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Abstract
In this study, we proposed some objective image quality estimation methods for

full-reference image quality assessment(FR−IQA ) and no-reference or blind image

quality assessment (BIQA ). First, we proposed a new combination technique for

full-reference image quality assessment (FR − IQA ) by utilizing three better-

recognized image quality assessment (IQA ) methods. For selecting the IQA

methods, we firstly pick up the most appropriate IQA index for image quality

databases and then add other two indices which have the most dissimilar features

with the first index. Indeed, the combination of multiple IQA measures naturally

emerges because of the shortcomings of single IQA indices for different types of

distortions.

Over the last several decades, IQA has been a topic of intense research in image

processing field and it is the process of determining the level of accuracy of digital

images. Nowadays, huge amount of images are daily produced for several purposes,

for example, forecasting weather, finding diseases and monitoring criminals. For

these reasons, it is very importance to keep the quality of such images at an

acceptable visual level at the end-users after the production and transmission.

Furthermore, accurate measurement of the image quality is an important step in

many image-based applications. To achieve this goal, effective IQA algorithms are

necessary and have recently become a very hot research topic.

Basically, there are two types of image quality assessment called subjective im-

age quality assessment and objective image quality assessment. Subjective Image

Quality Assessment is the most reliable way to evaluate the visual quality of digital

images perceived by the human observers. In practice, however, subjective image

quality assessment is time consuming and very expensive. Thus, it is often used

to construct image quality datasets and provide the ground-truth mean opinion

scores (MOS ) for evaluating objective quality measures. Objective image quality

assessment is automatically estimating the quality of images by algorithms instead

of humans using MOS provided by human observers and it is more handy than the

subjective IQA . To carry out this requirement, many researchers proposed various

not only single but also combination IQA methods in recent times. However, all

existing single and combination IQA methods still have some shortcomings to be

able to get the highest performance for full-reference IQA . Therefore, we consider

a simple and robust combination method that are suitable for all image databases.

In our combination, we firstly pick up the most correlated IQA method for all types

14



of distortions by applying the algorithm that is used to select the most appropri-

ate method for combination. After choosing the first combined IQA method, we

choose the one which has the biggest index ranking difference with the first one as

the second combined IQA method, since it has the most different characteristics

comparing to the first chosen combined IQA method. Following the same way, we

decide the third one. After selecting the most appropriate methods, we combine

the three methods by employing the weighting factors, exponentaited coefficients

and constant values. Then, we optimize these parameter values by using the Parti-

cle Swarm Optimization (PSO ). Experimental results verified that the proposed

method gives the best performance for various databases and outperforms other

state-of-the-art not only traditional single methods but also previous combination

methods.

On the other hand, it is very difficult to get the information of reference images

for image quality estimation in reality. This gives a motivation to consider blind

image quality assessment (BIQA ) methods which are able to measure the qual-

ity of distorted images without referencing the original images. Therefore, many

researchers develop numerous BIQA approaches using Natural Scene Statistics

(NSS ) based features. In most NSS based BIQA methods, features are ex-

tracted by the wavelet transform and they are usually very slow due to the use of

computationally expensive image transformations. Thus, more recent techniques

promote extracting features from the spatial domain, which leads to a significant

reduction in computation time. However, all existing BIQA methods have still re-

strictions to get the highest performance. To overcome the restrictions, we consider

to construct a very simple and robust end-to-end learning mechanism using con-

volutional neural network (CNN ). One of CNN s advantages is that it can take

raw images as input and incorporate feature learning into the training process.

Thus, in our work, we take distorted images labelled with Mean Opinion Score

(MOS ) as inputs and output the related score for each image. Experimental

results demonstrated that our proposed method outperforms other state-of-the-art

ones.
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Chapter 1
Introduction

1.1 Background

Digital Image processing involves changing the nature of an image in order to ei-

ther improve its pictorial information for human interpretation, or render it more

suitable for autonomous machine perception [1]. However, the recorded image

is often a degraded version of the original scene because of imperfections due to

the different processes: acquisition, encoding, decoding, transmission, conversion,

quantification and digital storage, etc. As a consequence different variety of degra-

dations and distortions exist that need to be taken into account, covering for

instance, essentially blurring effects (e.g. camera motion, out of focus) and noise

(e.g. scatter effects, sensor noise), which generally results in loss of visual quality.

Image restoration (IR ) is one of the most important research fields in image pro-

cessing that is a part of inverse problems, for which the main purpose is to enhance

the quality of an observed image by mitigating the previously mentioned defects

and imperfections [2].

Various IR approaches exist in the literature and, for each particular and spe-

cific application, a guideline should be provided for the choice of the suitable IR

technique, following different criteria: type of degradation, robustness against ad-

ditive noise, degree of a prior knowledge required, computational complexity and

visual quality performance. On the other hand, image quality assessment (IQA )

plays an important role in many applications in image processing, such as image

acquisition, transmission, enhancement and restoration.

Image quality assessment can be defined as to assess or to measure the quality

of an image in accordance or in reference to the original image. For example, in

16



1.1 Background 17

image compression, if the captured image contains distortions then it would not

match with the original image that is stored in the dataset. So, finding the quality

of the image in those areas is very necessary. Usually subjective rating methods are

used for calculating the quality of the image. In this subjective rating, Observers

rated the image quality. The images are given to the experts. Based on the

time requirements available, they give scores to the image. Subjective results can

provide accurate results, but it is time consuming and also a costly process. This

is the reason for the development of objective image quality assessment (IQA )

algorithms that will predict the quality of the image automatically. Figure 1.1 is

the block diagram of the objective IQA measures.

Figure 1.1: The block diagram for objective IQA

1.1.1 Full-reference Image Quality Assessment (FR − IQA
)

In FR − IQA metrics, the perfect quality reference image is fully available for

quality evaluation process. The following are widely cited methods in the literature,

and have been reported to have good performance by researchers.

Structural Similarity (SSIM )

A sophisticated tool for image quality evaluation is SSIM [6] that measures the

similarity between two images and considered to be correlated with the quality

perception of the human visual system (HV S ). SSIM principle is based on the

modeling any image distortion as a combination of luminance distortion, contrast

distortion, and loss of correlation. The detailed explanation of SSIM is described

in Chapter 2.
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Multi-scale Structural Similarity (MS − SSIM )

The multi-scale structural similarity measure [41] is a more flexible method than

the other single scale methods. The existing SSIM algorithm is a single scale

approach. By using this multi-scale method, image details with different resolu-

tions can be incorporated. Low-pass filtering and down sampling are the two main

operations used in this method. The original and the distorted images are itera-

tively low-pass filtered and then down sampling will be done on that by a factor

of 2. For this multi-scale operation, the original image is taken as scale 1. The

highest scale is scale M , so a total of M -1 iterations are taken place. Similar to the

SSIM method, three comparisons have been done here i.e., contrast comparison,

luminance comparison and the structure comparison. Only luminance comparison

is performed on scale M . Other two are performed on the intermediate scales.

The final quality measure is the combination of these three comparisons. This is

a convenient image quality metric than the other single scale approaches.

Most Apparent Distortion (MAD )

Most apparent distortion [20] is mainly based on the property of HV S when judg-

ing the quality of the image. It consists of two strategies for quantifying the

information contained in images. Detection based strategy and appearance based

strategy. In detection based strategy, there are two steps that have to be done.

First, find the locations in which distortions are visible. This can be done by

converting the original and the distorted images into luminance images and then

converting it into perceived luminance. Applying a contrast sensitivity function to

this will give the visibility map. In the second step, combine this visibility map

with the local errors. This detection based strategy mainly used for high quality

images. For low quality images detection based strategy can be used. A log-Gabor

decomposition method can be adopted for decomposing the original image into

different subbands. Comparing the computed local subband statistics would give

the result of appearance based strategy. The final prediction can get by combining

the two strategies.

Feature Based Structural Similarity (FSIM )

The FSIM which is feature based similarity index [12] is mainly based on the low

level features of an image. Most of the methods are based on structural similarity.

Two features are used here for the calculation of similarity index, phase congruency
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(PC ) and gradient magnitude (GM ) where PC is the primary feature and GM

is the secondary feature. PC is a dimensionless measure. For the computation of

FSIM , PC and GM have to be extracted from the image. The PC extraction

can be done by using a log Gabor filter. The gradient operators can be Sobel,

Prewitt and Schar operator. The input images can be gray scale or color images.

If it is a color image, PC and GM can be extracted from the luminance. One of

the main advantage of FSIM is that it can support color images. Figure 1.2 is

the block diagram of the FSIM algorithm.

Figure 1.2: The block diagram of the FSIM algorithm

1.1.2 No-reference Image Quality Assessment (NR−IQA )

In many real-world applications, such as image communication systems, the refer-

ence image is not available and the quality evaluation is solely based on the test

image. NR − IQA is a more difficult task in comparison to FR − IQA method.

However, human beings usually can efficiently assess the quality of a test image

without using any reference image. This is probably due to the fact that our brain

holds a lot of information about how an image should or should not look like in

real world [67]. Some NR− IQA methods can be found in [68–73].
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Blind image integrity notator using DCT statistics algorithm (BLIINDS

)

An image quality estimation algorithm based on a single-stage DCT framework,

known as blind image integrity notator using DCT statistics (BLIINDS ), is

introduced in [74]. In the algorithm, DCT is first employed to 17x17 image patches

centered at each pixel in the given image. Four features are then extracted at two

scales representing the information of image contrast and image structure. The first

feature, i.e., the mean value of the local DCT contrast, is computed by averaging

the local DCT contrast values from all image patches. The local DCT contrast is

computed as the average of the ratio of the non-DC DCT coefficient magnitudes

in the local patch normalized by the DC coefficient of that patch [74]. The second

feature is determined by first calculating the kurtosis of each DCT image patch and

then averaging the lowest tenth percentile of the computed value. The remaining

two features, the DCT coefficient entropy variance across four orientations and

the maximum DCT coefficient entropy across four orientations, are defined based

on anisotropy measurement on each of the DCT patches. Specifically, DCT image

patches are initially generated at four different orientations: 0◦, 45◦, 90◦ and 135◦.

Each DCT patch is then normalized as follows:

D̃θ [n, k] =
Dθ [n, k]2∑
kDθ [n, k]2

(1.1)

where θ is one of the four orientations, D[n, k] denotes DCT coefficients of a

certain patch; k indicates the DCT coefficient frequency index (1 < k ≤ 17),

and n represents the spatial index where the patch is computed. Next, the Renyi

entropy for the particular image patch is computed as:

Rθ [n] = −1

2
log

(∑
k

D̃θ [n, k]3
)

(1.2)

By defining E [Rθ] as the average per orientation for all patches of orientation θ,

the variance across all four orientations and the maximum entropy across the four

orientations are then determined as var(E [Rθ]) and max(E [Rθ])) respectively [74].
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Improved blind image integrity notator using DCT statistics algorithm

(BLIINDS-II)

The proposed algorithm, known as BLIINDS-II, provides improvement to the

BLIINDS algorithm in the use of a general statistical model and in the per-

formance. The framework of BLIINDS-II algorithm is illustrated in Figure 1.3.

Figure 1.3: BLIINDS-II framework [29]

An input image is first divided into 5x5 blocks with a 2-pixel overlap between

the blocks. Then, the blocks are subjected to local DCT computation where the

coefficient extraction is carried out locally in the spatial domain. The DCT block

is then partitioned into two configurations: first, the block is partitioned into three

oriented sub-regions to indicate directional information and second, the block is

partitioned in such a way to reflect the low-frequency, mid-frequency and high-

frequency sub-bands respectively. While sample statistics such as kurtosis and

entropy are used as features in the previous BLIINDS algorithm, the BLIINDS-

II algorithm refines the technique by modelling image features using a generalized

Gaussian distribution.

Blind/Referenceless image spatial quality evaluator algorithm (BRISQUE

)

An NSS -based BIQA algorithm that works in the spatial domain is presented

in [30]. In contrast to previous NR − IQA algorithms, no transformation (DCT

, DWT, etc.) is required for the algorithm referred as blind/reference less image
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spatial quality evaluator (BRISQUE ). Using a spatial NSS framework, the

empirical distribution of locally normalized luminance coefficients and pairwise

products of these coefficients is utilized to design 18 features for image quality

prediction. These features are selected based on observations that the coefficients

possess statistical properties which are varied with the existence of distortion and

the signs of adjacent coefficients also show a regular structure which can change

in the presence of distortion. By quantifying these changes, it is assumed that the

type of distortion affecting the image and its perceptual quality can be predicted.

1.2 Problem Statements and Objectives

Today, IQA research has emerged as an active subdiscipline of image processing,

and numerous algorithms for IQA have been researched and developed over the

last several decades. Furthermore, many of the resulting techniques and algorithms

have begun to benefit a wide variety of applications. Variations of IQA algorithms

have proved useful for applications such as image and video coding, digital water-

marking, unequal error protection, image denoising, image synthesis, and various

other areas (e.g., for predicting intelligibility in sign language video). Though the

remarkable progress has been made, we still have yet to achieve full evaluations of

quality up to now.

According to the availability of the original reference image, the objective meth-

ods are classified into: (i) full-reference where the quality is estimated using the

original image and its degraded version, (ii) reduced-reference where only some

informations of the original image are used and (iii) no-reference (or blind), where

only the degraded image is exploited [3].

All three types of IQA algorithms can perform quite well at predicting qual-

ity. Some of today’s best-performing full-reference algorithms have been shown

to generate estimates of quality that correlate highly with human ratings of qual-

ity, typically yielding Spearmans and Pearsons correlation coefficients in excess

of 0.9. Research in no-reference and reduced-reference IQA is much less mature;

however, recent methods have been shown to yield quality estimates which also

correlate highly with human ratings of quality, sometimes yielding correlation co-

efficients which rival the most competitive full-reference methods. However, a

perfect method that performs well with all types of distortions for any database is

still an open issue. Thus, considering on the availability of reference information

of input images, in this study we intends at:
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• Developing a combination method of dissimilar feature-scores for full-reference

image quality assessment (FR − IQA ) using particle swarm optimization

(PSO ) algorithm.

• Developing an end-to-end learning mechanism using convolutional neural net-

work (CNN ) for blind image quality assessment (BIQA ).

1.3 Overviews

Until recently, many FR − IQA and NR − IQA (BIQA ) methods have been

proposed.

In FR−IQA , peak signal-to-noise ratio (PSNR ) is the simplest approach for

IQA but it is not well correlated with human evaluation. This technique, there-

fore, often serves as a bottom model for comparison. In [4], Damera-Venkata et al.

introduced noise quality measure (NQM ) in which a distorted image is modelled

using a linear frequency distortion and an additive noise injection. In [5], Wang

et al. proposed universal image quality index (UQI ) and it evaluates quality

of an image using loss of correlation, luminance distortion, and contrast distor-

tion. Further extension of UQI , structural similarity (SSIM ), was proposed

by Wang et al. [6]. A multi-scale SSIM , MS − SSIM , was presented in [41].

