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Abstract

Doctor of Philosophy

Bifurcation Analysis of Euler Buckling Problem from the viewpoint of
Singularity Theory

by Atia Afroz

We consider buckling of rod which is subjected to compressive force A. In
1757, L. Euler’s found the critical load of the system, and this problem is
often called Euler buckling problem. This is actually a celebrated example of
pitchfork bifurcation. M. Golubitsky and D. Schaeffer considered a modified
version of Euler buckling problem in the variational formulation using strain
energy and potential energy, and they show that this modified problem is a
versal unfolding of the original problem. We consider a rather more general
problem in the context of variational set-up and discuss smoothness of the
problem, which is not discussed by M. Golubitsky and D. Schaeffer. This
is important to apply Lyapunov-Schmidt reduction. We also describe 3-jets
of the equations which define the bifurcation set B and the hysteresis set H,
which enable us to draw figures of B and H approximately under suitable
set-up.
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Chapter 1

Introduction

1.1 Introduction

One attractive field of application of singularity theory is bifurcation of solu-
tions of partial differential equations or variational problems. M. Golubitsky
and D. Schaeffer [Golubitsky and Schaeffer, 1979, Golubitsky and Schaeffer,
1985,Golubitsky and Schaeffer, 1988] showed how singularity theory works to
investigate the bifurcation of modified problem of euler buckling problem.

We consider buckling of a rod which is subjected to compressed force A
which is known as the Euler buckling problem. The mathematical formulation
of the Euler buckling problem is the problem of minimizing the energy

10w )P e

onU={uecX:||u]eo<1—e€},0<e< 1, where X is the Sobolev space
X = {u € H?[0,1] : u(0) = u(l) = 0}.

Here S is the strain energy given by the integral of the square of curvature

(remark that the curvature of the curve s — (x(s),u(s)) is \/%7, if s is an
arc-length parameter), and T is the potential energy (the distance between two
ends of the rod). This describes buckling of the rods with pinned ends. To the
knowledge of the authors, this formulation first appeared in [Thompson and
Hunt, 1973, pages 27-29] without using Sobolev space, and the formulation
using the Sobolev space appeared in [Golubitsky and Schaeffer, 1979, page
76].

We are interested in the bifurcation of the zero set of the directional deriva-
tives:

. E|M+t _ E’u ) u//(P// ul(u//)z Au/ ,
(DyE)u = %5%+ - /0 [1 — (u')2 * ((1 —W))? (1- (“’)2>1/2)¢ ]ds
(1.1.1)
of directions ¢ € X which may attain extreme of the total energy E. Clearly the
function, which is identically zero, is a solution, and we often refer it as trivial

solution. We are going to discuss the bifurcation from the trivial solution.
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Differentiating (1.1.1) with the direction v and evaluating at u = 0, we obtain
l

XX, v / (0" + Av)g'ds (1.1.2)
0

where X’ denotes the (topological) dual space of X. The map (1.1.2) is contin-
uously differentiable and bijective (see discussions in 6.0.1). So the inverse
function theorem implies there are no other solution near the trivial solution
whenever 0" 4+ Av # 0, thatis, A # 2n?/1%,n € Z. If A = °n? /1%, we apply
Lyapunov-Schmidt reduction, and reduce the equation to a finite-dimensional
set-up.

M. Golubitsky and D. Schaeffer have also considered a modified version
of this problem in [Golubitsky and Schaeffer, 1979, (6.1)], namely, the problem
of minimizing the modified energy

l " 2 I
%/0 [uf:tw _"‘1} ds”‘/o mdwazu(é) (1.1.3)

on U with [ = 7r where the first term is a modified strain energy with mini-
mum when curvature is constant &4, i.e., the rod is a circular arc, and the third
term represents a central load of size a5.

In actual situation, noise from various sources may cause some small per-
turbation of the idealized problem, and M. Golubitsky and D. Schaeffer call
such perturbation as imperfect bifurcation or imperfection. Thus it becomes
important to show whether a perturbation gives a p-K-versal unfolding or
not, since a p-K-versal unfolding contains all nearby bifurcation of the ide-
alized problem. See Definition 7.1 for the definition of p-K-versality. They
showed that this modified problem represents a p-K-versal unfolding of the
bifurcation equation of the original problem. To apply their criterion of ver-
sality [Golubitsky and Schaeffer, 1979, Lemma 4.3], we need to ensure the
equation describing the problem is smooth (C*). Since we are in the context
of a variational problem, it is not a priori clear, and proof was not discussed
loc. cit..

We actually consider a rather more general problem, the variational prob-
lem minimizing the energy (A.2.1), obtained by replacing a1 by a1x in (1.1.3)
where « is defined in (A.2.2), since we do not have any reason to assume that
a circular arc minimizes the strain energy. This problem also has a term for
modified strain energy, which has minimum at a curve with given curvature
a1k. After stating the first variational formula (Lemma 3.4.1), the problem
becomes to describe the change of bifurcation of zeros of the function

P:UxRXxR* — X, ®(u,A,a1,a0) = [ — (¥ — A — 1K)y - ¢ +a09(4)],

where
U={ueX:|u]|e<1l-€},0<ex1.

See Lemma 3.4.1 for the definitions of ¥, A, K.
We first show that
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Theorem 1.1.1. The function ® is smooth.

This theorem allows us to apply Lyapunov-Schmidt reduction to reduce
the bifurcation problem to that of a finite-dimensional set-up. This theorem
enables us to discuss the values of higher order differentials of ® and we are
going to apply the criterion of bifurcation type. In this thesis, we compute
Taylor coefficients of F, which is defined in (6.0.3), and which describes the
bifurcation of ® = 0. This is an unfolding of pitchfork bifurcation near
(x,A,a) = (0,A*%,0), A* = m?n? /1%, and we show

Theorem 1.1.2. If n is odd, then F is p-K-versal.

Roughly speaking, this implies all nearby bifurcation of a pitchfork bifur-
cation can be realized by ® near (0, A*,0). See Definition 8.1.1 for the precise
definition on p-K-versality. Remark that M. Golubitsky and D. Schaeffer
showed this theorem when n = 1.

To describe how the pitchfork bifurcation changes nearby the origin, we
recall the bifurcation set B and hysteresis set H, which are defined by

B={a:3(x,A), F(x,A,a) =0,F(x,A, &) = Fy(x,A, &) =0}, (1.1.4)
H={a:3(x,A), F(x,A,a) =0, Fc(x,A, &) = Fyx(x,A, &) =0} (1.1.5)

in our situation. If 7 is odd, these sets are zeros of certain functions with the
following 1-jet:

4mn? & : - _ )
( 7;211 Z nzn_al4i2>“1 + ((_1)21\/?> ay (= Fiaq + Fap, (Chapter?)).
i=0

In Proposition 9.1.1, we describe their 3-jets as (9.1.3) and (9.1.4), respectively,
which enables us to draw B and H approximately near the origin. For example,
k =1/+/m/2,n =1, the zeros of these 3-jets look like:

—— Bifurcation —— Bifurcation

—— Hysteresis —— Hysteresis

a a a

(@) Length=m (b) Length = 27 (c) Length = 47

FIGURE 1.1: Approximations of Band H (a9 = 1,4;>1 = 0, b; = 0).

The thesis is organized as follows
In chapter 2, we discuss some preliminaries such as we recall the definition
of Sobolev space with some related lemmas such as Holder’s inequality in
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section 2.1. Section 2.2 is devoted to the study of versal unfolding with the
definition, example and versal unfolding theorem. Section 2.3 is presented the
P-K-equivalent, section 2.4 is presented the basic bifurcation theorem, section
2.5 is devoted to present the bifurcation set and hysteresis set.

In chapter 3, we present the basic idea of buckling rod with pinned ends in
section 3.1, and we recall the definition of curvature in section 3.2. In section
3.3 and 3.4, we formulate the energy of Euler buckling probelm and minimize
the problem by calculus of variations respectively.

In chapter 4, we investigate the differntiability of ® in section 4.1 and
section 4.2 is devoted to proving that "® is in C!" by lemma 4.2.1 and section
4.3 is devoted to proving that "® is C*". In section 4.3 we prove our main
theorem which is "® is smooth".

In chapter 5, we derive the Taylor coefficients of ® up-to third order deriva-
tives. In section 5.1 we present the few terms of Taylor expansion and section
5.2,5.4,and 5.5 are devoted to derive the first, second and third derivatives of
(L), respectively. In section 5.3, we find the derivatives of the coeeficient of a;
up-to order 3.

In chapter 6, we discuss the Lyapunov-Schmidt reduction and we define
W. In section 6.1 we find all the first derivatives of W and in section 6.2 we
find all the second derivatives of W.

In chapter 7, we discuss the bifurcation equation and derive the related
Taylor coefficients up-to order 3. We define F(x, A, x) = 0, and in section 7.1,
7.2,7.3 we find the first, second, third derivatives of F(x, A, a) respectively .
We evaluate all the derivatives at (0, A*,0).

In chapter 8, we discuss about the versality, and section 8.1 is devoted to
present the definition of P-K-versality with an example 8.1.2 and a figure of
bifurcation set and hysteresis set which showing all kind of perturbation in
Figure 8.1.

In chapter 9, we derive the equation of bifurcation set and hysteresis set in
section 9.1 and we present several numerical results which help us to describe
the figures of the zeros of bifurcation set and hysteresis set. In section 9.2, we
present several figures of zeros of the 3-jets of bifurcation set and hysteresis set.



Chapter 2

Preliminaries

In this chapter we recall some basic definitions and lemmas of classics such as
Sobolev space, Holder’s inequality lemma, versal unfolding, P-K equivalent,
basic bifurcation theorem, bifurcation set and hystersis set, etc.

2.1 Sobolev Space

[Brezis, 2010, Marsden and Hughes, 1994] Let X*, Y*, Z*, ... be the dual
spaces of the Banach spaces X, Y, Z, ..., respectively. We denote by X', Y/,
... the topological dual spaces of X, Y, ..., respectively. Amap f : X — Y'is
continuous, where X and Y are Banach spaces, if for any ¢ > 0 there is § > 0
so that || f(x) — f(x)||y < e whenever ||x — x||x < 4.

A linear map ¥ : X — Y is continuous if

[¢(x)lly < llxx forany x € X.
A multi-linear map ¢ : X X - - - x X — Y is continuous, if
lw(xt, .., x)lly S llxallx - l|xkllx  forany xi,...,x; € X.
Similarly, a multi-linear map
P:X X xX—Y" (x1,..., %) — (y—=[x1,...,x¢] - y)
is continuous and the image is in Y’, if there is a positive constant C such that
|9[x1, ..., xk) -yl < Cllxallx - |2kl x|lylly foranyxy,...,xx € X, andy €Y.

By notational convention we denote this inequality by
[lar, - xd-yl S Hlaallxc- - iyl

Let L(X x --- x X,Y’) denote the set of linear maps. A map Z — L(X X
-+ x X,Y"), z — 1, is continuous such that

|($zy (X1, xk] — Yoy [x1, .., %)) - y| < Cllzr — 22|z l[xa || x - - - Ixkl[x [y lly,

where C is the positive constant, for any x1,...,x; € X,y € Y, and z1,2z, € Z.
Let the set of functions F[0,I] — R modulo the equivalence relation
oe- Here the equivalence relation of f and g i.e., fy ¢ means, the functions
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f,g:10,1] = R coincide except on a measure zero set. Let the Sobolev space
WrP[0,1] = {u € F[0,1] : [u[|,p < o} equipped with the Sobolev norm

k . 1 ) P 1/p
fullp = (% (§)10l,") "l - {(fo ufrds)'”, 1<p<o,
i=0

max{|u(s)| :s €[0,1]}, p=oo,

where D'u denote the ith order distributional derivatives of u. We denote by
LP[0,1] the set {u: [0,1] = R : [[u]|, < co}. We write the Hilbert space H*[0, []
for the sobolev space W¥?2[0, 1], which is the inner product with a Hilbert space

2.2 . .
(Um, uj) = (1+235)5 ifm=j;
I 0, ifm ],
where u,, = \/2/Isin(mrs/1).

o Ifu(s) = s~/ € L?(0,1), then ||u||, = 2, ||u?|| = o. So L? is not closed
by product.

e If u(s) = s~/ € 12(0,1), then ||ul] = 5/3, ||u?|]2 = 5. So we do not
have ||u?||, < ||u||2%, in general.

o Ifuy =512

Xio1)(s), then [[ul> = ~loga, |12, = (4~ 1)"/2, and no
constant C with [|[u2||, < C|Jul|»? exist.

Remark that f € LP <= f2 € LP/? also.
If1 < p < oo, then

e Ifk<1/pand p < q < p/(1—kp), then WE? C 4.
e Ifk=1/pand p < g < oo, then Wh? C 4.

e If k > 1/p, then Wk? C CO% where &« = min{k —1/p,1}, k # 1+1/p;
anyawith0<a <1, k=1+1/p.

Lemma 2.1.1 (Holder’s inequality). [Brezis, 2010]If 1/p+1/q =1, p > 1, then

we have Z l L )
< Pds )’ / Ids)". 1.
/o luv|ds < </0 |u] ds) ( A kg ds) (2.1.1)

Proof. Set ¢(t) = % + % — w1, which has the minimal 0 at t = 1. Since

_1 q
0 < ¢(([ul/a)(fol/b) P) = S(Jul/a)?(jo]/b)~7+ L — (Jul/a)(|o|/b) "7
for positive a, b, we obtain

el _ [l Jol?
ab — pa? = qb7

I I I
and thus al—b/o luv|ds < #/o |u|Pds+%/O 0|7 ds.

Setting a? = fol \ulPds, b1 = fol |v|9ds, the right hand side is 1, and the result
follows. H
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1

Lemma212. (i) If1 < p <g < oo, then |Jul|, <17 ‘17Hu||q for u € L10,1].
(if) Lim fufly = fjulle.
(iii) We have ||u|lc0 < Ci|lu||g2 for u € LP[0,1] with |[u[|e < 0o where Cy =
1 1
(5) 7 (g (1 2m2/12)75) 2.
. 1
@) flo1---oxlla < 12 (Cp)*lloallap - - 1okl p-

Proof. (i): Since g/p > 1,1 —p/q = (q — p)/q, we obtain that, by Holder’s

inequality,
4 P

/01 |uP|ds < (/Ol |up|zds>q</ol 1ds>1q.

