments in our experiments. We have modified our distance measuring 

program to show us warnings in the image as in Figure 4.12(b)(right) when a person is too 

close to the wheelchair, for example, 1m to 0.7m. This function is for the safety of the user 

to stop the movement of the wheelchair. Figure 4.12 also shows the division of frames into 

3 parts where in the middle part, most of our operations were successfully executed. 

 

Figure 4.13– Example of our experiment with a user. 

Moreover, we conducted our experiment with users also to observe user understanding 

as shown in Figure 4.13. Here, our autonomous wheelchair speed was a constant as set to 

0.285 m/s, which was very comfortable for users. The frame sequence in the figure shows 

that the wheelchair runs smoothly without stopping. 
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Figure 4.14– Our experimental errors. 

 

Figure 4.15– Average with standard deviation time difference when using joystick (manual), our method and 

our previous method for 25 trials. 
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Although our avoidance method was almost perfect, it does gives some errors results 

also as shown in Figure 4.14. From the figure, we can see that it gives the wrong direction 

for wheelchair to move towards. Sometimes it also gives warnings for stop where the 

Smart Wheelchair does not needs itself to stopping, which can be overcome by modifying 

the algorithm. 

In terms of task completion time using two pedestrians back-to-back, we found the 

time it takes to navigate to the goal by using the joystick (manual control) was the fastest 

and averaged 21.3 secs., as shown in Figure 4.15. We compare our new method with a 

previous one [10] (the HFI-Hands Free Interface method). From the Figure 4.15, we can 

determine that the previous method required almost double the time when joysticks 

(manual control) were used, with an average time of 45.83 secs. for travel over an 8m 

meter distance where the pedestrian stands as an obstacle in the way. Whereas, our method 

required 26.92 secs. for the same kind of scenario, which is much closer to the speed when 

using a joystick. In terms of standard deviation, we can also see that the deviation of 

3.0782 secs. is low, compared to the previous method which is 10.8087 secs. where for 

manual drive it is 2.5385 secs. Our approach is much faster and the wheelchair does not 

stop and wait for the person to move from its way as in our previous method. Our method 

runs smoothly like how a normal user would operate the wheelchair while navigating 

crowed environments. In short, it shows that our method is better than the previous 

method and can work as well as manual control with a joystick in terms of the generated 

motion, time and the distance it travelled. 

To evaluate the effectiveness of our method, we conducted an experiment with 20 

participants to use our wheelchair system in two modes: 

1. With autonomous functions. 

2. With user only operations for avoiding pedestrians. 
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For pedestrians, we appointed some volunteers. Each participant evaluated the systems 

with a questionnaire, providing their feedback on a scale of 1 to 5 representing "I do not 

think so at all", "I do not think so", "Neither", "I think so", and "I definitely think so". The 

question are: 

 Q1. Is it easy to predict the wheelchair’s behavior? 

 Q2. Was it possible to predict in advance when the wheelchair 

would turn to the right, left, or stop? 

 Q3. Was the ride comfortable? 

 Q4. Was it easy to move the wheelchair when in manual mode?/ 

Was the operation easy in automatic mode of wheelchair? 

 Q5. Is it safe in crowded places? 

 

Figure 4.16– Average response scores from the questionnaires in the experiments. 

Figure 4.12 shows the average participants’ responses to the questionnaire. We calculated 

the scores for autonomous functions and also for user only operations (manual operation).  

Question number 1 and 2 are for getting user assumption before riding the wheelchair 

into the autonomous functions. Question 3, 4, 5 are for getting the wheelchair performance 

in autonomous mode. Therefore if these 3, 4, 5 questions receive better scores in 

autonomous compared to user manual operation then our approach is acceptable. From the 
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results, we conclude that for questions 3, 4 and 5, which are the most important survey of 

our method has greater score in autonomous functions than the user operations. 

We have proposed a robotic wheelchair that observes pedestrians and the environment. 

It can recognize the pedestrians' intensions from his/her behaviors and its surrounding 

environment.  Experimental results show our approach is promising. We collected data 

from a train station and also from our campus to evaluate our methods. 