Wang and Li in [8] proposed information content weighted SSIM (IW − SSIM
) approach as an extension of MS − SSIM . In their work, local information

was measured using statistical models of natural scenes. Statistical properties of

natural environment are also utilized in visual information fidelity (V IF ) [9] mea-

sure and information fidelity criterion (IFC ) [10]. In [11], Riesz-transform based

feature similarity (RFSIM ) was proposed and it is computed by comparing Riesz-

transform features at key locations between the distorted image and its reference

image. Authors of feature similarity index (FSIM ) [12] developed an approach

which uses phase congruency and image gradient magnitude as low-level local fea-

tures. In [13], spectral residual based similarity (SR−SIM ) using visual saliency

map was proposed. A visual saliency to calculate a local quality map of the dis-

torted image is used in visual saliency-induced index (V SI ) [14]. The gradient

similarity (GSM ) measure [15] estimates image quality taking into consideration

structure and contrast changes, as well as luminance distortions. In [16], image

structural degradation was considered and determined using local binary patterns.

In SURF-SIM [17], multi-scale differences between features detected and described
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by Speed Up Robust Features (SURF ) approach are combined with a pooling

strategy. An IQA measure that evaluates images taking into account inter-patch

and intra-patch similarities was described in [18]. In their work, authors used

modified normalized correlation coefficient and image curvature.

Development of FR − IQA measures can also involve different combination

strategies. For example, Liu and Yang [19] combined SNR, SSIM , V IF , and

V SNR using canonical correlation analysis. A most apparent distortion algorithm

(MAD ) [20] adopts two strategies for IQA in which a local luminance and a

contrast masking evaluate high-quality images. Changes in the local statistics of

spatial-frequency components are used for images with a low quality. Three IQA

metrics, MS−SSIM , V IF and R-SVD, were non-linearly combined by Okarma in

[21,22]. A non-linear fusion of IQA measures was also investigated in [23]. In [24],

up to seven IQA models were combined using a regularized regression. Peng and

Li in [25] presented an approach based on conditional Bayesian mixture of experts

model in which a support vector machines classifier was used for prediction of the

type of distortion, and then SSIM , V SNR , and V IF with k-nearest-neighbour

regression were fused. In [26], the authors presented adaptive combination of IQA

measures with an edge-quality based on preservation of edge direction. In [60], a

combination of local and global distortion measures was considered using saliency

maps, gradient and contrast information. Recently, many complex combination

approaches have been introduced, and therefore, in this study, we proposed a

nonlinear combination method employing Particle Swarm Optimization (PSO )

[52] algorithm to develop a well-performing method which combined dissimilar

feature-scores for FR− IQA .

On the other hand, we also considered to measure the perceptual quality of an

image without accessing to the reference image because we may not get the original

image in practice. A typical approach to NR− IQA is to model statistics of nat-

ural images and regress parametric deviations from this model to perceived image

degradations. As these parameters and its deviations may depend on the distor-

tion type, the DIIV INE framework [28] identifies the distortion type affecting an

image in a first step and uses a distortion-specific regression scheme to estimate

the perceived quality in a second step. The statistical features are calculated based

on an oriented subband decomposition. BLIINDS-II [29] uses a generalized Gaus-

sian density function to model block DCT coefficients of images. BRISQUE [30]

proposes a NR− IQA approach that utilizes an asymmetric generalized Gaussian

distribution to model images in the spatial domain. The modeled image features
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here are differences of spatially neighbored, mean subtracted and contrast normal-

ized image samples. NIQE [31] extracts features based on a multivariate Gaussian

model and relates them to perceived quality in an unsupervised manner. In order

to cope with more complex and authentic distortion types FRIQUEE [32], [33]

employs a deep belief network of 4 layers trained to classify bins of 10 different dis-

tortion ranges. Input to the network is a set of handcrafted feature maps and the

feature representation on the last hidden layer is extracted to be input to support

vector regression (SV R ) for quality prediction. CORNIA [34] is one of the first

purely data-driven NR− IQA methods combining feature and regression training.

Here, a codebook is constructed by k-means clustering of luminance and contrast

normalized image patches. Soft-encoded distances between visual codewords and

patches extracted from distorted images are used as features that are pooled and

regressed using SV R for estimating image quality. This approach is refined to the

semantic obviousness metric (SOM ) [35], where object-like regions are detected

and the patches extracted from these regions are input to CORNIA . Similarly to

CORNIA , QAF [36] constructs a codebook using sparse filter learning based on

image log-Gabor responses. As log-Gabor responses are often considered a low level

model of the HV S , conceptually, QAF also belongs to the bottom-up domain.

Motivated by the recent success of CNNs for classification and detection tasks and

the notion that the connectivity patterns in these networks resemble those of the

primate visual cortex, [37] proposes a shallow CNN consisting of 1 convolutional

layer, 1 pooling layer and 2 fully-connected layers, that combines feature extrac-

tion and regression. Quality is estimated on contrast normalized image patches

and patchwise quality is pooled to imagewise quality by averaging. BIECON [38]

proposes an interesting approach for data augmentation and tackles CNN -based

NR− IQA in 2 steps: First, a local quality is estimated based on normalized im-

age patches employing a CNN of 2 convolutional, 2 pooling and 5 fully-connected

layers. This network is trained to replicate a conventional FR − IQA such as

SSIM or GMSD within a no-reference framework. Second, mean values and the

standard deviations of the extracted patchwise features are regressed to an image-

wise quality estimate employing a perceptron with one hidden layer. Preliminary

results on the application of deeper neural networks, trained end-to-end, for IQA

have been presented in [39], [40]. However, all existing BIQA methods have still

shortcomings to get the highest performance. Thus, in this study, we also proposed

a very simple and robust end-to-end learning mechanism using CNN for BIQA .
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1.4 Organization of the thesis

The background, problem statements and objectives, and also overviews of this

study have been mentioned in this chapter. The rest of the thesis is organized

as follows. In Chapter 2, the combination method of dissimilar feature-scores for

FR − IQA is proposed. In Chapter 3, an end-to-end learning mechanism using

CNN for BIQA is described. Finally, the concluding remarks and remaining

issues are drawn in Chapter 4.



Chapter 2
Combination of Dissimilar
Feature-Scores for Image Quality
Assessment Using Particle Swarm
Optimization Algorithm

In this chapter,a new combination technique for full-reference image quality assess-

ment (IQA ) is proposed by utilizing three better-recognized IQA methods. For

selecting the IQA methods, we firstly pick up MAD as the most appropriate IQA

index for image quality databases and then add other two indices MS−SSIM and

FSIM which have the most dissimilar features with the first index MAD . The

parameter values employed in the new IQA score are optimized using the particle

swarm optimization algorithm. By experiments, it is validated that the proposed

method gives the best performance for various databases and outperforms the other

state-of-the-art methods.

2.1 Related Work

Nowadays, we are sharing photos via social media, sending and receiving photo

messages and transmitting live videos everyday for various reasons. These media

facilities are feasible through digital cameras and photo editing systems. Digital

images are, however, degraded by various types of distortions during processing.

Thus, we need to measure the quality of the images by image quality assessment

(IQA ). To fulfil this requirement, numerous methods for IQA have been searched

27
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and proposed over the last two decades.

The objective IQA is more handy than the subjective IQA . We can easily

adjust the parameters of the image processing system by utilizing the objective

IQA value in the system. Traditional IQA measures; mean squared error (MSE)

and peak signal-to-noise ratio (PSNR ) are the simplest and widely used. However,

these are not so matched to human eyes. In 2004, structural similarity (SSIM) [6]

was designed to improve the traditional metrics such as PSNR and MSE. SSIM

fails to give a satisfactory correlation with human visual system (HV S ) in the

case of blurred images. The improved version of SSIM, multi-scale SSIM (MS −
SSIM ) [41], has better quality prediction accuracy compared to the original SSIM.

Gradient based structural similarity (GSSIM ) [42] is also an improved version of

SSIM where the contrast and structure components of SSIM are replaced by the

gradient based contrast and structure components, respectively. GSSIM provides

better performance than SSIM especially for blurred images. Visual information

fidelity (V IF ) [9] is based on the amount of information shared by the reference

and distorted images. V IF outperforms many of the existing full reference IQA

algorithms. However, the main drawback of V IF is its computational complexity.

Visual signal to noise ratio (V SNR ) [43] is a wavelet based approach. It is good

for full reference images but its computation is quite complex.

Visual gradient similarity (V GS ) [44] assesses the image quality by using mag-

nitudes and directions of gradient vectors and evaluates contrast changes by using

the intensity of gradient vectors. V GS is effective for image denoising, contrast

change and JPEG compression images but weak for local block-wise distorted im-

ages. In another metric LOGPSNR [45], images are filtered by the Laplacian

of Gaussian (LOG) filter and then the image quality is measured by PSNR .

LOGPSNR is effective for Gaussian noise, high frequency noise and Gaussian

blur images but weak for intensity shift images.

In recent times, furthermore, several new image quality measures have been

proposed as better alternative indices. Examples of twelve best-recognized IQA

measures up to now are SSIM [6], MS − SSIM [41], V IF [9], V SNR [43],

V GS [44], LOGPSNR [45], MAD [20], FSIM [12], NQM [4], IFC [9], PSNR

, PSNR − HV S [47]. Each matrix provides an improvement relative to the tra-

ditional metrics, but the degree of improvement is limited by their insufficient

consideration of HV S properties. This results in the fact that each single index

has some shortcomings for certain distortion types. Thus, development of the fu-

sion of multiple IQA techniques emerges by nature. The two scores combination
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as shown in [45] is effective for some distortion types of TID2008 database but it

cannot assess Meanshift images accurately. Even if one more score is added to [45]

as in [48], the performance of the three scores combination is a slight improvement

relative to the two scores combination. Furthermore, these combination methods

cannot work well on other different databases. Thus, a combination method that

performs well with all types of distortions for any database is still an open issue.

Among twelve best-recognized IQA indices described in above, MAD is the

most appropriate index for all six publicly available image quality databases [49].

In MAD , local luminance and contrast masking are used to estimate detection-

based perceived distortion in high-quality images, whereas changes in the local

statistics of spatial-frequency components are used to estimate appearance-based

perceived distortion in low-quality images. Feature similarity (FSIM ) [12] is used

to understand low-level features which are minor details of the images like lines

or dots. Low-level features convey important visual information and are crucial

to image understanding. Intuitively, in the combination of multiple methods as

a new score, combining of methods which have similar features cannot produce

significant profit comparing to the original single index. For instance, the two

scores combination of PSNR and PSNR −HV S cannot give us the better per-

formance comparing to each single index because both indices can predict well on

only additive noise distortion type images.

Recent development of full-reference IQA measures involves different combina-

tion strategies. M. Liu and X. Yang [19] combined SSIM, SNR, V SNR and V IF

using canonical correlation analysis. K. Okarma [21, 22] non-linearly combined

three IQA metrics, MS − SSIM , V IF and R-SVD [50], as a full-refeference

image quality metric. In [25], P. Peng and Z. N. Li proposed an approach based

on conditional Bayesian mixture of experts model which utilized a support vector

machines classifier to predict the distortion type and combined SSIM, V SNR and

V IF with k-nearest-neighbour regression. In [24], up to seven IQA models were

combined using a regularized regression. In 2013, multi-method fusion technique

was introduced in [49] and M. Oszust developed linearly combined similarity mea-

sures in [51]. Although these combinations achieved good evaluation results, the

combinations of different numbers of different IQA measures for each database

are not straightforward in practice. As far as we know, therefore, all existing

combination methods still have some shortcomings to be able to get the highest

performance for FR− IQA .

To be able to overcome this major challenges of current research trend, in
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this chapter, we introduce a novel idea of combination of dissimilar feature-scores

applying Particle Swarm Optimization (PSO ) [52] algorithm. We firstly select

MAD index as the most correlated method for all types of distortions applying the

Biggest Index Ranking Difference (BIRD ) algorithm [49] that is used to select the

most appropriate method for combination. After choosing the first combined IQA

method, we choose the one which has the biggest index ranking difference with

the first one as the second combined IQA method, since it has the most different

characteristics comparing to the first chosen combined IQA method. Following the

same way, we decide the third, the fourth, and the fifth combined IQA methods

and so on. Although we experimented the performance comparison for combination

of up to twelve scores, the number of combined IQA scores which is the best for

all databases is three to balance the performance and complexity. Hence, in our

combination work, we combine MAD index with other two indices, MS − SSIM
and FSIM , which have the most dissimilar features with MAD by employing

the exponentiated coefficients and weighted constant values. Furthermore, we

optimize these values by using the PSO algorithm which is based on the swarm

intelligence. Amazingly, the calculation of PSO is very simple and the speed of

searching is very fast. Compared with the other developing calculations, as an

example, Genetic Algorithm (GA ), it occupies the bigger optimization ability and

it can be completed easily. Thus, the main contribution of the proposed method

is that it is very simple but the performance is incredible compared to other state-

of-the-art ones.

The organization of this chapter is as follows. Section 2.2 to 2.7 explains about

the SSIM , MS − SSIM , MAD , FSIM , FSIM C and PSO algorithm,

respectively. Section 2.8 presents the proposed method in detail. In Section 2.9,

we evaluate the performance of the proposed method by experiments. Finally,

Section 2.10 concludes the chapter.

2.2 Structural Similarity (SSIM) Measure

The SSIM algorithm [6] assumes that HV S is highly adapted for extracting struc-

tural information from a scene. Thus, this algorithm attempts to model the struc-

tural information of an image. The SSIM algorithm is based on the fact that

pixels of a natural image demonstrate strong dependencies and these dependencies

carry useful information about the structure of a scene. Therefore, a method that

is capable of measuring structural information change can provide a good approx-
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imation of perceived image distortion. The SSIM algorithm defines image degra-

dation as perceived change in structural information. In [6], it is stated that the

structure of the objects in a scene is independent of local luminance and contrast.

Thus, to extract the structural information, the effect of illumination should be

separated. In this algorithm, structural information in an image is defined as those

traits that represent the structure of objects in that image, independent of the local

luminance and contrast. The SSIM algorithm performs similarity measurement

in three steps: luminance comparison, contrast comparison, and structure com-

parison. Firstly, the luminance of each image signal is compared. The estimated

mean intensity is computed as follows:

µref =
1

MN

N∑
j=1

M∑
i=1

Iref (i, j) (2.1)

The luminance comparison function, l(Iref , Idst), is a function of µref and µdst .

Secondly, the contrast of each image signal is compared. For estimating the

contrast, standard deviation is being used. An unbiased estimate of standard

deviation in discrete form is as follows:

σref =

√√√√ 1

MN − 1

N∑
j=1

M∑
i=1

(Iref (i, j)− µref )2 (2.2)

The contrast comparison function, c(Iref , Idst), is a function of σref and σdst .