Taking p-th roots of both sides, we obtain the result.
(ii): If 0 < t < ||u||oo, then

HMHP = (/|u|>oc1 ]u‘?’ds>’1’ 2 (/|u|>1x1 tpds> 2 (/ol ‘ﬂpdS)E - tl% -t (P — OO)

and we conclude that lim [ju||, > ||u]|e. If 1 < p < co, then
p—roo

I 1 z 1
— p P< / 4 P: r
Jully = ([ Julpas)” < ([ ullads)” = 131l

— — 1
and we obtain that lim ||u|[, < lim 17 ||u[/e = ||1]|co-
p—00 p—00

<=

(iii): Set V = (uy, : m = 1,2,... )R denote the vector space generated by uy, up,
... The closure of V contains C®[0, ] in W*?[0,1], and is W*? [0, 1], because
C*[0,1] is dense in W*?[0,1].

Foru = Y7 1 YmUm, we have

00 1 o0 _1 o0 k k

F | < (D 7E Tyl = ()72 E @+ 222/ 254 2?12y
m=1 m=1 m=1

I\—% PP NEAC 2 2kl 12)2
< ()7 A+ ) (L (1 2w/ R yal?)” < Cellullea
m=1 m=1

1 1 1
(iii): flor- - vkl < 12|01+ Oklloo < 12|01 ]lo0 - - - [0klloo < 1Z(Cp)¥llonll1,p - - - 0klln,p-

Let C¥[0, 1] be the set of C*-functions defined on [0, [].

Remark 2.1.3. (i) We have H¥[0,1] € CK=1(0,1], by the Sobolev embedding theorem.
In above all, we can choose a C*~-representative to express an element of H¥[0, 1].
This implies that

H0,1] = {f € CU 0,11 [ fllka < 0}/
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which means for any u € W*2[0,1] there is it € C¥=1[0,1] so that ||u — 1|z, = O.

(i) We have a natural embedding C*+1[0,1] ¢ H*[0,1].

1 mrts

(iii) If u = Y00 o Ymim € CF[0,1] where u, = 73 SIn U then |ym| <
M/ m* where My, = sup{|u®(s)| : s € [0,1]}.
(iv) If u is of C?~class, then we have ||u]|es = sup{|u(s)|} < r=_, ol <

M
2210:1 mzﬁﬁ < .

2.2 Versal Unfolding

[Golubitsky and Schaeffer, 1985]

Definition 2.2.1. An unfolding G of g is versal if every other unfolding of
g factors through G. A versal unfolding of ¢ depending on the minimum
number of parameters is often called miniversal. That minimum number is
called the codimension of g.

Example 2.2.2. G,(x) = x3 — A + ax is a versal unfolding of the pitchfork. Here
the diagram of versal imperfections is a line.

FIGURE 2.1: Versal imperfections diagram for G, (x)

..... A ----\-4..‘-_-.}\

L [}

FIGURE 2.2: Associated diagrams of (2.1).

Theorem 2.2.3 (Golubitsky and Schaeffer, 1985). (Versal Unfolding Theorem)
Let &, ) denote the space of all functions and let g be a germ in €, 5, and let G be a
k-parameter unfolding of g. Then G is a versal unfolding of g if and only if

oG oG

53(//\ = T(g) + <M(X,A,0),~ .. ,aTxk(x,)\,O)>]R,

where T(g) is tangent space to a germ g in E, ), consists of all germs of the form
ag +bgy +cgr,a,be & yandc € Ey.

Corollary 1. A versal unfolding G of a germ g is versal if and only if the number of
parameters in G equals the codimension of T(g).
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2.3 P-K equivalent

[Marsden and Hughes, 1994, (Definition:1.12, p:442)]. Let f; and f, are P-K-
equivalent (contact equivalent) at (0,0) if there is a (local) diffeomorphism
of R" x R to itself of the form (x, A) — (¢(x,A), A(A)) such that ¢(0,0) =0,
A(0) = 0, and a (smooth, local) map(x,A) — T(x,A) from R” x R to the
invertible m x m matrices such that f1(x,A) = T(x,A) - fa(@(x,A), A(A)).

Not contact V
x4k Zero set for f, jjfjljfi"' _
-\
i Zero set for f
X
—=— A\ \
Contact
equivalent N

l

Zero set for [,

FIGURE 2.3: The zero set of f; and f,

Proposition 2.3.1. Let H(x, A) be a bifurcation problem [Golubitsky and Schaeffer,
1979, (Proposition 4.1, p:46)] satisfying H(x,0) = x™ + ---. Then H is P-K-
equivalent to

() x™ £ A, m > 2,if and only if alg)(\o) # 0, or to

(I) x™ + Ax,m > 2 if and only if alg_/(\o) = 0, rank (d*H)(0) = 2, and index
(d>H)(0) = 1.

2.4 Basic Bifurcation theorem

[Marsden and Hughes, 1994, (Theorem 1.5, p.434)]. Let (0, Ag) is a bifurcation
point of the equation f(x,A) = 0 if every neighborhood of (0, A) contains a
solution (x, A) with x # 0.

Here we discuss a basic bifurcation theorem for f : R x R — RR. The
following theorem interests for x = 0 is a trivial solution [f (0, A) = 0 for all
A, s0 (0f/0A)(0,Ag) = 0], where f has some symmetry such as f(x,A) =
—f(—x,A), which forces f+,(0,A) = 0 and concerns the simplest case in which
(0, Ap) could be a bifurcation point [so (df/9x)(0, Ag) must vanish].

Theorem 2.4.1. If f : R x R — R is a smooth mapping and satisfy the following
conditions:

(1) f(xo,A0) =0, fx(xo,A0) =0, falxo,A0) =0, and fix(xo,Ao) =0, and
(11) fxxx(xO/)\O) #0, and fx)\(XOI /\0) # 0.
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Then (xo, Ag) is a bifurcation point. In fact, there is a smooth change of coordinates
in a neighborhood of (xo, Ag) of the form

x = ¢(x,A) with $(0,A0) = x

and a smooth now here zero function T (X, A) with T(0, Ag) = +1 such that
T(xA)f(p(X,A),A) =X £ AX

with + depending on the sign [ fyx (x0, o) * fxxx (X0, Ag)]. Here T(X, A) f(p(X,A), A)

and X° + AX are P — K-equivallent. In Figure (2.4) we see that sub critical branch
in (a) is unstable, while the supercritical branch in (b) is stable.

(a) (b)

FIGURE 2.4: (a) Subcritical and (b) Supercritical bifurcation

2.5 Bifurcation Set and Hysteresis Set

Let F: R x R x RF — R be versal unfolding of a germ f : R x R — R.
A bifurcation point is a singular point of the bifurcation diagram.

B = {a|fx has a bifurcation point}
={xeRF:3(x,A) e RxR,F(x,A,&) =0,F(x,A,a) =0,Fy(x,A,a) = 0}.

A hysteresis point is a point of the bifurcation diagram with vertical tangent.

H = {«|f,x has a hysteresis point}
={n e RF:3(x,A) e Rx R, F(x, A, &) = 0,Fe(x, A, &) =0, Fx(x,A, &) = 0}.
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aeB - ac B
Transcritical — —6 Pitchfork
bifurcation ~.  Bifurcation
-~ -
A A A
a g H aecH agH

FIGURE 2.5: Bifurcation set and hysteresis set.
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Chapter 3

Euler Buckling Problem

In this chapter, we discuss some basic topics of Euler buckling problem with
the energy formulation and calculus of variations.

3.1 Buckling of the rod with pinned ends

In 1757, L. Euler found the critical load of this system, and it is often called
the Euler buckling problem. We consider buckling of a rod which is subjected
to compressed force A.

'y
S

FIGURE 3.1: Buckling of the rod with pinned ends.

L. Euler found the critical load A* of the system, where [ is the length of
the rod. When A < A%, nothing happen, when A > A* we have buckling.
At A = A*, we have bifurcation which is a famous example of pitchfork
bifurcation.

We consider a model which neglects the compressibility of the beam and
retains only its bending rigidity. If the length of the rod is , these hypotheses
lead to a variational problem posed in the Sobolev space

x = {u € Hy(0,1) : u(0) = u(l) = 0}.
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Here H;(0,1) consists of those functions in L?(0,!) whose second-order distri-
butional derivatives also belong to L2(0,1).

3.2 Curvature

Curvature describes the shape of a curve. The curvature of the curve is the
rate of change in the angle of direction of the tangent lines with respect to the
arc length.

Lemma 3.2.1. The Curvature x of the curve s — (x(s),u(s)) is given by k =

u//

V1—u?®

FIGURE 3.2: Curvature of the curve

Proof. Remember that the arc length of the curve isgiven by

2
/ds where ds = /1 + <d_u) dx.
dx

Since
du
S du e _ tan 0 _ sind,
7 n? VirwnZo
14 (ﬁ>
and
1 2 % 1
. /2 2 . i d_u _ o 2 2 —
(1 u ) = [ <ds> ] [1 sin 9] cos b,
we obtain
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3.3 Energy formulation of Euler buckling problem

Let u(s) the deflection of the beam which is perpendicular to a reference line
as a function of arc length along the beam.
The curvature of an element is given by

1
K= d—sm L =1 —u?)2,
s

We have the strain energy

2 //2 -1
2/ ds = 2/ ds.

Then the potential energy of the system is given by

T = / 1/2ds

We have the total energy E is

1 /! u” 2 ! ;
= = — [ _ 2
E=5+AT= [ {(1—#)1/2} ds+A [ 1= (s

onU={ueX:|u]o<1—¢€},0<e <1, where X is the Sobolev space
X = {u € H?[0,1] : u(0) = u(l) = 0}.

Now we have the strain energy functional for our considered problem where
a1 represents a (constant) initial curvature of the beam

2
2
2/ K —aq)°ds = 2/[ u/21/2 —wq| ds.

Here A is the compressive force and the deflection of the beam is the potential
energy of the beam

We consider a4 is a (constant) initial curvature of the beam and «; is a
central load for the perturbed energy functional of this idealized problem.
Here we set

V=u(z).

Now the total potential energy of the Euler buckling problem

! I
E=S+AT+aV = %/ (K—le)zds—i—)\/ (1-— u’z)l/zds—i—azu(%).
0 0
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Therefore, the perturbed energy functional becomes
2 | . ]
E(u,A,u) 2/ [ u/2 ds+/\/0 (1 u > ds-l—zxzu(z).

(3.3.1)
Which is the modified Euler buckling problem of M. Golubitsky and D. Scha-
effer’s treatment. When the rod is perfectly straight in its unstressed position
for a1 = ap = 0 and not subjected to any external force other than the com-
pressive force A appearing in the second term in (3.3.1).

N\'—‘

For a = 0 exhibits a supercritical bifurcation at A = n?7? /12 from the trivial
solution u = 0 by the minimizing idealized problem. We want to prove that
the two parameters a; and «a, provide a universal unfolding of the idealized
problem.

We consider the initial curvature is not constant for minimizing the strain
energy we consider the strain energy as follows:

2
2/ 1/2 0(11() ds,

where « is a function defined by

\/117[a0+2<a1C0821 > +b,~sin$>].

3.4 Calculus of variations

We consider the problem of minimizing the functional
E:UxRxR?>—R, u— EuAa), a= ()

defined by

E(u,A,u) 2/ 1_ 1/2 — w1K ds-i—/\/./l_ "N2ds + apu(l/2),

(3.4.1)
where U = {u € X: ||#/||« <1—¢€},0 < e < 1,and X is the Sobolev space

X = {u € H?[0,1] : u(0) = u(l) = 0}.
Where « is a function defined by

75 [ao + Zzl <a1 COS —— 27 l —|— b; sin @)] (3.4.2)

K =
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with ||xg|ec < 00. Since u € H?[0,1], we can choose that u is C!, and there is a

constant ¢1, 0 < &1 << 1, so that |u/(s)| < 1 — €.

We consider the directional derivatives of E at u defined by

CI)(u,)\,oc) ' (P = (dE)(u,/\,a) ’ (P = }I_IES %(E(u + t(,b/ /\/‘X) - E(u/ /\/ “))

Lemma 3.4.1.

D(u, A, 0) - = (dE) (upe) - ¢ = (F)u = AMA)u) - ¢ — a1 (K)u

where

B 1 (PH u H‘P
(K)u - ¢ —/0 K<(1 — (W)2)1/2 + (1— ()2 )3/2)

PTOOf. (dE)(u,/\,oc) P

~k (=t o) =il -2

- (=t ) (= (ft/:>2>1/2 = ?Ltﬁw
—A/O ﬁ S+042(P(£)
_/ u"<P” u’( ds—A/ i /)2 %ds

_041/0 K<(1_(QZ) 7172 + a j(b;/;l,)z)s/z>ds+“2¢(7)
=((V)u = MA)u) - ¢ = a1(K)u - ¢+ a2(3).

Consider the map ® = dE : X x R x R? — X’ defined by

(u/ A/ “) = [4) = (dE)(u,A,lx) ' (P]

-+ ()

ds.

)ds

ds + txch( )
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Chapter 4

Smoothness of

4.1 Differentiability of ®

In this chapter, we prove that ® is continuously differentiable. We know a
function is locally Lipschitz continuous if it is C'. So the result in the following
section implies @ is locally Lipschitz continuous.

