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Chapter 1

Introduction

1.1 Background

As of 2019, robots are primarily used in factory automation. They are used for manu-

facturing cars, electric and electronic devices, etc. They are efficient in high-reproducibility

repetitive tasks.

Furthermore, their application is expected to extend to our daily tasks, such as cooking,

cleaning, and other day-to-day household tasks. However, currently, robots are not efficient

at such tasks. In addition, even in factory automation, robots have not yet been applied

to tasks that handle various products called high-mix low-volume production and various

kinds and volumes production.

1.2 Issue

Why are the current robots not efficient at these tasks? A primary reason is that these

tasks are executed in diverse situations. For example, in cooking, items are organized

differently in a refrigerator each time. In addition, robots should progress the task quickly

or carefully based on user priority, such as speed or safety. Further, physical parameters,

such as friction coefficients, are also different each time. If the situation is different, the

task cannot be accomplished by the same commands generally. Therefore, robots require

certain motion generators that can generate commands based on varied situations.

The motion generators should receive concrete representations of situations and gener-

ate commands based on the situations. One of the common representations of situations

is the current state; it includes various information about disturbances, changes in phys-

ical parameters, etc. To process them, the motion generators should receive the current

state online. In addition, some kinds of situations such as limitations, goals of the tasks,

and user priority should be provided externally. In this dissertation, such information is

referred as an external order. In summary, the motion generation is illustrated in Fig. 1.1.

Here, the situations indicate what the motion generators receive: the current states and

the external orders.
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Robot and
Environment

Motion 
generator

External order Command State

Situations

Figure 1.1: Overview of the motion generation.

Considering the diversity of situations in our daily tasks, the external order can be

quite diverse. For example, there exist various limitations, such as velocity limits, torque

limits, and working ranges. Furthermore, there are various user orders, such as fast,

slow, and careful. Moreover, the representation of the external order vary despite a same

intended instruction. For example, the most straightforward way in representing a target

position is the coordinate. However, there exists another way of representation; in the

reaching task, the position of the target object can be specified by an RGB-D image.

It is considered that there are two aspects of the diversity of external orders—values

and representations. The former means that there are external orders with the same

form that have different values. For example, when the velocity limit is represented by

using a threshold value, its value can be both low and high. The latter refers that there

are different representations in external orders with the same meaning. For example, in

representing a target position, it can be both coordinates and RGB-D images. Also, in

representing user orders, there are various ways—voices, texts, one-hot vectors, or its

continuous embeddings.

Thus, the external orders vary in both the values and representations. Therefore, the

underlying issue is, how will motion generators process various external orders?

1.3 Approach

In this section, the motion generators that are suitable for solving the aforementioned

issue are discussed. There exist two main approaches to motion generation—approaches

based on mathematical optimization and machine learning. In the approach based on

mathematical optimization, external orders are expressed mathematically such as in ob-

jective functions. This approach solves the motion generation problems mathematically.

For example, model predictive control [1], dynamic programming [2, 3], and sampling-

based motion planning methods, such as rapidly-exploring random tree [4], are well-known

mathematical methods. Such methods, however, require mathematical expressions. They

cannot handle numerical expressions such as human demonstrations.

In contrast, the approach based on machine learning can handle numerical expressions.

Using a set of pairs of external orders and corresponding trajectories, such as human

demonstrations, motion generators can be trained to associate with them. Moreover, they

can imitate mathematical optimization methods [5, 6]. However, this approach has an
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issue in dealing with various external orders. Generally, trained models cannot process

inputs that significantly deviate from training data, i.e., trained models can handle only

limited external orders. Considering the diverse external orders as discussed earlier, it is

difficult to input all possible external orders to the models.

This issue of the approach based on machine learning is caused by the training method

that provides external orders directly. Therefore, the issue can be resolved by training

the motion generators without external orders. This can be achieved by using certain

intermediate representation—by learning the relationship between such intermediate rep-

resentation and commands, the motion generators become independent of the external

orders. Then, the external orders are associated with the intermediate representation af-

ter training the motion generators. The use of the intermediate representation resolves

the issue of the diversity of representations in the external orders. Note that while this

method can considerably reduce the limitations on the external orders, the motion gen-

erators come to depend on the representation ability of the intermediate representation

instead, as discussed in Chapter 1.5.

Hence, latent representation of trajectories can be used as an intermediate represen-

tation. This latent representation expresses features that can uniquely specify a single

trajectory in a set of trajectories. Although this latent representation cannot be directly

observed, it can be obtained by using a set of trajectories. Because the latent representa-

tion depends only on trajectories, it enables the motion generators to not depend on the

external orders.

Recently, the use of latent representations has been studied [7–13]. However, for the

aforementioned motion generation, there exist certain requirements for motion generators

and latent representations. First, motion generators should be used online. The motion

generators should work online to deal with certain situations, such as disturbances, that

are represented in the current state. Second, the latent representations should represent

entire trajectories. This is because external orders often determine the entire trajectory.

Considering the aforementioned requirements, most conventional works on the latent rep-

resentations of motions [7–10] are not suitable to address the issue discussed in this study.

Although certain studies [11–13] consider latent representations of short-term trajectories,

they did not study the changes in situations, as discussed earlier.

In this study, I use encoder-decoder models for time-series, which are also known as

sequence-to-sequence (seq2seq) models [14, 15]. Seq2seq models can extract latent repre-

sentations from trajectories and generate motions online. Therefore, it is expected that

motion generators for various situations can be realized using seq2seq models.

1.4 Seq2seq Model

Seq2seq models are neural network architecture used to convert an input sequence

to an output sequence. A seq2seq model is composed of two recurrent neural networks

(RNNs). The input-side RNN is called an encoder. It receives input trajectories and
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I am a student

Je suis étudient [EOS]Latent representation

[SOS] Je suis étudient

Encoder Decoder

Figure 1.2: Sequence-to-sequence model. This model translates an English sentence “I am

a student” to an French sentence “Je suis étudiant.” The blue block denotes an encoder

RNN and the orange block denotes a decoder RNN. The blue arrow is an fixed dimensional

vector which contains internal representation. [SOS] and [EOS] are special terms meaning

start-of-sequence and end-of-sequence, respectively.

converts them to latent representations. The output-side RNN is called the decoder. It

receives the latent representations and generates output trajectories. The decoder can be

used as a motion generator that generates commands based on current states and latent

representations.

Seq2seq models are applied to many kinds of tasks such as machine translation [14,15],

conversational modeling [16], and summarizing [17]. Most applications are in natural

language processing. Certain studies have recently applied seq2seq models to robotics.

Yamada et al. used seq2seq models in robots to learn the relationship between linguistic

commands and appropriate actions [18]. Kutsuzawa et al. proposed a method of chunking

a trajectory into groups of samples to solve an issue caused by lengthy trajectories of

robots [19].

The converting process in machine translation is illustrated in Fig. 1.2. First, the

encoder receives a source sentence word-by-word. It converts the received words to latent

representation internal representation and memorizes them into internal memories. To

memorize the received words during this process, long short-term memories (LSTMs)

[20,21] and gated recurrent units (GRUs) [14] are often used. The meaning of the source

sentence is reflected in the latent representation. Then, the encoder provides the latent

representation to the decoder. The decoder receives a special token representing the start

of a sentence (SOS) and generates the first word of the translated sentence according to

the latent representation. Then, the decoder receives the first word, generates the next

word, and repeats the process. Finally, the decoding process is complete when the decoder

generates a special token representing the end of the sentence (EOS).

1.5 Research Topics

As discussed earlier, seq2seq models can be an efficient approach for understanding

how the motion generators would process various external orders. However, there are

certain topics to be discussed.
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The first topic is training methods for various trajectories. Although the use of the

latent representations enables training of trajectories independent of certain external or-

ders, there exist limitations for acceptable external orders. All models cannot generate

trajectories that significantly deviate from the training data. Therefore, the diversity of

training trajectories limits the performance of the models. Thus, training methods of

various trajectories to the seq2seq models should be discussed.

It is difficult to train various trajectories to seq2seq models when there are constraints

and complex dynamics. The randomly generated trajectories are not guaranteed to exhibit

sufficient diversity and satisfy the dynamic conditions. For example, when subject to

dynamic constraints, most random trajectories do not succeed in the task of turning over

pancakes upside down within a realistic range of motion. Therefore, it is difficult to obtain

a repertory of trajectories that exhibit sufficient diversity.

The second topic is to associate certain external orders with latent representations.

As the seq2seq models do not specify what the latent representations represent, they

demonstrate low interpretability. Therefore, associating them manually is difficult and

the association methods are not straightforward.

In addition, the robustness of the decoders of seq2seq models in online motion gen-

eration is also an important topic. Owing to the online motion generation, the motion

generators may detect changes in the environment and compensate them to follow the

trajectories represented by the latent representations. However, it is not confirmed if the

trained decoders have such robustness. Therefore, the robustness of decoders should be

validated.

Thus, this study aims to address the aforementioned issues.

1.6 Construction of this Dissertation

An overview of the construction of this dissertation is illustrated in Fig. 1.3. Note that

the contents in Chapter 2 were already presented by the author as the master’s course

thesis [22]. However, it is included in this dissertation as it is one of the essential parts of

this research.

First, trajectory deformation-based training methods of seq2seq models were proposed.

The seq2seq models are trained to deform given trajectories to satisfy the constraints and

complex dynamics. Using the proposed methods, users can train the seq2seq models by

preparing various input trajectories regardless of the environment. Then, the seq2seq

models are trained using curriculum learning along with penalties. Finally, users can train

various valid trajectories to the seq2seq models and control the diversity of the trajecto-

ries. These methods solely require models with constraints and environmental parameters.

Chapter 2 discusses the dynamic constraint. Chapter 3 discusses the discontinuous envi-

ronment.

In addition, Chapter 3 discusses the robustness of the seq2seq models against fluctu-

ations in environmental parameters was evaluated. Although the models are trained by
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Verifying robustness of trained decoders

Training diverse trajectories
to seq2seq models

Associating external orders
with latent representations

Chapter 2

Training method
under dynamic constraints

Chapter 4

Association method
with mathematical expressions

Chapter 3

Training method
under discontinuous environment

Verification of the robustness
against fluctuations in environment

Chapter 5

Association method
with numerical expressions

Verification of the robustness
against the exposure bias

Motion generators for various situations

Figure 1.3: Overview of the construction of this dissertation.

the proposed method with only a single set of parameters, these trained models result in

smaller reproduction errors than models trained by other methods.

Second, association methods of the latent representations with two types of external or-

der representations were proposed—mathematical expressions and numerical expressions.

Chapter 4 discusses the external orders that are represented as mathematical expressions,

such as objective functions. To obtain latent representations that minimize the objective

functions, an optimization method based on backpropagation [23] for the latent represen-

tations was proposed. In this chapter, several objective functions, different in both forms

and values, were employed. Chapter 5 discusses the external orders that are represented

as numerical data, such as human demonstrations. A training method for additional

models to associate numerical external orders with appropriate latent representations was

proposed.

Further, Chapter 5 evaluates the robustness of the motion generators against the expo-

sure bias [24,25], which is caused by training of RNNs without environmental models [26].

Using the proposed method, the robustness of the motion generators can be improved

without increasing the number of numerical external orders.

This study is summarized in Chapter 6. Although all chapters are associated with the

main aim of this study, each chapter has a distinct background and conclusion.



