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Summary
In this paper we would prove that a class of pseudo-differential operators cannot be a Fredholm oper-
ator acting on suitable Besov spaces.
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1. Introduction

This paper treats the problem of Fredholmness for a class of pseudo-differential operators. We
are very interested in the issue about when the given pseudo-differential operator becomes a Fredholm
operator. Actually, we are eager to investigate whether the operator in question is of Fredholm or not.
The purpose of this article is to discuss the problem under what condition the operator in question
is a Fredholm operator. In particular, we discuss a sufficient condition for the operator to be of non-
Fredholm type. As a matter of fact, we prove in this paper that a class of pseudo-differential operators
cannot be a Fredholm operator acting on suitable Besov spaces under some reasonable conditions.
Theses peculiar features can be realized by key technical lemmas and some remarkable properties of
Besov spaces. This article is organized as follows. The rest of this first section consists in introducing
some basic notations used through this article. In Section 2, the notions of some useful mathematical
tools and the definition of Besov spaces are introduced, and some valuable properties of Besov spaces
are discussed in details. Section 3 is devoted to the main result of this paper, where we introduce and
discuss a principal theorem for a certain class of pseudo-differential operators. We clarify the sufficient
conditions for the operators in question acting on suitable Besov spaces not to be a Fredholm operator.
Section 4 deals with some preliminary results whereby we can prove our main theorem. Lastly, we are
going to give a proof of the main theorem in Section 5.

Anelementy = (o, ..., ay,) of Z7 is called a multi-index and the length afis given by|a| =
a1+ -+ 4ay,. For pointse = (x4,...,z,) € R", we define
¢ =g om0 =0y, = 0 oy =09t 99 1
T =Ty Ty, ] — wj_%j’ x — Yz, T Vz,o ()
1 1 .
Dy = -0y, Dy, = =0, With i=+/—1, Dy =Dy ---Dgn. (2)
,l o ,l/ « n
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If X c R”is open, fork € N, we letC*(X) denote the Fechet space of times continuously
differentiable functionsX — C. Fork = 0, we get the spac€'(X) of continuous complex-valued
functions onX. We let

C*(X) = () C*(X) (3)

keN

be the Fechet space of infinitely continuously differentiable functions. i6 a subset oR, then
C*(X; 1) is the set of functions i'* (X) taking their values in. Foru € C*(X), the support of:
is the smallest closed subsEtof X outside whichu vanishes identically, and is denoted by supp

That is to say,
suppu={r e X: wu(x)=0}"°¢ (4)

where the superscriptC' means to take the closure of the set. ket N U {0},
C¥X)={ueCF(X): suppu iscompact. (5)

Let X € R™ be anopenset,andlet< p < 1,0 < d < 1,m € RandN € N\ {0}. Then,
7s(X x RY) is the space of ali € C>(X x R") such that for all compact subséisC C X and
alla € 27, B € ZY , there is a constartt = Ck ,,5(a) > 0 such that

0985 a(x,0)] < C(1+ |g)ym—rIBIFolel (2 0) € K x RV, (6)

We say thats)"; is the space of symbols of order m and of types). We observe tha$ s (X x RY)
is a FEchet vector space with the seminorms:

0295 a(,0)|
Pr o.5(a) = su
Kapl) = S T |6 B

(7)
for K compactinX, a € Z" andg € Z¥, cf. [18] (see also [27]).

2. Bezov space and preliminary

In what follows, just for simplicity, we often make use of the symBoh; m) which means the
power signa™. LetNy, = N U {0}. We define(¢) = /1 + |£|2 with the Euclidean norm¢| for
¢ € R™. Next we shall define the Fourier transfoifnof » as

Ful€) = a(€) = / e ty(n)ds  with = V=1 (8)

for bothu € S(R™) andits extension taS’'(R™), whereS(R™) is the Schwartz class dR", namely,
the space of smooth function$z) being rapidly decreasing, adi(R") is the dual space & (R™),
called the space of tempered distributions®sh Notice that the inverse transfor#i—! of F is given
by

Fof ) = f@) = n) " [ e (e 9)

for the elemenyf in S(R™), cf. [20].
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Let us fixa functiony, € C§°(R™) such that
supplpo) C {£ € R™: €] < 2} and  po(§) =1 VEeU(By(l)) (10)
(which is a neighborhood of the unit ball). We define functignse Cg° (B R"), j > 1, by
@i (&) = po(E(2;—5)§) — vo(E(2; —j + 1)§)
and the sets
Ko:={¢eR": [{<2} and K;:={¢eR": E(2;j-1) <[¢{|<E(2j+1)}, Vji>1
The sequence of functiof®; } jcn, is called a dyadic partition of unity [17]. Associated to a dyadic
partition of unity, we can always define operators

i (D) : S(R") — S(R")

by

pi(D)u = Op(p;)u = F~ (p;F(u)).
Let £ and F' be Banach spaces. We denote by the synflidl, F') the totality of bounded linear
operators from' to F'. ForT € B(E, F'), T* is an adjoint operator ¢f, namely,7* : F — E when
T : E — F. Then the kernel of the operat®ris defined by