We have the modified Euler buckling problem with the first variational for-
mulation

D(u,Aa) - ¢ = (dE) (an) - ¢ = ((F)u — A(A)w) - ¢ — a1 (K)u - ¢ + 26(3),
where ® = dE : X x R x R2 — X’'. We first show

Lemma 4.1.1. The image of ® is in X'

Proof. Since

l 1" 11 u' 11N\2
(99l < [ (115 1+ 2)5;2\)ds

<[ty ool 9" I+ [l e o | ()12

<l =y Su/zHw||u”||z||¢”||z+uﬁHm||u"||z||¢ lor  &11)
(Aol < [ 11%}@ < |l =zl 1411 @12)
[(K)u - 9| < /Ol(| = 1/2} + ‘ Ku/uﬁgt;m Dds

<H—1/z|| ||47"||1+||&3/2H [

<I'"?|| el 12 + |l = 9 Nl 2, (4.1.3)
p(1/2)] <||Pllc < Callp|l12 (since ¢ can be choosen continuously),

(4.1.4)

there is a positive constant C (may depend on u) such that

[Piura) - Pl < Cligll22- O
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Next we observe that

((¥) (%)) — /l [237”?0—7”2/22) w' 1+ ﬁwl + 0(“’1)]4’”
up Uy )" — 1+ 2+
0 +[( 4u22)(((w2;2) () ) )wi -+ I Z(Uziw/zz)zwl —|—0(ZU1)]47/

where w1 = uy — up and wy = uy + up. Remark that |wh| < |uf| + |u}] <
2(1 — &1). Then there is a positive constant Cy such that
(P = (F)uy) - 9 </ Cy (|wi¢"] + [wy¢"| + [wi¢'| + [wi¢'|)ds

<Cy(l[wll2 + lwy[I2) 9" |2 + ([w} ll2 + llwyl]2) [ ¢'|2
<Cy([[will2 + @l 1) (19" ll2 + 19" ]]2)- (4.1.5)

Similarly, we have

/ /
Uy L)

1
(8= -0 = || i = ) ¢
= [(0~ @273+ O((wh)?))whg'as,

and thus conclude that there is a positive constant Cx so that

I
(A = (A)u] - 9] < /0 Calwi¢'lds < Callw)[12]19]l2 (4.1.6)
Similarly we obtain that (K),, — (K)u,
:/;< | b1 = (wh/2)%) 3+ Ofw g >%
— ()t + (3 + (21— () Fafw] + O(w)) ¢’
and thus there is a positive constant Cx so that
I
[[(K)uy = (K] - 9| S/O C(Jwi9”| + [wi¢[)ds < Ci([lwill2[1¢" [l + @ [l2[1¢"]]2)-
4.1.7)
We thus conclude that
H(q) Ll1 /\106 (CI)) MZ /\2,,3)] (P‘
H(q)) Lll /\1 IX (q)) le /\1,[3)] ’ (P‘ + |[(®)(M2,)\1,,3) - (q))(uz,AZ,‘B)] ’ ()bl
(P = (D] - ¢l + [M[(A)iy = (Aa] - @] + [11][[(K) iy = (K] - |

B
+ (A1 = A2 [(A)uy - @ + |21 — B1][(K )u2'¢\+!“2—52!!¢(1/2)|
(C‘Y+CA+C1<)||L!1—u2||22||¢||22+|7\1 7\2||| 1/2||00||‘P 1

+ oy — 1| H 1/2HOO||4)"|| +H#3/2”00H‘P“1 ) + laz — B2|Callp ]l ,2-

IA A
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This complete the proof.

42 PisC!

Lemma 4.2.1. ® is C!,

Proof. By (4.1.6), (4.1.7), the following partial derivatives are continuous on u:
(%cb)(u,m) =(A),:R— X, (E)?qu))(u,)x,tx) =(K),: R — X'.

Since (az @) (410) = 9172 : R — X/, it is continuous (constant) on u.
We consider the derivative of ¥ by v € X:
1

X — X, 0= (qu))(u,)\,a) = }i_rg(}?[(q))(u—l—tv,)\,a) - (q))(u,A,a)]'

Using the first derivatives of ¥, A and K, we can express this map by v —
(¥1)ulv] — AM(A1)u[v] — a1(Kq)y[v]. The first order differentials of ¥, A, K are
expressed as

1

(¥1)ulo] ¢ = |

0

(Aulol 9= [ —olas

! W2
(ialel -9 = || (=il + (G + i) ) s

respectively. We thus obtain that

W'y
|(¥0)ulo] - ¢l <l 2z lleololl211" |2 + =gz lleo 12" 121197 12
(14+3(u 1.0
+ H—HooHv 201912 + Il g2 o102l 12,

[(A1)ulo] - ¢ <|| ,))1||oo||v’||z||4> l2,

[(K)ulo] - 9l <l =z lesll 219" ll2 + 12 5/2HooHv 2119112
+ H—m\loo\lv"HzM 2,

2 10
(e + ¢ + i oY + w04



22 Chapter 4. Smoothness of ®

Setting wy = uq — up and wy = uq 4 up, we have

! 143 (w!)?)w whw!
(F1)w[0] = (F1)uy[0]) - ¢ = /0 <((1t%w’22/)2))2)32 wh + (1_(5’2/12)2)2 + O(wll)z)vl¢/ld5,

w/ w/ 2 w// 2 wH 2 / 2\,
% 5 (14( (11/_2()w)/2(/(2)12;4+( 2) )wll +%w{’+0(wﬁ)2>v’¢’d5,

1+3 //2 2\ oy!! /
H it v+ e+ O(wh)?)o'e'ds,

(A0 fo] = (A [e]) -9 = [ "%/,

1+ / 2/2 2
((Kn)ulel = (Kn)ualol) - ¢ = [ x(migimh +Ow))?)v'g"ds
ZU/ 2 wl w// wl 2 w/
+ | x| (3w + e +owi? )0+ (S + owh? o |¢lds.

Since each parénthesis in the integrands is continuous, for any positive num-
ber ¢, there is a positive number J such that

|(each parénthesis in the expressions above)| < e whenever |wil|22 < .

We conclude that, if ||wy |22 < 6, then

[((F1)ur = (Y1) [0] - @1 e[V [l2l1¢"[12 + 0" ll2l1¢"ll2 + 10" 1201 9"l12 + [[0"[l2l1¢"]12),
[((AD)uy = (Ar)uy) [0] - ¢ <el|o'[|2]1¢"]l2,
(KD, = (Kn)uy) [0] - @] <e([9[12019" |2 + [[2'l|211¢ |2 + 12 [|2[1¢"[l2 + 12" 1211 ¢[|2).

which show the assertion. O
Set Z = {u € H3[0,1] : u(0) = u(l) = 0}. We consider the restriction of ®:

Plz: (UNZ)xRxR?> — X, @(u, A, 0) = [p— (F—AA —a1K) - ¢+ aap(L)].

43 disC®

Lemma 4.3.1. ®|z is C*.

Proof. Tt is enough to show that @ is C for any k. The k-th order differential
of ¥ is of the form

;2 . S
¢ (Bulonod- o= [ 8 AF ooV gls

i1k, j=1
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where A?; .i,j(u) are rational functions of 1’ and u” whose denominators are
certain powers of 1 — (u/)2. Thus we obtain that

2

L ; .
(Eulor ol - ¢l 3 A )l [ Rl ofYplas

i0,i1,ix=1

¥ (i) (1A () ¥l ok v (ir) (ix)
<LE Y 9" o alleV )l < LER(C)S Y. oyl - oy
it ip=1 i i =1

1
< L{ 12 ()Mo I3 |

where L = sup{||141?[1J/._.,ik,]-||c>o v, .., 0k ] = 1,2}
Similarly we have

((Tk)m [01,. . .,Z)k] — (‘I’k)uz[vl,. . .,Uk]) 4)

:/0 Z B;gzl zk](u)(ul — uz)(lo)vgll) o U](clk)CP(])dS

1() 11 Zk j:1

where Bg i j(u) are meromorphic functions of #” and #” whose denomina-

tors are certain powers of 1 — (u')2. Therefore we conclude that

(P w01, - o] = (T [01, - -, 0k]) - @
2

l o). (i i) (i
< Y B, . lk,j(u)y\oo/o|(u1_uz)(mvgn_,.vlgk)(i,(]),ds

10,011k, f=1

2 . .
<MP ) a0

10,10, j=1

1 2 i ; ; ; .
<MPE (Gl — w0 ol g - o 92

10,10, j=1

1 X

<MPI2(C)" Y uy — uallsallvnllzz - - - lokllszllo |22

where M}! = sup{ ||B10 i zk,j||°° s, i1, ..., 0k, = 1,2}
The continuity of the hlgher order dlfferentlals of ®@ containing differentia-

tions by one of A, a1, ay can be shown similarly and we omit the details. [

Here we discuss several estimates before the proof of the theorem (4.3.7).
Let

n
Ax) = (1-«? ZZ a;x',  wherea; € R. (4.3.1)
i=0

We also consider |A|(x) = (1 — x?)~ 22 "o lai]x.

Alu')y=(1- (u’)z)_%Za,-(u’)i, where a; € R. (4.3.2)

Lemma 4.3.2. If ||t/||cc <& <1, then ||A(u) |l < |A](€).

s
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Proof. The estimate is obtained by
% o laile

Zlﬂzlllu’\ll <Ll 4. O
(1-e)f

< e < 1fori= 1,2 then [[A(u)) — A(u})]|e <

N

Lemma 4.3.3. If ||u}||c
C(A, €)||uy — |0 where

con- A E (st

(1 - 52) s:2s<max {7k}

Proof. Since [|A(u}) — A(uh) ]

L (Y (Y — (1 (Y e odp 1l
S;lazm(l (uh)?) 2 (uh)' — (1 — (u))?) )H‘”Hl—(wl)z =l
<"||°°%[<><> W) )| —
‘Z ZOO s U Y T

the following estimate gives the result.
I () - @] < 212 ) s - e e
= 51 (5) 0 — P o+ (2 i — 0

25<i 25>
: , . d .
it )|Huau;u%.fn<ua>lzs — ) o+ gl X0 (2) 0 = 3
25<i 25>1

d
LN oA 3 T == o A A

25<i p+q=i—2s—1
s D( ISR CALATAY
25>i p+q=2s—i—1

- u2||w[2§l\< )|e _29)e 21 4 legl;( )| 25-i- 1]
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d i
< — 1 || o€’ {Z\(;)\ —25)ex Ly Z‘(;) )2 1]
25<i 25>1
d d
gHui—u’z\!wsi[Z‘(i)‘(i—Zs)SZS (2) Yo (2s—i)ee!
25<1 s: z<25<d 25>i,252d

<l — gl T |()||zs 2sl+(1_2—€2)2}

s:2s<max{i,d}
For the last inequality, we use the following inequality:
g0+ (. odd ;
Z (2s —i)e* ! = (12;'531)2 (l odd) < 2—822 O
25>i25>d fap (iteven) (1—¢?)

We condsider a k-linear form X x - - - x X = R, (vy,...,v;) — I(u)[vy, ..., vk,
defined by

I s '
I(u)[vy,...,v¢] = /0 A(u') (u”)fvgll) .. 'vl(clk)ds

where A(u) is given by (4.3.2), and 7y, ...,i = 1,2.

Lemma4.3.4. If j + i1 + - - - + iy < k 4 2, then there is a positive constant C such
that

[H()[v1, ., vl < CILA@) ool 2+ [[okll22- (4.3.3)

Proof. If i1,ip = 1,2, then

[ AGORD LD i fas| <UDl A - il
<IA" Il B> Il AGH)F - Flls
<A Nl A2 A ool flloo - - - 1 lloo

<CE 2 F Y ol A2 ol AW ool Bl - 12
<CE 2| AW |l fill2z - - | fillaz

If j+i1+ - - - + i < k+2, then the number #{a : i, = 2} is at most 2 — j, and
we complete the proof by the estimate above. O

Then we have

[H(w)[or, ... ol S TAW) eollull3 o152 -
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where j + iy + - - - +ix > k + 2. We obtain that

1 . , .
‘/O A(u/’u//)fl(ll) . 1k ds‘ <’|A(u/,u//)||oo||fl(ll)"'fk(lk)HZ
SIAG, u") |l £ - £
<A@, ") ool A oo - 116
<A@, "ol £ 12 1 12
<||AG, u") ool fillaz - I fill32,

Remark 4.3.5. Set B(x) = x/. Since D,(A(u')B(u")) = AL [v'|B(u") + A(u')B,,[0"],
where D, denotes the directional derivative with direction v,

lim %(A(u’ + ) B + ") — A(w)B(u")

t—0
:}ina%((A(u' +t0') — AW))Bw' +tu”) + A(W')(B(u" + to") — B(u")))
%
— AL BB+ AW)B )
We obtain that

L(w)[vy, ..., 0,0 = %iir&%(l(uqttv)[vl,...,vk] — I(u)[vq,...,0])

is a (k + 1)-linear form, which is a linear combination of integrals of the type

l ) N
/0 Al ) (") vgzl) = -vl((zk)v(lkﬂ)ds (i, iy = 1,2)

with j' + i 4 + i + i < k+ 3, whenever j 4 iy + - - - + i < k+ 2. We thus
obtain that
|L(u)[v1, ..., 06, 0]| < Cllot]lz2z- -

where C is a constant (depending on only u), by Lemma 4.3.4.

Lemma4.3.6. If j+ i1+ - - +ix < k+ 2, then

[I(ur)[v1, ..., 0] = I(u2)[v1, ..., 0c]| < Cllug —uzll22l[v1l22 - - - [[vkll2,2
for some constant C.

Proof. If j = 2, then we can assume that i = - - - = iy = 1, and we obtain

LHS =| [ (1A(4) ~ AGEIGE Y + AGH)I)? — ()21)0] - -ofas|

< [ (1AG) ~ AGDIWE? + AGE) 0 — ) +1))o} o
sq(HA(ul) - A<u2>|\oouuzn2,2 A ol

ds
2)

- ok ll2,20

by Lemma 4.3.4. So the result follows by Lemmas 4.3.2 and 4.3.3.
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If j = 1, then we can assume that i = - - - = iy = 1, and we obtain

l .
LHS :‘/ ([A(uy) — A(ub) uy + A(uy)[uf — u’z’])vgll)vfz : ~~v,’<ds‘
0
<GS Auy) — Aud) ol uzllzz + I|A W) ool — u2ll22) 101122 - - - |0kl 22,

by Lemma 4.3.4. So the result follows by Lemmas 4.3.2 and 4.3.3.
If j = 0, then we can assume that i3 = - - - = iy = 1, and we obtain

! . .
LHS = [ (A() — A@p)of" - o ds| < CS2|AW) — AG) [llerllzz - o2,

by Lemma 4.3.4. So the result follows by Lemma 4.3.3. ]
Our main theorem 4.3.7 is as follows:
Theorem 4.3.7. ® is C*.