Chapter 2

Training of Seq2seq Models under

Dynamic Constraints12

In this chapter, training methods of various trajectories for seq2seq models is con-

sidered. When there exist dynamic constraints in a given task, it is difficult to obtain

a repertory of trajectories that has enough diversity as well as satisfying the dynamic

constraints.

This chapter takes dynamic manipulation as a typical example including dynamic

constraints. A training method based on the idea of trajectory deformation is proposed.

2.1 Introduction

Object manipulation is one of the main topics in robotics. Grasping and carrying

objects with grippers is one of the most popular issues, while there exist another type of

manipulation called nonprehensile manipulation [2, 27], which does not involve grasping.

Nonprehensile manipulation includes wide variety of motion such as pushing, throwing,

rolling, batting, etc. Lynch et al. realized a robot performing a juggler’s skill called

butterfly [28]. Kormushev et al. realized a manipulator flipping a pancake on a flying pan

by teaching from humans and reinforcement learning [29]. Bauza et al. realized a planar

pushing motion using a variation in the Gaussian process [30]. Some studies address the

motion planning of nonprehensile manipulation by dynamic programming [3, 31]. Neural

networks have attracted attention in some studies recently [32–34].

Among nonprehensile manipulation, this chapter focuses on dynamic manipulation

[35], which utilizes dynamic effects such as inertial force and gravity. Mason et al. defined

the concept of dynamic closure as the use of inertial force to sustain contact constraint [35].

Dynamic closure is accomplished by applying appropriate acceleration to exert inertial

1The contents in this chapter were already presented by the author as the master’s course thesis [22];

I included it since it is an essential part of this study.
2The contents in this chapter were also published in: K. Kutsuzawa, S. Sakaino, and T. Tsuji,

“Sequence-to-sequence models for trajectory deformation of dynamic manipulation,” in Proc. 43rd Annu.

Conf. IEEE Ind. Electron. Soc., 2017, pp. 5227–5232.
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force to sustain static friction. Tsuji et al. realized a manipulator turning over a pancake

with a spatula [36]. In [36], appropriate acceleration is determined so that the resultant

force of gravity and inertial force fits into the friction cone.

In dynamic manipulation, inertial force is used instead of grasping. That is realized

by a robot inputting appropriate acceleration. This operation is executed by the same

degrees of freedom as the motion. Therefore, applying appropriate acceleration causes

motion of an object or a desired motion will not satisfy the dynamic closure. These two

requirements can not be decoupled. Thus, trajectory planning in dynamic manipulation is

a difficult issue. Previous methods of trajectory planning in dynamic manipulation need

to search high dimensional state spaces [4, 37].

The issue is training methods of trajectories that have enough diversity as well as

satisfying the dynamic constraints. This issue can be considered as a combination of two

sub-issues—the diversity of trajectories and the dynamic constraints. It is relatively easy

to obtain enough diversity of trajectories without regarding the dynamic constraints. In

addition, expressing the conditions of dynamic constraints is also easy.

Therefore, it is considered that trajectory deformation is an effective approach for such

an issue. This approach of trajectory deformation is taken to divide motion planning into

two steps: a step of trajectory planning according to an requirement and another step

of deforming based on another requirement. Kurniawati et al. proposed a method of

deformation that a trajectory for collision avoidance is deformed to ensure feasibility for a

dynamic model of a robot [38]. Lamiraux et al. proposed a method of trajectory planning

for obstacle avoidance with two steps: planning obstacle avoidance trajectory based on

prior information and then deform it to avoid unexpected obstacles in online [39]. Zegers

et al. used neural networks to deform limit cycles to desired shape [40]. The deformation

approach has also been applied to nonprehensile manipulation. Pekarovskiy et al. applied

laplacian trajectory editing [41] to batting motion [42]. This method deforms a preset

trajectory to pass through a given hitting point while avoiding obstacles. However, these

methods are not been applied to dynamic manipulation.

By using a trajectory deformation method, trajectories can be obtained by planning

desired trajectories and deforming them to satisfy dynamic constraint. To realize trajec-

tory deformation for dynamic manipulation, obtaining deformation methods is an issue.

Thus, this chapter aims to use seq2seq models to learn a method of trajectory deformation

to satisfy dynamic constraint while sustaining the original shape. In addition, this chap-

ter proposes an unsupervised method of training seq2seq models to learn a deformation

method. Labeled data is not required thanks to unsupervised learning. Only unlabeled

trajectories and mathematical representation of constraint are necessary.

This chapter is constructed with the following sections: Section sec:chapter2-method

describes the proposed method. Main architecture of seq2seq models for trajectory de-

formation and a design method of learning curriculum are explained. Then, Section 2.3

shows implementation of the proposed method and confirms the validity of the proposed

method by simulation and an experiment. Finally, this chapter is concluded in Section 2.4.
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2.2 Method

2.2.1 Physics Model

This chapter considers a task of turning over a pancake with a spatula as illustrated

in Fig. 2.1. The same task is considered in [36]. This chapter considers planar physics.

A state equation is expressed as follows:

x[k + 1] = Ax[k] +Bu[k], (2.1)

where

x[k] = [y[k], z[k], θ[k], vy[k], vz[k], vθ[k]]
⊤ , (2.2)

u[k] = [ay[k], az[k], aθ[k]]
⊤ , (2.3)

A =

[
I3 ∆tI3

O3 I3

]
, (2.4)

B =

[
∆t2

2 I3

∆tI3

]
. (2.5)

Here, x[k] is a state variable at k-th sample, u[k] is an acceleration input at k-th sample,

∆t is a sampling interval, I3 ∈ R3×3 is an identity matrix, and O3 ∈ R3×3 is a zero matrix.

The task of turning over is illustrated in Fig. 2.1. As a previous research [36], dynamic

constraint is represented by an imaginary shape called friction cone. Contact between

the pancake and the spatula is maintained when the resultant force vector of gravity and

inertial force fits into the friction cone. This condition is expressed as follows:

| arg(g − u[k])− θ[k]| < arctanµ, (2.6)

where arg is an operator which gives the angle of a given vector, g is a gravitational

acceleration vector, and µ is a static friction coefficient. This chapter considers the case

of µ = 1.0.

2.2.2 Seq2seq Models

A seq2seq model was implemented as illustrated in Fig. 2.2. Here, for given discrete

time indices k1 and k2, let x[k1 : k2] represent a sequence of vectors x from the k1-th

sample to the k2-th sample as follows:

x[k1 : k2] = (x[k1],x[k1 + 1], . . . ,x[k2]). (2.7)

In addition, •̂ denotes the samples or sequences of the generated samples from the seq2seq

models.

This seq2seq model has the same input/output relationship as implemented in [19]:

the encoder receives time series of state vectors,

x[Cκ : C(κ+ 1)− 1], (2.8)
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Friction cone

Spatula

Pancake

Figure 2.1: Overview of the task of turning a pancake with a spatula. Contact is main-

tained if the resultant force vector of mg and −mu fits into the friction cone (blue). The

apex angle of the friction cone is determined by the static friction coefficient, µ.

where κ and C indicate the discrete time during the encoding phase and the number of

samples the seq2seq models process at a time, respectively. The decoder receives deformed

state vectors,

x̂[Ck + 1 : C(k + 1)], (2.9)

and outputs mean vectors and covariant matrices of acceleration input,

û[C(k + 1) : C(k + 2)− 1], Ŝu[C(k + 1) : C(k + 2)− 1]. (2.10)

Here, k indicates the discrete time during the decoding phase. û[k] is a mean vector

used as generated acceleration and Ŝu[k] is a covariant matrix used as uncertainty of the

outputs [43]. A covariant matrix Ŝu[k] is expressed as follows:

Ŝu[k] =

 σ2
y [k] ρyz[k]σy[k]σz[k] 0

ρyz[k]σy[k]σz[k] σ2
z [k] 0

0 0 σ2
θ [k]

 , (2.11)

where σ2
y [k], σ

2
z [k], and σ2

θ [k] are variance and ρyz[k] is a correlation coefficient between

y and z. Note that at the first sample in the decoding phase, the decoder receives the

following chunk instead of (2.9):

(x[0],x[0], . . . ,x[0]). (2.12)

By using the mean vectors and the covariant matrices, the state equation (2.1) is rewritten

as follows:

x̂[k + 1] = Ax̂[k] +Bû[k], (2.13)

Ŝx[k + 1] = AŜx[k]A
⊤ +BŜu[k]B

⊤, (2.14)

x̂[0] = x[0], (2.15)

Ŝx[0] = O6, (2.16)
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Encoder Decoder

Figure 2.2: Overview of the proposed seq2seq model.

where O6 ∈ R6×6 is a zero matrix.

The deformation task consists of two objectives: sustaining the original shape and

satisfying dynamic constraint. Therefore, a loss function can be expressed as follows:

L =
1

K − 1

K−2∑
k=0

(α1[k + 1]L1[k + 1] + α2[k]L2[k]) , (2.17)

where α1 and α2 are weight coefficients, L1 is the degree of sustaining trajectory shapes,

L2 is the degree of satisfying dynamic constraint, and K is the number of samples in a

trajectory. L1 and L2 can be calculated by inputs and outputs of the seq2seq models.

When the loss function minimizes, it is expected that the models are able to convert

trajectories to satisfy dynamic constraint while sustaining the original shapes.

2.2.3 Proposed Learning Curriculum

It is difficult to prepare a large dataset of input trajectories and corresponding deformed

trajectories. Therefore, unsupervised learning is desired. However, training seq2seq mod-

els by unsupervised learning is a challenging task. In supervised learning, the decoder

receives the true output samples (i.e. teacher data) during training. For example, “Je,”

“suis,” and “étudiant” entered in the decoder in Fig. 1.2 are the teacher data. On the

other hand, in unsupervised learning, the decoder cannot receive the true output samples.

Instead, the decoder receives samples generated by the decoder itself. Receiving gener-

ated samples makes training unstable due to accumulating prediction errors. This issue is

remarkable especially in the beginning of training.

To deal with the issue, this chapter proposes a training method based on curriculum

learning [44]. Curriculum learning is a training strategy that starts from an easy task and

increases the difficulty. Based on the idea, a learning curriculum for learning trajectory

deformation under unsupervised learning is proposed here. The proposed learning curricu-

lum increases the amount of deformation gradually as the training progresses. To control

the amount of deformation, the degree of dynamic constraint satisfaction is introduced as

follows:

Fc[k] = max(0, | arg(g − u[k])− θ[k]| − arctanµ), (2.18)

which is obtained by (2.6). A trajectory satisfies the dynamic constraint if Fc[k] = 0 for
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1
1

Figure 2.3: Shape of Fc[k], defined in (2.18). The blue area is dynamic constraint. Fc[k]

increases as dynamic constraint does not satisfy.

all k. The shape of Fc[k] is illustrated in Fig. 2.3. It is regarded that the amount of

deformation is small as supk Fc[k] in a trajectory is small. Moreover, when a trajectory

satisfies the dynamic constraint, no deformation is necessary. This case is the easiest

deformation task.