4.6 Summary 

In summary, we have developed a wheelchair maneuverability approach for severely 

impaired users. We have found that our system, which utilizes Tensorflow based 

OpenPose data can detect pedestrian interactions with the wheelchair and their intended 

next movements. We investigated the combination of two possible orientations of 

pedestrians (head and body) and evaluated its effectiveness in perceiving various types of 

wheelchair movement directions in response to pedestrian behaviors in crowded outdoor 

environments. 
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Chapter 5 Bus and Bus Door Detections 

5.1 Overview 

Our main goal in this chapter is to focus on the vision part, involving camera processing 

with the help of a CNN. We propose a bus boarding wheelchair system that can get onto a 

buses using CNN based image recognition for reliable and precise localization of bus 

doors. This is a work on a bus boarding wheelchair system in terms of the camera 

processing, vision component. We used YOLO dark-net as primary detection frame work 

as stated in Sec. 3.3. Some example of detections using YOLO detector is shown in Figure 

5.1. 

 

Figure 5.1– Detections Using YOLO Darknet 
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For real-time processing using our notebook, we modified the Tiny-YOLO version 

provided by the author to run at a fair amount of speed of around 10FPS entirely on a 

CPU. Once our system detects an open door, a Hough line transform algorithm is applied 

to get accurate and precise localization of the door lines. 

The subsequent sections describe our wheelchair system, our proposed methodology, 

and shows the precision over the YOLO bounding boxes on detected class objects. In the 

last sections, we discuss our results and conclusions. 

 

Figure 5.2– Bus boarding Smart Wheelchair system. 

5.2 Our BMR Wheelchair System 

We collaborated with Toyota Motor Corporation and the University of Tokyo to develop a 

new autonomous six wheeled Smart Wheelchair that can overcome the steps ahead of its 
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path like bus doorsteps or escalators. Figure 5.2 shows our proposed Smart Wheelchair, 

which is called the Bus-boarding Mobility Robot (BMR). This configuration makes it so 

the wheelchair can step onto a specific height with the front wheels and simultaneously 

balance itself with the rear wheel. Once the front wheel has a good grip on the upper 

portion of the step, it moves forward, while the middle wheel is lifted up and the 

wheelchair is balanced with the help of the rear wheel. Moreover, the wheelchair is 

equipped a wide vision camera (Logitech c905) for capturing frames. The camera is 

mounted at 75 cm above the ground plane along with our bidirectional sensing system 

[23]. 

 

Figure 5.3– Basic system process diagram. 
 

5.3 Proposed Methodology 

Our proposed system in Figure 5.3 illustrates the basic system process diagram where, we 

use the modified Tiny-YOLO version for primary detection of our predefined class of 
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objects, namely, “bus”, “open-door” and “close-door” of the bus. Afterward if an open 

door is detected the system crops the area around the bounding box and executes our 

Hough line transform algorithm to get accurate and precise localization of the door lines.  

As the localization is not perfectly performed by Tiny-YOLO version, we introduce 

our refinement method to get the precise localization of the bus door. Subsequent sections 

briefly describe our methodology for getting precise bounding box information using our 

system. 

5.3.1 Bus and Bus Door Detection 

In real-time visual object detection, speed is a significant factor to consider along with the 

accuracy of the detection system. Our selected detector model (YOLO model) from Sec. 

3.3 can process images in real-time. In addition, devised a simplified architecture of the 

Tiny-YOLO network that can process images at nearly 5 FPS without using any GPU and 

still maintains almost the same accuracy and precision of YOLO. However, despite that 

fact, such speeds are still too slow for our detection process. Some researchers in [30, 31] 

have devised techniques to reduce runtime by changing the network’s filter sizes and 

layers according to object features. Therefore, we first doubled the numbers of filters in 

the first convolutional layer to extract enough local information and visual features and 

replaced some 3×3 filters with 1×1 filters for reducing the filter size in the following 2 

layers. This boosted the network’s speed but reduced the accuracy and precision. To 

increase the accuracy and precision we down sampled the image to make sure the last 

layer remains the same as Tiny-YOLO. Our modified network is implemented in Python 

using Tensorflow with a 3.6GHz Intel Core i7 CPU. 
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Figure 5.4– Modified Tiny-YOLO layer structure. 

For our research purposes, we trained the network with 3 classes: “bus” and the bus 

door with “closed door” and “opened door” states. The conventional Tiny-YOLO model 

has 30 layers as stated in Sec. 3.3, but in our modified tiny-YOLO network, we reduced 

the layers to 15, since our object class number is less and similar. The network layer 

structure and the layer descriptions are represented in Figure 5.4 and Table 5.1, 

respectively. 