Thirdly, the structure of each image signal is compared. Structure comparison

function, s(Iref , Idst) , is a function of [Iref − µref ]/σref and [Idst − µdst]/σdst. Fi-

nally, three comparison functions are combined and an overall similarity measure is

produced. S(Iref , Idst) , is the overall similarity measure of l(Iref , Idst), c(Iref , Idst)

and s(Iref , Idst). Definitions of l(Iref , Idst) , c(Iref , Idst) and s(Iref , Idst) are as fol-

lows:

l(Iref , Idst) =
2µrefµdst + T1

µ2
ref + µ2

dst + T1

(2.3)

c(Iref , Idst) =
2σrefσdst + T2

σ2
ref + σ2

dst + T2

(2.4)

s(Iref , Idst) =
σref,dst + T3

σrefσdst + T3

(2.5)

where T1, T2 and T3 are positive stabilizing constants to prevent the denominator
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from becoming too small. They are given by:

T1 = (t1D)2, T2 = (t2D)2, T3 = T2/2 (2.6)

where t1 and t2 are small scalar constants. In (2.5) σref,dst is the correlation

coefficient between the reference and distorted images. In the discrete form, σref,dst

can be estimated by:

σref,dst =
1

MN − 1

N∑
j=1

M∑
i=1

(Iref (i, j)− µref )(Idst(i, j)− µdst) (2.7)

Finally, structural similarity index is defined as:

SSIM(Iref , Idst) = [l(Iref , Idst)]
α[c(Iref , Idst)]

β[s(Iref , Idst)]
γ (2.8)

where α , β and γ are positive constants chosen to indicate the relative importance

of each component. The universal quality index (UQI ) [52,53] is a special case of

the SSIM index when: T1 = T2 = T3 = 0 and α = β = γ = 1. The block diagram

of the SSIM algorithm is presented in Figure 2.1.

Figure 2.1: The block diagram of the SSIM algorithm

2.3 Multi-scale structural similarity (MS-SSIM)

Measure

The SSIM algorithm described earlier is considered a single-scale approach that

achieves its best performance when applied at an appropriate scale. Furthermore,
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Figure 2.2: The block diagram of the MS-SSIM algorithm. L: low-pass filter; ↓2:
downsampling by factor of 2.

choosing the right scale depends on the viewing conditions, e.g., viewing distance

and the resolution of the display. Therefore, this algorithm lacks the ability to

adapt to these conditions. This drawback of the SSIM algorithm motivated re-

searchers to design a multi-scale structural similarity index (MS − SSIM ) [41].

The advantage of the multi-scale methods, like MS − SSIM , over single-scale

methods, like SSIM , is that in multi-scale methods image details at different

resolutions and viewing conditions are incorporated into the quality assessment

algorithm. The block diagram of the MS − SSIM algorithm is presented in Fig-

ure 2.2. After taking the reference and distorted images as input, this algorithm

performs low-pass filtering and downsampling (by factor of 2) in an iterative man-

ner. At each scale, (2.4) and (2.5) are calculated. However, (2.3) is computed only

at Ms −th scale. The final MS − SSIM index is calculated using the following

equation:

MS − SSIM(Iref , Idst) = [lMs(Iref , Idst)]
αMs

Ms∏
i=1

[ci(Iref , Idst)]
βi [si(Iref , Idst)]

γi

(2.9)

where ci(Iref , Idst) and si(Iref , Idst) are the contrast and the structure compari-

son function at the i − th scale respectively, and lMs(Iref , Idst) is the luminance

comparison function at the Ms − th scale. Moreover, αMs , βi and γi are positive

constants chosen to indicate the relative importance of each component. In [41],

αi = βi = γi for all j, and
∑Ms

i=1 γi = 1.

2.4 Most apparent distortion (MAD) Measure

MAD algorithm [20] assumes that HV S employs different strategies when esti-

mating the quality of images. It is described in [20] that when HV S attempts to

view images containing near-threshold distortions, it tries to move past the image,
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looking for distortions. This approach is called detection-based strategy. More-

over, it is also stated in [20] that when HV S attempts to view images containing

clearly visible distortions, it tries to move past the distortions, looking for image’s

subject matter. This approach is called appearance-based strategy. For estimating

distortions in detection-based strategy, local luminance and contrast masking are

used. Moreover, for estimating distortions in appearance-based strategy, variations

in local statistics of spatial frequency components are being employed.

Detection-based strategy

It is argued in [20] that when HV S views high quality images, it tries to look

beyond image’s subject matter, looking for distortions. Detection-based strategy

consists of two stages: determining the locations of visible distortions, and com-

puting perceived distortion due to visual detection. First, the locations of visible

distortions should be determined. In order to describe the non-linear relationship

between pixel values and physical luminance of display device, MAD algorithm

primarily transforms pixels of the reference and distorted images to luminance

values using the following equation:

 L = (β + αI)γ (2.10)

where  L is the luminance image, I is the reference (or distorted) image, and β, α

and γ are device specific constants. Applying (2.10) to Iref and Idst yields  Lref and

 Ldst respectively. Since HV S has a non-linear response to luminance, it should be

converted to perceived luminance via:

 ̂L =
3
√

 L (2.11)

where  ̂L denotes perceived luminance. Applying (2.11) to  Lref and  Ldst results

 ̂Lref and  ̂Ldst respectively. After computing perceived luminance, an error image

is computed:

 ̂Ler =  ̂Lref −  ̂Ldst (2.12)

To describe variations in sensitivity due to spatial frequency, authors of [20] employ

contrast sensitivity function (CSF ) as introduced in [90] with adjustments as

in [91]. CSF is applied to both, the reference and error images which yields I ′ref
and I ′dst respectively. Since presence of an image’s content can affect the detection

of distortions, a spatial domain measure of contrast masking is employed. To
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model this, first I ′ref is divided into blocks of size 16x16 with 75 percent overlap

between neighboring blocks. Afterward, rms contrast (in the lightness domain) of

each block is calculated. The rms contrast for block z of I ′ref is calculated by:

Cref (z) = σ̃ref (z)/µref (z) (2.13)

where µref (z) is the mean of block z in the reference image, and σ̃ref (z) is the

minimum of the standard deviation of the four sub-blocks in z . The same pro-

cedure is done for I ′er with the exception that the rms contrast for this image is

calculated using the following equation:

Cer(z) =

{
σer(z)/µref (z) , µref > 0.5

0 , otherwise
(2.14)

where σer(z) is the standard deviation of block z in I ′er. In (2.14), the threshold

of 0.5 denotes the fact that HV S is relatively insensitive to changes in extremely

dark regions. After computing Cref (z) and Cdst(z) , a local distortion visibility

map %(z) , is computed as follows:

%(z) =


ln(Cer(z))− ln(Cref (z)) , ln(Cer(z)) > ln(Cref (z)) > δ

ln(Cer(z))− δ , ln(Cer(z)) > δ ≥ ln(Cref (z))

0 , otherwise

(2.15)

where δ is a threshold value (δ=-5, as in [20]). Second, the perceived distortion

due to visual detection ( ddetect ) is calculated. ddetect is calculated via:

ddetect = 2

√
1

Z

∑
z

[%(z)ω(z)]2 (2.16)

where Z is the total number of blocks, and ω(z) is the local MSE of block z of size

16x16, that can be calculated using the following equation:

ω(z) =
1

16× 16

∑
i,jεMp

(I
′

er(i, j))
2 (2.17)

where Mp is the set of pixels in block z. ddetect takes its values in the interval [0,∞).

If ddetect=0, there are no visible distortions in the test (distorted) image. As the

value of ddetect increases, perceived distortion increases and consequently, visual

quality decreases. The block diagram of the detection-based strategy is presented
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in Figure 2.3.

Figure 2.3: The block diagram of the detection-based strategy in the MAD algo-
rithm. [92]

Appearance-based strategy

It is argued in [20] that when viewing low quality images, HV S tries to move

past the distortions, looking for image’s content. To model this strategy, MAD

algorithm uses log-Gabor filter responses. Similar to detection-based strategy, this

strategy is also consists of two stages; log-Gabor decomposition of the reference

and distorted images, and computing the local statistical difference map. First,

the reference and distorted images are decomposed into number of sub-bands via

a 2-D log-Gabor filter bank with frequency responses of the form:

Gs,o(r, φ) = exp

− log
(
r
rs

)
√

2σr

2

× exp
[
−(φ− φ0)2

2σ2
0

]
(2.18)

where indices s and o correspond to spatial scale and orientation respectively,

parameters r and φ are normalized radial frequency and orientation respectively,

rs is normalized center frequency, σr controls the filter’s bandwidth, and φ0 and

σ0 are center orientation and angular spread of the filter respectively. In [20], five

scales (s = 1, 2, ..., 5) and four orientations (o = 1, 2, ..., 4) are used for log-Gabor

decomposition, which result in 20 sub-bands per image. Second, a local statistical

difference map, η(z) , is generated. This map is defined by comparing local sub-

band statistics of the reference image with those of the distorted image. For each

block of size 16x16, η(z) is calculated by:

η(z) =
5∑
s=1

4∑
o=1

ls
{∣∣σrefs,o (z)− σdsts,o (z)

∣∣+ 2
∣∣ςrefs,o (z)− ςdsts,o (z)

∣∣+
∣∣κrefs,o (z)− κdsts,o (z)

∣∣}
(2.19)
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where σs,o(z), ςs,o(z), and κs,o(z) correspond to standard deviation, skewness, and

kurtosis of 16x16 sub-band coefficients associated with scale s, orientation o, and

block z. In (2.19), ls is a scale specific weight which takes into account the pref-

erence of HV S for coarser scales over fine ones. (in [20], ls= 0.5, 0.75, 1, 5, and

6 for finest to coarsest scales, respectively). After computing η(z), a final scalar

value of perceived distortion, dappear , is calculated as follows:

dappear =

√
1

Z

∑
z

η2(z) (2.20)

dappear takes its values in the interval [0,∞). If dappear = 0, there is no perceived

distortion in the test image. As the value of dappear increases, perceived distor-

tion increases and consequently, visual quality decreases. The block diagram of

appearance-based strategy is shown in Figure 2.4.

Figure 2.4: The block diagram of the appearance-based strategy in the MAD
algorithm. [92]

After computing ddetect and dappear, these two values are combined to yield

an overall measure of perceived distortion. In [20], it is hypothesized that HV S

uses a combination of detection based strategy and appearance based strategy for

assessing the quality of images. To model the relation between these two strategies,

a weighted geometric mean of ddetect and dappear is employed that has the form:

MAD = (ddetect)
α (dappear)

1−α (2.21)

where α is a weighting constant chosen to reflect the relative importance of each

term. MAD measure takes its values in the interval [0,∞). It is argued that

selecting a value for α based on ddetect can yield good overall performance [20].

Therefore, α is calculated by:

α =
1

1 + β1 (ddetect)
β2

(2.22)
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where β1 and β2 are two constants chosen in a way that achieves the best perfor-

mance of the MAD algorithm in terms of quality prediction accuracy.

2.5 Feature similarity (FSIM) Measure

The FSIM algorithm [12] is based on the HV S ’s perceptual characteristics be-

cause HV S understands low-level characteristics of an image, e.g., edges, dots and

circles and so on [83–85]. In order to assess the quality of an image, FSIM al-

gorithm uses two kinds of features. Physiological and psychophysical experiments

have demonstrated that at points with high phase congruency (PC ), HV S can

extract highly informative features [85–89]. Therefore, PC is used as the primary

feature in the FSIM algorithm. However, PC is contrast invariant and our per-

ception of an image’s quality is also affected by local contrast of that image. As

a result of this dependency, the image gradient magnitude (GM ) is used as the

secondary feature in the FSIM algorithm. Calculating FSIM measure consists

of two stages: computing image’s PC and GM , and computing the similarity

measure between the reference and test images.

PC and GM computation

The PC model states that Fourier components with maximum phase contain the

points where features are perceived by HV S . This model provides a simple

structure on how mammalian visual system handles detection and identification

of features in an image [85–89]. First, by applying (2.18) to the reference and

distorted images, a set of response vectors are created at location x, scale s ,

and orientation o . Second, the local amplitude of these vectors at scale s and

orientation o is calculated. Moreover, the local energy at orientation o is computed.

Finally, the PC value at location x is calculated using the following equation:

PC =

∑
oEo(x)

ε+
∑

s

∑
oAs,o(x)

(2.23)

where Eo(x) is the local energy at orientation o, As,o(x) is the local amplitude at

scale s and orientation o , and ε is a positive stabilizing constant. PC(x) is a real

number that takes its values in the interval [0,1].

In order to compute the gradient magnitude of the reference and distorted

images, three different gradient operators are employed. These operators are:

Sobel operator [93], Prewitt operator [93], and Scharr operator [94].
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Similarity measure computation

Consider PCref and PCdst are PC maps computed for Iref and Idst respectively,

and Gref and Gdst are GM maps for these images. The final similarity measure

between the reference and distorted images consists of two components: similarity

measure between PCref and PCdst or SPC(x) , and similarity measure between

Gref and Gdst or SG(x) .SPC(x) is calculated by the following equation:

SPC(x) =
2PCref (x)PCdst(x) + T4

PC2
ref (x) + PC2

dst(x) + T4

(2.24)

where T4 is a positive stabilizing constant chosen to prevent the denominator from

becoming too small. SPC(x) takes its values in the interval (0, 1].SG(x) is calculated

by:

SG(x) =
2Gref (x)Gdst(x) + T5

G2
ref (x) +G2

dst(x) + T5

(2.25)

where T5 is a positive stabilizing constant. SG(x) takes its values in the interval

(0,1].

The values of T4 and T5 depend on the dynamic range of PC and GM values re-

spectively. The final similarity measure, SL(x) , between Iref and Idst is computed

as follows:

SL(x) = [SPC(x)]α[SG(x)]β (2.26)

where α and β are two constants chosen to indicate the relative importance of each

component (in [12], α = β =1). Our perception of an image is affected differently

by different locations in an image, and a PC value at a location indicates whether

that location is perceptually significant or not [89]. Therefore, if either of PCref (x)

and PCdst(x) is greater than the other, it implies that position x has a higher

impact on HV S when evaluating SL(x) between Iref and Idst. As a result, FSIM

algorithm uses PCm(x) = max(PCref (x), PCdst(x)) as a weighting function for

SL(x) in the overall similarity measure between Iref and Idst. Finally, the FSIM

index between the reference and distorted images is defined by:

FSIM =

∑
xεΩ SL(x)PCm(x)∑

xεΩ PCm(x)
(2.27)

where Ω is the whole image spatial domain. The block diagram of the FSIM

index is presented in Figure 2.5.
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Figure 2.5: The block diagram of the FSIM algorithm. [92].

2.6 Feature similarity index for color images (FSIMC)

FSIM index described in Section 2.5 is designed for gray-scale images or the lumi-

nance component of color images. In order to extend FSIM index to incorporate

color images, first the reference RGB color image is transformed into another color

space in which the luminance component can be separated from chrominance.

In [12], RGB color image is transformed to YIQ color space, where Y denotes

luminance component and I and Q denote chrominance components. RGB color

space is transformed to YIQ color space via [95]:YI
Q

 =

0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312


RG
B

 (2.28)

Suppose Iref and Qref are chromatic components of the reference image, and Idst

and Qdst are chromatic components of the distorted image. The similarity measures

between chromatic components are computed as follows:

SI(x) =
2Iref (x)Idst(x) + T6

I2
ref (x) + I2

dst(x) + T6

(2.29)

SQ(x) =
2Qref (x)Qdst(x) + T7

Q2
ref (x) +Q2

dst(x) + T7

(2.30)

where T6 and T7 are two positive stabilizing constant chosen to prevent the de-

nominators from becoming too small. In [12], the values of T6 and T7 are set to be

equal to each other. The final similarity measure between chromatic components,
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SC(x), is the product of SI(x) and SQ(x) :

SC(x) = SI(x)SQ(x) (2.31)

The FSIM index for color images is calculated by:

FSIMC =

∑
xεΩ SL(x)[SC(x)]λPCm(x)∑

xεΩ PCm(x)
(2.32)

where λ is a positive weighting constant chosen to indicate the relative importance

of chromatic components. Note that for color images PC and GM are computed

by their luminance component Y . Moreover, the calculation process of PC and

GM for color images is the same as gray-scale images described in Section 2.5.