Thus, the proposed learning curriculum for trajectory deformation progresses as fol-

lows. At first, a seq2seq model as a sequence autoencoder [45] is trained by using tra-

jectories with supk Fc[k] = 0. These trajectories satisfy the dynamic constraint (i.e., no

deformation is needed). In this time, training process of sequence autoencoder progresses

with two steps: teacher forcing and free running. During teacher forcing training, a de-

coder receives true data. On the other hand, during free running training, the decoder

receives samples generated by itself. Scheduled sampling [24] is applied during transition

from teacher forcing training to free running training. After a sequence autoencoder is

trained, the seq2seq models continue training while increasing Fc[k] gradually. The seq2seq

models have to deform given trajectories to satisfy dynamic constraint. In this step, it is

expected that the seq2seq models can learn deformation method if the speed of increasing

difficulty is small enough. In addition, since the degree of satisfying dynamic constraint

has a limit 0 ≤ Fc[k] < π− arctanµ, finally the seq2seq models have a chance of receiving

every possible trajectory.

2.3 Experiments

2.3.1 Implementation of Seq2seq Model

A seq2seq model was implemented according to Section 2.2.2. The implementation is

illustrated in Fig. 2.4. The model has two RNNs with two layers in each RNN, with 512

cells in a layer. The encoder and the decoder process C = 50 samples at a time.

In Fig. 2.4, the Linear layer calculates as follows:

h = Wx+ b, (2.19)
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Figure 2.4: Architecture of the proposed seq2seq model.

where x is an input vector, h is an output vector, W is an weight matrix, and b is an bias

vector. W and b are adaptive parameters of the layer. The LN-LSTM indicates LSTM

with layer normalization [46].

A loss function is defined as (2.17) with the following terms:

α1[k] =

1 k < K − 10,

10 k ≥ K − 10,
(2.20)

α2[k] = 10, (2.21)

L1[k] = − log Pr
(
Dx[k]

∣∣∣Dµx[k],DSx[k]D
⊤
)
, (2.22)

L2[k] = Fc[k], (2.23)

where

Pr (x |µ,S ) =
1

(2π)
dimx

2

√
detS

·

exp

[
−1

2
(x− µ)⊤S−1(x− µ)

]
, (2.24)

D ≡

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0.1 0 0 0

 . (2.25)

The matrix D extracts a position and an attitude from a state vector and normalizes

difference of the scale between meters and radians. K is the number of samples in a

trajectory. Adam [47] with default parameters was used for optimizing a neural network.

A seq2seq model is trained with 1638400 trajectories, which are generated randomly

in simulation. Each trajectory has 100–500 samples. Two kinds of trajectories were

used. One is spline curves generated in acceleration space. Hereafter, this chapter calls
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them acceleration type trajectories. Each acceleration type trajectory has a parameter

ϕmax, which limits the range of the trajectory as supk | arg(g − u[k]) − θ[k]| < ϕmax.

Acceleration type trajectories are generated by the following algorithm. First, spline

curves are generated by three control points a0, a1, and a2, which are sampled from the

following sets randomly:

a0 = (0, 0, 0), (2.26)

a1,a2 ∈
{
(ar, aϕ, aθ)

∣∣
0 < ar < 20, |aϕ| < ϕmax, |aθ| < −50} . (2.27)

Then, the following calculation is applied to the spline curves:

a′ϕ = ϕmax tanh aϕ, (2.28)

ay = |a′r| sin(a′ϕ − θ), (2.29)

az = |a′r| cos(a′ϕ − θ)− g. (2.30)

By setting ϕmax = arctanµ, acceleration type trajectories are limited as supk Fc[k] =

0. These trajectories are used in the proposed learning curriculum. The other one is

spline curves generated in position space. Hereafter, this chapter calls them position type

trajectories. Position type trajectories are generated by three control points, c0, c1, and

c2, which are sampled from the following sets randomly:

c0 = (0, 0, 0), (2.31)

c1 ∈
{
(y, z, θ)

∣∣|y| < 0.15, |z| < 0.15, |θ| < 1.57
}
, (2.32)

c2 ∈
{
(y, z, θ)

∣∣|y| < 0.3, |z| < 0.3, |θ| < 3.14
}
. (2.33)

After a position type trajectory is generated, it is transformed to S-curve acceleration/deceleration.

The learning curriculum consists of four steps: 1) training sequence autoencoder by

teacher forcing, 2) training sequence autoencoder by free running, 3) training a deforma-

tion method with acceleration type trajectories with increasing ϕmax, and 4) training a

deformation method with position type trajectories. These four steps progress gradually.

Training process is composed of units called epochs. One epoch consists of training 64

mini-batches and one mini-batch consists of parallel computation of 256 trajectories. This

chapter trained a seq2seq model with 100 epochs. In the first 10 epochs, the seq2seq

model is trained as sequence autoencoder with teacher forcing. The input trajectories are

acceleration type trajectories with ϕmax = arctanµ = π/4 so that Fc = 0. Since these

trajectories satisfy dynamic constraint, no deformation is needed. In the next 10 epochs,

teacher forcing and free running are mixed by using scheduled sampling. Probability to

use teacher forcing decreases from 1 to 0 linearly. Then, the sequence autoencoder is

trained with free running in the next 10 epochs. After that, ϕmax increases to π over

the next 10 epochs. The seq2seq model continues dealing with slightly larger deformation

than before. Then, the training continues with ϕmax = π in the next 10 epochs. After the

60th epoch, the type of input trajectories changes to position type trajectories gradually.
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Figure 2.5: Results of deformation. The dashed lines indicate original trajectories and the

solid lines indicate deformed trajectories by the seq2seq model.

One of two types of trajectories are selected randomly and the probability of acceleration

type trajectories decreases 1 to 0 over 20 epochs. Finally, the seq2seq model is trained

with position type trajectories in the last 10 epochs.

2.3.2 Simulation Results

A seq2seq model as described above was implemented. First, the ability to deform

trajectories of the seq2seq model was confirmed.

Fig. 2.5 shows the results of deformation. This figure shows nine trajectories from the

origin to points y = 0,±2.0, z = 0,±2.0, θ = 2.5. The trajectories are deformed while

sustaining the original direction of motion. In addition, according to Fig. 2.6, the deformed

trajectory satisfies the dynamic constraint. The other trajectories are also deformed to

satisfy dynamic constraint. Fig. 2.7 shows the amount of deformation. In the first half of

the trajectory, the deformation amount increased as the trajectory progress. However, the

deformation amount of angle decreased in the end of the trajectory. Also, the deformation

amount of position became gentle. It seems to be thanks to the weighting in (2.20).

Thus, even if a trajectory needs deformation, balances of the deformation amount in the

trajectory can be changed.

2.3.3 Experimental Result

An experiment of the trained seq2seq model with a manipulator was conducted. A

six degrees of freedom (DOF) manipulator “MOTOMAN-MH3F,” supplied by Yaskawa

Electric, was used. The manipulator has a gripping mechanism on the tip of the arm. A

spatula is fixed on the gripping mechanism.
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Figure 2.6: Result of arg(g−u[k])−θ[k] of the trajectory from the origin (y, z, θ) = (0, 0, 0)

to the point (y, z, θ) = (0.2, 0, 2.5) (red colored trajectory in Fig. 2.5). The blue area

satisfies the dynamic constraint. The deformed trajectory is within the area.
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Figure 2.7: Amount of deformation of the trajectory from the origin (y, z, θ) = (0, 0, 0) to

the point (y, z, θ) = (0.2, 0, 2.5) (red colored trajectory in Fig. 2.5).

A P-D controller with a disturbance observer (DOB) [48, 49] was implemented. The

proportional position gain is 350, the proportional attitude gain is 600, the derivative

position gain is 60, and the derivative attitude gain is 90. The cutoff frequency of the

DOB is set to 12.57 [rad/sec]. A trajectory of turning motion, which does not satisfy the

dynamic constraint (i.e., fails the task), was prepared. The trajectory is deformed by the

seq2seq model and provided to the control system as a reference trajectory. The original
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Figure 2.8: The original trajectory (blue dotted line), the deformed trajectory (blue dashed

line), and the control response trajectory (red solid line).
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Figure 2.9: Result of arg(g − u[k]) − θ[k] of the trajectory in Fig. 2.8. The blue area

satisfies the dynamic constraint. The deformed trajectory is within the area.

trajectory, the deformed trajectory, and the control response are shown in Fig. 2.8. The

original trajectory is deformed to satisfy dynamic constraint as shown in Fig. 2.9. The

control response has deviations. However, seeing snapshots of the experiment shown in

Fig. 2.10, the pancake has sustained contact with the spatula. It is observed that the

manipulator succeeded the task of turning over a pancake.
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Figure 2.10: Snapshots of the turning over motion.

2.4 Conclusion

It is difficult to obtain a repertory of trajectories that has enough diversity as well

as satisfying the dynamic constraints. For this issue, trajectory deformation method is

an effective approach. This chapter proposed a training method for seq2seq models to

deform given trajectories to satisfy dynamic constraint. In addition, a learning curricu-

lum which allows the seq2seq model to learn a method of trajectory deformation under

unsupervised learning was proposed. The curriculum is designed according to a degree to

which a trajectory satisfies dynamic constraint. Users can obtain trajectories for dynamic

manipulation by inputting outlines of motion to the trained seq2seq model.

This chapter examined a task of turning over pancakes with a spatula as an example.

The validity of the proposed method was confirmed by simulation and an experiment.



Chapter 3

Training of Seq2seq Models under

Discontinuous Dynamics1

In the previous chapter, a training method for seq2seq models to learn diverse trajecto-

ries has been proposed. However, the environmental model was a simple linear model. In

more complicated environmental models, training methods using backpropagation often

fail due to gradient-vanishing zones.

In this chapter, therefore, seq2seq learning with discontinuous environmental models

is explained. A training curriculum is proposed.

3.1 Introduction

Among the many tasks of nonprehensile manipulation, manipulating objects along

the desired trajectories is difficult. Such tasks have more strict requirements in both

kinematics and dynamics than when only the goals are specified. To handle such complex

issues, a seq2seq model-based method was proposed in the previous chapter. This method,

however, considered the dynamic constraint only as a penalty in the objective function.

The seq2seq models only handled the case where the object is fixed to the robot. Therefore,

the seq2seq models should be extended to cases where complex dynamics exist, such as

the contact models between the robots and the objects.

This chapter discusses the sliding manipulation [50–52], which is a typical example

including the contact models between objects and tools such as frying pans fixed onto

the robots. To handle this task, the seq2seq models should consider two different factors:

static friction and dynamic friction. Particularly, static friction operates as if the object

is fixed onto the frying pan. Hence, training losses vanish during backpropagation [23].

This chapter aims to handle the issue by applying curriculum learning [44]. This chap-

ter proposes a training curriculum that does not use the contact model at the beginning

1The contents in this chapter were published in: K. Kutsuzawa, S. Sakaino, and T. Tsuji, “Sequence-

to-sequence model for trajectory planning of nonprehensile manipulation including contact model,” IEEE

Robot. Autom. Lett., vol. 3, no. 4, pp. 3606–3613, 2018.

23
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of the training. The contributions of this chapter are as follows:

1. This chapter proposes seq2seq models for motion planning considering nonlinear

contact models. This chapter uses the sliding manipulation as an example. The

proposed seq2seq models are trained to manipulate objects on frying pans along the

given trajectories by shaking.

2. This chapter proposes a training curriculum to handle nonlinear contact models. The

proposed curriculum starts training without nonlinear contact models. It brings the

seq2seq models outside the gradient-vanishing zone that is caused by static friction.

3. This chapter shows that the seq2seq models trained by the proposed curriculum can

handle fluctuations of friction parameters even without special training.