For training, we collected images from different sources like Google, the VOC 2007 

and VOC 2012 datasets, and also from our camera and arranged them such that around 

600 images would be annotated for each class to train the system. So the total images are 

1800 for training and 600 images for validations. In the training period we used the default 

learning algorithms provided by the author of YOLO Darknet. Moreover, we changed the 

batch size to 128, and subdivision to 4 to achieve an improved learning rate. To generate 

better visual features, the training was done on an NVIDIA GeForce GTX Titan X for 

40000 epochs. During training, the image was divided into S×S splits/grids and the output 

of the last layer gives a feature vector, which represents region predictions. These 

predictions were encoded in the last layer as an S×S×(B×5+C) tensor. Where, 𝐵 is the 

collection of predicted bounding boxes in each of the grid cells and their locations are rep- 
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Table 5.1 – Modified Tiny-YOLO Layers descriptions 

Layers Filters Size Input Output 

1. Conv. 16 3 x 3 / 1 736 x 736 x 3 736 x 736 x 16 

2. Maxpool  2 x 2 / 2 736 x 736 x 16 368 x 368 x 16 

3. Conv. 32 3 x 3 / 1  368 x 368 x 16 368 x 368 x 32 

4. Maxpool  2 x 2 / 2  368 x 368 x 32 184 x 184 x 32 

5. Conv. 64 3 x 3 / 1  184 x 184 x 32 184 x 184 x 64 

6. Maxpool  2 x 2 / 2  184 x 184 x 64 92 x 92 x 64 

7. Conv. 128 3 x 3 / 1  92 x 92 x 64 92 x 92 x 128 

8. Maxpool  2 x 2 / 2  92 x 92 x 128 46 x 46 x 128 

9. Conv. 256 3 x 3 / 1  46 x 46 x 128 46 x 46 x 256 

10. Maxpool  2 x 2 / 2  46 x 46 x 256 23 x 23 x 256 

11. Conv. 512 3 x 3 / 1  23 x 23 x 256 23 x 23 x 512 

12. Maxpool  2 x 2 / 1  23 x 23 x 512 23 x 23 x 512 

13. Conv. 1024 3 x 3 / 1  23 x 23 x 512 23 x 23 x 1024 

14. Conv. 1024 3 x 3 / 1  23 x 23 x 1024 23 x 23 x 1024 

15. Conv. 40 1 x 1 / 1  23 x 23 x 1024 23 x 23 x 40 

 

resented by 5 location parameters 𝑥, 𝑦, 𝑤, ℎ, and class label confidence 𝑐. 𝐶 represents the 

number of classes. In our framework, 𝑆 = 7, 𝐵 = 2, and 𝐶 = 3. Each bounding box 

(BBox) requires 6 parameter values: 𝑥, 𝑦, 𝑤, ℎ, class (𝐶), and confidence (𝑐) as shown in 

Equation 5.1. 

 𝐵𝐵𝑜𝑥 = (𝐶, 𝑥, 𝑦, 𝑤, ℎ, 𝑐) (5.1) 
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Here (𝑥, 𝑦) and (𝑤, ℎ) represent the minimum coordinate values of the bounding box and 

width and height of the bounding box, respectively. From these values, the maximum 

coordinate is (𝑥 + 𝑤, 𝑦 + ℎ). 

Finally, the confidence score for each box represents the intersection over the union 

(IoU) between the predicted box and ground truth box with the probability of the detected 

object. The class scores for detecting our three class labels (Bus, Close-door, Open-door) 

were approximately 70%. Figure 5.5, shows the detected class labels on frames for 

different types of buses and their orientations. The state of the door of the bus is vital 

information for our boarding wheelchair. 

 

Figure 5.5– Detection of our classes for different buses. 
 

5.3.2 Precise Bounding Box Method 

YOLO is fast, but then again it is not capable of providing accurate shape information 

beyond a rectangular bounding box for localizing the object in the frame. This is because 

different camera angles can distort the shape of even doors, which have straight line 
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features. Fortunately, the Hough line transform is effective for recognizing basic line 

shapes in image [32]. Therefore, we use the Hough line transform for refined estimation of 

the door’s shape. 