Proof. Asin Remark 4.3.5, we see that the k-th order differential of ® by u is
of the form

e 2 i (i i i
4"_>(q’k)u[01,-~,0k]'47=/0 Z )y Aﬁlp._’ikﬂ(u')(u”)]vg1)---v,({")q)(kﬂ)ds

]:0 i1,...,ik+1:1

where A]%lp--,ik,ikﬂ (u) are of the form (4.3.1) so that j + iy + - - - + ix + i1 <
k + 3. As Lemma 4.3.6, this is continuous.
The continuity of the higher order differentials of ® containing differentia-

tions by one of A, a1, @y can be shown similarly and we omit the details. [

Remark 4.3.8. In Lemma 4.3.4, it is important to assume that j +i; + - - - + 1} <
k 4 2. We do not know that (4.3.3) holds true when j + iy + - - - + iy > k + 2, despite
of the fact that the inequality changing || - |22 to || - ||3,2 holds true.
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Chapter 5

Taylor coefficients of @

In this chapter we write the Taylor expansion of ® then we compute some
derivatives of (L), up-to third orders and derivatives of the coefficients of the
initial curvature.

5.1 Taylor expansion of ®

We present the first few terms of Taylor expansions of (¥),, (A), (K), at
u = 0. They look like

2y} + 2hyous + 3tyus + 4hyauf + )
+7lr—76[y? + 2015 + 9y3(yT + 6v3 + 10y1y3) + 8ya(11y1y2 + 4523 + 34y1ys) + - - - Juj
+7lf—76 [4y2 (52 4 16y3) + 361213 (3y1 + 13y3) + 4y4(11y% + 90y1y3 + 171y3 + 320y2y4) + - - - Ju5
+7[3y3 + 5413 + 9y3(10y3 + 5203 + 81y3) + 7244 (5y1y2 + 19y2ys + 50y3ya) + - - Juj
7;—76 [4412y5 + 36y2y3 (101 + 19y3) + 16y4(17y2 + 8012 + 22512 + 256y2) + - - - |ul + - - -
12 (]/1”1 + 2%youl + 3Pyzuj + yauf + - - )
15 393 + 613 + Jya (43 + 493 + 6y1y3) + 124 (yay2 + 3yays + 2y1ya) + - - Juj
l—s - [6y2(13 +203) + 18y2y3(y1 +3y3) + 6ya (V3 + 6y1y3 + 9v3 + 16yay4) + -+ - Ju

1303+ 913 + Zys(203 + 83 + 943) + 36ya(y1y + 32y + 6yaya) + - - Ju

1—5[6y1y2 + 18yoy3(2y1 + 3y3) + 24ya(yi + 4y§ + 93 +8y2) - Juf -,
2 ((=2u; — 6uj — 10u; + - - - )v/2a0 + (3u; — 1Buj - 500u;+ S
i "'(145”1+m”3_@“§+ S)az+ -

*

(—2y7 — 8y5 — 6y3(2y1 + 3y3) — 32ya(y2 +ya) + - Juj
V2 +(—16y1y2 — 48y2ys — 32(y1 + 3y3)ys + - - - )u;
15 +(—6y3 — 24y5 — 18y5(2y1 + 3y3) — 96ya(y2 + ya) + - - - )1}
+(—=32y1y2 — 96y2y3 — 64(y1 + 3y3)ya + - Jug + -+

ap
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64 .

(=54 o 9?5%51/5 - %yls 5(62834y1 + 1221/3) — 312 (3245, + 1277y4) + - - - )uj
H(— T V1Y2 — 2°Y2Y3 — 3465 (3245y1 + 96393 )ys + - - - )u3
1> ‘*‘(_%V% - %yﬁ - %y3(2794y1 +16767y3) — %y4(41769y2 +65593y4) + - -+ ) U

+ (=328, — 222155 — £35-(16601y; + 196779y3)ys + - - - Juj + - -

*
(3293 — 23 — rissya(24291 +10731ys) — gi5ya(32773ya +29253y) + -+ U]

3 3424 10656 64 *
—l—n_ +( =315 V1Y2 + 353 Y2Y3 — 15045 (32773y1 + 90255y3)ya + - - - Ju3
[5 +(— k2 4+ 33282 4 (930021 — 88209y3)ys — 15asYa(2735y2 + 1391y4) + - - - )u§

+(— 828 v1y2 — BB yays — 15535 (9751y1 + 15301y3)ys + - - - Juf + - - -

respectively.

Now we denote by (i), the k-th order differential coefficient of (®), at u,
and by @y, the k-th order differential of ® at u = 0. We denote by (L), the k-th
order differential coefficient of (L), at u, and by Ly the k-th order differential
of L atu = 0, and so on.

5.2 First order derivative of (L),

Lemma 5.2.1. Set (L), = (¥)y — A(A)y. The first derivative of (L), at u = 0 is
given by

l
Lio] - ¢ = /O (0" + Av)g"ds.
Proof.

I )
Lol - ¢ =(¥1]0] — AA[o]) - p = /0 o' ds — A /0 o'¢/ds
! 11 4 17 /l ! /! /! /!
:/Ovcpds—[vqb}o—k)\/ovcp ds:/(v + Av)¢p'ds. O

)
0
Setu,, = v/2/Isin(mrs/1) and uy, is an element in X’ defined by uj;, (u;) =
Omj- I A* = n?? /1%, then

™ o 2y, ok
Li[um] = M (m* —n)u,,,
I 14 1 §
Lll[um] ﬁmz(mz nz)um (m#n)

ay

a2+...
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5.3 Derivatives of the coefficient of «;

Lemma 5.3.1. When x = \/+/—2[€lo + Y52 (a; cos(2ims /1) + b;sin(2ims /1))], we
have

(o]

[Z Z ma:hz mt ) me/zu;i], Ki[us) =0 and

m: odd m: even

abr® (e1a + eab +m)?
Ko[ua, up) = — —=— Y _ (4 m = u;,
1° i—O( l m;‘éu;b(Z) (51,£zz—j:1 (10 + e2b + m)z - 412) "

+ b; Z 83i(€1ﬂ + eob + 253i)”:1a+e2b+253i> .

£1,€2,£3Z:|:1

Proof. For Ky, we have

- l " * l zoi i 2i ! bi in(2i l " *
Ko=), </0 Kumds)um = ;(/0 B0 + L2 (8i os m—;//z) + bisin(2ins/ )]umds)um

[Z Zma12m+zmbm/2”]

m:even

m=1

We remark that the second order differential of K at u = 0 is given by
Kp[v1, 03] : ¢ — fol k(v)vhe" + (Vv + v{vh)¢ )ds, that is,

I
Ko[v1,v2] = Z</0 (01051, + (0105 + 070)u ;n)ds) Ui

m

This implies that, if x = \/I/7’ then Ky [u,, up] = — S“b” Ymzatb(2) M

cos 2157r

m , then

ifx =

! cos 2157‘[

Ko g, up] = ———(ubupul), + (ulu) +uluy)ul,)ds ) u,
a ;( 0 \/7 b b b)Um ) m

abr ¥ (—1)Fm — 1y g1a + b+ m >*

= u
5 i m
2l e1a+exb+2¢e3i+m7#0 €10 + eab + 2e3i +m

_ abm Y om €10 + eob +m >*

U
5 .

: m#Za+b(2) e1,e0,e3=+1 E14 + &b+ 2¢e3i+m
__abm Y om (e1a + exb +m)? )u* .
=— —5 ! i

l m#a+b(2) €1,620==%1 (e1a + e2b 4 m)? — 4i
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sin 2isT

and if xk = ==L, then

V12’

| aip 208TC
Sin =7 1",.1

Kalua o] = T [ ZE s, + ]+ o s

m 0

abrt
=—— ) e3m(e1a + exb +m)u’,
e1a+€exb42¢e3i+m=0

_ A
=— — ) e3(e1a + €2b + 2631)20u* oy o
e1a+epb+2e3i+m=0

B . .
=——5 ), esi(aated+t 2€31)Ue g egb 265
€1,€2,63=%1

These equations follow from computing several definite integrals of products
of trigonometric functions. One can prove them applying product-sum formu-
las repeatedly. One can also check them by using a computer algebra system
like Mathematica. [

Since Kp[uy, tn) = ¥, i}, fol K [y upuly, 4 (), + uju), )uy, | ds, we have

I I
Ko [, ty] - 1y :/ K{u;u;u;’ + (ulyul, + u;’u;)u;]ds = 3/ (1)) ?ullds
0 0

3’ 8n° (3n%—4i%) )
_ {_ lg[ Zfio (n274i2)(9n274i2)ai’ n: Odd/
= > |
—255 (buy2 + b3ny2), 1 : even.

54 Second order derivative of (L),
Lemma 5.4.1. The second derivative of (L), is
I
(La)u[v1,02] - ¢ = / [2u'vhv] ¢" + 2u" " Vb0 + 2u' V) VY " + 2u" V¢ + 205 v '’ + 2u" Vv ¢']ds.
0

So, setting u = 0, we obtain Ly[v1,v3] - ¢ = 0.

5.5 Third order derivative of (L),

For the third order differential coefficient L3 of L at u = 0, we have

1 ", .,/ !\, ! .0 L1 12
/ ,, 2010305 4 010305 + 010303 )ity ds |u,.
0 \+(2( m

Ls[or, v2,03] = ) v vy vl + v il + vivivy) — 3Av|vhvL)uy,

m

Lemma 5.5.1. We have

aben?°
La[ug, up, tie] -y = —— Z

3n € € €3
77 1—7+abcnsls283<;+?+?>}

e1a+erb+ezc=n
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wheree; = £1,i=1,2,3.

Proof. Computing several integrals, we have

aben?m°
L3[1/la; Uy, uc] c Uy :2—217 #{(81,52, 53) c {_1,1}3 - eqa +€2b ¥ esc = 1’1}
2122 5
a“b“c nrm ¢ ¢ .
+ ZT )3 €1€2€3 (—1 + ?2 + —3>
(51,82,83)181a+£2b+53C:n a c
ben3
_ 3)\*51 ;757'5 #{(e1,€2,€3) 1 €10+ e2b + e3¢ = n}
aben?m° (2 — 3n
- 21(7 )#{(81182/ 83) €14 + €2b -+ €3¢ = n}
2a2b%c2n3 ° &1 & e
T 2 €182€3 (— + ? + _>
e1a+erb+eze=n a c
_ab6n27(5 2 1 3n | abenereoe <€1 n € n €3>
- 5 10283+ -+ ) |-

e1a+erb+e3c=n

We present pictures of the sets

Latbte=mY _ omtn mEny (mkn _ mEn mitn mEn
{(abey: 17T T L = (0, ), (M5~ 1,1, ME, L (0, 25, )

below.
b
b b b b b
c a ¢ a c a a a a
c c c
b b b b b
a a a a a
c c c c c
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IS

1N
IS
1N

Lemma 5.5.2. We have PL3[uy,, u,, v] = 3’;1? (uy +uzy) - v

Proof. PL3[uy, Uy, v

_/ [2 1/[/ / //+2u/ 1! /)u//+(2( 1 //v +2l/l/ 1 //) 3)\*1/1/ M/Z)/)M ]ds

-3 / 2yt 1l (1) — A (u,)3)o'|ds
_6nbnt 61 77° 3ntrt
=7 —7—(Un +9usz,) - v + 77 (ty — Buzy) v — 3)\*—215 (thn + uzy) -
3n°m
:T(Mn+9u3n) -0 ]
Since u,; = (*m?/12) A uy,
L[A Uy, A~ l/l A~ M] 7’12 Z 1—3—n—gbcnggg<€1_|_€_2+8_3)
v b ‘ ~ abcln B 2 253\ " T
e1a+erb+e3c=n
1 3n—2 &1 & €3 %
AL A ] = s 8 S e (o F) |

m gia+epb+ezc=n

If m is big, then we have
#{(a,b,c) : e1a+ &b+ e3c = n} ~ 3m.
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Chapter 6

Lyapunov-Schmidt reduction

In this chapter we discuss about Lyapunov-Schmidt reduction and find the
related derivatives up-to order 3. For discussing the bifurcation we need to
consider the Lyapunov-Schmidt reduction. Lyapunov-Schmidt reduction is
an effective procedure to reduce an infinite dimensional bifurcation problem
to a finite dimensional problem.

The basic idea is decompose the given equation into two equivalent. When
A = (n7t/1)?, uy = /2/1sin(n7s/1) is a non-zero function which generates
the kernel of L1 = ¥; — A*A;. Thus the orthogonal projection of X to ker L; is

PiX X, ues B2, 0 X X, wes u— P(u),

<un/ un>2

is the orthogonal projection of X to (ker L1)*, the orthogonal complement to
ker L;.
The equation ®(u, A, &) = 0 is equivalent that

PO(u,A,a) =0, and QP(u, A, ) = 0.
Observe that the differential map (ker L;)* — (ker L)+, v — D,Q®, at
(0,A*,0) is given by
)
v [c]) — / (0" —i—/\*v)q)”ds},
0
which is an isomorphism.

Lemma 6.0.1. The differential map (or derivative) map (1.1.2):

!
X=X, v [4) > / (v + /\v)qb”ds}, (6.0.1)
0
induces an isomorphism from (ker Ly)~ to the annihilator of ker Ly in X'

Proof. By the discussion in §2, the map (6.0.1) is C1. If fol(v” + A*v)¢"'ds =0
for any ¢ € X, then v” + A*v = 0 and we obtain that v = 0 since A* is not an
eigenvalue of the restriction of Laplacian to (Ker L1)=. This shows the map
(??) is injective. We show it is surjective. Take v* € X’ arbitrary. By Riesz
representation theorem, there is w € X so that (w, ¢), = v*(¢) for any ¢ € X.
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2m2
12

Setting v = Y-+, AmUm Where 215”2 (0= — AMay, = (w, Uy )2, we have

1
@ 4 N0y ds = (w, )2 =" (9).