The remainder of this chapter consists of the following sections. Section 3.2 explains the

proposed neural model and the physics model. Section 3.3 explains the proposed training

method based on curriculum learning. Section 3.4 describes the concrete implementation of

the proposed method. Section 3.5 shows the validity of the proposed method by simulation.

Finally, Section 3.6 presents the conclusion and future works.

3.2 Sequence-to-Sequence Model for Sliding Manipulation

3.2.1 Physics Model

This study uses two-dimensional physics and is a typical example that includes nonlin-

ear contact models. Fig. 3.1 shows an overview of the physics model. An object is placed

on a frying pan. Gravity is exerted to the normal direction to the frying pan. The task is

to manipulate the object along a desired trajectory by moving the frying pan.

Let pp[k] and po[k] denote the position of the frying pan and the object, at the k-th

sample, respectively. In addition, let

pd[k] ≡ po[k]− pp[k] (3.1)

denote the relative position of the object with respect to the frying pan. Let xp[k] denote

a state vector of the frying pan that comprises the position pp[k] and the velocity ṗp[k]

at the k-th sample, as follows:

xp[k] ≡
[
p⊤
p [k], ṗ

⊤
p [k]

]⊤
=

[
xp[k], yp[k], vxp [k], vyp [k]

]⊤
. (3.2)

Similarly, xo[k] and xd[k] are also defined.

The state equations of the frying pan and the object are expressed as follows:

xp[k + 1] = Axp[k] +Bup[k], (3.3)

xd[k + 1] = Axd[k] +Bud[k], (3.4)
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Figure 3.1: Overview of the physics model.

where,

up[k] =
[
axp [k], ayp [k]

]⊤
, (3.5)

ud[k] = [axd
[k], ayd [k]]

⊤ , (3.6)

A =

[
I2 ∆tI2

O2 I2

]
, (3.7)

B =

[
∆t2

2 I2

∆tI2

]
. (3.8)

up[k] and ud[k] are the acceleration inputs at the k-th sample and ∆t is the sampling

interval. I2 ∈ R2×2 is an identity matrix and O2 ∈ R2×2 is a zero matrix. These state

equations are used to obtain the next state vectors, xp[k+1] and xd[k+1], from the given

acceleration inputs, up[k] and ud[k], respectively. The acceleration inputs u correspond

to the force applied to the rigid objects.

The contact model between the frying pan and the object is implemented as the fol-

lowing Coulomb friction model according to [52]:

ud[k] =
−up[k]− µ′g ṗd[k]

∥ṗd[k]∥ if ṗd[k] ̸= 0

−up[k] + µg
up[k]

∥up[k]∥ if ṗd[k] = 0 and ∥up[k]∥ ≥ µg

0 if ṗd = 0 and ∥up[k]∥ < µg

. (3.9)

Here, g = 9.8 m/s2 is the gravitational acceleration. µ and µ′ indicate the static friction

coefficient and the dynamic friction coefficient, respectively. The equation above related

to acceleration was derived by dividing the equation of force by the mass. Because ud is

the acceleration of the object with respect to the frying pan, ud is affected by the friction

force and the inertial force of up. The two forces above are the entire force applied to the

object.

3.2.2 Seq2seq Model Architecture

The seq2seq model is used as the motion-to-motion conversion, as proposed in Chap-

ter 2. Our model has the following characteristics compared to the basic seq2seq model.
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• The encoder receives the command trajectories of the object. Subsequently, the

decoder generates the acceleration reference to the robot to manipulate the object

along the command trajectories.

• Our model processes multiple state vectors at a time to reduce the number of RNN

iterations without downsampling [19]. This method can reduce the memory con-

sumption of computers and enable stable training.

Fig. 3.2 illustrates the primary architecture of the proposed seq2seq model.

In the encoding phase, the encoder of a seq2seq model receives the time-series of state

vectors of the object’s command trajectories. In each iteration, the encoder receives part

of the time-series as follows:

xd[Cκ : C(κ+ 1)− 1]

= (xd[Cκ], . . . ,xd[C(κ+ 1)− 1]) . (3.10)

Here, κ is the index of iterations of the encoding. C is the number of the samples the

seq2seq models process at a time [19]. That is, the encoder receives C samples in each

iteration. After the encoder receives the whole command trajectories, it copies its inter-

nal representation to the decoder’s internal memory. Subsequently, the decoding phase

commences.

In the decoding phase, the decoder receives/generates C samples at a time. An

overview of the decoding process in an iteration is illustrated in Fig. 3.3. In each iteration,

the decoder receives part of the time-series of state vectors as follows:

x̂p[Ck + 1 : C(k + 1)], x̂d[Ck + 1 : C(k + 1)]. (3.11)

Here, k is the index of iterations of the decoding. Subsequently, the decoder generates the

acceleration references of the frying pan,

ûp[C(k + 1) : C(k + 2)− 1], (3.12)

Ŝup [c(k + 1) : c(k + 2)− 1]. (3.13)

Here, Ŝup [k] ∈ R2×2 is a covariance matrix of the acceleration up. They are used only for

training [43]. By inputting the acceleration to the robot, the next C samples of (3.11) is

obtained as follows:

x̂p[C(k + 1) + 1 : C(k + 2)], (3.14)

x̂d[C(k + 1) + 1 : C(k + 2)], (3.15)

Ŝxp [C(k + 1) + 1 : C(k + 2)], (3.16)

Ŝxd
[C(k + 1) + 1 : C(k + 2)]. (3.17)

Here, Ŝxp and Ŝxd
are calculated based on the state equations (3.3) and (3.4) as follows:

Ŝxp [k + 1] = AŜxp [k]A
⊤ +BŜup [k]B

⊤, (3.18)

Ŝxd
[k + 1] = AŜxd

[k]A⊤ +BŜud
[k]B⊤. (3.19)

x̂p and x̂d are fed back to the decoder at the next iteration.
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3.3 Training Method

3.3.1 Objective Function

The seq2seq model is expected to manipulate the object along the given command

trajectories. Therefore, the objective of the training is to minimize the errors between the

command trajectories and the reproduced trajectories of the object by the seq2seq models.

The objective of the training is to bring the generated trajectories of the relative

positions of the object p̂d[0 : K − 1] closer to the command trajectories pd[0 : K − 1].

Such input–output relationship can be obtained by minimizing the loss function L defined

as follows:

L =
1

K − 1

K−1∑
k=1

(α1L1[k] + α2L2[k] + α3L3[k]), (3.20)

where

L1[k] = log

(
2π

√
detŜpd

[k]

)
+ (pd[k]− p̂d[k])

⊤Ŝ−1
pd

[k](pd[k]− p̂d[k]), (3.21)

L2[k] =max(0, ∥p̂p[k]∥ − plim), (3.22)

L3[k] =∥ûp[k]− ûp[k − 1]∥. (3.23)

Here, α1, α2, and α3 are the weight coefficients at the k-th sample. L1[k] is a negative

log-likelihood of a Gaussian distribution for a given p̂d[k]. L2[k] is a penalty for the range

of motion of the frying pan. It increases when pp is larger than the limit plim. L3[k] is a

penalty for the change in up[k], which corresponds to the jerk. In addition, Ŝpd
[k] ∈ R2×2

refers to the covariance matrix of the position p̂d[k], i.e., the upper left 2×2 part of Ŝxd
[k].

plim refers to the limit of the movable range of the frying pan. Its value is determined by

considering the arm lengths of the manipulators. All variables in L can be calculated using

only the inputs and outputs of the seq2seq model. Other external teaching signals are not

necessary. Therefore, it is not necessary to prepare the trajectories of the frying pan xp,

which realizes the command trajectories xd. Hence, arbitrary command trajectories such

as spline curves generated automatically can be used regardless of the contact model.

3.3.2 Training Strategy Based on Curriculum Learning

During the training of the seq2seq models with (3.20) by backpropagation, the gradient

of the training loss L back-propagates through the contact model in (3.9). This gradient,

however, loses at the contact model when ṗd = 0. Subsequently, the connection weights in

the seq2seq models will no longer be updated by the gradient descent methods. Therefore,

the training may fail because of the contact model.

To handle such problem, training should progress outside the gradient-vanishing zone.

Curriculum learning [44] is applied herein. In the beginning of the training, a simple task

is employed: reproducing the positions of the frying pan. Trajectories, xp[0 : K − 1] and
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Figure 3.2: Architecture of the proposed seq2seq model.

xd[0 : K − 1], are generated with a contact model as described in Section 3.2.1. The

following loss function, L′, is used:

L′ =
1

K − 1

K−1∑
k=1

[
log

(
2π

√
detŜpp [k]

)
+ (pp[k]− p̂p[k])

⊤Ŝ−1
pp

[k](pp[k]− p̂p[k])

]
. (3.24)

Here, Ŝpp [k] ∈ R2×2 refers to the covariance matrix of the position p̂p[k], i.e., the upper

left 2 × 2 part of Ŝxp [k]. This loss function resembles L1 in (3.21) and refers to the

positions of the frying pan instead of the object. During the training with this task, the

training losses L′ do not back-propagate through the contact model but to the seq2seq

models directly.

After bringing the seq2seq models outside the gradient-vanishing zone, the contact

model can be used for training. By switching to such end-to-end training, it is not required

to specify the motion of the frying pan. Therefore, the additional penalties can be used

in the loss functions as L2[k] and L3[k] in (3.20).

3.4 Implementation

3.4.1 Implementation of Seq2seq Model

Here, an implementation of the seq2seq model is described. Fig. 3.4 shows its ar-

chitecture. The encoder comprises two recurrent layers with 1024 units. The decoder

comprises two recurrent layers with 1024 units and a feed-forward layer (indicated as

Linear in Fig. 3.4) with 500 units. Each unit in the recurrent layers is implemented as

LSTMs with tanh activation functions. The seq2seq model receives/generates C = 100
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Decoding Physics model

Figure 3.3: Relationship between time series of ûp, x̂p, ûd, and x̂d in the decoding phase.

Each circle indicates a variable at a sample. Here illustrates the case of C = 4 as an

example.

samples at a time to reduce the number of RNN iterations [19]. This method can reduce

the computational costs for backpropagation through time.

3.4.2 Implementation of Training

The training data are generated by simulation. Two types of command trajectories are

used: one is generated by the physics model and the other one is generated from B-spline

curves. The former one is generated using the physics model explained in Section 3.2.1.

By generating the shaking motion of the frying pan up[0 : K − 2] and inputting them

to the contact model, the trajectories of the frying pan xp[0 : K − 1] and the object

xd[0 : K−1] are obtained. xp[0 : K−1] is used when the seq2seq models are trained with

L′. The latter one is generated from the B-spline curves of the acceleration of the object

ud[0 : K − 2] regardless the contact models. By inputting these acceleration curves to the

state equations, the trajectories of the object xd[0 : K − 1] are obtained. In both types

of command trajectories, the length are set to between 500 ≤ K ≤ 1500. The sampling

interval is set to ∆t = 1 ms. In addition, the friction parameters are set to µ′ = 0.5 and

µ = 1.0.

The training comprises 50 epochs, where each epoch consists of the training of 8192

trajectories. A training curriculum progresses as described in Table 3.1. In the loss

function L in (3.20), α1 = 1, α2 = 10, α3 = 1, and plim = 0.2 m were used, respectively.