Whenever the CNN network detects any open door of the bus, the system crops the 

image within the bounding information (BBox) to our next layer. Now, the image contains 

mostly bus door pixels where we apply the Hough line transform algorithm to get straight 

lines. To avoid redundant lines, a mask is applied as shown in Figure 5.6 so that we can 

focus on only the lines near the door’s edge. After applying the mask, the layer processes 

the image and uses the Hough transform to find the best three lines that fit with the Open-

door shape. Moreover, we redraw the bounding box with the Hough detected lines to 

detect the bus door precisely before boarding onto the bus. For precise boarding, we use 

the sensor framework for measuring the door width and height of the steps [23]. 

 

Figure 5.6– Masking in cropped image. 

5.4 Experimental Results and Discussion 

Performing bus boarding experiments are always time consuming and difficult to manage 

so we set up a mock bus structure in our laboratory to confirm the effectiveness of our 

proposed method for fast and precise detection of buses and bus doors (in Figure 5.7). 
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Figure 5.7– Experimental setup for detection of bus with our BMR wheelchair. 

 

Figure 5.8– Demonstration of ground truth, YOLO, and our Hough line approach. 
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Our final object detection system runs at 10FPS, which is fast enough to run in real-time. 

From Figure 5.7, we can also see the detected class as “open door” and “close door” in the 

experiment’s setup. But, the detected bounding boxes for the classes are displaced from 

the actual locations of the objects. Considering these inaccuracies, we applied the Hough 

line method to correct the localization of the object. Figure 5.8 demonstrates the 

effectiveness of our method for improved bounding boxes. 

In Figure 5.8, the red, green, and blue boxes represent the ground truth, modified Tiny-

YOLO, and our proposed method respectively. We conducted an experimental evaluation 

has been conducted, for comparing the performance of our proposed method and YOLO 

with ground truth shown in Figure 5.9 and Figure 5.10. In our experiments, we conducted 

22 trials with our mock-up to get a dataset of bounding box values for our tests. 

 

Figure 5.9– IoU score comparison over 22 trials. 
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For comparing the effectiveness, we calculated the intersection over union (IoU) 

between bounding box values from the ground truth with the modified Tiny-YOLO, and 

our proposed method using equation 5.2. 

 𝐼𝑜𝑈 = (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝)/(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛) (5.2) 

 

Figure 5.10– Normalized Euclidean distance comparison over 22 trials. 

Figure 5.9 illustrates the IoU scores of all 22 trials for our modified Tiny-YOLO and 

our proposed Hough Line method with respect to the ground truth. Moreover, Table 5.2 

shows the average value of IoU of our image recognition system and proposed method. 

The average value of IoU of our proposed method indicates an increase in bounding box 

accuracy by nearly 20% over the default image recognition system with respect to the 

ground truth. 

In addition, we measured the Euclidean distance between the minimum and maximum 

values of the coordinates for the bounding boxes from the ground truth, modified Tiny-
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YOLO, and our proposed method. From Table 5.2, we can see from the average Euclidean 

distances, our method is very close to the ground truth values. This is also true for the 

standard deviation and variance of the Euclidean distances, which are also very similar to 

the ground truth. Moreover, Figure 5.10 shows a Normalized Euclidean distance 

comparison and we can also see that our method is very close to the ground truth. So our 

proposed method works better than conventional CNN for localizing accurate door 

positions. 

Table 5.2 – Different types of comparisons between three types of bounding box values. 

Compared terms Ground Truth 
Modified 

Tiny-YOLO 

Our proposed 

method 

Average of IoU value 1.00 0.73 0.90 

Average of Euclidean distance 

of open bus-door width 
2067.29 2277.04 2088.80 

Standard deviation of Euclidean 

distance of open bus-door width 
400.45 283.47 379.90 

Variance of Euclidean distance 

of open bus-door width 
160364.24 80354.40 144326.80 

 

Table 5.3 shows the comparison between Tiny-YOLO and our proposed method with 

ground truth values in terms of error percentage. Form Table 5.3, the average values of 

IoU have a 10% error rate. In addition, the average of the Euclidean distance of the open 

bus-door width has only a 1.04% error rate, which indicates that our method is better than 

Tiny-YOLO in terms of accurately detecting the bus door. 
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Table 5.3 – Comparison between Tiny-YOLO and our proposed method with ground truth values in terms of 

error. 