The block diagram of the FSIMC algorithm is presented in Figure 2.6.

Figure 2.6: The block diagram of the FSIMC algorithm [92].

2.7 Combined Full-Reference Image Quality Met-

ric (CQM)

In [21],K. Okarma, Chair of Signal Processing and Multimedia Engineering, Poland,

proposed a new combined image quality metric which is based on three methods

previously described by various researchers, MS-SSIM [41], VIF [9] and R-SVD [50].

The main advantage of the approach is the strong linear correlation with the sub-

jective scores without additional nonlinear mapping. The values and the obtained

correlation coefficients of the metric compared with some other state-of-art ones

using two largest publicly available image databases, TID2008 and LIVE. The

experimental results verified that the CQM has a great advantage of strong lin-

ear correlation with the subjective quality evaluation. The calculation formula of
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CQM is defined as:

MCQM = M f
MS−SSIM ×M

g
V IF ×M

h
R−SV D (2.33)

where MMS−SSIM , MV IF and MR−SV D are objective scores of MS-SSIM [41], VIF

[9] and R-SVD [50], respectively, and f , g and h are adjustable parameter values

for each score. The values of parameters are set as f=7, g=0.3 and h = −0.15

for TID2008 database experimentally. According to the experimental results, the

simple combination of the CQM led to the better performance compared to each

single IQA method.

2.8 Extended Hybrid Image Similarity (EHIS)

In [22], K. Okarma proposed an Extended Hybrid Image Similarity (EHIS) to

improve the prediction accuracy of the CQM in [21]. The EHIS approach based on

the combination of four metrics: MS-SSIM, VIF, Riesz-based Feature Similarity

(RFSIM) [100] and weighted FSIM (WFSIM) [101]. The calculation formula is

defined as:

MEHIS = M r
MS−SSIM ×M s

V IF ×M t
WFSIM ×Mu

RFSIM (2.34)

where MMS−SSIM , MV IF , MWFSIM and MRFSIM are objective scores of MS −
SSIM , V IF , WFSIM and RFSIM , respectively, and r, s, t and u are expo-

nentiated parameter values. The values of the exponents obtained as the result

of optimization conducted using TID2008 database are r = −1.6131, s = 0.2037,

t = 59.7151 and u = 0.1989. Nevertheless, the combined metric, EHIS has a great

advantage of strong linear correlation with the subjective quality evaluation. More-

over, it can be an interesting stimulus for further research related to the combined

metric which could be more suitable for FR-IQA.

2.9 Exponentiated Combination of Two Scores

for Image Quality Assessment (2SCM)

In [45], K. Isono and T. Shimamura proposed a new objective IQA method by

combining two scores of objective IQA, in which one score is strong against the wide

band noise and the other score is strong against the contrast change. The one score
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used is LOGPSNR, which is effective for wide band noise images. In LOGPSNR,

the Laplacian of Gaussian (LOG) filter is applied to the image, and then the image

quality is measured by using PSNR. The other score used is VGS [44], which is

effective for contrast change images. This two-scores combination method is called

2SCM in this chapter. The calculation formula of 2SCM is defined as follows:

M2SCM = Ma
LOGPSNR +M b

V GS (2.35)

where MLOGPSNR and MV GS are the objective IQA scores of LOGPSNR and

VGS, respectively. a and b are exponentiated coefficients for adjusting each score.

In their combination, they set the values of parameters as a=0.25 and b=1 for

TID2008 database experimentally. The combination technique is able to assess

distorted images correctly. However, it holds three problems, while it provides

an excellent performance. First, LOGPSNR and VGS have common weak points.

Both cannot assess Meanshift images in which the mean of the pixel values is

changed. Second, the combination of the two exponentiated evaluation scores pro-

vides a low degree of freedom of modeling. It is desirable to obtain the final objec-

tive score utilizing a more complex function to consider linear relationship between

the objective and subjective evaluations. Third, the parameters a and b in (2.33)

should be decided manually according to the target images. Thus, they improved

the 2SCM method as 3SCM method in [48] to provide better performance.

2.10 Optimized Three Scores Combination for

Image Quality Assessment (3SCM)

In [48], K. Ishiyama, Y. Sugiura and T. Shimamura proposed a new objective IQA

method adding another IQA score to the original combination technique in [45].

Adjustable parameters included in the new IQA measure are optimized with the

genetic algorithm (GA). The added IQA is MSSIM and the three-scores combina-

tion method is called 3SCM in this chapter. The calculation formula of 3SCM is

defined as follows:

M3SCM = c1M
p
LOGPSNR + c2M

q
V GS + c3MMSSIM (2.36)

where MLOGPSNR, MV GS and MMSSIM are objective scores of LOGPSNR, VGS

and optimized MSSIM, respectively, and c1, c2, c3, p and q are adjustable parame-
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ters. In the three-scores combination, the values of parameters are set as p=5.28,

q=10.44, c1=56.60, c2=16.00 and c3=0.10 for TID2008 database experimentally.

In the above equation, MMSSIM is not exponentiated because MS−SIM has been

already exponentiated as shown in (2.9).

Experiments have demonstrated that the 3SCM method provided an excellent

performance against Meanshift. However, it is a slight improvement relative to the

two scores combination.

2.11 Particle Swarm Optimization (PSO) Algo-

rithm

Figure 2.7: The basic structure of PSO algorithm.

PSO is a population-based search algorithm which is initialized with a popu-

lation of random solutions, called particles [96]. As against the other evolutionary
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computation techniques, each particle in this algorithm, called PSO is also asso-

ciated with a velocity. Particles fly through the search space with velocities that

are dynamically adjusted as per their historical behaviors. The particles, there-

fore, have the tendency to fly towards the better and better search area all over

the course of the process of search. In PSO , a number of simple entities — the

particles — are placed in the search space of some problem or function, and each

one of these evaluates the objective function at its current location. Thereafter,

each particle then determines its movement through the search space by combining

some aspect of the history of its own current and best (best-fitness) locations with

those of one or more members of the swarm, with some random perturbations. The

next iteration takes place after all particles have moved. Eventually the swarm as

a whole, like a flock of birds collectively foraging for food, is likely to move close to

an optimum of the fitness function. The particle swarm is actually more than just

a collection of particles. A particle by itself has almost does not solve any problem;

progress takes place only when they i.e. the particles interact. Populations are

organized according to some sort of communication structure or topology. This

is often thought of as a social network. The topology typically consists of bidi-

rectional edges connecting pairs of particles. It is like the alphabet j appearing

in i’s neighborhood, and likewise, i in j’s neighbour. Each particle communicates

with other particles and is affected by the best point found by any member of its

topological neighborhood [97]. Each individual in the particle swarm is composed

of three D dimensional vectors, where D is the dimensionality of the search space.

These are the current position xi, the previous best position pi and the velocity

vi [97]. The ith particle is represented as Xi = (xi1, xi2, ..., xiD). At each genera-

tion, each particle is updated by the following two ’best’ values. The first one is

the best previous location (the position giving the best fitness value). This value is

called pBest. The pBest of the ith particle is represented as Pi = (pi1, pi2, ..., piD).

At each iteration, the P vector of the particle with the best fitness in the neigh-

borhood, designated l or g, and the P vector of the current particle are combined

to adjust the velocity along each dimension, and that velocity is then used to com-

pute a new position for the particle. The portion of the adjustment to the velocity

influenced by the individual’s previous best position (P ) is considered as the cogni-

tion component, and the portion influenced by the best in the neighborhood is the

social component. With the addition of the inertia factor ω, [98] (brought in for

balancing the global and the local search), velocity and position update equations
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are:

vi = ω × vi + η1 × rand()× (pi − xi) + η2 × rand()× (pg − xi) (2.37)

xi = xi + vi (2.38)

where rand() and rand() are two random numbers independently generated within

the range [0,1] and η1 and η2 are two learning factors which control the influence

of the social and cognitive components. In (2.31), if the sum on the right side

exceeds a constant value, then the velocity on that dimension is assigned to be

±Vmax. Thus, particles’ velocities are clamped to the range [−Vmax, Vmax] which

serves as a constraint to control the global exploration ability of particle swarm.

Thus, the likelihood of particles leaving the search space is reduced. The basic

scheme of PSO algorithm is shown in Figure 2.6 [99].

2.12 Proposed Method

In this section, we derive new combination metrics by adding MS − SSIM and

FSIM to MAD . In the metrics, we combine linearly and non-linearly the three

scores which have dissimilar features by employing the PSO algorithm for param-

eter optimization. According to the experimental results, non-linear combination

have better performance than linear combination. In this chapter, we describe

both combination methods and their experimental results for clear understanding.

In the linear combination of the three objective scores, we employ the exponen-

tiated coefficients and weighted constant values which are free parameter values

for each database. The calculation formula for the three scores linear combination

called 3LC in this chapter is defined as

M3LC = k1M
ϕ
ma + k2M

υ
ms + k3M

ρ
fs (2.39)

where Mma, Mms and Mfs are objective scores of MAD , MS−SSIM and FSIM

, respectively. k1, k2 and k3 are wighting factors, ϕ, υ and ρ are exponentiated

coefficients. These parameters are optimized by employing the PSO algorithm.

In the non-linear combination of the three objective scores, we employ the expo-

nentiated coefficients and weighted constant values which are adjustable parameter

values for each database. The calculation formula for the three scores non-linear
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combination called 3NC in this chapter is defined as

M3NC = k1M
ϕ
ma + k2M

υ
ms +Mρ

fs + C (2.40)

where Mma, Mms and Mfs are objective scores of MAD , MS−SSIM and FSIM

, respectively. k1 and k2 are wighting factors, ϕ, υ and ρ are exponentiated coef-

ficients and C is a constant value. These parameters are optimized by employing

the PSO algorithm.

Particle Swarm Optimization (PSO ) Algorithm

PSO is an artificial intelligence (AI) technique that can be used to find approx-

imate solutions to extremely difficult or impossible numeric maximization and

minimization problems. In recent years, PSO has become a better-developed opti-

mization algorithm. It searches the optimal solution through continuous iteration,

and it finally employs the size of the value of objective function, or the function to

be optimized (also known as the fitness function in the particle swarm), in order to

evaluate the quality of the solution. Indeed, stochastic search techniques contain

randomness process so their performances can change from problem to problem.

Many parameters can affect the algorithms’ performances such as problem size,

number of constraint functions and constraint function type. No free lunch theo-

rems in [63–66] logically proves that no one can propose an algorithm for solving all

optimization problems. This means that the success of an algorithm in solving a

specific set of problems does not guarantee solving all optimization problems with

different type and nature. Thus, although there are many state-of-the-art Swarm

Intelligence (SI) based approaches for parameter optimization, we have to do an

experiment first to be able to decide the most suitable optimization algorithm for

our specific problem. After extensive experiments, we select the PSO algorithm

for parameter optimization in our non-linear combination approach because the

PSO could provide faster convergence and could find better solutions. Further-

more, the main advantage of the PSO algorithm is its easiness in implementation

since there are no crossover, decoding and encoding. In addition, PSO is simple

both in theory and numerical implementation and the computational time is in-

expensive as compared to other optimal algorithms. The steps of the PSO to be

implemented are the followings:

1) Create the initial particles, and assign them initial velocities random-uniformly.

As using 10 particles for each parameter is large enough to get good results for
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most of the cases, the population size used for optimization in our method is 60 (6

parameters x 10 particles).

2) Evaluate the objective function at each particle location, and determines the

best (lowest) function value and the best location.

3) Update the particle locations (the new location is the old one plus the

velocity), velocities, and neighbors.

4) Select particles randomly based on the fitness of the particles. In our pro-

posed method, the particles which have the higher fitness values have the higher

probability to be selected.

5) Check whether the swarm of particles is converged or not.

In our work, the maximum number of iterations is set to 1000. If the maximum

iteration number or minimum error criterion is attained, the PSO is terminated.

Otherwise, the velocity and position are updated to create a new swarm.

2.13 Experimental Results and Discussion

In this section, we compare the performance of the proposed methods, 3LC and

3NC with MAD [8], MS − SSIM [2] and FSIM [9] based on six image quality

databases (A57, CSIQ, TID2008, TID2013, LIVE, and IVC). For detailed perfor-

mance evaluation, we compared the performance of the whole database and the

performance of each distortion type based on each database.

2.13.1 Image Databases

Figure 2.8: Original Images from A57



2.13 Experimental Results and Discussion 49

Figure 2.9: Some Distorted Images from A57

The A57 Database [54] has 3 reference images as shwon in Figure 2.8, and 54

distorted images, including six distortion types - Flat allocation (FLT); equal dis-

tortion contrast @ all scales, JPEG compression (JPEG), JPEG2000 compression

(JPEG2), JPEG2000 compression with the Dynamic Contrast-Based Quantization

(DCQ), Gaussian blurring (GB), and additive Gaussian white noise (WGN) - at 3

different levels. Some of the distorted images of A57 database are shown in Figure

2.9. The subjective quality scores used for this database are DOMS, ranging from

0 to 1.

The Categorical Image Quality (CSIQ) Database [55] contains 30 reference

images as shown in Figure 2.10, and 866 distorted images. Each image is distorted

using 6 types of distortions - JPEG compression (JPEG), JPEG2000 compression

(JPEG2), global contrast decrements (Contrast), additive Gaussian white noise

(WGN), additive Gaussian pink noise (PGN), and Gaussian blurring (BLUR) - at

4 to 5 different levels. Some of distorted images of CSIQ database are shown in

Figure 2.11. The score ratings (0 to 1) are reported in the form of DMOS.

The Tampere Image Database (TID2008) [56] includes 25 reference images as

shown in Figure 2.12 and 1700 distorted images. Each reference image is distorted

using 17 types of distortions as shown in Table 2.1, with 4 different levels. The

subjective quality scores provided for this database are MOS , ranging from 0 to
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Figure 2.10: Original Images from CSIQ
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Figure 2.11: Some of Distorted Images from CSIQ
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Figure 2.12: Original Images from TID2008

9. Examples of distorted images for TID2008 database are shown in Figure 2.13.
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Figure 2.13: Some Distorted Images (17 types) from TID2008
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Table 2.1: Types of Distortions in TID2008

No Types

1 Additive Gaussian noise

2 Additive noise in color component

3 Spatially correlated noise

4 Masked noise

5 High frequency noise

6 Impulse noise

7 Quantization noise

8 Gaussian blur

9 Image denoising

10 JPEG compression

11 JPEG2000 compression

12 JPEG transmission errors

13 JPEG2000 transmission errors

14 Non eccentricity pattern noise

15 Local block-wise distortions of different intensity

16 Mean shift (intensity shift)

17 Contrast change
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The Tampere Image Database (TID2013) [57] is the extended version of TID2008

described in above and it includes 25 reference images, 24 types of distortions for

each reference image as shown in Table 2.2, and 5 different levels for each type

of distortion. The whole database contains 3000 distorted images. Examples of

distorted images for TID2013 database is shown in Figure 2.14.