The ratio among α1, α2, and α3 was determined by the approximate amounts of gradients
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of each term as follows:

∂L1[k]

∂up[k − 1]
≈ 2(pd[k]− p̂d[k])

⊤Ŝ−1
pd

[k]∆t2

≈ 10−3 · (10−4)−1 · (10−3)2 = 10−5, (3.25)

∂L2[k]

∂up[k − 1]
≈ ∆t2 ≈ 10−6, (3.26)

∂L3[k]

∂up[k − 1]
≈ 1, (3.27)

where it is assumed that the positional relative error follows a Gaussian distribution with

µ = 1 mm and σ = 1 cm. The weights were selected such that the gradients of each term

are equal and subsequently adjusted experimentally. Based on the approximate gradients,

α1 = 1, α2 = 10, and α3 = 10−5 are preferred. However, α3 was set to a large value as

described above to make the jerk small such that the manipulators can follow the deformed

trajectories. Adam [47] with default settings was used for optimizing the seq2seq models.

Table 3.1: Training Curriculum

Stage epoch e Loss function Command trajectories.

1 1–10 L′ Generated by the two-dimensional

physics model.

2 11–20 L′ with probability e−10
10 and

L with probability 1− e−10
10 .

Generated by the two-dimensional

physics model.

3 21–30 L Generated by the two-dimensional

physics model.

4 31–40 L Generated by the two-dimensional

physics model with probability e−30
10

and by B-spline curves with proba-

bility 1− e−30
10 .

5 41–50 L Generated by B-spline curves.

3.5 Simulation

3.5.1 Implementation of Simulation

Two simulation environments were used: the two-dimensional physics model as de-

scribed in Section 3.2.1 and a manipulator in pybullet.

Fig. 3.5 shows the setup of the simulation in pybullet. A six DOF manipulator was

implemented. A frying pan is fixed at the tip of the manipulator. In addition, a cylinder-

shaped object stands on the frying pan with µ = µ′ = 0.5. The frying pan is controlled by

a PD controller as illustrated in Fig. 3.6. This controller controls the position and attitude

of the frying pan: x, y, z, roll, pitch, and yaw. A DOB is applied to the manipulator. θres

are the joint angles and τ ref are the joint torque references. τ̂ dis indicates the estimated
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Figure 3.4: Implementation of the proposed seq2seq model.

Object

Frying pan

Figure 3.5: Overview of the pybullet simulation.

disturbance torque by the DOB. The commands to the PD controller at the k-th sample,

qcmd
p [k], is defined as follows:

qcmd
p [k] =

[
x̂p[k] + 0.65, ŷp[k], 0.3, 0.0,

π

2
, 0.0

]⊤
(3.28)

where x̂p[k] and ŷp[k] are calculated by (3.3) with an output of the seq2seq model, ûp[k−1].
In addition,Kp = diag[800, 800, 800, 1000, 1000, 1000] andKd = diag[100, 100, 100, 150, 150, 150]

are control gains. J is a Jacobian matrix and M is an inertial matrix of the manipulator.

3.5.2 Results

Three seq2seq models were trained as follows:
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Manipulator

DOB

Forward
kinematics

Figure 3.6: Control system for the manipulator in pybullet.

1. A seq2seq model trained by the proposed curriculum in Table 3.1 (model A).

2. A seq2seq model trained without curriculum learning: with only stage 3 in Table 3.1

for 50 epochs (model B).

3. A seq2seq model trained with only L′: with only stage 1 in Table 3.1 for 50 epochs

(model C).

Model A is which the proposed curriculum was applied to. The other two models, model B

and model C, were prepared for comparison. The number of training trajectories is the

same for each model.

Initially, these models were evaluated in an ideal situation. The physics model as

explained in Section 3.2.1 was used. It is the same physics model used in the training.

Fig. 3.7 shows the trajectories of the objects and frying pans. All trajectories start from

the origin, that is, p̂p[0] = p̂d[0] = [0, 0]⊤. The length of the command trajectory was set

to K = 1200. It took 1.93 s to generate each trajectory with Intel Core i7-6700, that is,

the models generated 622 samples/s. Model B did not move both the frying pan and the

object, whereas model C could manipulate the object. The primary difference between

the two models is whether the training loss back-propagates through the contact model.

Therefore, the result implies that the contact model interfered with the training. Model C,

however, moved the frying pan over one meter. Such large motions cannot be reproduced

by most manipulators. Meanwhile, model A moved the object within a small range of

motion of the frying pan, enabled by the proposed training method. It is considered that

the positional error in model A occurred to satisfy such constraints. In addition, since the

switching between the static friction and the dynamic friction is a complicated problem

to learn by end-to-end learning, the trained models could not reproduce the detailed

movements.

Next, the performance with the pybullet simulation was evaluated. In this simulation,

various disturbances exist that did not appear during training such as control deviations,

vibrations in the z-axis, and rotational motions of both the object and the frying pan.

Fig. 3.8 shows the reproduced trajectories by the three trained seq2seq models. In addition,

Fig. 3.9 shows the snapshots of the manipulator for each seq2seq model. The length of the



3.5. SIMULATION 33

0.15 0.10 0.05 0.00
x [m]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

y
[m

]

command

model A

model B

model C

(a) Object positions

0.5 0.0 0.5 1.0 1.5
x [m]

1.5

1.0

0.5

0.0

y
[m

]

model A

model B

model C

(b) Frying pan positions

Figure 3.7: Reproduced trajectories of the object and the frying pan in an ideal situation.

command trajectory is set to K = 1200. Initially, from the result of model B, it is observed

that both the object and the frying pan hardly moved. Thus, model B failed to learn the

task. This is because the training losses vanished owing to the static friction as explained

in Section 3.3. Meanwhile, model C succeeded in starting to slide the object owing to the

training without the contact model. However, its trajectory did not follow the command

trajectory. In addition, the manipulator extended the arm to the limit to reach a singular

configuration and failed to perform the task. Because it trained without penalties such

as (3.22), model C failed to satisfy the maximum range of motion. In contrast to these

models, model A succeeded in sliding along the command trajectory. By switching to

end-to-end learning including the penalty in (3.22), model A generated shaking motion

of the frying pan within a small range. Thus, from these results, it is concluded that

the proposed curriculum allowed the seq2seq models to learn nonprehensile manipulation

tasks including the contact models.

Next, the generalization ability of the trained seq2seq models was verified by using

the two-dimensional physics model with various friction parameters. Fig. 3.10 shows the
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Figure 3.8: Reproduced trajectories of the frying pan and the object in pybullet. In

model C (blue curves), the manipulator extended the arm to the limit.

reproduction errors for various friction parameters. Here, the reproduction errors are cal-

culated by the root-mean-squared errors between pd[0 : K − 1] and p̂d[0 : K − 1]. 10

trajectories for each parameter were calculated. It is noteworthy that the friction param-

eters were not provided to the seq2seq models. Model B resulted in large errors because

the model could not move the object. Model C resulted in smaller errors than model B

although the frying pan moved largely. In addition, the errors changed when the friction

parameters changed. Meanwhile, model A resulted in errors as small as those of model C.

Moreover, the errors hardly changed even if the friction parameters changed. From these

results, it is concluded that the seq2seq model can handle parameter fluctuations that did

not exist during training.
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(a) Model A. The robot could manipulate the object.

(b) Model B. The robot did not move the frying pan.

(c) Model C. The robot dropped the object.

Figure 3.9: Snapshots for each trained seq2seq model.
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Figure 3.10: Reproduction errors of the object by the trained seq2seq models.

3.6 Conclusion

This chapter realized sequence-to-sequence (seq2seq) models for nonprehensile ma-

nipulation including nonlinear contact models to manipulate objects along the provided

command trajectories. To handle the nonlinear contact models between the robots and

objects, a training curriculum that commences training without the contact models are

proposed. The proposed curriculum allows the seq2seq models to learn nonprehensile ma-
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nipulation even if the contact models interfered with the backpropagation. The sliding

manipulation was employed as an example. The proposed method was validated by using

a manipulator in a dynamics simulator and two-dimensional physics models. In addition,

it was observed that the trained seq2seq model could handle parameter fluctuations that

were not provided during training. Such generalization ability suggests an advantage of

the seq2seq models for complex tasks such as nonprehensile manipulation.

The future work is to investigate the reason that the proposed method makes neural

networks robust against changes in physics parameters.



Chapter 4

Association of Latent

Representations with External

Orders by Mathematical

Expressions1

In Chapters 2 and 3, training methods for seq2seq models to learn diverse trajectories

were proposed. The decoders of the trained seq2seq models can be regarded as motion

generators of diverse trajectories. Although the seq2seq models themselves can be used as

motion generators that can receive trajectories as external orders, there is no guarantee

that the deformation results satisfy the actual external orders. Hereinafter, the use of

latent representations for diverse external orders are considered.

In this chapter, external orders that are expressed mathematically are taken. A

backpropagation-based optimization method is proposed.

4.1 Introduction

As explained the previous chapters, it is generally difficult to generate motions that

satisfy the dynamic constraint as well as accomplish the operational goals. Kinodynamic

motion planning [53], which considers the dynamics and kinematics simultaneously, is a

popular approach. Conventional studies have used various trajectory planning methods

such as Rapidly-exploring Random Tree (RRT) [4, 37], Model Predictive Control (MPC)

[1], and dynamic programming [3]. Such exploration methods, however, increase the

calculation costs as the difficulty of the tasks increase. In addition, these methods tend to

be difficult to apply to complex tasks such as contact motions.

To avoid the increase in complexity of trajectory optimization, approaches based on

1The contents in this chapter were published in: K. Kutsuzawa, S. Sakaino, and T. Tsuji, “Trajectory

adjustment for nonprehensile manipulation using latent space of trained sequence-to-sequence model,”

Adv. Robot., vol. 33, no. 21, pp. 1144–1154, oct 2019.

37
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machine learning, especially neural networks, have been researched recently. Levine et

al. [54] realized various assembly tasks including tight-fitting contact by using neural

networks. Yuan et al. [55] realized a planar pushing task with obstacle avoidance by

using reinforcement learning. Mordatch et al. [56] realized neural network-based feedback

controllers that generate near-optimal walking motions. In addition, neural networks

can also be used to reduce computational costs. Although neural networks require high

computational costs during training, the trained models are computationally less expensive

than most trajectory optimization methods. Zhang et al. [57] showed that neural networks

trained by MPC can reduce the computation cost. Similarly, Furuta et al. [58] realized

neural networks for dynamic manipulation by copying MPC, and confirmed that neural

networks can generate appropriate trajectories faster than the original MPC.

Trajectory generation methods using machine learning, however, sometimes do not

satisfy the task objectives. Since learning-based methods do not guarantee that the objec-

tive function will be satisfied, they sometimes generate trajectories beyond the dynamic

constraint. Moreover, the objective changes when new obstacles appear or when the goal

of the task changes. These issues also apply to the seq2seq models in this study. The

seq2seq models themselves can be used as motion generators that can receive trajectories

as external orders; however, there is no guarantee that the deformation results satisfy the

actual external orders. In such cases, it is necessary to adjust the generated trajectories

for the new objectives.

For adjusting the generated trajectories, it will be inefficient to optimize the trajecto-

ries directly, since the kinodynamic motion planning problem is difficult to solve. Although

there have been several researches on trajectory adjustment [38,39,41,42], all of them used

domain-specific algorithms. In this chapter, on the other hand, intermediate representa-

tions of trained neural networks, which are also called latent representations are used.