Compared Terms 

Error with ground truth 

Tiny-YOLO 
Our proposed 

method 

Average of IoU value 27% 10% 

Average of Euclidean distance 

of open bus-door width 
10.14% 1.04% 

5.5 Summary 

In summary, since visual detection is typically costly in terms of time complexity, we 

aimed to reduce the computational cost of CNN based detection for running a real-time 

system. We also showed that a purely CNN based detection method based on bounding 

boxes has some inaccuracies in terms of object localization. Our method of localizing a 

class object (bus door) significantly improves over this. Moreover, we compared the Tiny-

YOLO detection approach and our proposed combined detection method with the original 

ground truth to show that our method performs better localization of the bus door. 



6.1 Conclusions  

 

59 

 

Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

This thesis presented an interdisciplinary research approach that combines techniques and 

methods from several research domains, including sociology, psychology, and human-

robot interaction. Furthermore, it also presents an incremental study in designing the 

methods to estimate important cues for human robot interaction and smooth navigation of 

smart robotic wheelchairs in urban environments. To make Smart Wheelchairs usable in 

outdoor environments, we worked on two important scenarios, (1) maneuvering among 

pedestrians and (2) detection of buses and bus doors for boarding buses. Using gaze 

combined with body orientation, we can avoid pedestrians smoothly and for bus boarding, 

we used simple image processing in the vision part to achieve fast operation of our bus 

boarding wheelchair for precisely detecting open bus doors. Our first priority was the 

user’s experience in outdoor environments with an autonomous and user-friendly Smart 

Wheelchair. 

In outdoor environments, there is an uncertainty concerning the pedestrians' motions 

and in dynamic environments. Thus it is quite difficult for autonomous Smart Wheelchairs 

to detect the pedestrians’ interactions and intensions. In this thesis, we have developed a 

wheelchair maneuverability approach for severely impaired users. We have found that our 

system, which utilizes the Tensorflow based OpenPose detector, can successfully detect 

pedestrian head and body orientations, which in turn, provides feedback on pedestrian 

interactions with the wheelchair and their intended next movements. 
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In summary, we investigated the combination of two possible orientations of 

pedestrians (head and body) and evaluated its effectiveness in perceiving various types of 

wheelchair movement directions in response to pedestrian behaviors in crowded outdoor 

environments. The final system results in auto-navigation that generates wheelchair 

movements that are safe and comfortable to wheelchair users and other people in real-time 

multi-person scenarios. 

In addition, another primary goal of this thesis is to propose a bus boarding Smart 

Wheelchair that can localize detected bus doors precisely using a vision based system. 

Visual detection is typically costly in terms of time complexity. Therefore, we are aimed 

to reduce the computational cost of CNN based detection for running a real-time system. 

We also showed that a purely CNN based detection method based on bounding boxes has 

some inaccuracies in terms of object localization. Our method of localizing a class object 

(bus door) significantly improves over this. Moreover, we achieved a 90% IoU result with 

respect to the ground truth, which was a significant improvement over using only our 

modified YOLO network. Additionally, we successfully boarded our wheelchair onto a 

bus using our bidirectional sensing system using a single LiDAR. Our proposed method 

supports the Smart Wheelchair for precisely localizing the bus door so that the Smart 

Wheelchair can board with less computation cost. 

Moreover, our system also has the capability to sense the environment to detect objects 

like people, buses, and other trained objects according to the system configuration so that 

the wheelchair user would be free to roam around the city independently and comfortably. 

6.2 Future Work 

In the future, we will build a more sophisticated method for very busy environments to 

achieve robust performance with more precise estimates of the pedestrians’ next move and 

free space for our wheelchair to move through. 
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 More complex experiments will be conducted to detect the pedestrians’ 

movements like if the pedestrian were to suddenly appear in front of the 

wheelchair. 

 Complete control free AI movement of the wheelchair. One main point would be 

that after avoiding the people the Smart Wheelchair  would reposition itself onto its 

original track. 

 In the future, we will add a navigation system for reaching the user’s preferred 

location. 

For the future work of our bus boarding wheelchair, we are also planning to speed up our 

computational process for detection by using a simpler version of a CNN that can be run 

on small hardware like a low-cost CPU. 