NT)=KerT:={ueE: Tu=0 in F} (11)

The set\V/(T) is a closed subspace of E.Ifsatisfies the following three conditions:
(C1) a(T)* =dimN(T) < oo.
(C2) R(T') = Im(T) is a closed subspace 6f thatis,R(T") C F.
(C3) B(T) := dim N (T*) < oo,
thenT is said to be a Fredholm operatorBiis said to be of Fredholm type.
Now we are in a position to introduce the Besov space, which plays an important role in this paper.
Lets € Randl < p,q < oo. The Besov spac&, (R") is the space of all tempered distributions
u € §’'(R™) such that

[u]
§=0

1/q
oo
By, @) 1= (Z E@qu)w(D)uzp(Rn)) < o, (12)

It is a Banach space with norjm|

B3, (R")- The Besov spaces admits the following perculiar properties
[25]. For an approximation method, the s&R") is dense inB, (R") forall s € R and1 < p,q <
oo. As for the duality, the dual aB,,(R™) can be identified witt3 .7, (R") using the dual pair

(f,9) = . f(z)g(z)dx, VfgeSR).
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As to theinterpolation,

(Bpay (R™), By2 (R"))p.q = Bpy(R"),  V1<p,q,q1,q2 <00 and s=(1—0)sy+0sy

pq1 pq2

holds.

3. Main result

In this section we shall introduce the main result of this article, which asserts that the pseudo-
differential operatotd = Op(a) with symbola = a(z,¢) € S o(R™ x R™) cannot be a Fredholm
operator acting on suitable Besov spaces. As a matter of fact, it is the Besoijg@Ré‘) for any
1 < p, q < oo of this type that we are going to treat below.

LEMMA 1. For each 1 < p,q < oo, there exists a positive constant C = C(p,q) > 0 such that

1
m”uHng(Rn) < Jlullr@ny < Cp,g)|lull o, @ny (13)

holds, wheneveru € S(R™) is a function with

m—+2
suppF(w)) € |J Ki,  ImeN,,
k=m

where the sets {K;} en, are series of dyadic partitions of unity. Note that the constants C' do

not depend upon m.

Proof. First of all, note that ifu € S(R™) is such that

m+3

Fw) (@)= > @i ©Fw)9),

j=m-—1

using the convention that_,(£) = 0. Hence it is easy to see that

m—+3 m—+3 a
u=3 ei©pDu  and  Julsnen = S @l | (1)
j=m—1 j=m-—1

Due to the equivalence of norms in finite dimensional vector spaces, together with Young’s inequality,
the results yields form the following estimate

m+3 m—+3 1/a
lllzey = | 3 95D <o [ S el (15)
j=m—1 LP(R—n) g=m—1
m—+3
< O Z [pj (D)ull e ®ny < |lullLe®n)- (16)
j=m—1
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LEMMA 2. Ifl < p,q < oo, then for each 6 € (0,1), there exists a positive constant Cy > 0

such that
lull g, &y < Co llull (e el 1 @ny, Vue S(R") (17)

holds.

Proof. The following estimates with the exponeitand1 — @ follow from usual results of th
interpolation theory. Indeed, the fact that

(LP(R™), Hy (R™))g,q = Bpy(R")

implies that
[ull By, (rm) < [ull gy, @) < CQHUHi;(eRn)HU’H?I;(R")? Vu e SR"). (18)
O
THEOREM 3. Assume that a = a(x,€) € S o(R™ x R™). If there exists a sequence
{(uk> ) ren, CR™ X R"
such that
lim |nx| = oo ans lim |ng|"a(yg,n) = 0, Jr >0, (19)
k— o0 k— o0

then the operators
A =O0p(a) : B),(R") — B) (R")

are not Fredholm operators for any 1 < p,q < oo.

The complete proof of the above theorem shall be given in Section 5.

4. Some preliminary results
In this section we shall introduce some useful preliminary results and discuss several fruitful
properties for mathematical tools which are employed in the next section. First of all, we put

K= {ueS(R”) : supp(F(u)) C {feR” : % < ¢l < 1} } (20)
Let0 <7< % fixed. For all s € R and(y,n) € R™ x R", we define the bijections
Rs = Rs(y,m) : S(R") — S(R")
by Ryu(z) := (s;7n/p) - ¢*"u(s" (z — y)).