Since the latent representations express task-specific features in a low-dimensional space,

they are expected to be optimized by simple methods. The effectiveness of the use of

latent representations is demonstrated in the field of computer vision. The use of gradient

descent methods to generate images resulted in unrealistic images [59], whereas the use

of gradient descent methods to latent representations of image classification models could

obtain realistic images [60]. Recently, some studies used latent representations of motions

in the field of reinforcement learning [11, 13, 61]. Our proposed method, on the other

hand, can optimize the latent representations directly by using gradient descent methods

for various objective functions. Moreover, the proposed method is capable of extending

the performance and application of the trajectory deformation models, which enables it to

perform dynamic manipulation even by itself. Note that some studies in robotics focused

on the optimization of internal representations by backpropagation [62,63].

This chapter proposes a method of adjusting the trajectories generated by seq2seq

models by using the latent representations of the trajectories. By optimizing their latent

representations, the solution can be obtained in fewer iterations than that required when

optimizing the trajectories directly, as shown in the simulation results. This method



4.2. METHOD 39

can be used for various objective functions; it is applicable when the objective functions

are differentiable. In addition, the latent representations can be optimized by using the

simplest gradient descent method.

The rest of this chapter is organized into the following sections. Section 4.2 explains

the proposed method. Section 4.3 describes the simulation that is conducted to evaluate

the proposed method. Section 4.4 describes an experiment based on the proposed method.

Finally, Section 4.5 concludes this chapter.

4.2 Method

4.2.1 Issue to be Addressed

In the trajectory deformation using seq2seq models, the training objective is to mini-

mize the amount of deformation and retain the dynamic constraint. However, there often

exist different objectives when using trained models. For example, users often desire to

reach certain end positions. In such cases, the objective is to minimize the error at the

end of the trajectories, while the remaining trajectories can be ignored. For example,

the velocity of the deformed trajectories may be larger than what the robots can follow

accurately. In such cases, the velocity should be decreased slightly while satisfying the

dynamic constraint.

Therefore, users often have to adjust the deformed trajectories for the given objective

according to the situation. In this section, a method of adjusting the deformed trajectories

by utilizing the architecture of seq2seq models is proposed.

4.2.2 Optimization of the Latent Representation

The most straight-forward approach is to optimize the trajectories directly with the

given objective functions. There have been many studies on trajectory adjustment [38,39,

41,42]; however, this approach may be difficult because of the large number of dimensions.

Instead of utilizing this approach, latent representations can be used for optimiza-

tion. The latent representations represent the features of the trained time-series in a

low-dimensional space. In this task, the latent representations are expected to represent

the trajectories that satisfy the dynamic constraint. Therefore, it is expected that the

use of latent representations instead of the trajectories are beneficial to such adjustment

tasks.

To optimize the latent representations, it is required to quantify the relationship be-

tween the latent representations and the deformed trajectories. This relationship is non-

obvious; however, their small displacements can be associated using Jacobian matrices.

Since backpropagation can be applied to the trained decoder, the derivative function ∂Uout
∂z

can be obtained. Therefore, the gradient of the objective function J with respect to the

latent representations z can be obtained as follows:

∂

∂z
J(Xout, Uout) =

∂Uout

∂z

∂

∂Uout
J(Xout, Uout). (4.1)
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Finally, the objective function can be optimized with gradient-based optimization methods

such as gradient descent as follows:

z ← z − η
∂

∂z
J(Xout, Uout), (4.2)

where η is the learning coefficient.

The objective functions J(Xout, Uout) usually differ from the loss function used in

the training of seq2seq models. Although the changes in the objective functions between

training and testing generally cause poor performance, the proposed method is expected to

work due to the difference in optimization targets; the training of seq2seq models optimizes

their connection weights, while the proposed method optimizes the latent representations.

Besides, the proposed method requires that the latent space represents various motions

satisfying the dynamic constraint, which can be accomplished by training with various

input trajectories. Thus, the proposed method works in various objective functions as

long as the dynamic constraint is the same and the seq2seq models are trained with

various trajectories.

The proposed method has another advantage; thanks to the optimization of the latent

space, it is considered to be robust against the hyperparameters of the seq2seq models.

Even if the seq2seq models cannot achieve the minimum training loss due to the hyper-

parameters, such small performance changes can be relieved by iterating the optimization

steps in (4.2).

4.2.3 Optimization Procedure

The proposed method progresses as follows:

step 1 Prepare an original trajectory Xin.

step 2 Input Xin to the encoder and obtain z.

step 3 Generate trajectories Xout and Uout from z.

step 4 Calculate the objective function J(Xout, Uout).

step 5 Calculate the gradient ∂
∂zJ(Xout, Uout) by backpropagation as in (4.1).

step 6 Update z by using (4.2).

step 7 Repeat 3–6 until convergence.

Finally, an optimized z and its corresponding trajectory Xout can be obtained. An

overview of this procedure is illustrated in Fig. 4.1.

4.3 Simulation

In this chapter, the same task as Chapter 2, turning over pancakes with a spatula in

planar physics, is employed.
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Figure 4.1: Overview of the proposed method. Top: the forward calculation graph. Bot-

tom: the backward calculation graph.

4.3.1 Implementation of Seq2seq Model

The training procedure and the model architecture followed those in Chapter 2; how-

ever two layers of LSTMs with 64 units were used as the encoder and the decoder. Thus,

the latent representation z has 64 × 2 = 128 dimensions. It is more than 10 times

smaller than that of the trajectories; as explained in Section 4.3.2, each trajectory has

3× 500 = 1500 dimensions.

1638400 input trajectories are used to train the seq2seq model. These trajectories are

generated in the simulation.

4.3.2 Adjusting Trajectories to Reach the Given End Positions

Trajectories for reaching the given end positions were generated by using the trained

seq2seq model.

Objective function

To evaluate the objective, the following objective function was designed:

J1(Xout, Uout) ≡ ∥D(p[K − 1]− pend)∥2 + αfdyn(Xout, Uout), (4.3)

where, pend denotes the desired end position, and α is a constant value; here, it was set

to 1. D = diag[1, 1, 0.1] is a scaling parameter between the position [m] and the attitude

[rad]. fdyn denotes the penalty term for the dynamic constraint, which is defined as follows:

fdyn(Xout, Uout) ≡
K−1∑
k=0

Fc[k]. (4.4)
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Here, Fc[k] is detailed in (2.18). This penalty increases when (2.6) is not satisfied. The

length of a sequence K is set to K = 500.

The above objective function includes fdyn, the same penalty term as used during

training. Even if the seq2seq models are trained correctly, such a penalty is still required

to satisfy the dynamic constraint. The reason is that not all points in the latent space

are associated with valid trajectories. Latent representations work correctly only if the

encoder generated them during training; otherwise, there is no guarantee that these are

associated with valid trajectories. Even though such valid latent representations have a

dense and continuous distribution in a certain region, invalid latent representations that

were not generated by the encoder during optimization can be found.

Various patterns of end positions pend = [yend, zend, θend] were sampled from the fol-

lowing range:

−0.1 m ≤ yend ≤ 0.1 m, (4.5)

−0.1 m ≤ zend ≤ 0.1 m, (4.6)

−π rad ≤ θend ≤ π rad. (4.7)

Three points at equal intervals from each axis were sampled. In total, 27 points of end

positions were used.

Original trajectories

As the inputs to the seq2seq model, trajectories satisfying the following objective

function were prepared:

Ĵ1(Xout, Uout) ≡ ∥D(p[K − 1]− pend)∥2 (4.8)

This is the first term of (4.3). Since this objective function considers only the kinematics,

it is easy to design. S-curve acceleration/deceleration trajectories from the initial position

to the end position were used.

Results

The objective function J1 was minimized by using the trained seq2seq model. The

following three methods were compared:

case 1 Updating the latent representation z starting with the encoder result (i.e., the

proposed method).

case 2 Updating the latent representation z starting with a random value.

case 3 Updating the output trajectory of the decoder, Uout, starting with the decoder

result.

The comparison between case 1 and case 3 shows that optimization of the latent repre-

sentations is better than the optimization of the trajectories. Case 2 can verify whether
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the use of decoder alone can achieve the objective, since it does not use the encoder. In

case 2, the initial value of the latent representation z0 was sampled from the Gaussian

distribution with mean 0 and variance I.

In general, the distribution of the latent representations is not a standard Gaussian

distribution. The actual distribution may be complex and is hard to identify. Therefore,

in case 2, the standard Gaussian distribution was used. Even though seq2seq models

can be extended to specify the distribution of the latent representations [64], such models

often fail to learn various trajectories.

The progress of the objective function values is shown in Fig. 4.2. Here, the learning

coefficients were set to η = 200, 200, and 1000 for case 1, case 2, and case 3, respectively.

In case 1, the objective function value decreased quickly. The values decreased below 10−3

after the 5th update on average. In case 2 also, the values decreased. However, the initial

loss was larger than that in the other cases. In addition, the convergence speed was slower

than that of case 1. The reason can be considered that the initial latent representations

were far from the optimal one. In case 3, the objective function value hardly decreased.

Here, 10 updates took 12.1 s (i.e., 1.21 s/update) in case 1 and case 2, and 10.5 s (i.e.,

1.05 s/update) in case 3, with Intel Core i7-8700. Although the back-propagation path

includes the decoder in case 1 and case 2, the calculation time was only 15 % longer.

Although the calculation times were longer than those of the trained neural networks, it

is notable that this method did not require additional training for the novel objective.

Therefore, considering the cost of training new models due to changes in the objective,

the proposed method is computationally efficient.

The trajectories obtained after 100 updates are shown in Figs. 4.3, 4.4, and 4.5. All

the trajectories reached the given end position with little errors. In addition, the dynamic

constraint was maintained in all cases. The root mean square errors (RMSEs) of the end

positions are shown in Fig. 4.6. The RMSEs in case 1 were 0.27 mm and 0.30 deg on

average. These results were comparable to the neural networks in [58], which were trained

with thousands of training samples and 100000 iterations. On the other hand, case 2

and case 3 resulted in larger errors, especially in the attitude. Since the turning-over

task, which is performed by tilting the spatula largely, is difficult, it is considered that the

optimized trajectories result in large errors in the attitude unless using a low-dimensional

latent space and starting from good initial values.

4.4 Experiments

4.4.1 Setup of the Robot

A six DOF “MOTOMAN-MH3F,” supplied by Yaskawa Electric, was used. A spatula

was equipped at the tip of the manipulator. Instead of a pancake, a rubber plate was

placed on the spatula.

A P-D controller with DOB was implemented to control the tip of the spatula position

and attitude. The control system is illustrated in Fig. 4.7. Here, q indicates the six-
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Figure 4.2: Progress of the objective functions. The lines indicate the mean losses of 27

trials with various end positions. The filled areas indicate their 95 % confident levels.

dimensional position/attitude of the spatula in the Cartesian coordinate system. The

control command, qcmd, was calculated by the position generated by the seq2seq models,

p[k] = [y[k], z[k], θ[k]]⊤, as follows:

qcmd =
[
0.5, y[k], z[k] + 0.35, θ[k],

π

2
, 0
]⊤

. (4.9)

Here, the control system did not receive the generated acceleration u[k] directly to avoid

drift errors, which cause large errors in the final positions. Even though the control com-

mands were the position and attitude, the DOB forced the robot to follow the acceleration

reference, q̈ref , in a frequency range lower than the cutoff frequency gDOB. θ and τ indicate

the joint angles and joint torques, respectively, •res and •ref indicate response values and

reference values, respectively, and τ̂ dis indicates the disturbance torque estimated by the

DOB. Kp = diag[Kpp,Kpp,Kpp,Kpr,Kpr,Kpr], Kd = diag[Kdp,Kdp,Kdp,Kdr,Kdr,Kdr],

J , and M indicate the proportional gain, derivative gain, Jacobian matrix, and mass

matrix, respectively. The proportional position gain Kpp, proportional attitude gain Kpr,

derivative position gain Kdp, and derivative attitude gain Kdr were 450, 700, 60, and 90,

respectively. The cutoff frequency of the disturbance observer gDOB was set to 2.0 Hz.