6.2 Future Work  

 

62 

 

List of Publications 

Published Journal Articles: 

Sarwar Ali, S. Al Mamun, H. Fukuda, A. Lam, Y. Kobayashi, Y. Kuno, “Smart Robotic 

Wheelchair for Bus Boarding Using CNN Combined with Hough Transforms”, Lecture 

Notes in Artificial Intelligence, vol. 10956, pp 163-172, Springer, 2018. 

Sarwar Ali, A. Lam, H. Fukuda, Y. Kobayashi, Y. Kuno, “Smart Wheelchair 

Manoeuvring Among People”, Lecture Notes in Artificial Intelligence, vol. 11645, pp 32-

42, Springer, 2019. 

Conference Proceeding: 

Sarwar Al Mamun, Sarwar Ali, H. Fukuda, A. Lam, Y. Kobayashi, Y. Kuno, 

“Companion following robotic Wheelchair with bus Boarding Capabilities”, International 

Conference on Informatics, Electronics & Vision (ICIEV 2018), Japan. 

 



6.2 Future Work  

 

63 

 

References 

1. National Institute of Health, https://www.nih.gov/news-events/news-

releases/worlds-older-population-grows-dramatically, March 28, 2016, Accessed 

date- November 1, 2017. 

2. Overview of Disability, http://www.worldbank.org/en/topic/disability, September 

20,2017, Accessed date- November 15, 2017. 

3. Gomi, T., Griffith, A.: Developing intelligent wheelchairs for the handicapped. In: 

Assistive Technology and Artificial Intelligence, pp. 150-178). Springer, Berlin, 

Heidelberg (1998). 

4. Al Mamun, S., Lam, A., Kobayashi, Y., Kuno, Y.: Single laser bidirectional 

sensing for robotic wheelchair step detection and measurement. In: ICIC, pp. 37-

47. Springer (2017). 

5. Ali, S., Al Mamun, S., Fukuda, H., Lam, A., Kobayashi, Y., Kuno, Y.: Smart 

Robotic Wheelchair for Bus Boarding Using CNN Combined with Hough 

Transforms. In: ICIC, pp. 163-172. Springer (2018). 

6. Fehr, L., Langbein, W.E., Skaar, S.B.: Adequacy of power wheelchair control 

interfaces for persons with severe disabilities: A clinical survey. Journal of 

rehabilitation research and development, 37(3), pp.353-360 (2000). 

7. Bauer, A., Klasing, K., Lidoris, G., Mühlbauer, Q., Rohrmüller, F., Sosnowski, S., 

Xu, T., Kühnlenz, K., Wollherr, D., Buss, M.: The autonomous city explorer: 

Towards natural human-robot interaction in urban environments. International 

journal of social robotics, 1(2), pp.127-140. 

8. Tomari, M.R.M., Kobayashi, Y., Kuno, Y.: Development of Smart Wheelchair 

System for a User with Severe Motor Impairment. In: IRIS (2012). 

9. Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C., Burgard, W.: Autonomous 

robot navigation in highly populated pedestrian zones. Journal of Field Robotics, 

32(4), pp.565-589 (2015). 

10. Tomari, R., Kobayashi, Y., Kuno, Y.: Enhancing Wheelchair Maneuverability for 

Severe Impairment Users. International Journal of Advanced Robotic Systems, 

Vol.10, 92-105 (2013). DOI: 10.5772/55477 

11. Tomari, R., Kobayashi, Y., Kuno, Y.: Socially Acceptable Smart Wheelchair 

Navigation from Head Orientation Observation. International Journal on Smart 

Sensing & Intelligent Systems, 7(2) (2014). 



6.2 Future Work  

 

64 

 

12. Murakami, Y., Kuno, Y., Shimada, N., Shirai, Y.: Collision avoidance by 

observing pedestrians' faces for intelligent wheelchairs. Journal of the Robotics 

Society of Japan, 20(2), pp.206-213 (2002). 

13. Hall, E.T.: Proxemics. Current Anthropology, 9(2-3), 83-108 (1968). 

14. Human pose estimation using OpenPose with TensorFlow, 

https://arvrjourney.com/human-pose-estimation-using-openpose-with-tensorflow-

part-1-7dd4ca5c8027, last accessed 2019/1/22 

15. COCO dataset, http://cocodataset.org, last accessed 2018/10/5. 

16. Miller, D.P., Slack, M.G.: Design and testing of a low-cost robotic wheelchair 

prototype. In: Autonomous robots, 2(1), pp.77-88(1995). 