. (1 2422 i) .
Since (v,v)y = 2 n4m4l(n2m2 B < o0, we have v € X. This completes the

m#n 14 2

proof. O

By implicit function theorem [Ralph Abraham and Tudor S., 1988, p. 2.5.7],
the later equation defines a function

W:R xR xR?— (kerL;)* C X, (x, A, ) — W(x, A, a)

by
Q®(xu, + W(x,A,a),A,a) =0 near (0,A%,0). (6.0.2)

Lyapunov-Schmidt reduction says that the bifurcation of zero of ®(u, A, «)
is described by the zero of F(x, A, «) where

F(x, A, o) = PO(xu, + W(x, A, a), A a). (6.0.3)

6.1 The first order derivatives of W

Lemma 6.1.1. The differential coefficients of W at (0, A*,0) are given as follows:
Wy =0,W, =0,

- I? 14 m & g b2
W=-- ¥ Yot Y "], and
2 L m: odd m?* — n? i=0 m? — 4i? m: even m? — n?
m;én m#n

- 14

W, = uw
) \/7 m%d m2(m2 — n2) n2)
m#n

Here we put a bar above a function to indicate evaluation at (0, A*,0). We also have
that

12 1 ma; 12

- - 4061 > (14}
Wiaq + Whay = — — ( , __) .
1+ e 72 m%d m2 —n?2\ 1 l.;;) 2 —4Z T 2 m2\/1/2 Hm
m%n
12

bm/Z
*
— —= u,,.
3 Y ot
T miegen M= — N

m#n

Proof. We remark that

QP(u, A a) = Q(L)u —a1Q(K)u +22Q5 =0, Q(L)u = Q(¥)u — AQ((A)u)
6.1.1
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where 1 = xu, + W(x, A, «). Differentiating (6.0.2) with respect to x, A, a1, ap,
we obtain that

Q(L1)ulun + W] — a1Q(Kq)ulttn + Wx] =0 (6.1.2)
Q(L1)u[Wi] — 01Q(K1)u[Wi] — QA(u) =0 (6.1.3)
Q(L1)u[W1] — a1Q(K1)u[W1] — Q(K)y =0 (6.1.4)
Q(L1)u[Wa] — a1Q(K1)u[Wa] + Qd =0 (6.1.5)

where u = xu, + W(x, A, «). We denote W; for W,,, for shortness. We evaluate
them at (0, A*,0) and obtain

Li[Wy] =0, Li[Wp] =0, Li[Wi] = QKo, L;i[Wo]= —Q0.
Since Liu,, = 0. Thus we obtain that W, = 0, Wy, = 0, W; = L;lQKO, and
W, = —-Ly 105, which conclude the results. H
6.2 The second order derivatives of W

By differentiating (6.1.2) with respect to x, A, a1, ap, we obtain

Q(Ly)y[un + Wy, uy + Wy] + Q(L1)u [Wix] — Q(K2)u [ty + Wy, uy + W

_Q(Kl) [ xx
Q(L2)ultn + Wy, Wil + Q(L1)u[Wir] — Q(K2)u[tn + Wy, Wa] — Q(K7)u[Wy

Q(L2)u[un + Wy, Wi] + Q(L1)u[Wx1] — Q(K2)u[ttn + Wy, W1] — Q(K1)u[Wxt
—Q(K1)ulun + Wy
Q(Lo)u[un + W, Wo] + Q(L1)u[Wx2] — Q(K2)u[ttn + Wy, Wa] — Q(Ky)u[Wy

]
=
Al
—Q(A1)u[un +Wy] =
]
)
2] =

and, by evaluating them at (0, A*,0), we conclude

QL1[Wyz] =0, QL1[Wyy] = QA1[un] =0, QL1[Wu] =0, QL1[Wy] =0.

By differentiating (6.1.3) with respect to A, a1, ap, we obatin

Q(L2)u[Wx, Wil + Q(L1)u[War] — Q(K2)u[Wa, Wil — Q(K1)u[Wi]
Q(L2)u[Wa, W1] + Q(L1)u[Wa1] — Q(K1)u[Wi] — Q(K2)u[Wr, Wh1]

—Q(K1)u[W1] = Q(A1)u[Wi],
Q(L2)u[Wx, Wa] + Q(L1)u[Wi2] — Q(K2)u[Wir, W] — Q(K1)u[Wa2] = Q(A1)u[W2],

and, by evaluating them at (0, A*,0), we conclude

Q(A1)u[Wal,

QLi[Wia] =0, QLi[Wy1] = QA1 [Wi] = QA1 [W1], QL1[Why] = QA1[W] = QA1[Wa].
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By differentiating (6.1.4) and (6.1.5) with respect to a1, ap, we obtain

Q(L2)u[W1, Wi] 4+ Q(L1)u[Wi1] — Q(K2)u[W1, Wi] — Q(K7)u[W1] — Q(Ky)u[Wii]
_Q(Kl)u[wl] =0,
Q(L2)u[W1, Wa] + Q(L1)u[Wi2] — Q(K2)u[W1, Wa] — Q(K1)u[Wi2] — Q(Kq)u[W2] =0,
Q(L2)u[W2, Wa] 4+ Q(L1)u[W22] — Q(K2)u[W2, Wa] — Q(K7)u[Wa2] = 0,

and, by evaluating them at (0, A*,0), we conclude
QL1 [Wi1] — Q(Kq)[Wi] — Q(K1)[Wi] =0, QL1[Wi2] =0, QL{[Wx] = 0.

We evaluate them at (0, A*,0) and obtain

Ll[wxx] =0,
L] _x/\] = QAq[un),
Li[Wy] =0,
Li[Wx2] =0,
L1[Wi] =0,
Li[Wr] = QA1[W],
L1[Wy2] = QA1[Wa],
Li[Wi1] =0,
Li[Wip] =0,
Li[Wp] =0,
and we thus conclude that
Wxx =0, Wx)\ =0, le =0, WxZ =0, W)\/\ =0,
Wi = LTTQA W], Wi = L7 QA [Wo],
Wi1 = 0 (since K1 = 0), Wi =0, Wa = 0.

Setky = 2 Y2, —is, m odd; by, if m even. We look Wy; and W), closely
and obtam

Wa1 =L 'QA[Wi] = LT'QAq[Wy] = 2 1_1/\1 [14]
myén
_ 2% __ \/Z km (l/n-)2 2 %
= Zmz_nz (m7e /1)ty = — Zmz_nznz_mz(m”/l) U
m#n m##n
V21




6.2. The second order derivatives of W 39

Wi =L7 QA [Wo] = LTTQMA [Wo] = (I/m)*V2/1 Y. Li'QAq[u;)]

m:m#n,m: odd

2
— * m *
=V2/1 Y Li'Qetu,=V2/1 Y

m:m#£n,m: odd m:mz£n,m: odd
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Chapter 7

Bifurcation equation F = 0 and its
Taylor coefficients

In this chapter, we derive the first, second, and third derivatives of

F(x, A, &) =P®(xuy +W(x,A,a),A,a) = P(L)y — a1 P(K)y +axPé  (7.0.1)
where (L), = (¥)u — A(A)y, u = xu, + W(x, A, ). We denote F; for Fy,, F,;
for Fyu;, and so on. For discussing the bifurcation set and hysteresis set we

need to find the derivatives of F(x, A, a) up-to third order and we compute all
the derivatives at (0,A*,0).

7.1 The first order derivatives of F

Differentiating (7.0.1) by x, A, a1, a2, we obtain that

=P(L1)u[tn + W] — a1 P(Kq )y [ty + W], (7.1.1)

F/\ = (Ll)u[W ] —Délp(Kl) [ ] ( )u/ (712)

P(Ll)u[Wl] — (XlP(Kl)u[Wl] ( )u/ (713)

P(Ll)u[WQ] — DqP(Kl)u[Wz] + PJ. (7.1.4)

Evaluating them at (0, A*,0), we have Fy = PLy[u,] =0, F, =0,
_ g, ’ .
F, = —PKy = [ Z Z 412u + 2 m bm/zum} ‘up (by Lemma 5.3.1)
m: odd m:even
(7.1.5)
By = P5 = uy(1/2) = {(—1)2,@/1, if nis odd; 716
0, if n is even.

Here put a bar above a function to indicate evaluation at (0, A*,0).



42 Chapter 7. Bifurcation equation F = 0 and its Taylor coefficients

7.2 The second order derivatives of F
Differentiating (7.1.1) by x, A, a1, ap, we obtain that

Fyx :P(Lz)u[un + Wy, uy + Wx] + P(Ll)u[wxx]

— w1 P(Kp)y [ty + Wy, uy + Wy] — a1 P(K7 )y [Wix], (7.2.1)
Fx)x :P(LZ)u[un + Wx/ WA] + P(Ll)u[wx/\] - P(Al)u[un + Wx]
— a1 P(Ka)u[tn + Wy, Wa] — a1 P(Ky)u[Wia], (7.2.2)

Fr1 =P(La)u[un + Wy, Wy] 4+ P(Lq)u[Wa1]
- P(Kl)u[un + Wx] - lxlp(KZ)u[un + Wy, Wl] - alp(Kl)u[le]/
(7.2.3)
Fyo =P(Ly)u[tn + Wy, Wa] 4+ P(L1)u[Wx2] — a1 P(K2)u[ttn + Wy, Wa] — a1 P(K7)y [Wia].
(7.2.4)

Evaluating them at (0, A*,0), we have

n2 72 _ _

Fxx =0, Fx)t =—PN\ [un] = _1—2/ Fy =0, Fyp =0.

Differentiating (7.1.2) by A, k, a1, ap, we obtain that

Fax =P(L2)u[Wx, Wal + P(L1)u[War] — a1 P(K1)u[War] — P(A1)u[Wal, (7.2.5)
Fyr =P(L2)u[Wx, Wa] + P(L1)u[Wr] — P(A1)u[Wh]

— P(Kq)u[Wi] — a1 P(K2)u[Wa, Wi] — a1 P(K1)u[Wha, |, (7.2.6)
Fro =P(L2)u[Wx, Wa] + P(L1)u[Wiz] — a1 P(K2)u[Wa, Wa] — a1 P(Kq)u[Wio] — P(/\1)1(4;V§2]7-)

By evaluate them at (0, A*,0), we have
F/\A :O, FAl = — PAl[Wl] = O, FAZ :PAl[Wz] = 0.
Differentiating (7.1.2) and (7.1.3) by a1, a2, we obtain that

Fi1 =P(La)u[W1, W1] + P(L1)u[Wi1] — a1 P(K2)u[W1, W] — a1 P(Kq)u[W11] — 2P(Ky)u[Wi],
(7.2.8)

Fip =P(Ly)u[Wy, Wa] + P(L1)u[Wi2] — a1P(Kp)u[W1, Wa] — a1 P(Ky )y [Wi2] — P(K7)u[Wa],
(7.2.9)

Pzz :P(Lz)u[WQ, Wz] -+ P(Ll)u[WZZ] — qu(Kz)u[Wz, Wz] — Dclp(Kl)u[sz]. (7.2.10)

Evaluating them at (0, A*,0), we have F;; = 0, Fj; =0, and F», = 0.

7.3 The third order derivatives of F

— 66
Lemma 7.3.1. Fyyy = 3”21? .
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Proof. Differentiating (7.2.1) by x and evaluating them at (0, A*,0), we obtain
that

I I
Fyxx =PLa[uy, uy, ty) :/0 6((u!)2u"u!! + (u! () *)u!))ds — 3A*/O (u!)3u! ds

1 6.6 37’14 4 37’167'[6
—12 [ (uu"\2d A*/ Vids = 127 gy _ O
/ 534" | (u)"ds TN T 217

Ky
Wl = Zm#n m— nzu

87’[ (3}’[ —41 )
PKZ[un/ un] = { 7lr54 %’ 0 (n2—4i2)(9n2— 42)”11” odd
B2 (b"/Z + b3n/2)/n . even

4 oo 3na; .
k3 )7 Zi:o 9112—4111'2’ n: Odd/
=
b3, /2, n :even.

Similarly, we obtain that
Fixh =0, Fa1 =0, Foap =0, Faap =0, Fa11 =0, Fy12 =0, Fpp =0,
Foan = PA[LTP QA [un]] = 0, Fyyg = —PA1[L7'QA1[QKo)] = 0, Fana = PA1[L; ' QA4[Q0]] =
23 oo 6912 —20i2

Lemma 7.3.2. When n is odd, Fyy = 415 Yoo (9n2 A7) (a2 2 e and Fyyp =

\/> When n is even, Fyyp = 215 bn/z 1615 bgn/z, and Fy,», = 0.

16l3

Proof. Differentiating (7.2.1) by a1 and evaluating them at (0, A*,0), we obtain
that ) )
Fyx1 = PL3 [un/ Up, Wl] — PK; [un/ un]-

When 7 is odd,

Frx1 =PL3[uy, iy, W1| — PKa [ty ] (by Lemma 5. 5 2)
O )+ 9 )+ 5 5 IS
——MEZ ki 3n3i 8n(3n —41)

217 w2 = m?— 2T (9n? — 4i2)(n? — 4i2)

27tttk | Bntrd i 8n(3n —41 )a;
B 215 8 5 & (9n? —4i%)(n? — 4i%)

3 9 3 & 3n% — 4i%)a;
T _129 2 Z4'2+822 9 2( 42 2) 14-2
= 9n? — 4i l.:o(n—z)(n—z)
3’ & 69n” —20i2
415 = (9n? — 4i2)(n? — 4i2) "




44 Chapter 7. Bifurcation equation F = 0 and its Taylor coefficients

When 7 is even,

Fyx1 =PL3[uy, iy, W1] — PKa[uy, u,] (by Lemma 5.5.2)
3170 _ _ 347
:2—17(<M”’ W) +9(uzn, W1)) + T (bny2 + b3us2)
3nbrb 912 b3y, 0 3ntt
=7~ agn 2 T i (w2t bany)

27ntrt 3ntrt 3ntrt 3ntnt
=- ngn/z + T(b”/z +b3n/2) = Tbn/z - T15b3n/2-

\V2/1 *

. o4
Since W2 = — 2 Y odd 3202 =2y Y
m#£n

Fxe = PL?)[un/ Un, L1_1Q5] = PL3 [un/ Un, WZ]

3nbm® _ )
:—217 ((un, Wa) + 9{us,, Wa)) (by Lemma 5.5.2)
3n? 2 2 . .
3nbmt 14 V2/1 BETIE \/; n :odd;
=T T 4 — QA A AT — 2.2 2 . . D
7w L) ) e/l neodd,

0, n : even.