The control period was 1 ms.

4.4.2 Trajectory

While executing the turning over motions, the manipulator may fail in the task if the

velocity is too large. Therefore, the trajectories should be adjusted to reduce the velocity.
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To obtain such low-velocity trajectories, the following objective function is used:

J2(Xout, Uout) ≡max
(√

y2[K − 1] + z2[K − 1]− plim, 0
)

+ 0.1max (|θ[K − 1]− θend| − θlim, 0)

+ αfdyn(Xout, Uout) +
β

K

K−1∑
k=0

∥max(0,D(abs(ṗ[k])− vlim))∥2. (4.10)

Here, abs indicates the element-wise absolute value function. θend, plim, and θlim indicate

the desired end attitude, desired range of the end position, and attitude, respectively;

these parameters were set to −3
4π rad, 0.2 m, and 0.5 rad, respectively. α and β are

constant values; here they were set to α = 1 and β = 0.01. vlim indicates the desired

range of the velocity; it was set to [1.5, 1.5, 4.5]⊤. In this objective function, the first two

terms indicate the positional constraint. These terms increases when the errors exceed the

given range. The final term indicates the velocity penalty. This term increase when the

velocity exceeds vlim. For optimization, the learning coefficient was set to η = 100.

The input trajectory to the seq2seq model had a uniform linear motion with constant

velocity from the initial position to the end position pend =
[
0, 0,−3

4π
]⊤

.

4.4.3 Result

The optimization results in the 0th, 10th and 20th iterations are shown in Figs. 4.8

and 4.9. Before optimization (i.e., the 0th iteration), the velocity was larger than 2 m/s

and 2π rad/s, and the dynamic constraint was not maintained. As the update of the latent

representation progressed, the velocity and ϕ decreased. Finally, a trajectory with a lower

velocity was obtained.

The final trajectory at the 20th iteration was executed by the manipulator. The

experimental result is shown in Fig. 4.10. The motion started from 25 s and lasted 0.5

s. After the turning over motion, a constant deceleration motion with 0.1 s was added

to avoid large deceleration in the command trajectory. Although there remained some

control deviations, the manipulator succeeded in the turning over motion as shown in

Fig. 4.11.

4.5 Conclusion

In this chapter, a method of adjusting the the latent representations of seq2seq mod-

els was proposed. The proposed method optimizes the latent representations instead of

trajectories to minimize the given objective functions. Through simulation, it was veri-

fied that the use of latent representations can obtain the desired trajectories faster than

that when optimizing the trajectories directly. In addition, it was confirmed that the

trajectories adjusted by the proposed method can be executed by an actual manipulator.
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Chapter 5

Association of Latent

Representations with External

Orders by Numerical Expressions

The final topic in this study is learning from demonstration. By enabling to train

motion generators using human demonstrations, the applications are expected to be ex-

tended.

In this chapter, external orders that are expressed by demonstration data are taken.

A training method of associating the demonstration data and latent representations is

proposed.

5.1 Introduction

Skill transfer from human experts to robots is beneficial for such tasks. Because human

experts are usually not specialists in robotics, Learning from Demonstration (LfD) [65,66]

that trains robots by demonstrating skills performed by human experts, is an effective

approach. In addition, the amount of training data required by LfD is smaller than those

required by reinforcement learning and self-supervised learning, both of which include

exploration phases during training. Neural networks are being more widely used to acquire

complex skilled motions [33].

Many robotics tasks require visual information. For example, cooking tasks require

vision to detect the positions of foods or tools. Robots must generate motions (i.e., joint

angles, velocity, torques, etc.) based on the images that they capture. Therefore, in LfD,

the robots learn the image–motion relationship as illustrated in Fig. 5.1(a). Note that this

study considers the case that a single image corresponds to a whole motion.

LfD with visual inputs, however, has some issues. First, visual conditions can easily

change due to many factors that are not directly related to the task, such as camera

positions, light conditions, and background colors. When the visual conditions significantly

changed, the same images can no longer be used for training. Considering that training

53
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(b) Approach of this study; using SeqAE for improving the robustness of online motion

generation. Here, z indicates the latent representation.

Figure 5.1: Overview of this study

data are collected by human experts, recollecting a large amount of demonstrations must

be avoided.

Another issue is caused by the training method used for motion generation. In many

cases, machine-learning models generate control commands based on the current states

of the robot and the environment. These control commands affect the next states of the

robot and the environment, and finally, the response values are fed back to the models.

Therefore, the motion generation process is auto-regressive in that it configures a feedback

loop that includes the dynamics of the robot and the environment. During the training

of models, however, such dynamics are neglected. The models typically receive training

samples instead of the actual response values because the actual robots cannot be used

during training. This method is called teacher forcing [26], which does not need to actuate

actual robots during training. Fluctuations in model outputs and environmental uncer-

tainty do not accumulate in teacher forcing; in contrast, during the operation phase, such

fluctuations are fed back to the models and they accumulate. If the models are not robust

against such fluctuations, the task performance degrades [67–69]. This issue is referred to

as exposure bias [24, 25]. To achieve model robustness against such fluctuations, a large

amount of demonstrations is necessary.
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To address these issues, it is effective to use demonstrated motions that are not as-

sociated with images to improve the robustness of the motion generation. Such motions

are obtained when the visual conditions change; generally, they cannot be used for the

image-motion-relationship training. Instead of associating such motions with images, these

motions can be associated with low-dimensional latent representations.

Recently, many studies have focused on latent representations. They can be used for

semi-supervised learning that improves the model performance by using a large amount

of unlabeled data [70, 71]. In LfD, latent representations of images are often used for

dimensionality reduction of images [72, 73]. Latent representations of motions are also

utilized mainly for reinforcement learning for reducing the exploration costs by dimen-

sionality reduction [74,75]. Latent representations of motions can also be used for editing

motions [7, 9, 61].

In this study, a method that uses sequence-to-sequence autoencoders (SeqAEs) [15]

to improve the performance of LfD with visual inputs is proposed. An overview of this

approach is illustrated in Fig. 5.1(b). SeqAEs are seq2seq models that reconstruct input

time-series. Some studies on natural language processing have demonstrated that the use

of SeqAEs improves sequence-generation performance [76, 77]. Therefore, in this study,

these method is applied to robots for motion generation. In addition, even when the

visual conditions change, users only need to retrain part of the model because the latent

representations of motions can be reused.

The remainder of this chapter is organized as follows. In Section 5.2, a method of

using SeqAE for LfD with visual inputs is proposed. The proposed method is evaluated

in Section 5.3. Finally, the conclusions of this study is presented in Section 5.4.

5.2 Method

5.2.1 LfD using SeqAE

As described in Section 5.1, machine-learning models are susceptible to exposure bias

because the motion generation includes the dynamics of the robots and the environment.

Although a large amount of image-motion pairs are necessary to improve the robustness

of the models, it is difficult because the visual conditions easily change.

To address these issues, the training process is to be divided into three phases: 1)

training motions to a SeqAE to obtain a robust motion-generation model that does not

depend on images, 2) training a convolutional neural network (CNN) to associate images

with latent representations obtained by the SeqAE, and 3) combining them to construct

a neural model that generates motions based on images. An overview of the method is

illustrated in Fig. 5.2. The procedure is as follows.
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Training SeqAE

First, a SeqAE is trained with demonstrated motions. Here, it is considered that the

demonstrated motion consists of time series of joint angles θ(t), joint angular velocity

θ̇(t), and external torque τ (t) of a robot. Note that this method can be applied even

when the motions consist of other variables; for example, in Section 5.3, motions include

all variables in a master-slave system.

Input/output of the SeqAE will be designed according to the motion data and control

system. The encoder should receive all variables in the motions to obtain latent repre-

sentations of motions. Besides, for online motion generation, the decoder should receive

the current state variables and generate the next command values to the control system.

In the above case, the encoder receives time series of the motion, θ(t), θ̇(t), and τ (t),

and finally generates a latent representation z; the decoder receives z and the current

state, θ(t), θ̇(t), and τ (t), and generates the next state, θ̂(t + ∆tNN),
ˆ̇
θ(t + ∆tNN), and

τ̂ (t + ∆tNN). These outputs will be used as the command values for a position/force

control system of the robot. Here, ∆tNN indicates the activation interval of the decoder;

•̂ indicates the predicted values. A loss function of the SeqAE is expressed as follows:

Lmotion =
1

σ2
θ

K∑
k=1

∥∥∥θ̂(k∆tNN)− θ(k∆tNN)
∥∥∥2

+
1

σ2
θ̇

K∑
k=1

∥∥∥ˆ̇θ(k∆tNN)− θ̇(k∆tNN)
∥∥∥2

+
1

σ2
τ

K∑
k=1

∥τ̂ (k∆tNN)− τ (k∆tNN)∥2 . (5.1)

Here, σ2
• indicates the variance over the dataset; it is used as a scaling factor. K indicates

the maximum index in the time series of the demonstration.

In the training of the SeqAE, the demonstrated motions do not need to be associated

with images. Therefore, once collecting a set of demonstrations, they can be reused even

when visual conditions change. By training the SeqAE with a larger amount of motions,

the decoder will be more robust against fluctuations of the states from the demonstrations.

Training CNN

A CNN is trained to associate images with the latent representations obtained by the

encoder of the trained SeqAE. The CNN receives images and predicts latent representa-

tions of motions z that were associated with these images. Due to the feature extraction by

SeqAEs, the number of output dimensions of the CNN are reduced. In addition, because

the output of the CNN is not a time series but single variables, the training is expected

to be stable even if the number of images is small.

A loss function of the CNN is expressed as follows:

Limage = ∥z − ẑ∥2. (5.2)
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Figure 5.2: Overview of the proposed method

Here, z indicates a latent representation of a motion generated by the encoder of the

trained SeqAE; ẑ indicates an output of the CNN.

Combine trained models

By making z and ẑ close, motions can be generated by using both the demonstrated

motions and the images. By replacing the encoder in SeqAE to the trained CNN, a neural

model that generates motions according to given images is obtained.

5.3 Experiments

5.3.1 Task Specification

As an example, the task of pushing a wood block that was 10 cm wide, 5 cm high,

and 5 cm deep was chosen. The overview of the task setup is shown in Fig. 5.3. In this

task, a webcam takes a 64×64 pixel picture just before the task, then a robot pushes the

block based on its position. When the block is on the left side, the robot pushes it to the

right; and when it is on the right side, the robot pushes it to the left side. The task was

regarded as successful when the center of the block was moved across the center of the

robot. An example of the demonstrations is shown in Fig. 5.4. Examples of the images

are shown in Fig. 5.5.
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Although this task is a toy-problem, it includes two important features common in

many practical tasks such as assembly and cooking: 1) the robot needs to detect the

object positions from the images and 2) the task includes contact with objects and friction

between the objects and the environment that are difficult to model. Thus, the robot

should learn this task through human demonstrations obtained in the real world.