Table 2.2: Types of Distortions in TID2013

No Types

1 Additive Gaussian noise

2 Additive noise in color component

3 Spatially correlated noise

4 Masked noise

5 High frequency noise

6 Impulse noise

7 Quantization noise

8 Gaussian blur

9 Image denoising

10 JPEG compression

11 JPEG2000 compression

12 JPEG transmission errors

13 JPEG2000 transmission errors

14 Non eccentricity pattern noise

15 Local block-wise distortions of different intensity

16 Mean shift (intensity shift)

17 Contrast change

18 Change of color saturation

19 Multiplicative Gaussian noise

20 Comfort noise

21 Lossy compression of noisy images

22 Image color quantization with dither

23 Chromatic aberrations

24 Sparse sampling and reconstruction
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Figure 2.14: Some Distorted Images from TID2013
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The LIVE Image Quality Database [58] has 29 reference images as shown in

Figure 2.15 and 779 distorted images, including five distortion types - JPEG2000

(JPEG2), JPEG, white noise in the RGB components (WN), Gaussian blur (GB),

and transmission errors in the JPEG2000 bit stream using a fast-fading Rayleigh

channel model (Fast-fading). Some distorted images of LIVE are shown in Figure

2.16.

Figure 2.15: Original Images from LIVE
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Figure 2.16: Some Distorted Images from LIVE
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Figure 2.17: Original Images from IVC

The IVC Database [59] has 10 reference images as shown in Figure 2.17, and

185 distorted images, including 4 types of distortions blurring (BLUR), JPEG2000
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(JPEG2), JPEG, and locally adaptive resolution (LAR) coding. Some distorted

images of IVC can be seen in Figure 2.18.

Figure 2.18: Some Distorted Images from IVC

2.13.2 Cross Validation

We use all images from one distortion group in one database for the training, and

test the images from the same distortion group in the other remaining databases.

For example, we build a trained dataset (for JPEG compression) from LIVE
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database. Then, we use this trained dataset to do the testing on A57, CSIQ,

TID2008, TID2013, and IVC.

2.13.3 Parameter Optimization

We optimized the adjustable parameters in (2.39) and (2.40) utilizing the PSO

algorithm we explained in Section 2.12. For the optimization, we used references

images in each database. For example, we used 25 reference images in TID2013

(total 3025 images).

First, we utilized the original exponentiated values of MS − SSIM in (2.9) as

1 described in Section 2.3.

Second, we optimized (2.39) and (2.40) evaluating CC between the subjective

scores of each database and the corresponding objective scores. Here, the objective

function of PSO is finding the maximum value of PCC between MOS and related

objective scores for each database. The resulting parameter values of linear com-

bination 3LC and non-linear combination 3NC for each database are summarized

in Tables 2.3 and 2.4.

Table 2.3: Optimized Parameter Values for each database by PSO algorithm for
3LC

Parameter A57 CSIQ TID2008 TID2013 LIVE IVC
k1 1.122 63.000 0.010 0.278 83.675 0.001
k2 0.854 0.001 0.040 0.029 54.167 0.001
k3 1.172 0.001 1.055 0.997 40.174 0.001
ϕ 0.001 0.972 0.001 0.001 0.094 0.001
υ 0.001 0.001 9.190 6.342 13.502 0.001
ρ 0.001 0.001 8.580 9.269 100 19.707

Table 2.4: Optimized Parameter Values for each database by PSO algorithm for
3NC

Parameter A57 CSIQ TID2008 TID2013 LIVE IVC
k1 1.122 63.000 0.010 0.278 83.675 0.001
k2 0.854 0.001 0.040 0.029 54.167 0.001
ϕ 0.001 0.972 0.001 0.001 0.094 0.001
υ 0.001 0.001 9.190 6.342 13.502 0.001
ρ 0.001 0.001 8.580 9.269 100 19.707
C 61.031 0.071 7.980 7.056 22.199 63.880
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2.13.4 Performance Evaluation

The performances of the methods between MOS and objective scores are calcu-

lated based on the Pearson’s Correlation Coefficient (PCC) and Spearman Rank-

Order Correlation Coefficient (SROCC). PCC and SROCC are defined as

PCC =

∑
ajbj − Jāb̄

(J − 1)sasb
(2.41)

where J is the data size, aj and bj are the single subjective and objective scores

with index j, respectively. (sa), sb denote the standard deviations of subjective

and objective scores, respectively and ā, b̄ denote the mean values of subjective

and objective scores, respectively.

SROCC = 1− 6
∑
d2

J3 − J
(2.42)

where d is the difference between the subjective and objective score ranks.

2.13.5 Experimental Results

In Tables 2.5-2.10, we compare the PCC and SROCC values of twenty-one IQA

methods based on six databases. The experimental results show that the proposed

method 3NC is more effective and well correlated with HV S in comparison to

other state−of−the−art not only single methods, Global Local Distortion with

PFT (GLD-PFT) [60], Locally Adaptive Fusion (LAF) [61], Difference of Gaus-

sian (DOG)-SSIM (DOGSSIM ) [62] and Edge Similarity (ESIM ) [102] but

also combination methods, Two Scores Combination Method (2SCM) [45], Three

Scores Combination Method (3SCM) [48], Composed Quality Measure (CQM) [21],

Extended Hybrid Image Similarity (EHIS) [22] and even linear combination 3LC.

For detailed performance, we compare the PCC and SROCC values of our

proposed methods, 3LC and 3NC with the values of MAD , MS − SSIM and

FSIM for each distortion type of each database. The results are shown in Tables

2.11-2.22 in Appendix of this chapter. According to these experimental results,

although our proposed method 3NC has lower values for some distortion types, it

is still powerful in almost all distortion types of every database.
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Table 2.5: PCC and SROCC Performance Comparison for A57 Database

IQA Index PCC SROCC

SSIM 0.8019 0.8067

MS-SSIM 0.5596 0.6673

VSNR 0.9502 0.9359

PSNR 0.6347 0.6189

PSNR-HVS 0.8832 0.8502

IFC 0.4549 0.3187

NQM 0.8027 0.7978

IW-SSIM 0.9024 0.8713

MAD 0.5009 0.8499

VIF 0.6160 0.6223

FSIM 0.5566 0.4962

2SCM [45] - -

3SCM [48] - -

CQM [21] - -

EHIS [22] - -

GLD-PFT [60] - -

LAF [61] - -

DOG-SSIM [62] - -

ESIM [102] - -

3LC (proposed) 0.9120 0.9350

3NC (proposed) 0.9585 0.9423
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Table 2.6: PCC and SROCC Performance Comparison for CSIQ Database

IQA Index PCC SROCC

SSIM 0.8594 0.8755

MS-SSIM 0.7837 0.8734

VSNR 0.8005 0.8108

PSNR 0.8001 0.8057

PSNR-HVS 0.8231 0.8294

IFC 0.8358 0.7671

NQM 0.7422 0.7411

IW-SSIM 0.9025 0.9212

MAD 0.9348 0.9281

VIF 0.9253 0.9194

FSIM 0.7999 0.9192

2SCM [45] - -

3SCM [48] - -

CQM [21] - -

EHIS [22] - 0.9498

GLD-PFT [60] - 0.9549

LAF [61] - 0.9630

DOG-SSIM [62] - 0.9204

ESIM [102] - 0.9620

3LC (proposed) 0.9009 0.9506

3NC (proposed) 0.9359 0.9686
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Table 2.7: PCC and SROCC Performance Comparison for TID2008 Database

IQA Index PCC SROCC

SSIM 0.7715 0.7749

MS-SSIM 0.8389 0.8528

VSNR 0.6820 0.7046

PSNR 0.5355 0.5245

PSNR-HVS 0.5977 0.5943

IFC 0.7186 0.5707

NQM 0.6103 0.6243

IW-SSIM 0.8488 0.8559

MAD 0.8306 0.8340

VIF 0.8055 0.7496

FSIM 0.8710 0.8805

2SCM [45] 0.8670 0.8920

3SCM [48] 0.8923 0.8891

CQM [21] - 0.8720

EHIS [22] - 0.9098

GLD-PFT [60] - 0.8849

LAF [61] - 0.8100

DOG-SSIM [62] - 0.9259

ESIM [102] - 0.9026

3LC (proposed) 0.8956 0.9000

3NC (proposed) 0.9007 0.9298
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Table 2.8: PCC and SROCC Performance Comparison for TID2013 Database

IQA Index PCC SROCC

SSIM 0.6504 0.6274

MS-SSIM 0.7290 0.7859

VSNR - -

PSNR 0.6390 0.6394

PSNR-HVS - -

IFC - -

NQM - -

IW-SSIM - -

MAD 0.8070 0.8380

VIF 0.7720 0.6769

FSIM 0.8210 0.8022

2SCM [45] 0.7997 0.7957

3SCM [48] 0.8050 0.7994

CQM [21] - -

EHIS [22] - -

GLD-PFT [60] - -

LAF [61] - -

DOG-SSIM [62] - 0.8942

ESIM [102] - 0.8804

3LC (proposed) 0.8744 0.8547

3NC (proposed) 0.8779 0.8944
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Table 2.9: PCC and SROCC Performance Comparison for LIVE Database

IQA Index PCC SROCC

SSIM 0.9384 0.9479

MS-SSIM 0.9402 0.9521

VSNR 0.9235 0.9279

PSNR 0.8701 0.8756

PSNR-HVS 0.9134 0.9186

IFC 0.9261 0.9259

NQM 0.9128 0.9093

IW-SSIM 0.9425 0.9567

MAD 0.9672 0.9669

VIF 0.9597 0.9636

FSIM 0.9540 0.9634

2SCM [45] - -

3SCM [48] - -

CQM [21] - -

EHIS [22] - 0.9622

GLD-PFT [60] - 0.9631

LAF [61] - 0.9570

DOG-SSIM [62] - 0.9423

ESIM [102] - 0.9420

3LC (proposed) 0.9601 0.9600

3NC (proposed) 0.9772 0.9806
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Table 2.10: PCC and SROCC Performance Comparison for IVC Database

IQA Index PCC SROCC

SSIM 0.9117 0.9018

MS-SSIM 0.8435 0.8997

VSNR 0.8027 0.7993

PSNR 0.7192 0.6885

PSNR-HVS 0.8648 0.8590

IFC 0.9093 0.8993

NQM 0.8489 0.8343

IW-SSIM 0.9228 0.9125

MAD 0.8986 0.9082

VIF 0.9026 0.8964

FSIM 0.9376 0.9262

2SCM [45] - -

3SCM [48] - -

CQM [21] - -

EHIS [22] - -

GLD-PFT [60] - -

LAF [61] - -

DOG-SSIM [62] - -

ESIM [102] - -

3LC (proposed) 0.9499 0.9364

3NC (proposed) 0.9534 0.9368
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Therefore, according to the experimental results, our proposed method 3NC

outperforms consistently well almost all types of distortions in six databases and

is more robust than other previous combination methods including linear combi-

nation 3LC.

2.14 Conclusion

As far as we know, there is no perfect single method which can give the best

performance for all distortion types on every database. Similarly, there is no

perfect single combination method which is very robust in the prediction of the

quality of images of all databases. In this paper, therefore, we have proposed new

linear and nonlinear combination methods which combines MAD , MS − SSIM
and FSIM scores using particle swarm optimization algorithm. Our experimental

results have demonstrated that non-linear combination method 3NC is a superior

one in comparison to other not only conventional single methods but also previous

combination methods.
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Table 2.11: PCC performance evaluations for each distortion type based on A57
Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1 Flat allocation 0.5460 0.6187 0.6226 0.7132 0.7945

2 JPEG compression 0.4732 0.5201 0.5591 0.7701 0.8667

3
JPEG-2000

compression
0.4733 0.4898 0.4838 0.7217 0.9333

4
JPEG-2000+DCQ

compression
0.5238 0.4556 0.5445 0.8603 0.9333

5 Gaussian blur 0.5672 0.4848 0.5759 0.8032 0.8541

6
Gaussian white

noise
0.8011 0.6825 0.8425 0.7096 0.7119

Table 2.12: SROCC performance evaluations for each distortion type based on
A57 Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1 Flat allocation 0.6557 0.6724 0.7057 0.7124 0.4391

2 JPEG compression 0.5391 0.3724 0.6724 0.7282 0.7667

3
JPEG-2000

compression
0.5557 0.4224 0.6224 0.8129 0.8833

4
JPEG-2000+DCQ

compression
0.4224 0.5391 0.3724 0.8333 0.9633

5 Gaussian blur 0.4224 0.4891 0.3891 0.8663 0.8767

6
Gaussian white

noise
0.3891 0.5891 0.5224 0.4792 0.4891
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Table 2.13: PCC performance evaluations for each distortion type based on CSIQ
Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1
Additive Gaussian

White noise
0.9486 0.9018 0.7643 0.9496 0.9496

2 Gaussian blurring 0.9713 0.8367 0.8822 0.9723 0.9723

3
Global contrast

decrements
0.7632 0.7470 0.6514 0.7667 0.7667

4
Additive Gaussian

Pink noise
0.8663 0.7269 0.7254 0.8665 0.8665

5 JPEG compression 0.9595 0.8991 0.8493 0.9585 0.9585

6
JPEG-2000

compression
0.9808 0.8663 0.9073 0.9813 0.9813

Table 2.14: SROCC performance evaluations for each distortion type based on
CSIQ Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1
Additive Gaussian

White noise
0.9540 0.9317 0.9258 0.9533 0.9551

2 Gaussian blurring 0.9680 0.9174 0.9721 0.9679 0.9690

3
Global contrast

decrements
0.8044 0.8149 0.8057 0.7950 0.7950

4
Additive Gaussian

Pink noise
0.8191 0.7636 0.7921 0.8191 0.8191

5 JPEG compression 0.9581 0.9459 0.9544 0.9580 0.9590

6
JPEG-2000

compression
0.9752 0.9129 0.9684 0.9750 0.9754
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Table 2.15: PCC performance evaluations for each distortion type based on LIVE
Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1
Bit errors in

JPEG2000 bit stream
0.7359 0.8366 0.8947 0.9243 0.9859

2 Gaussian blur 0.9545 0.8739 0.9810 0.6192 0.6198

3 JPEG2000 0.4309 0.5557 0.6997 0.8991 0.9102

4 JPEG compresses 0.4191 0.5269 0.6586 0.7086 0.7822

5 White noise 0.9418 0.9663 0.8494 0.7011 0.7177

Table 2.16: SROCC performance evaluations for each distortion type based on
LIVE Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1
Bit errors in

JPEG2000 bit stream
0.8628 0.7964 0.8463 0.8740 0.9531

2 Gaussian blur 0.9621 0.8521 0.9717 0.8274 0.8396

3 JPEG2000 0.7295 0.8567 0.7103 0.8662 0.8908

4 JPEG compresses 0.6046 0.7665 0.6440 0.8533 0.8661

5 White noise 0.9501 0.9524 0.9448 0.8021 0.8033

Table 2.17: PCC performance evaluations for each distortion type based on IVC
Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1 Blurring 0.9714 0.8815 0.8904 0.9863 0.9864