Lemma 7.3.3. Ifweset C(a) = (Fyp108 + 3F1003a + 3F100m183 + Fxxpad), then

1 - - - - - -
C(IX) ZEPL3[DC1W1 + o Wh, a1 W1 + apo Wh, ey Wy + 0(2W2]

Q _ _ _ _
— %PKZ (1 Wh 4+ aaWa, a1 Wi 4 2 Wa],

or equivalently,

Cla) = (%PLg[u, u,ul — %quKz[u, u])

u=u1W TaW,

Proof. Differentiating (7.2.8), (7.2.9), (7.2.7) by a1 and a, and evaluating them
at (0,A*,0), we obtain that

Fi11 =PL3[W1, Wy, W] — 3PKy[Wy, Wy|, Fi1o =PL3[Wy, Wy, W] — 2PKy[Wy, Wa],
Fipp =PL3[Wy, Wy, Wy] — PKy[Wa, Wa],  Fapp =PL3[W,, Wy, Ws). O
Remark 7.3.4. As we will see in the differential coefficients Fy11, Fy12, Fxp are not

important to describe the equation of bifurcation set and hysteresis set up to order 3,
and we will not investigate their exact values.
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Chapter 8

Versality

In this chapter we introduce the notion of versal unfolding of f which contains
all nearby deformation of f. In actual situation, several noise may cause
some small perturbation of the idealized problem, which M. Golubitsky and
D. Schaeffer call imperfect bifurcation or imperfection. When bifurcation
diagram is subjected to small perturbations or imperfecions then we need to
discuss the perturbation of singularity theory.
Let f : R"” x R +— R™ be smooth and f(0,0) = 0. An /-parameter unfolding
of f is a smooth map F : R" x R x R/ R™ such that F(x, A,0) = f(x, A) for
all x, A.

We recall a criterion of pitchfork bifurcation in [Golubitsky and Schaeffer,
1979] (or in [Marsden and Hughes, 1994, 1.5 Theorem)]).

Lemma 8.0.1. If

f::fx:fxx:f)\zof f_xxx#or fo?éOz
the bifurcation of f(x,A) = 0at (0, A*), is a pitchfork.

8.1 'P-K-versality

[Golubitsky and Schaeffer, 1979]

Definition 8.1.1. We say that an unfolding F : (R x R x R¥, (0,A%,0)) —
(R,0), (x,A,a) = F(x,A,a), 0of f: (RxR,0) = (R,0), (x,A) — f(x,A),is
P-K-versality, if

5x’/\F + gx,)\Fx + EL\Fy + <Fi|(x,/\,0c):(0,)\*,0) i=1,... ,k>]R = gx,)\-

Here &, ), £, denote the ring of C*-function germs on (IR?, (0,1*)), (R, A*)
with variables (x, A), and variable A, respectively.

Let F,G : (RF x R",0) — (RR,0) be function germs. We say that F and G
are P-K- equivalent if there exists a diffeomorphism germ ¥ : (R* x R",0) —
(R€x R",0) of the form ¥*((F)g, ) = (G)g, . Here ¥* : &y — Exppis the
pull back R-algebra isomorphism defined by ¥*(h) = ho ¥.

If n = 0, we simply say these germs are K-equivalent.
Let F: (RF x R3,0) — (R,0) be a function germ. We say that F is a K-versal
deformation of
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f = FIREx {0} if & = Te(K)(f) + (ZRE x {0}, -+, 2Rk x {0} )
where T¢ (K)(f) = <§—1{1,- x ,%,f>gk.

M. Golubitsky and D. Schaefer used the term “a universal unfolding” for
this definition. We prefer to use the word “P-K-versal”, because it fits recent
usage of terminologies in singularity theory.

All small perturbations of the bifurcation are embedded in its p-K-versal
unfolding. In the context of imperfections, it is important to decide whether
the given perturbation defines a p-K-versal unfolding, or not, since the imper-
fection parameters are embedded in the parameter space of this p-K-versal
unfolding.

’
R

Example 8.1.2. When F(x, A, a1, &) = x> — Ax + a1x? + ap, we have B = {ap =
0} and H = {a} = 27ay}. The bifurcation diagrams of the zeros of fo(x,A) =
F(x, A, ) are shown as follows:

—

\T_y
7N - ~ T
[ ) NN -\
= =) )
K O | N\ N4

FIGURE 8.1: Bifurcation set B and hysteresis set H for Example (8.1.2)

This example shows all kind of perturbations of the problem which pre-
dicted by M. Golubitsky and D. Schaeffer. We find that two imperfection
parameters are necessary to describe an arbitrary small perturbation of this
problem, where the expilict notion of imeperfection parameters are unfolding
parameters. Versality is important because by the versal unfolding parame-
ters, we can discuss about the imperfections or possible perturbed bifurcation
diagrams.

Lemma 8.1.3. If n is odd, F is p-K-versal.

Proof. Since

)

Fx I_fxx P:'xxx Fx)\ Exxx Fx)\

o o

Fi/\ F_xA F_xx/\ P:A/\ — _x)\ F_xxA F)\A — (13 /\)2 :1 Exxl # 0
B Fa Fx En F 0 FEa 0 * 2 Fxo '
FZ sz Pxe F/\Z F2 0 Fxe 0

F is P-K-versal, by [Golubitsky and Schaeffer, 1979, Lemma 4.3]. O
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Chapter 9

Bifurcation set and hysteresis set

In this chapter, we derive the equation of bifurcation set and hysteresis set
and draw the figures of the bifurcation set and hysteresis set.
Now we consider the bifurcation set of the zero of

F =2 Fepx + FaAx + Fag + By + 50(x) + xQ(a) + C() + O(4),

where K(IX) = Frpiaq + Feponn, Q(Dé) = %(Fxna% + 2F a1 + szza%), and
C(a) is defined in Lemma 7.3.3.

9.1 Equation of Band H

To describe how the pitchfork bifurcation changes nearby the origin, we recall
the bifurcation set B and hysteresis set H, which are defined by
B ={a:3(x,A), F(x,A,a) =0,F(x,A,a) = Fy(x,A,a) =0}, (9.1.1)
H ={a:3(x,A), F(x,A,a) =0, Fc(x,A, &) = Fyx(x, A, &) = 0}. (9.1.2)

From 7.1.5 and 7.1.6, we have the values of F; and F, and if n is odd, these
sets are zeros of certain functions with the following 1-jet:

(55 "+ (2077 oo = o+ P,

In the following Proposition 9.1.1, we describe their 3-jets as (9.1.3) and
(9.1.4), respectively, which enables us to draw B and H approximately near
the origin.

Proposition 9.1.1. The bifurcation set B ((9.1.1)) and the hysteresis set H ((9.1.2))
are zeros of smooth functions with the following 3-jets

Fiaq + By + C(a), and (9.1.3)
Flt)él + széz + C(oc) iE(Dé)a, (9.1.4)

T 72412

respectively.
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310

5, We have

Proof. Since Fyyy =

Fe =302 — B 4 x(@) + Q) + O(3),

Fy=—"Ex4+0(3), Fu=2%x+((a)+0(3).

F, = F) = 0 defines (x, A) as a function of « and we obtain that

x =0(3), A= 2712Q( a) +O(3).
Since F — xF, = ”;l” 3+ Fag + Fap — —E( ) + C(a) + O(4), we obtain
that the 3-jet of the equation for bifurcation set is (9.1.3).

Similarly F, = Fyy = 0 defines (x, A) as a function of « and we obtain that

7
x = — 234 L(a) +O(3), A =0(2),
and thus the 3-jets of the equation for hysteresis set. (9.1.4). O

We present the data for C(«) (see Lemma 7.3.3) as follows: Set k,, =
4 ~Yivo m2 412, m odd; by, /5, if m even.

o 16 kakpkc
PL3|Wy, Wy, Wi| = — — PL3|uq, up, tic|,
[ ] 776 alb%n (a2 = n2) (12 — n2) (2 — n2) [t4a c]
I 16 kaoky(12/ 12)/2/1
PL3 W11W1/W2 - PL3H,Mb,M ,
[ ] 776 C:Odd;jlc#n (a2 — n2) (02 — n2)(c2 — n2) [4a cl
o 16 ko(1*/7c)2/1
PL = PL
B[er Wo, WZ] 6 , C:Odgb i bZCZ(le — 1’12) (b2 — 1’12)(02 — 1’12) 3[”{1; Up, uc]/
- 16 (16/7T6)(2/l)3/2
PL3|Wp, W, Wp| = — — PL3[ug, uy, uc],
[ ] 6 ) bcod;l,blc#n 22022 (a2 — n2) (02 — n2) (2 — n?) [Ua c]
kukb
PK2 W PK2 Ug, Up|,
[ 7'[4 a%n —n?)(b> — n?) [, g}
PK,[W W]—E\ﬁ Y. Ka PKp[ug, up)
2 1,VV2 _7-[6 I wh o odd bz(az — le)(bz — 7’12) 2 %a, Up),
PK[Wp, W] r2 Y. ! PKy[ug, up]
2\Wo, Wo| =— =+ 2 |Ug, up).
81 fraq 3262 (% — n?) (0% — n?) !

In th remaining part of this section, we describe numerical results on the
data above to describe C(a) assuming b; = 0 (i > 1) and n = 1. Remark that
ki, = 47’“ Yiooai/ (m? — 4i%), if m is odd; 0, if m is even, and we have

lZ

_ km 417 m & a4,
Wi=-— B 2 _2tm T T3 ) mz_n22m2_4i2”m'
m#£n m:odd,#n i=0
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We have

PLa[Wy, Wi, W] —C_O(if, PLa[Wy, Wi, W] Z%(%)Z(g)” 2

m\m ]
o B2 . IBcy s20\3/2
PL3[W;, Wy, Wo] :ﬂ_;; 7 PL3[Wo, W, W) :773 <7> ,

where ¢y, c1, c2, c3 are constants. The approximate values of ¢; are given by

co ~0.305307a3 + 1.20457a3a; + 0.556055a3a, + 0.449847a3a3 + - - -
+ 1.5754:1011% + 1.60049a¢pa1a, + 1.23451apgaa3 + - - -
+ 0.0536143a9a3 4 0.410507agazaz — 0.0983358a9a3 + - - -
+ 0.68378543 + 1.15217a2ay + 0.821541a%a3 + - - -
—0.121613a145 + 0.763853a,aa3 — 0.154765a143 + - - -
+0.0918374a3 — 0.322925a3a3 + 0.0171554a,a3 + 0.040982643 + - - -
c1 ~(0.0560462a0 + 0.147036a; + 0.078606a; 4 0.0592183a3 + - - - )ag
+ (0.0965134a; + 0.112754a; + 0.0758876a3 + - - - )a;
+ (0.00853948a, + 0.0472655a3 - - - - )ap — 0.00887054a3 + - - -
¢y ~0.0105423aq + 0.0141242a; + 0.00815088a; + 0.00496213a3 + - - - ,
—0.0072001543 + - - -
c3 ~0.00218564.

We also remark that

1
PL3[ug, up, e} - tty = — Y. {— + abcs18283<8—1 + %2 + €—3>} )
e1a+erb+ezc=1 a ¢
Since
- 16 (4/%)3
PLg[Wl,Wl,Wl] =— PL3u y Up, Ue|,
m° a,b,c:gd,yél abc(az - 1)(b2 - 1)(C2 - 1) [ ‘ C]
R (4/m)2\/2]1
PL3[W1/W1/W2] ——<g PL3 Ug, Up, Uc|,
8 o hcodd 41 abc2(a?2 —1)(b2 —1)(c2 —1) [t d
N (4/m)2/1
PL3[W1, Wy, Wy| =— PL3ug, up, tic),
0 a,b,c:gd,;él abZCZ(a2 o 1) (bZ - 1)(C2 o 1) ! ‘
A (2/1)32
PL3[Wa, Wa, Wy| =— PLs[u,, up, ucl,
12 a,b,c:%d,yél 2022 (a2 — 1) (02 — 1)(c2 — 1) [Uq |
aber® 1 €, € ¢
PL3[uq, up, 1| :l—7 Z {—E — abceqeres <;1 + ?2 + f)] .

e1a+exb+esc=1
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This numerical result follows computing the summations above with
m < 500. We remark that the convergence of cj is very slow, and we are not
sure how many digits are correct for this approximate value.

Since

abnm® & €14 + e2b + n)?
PKy[ug, up) = — Yoa )Y, ) (10 + €26 1 n)

I5 5 T e (e1a 4 exb +n)% —4i2
dabnmd & 2
=——x)_ 4 1+ ~),
P I—ZO 1 a—i—b;(z) ( sl,szz—il (e1a + €20+ 1) — 412)
we have, if n is odd,
e (4/7)%ab = ai, 4
PKZ[Wl, Wl] = — . 1712 . PKQ[M ;ub],
mt a,b:o%:l,;én (a2 o nZ) (bZ - nZ) i, iz—o (a2 — 41%) (bZ — 4122) “
= — 64—7’1 Z aZbZ Z a;a;, a,
7Ol padd,en (@ —12) (0% —1?) 5 (a2 — 4i3) (b2 — 4ip”)
2
i
X (14 _,
< 81,SZZ::|:1 (e1a+ &b +n)? — 4z2>
16 (4/7)a ® g
PKo [ Wy, W) = \ﬁ L PKy[uta, uy]
7[6 ! a,b:o;i,;én bZ(a2 - nZ) (bZ - nZ) 1'20 aZ — 41% ¢
lénl /5 a2 © 4iai 5
— a2 VI 1+ L =,
t \/ja,b:og,#n b(&lz - nZ)(bZ - nZ) 12—0 a? — 411 ( € SZZ—; (51‘1+€2b+n)2—412>
PKy[W,, Wy] r2 Y. ! PKy[ug, up]
2|W2, Wo| =—~ 2|Ua, Up
gl a,b#1,0dd a?b*(a* — n?)(b* — n?) !
RS ! > e
i=0 a,b#1,0dd ab(az - nZ)(b2 - n2) e1,60==%1 (816! +exb + 7’1)2 —4i2)
Assume that n = 1. Since
2 2
a 12i<+1 1 3
. - . 7 — - — T — 10 2
u:%d (u2 - 1)(&2 - 412) 4(412 - 1)2 a:o<§>1 a(az - 1) 4 &

a#1
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we obtain
121 1)(12i2 +1
111 ir=0 1) (412_1)
n 42 a%b? Z i2 ]
ohoaa (a2 —4i2) (02 — 4i%) (> = 1)(b* = 1) | =, (e1a+exb+ 1) — 4]
a,b#1
[e3) 2 2
=— i:a Y. |aiaga, (12.211 s 12(1?212 s 12>
ol 5 (4i7 —1)%(4i5 - 1)
~0.0098018 —0.0171753 0.00800604 0.00824388 0.00228896 0.00100968 ---

—0.0171753 —0.0306015 0.0169267  0.0144463  0.00298161 0.00129348 - ao
0.00800617 0.0169269 —0.0241598 —0.00438159 0.00500669 0.00110166 - aq
0.00824403 0.0144466 —0.00438157 —0.013504 —0.00250348 0.00220992 ---
0.00228912  0.00298184 0.00500672 —0.00250347 —0.00698926 —0.00127408 --- ar
0.00100984 0.00129372 0.00110169 0.00220993 —0.00127408 —0.00433055 ---

+a(apayay ...)