LEMMA 4. For alll < p,q < oo, there exist some positive constants D(p,q) > 0 and Sy > 0
such that

1
D, g 1HBEn < lIRsullsy, @) < Dip,a) fullsg, @) (21)
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for allu € K as far ass > Sy. Note that the constants D(p,q) depend upon p and q, but not on
(y,n). If |n| > 1, then we can choose Sy = Z(2; (1 — 1)~ 1).
Proof. A simple computation leads to the Fourier transfornikgf: given by

™

F(Rsu)(&) = E(s; P nr) e WET G(sTT(E — sm). (22)

Therefore if¢ satisfiesF (Rsu) (&) # 0, then we have

5 <[E(s—n)E— sl < 1.

If n = 0, then it follows immediately that

SUPP(HRs (1)) C {5 ER™: %ST <lel < s } Vs> So, (23)

whereS is chosen such thaf < (s/2)|n| for all s > Sy. This implies that, as far as> Sy, there
exists a constant € Ny such that
m+2

supp(ARsuw) € | Ki,
k=m

where the set&;, are a series of dyadic partitions of unity described in Section 2. A consideration of
Definition of the mappingR, together with a little computation leads to

[Rsullzo@ny = lullze@n) Vu e S(RY).

Therefore, by employing Lemma 1, we conclude that there exists a coidstantC(p, ¢) > 0 such
that

lull o, (rn) < C(p, @) | Rstu]| Loy < Clp, 0)?||Rsul| g, (e (24)

and
[ Rsull g,y < C(0 @) | Rsull Lo ny < Cp, 0)?[|ull o, m)- (25)
O

LEMMA 5. Assume that a = a(z,§) € S?o(R™ x R™). Let {(yx, k) € R™ X R"}ren, be a

sequence such that
lim |ng| = oc.
k—o00

Ifu € S(R™), then setting

%
Sk = |nk| and Ry =R,, (yk, |Zk’> )

we have
Jim {|Op(a) Riul gy, em) = 0, V1< p,q<oo, (26)
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as far aslimy_ o0 |M|” a(yk, ni) = 0 for somer > 0.
Proof. First, observe that
Oz, (Rsu(x)) = isnj Rou(x) 4 57 Rs(0,u) (). (27)
The above observation together with the fact that
| RsullLo@ny = [ullLe@n) Vu e S(R™)
yields to the estimate
[Rsull apeny < (14 s(m)llull g ) Vs> 1. (28)
By virtue of Lemma 2 we can deduce that
[ Rsull gy, zny < Co(1+ s(m) [|ull ryen)- (29)
Now we can choose < # < min{r, 7} and finally conclude that

10p(a) Ryul| gy, (mn) < | Rx (R;'Op(a)Riu)

I 50
By, ()

6
< Cy (1+Ink!<|zz|>) HR,;lOp(a)RkuHH;(Rn) — 0. (30)

(|

LEMMA 6. Ifu € I, then

. _ . 0 n
sll>lgo Rsu=0 weakly in B, (R"). (31)
Proof. Foreveryu,v € S(R™), we have
_, ™
| (Rsu)(z)v(z)dz| < Z(s; e nT)||v]| oo (rey | w]| L1 (mY - (32)
Hence it follovs that

lim (Rsu)(z)v(z)dx = 0. (33)

5—00 Rn

If uw € K, thenR,u is uniformly bounded inB), (R"). SinceS(R™) is dense in the Besov space
B (R™) and the dual space @) (R") can be identified with

1 1 1 1
BY (R™ with -+ —-=1, —+—-=1
o (R") PR i
according tahe fundamental properties of Besov spaces described in Section 2, we finally obtain the
required result. O
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5. Proof of the main theorem
Letu € S(R™), u # 0, satisfying
1
supp(Ku)) C {geR": 3 < €] < 1}.

Suppose thatl = Op(a) : B),(R") — B, (R") is of Fredholm type. Then there are operatBrand
K in B(Bp,(R™)) such thati is compact and

BA =1+ K.

Let us now defingry, := Rs, (yk, nx/|mx|) With s, = |n,|. We assume without loss of generality that
Ink] > =2(2; (1 —7)~1) for all k. Then Lemma 4 implies that

lull o, (rn) < Dpg (||\B|||B<ng(Rn))IIARkUIIng(Rn) + HKRkUHng(Rn)) - (34)
On the other hand, the limit result
Jim || ARl gy, (gm) = 0

follows from Lemma 5, and
lim HKRkuHBO (R?) = 0
k— 00 g

yields from Lemma 6, respectively. Therefore we conclude that
[ull Bo, &) = 0.

However, recall that we have assumed that 0, which leads us to a contradiction. g
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