2
JPEG2000

compression
0.9160 0.9145 0.9296 0.9650 0.9657

3 JPEG compression 0.9401 0.9270 0.9601 0.9923 0.9923

4
Locally adaptive

resolution (LAR)
0.9558 0.9414 0.9352 0.9330 0.9384
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Table 2.18: SROCC performance evaluations for each distortion type based on
IVC Database

No. Distortions MAD
MS-

SSIM
FSIM 3LC 3NC

1 Blurring 0.9630 0.8526 0.9625 0.9639 0.9640

2
JPEG2000

compression
0.9098 0.9383 0.9620 0.9620 0.9624

3 JPEG compression 0.8962 0.9143 0.9805 0.9805 0.9805

4
Locally adaptive

resolution (LAR)
0.9489 0.9474 0.8857 0.8857 0.8857

Table 2.19: PCC performance evaluation for each distortion type on TID2008
Database

Distor-

tions
MAD

MS-

SSIM
FSIM 3LC 3NC

1 0.8165 0.7743 0.7828 0.8193 0.8582

2 0.8267 0.7982 0.8198 0.8359 0.8654

3 0.8598 0.7908 0.7938 0.8504 0.8783

4 0.7566 0.8086 0.7689 0.8051 0.8104

5 0.8931 0.8522 0.8383 0.8917 0.9369

6 0.0417 0.7231 0.6740 0.7216 0.7558

7 0.7981 0.7641 0.7831 0.8395 0.8803

8 0.9227 0.9075 0.9079 0.9427 0.9597

9 0.9612 0.8974 0.9320 0.9674 0.9878

10 0.9487 0.8999 0.9253 0.9685 0.9959

11 0.9733 0.8498 0.9554 0.9738 0.9732

12 0.8556 0.8140 0.8418 0.8803 0.9002

13 0.8295 0.8089 0.7877 0.8494 0.8566

14 0.8242 0.6661 0.7264 0.7345 0.7659

15 0.8007 0.8902 0.8410 0.8528 0.8757

16 0.5709 0.6832 0.6704 0.6980 0.7176

17 0.2573 0.5890 0.7285 0.7131 0.7294
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Table 2.20: SROCC performance evaluation for each distortion type on TID2008
Database

Distor-

tions
MAD

MS-

SSIM
FSIM 3LC 3NC

1 0.8389 0.8027 0.8577 0.8578 0.8777

2 0.8257 0.8129 0.8517 0.8513 0.8805

3 0.8671 0.8280 0.8479 0.8478 0.8678

4 0.7339 0.8140 0.8022 0.8117 0.8241

5 0.8865 0.8451 0.9095 0.9074 0.9295

6 0.0644 0.7543 0.7455 0.7446 0.7655

7 0.8158 0.7963 0.8550 0.8550 0.8750

8 0.9195 0.9396 0.9470 0.9494 0.9671

9 0.9433 0.9229 0.9604 0.9611 0.9802

10 0.9276 0.8973 0.9283 0.9284 0.9485

11 0.9708 0.8830 0.9776 0.9779 0.9976

12 0.8657 0.8203 0.8705 0.8715 0.8905

13 0.8400 0.8393 0.8551 0.8554 0.8751

14 0.8287 0.6921 0.7497 0.7451 0.7695

15 0.7959 0.8963 0.8478 0.8488 0.8678

16 0.5170 0.7192 0.6700 0.7043 0.6940

17 0.2722 0.5535 0.6482 0.6471 0.6687
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Table 2.21: PCC performance evaluation for each distortion type on TID2013
Database

Distor-

tions
MAD

MS-

SSIM
FSIM 3LC 3NC

1 0.8704 0.8492 0.8282 0.8722 0.8792

2 0.8232 0.8016 0.8172 0.6764 0.6564

3 0.8813 0.8257 0.8088 0.8830 0.8900

4 0.7974 0.8150 0.8163 0.4685 0.4242

5 0.9067 0.8878 0.8468 0.9024 0.9107

6 0.2676 0.7602 0.6881 0.7618 0.7707

7 0.8552 0.8791 0.8377 0.8954 0.9011

8 0.9397 0.9259 0.8919 0.9471 0.9491

9 0.9595 0.9364 0.9388 0.9744 0.9717

10 0.9518 0.9420 0.9278 0.9706 0.9717

11 0.9674 0.8860 0.9336 0.9699 0.9614

12 0.8661 0.8512 0.8719 0.9015 0.9034

13 0.8676 0.8286 0.8029 0.8906 0.8901

14 0.8545 0.7839 0.8221 0.8265 0.8264

15 0.3042 0.6075 0.5114 0.5212 0.5200

16 0.6882 0.7317 0.6986 0.2762 0.2519

17 0.2612 0.5433 0.6796 0.6421 0.6288

18 0.0581 0.476 0.3814 0.0544 0.0549

19 0.8436 0.7866 0.7900 0.8304 0.8373

20 0.9279 0.8564 0.924 0.9450 0.9452

21 0.9513 0.9231 0.9392 0.9569 0.9570

22 0.8691 0.7817 0.8149 0.8934 0.9015

23 0.9549 0.9444 0.9409 0.9624 0.9646

24 0.9653 0.8870 0.9441 0.9728 0.9608
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Table 2.22: SROCC performance evaluation for each distortion type on TID2013
Database

Distor-

tions
MAD

MS-

SSIM
FSIM 3LC 3NC

1 0.8812 0.8708 0.9002 0.8996 0.9402

2 0.7896 0.7836 0.8196 0.7241 0.7573

3 0.8931 0.8774 0.8813 0.8815 0.9213

4 0.7521 0.8041 0.8168 0.6201 0.6601

5 0.8805 0.8557 0.8959 0.8960 0.9387

6 0.2664 0.8081 0.8018 0.8023 0.8418

7 0.8726 0.9134 0.9060 0.9070 0.9460

8 0.9408 0.9673 0.9590 0.9607 0.9792

9 0.9242 0.9442 0.9497 0.9508 0.9897

10 0.9215 0.9330 0.9330 0.9346 0.9739

11 0.9543 0.9043 0.9579 0.9590 0.9785

12 0.8393 0.8215 0.8453 0.8522 0.8914

13 0.8794 0.8724 0.8886 0.8897 0.9286

14 0.8322 0.7972 0.8139 0.8140 0.8539

15 0.2590 0.6281 0.5355 0.5379 0.5755

16 0.6591 0.7813 0.7606 0.4198 0.4494

17 0.1997 0.3859 0.4648 0.4638 0.5048

18 0.0091 0.4436 0.3950 0.3625 0.3940

19 0.8430 0.8021 0.8543 0.8524 0.8946

20 0.9024 0.8596 0.9165 0.9143 0.9526

21 0.9439 0.9295 0.9564 0.9561 0.9664

22 0.8792 0.7993 0.8947 0.8928 0.9344

23 0.8375 0.8881 0.8779 0.8867 0.9241

24 0.9564 0.9072 0.9646 0.9646 0.9646



Chapter 3
Convolutional Neural Network for Blind
Image Quality Assessment

Blind image quality assessment methods (BIQA ) are able to measure the quality

of distorted images even without referencing the original images. This property

is peerless in image processing field because reference images are normally not

available in practice. Unlike the existing trained models, in our work, the training

process is constructed as an end-to-end learning mechanism that minimizes the loss

between the predicted score and the ground truth score of Human Vision System

(HV S ). Moreover, the convolutional neural network (CNN ) takes distorted

images as inputs and outputs the related score for each image. In this section,

we evaluate the proposed method on the publicly available six benchmarks and

cross-database validation performance on LIVE, CSIQ and TID2013 databases.

The experimental results show that our proposed method outperforms other state-

of-the-art ones.

3.1 Related Work

Nowadays, huge amount of images are daily produced for several purposes, for

example, forecasting weather, finding diseases and monitoring criminals. For these

reasons, it is very importance to keep the quality of such images at an acceptable

visual level at the end-users after the production and transmission. Furthermore,

accurate measurement of the image quality is an important step in many image-

based applications. To achieve this goal, effective image quality assessment (IQA)

algorithms are necessary and have recently become a very hot research topic.

77
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As human observers are the superlative users in most of the multimedia ap-

plications, the most accurate and reliable way of assessing the quality of images

is through subjective evaluation. Moreover, human beings can efficiently assess

the quality of images without using any reference image. However, subjective

evaluations are expensive and time-consuming to apply in real-world applications.

Therefore, objective IQA designs mathematical models that can predict the quality

of images accurately and automatically as human observers.

Generally, based on the availability of a reference image, there are three types

of objective IQA measures. The first one is full-reference IQA (FR− IQA ) where

the information of original image is fully available. The second one is reduced-

reference IQA (RR-IQA) where the information of original image is partly avail-

able. The third one is no-reference IQA (NR − IQA ) or blind IQA (BIQA )

where the information of original image is unavailable. State-of-the-art FR− IQA
measures, such as PSNR , SSIM [6], MS−SSIM [41], MAD [20], V IF [9] and

FSIM [12], achieve a very high correlation with human perception. Nevertheless,

the degree of improvement is limited by their insufficient consideration of HV S

properties. Besides, since any information of distorted images are normally not

available in reality, BIQA methods are becoming more considerable importance

in image processing field than FR− IQA and RR-IQA methods.

Mostly, successful BIQA approaches use Natural Scene Statistics (NSS ) based

features. In this chapter, we will explain about recently state-of-the-art BIQA

methods.

3.1.1 Blind or Referenceless Image Spatial Quality Evalu-

ator (BRISQUE)

A. Mittal et al. proposed a Blind or Referenceless Image Spatial Quality Evaluator

(BRISQUE ) [30] which exploits an NSS model framework of locally normalized

luminance coefficients and measures the quantity of “naturalness” using the param-

eters of the model. Figure. 3.1 shows the steps involved in calculating BRISQUE.

The steps needed for BRISQUE algorithm used for BIQA are the followings.

Step 1: Extract Natural Scene Statistics (NSS)

First, locally normalized luminances are computed via Mean Subtracted Con-

trast Normalization (MSCN). To calculate the MSCN Coefficients, the image in-

tensity I(i, j) at pixel (i, j) is transformed to the luminance Î(i, j).
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Figure 3.1: Steps to calculate image quality score using BRISQUE Model [30]

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(3.1)

Where i ∈ 1, 2, · · ·M, j ∈ 1, 2, · · ·N (M and N are height and width respec-

tively). Functions µ(i, j) and σ(i, j) are local mean field and local variance field

respectively. Figure 3.2 shows how to calculate MSCN coefficients by visualization.

Figure 3.2: Calculation of MSCN coefficients [30]

Step 2 : Calculate Feature Vectors

In this step, the images derived from the original image 1 MSCN image and

4 pairwise product images to capture neighbor relationships (Horizontal, Vertical,

Left Diagonal, Right Diagonal) are utilized to calculate feature vectors.

Step 3: Prediction of Image Quality Scores
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In this step, images are first converted to feature vectors. Then the feature

vectors and quality scores of all images in the training dataset are fed to a learning

algorithm, Support Vector Machine (SVM).

3.1.2 Codebook Representation for No-Reference Image

Assessment (CORNIA)

Recent development in BIQA methods, CORNIA [34], promotes extracting fea-

tures from the spatial domain, which leads to a significant reduction in computation

time. In addition, they utilize raw-image-patches extracted from a set of unlabeled

images to learn a dictionary in an unsupervised manner. There are four steps in

the CORNIA approach.

Step 1 : Use raw-image-patches local descriptors in the learning framework

instead of hand-crafted features.

Step 2 : Use a codebook based approach which allows to learn highly effective

features automatically as shown in Figure 3.3. Key components of the learning

framework include (1) Local feature extraction, (2) Codebook construction, (3)

Local feature encoding and (4) Feature pooling. The details of these components

are described in [34].

Step 3 : Use soft-assignment coding with max pooling for encoding.

Step 4 : Use linear-Support Vector Machine (SVM) for obtaining objective

quality scores.

Figure 3.3: Codebook based framework [34]. Note that locality-constrained linear
coding (LLC) [24].
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3.1.3 High Order Statistics Aggregation (HOSA)

A more recent technique, High Order Statistics Aggregation (HOSA) [76], employs

the k-means clustering of normalized image patches and describes them using the

low and high order statistics to obtain a small codebook. In HOSA, the soft

assignment is used to build image representation and SV R is used for the mapping

of features into the subjective scores. HOSA consists of three steps.

First, local normalized image patches are extracted as local features through

a regular grid and a codebook containing 100 codewords is constructed by K-

means clustering. In addition to the mean of each cluster, the diagonal covariance

Figure 3.4: Pipeline of the HOSA model [76].
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and coskewness (i.e., dimension wise variance and skewness) of clusters are also

calculated.

Second, each local feature is softly assigned to several nearest clusters and the

differences of high order statistics (mean, variance and skewness) between local

features and corresponding clusters are softly aggregated to build the global quality

aware image representation.

Third, support vector regression (SVR) is adopted to learn the mapping be-

tween perceptual features and subjective opinion scores.

The key components in the HOSA BIQA framework are the extraction of local

features, the construction of comprehensive codebook, high order statistics aggre-

gation, and regression. Figure 3.4 illustrates the pipeline of the HOSA model.

3.1.4 Learning from Rankings for NR-IQA and Fine-tuning

(RankIQA+FT)

Figure 3.5: Network diagram for RankIQA+FT [79].
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In 2017, X. Liu, et al. proposed a no-reference image quality assessment (NR-

IQA) approach that learns from rankings (RankIQA) [79]. In that approach, the

authors train a Siamese Network to rank images in terms of image quality by

using synthetically generated distortions for which relative image quality is known.

Then, that ranked image sets is automatically generated without laborious human

labeling. Then, they use fine-tuning to transfer the knowledge represented in the

trained Siamese Network to a traditional CNN that estimates absolute image

quality from single images as shown in Figure 3.5.

Currently, Convolutional Neural Network (CNN ) has gained researchers’ at-

tention and achieved great success on various computer vision tasks, because this

technique has shown superior performance on many standard object recognition

benchmarks. However, all existing BIQA methods have still restrictions to get the

highest performance.

In this section, therefore, we construct an end-to-end learning mechanism using

CNN to overcome such restrictions. One of CNN s advantages is that it can take

raw images as input and incorporate feature learning into the training process.

Thus, in our work, we take distorted images labelled with Mean Opinion Score

(MOS ) as inputs and output the related score for each image. Through the

experimental results, it is shown that our proposed method outperforms other

state -of-the-art IQA methods.

The remainder of this chapter is organized as follows. Section II presents the

proposed method in detail. In Section III, we evaluate the performance of the

proposed method by experiments. Finally, Section IV concludes the section.

3.2 Convolutional Neural Network

A convolutional neural network (CNN ) is a type of artificial neural network used

in image recognition and processing that is specifically designed to process pixel

data. CNNs are powerful image processing, artificial intelligence (AI) that use deep

learning to perform both generative and descriptive tasks, often using machine

vison (MV) that includes image and video recognition, along with recommender

systems and natural language processing (NLP).