—0.00798387 —0.0107902 —0.0175634  0.0166762 0.0177164  0.00217028 -
—0.0107948 —0.0175626 0.00990841  —0.01239 —0.000800288 0.010955  ---
0.00882601  0.0166771  —0.0123899 —0.00630149 —0.011251 —0.00120814 ---
0.010736 0.0177173  —0.000800176 —0.011251 —0.00633698 —0.00721143 ---
0.00248622  0.00217122  0.0109551  —0.00120811 —0.00721141 —0.00368129 ---

+ax(agaray ...)

——
e N XD
N R O

(000585423 —0.00798357 —0.0107953 0.00882541  0.0107354  0.00248558 ---

0010169 00173908 0.0098944 —0.00878926 0.00988501 00125713 -
—0.0173914 —0.0308041 0.0218814 —0.0139982 0.0187884  0.0208632 --- ao
0.00989557 0.0218833 —0.0334693 0.00254736 —0.0174167 —0.00322272 --- a
—0.0087879 —0.0139962 0.00254755 0.00573298 —0.00157069 —0.0105505 ---

+a3(a0 a1 a2 -..) | 000988643 0.0187905 —0.0174165 —0.00157063 —0.00275234 —0.00445332 - (az
0.0125728  0.0208654 —0.00322244 —0.0105504 —0.0044533 —0.00391895 --- .

_|_ cee,
- 16! 122 +1 /3
PKZ[WL Wz] = - f Z a;a 1 {11)2 <1 - 10g2>
l l =
s Y ! ) ]
o bodd @ 4_1% b(a?2 —1)(b2—-1) eLemtl (€10 + &b +1)2 — 421’
ab#1
16l /; [ 12i4+1 /3
~——r\/7 Z a;a; 7(,_1(%2)
mt VEL = A4 - 1)2 \4
0.00319975a9 + 0.005724944a; — 0.00326835a,
—0.00273496a3 — 0.000536221a4 — 0.00021051a5 + - - -
0.001452344a9 + 0.00201291a1 + 0.00301828a,
—0.00322987a3 — 0.00330068a4 — 0.000328207a5 + - - -
. 0.003194064¢ + 0.00574215a; — 0.00437078a, 4 }
>\ 0. 00241329a3 + 0.003588964a4 — 0.00385563a5 + - - - ’
oo 1 i
PR[Wo, Wo] = 7‘[5 Z 4 [< 10g2> " a,h:zodd ab(a® —1)(b* 1) €1,€¥i1 (10 +e2b+1)2 — 4i2]
a,b#1

_8712 [ > . (3 o 2)2 _{0.00107265a; + 0.0003806424; + 0.0010782543 }
! & +0.0038009944 + 0.00403667a5 + - - - '
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We have
o ko (4\? Tk 4y 20172
PRal Wl =12 () Prali il =25 () (7)
- Bk, 2

where ko, k1, kp are constants. The approximate values of k; are given by

ko ~20.248004a3 + 0.926139a3a; + 0.331051a3a, + 0.249654a3a; + - - -

4 1.09866aga? + 0.977956a9a1a; + 0.747703agaraz + - - -

+ 0.0315291aga3 + 0.30764agaza3 — 0.026177aga3 + - - -

+0.3963154a3 + 0.764946a3a; + 0.572289a%a3 + - - -

— 0.0717457a143 + 0.497689a,aa3 — 0.102975a1a3 + - - -

4 0.05105944a5 — 0.212486a5a3 + 0.00606446a,4a3 + 0.0247378a5 + - - -
k1 ~(0.0566244a0 + 0.125717a; + 0.0629693a, + 0.0486808a3 + - - - )ag

+ (0.0589923a; 4 0.0990681a, + 0.0746959a3 + - - - )a

+ (0.0000811478a, + 0.0473895a3 + - - - Jap — 0.00482053a3 + - - -
ky ~20.0129285a + 0.0086379a; + 0.011406a; + 0.00861553a3 + - - - .

This numerical result also follows computing the summations above with
m < 500.

Remark 9.1.2. Ifag =1,a; =0(i > 1), then

i} _ _ _ 8 /1 3—4log2 1> [2 \2
PKz[leWl + apWh, a1 Wy +0€2W2] = —E<;4X1 -+ Tg; 7062) .

9.2 Figures of B and H

In this section, we show below the figures of the zeros of (9.1.3) and (9.1.4) in
several cases. We take the length 77, 27t and 47t respectively for each cases and
we put the values of x where x depends on the values of ag, 4; and b;.
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[ — Bifurcation [ — Bifurcation

—— Bifurcation

—— Hysteresis —— Hysteresis —— Hysteresis

1+

s o =
1t

s L L L A 2L L L L A

-2 -1 0 1 2 -2 -1 0 1 2

a a a
(a) Length = 7t (b) Length = 27 (c) Length = 47

FIGURE 9.1: Approximations of B and H (a9 = —1,4;>1 =0, b; = 0)

—— Bifurcation —— Bifurcation —— Bifurcation

—— Hysteresis Hysteresis Hysteresis
1 b

o 0;\_
1t
-2

-1 0 1 2 -2 -1 0 1 2

a ay a4
(a) Length = 7 (b) Length = 27t (c) Length = 47

FIGURE 9.2: Approximations of B and H (a9 = 0.5,4;>1 = 0, b; = 0)

2r 2 _— B;lurca(ion 2"— Bifurca‘tion
—— Hysteresis —— Hysteresis
1 1F
g 0 § o
—1F -1H
Bifurcation
5 Hysxer‘esis | Ll |
-2 -1 0 1 2 -2 -1 0 1 2
ay ay ay
(@) Length =7t (b) Length = 27 (c) Length =47

FIGURE 9.3: Approximations of B and H (ap = 2,4;>1 = 0)
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2" ifurcation 2 " iturcation 2 " Biurcation
—— Hysteresis, —— Hysteresis —— Hysteresis
1 1
§ o {8 o
-1t -1
-2k L -2 L
2 1 0 1 2 -1 0 1
ay a a
(a) Length = 7t (b) Length =27t (c) Length =4
FIGURE 9.4: Approximations of B and H (ap = 3,4;>1 = 0)
2-— Bifurcation 2 Bifurcatiof 2
—— Hysteresis —— Hysteresis — steresis
1 1 1
G 1§ o § o
-1t -1 -1
-2k } i -2 -2
-2 -1 0 1 2 -2 -1 0 1 -2 -1 0 1
ay [ed]

ay

(@) Length =7

(b) Length = 27t

(c) Length =47

FIGURE 9.5: Approximations of B and H (ap = 4,a;>1 = 0)
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2 Bifurcation 2 —— Bifurcation 2 —— Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1 1
§ o § o § o
-1 -1r -1
-2 -2 . . . 3 -2 L L L k|
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
a [e]] a4

(a) Length =7t (b) Length = 27 (c) Length = 4
FIGURE 9.6: Approximations of B and H (ap = 10,4;>1 = 0)

We observe from the figures above that the bifurcation and hysteresis sets

change as we change x. When a; = 0 for i > 1, the aspect of the bifurcation

sets changes slightly, and the aspect of the hysteresis sets sometimes changes

considerably according to the change of ay.

—— Bifurcation —— Bifurcation [— Bifurcation

—— Hysteresis

—— Hysteresis

—— Hysteresis

a

o
az
o

-2 -1 0 1 2
a a <]

(@) Length =7

(b) Length = 27

(c) Length = 47

FIGURE 9.7: Approximations of Band H (a9 = 1,41 = 1,4;5, = 0)

— Bifurcation

—— Hysteresis

— Bifurcation

—— Hysteresis

—— Bifurcation

—— Hysteresis

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

(a) Length =7t (b) Length = 27 (c) Length = 4

FIGURE 9.8: Approximations of Band H (a9 = —1,a1 = 1,4, = 0)
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2 Bifurcation 2f Bifurcation 2 Bifurcation

—— Hysteresis —— Hysteresis —— Hysteresis
1 1
§ or S0]
-1r -1
-2k -2

-2 -1 0 1 2 -2 -1 0 1 2

a

(a) Length =7

a

(b) Length = 27

(c) Length = 47

FIGURE 9.9: Approximations of Band H (a9 = 1,41 = —1,a;>, = 0)

2 — Blfurcav(ion 2“— Bifurca‘tion 2 — B\furcaltion
—— Hysteresis —— Hysteresis —— Hysteresis
1 1
§ 0 s o
-1 -1
-2 -2
) 2 -2 -1 0 1 2
2] ay a
(a) Length =7 (b) Length = 277 (c) Length = 471
FIGURE 9.10: Approximations of Band H (a9 = —1,a41 = —1,a;>, =
0)
2 '_ Bifurcavtion 2"— Bifurcavtion 2 _— B\'urcallion
—— Hysteresis —— Hysteresis —— Hysteresis
1r 1t
s 0 s 0>/<
-1t -1t
-2k L -2k, L
-2 -1 0 1 -2 -1 0 1 2
ay a

(a) Length =7t

(b) Length =27t

(c) Length = 47

FIGURE 9.11: Approximations of Band H (ap = —1,a1 = 0.5,a4;> =

0)
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2 Bifurcation 2 Bifurcation 2 Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1 1
8 0 8§ 0 § o
-1 -1 -1
2 -2 -2k
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
a a a
(@) Length =7 (b) Length = 27 (c) Length =47
FIGURE 9.12: Approximations of B and H (39 = —1,41 =
—0.5, ai>p = 0)
2 —— Bifurcation 2 —— Bifurcation 2" giturcation
Hysteresis Hysteresis Hysteresis
1 1 1
8§ 0 8§ 0 § 0
-1 -1 -1
-2 -2 -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay a 2]
(@) Length = 7t (b) Length = 27 (c) Length = 4
FIGURE 9.13: Approximations of Band H (ap = 1,41 = 0.5,4;>, = 0)
2F L Bifurcation 2 Bifurcation 2 Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1t 1

a
o
a2
o

-1t -1
-2k -2k
-2 -1 0 1 2 -2 -1 0 1 2
(a) Length =7t (b) Length = 27 (c) Length = 47

FIGURE 9.14: Approximations of Band H (ap = 1,47 = —0.5,a;> =
0)
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Bifurcation

Bifurcation

Bifurcation

—— Hysteresis —— Hysteresis —— Hysteresis

g 0 g o >/<
-1 -1
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
(a) Length =7 (b) Length = 27 (c) Length = 47

FIGURE 9.15: Approximations of Band H (ap = —1,a; = 0.5,4;> =

0)
2 Biurcation 2 Biurcation 2l Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1 1
§ 0 § 0 s o
-1 -1 -1
-2 -2t -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay [«]] i
(a) Length =7t (b) Length = 277 (c) Length = 47
FIGURE 9.16: Approximations of B and H (39 = —-1,44 =
—0.5, ai>y = 0)
2 —' Bifurcation 2f —' Bifurcation 2 —— Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1 1
§ 0 § 0 s o
-1 -1 -1
-2 -2b -2
2 2 -2 -1 0 1 2 -2
ay [«d] a
(a) Length =7 (b) Length = 27 (c) Length = 47

FIGURE 9.17: Approximations of Band H (a9 = 1,41 = 2,a;>, = 0)
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2 Bifurcatiol 2 Bifurcation 2 Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1
g 0 § o
-1 -1r
-2 2k
-2 -1 0 1 2 -2 -1 0 1 2
a aq [ed]
(@) Length =7 (b) Length = 27 (c) Length =47

FIGURE 9.18: Approximations of Band H (ag = 1,41 = —2,4;>, = 0)

2 — Bifurca‘tion 2 — Bifurcaltion 2“— Bifurcavtion
—— Hysteresis —— Hysteresis —— Hysteresis
1 1+ 1
g0 \/\ g OE\_/\ ¢ 0'\—-—\
-1 1t 1
-2 -2h L -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
a a [<]]
(@) Length =7t (b) Length = 27 (c) Length = 4
FIGURE 9.19: Approximations of Band H (a9 = 0,47 = 1,4, =
1,ai>3 =0)
2F "~ sifurcation i " sifurcation 2F " siturcation |
—— Hysteresis —— Hysteresis —— Hysteresis
1 1t 1t
8 of § 0 § o
-1 -1 -1t
-2 | -2 2L L
-2 -1 0 1 2 -2 2 -2 -1 0 1 2
a a ay
(a) Length =7t (b) Length = 27 (c) Length = 47