A Geomagic Touch, supplied by 3D Systems, was used as a robot. This robot has six

joints; three are active joints and the rest are passive joints. The passive joints were fixed

to regard the robot as having three degrees of freedom.

5.3.2 Control System Setup

For collecting human demonstrations, a four-channel bilateral control system as illus-

trated in Fig. 5.6 was used. The use of bilateral control system allows a training dataset

to include the constraints of the robots such as motion ranges, maximum torques, joint

stiffness [78,79]. This method has the following advantages:

• The same control system can be used in both the data collection phase and the

production phase; thus, the dataset includes the dynamics of the robot and the

controller.

• Because the bilateral control system can present realistic haptics to operators, human

experts can operate the robot more intuitively compared with joysticks; as a result,

the quality of demonstrations can be improved.

• Force control is included, allowing robots to adapt to small fluctuations of the envi-

ronment at the controller level.

In the control system, (Kp + sg
s+gKd) and Kf are a position controller and force con-

troller, respectively. The control parameters are described in Table 5.1. A human expert

grasps the master-side and tele-operates the slave-side through the bilateral control system.

Both the master-side and slave-side were Geomagic Touch, with disturbance observers [49]

and reaction torque observers [80] to estimate the external torques, τ res
m and τ res

s . While

the human expert is operating the robots, the movements are recorded: the master-side

joint angle θres
m (t), joint angular velocity θ̇res

m (t), external torque τ res
m (t), slave-side joint

angle θres
s (t), joint angular velocity θ̇res

s (t), and external torque τ res
s (t).

After the neural networks were trained, the master-side was replaced by the trained

neural networks, as illustrated in Fig. 5.7. The orange parts in the control system were

activated every ∆tNN = 20 ms, whereas the rest of the control system was activated every

∆t = 1 ms.

5.3.3 Training-Data Collection

Pushing motions were collected by placing the block at six patterns of positions, as

shown in Fig. 5.5: left/right and 4.5/8.0/11.5 cm from the robot. Two kinds of dataset
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Figure 5.3: Task overview. Positions 1 and 2 indicate camera positions used in Sec-

tion 5.3.5.

were collected: 18 pairs of images and motions; and 90 motions without images. The

former image–motion dataset were used to train the CNN; whereas the latter motion-only

dataset were used to train the SeqAE.

Here, the training dataset with imbalance numbers of images and motions simulate

the case when the visual conditions changed. In a completely new visual condition such as

different camera positions, old images in an original visual condition are useless, whereas

motions can be used for training.

5.3.4 Model Setup

Figure 5.8 illustrates the model architectures. A CNN and a SeqAE were used. The

CNN consisted of five convolutional layers (Conv) and a linear layer (Linear); each convo-

lutional layer is followed by a ReLU activation and a BatchNormalization layer [81]. The

SeqAE consisted of an encoder and decoder with seven layers of LSTMs and a linear layer.

The latent representations z were set to eight dimensional.

Input/output variables of the SeqAE was designed according to Section 5.2.1. The

encoder receives time series of the master and slave states, θres
m (t), θ̇res

m (t), τ res
m (t), θres

s (t),

θ̇res
s (t), and τ res

s (t), and finally generates a latent representation z; the decoder receives z

and the current state of the slave-side, θres
s (t), θ̇res

s (t), and τ res
s (t), and generates the next

control command for the slave-side, θ̂res
m (t+∆tNN),

ˆ̇
θres
m (t+∆tNN), and τ̂ res

m (t+∆tNN).

The SeqAE and CNN were trained in 2000 and 100 epochs, respectively. The mini-

batch size was set to 16 and eight for the SeqAE and CNN, respectively. Adam [47] was

used for optimization.
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Figure 5.4: Snapshots of a demonstration

Figure 5.5: Examples of training images

Master
Robot

Slave 
Robot

Figure 5.6: Bilateral control system

5.3.5 Results

Comparison with end-to-end learning

The proposed method was compared with end-to-end learning. Two models with the

same architecture were trained—one was trained by the proposed method with 90 motions

and 18 images, and the other was trained by end-to-end learning with 18 image-motion

pairs. The end-to-end learning model was trained with 2000 epochs. It must be noted
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Table 5.1: Control parameters

Item Value

Position control gain Kp 120

Velocity control gain Kd 10

Force control gain Kf 0.5

Cutoff frequency of filters g [Hz] 10

Control interval ∆t [s] 0.001
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Figure 5.8: Model architecture

that the same number of image-motion pairs were used for both models.

The performances of these trained models in the pushing task were evaluated at six

positions as described in Section 5.3.3. Figure 5.9 presents the success rates in 30 trials
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Figure 5.9: Success rates of 30 trials. In end-to-end learning, the success rate decreased

when the number of images was small. In the proposed method, the success rate did not

decrease even when the number of images was small.

(a) End-to-end learning: the robot significantly shook the arm and finally failed in the task.

(b) Proposed method: the robot succeeded in performing the task.

Figure 5.10: Snapshots

(i.e., five times at each of the six positions). The success condition has been described

in Section 5.3.1. In the figure, the same models trained with 90 image-motion pairs were

also evaluated. When the number of images was large, end-to-end learning delivered a

success rate of more than 60%; however, the success rate significantly decreased when the

number of images was small. In contrast, the success rate of the proposed method did not

decrease even when the number of images was small. Figure 5.10 shows snapshots of the

generated motions. In case of end-to-end learning, the model often generated confused

motions, where the arm exhibited a significant shaking motion. In the proposed method,

the model generated stable and valid motions, similar to the demonstrations.

To exclude the possibility that these results were caused by the specific model archi-

tecture, two additional models with different numbers of layers and units from those of

the model described in Section 5.3.4 (named original) were evaluated. One had an en-

coder/decoder RNN with 10 layers with 128 LSTMs (named larger), and the other one

had an encoder/decoder with 3 layers with 32 LSTMs (named smaller). Table 5.2 presents

the success rates of these models. Although there were slight differences, the same ten-
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Table 5.2: Comparison of the success rate with different models

Training method Original Larger Smaller

The proposed method 56.7% 30.0% 46.7%

End-to-end learning 6.7% 6.7% 33.3%
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Figure 5.11: Visualization of the latent representations of images. The same color indicates

the same block position. In both cases, the latent representations of images were clustered.

dency as in Fig. 5.9 was confirmed in the relationship between the proposed method and

the end-to-end learning, even in different models. Therefore, it can be concluded that the

use of SeqAE improves the task performance compared to end-to-end learning when the

number of images is smaller than the number of motions.

Visualization of latent spaces

To discuss whether these results are primarily caused by the CNN or the RNN side, the

latent representations of images of the trained models were visualized. If the performance

difference between the proposed method and end-to-end learning was caused by insufficient

training of CNNs, the latent representations of images are expected to not express the block

positions; otherwise, it can be said that the CNNs could distinguish the block positions.

Figure 5.11 shows the latent spaces projected into two-dimensional spaces by the prin-

cipal component analysis. Here, latent representations of 18 images not used for training

were visualized. In both end-to-end learning and the proposed method, the latent rep-

resentations constructed clusters. The results indicate that both methods succeeded in

extracting the image features. Therefore, it can be concluded that the poor performance

of end-to-end learning was caused by the RNN side; it reinforces the effectiveness of the

use of SeqAE in improving the robustness of the RNN side.

Changes in visual conditions

Finally, the proposed method in the case where the camera positions changed was

demonstrated as a typical example of changes in visual conditions. Here, two different
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(a) Position 1

(b) Position 2

Figure 5.12: Examples of images captured at different positions

Table 5.3: Comparison of the success rate with different camera positions.

Camera position Success rate

Default position 56.7%

Position 1 40.0%

Position 2 26.7%

camera positions were used as shown in Fig. 5.3; examples of images are shown in Fig. 5.12.

Because the appearances of the block in the images were significantly different, the same

set of images could no longer be used for training. 18 images with motions for each camera

position were collected to train a CNN with trained SeqAE.

Table 5.3 shows the success rates for the different camera positions in 30 trials. Al-

though there were variations in the results, the success rates in all these cases were higher

than that achieved by end-to-end learning, as detailed in Table 5.2; even though the success

rate in Position 2 was lower than the others, it was still higher than end-to-end learning

with the same model architecture. Therefore, it can be concluded that SeqAEs can be

reused when visual conditions changed.

5.4 Conclusion

LfD with image inputs (that correspond to external orders) has some issues: 1) frequent

changes in visual conditions and 2) instability of motion generation caused by teacher

forcing. To solve these issues, a method of using latent representations of SeqAEs was

proposed. By training SeqAEs, a motion generator that is robust against state-variables
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fluctuations could be obtained. Moreover, SeqAEs can be reused even when the visual con-

ditions change. It was confirmed that the neural models trained by the proposed method

could generate stable and valid motions even when the number of images decreased. Also,

the proposed method in the case where the camera position changed was demonstrated.

These results demonstrate the effectiveness of the proposed motion generators that use

latent representations.
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Chapter 6

Conclusion

Although robots are expected to extend their applications to our daily tasks, the cur-

rent robots are not suitable for these tasks as the tasks are executed in diverse situations.

In this study, I focused on the diversity of external orders to motion generators. This

can be realized by machine learning methods that associate trajectories with certain in-

termediate representation as opposed to using the external orders directly. The use of

the intermediate representation resolves the issue of the diversity of representations in

the external orders. Here, the intermediate representation is to be associated with the

external orders after training the motion generators. Considering these intermediate rep-

resentations, I aimed to use the latent representations of trajectories, particularly, seq2seq

models that can extract latent representations from trajectories and generate motions on-

line. Although seq2seq models are considered to be an efficient approach for addressing

the realization of motion generators that can handle various external orders, several topics

are to be firstly understood. Therefore, these topics were discussed in this dissertation.

First, training methods of various trajectories were researched. Although the use of

the latent representations enables training independent of certain external orders, the

variety of training trajectories limits the performance of the models. Therefore, trajectory

deformation-based training methods for seq2seq models were proposed. The models are

trained to deform given trajectories to satisfy the constraints and dynamics. Finally, users

can train various valid trajectories to the models and control the diversity of trajectories.

Second, the association of certain external orders with latent representations was re-

searched. As the seq2seq models do not specify what the latent representations represent,

they have low interpretability. In this study, association methods of the latent representa-

tions with two types of the external order were proposed—mathematical expressions and

numerical expressions. For mathematical expressions, a backpropagation-based optimiza-

tion method for the latent representations was proposed. Using the proposed method,

the latent representations can be optimized to minimize the given objective functions

more efficiently than the direct optimization of trajectories. In addition, for numerical

expressions, such as demonstration data, a training method for latent representations was

proposed.

67
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Further, the robustness of the trained decoders was evaluated. They demonstrated

robustness against fluctuations in environmental parameters and exposure bias.

In summary, using seq2seq models, various trajectories can be trained solely with sim-

plified environment models and constraints. Furthermore, the latent representations can

be associated with various objective functions and numerical data after training. More-

over, the trained decoders, which are motion generators that can be used online, are

robust against exposure bias and fluctuations in environmental parameters. By integrat-

ing the proposed methods, motion generators that can handle various external orders can

be realized based on seq2seq models.
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