A neural network is a system of hardware or software patterned after the op-

eration of neurons in the human brain. Traditional neural networks are not ideal

for image processing and must be fed images in reduced-resolution pieces. CNNs
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have their neurons arranged more like those of the frontal lobe, the area respon-

sible for processing visual stimuli in humans and other animals. The layers of

neurons are arranged in such a way as to cover the entire visual field avoiding the

piecemeal image processing problem of traditional neural networks. A CNN uses

a system much like a multilayer perceptron that has been designed for reduced

processing requirements. The main advantage of CNN compared to its prede-

cessors is that it automatically detects the important features of inputs without

any human supervision. The layers of a CNN consist of an input layer, an output

layer and a hidden layer that includes multiple convolutional layers, pooling layers,

normalization layers and fully connected layers.

3.2.1 Convolution

Figure 3.6: Convolution layer

The main layer of CNN is the convolution layer. Convolution is a mathematical

operation to merge two sets of information. In our model, the convolution is applied

on the input data using a convolution filter to produce a feature map. Figure 3.1

is an example of convolution operation in 2D using a 3x3 filter.
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3.2.2 Pooling

After a convolution operation, we usually perform pooling to reduce the dimen-

sionality. This enables us to reduce the number of parameters, which both shortens

the training time and lessen overfitting. Pooling layers downsample each feature

map independently. The most common type of pooling is maxpooling which takes

the maximum value in the pooling window. Contrary to the convolution operation,

pooling has no parameters. It slides a window over its input, and simply takes the

maximum value in the window. Similar to a convolution, we specify the window

size and stride. Figure 3.2 is a simple example of how maxpooling works with a size

of 2x2 and stride 2. Each color denotes a different window. Since both the window

size and stride are 2, the windows are not overlapping. Note that this window and

stride configuration halves the size of the feature map. This is the main use case of

pooling, downsampling the feature map while keeping the important information.

Figure 3.7: Maxpooling

3.2.3 Batch Normalization

To increase the stability of a neural network, batch normalization normalizes the

output of a previous activation layer by subtracting the batch mean and dividing

by the batch standard deviation. However, after this scale of activation outputs by

some randomly initialized parameters, the weights in the next layer are no longer

optimal. Stochastic Gradient Descent (SGD) undoes this normalization if its a

way for it to minimize the loss function. Consequently, batch normalization adds

two trainable parameters to each layer, so the normalized output is multiplied by

a standard deviation parameter (gamma) and add a mean parameter (beta). In

other words, batch normalization lets SGD do the denormalization by changing
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only these two weights for each activation, instead of losing the stability of the

network by changing all the weights.

Batch normalization improves the learning rates, performance, and stability of

CNN because it makes sure that theres no activation that has gone really high

or really low. Besides, it reduces overfitting because it has a slight regularization

effects.

3.2.4 Activation functions

Rectified Linear Unit (ReLU)

ReLU is the most commonly used activation function in neural networks, especially

in CNNs. The mathematical formula of ReLU is y = max(0, x) and it is linear

for all positive values, and zero for all negative values. Visually, it looks like the

following:

Figure 3.8: ReLU

Parametric ReLU (PReLU)

Unlike ReLU, which always outputs 0 for inputs less than 0, PReLU multiplies

inputs less than 0 with a constant value to output results. The value of a, which

is a gradient less than 0, is obtained from training. The mathematical formula of

PReLU is y = max(0, x) + a min(0, x), where x is the input.

Fully Connected (FC)

At the end of a CNN , the output of the last Pooling Layer acts as input to the

so called FC Layer. There can be one or more of these layers and fully connected
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Figure 3.9: PReLU

means that every node in the first layer is connected to every node in the second

layer. Moreover, fully Connected layers perform classification based on the features

extracted by the previous layers. In our case, this layer contains a SquaredError

loss function, which outputs a continuous value for each of the input images.

3.3 Proposed Method

Figure 3.10: Network architecture of the proposed method

The architecture of the proposed method is shown in Figure 3.5. It is a form

of end-to-end learning mechanism which takes the whole image as an input and

directly outputs the continuous score and then let the network to be able to accept
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any arbitrary size of input images. In our case, we utilize 64x64-size distorted

images as inputs. Firstly, images are labelled with their related MOS of HV S

and then these labelled images are input to the CNN for supervised training. The

usage of CNN is motivated by the fact that it is able to learn relevant features

from an image at different levels similar to a human brain. As the target scores of

input images are assigned with MOS scores of human beings, the trained CNN

can realize the reliable objective scores that correspond with subjective scores of

HV S . In our CNN , two-dimensional convolution is utilized and the features of

the input images are convolved with 2 kernels with a size of 2x8 and each kernel

generates a feature map as shown in Figure 3.6.

Figure 3.11: The process of first convolution layer of the proposed method

We perform multiple convolutions on an input, each using a different filter and

resulting in a distinct feature map. We then stack all these feature maps together

and that becomes the final output of the convolution layer.
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After convolution operation, we use maxpooling to be able to cover the entire

image as quickly as possible exponentially. The pooling size is 1x2 with a stride

of 2 and it reduces the spatial dimensions on a CNN by combining the outputs

of neuron clusters at one layer into a single neuron in the next layer. Therefore,

the computational performance of the CNN becomes high and the overfitting

problem becomes less because of less spatial information. In our case, maxpooling

down-samples the features that have been extracted by convolution layer.

Then, we apply a second convolution layer with 16 kernels of size 4x5 and

then BatchNormalization layer is inserted in our CNN . Batch normalization

allows each layer of a network to learn by itself more independently of other layers.

In this layer, batch normalization makes sure that there is no activation that

has gone really high or really low. Furthermore, it reduces overfitting because it

has a slight regularization effect. Similar to dropout, it adds some noise to each

hidden layer′s activations. To increase the stability of a neural network, batch

normalization normalizes the output of a previous activation layer by subtracting

the batch mean and dividing by the batch standard deviation. Thus, inserting

this layer after convolution improves accuracy and accelerating convergence of the

network model.

The second pooling layer is 1x7, with a stride of 16 and then the second Batch-

Normalization layer is applied again to improve the accuracy of the model.

In practice, images are naturally non-linear. When we look at any image, we

can find that it contains a lot of non-linear features, for example, the transition

between pixels, the borders, the colors, etc. The purpose of applying the rectifier

function is to increase the non-linearity in such images. In our network, therefore,

we use Rectified Linear Unit (ReLU) in the fully connected layers instead of tradi-

tional tanh or sigmoid function. The tanh function is mainly used for classification

between two classes. Both tanh and logistic sigmoid activation functions are used

in feed-forward networks. ReLU enables the network to train several times faster

compared to using traditional activation functions [77]. Note that ReLU only al-

lows nonnegative values to pass. Thus, we use Parametric Rectified Linear Unit

(PReLU) nonlinearity in pooling layer instead of ReLU because there are many

negative features after normalization. Unlike ReLU which always outputs 0 for

inputs less than 0, PReLU multiplies inputs less than 0 with a constant value to

output results. Figure 3.7 shows some examples of the estimated scores of the

proposed method for each labelled input image.

After the second pooling, the resulting feature maps are fully connected with
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Figure 3.12: Examples of the estimated scores of the proposed method

one layer which consists of 142 feature nodes. All the nodes are fully connected

and resulting in one node to produce the output.

Finally, SquaredError loss function is utilized to output the continuous values

for each input image. The loss is minimized by using stochastic gradient descent

with the standard backpropagation [78].

Other CNNs may contain larger or smaller numbers of feature nodes in the

fully connected layer, and greater or fewer fully connected layers. Engineers of-

ten experiment to figure out the configuration that produces the best results for

their model. In our network, we set the layer structure to get the high accuracy

performance.

As a brief statement, the point of Figure. 3.5 is that the proposed system is a

very simple idea but it saves computation time and cost and, produces incredible

performance for all image quality assessment databases than other previous state-

of-the-art ones.

3.4 Implementation

We implement the proposed method using Neural Network Console (NNabla).



3.4 Implementation 91

3.4.1 NNABLA

Neural Network Libraries by the Tokyo-based Sony is an open-sourced deep learn-

ing framework that is intended to be used for research, development as well as

production. Neural Network Libraries enable the users to speed-up the computa-

tion on GPUs. For examples, from basic to state-of-the-art working examples of

Neural Network Libraries are provided as a Windows GUI app. The core libraries

can carry out neural network learning and execution and allow deep learning sup-

ported technique developments with lower iteration time and highest speed. Neu-

ral Network Console also provides a layer of interface functions in Python which

allows high-efficiency development as well as easy prototyping for deep learning

development. Therefore, developers can develop deep learning technologies creat-

ing neural networks more efficiently, in less time, and at a lower cost. Figure 3.8

is the Neural Network Console diagram and Figure 3.9 is the Python source code

for the proposed method.
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Figure 3.13: Neural Network Console
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Figure 3.14: Python code of the proposed method

3.5 Experimental Results and Discussion

In this section, we compare the overall performance of our proposed method with

that of other state-of-the-art not only FR− IQA methods but also BIQA meth-

ods. As FR − IQA methods, we utilize SSIM [6], MS − SSIM [41], PSNR ,

MAD [20], V IF [9], FSIM [12]. As BIQA methods, we utilize BLIINDS-II [29],

BRISQUE [30], CORNIA [34], HOSA [76], RankIQA+FT [79], NIQE [31], IL-

NIQE [75], DIQaM-NR [80], WaDIQaM-NR [80] and DIIV INE [28]. Six Stan-

dard benchmarks that we use are A57, TID2008, TID2013, CSIQ, LIVE, and IVC.

For detailed performance evaluation, we compare the performance of each distor-

tion type based on the six databases.

3.5.1 Image Databases

The A57 Database [54] has 3 reference images, and 54 distorted images, includ-

ing six distortion types - Flat allocation; equal distortion contrast at all scales

(FA), JPEG compression (JPEG), JPEG2000 compression (JPEG2K), JPEG2000
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compression with the Dynamic Contrast-Based Quantization (JPEG2K+DCQ),

Gaussian blurring (GB), and additive Gaussian white noise (WGN) - at 5 different

levels. The subjective quality scores used for this database are DMOS, ranging

from 0 to 1.

The Tampere Image Database (TID2008) [56] includes 25 reference images

and 1700 distorted images. Each reference image is distorted using 17 types of

distortions as shown in Table 3.1, with 4 different levels. The subjective quality

scores provided for this database are MOS , ranging from 0 to 9.

Table 3.1: Types of distortions in TID2008

No Types

1 Additive Gaussian noise

2 Additive noise in color component

3 Spatially correlated noise

4 Masked noise

5 High frequency noise

6 Impulse noise

7 Quantization noise

8 Gaussian blur

9 Image denoising

10 JPEG compression

11 JPEG2000 compression

12 JPEG transmission errors

13 JPEG2000 transmission errors

14 Non eccentricity pattern noise

15 Local block-wise distortions of different intensity

16 Mean shift (intensity shift)

17 Contrast change

Tampere Image Database (TID2013) [57] includes 25 reference images, 24 types

of distortions for each reference image as shown in Table 3.2, and 5 different levels

for each type of distortion. The whole database contains 3000 distorted images.

MOS is provided in this database, and the scores range from 0 to 9.

Categorical Image Quality (CSIQ) [55] contains 900 distorted images. Each im-

age is distorted by 6 types of distortions - JPEG compression (JPEG), JPEG2000

compression (JPEG2K), global contract decrements (CTD), additive Gaussian

white noise (WGN), additive pink Gaussian noise (PGN), and Gaussian blurring
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Table 3.2: Types of distortions in TID2013

No Types

1 Additive Gaussian noise

2 Additive noise in color component

3 Spatially correlated noise

4 Masked noise

5 High frequency noise

6 Impulse noise

7 Quantization noise

8 Gaussian blur

9 Image denoising

10 JPEG compression

11 JPEG2000 compression

12 JPEG transmission errors

13 JPEG2000 transmission errors

14 Non eccentricity pattern noise

15 Local block-wise distortions of different intensity

16 Mean shift (intensity shift)

17 Contrast change

18 Change of color saturation

19 Multiplicative Gaussian noise

20 Comfort noise

21 Lossy compression of noisy images

22 Image color quantization with dither

23 Chromatic aberrations

24 Sparse sampling and reconstruction

(GB) from 4 to 5 different levels. The score ratings with 0-to-1 scale are reported

in the form of DMOS.

The LIVE Image Quality Database [58] has 29 reference images and 779 dis-

torted images, including five distortion types - JPEG2000 compression (JPEG2K),

JPEG compression (JPEG), white noise in the RGB components (WGN), Gaus-

sian blur (GB), and transmission errors in the JPEG2000 bit stream using a fast-

fading Rayleigh channel model (FF). The subjective quality scores provided in this

database are DMOS, ranging from 0 to 100.

The IVC Database [59] has 10 reference images, and 185 distorted images,

including 4 types of distortions Gaussian blurring (GB), JPEG2000 compression
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(JPEG2K), JPEG compression (JPEG), and locally adaptive resolution (LAR)

coding. The subjective quality scores provided in this database are MOS , ranging

from 1 to 5.

3.5.2 Training and Testing

For training and testing, the models which are trained on the eighty percent images

of each database are tested on the totally different twenty percent of each one.

For cross-database evaluation, a model trained on full LIVE database is eval-

uated on subsets of TID2013 and CSIQ databases which contain only four types

of distortions –White Noise, Gaussian Blur, JPEG and JPEG2000 shared between

the three databases.

3.5.3 Performance Evaluation

To fairly compare the performance, we employ the widely used correlation co-

efficients, which are the Pearson Linear Correlation Coefficient (PLCC) and the

Spearman’s Rank Ordered Correlation Coefficient (SROCC). They measure the

correlation between the predicted scores and the ground truth scores of images.

PLCC is defined as

PLCC =
1

N − 1

N∑
n=1

(
xn − x̄
dx

)(
yn − ȳ
dy

)
(3.2)

where N is the data size, xn and yn are the single subjective and objective scores

with index n, respectively. dx, dy denote the standard deviations of subjective and

objective scores, respectively and x̄, ȳ denote the mean values of subjective and

objective scores, respectively. SROCC is defined as

SROCC = 1− 6
∑
D2

N(N2 − 1)
(3.3)

where D is the difference between the subjective and objective score ranks.

3.5.4 Experimental Results

In Tables 3.3-3.8, we compare the PLCC and SROCC values of the proposed

method with those of other sixteen state-of-the-art IQA methods based on six

databases for the whole databases. Through the experimental results, we see that
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Table 3.3: PLCC and SROCC performance comparison on A57 database. FR −
IQA methods are italicized.

IQA Method PLCC SROCC

SSIM 0.802 0.807

MS-SSIM 0.560 0.667

PSNR 0.635 0.619

MAD 0.501 0.850

VIF 0.616 0.622

FSIM 0.557 0.496

BLIINDS-II - -

BRISQUE - -

CORNIA - -

HOSA - -

RankIQA+FT - -

NIQE - -

IL-NIQE - -

DIQaM-NR - -

WaDIQaM-NR - -

DIIVINE - -

Proposed 0.947 0.923

Table 3.4: PLCC and SROCC performance comparison on TID2008 database.
FR-IQA methods are italicized.

IQA Method PLCC SROCC

SSIM 0.772 -

MS-SSIM 0.839 -

PSNR 0.536 -

MAD 0.831 -

VIF 0.806 -

FSIM 0.871 -

BLIINDS-II - -

BRISQUE - -

CORNIA 0.837 0.813

HOSA - -

RankIQA+FT - -

NIQE - -

IL-NIQE - -

DIQaM-NR - -

WaDIQaM-NR - -

DIIVINE - -

Proposed 0.987 0.986
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Table 3.5: PLCC and SROCC performance comparison on TID2013 database.
FR-IQA methods are italicized.