FIGURE 9.20: Approximations of B and H (a9 = 1,41 = 1,40 =
1/ ai23 = 0)
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2 '— Bifurca‘tion 2"— Bifurca‘tion 2 I— B\!urca’(ion
—— Hysteresis —— Hysteresis —— Hysteresis
1 1r
§ o [S0]
-1 -1r
-2 L -2 "
-2 -1 0 1 -2 -1 0 1 2
a [o7] a4
(a) Length =7t (b) Length =27t (c) Length = 47t
FIGURE 9.21: Approximations of Band H (ag = —1,a1 = —1,ap =
_1/ a123 = O)
2 — Biurcation 2 Biurcation 2l Biurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1r 1
§ o § or g o \
-1 -1r -1
-2 -2t -2
-2 -1 0 1 -2 -1 0 1 -2 -1 0 1 2
ay ay a4
(a) Length =7 (b) Length =27 (c) Length = 47
FIGURE 9.22: Approximations of B and H (a9 = 0.5,41 = 0.5,a; =
0.5, aizg = 0)
2 —— Bifurcation g —— Bifurcation 2 Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1r 1
8 0 8 or § 0 \
-1 -1r -1
-2 -2k L -2
-2 -2 -1 0 1 -2 -1 0 1 2
a a

(a) Length =7t

(b) Length =27t

(c) Length = 47

FIGURE 9.23: Approximations of B and H (agp = 1,41 = 1,4, =

_1/ ai23 = O)
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—— Bifurcation —— Bifurcation —— Bifurcation |

—— Hysteresis —— Hysteresis —— Hysteresis
1 1t
[SE] 8 0
1 _1
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
a a a
(a) Length =7t (b) Length = 27 (c) Length = 47
FIGURE 9.24: Approximations of Band H (a9 = 1,44 = 1,4, =
2,ai>3 =0)
[ Bifurcation [ Bifurcation 2 ifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1 1
§ 0 § 0 § o
-1 _qf 1
-2 -2 -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay a ]
(a) Length = 7 (b) Length = 27t (c) Length = 47
FIGURE 9.25: Approximations of Band H (a9 = 1,44 = 1,4 =
—2,4i>3 = 0)
2 —— Bifurcation 2 —— Bifurcation 2-— Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
1 1 1t
[SE] [SE0] § 0
-1 -1 -1t
-2 L -2 -2k L
-2 -1 0 1 2 -2 -2 -1 0 1 2
a a a
(@) Length =7 (b) Length = 27t (c) Length =47

FIGURE 9.26: Approximations of B and H (a9 = 1,41 = 1,4, =
0.5, ai>3 = O)
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—— Bifurcation —— Bifurcation —— Bifurcation

—— Hysteresis —— Hysteresis —— Hysteresis

g o § o g o
1 1l -1
B — 1 R S e 1 N — 0 1 2
(a) Lengtil =7 (b) Lengt;l =25 (0 Lengt}l =4

FIGURE 9.27: Approximations of B and H (a9 = 2,41 = 2,ap =
2, aizg = 0)
We often observe that the bifurcation set and the hysteresis set are close near
the origin when the coefficients ag, a; and a; are big.
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Appendix A

Appendix

A.1 Inverse Function Theorem and Implicit Func-
tion Theorem

Inverse function theorem and implicit function theorem are very essential
topic for analysing the Euler buckling problem. We recall these theorems as
follows:

Theorem A.1.1. (Inverse Function Theorem)[ Ananlysis in IR"] Let U be an open
setin R" and let f : U — R" be C' . Let xo € U such that D f(xo) is nonsingular.
Then there exists a neighborhood W of xg such that

i. f: W — f(W) is a bijection;

ii. f(W) is an open set in R";

iii. f~1: f(W) = WisCland Df 1 (f(x)) = (Df(x))~! forx € W.

Theorem A.1.2. (Implicit Function Theorem)[Calculus2-international] Assume
F(x,y) € C! near (xq,yo) such that

1. F (xO, o) =0,

ii. ay F(x0,10) # 0.

Then there is a unique function y = f(x) € C! in a neighborhood of xq such that

i yo = f(x0);

ii. F(x, f(x)) = 0V near x;

9F
e __a(x,f(x))
iii. f'(x) = g (uf(x)”

A.2 Second variation of Energy equation of Euler
buckling problem

MORSE-PALAIS theorem [A.2.1] give us the idea that the positivity of the
second derivative of energy concludes the minmimality of the energy.

Theorem A.2.1. [PALAIS, 1969, DINH and TUAN, 1973] (MORSE-PALAIS
LEMMA). Let V be a real Banach space, O a convex neighborhood of the origin and
left f: O — R bea C"?2 function (k >= 1) having the origin as a nondegenerate
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critical point with f(0) = 0. Then there is a neighborhood U of the origin and a C*
diffeomorphism: ® : U — O with ®(0) = 0 and (D )y = id, (the identity map of
V) such that for x in U, f(®(x)) = 3(D?f)o(x, x).

Here 0 is a nondgenerate critical point of f means that (D?f)g is an iso-
morphism of V onto V* and (Df) = 0.

Energy equation of Euler buckling problem is defined by

E(u, A o) 2/ A= 1/2 — w1K ds+)\/,/1_ u')2ds + apu(l/2),

(A2.1)
where U = {u € X : ||[i/[|o <1—¢€},0 < e <1, and X is the Sobolev space

X = {u € H?[0,1] : u(0) = u(l) = 0}.

Where « is a function defined by

2i7ts 2i7ts>] (A2.2)

7 [ao—i—;(azcosT b; sin l

with ||xg[ec < c0. Since u € H?[0,1], we can choose that u is C!, and there is a
constant ¢1, 0 < € < 1, so that |t/(s)| < 1—¢;.

We see as in [3.4.1] first variation of Energy of Euler buckling problem is
as follows

(dE) uro) 0] = }ii%% [Eu+ to,A4,8) — E(u, A, )]
= (d¥)[0] — AMdA)[v] — ay(dK) [0] 4 az[0] (5),

where

ul,Ullu/IZ // //

|

a¥lor] = [ s o+ [ A
! u'v)

dAfvy] = /0 O

l u"u’v’l I 0’1’
dK[vl]:/O K—(l ulz)ds /()K—(l_uIZ)l/st'

Second variation of Energy of Euler buckling problem is as follows
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Lemma A.2.2.
l w//,U// lzulvlu//w// + ,Ulw/ullz +2u//,0//u/w/
(EE)ploel = [ 1 ds+ | 2y ds+
" o 1l—u 0 (1 —u )
L 4320w — 4u'o'u"2w' 1 w'o'
[ i [ e
0 (1—uR)4 0 (1— u’2)3/2
1 u”v’w’ + w//v/u/ 1 zu//ulzv/wl 1 v”u/w’
Ko ds — / W K—~—=dS — / KK ————ds.
/0 1 (1—u?) o 1 (1—u?)? o ! (1—uR)3/2

Proof.

(dZE)(M’M) [v,w] = lim1 [dE(u + tw, A, a)[v] — dE(u,/\,tx)[v]]

t—0 t
1p ! (u+ tw) o) (u + tw)'"? D (u+ tw)"o"
— lim - d / d
o [/0 (1— (u+ tw)'?)? st 0o (1— (u+tw)?) °

t—0 t
"

P (u+tw)” (u + tw)'v' ! v
_ ds — / d
/"‘1" -t )2 7 A ur )i 2™
10 112 1,1,/

! (u + tw)'v' I u'v'u oy'y" ! u"u'v
/\/0 A= (ut tw)2)i 2"~ /o A= uwp ™~ /0 a—wzy st /o My S
i o' i o'
—i—/o 0611(—(1 — u/2)1/2ds — /\/0 —(1 — u/Z)l/ZdS}

= d?¥[v, w] + Ad*Alv, w] + a1d*K[v, w),

where

o (u tw) Y (u+ tw) 2 L (u+tw)"v"
dz‘y[v,w]_hm—[/o = (s oy /0(1_(u+tw),2)ds

t—0 t
"o

1 Iyl 112 1
_/ u'v'u ds—/ u"v ds}
0 (1 _ u/2)2 0 (1 _ u/Z)
B llm 1 |:/'l u/v/u//Z + Ztu/vlu//w// + tzu/vlwllz + tvlwlullz + 2t2u//w//v/w/ + t3vlw/w//2
0t Lo (1 — (u + tw)?)2
Loy " Ly’ u'”? Iy
/ 2ds_/—/22d5_/—/2d3]
0o (1—(u+tw)?) 0o (1—u?) 0o (1—u?)
_ /1 20" W + o'w'u'"? it /1 w'o" it
0 (1 _ u/2)2 01— u'?
1 l
}ir% " [/ [(u'v'u"z(l —2u? 't — 120 At + 20207 — 0t — 4P’ —
— 0
6t2u'2w'2 _ 4t3u/w/3 _ t4w’4))/((1 . (u/ + tw')2)2(1 . u/Z)Z)dS
/l u”v”(l o ul2 — 14+ M/Z 4 2w’ 4 tzw/Z)ds}
0 (1—u?)(1— (v + tw')?)
Loy u"w + o'w'u'" |~ L 420" 420 — 4u"*0' '’
ds / ds
0 0

d Lo
1 — u2)2 St 1o (1 u2ys

ds+
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Loy o u'w'
[,
0 (1 _ u/2)2
I ' Loy u"w" + o'w'u'? + 23" u'w' 1 420" 4" 0w’ — 4uo'u'2w!
0 1—u? /0 1—u?)2 /0 (1—u?)*
1 /! (u + tw)'v' Lo
d*Alv1,vp] = lim = s—/ s
01,2 t—0 t Jo (1 — (u+ tw)2)1/2 0 (1—u?2)l/2

14,/ 1— ”\1/2 1 — / nN2\1/2
_/ 7) 1/2ds~|—11m wo'[(1—u”) (1= (u' + tw')*) /7]
—u t—0 t (1 —u2)1/2(1 — (u + tw)’2)1/2

u/zwlv/
_/ 1-u2)i2 +/ 2) 12320
—u —u
- / u/2 12t

1 (u+tw)" (u + tw)'v’ ! v
2 -
Ko, w] = fim 3 [/0 (S TErT I N e e v

Loy’ I 0"
[ e [ ]
0 (1—u?) o (1—u?)1/2
1 [/z Kv//((l o u/2)1/2 . (1 o (u/ i tw/)Z)l/Z)
0 (1 . /2)1/2(1 (u/+tw/)2)l/2
oy’ + tu'o'w + tw'v'u" + Puw'v'w” Loy
ds — / K~ d }
/OK (1— (u + tw')?) (1—u?) S
_ " 1—u?—1+u?+2tu'w + t?w'
zhm—[/ KU [ ]ds}
f0 t (1 _ u/2)1/2(1 _ (u/ + tw’) )1/2[(1 — u/2)1/2 + (1 _ (u/ + tw/)Z)l/Z]

ds

ds—+

u”v’w’ + w”v’u’d i 2u”u’20’w’d
+ 7) K—(l — )2 s
B u//vlwl + wllvlu/d /Iulzv/w/d U//ulwl d
2) ( + u'2)3/2

]

From the first derivative of E with respect to u are zero, we will get the
equilibrium points which are the critical points. If E has a local minimum then
we say the equilibrium is stable. Otherwise we say the solution is unstable

It is important to know whether the solution of dE = 0 is stable or unstable.
But it seems to be difficult to conclude stability or unstability using the second
variation formula above. Instead of the second variation formula we present
very elementary consideration on minimality of this critical point. We consider
the graph of the energy E in (x, A, E) space. The pitchfork bifurcation for stable
solution looks like the following figure [A.1]:
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FIGURE A.1: Pitchfork bifurcation diagram.

From the figure [A.1], we see the stable solutions which are as the bold
solid line and as the dotted line represents the unstable solutions. For A < A*,
the graph of E looks like the following figure [A.2]:

A\ x

W
-

FIGURE A.2: Minimum stable for A < A*.

For A > A*, the graph of E looks like the following figure [A.3]:

X

\ Maximum junstable /
\/\/ ~

Minimum stable Minimum stable

FIGURE A.3: Minimum stable and maximum unstable for A > A*.

In figure [A.3], we get two local minimum points. Taking as imperfection,
we obtain the following bifurcation diagram for example.
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FIGURE A.4: Diagram of bifurcation and imperfect bifurcation.

From Figure [A 4], the first figure is the transcritical bifurcation and the
second figure is imperfect transcritical bifurcation which is a small perturba-
tion with a disconnected diagram. It is important problem to decide a solution
which attains the minimum in the above diagram.

A.3 Reduction Method of Lyapunov-Schmidt

At the begening of the chapter 6, we use Lyapunov-Schmidt reduction for
discussing the bifurcation equation which discussed in the next chapter. So,
here we recall the Lyapunov-Schmidt reduction theorem as follows:

Theorem A.3.1 (Kielhofer, 2004, Theorem 1.2.3). There is a neighborhood U, x V;
of (x0,Y0) in U x V C X X Y such that the problem

F(x,y) =0 for (x,y) € Up x V, (A3.1)

is equivalent to a finite-dimensional problem.

®(v,y) =0 for (v,y) € Up x Vo C N XY, where ®: Uy x Vo — Zy continuous

and CD(’UQ, yo) =0, (’Uo, yo) S az x Vs.

(A3.2)
The function ®, called a bifurcation function is given in (A.3.6) below. (If the parame-
ter space Y is finite-dimensional, then (A.3.2) is indeed a purely finite-dimensional
problem)

Proof. Problem (A.3.1) is obviously equivalent to the system

QF(Px+ (I —P)x,y) =0,

(I—Q)F(Px+ (I—P)x,y) =0, (A.3.3)

where we set Px = v € N and (I — P)x = w € X;. Next we define

G:U; x Wy x V, = R via

G(v,w,y) = (I — Q)F(v+w,y), where

vo = Pxg € U, C N, (A.3.4)
wo = (I — P)xp € W, C X,

and U,, W, are neighborhood such that U, + W, C U C X.
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We have G(vg, wp, yo) = 0, and by the choice of the spaces, Dy, G(vg, wo, yo) =
(I — Q)DyF(x0,y0) : Xo — R is bijective. Application of the Implicit Function
Theorem then yields

G(v,w,y) =0 for (v,w,y) € Uy x Wy x V, is equivalent to
w = (v,y) forsomey : U, x Vo — Wy C Xg such that (A.3.5)
¥ (vo, yo) = wo.

Insertion of the function ¢ into (A.3.3); yields

@(x,y) = QF(v+¢(v,y),y) =0 (A.3.6)
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