17. Simpson, R.C.: Smart wheelchairs: A literature review. Journal of rehabilitation 

research and development, 42(4), p.423(2005). 

18. L. Fehr, W.E. Langbein, S.B. Skaar,: Adequacy of power wheelchair control 

interfaces for persons with severe disabilities: a clinical survey, Journal of 

Rehabilitation Research and Development, 37 (3), pp. 353–360, June, 2000. 

19. Timothy Bourke,: Development Of A Robotic Wheelchair, 

http://www.tbrk.org/papers/uowhonours01.pdf, November, 2001, Accessed date- 

November 20, 2017. 

20. S. Al Mamun, R. Suzuki, A. Lam, Y. Kobayashi, Y. Kuno,: Terrain Recognition 

for Smart Wheelchair, Volume 9773 of the series Lecture Notes in Computer 

Science, Intelligent Computing Methodologies, pp 461-470,ICIC 2016. 

21. Sharma, V. Simpson, R.C. Lopresti, E.F. Schmeler,: M. Clinical evaluation of 

semiautonomous smart wheelchair architecture (Drive-Safe System) with visually 

impaired individuals, J. Rehabil. Res. Dev., Vol 49(1), pp 35–50, 2012. 

22. M. Burhanpurkar, M. Labbé, X. Gong, C. Guan, F. Michaud, J. Kelly,: Cheap or 

Robust? The Practical Realization of Self-Driving Wheelchair Technology, In 

Proceedings of the IEEE International Conference on Rehabilitation Robotics, 

July, 2017. 

23. S. Al Mamun, A. Lam, Y. Kobayashi, Y. Kuno.: Single Laser Bidirectional 

Sensing for Robotic Wheelchair Step Detection and Measurement, Volume 10363 

of the series Lecture Notes in Computer Science, Intelligent Computing 

Methodologies, pp 37-47, ICIC 2017. 

24. Krizhevsky, I. Sutskever, and G. E. Hinton,: Imagenet classification with deep 

convolutional neural networks. In NIPS, volume 1, page 4, 2012. 

25. Hinton G, Deng Li, Yu D,: Deep neural networks for acoustic modeling in speech 

recognition: the shared views of four research groups, IEEE Signal Processing 

Magazine, Volume 29, Issue 6, pp 82-97, Nov, 2012. 

26. F. Abuzaid,: Optimizing CPU Performance for Convolutional Neural Networks, 

http://cs231n.stanford.edu/reports/2015/pdfs/fabuzaid_final_report.pdf, 2015, 

Accessed date- November 22, 2017. 



6.2 Future Work 

65 

27. Zero to Hero: Guide to Object Detection using Deep Learning: Faster R-

CNN,YOLO,SSD, http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd,

Accessed date- January 2, 2018.

28. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,: You only look once: Unified,

real-time object detection, CVPR, June, 2016.

29. M. Ishikawa et al. , Travel Device, Patent Number: WO2016/006248 A1, 2016.

30. G. Ning,: YOLO CPU Running Time Reduction: Basic Knowledge and Strategies.

http://guanghan.info/blog/en/my-works/yolo-cpu-running-time-reduction-basic-

knowledge-and-strategies, March 7, 2016, Accessed date- January 10, 2018.

31. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer,:

Squeezenet: Alexnet-Level Accuracy With 50x Fewer Parameters And <0.5mb

Model Size, In ICLR, Nov 4, 2016.

32. X. Zhao, P. Liu, M. Zhang: A novel line detection algorithm in images based on

improved Hough Transform and wavelet lifting transform, IEEE International

Conference on ICITIS, December 17-19, 2010.

33. R. A. Guler, N. Neverova, I. Kokkinos,: DensePose: Dense Human Pose

Estimation In The Wild, Computer Vision and Pattern Recognition (CVPR), June

18, 2018.

34. M. Peng, C. Wang, T. Chen, G. Liu, Nirfacenet,: A convolutional neural network

for near-infrared face identification, Information pp.61, Vol.7, April, 2016.

35. H. Fang, S. Xie, C. Lu,: RMPE: Regional multi-person pose estimation, IEEE

International Conference on Computer Vision (ICCV), pp. 2353-2362, 2017.

36. Z. Cao, T. Simon, S.-E. Wei et al., "Realtime multi-person 2d pose estimation

using part affinity fields", Computer Vision and Pattern Recognition, 2017.