IQA Method PLCC SROCC

SSIM 0.650 0.627

MS-SSIM 0.729 0.786

PSNR 0.639 0.639

MAD 0.807 0.838

VIF 0.772 0.677

FSIM 0.821 0.802

BLIINDS-II 0.628 0.536

BRISQUE 0.651 0.562

CORNIA 0.613 0.549

HOSA - 0.728

RankIQA+FT - 0.780

NIQE 0.426 0.317

IL-NIQE - -

DIQaM-NR 0.855 0.835

WaDIQaM-NR 0.787 0.761

DIIVINE 0.654 0.549

Proposed 0.981 0.977

Table 3.6: PLCC and SROCC performance comparison on CSIQ database. FR-
IQA methods are italicized.

IQA Method PLCC SROCC

SSIM 0.859 0.876

MS-SSIM 0.784 0.873

PSNR 0.800 0.806

MAD 0.935 0.928

VIF 0.925 0.919

FSIM 0.800 0.919

BLIINDS-II 0.832 0.780

BRISQUE 0.817 0.775

CORNIA 0.781 0.714

HOSA - -

RankIQA+FT - -

NIQE 0.725 0.627

IL-NIQE 0.865 0.822

DIQaM-NR - -

WaDIQaM-NR - -

DIIVINE - -

Proposed 0.976 0.964
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Table 3.7: PLCC and SROCC performance comparison on LIVE database. FR-
IQA methods are italicized.

IQA Method PLCC SROCC

SSIM 0.906 0.913

MS-SSIM 0.940 0.952

PSNR 0.856 0.866

MAD 0.967 0.967

VIF 0.960 0.964

FSIM 0.954 0.963

BLIINDS-II 0.927 0.924

BRISQUE 0.931 0.933

CORNIA 0.935 0.942

HOSA - -

RankIQA+FT 0.982 0.981

NIQE 0.908 0.908

IL-NIQE 0.906 0.902

DIQaM-NR 0.972 0.960

WaDIQaM-NR 0.963 0.954

DIIVINE 0.917 0.916

Proposed 0.982 0.973

Table 3.8: PLCC and SROCC performance comparison on IVC database. FR-IQA
methods are italicized.

IQA Method PLCC SROCC

SSIM 0.938 0.948

MS-SSIM 0.940 0.952

PSNR 0.870 0.876

MAD 0.967 0.967

VIF 0.960 0.964

FSIM 0.954 0.963

BLIINDS-II - -

BRISQUE - -

CORNIA - -

HOSA - -

RankIQA+FT - -

NIQE - -

IL-NIQE - -

DIQaM-NR - -

WaDIQaM-NR - -

DIIVINE - -

Proposed 0.988 0.981
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Table 3.9: PLCC performance evaluation of each distortion type on A57 database

Distortion MS-SSIM MAD FSIM Proposed

FA 0.619 0.546 0.623 0.960

JPEG 0.520 0.473 0.559 0.963

JPEG2K 0.490 0.473 0.484 0.935

JPEG2K+DCQ 0.456 0.524 0.545 0.956

GB 0.485 0.567 0.576 0.861

WGN 0.683 0.801 0.843 0.794

Table 3.10: SROCC performance evaluation of each distortion type on A57
database

Distortion MS-SSIM MAD FSIM Proposed

FA 0.672 0.656 0.706 0.933

JPEG 0.372 0.539 0.672 0.967

JPEG2K 0.422 0.556 0.622 0.917

JPEG2K+DCQ 0.539 0.422 0.372 0.833

GB 0.489 0.422 0.389 0.600

WGN 0.589 0.389 0.522 0.833

the proposed method significantly outperforms other state-of-the-art blind IQA

methods and even full-reference IQA ones for all databases.

In Tables 3.9 and 3.10, we compare the PLCC and SROCC values, respectively,

of our proposed method with those of other state-of-the-art FR − IQA methods

for each distortion type of A57 database. Incredibly, the proposed method is more

robust for almost all types of distortions than state-of-the-art even FR − IQA

methods.

Likewise, in Tables 3.11 and 3.12, we compare the PLCC and SROCC values,

respectively, of our proposed method with those of other state-of-the-art FR−IQA
methods for each distortion type of TID2008 database. Significantly, the proposed

method outperforms all types of distortions than state-of-the-art even FR− IQA
methods.

In Table 3.13, we compare the SROCC values of our proposed method with

those of other state-of-the-art BIQA methods for each distortion type of TID2013

database to be fair performance comparison. Unfortunately, we cannot show the

PLCC performance comparison of TID2013 for each distortion type because there

is still no description of such PLCC values on other papers. The experimental

results validated that the proposed method is more robust for all various types of
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Table 3.11: PLCC performance evaluation of each distortion type on TID2008
database

Dist-

ortion
MS-SSIM MAD FSIM Proposed

1 0.774 0.817 0.783 0.952

2 0.798 0.827 0.820 0.926

3 0.791 0.860 0.794 0.971

4 0.809 0.757 0.769 0.914

5 0.852 0.893 0.838 0.968

6 0.723 0.042 0.674 0.936

7 0.764 0.798 0.783 0.974

8 0.908 0.923 0.908 0.977

9 0.897 0.961 0.932 0.992

10 0.900 0.949 0.925 0.992

11 0.850 0.973 0.955 0.996

12 0.814 0.856 0.842 0.981

13 0.809 0.830 0.788 0.979

14 0.666 0.824 0.726 0.984

15 0.890 0.801 0.841 0.980

16 0.683 0.571 0.670 0.921

17 0.589 0.257 0.729 0.983
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Table 3.12: SROCC performance evaluation of each distortion type on TID2008
database

Dist-

ortion
MS-SSIM MAD FSIM Proposed

1 0.803 0.839 0.858 0.955

2 0.813 0.826 0.852 0.922

3 0.828 0.867 0.848 0.971

4 0.814 0.734 0.802 0.898

5 0.845 0.887 0.910 0.955

6 0.754 0.064 0.746 0.937

7 0.796 0.816 0.855 0.972

8 0.940 0.920 0.947 0.981

9 0.923 0.943 0.960 0.989

10 0.897 0.928 0.928 0.976

11 0.883 0.971 0.978 0.992

12 0.820 0.866 0.871 0.982

13 0.839 0.840 0.855 0.979

14 0.692 0.829 0.750 0.974

15 0.896 0.796 0.848 0.978

16 0.719 0.517 0.670 0.869

17 0.554 0.272 0.648 0.967
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Table 3.13: SROCC performance evaluation of each distortion type on TID2013
database

Dist-

ortion

BLII-

NDS

-II

BRIS-

QUE

COR-

NIA

HO-

SA

Rank-

IQA+

FT

Pro-

posed

1 0.714 0.630 0.341 0.853 0.667 0.976

2 0.728 0.424 0.196 0.625 0.620 0.967

3 0.825 0.727 0.689 0.782 0.821 0.989

4 0.358 0.321 0.184 0.368 0.365 0.915

5 0.852 0.775 0.607 0.905 0.760 0.969

6 0.664 0.669 0.014 0.775 0.736 0.974

7 0.780 0.592 0.673 0.810 0.783 0.993

8 0.852 0.845 0.896 0.892 0.809 0.987

9 0.754 0.553 0.787 0.870 0.767 0.991

10 0.808 0.742 0.875 0.893 0.866 0.986

11 0.862 0.799 0.911 0.932 0.878 0.994

12 0.251 0.301 0.310 0.747 0.704 0.983

13 0.755 0.672 0.625 0.701 0.810 0.983

14 0.081 0.175 0.161 0.199 0.512 0.981

15 0.371 0.184 0.096 0.327 0.622 0.960

16 0.159 0.155 0.008 0.233 0.268 0.916

17 0.082 0.125 0.423 0.294 0.613 0.983

18 0.109 0.032 0.055 0.119 0.662 0.988

19 0.699 0.560 0.259 0.782 0.619 0.980

20 0.222 0.282 0.606 0.532 0.644 0.983

21 0.451 0.680 0.555 0.835 0.800 0.992

22 0.815 0.804 0.592 0.855 0.779 0.990

23 0.568 0.715 0.759 0.801 0.629 0.982

24 0.856 0.800 0.903 0.905 0.859 0.994

Table 3.14: SROCC performance evaluation of each distortion type on CSIQ
database

Dist-

tion

BLIINDS

-II

BRI-

SQUE

COR-

NIA

Pro-

posed

WGN 0.801 0.925 0.746 0.817

GB 0.892 0.903 0.917 0.963

CTD 0.012 0.024 0.302 0.972

PGN 0.379 0.253 0.420 0.948

JPEG 0.900 0.909 0.908 0.978

JPEG2K 0.895 0.867 0.914 0.982
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Table 3.15: PLCC performance evaluation of each distortion type on LIVE
database

Dist-

ortion

BLII-

NDS

-II

BRI-

SQUE

COR-

NIA

Rank-

IQA

+FT

DII-

VINE

Pro-

posed

JPEG2K 0.935 0.923 0.951 0.975 0.922 0.984

JPEG 0.968 0.973 0.965 0.986 0.921 0.983

WGN 0.980 0.985 0.987 0.994 0.988 0.986

GB 0.938 0.951 0.968 0.988 0.923 0.989

FF 0.896 0.903 0.917 0.960 0.888 0.994

Table 3.16: SROCC performance evaluation of each distortion type on LIVE
database

Dist-

ortion

BLII-

NDS

-II

BRI-

SQUE

COR-

NIA

Rank-

IQA

+FT

DII-

VINE

Pro-

posed

JPEG2K 0.929 0.914 0.943 0.970 0.913 0.966

JPEG 0.942 0.965 0.955 0.978 0.910 0.981

WGN 0.969 0.979 0.976 0.991 0.984 0.976

GB 0.923 0.951 0.969 0.988 0.921 0.910

FF 0.889 0.887 0.906 0.954 0.863 0.966

Table 3.17: PLCC performance evaluation of each distortion type on IVC database

Dist-

ortion

MS-

SSIM
MAD FSIM

Pro-

posed

GB 0.853 0.971 0.890 0.979

JPEG2K 0.882 0.916 0.930 0.993

JPEG 0.915 0.940 0.960 0.993

LAR 0.927 0.956 0.935 0.980

Table 3.18: SROCC performance evaluation of each distortion type on IVC
database

Dist-

ortion

MS-

SSIM
MAD FSIM

Pro-

posed

GB 0.853 0.963 0.963 0.988

JPEG2K 0.938 0.910 0.962 0.973

JPEG 0.914 0.896 0.981 0.979

LAR 0.947 0.949 0.886 0.961
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distortions than other state-of-the-art BIQA methods.

In Table 3.14, we could compare the SROCC values of our proposed method

with those of other three BIQAmethods for each distortion type on CSIQ database

because there is still the SROCC values of only the three BIQA methods for per-

formance comparison of each distortion type on CSIQ database. Through the

experimental results, we can observe that our proposed method outperforms con-

sistently well almost all types of distortions on CSIQ database than other previous

excellent BIQA methods.

Similarly, in Tables 3.15 and 3.16, we compare the PLCC and SROCC values,

respectively, of our proposed method with those of other BIQA methods for each

distortion type of LIVE database. Considerably, the proposed method is robust

for some types of distortions than other BIQA methods.

In Tables 3.17 and 3.18, we compare the PLCC and SROCC values, respectively,

of our proposed method with those of other FR−IQA methods for each distortion

type of IVC database. Obviously, the proposed method exceeds almost all types

of distortions than FR− IQA methods.

3.5.5 Cross validation

In Table 3.19, we extend the cross-database validation and compare the SROCC

performance of the proposed method with other state-of-the-art BIQA methods.

The model trained on the full LIVE database is evaluated on the subsets of CSIQ

and TID2013 databases based on the same types of distortions (JPEG, JPEG2K,

GB and WGN) for three databases.

Table 3.19: SROCC performance in Cross-database evaluation. All models are
trained on full LIVE database and evaluated on subsets of CSIQ and TID2013
databases based on the four types of distortions shared with LIVE database

Method CSIQ TID2013

BRISQUE 0.899 0.882

CORNIA 0.899 0.892

DIQaM-NR 0.908 0.867

WaDIQaM-FR 0.866 0.872

Proposed 0.781 0.969

In the experiments, the maximum number of epochs for CNN is 950, the batch

size is 16 and the learning rate is 0.1. Experimental results demonstrated that
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the proposed method is slightly weak for CSIQ subset but it shows superior per-

formance compared to all other methods on the TID2013 subset for independent

cross-database validation.

3.6 Conclusion

In this chapter, we developed an end-to-end convolutional neural network that can

take the input images of any arbitrary size and can directly output their predicted

quality scores for blind image quality assessment. Experimental results verified

that the proposed method achieves superior performance not only for the whole

database but also for several types of distortions compared to other state-of-the-art

BIQA methods and even FR− IQA methods.



Chapter 4
Conclusion and Future Work

This chapter concludes the thesis with a summary of our study and the future

research is also described in this Chapter.

4.0.1 Summary of the Research

In this study, we have proposed a combination method which has dissimilar feature-

scores for FR− IQA employing PSO algorithm and an end-to-end learning mech-

anism by using CNN for BIQA .

As there is no perfect single method or perfect combination method which is

very robust in the prediction of the quality of images of all databases, we introduce

a very simple and robust combination method. Among state-of-the-art FR− IQA
methods up to now, we select the most suitable three IQA indices utilizing the

BIRD algorithm that is used to select the most appropriate method for combi-

nation. Then, we optimize the parameter values by using the PSO algorithm

which is based on the swarm intelligence. The experimental results have demon-

strated that the proposed method is a superior one in comparison to other not

only conventional single methods but also previous combination methods. Indeed,

in our combination, we decide MAD , MS −SSIM and FSIM as the most suit-

able methods which has dissimilar features for the combination among the best

recognized FR− IQA measures until now. However, further extension of the pro-

posed method could involve using other best recognized FR − IQA measures for

combination in the future.

On the other hand, it is very difficult to get the original images in practice.

In the situation, we need to measure the quality of distorted images without ref-

erencing the original images and it is the most difficult IQA measure in image

107
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processing field. Thus, we consider to construct an end-to-end learning mecha-

nism which takes the whole image as an input and directly outputs the continuous

score by using the CNN for BIQA as our second proposed method. First, we take

distorted images labelled with MOS scores as inputs and output the related score

for each input image. Experimental results verified that our proposed method

outperforms other state -of-the-art BIQA methods and even FR− IQA ones.

4.0.2 Future Work

In the future, many biometric methods are based on images, including images of

faces, fingerprints, palmprints, hand shapes, and handwritings. In practice, the

acquisition process of these images may not be perfect, and thus the biometric

systems may have to work under the conditions of noisy, distorted, or partially

impaired images. In these application scenarios, it would be useful to know the

level of quality degradations of these images and what recognition accuracy can be

expected under such quality degradations. In this study, therefore, we have pro-

posed robust IQA measures which are different from traditional quality evaluation

of IQA measures to benefit a wide variety of real applications. However, further

research is needed to improve IQA measures based on the current challenges and

for future challenges.
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