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Summary

In this paper we would prove that a class of pseudo-differential operators cannot be a Fredholm oper-

ator acting on suitable Besov spaces.
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1. Introduction

This paper treats the problem of Fredholmness for a class of pseudo-differential operators. We

are very interested in the issue about when the given pseudo-differential operator becomes a Fredholm

operator. Actually, we are eager to investigate whether the operator in question is of Fredholm or not.

The purpose of this article is to discuss the problem under what condition the operator in question

is a Fredholm operator. In particular, we discuss a sufficient condition for the operator to be of non-

Fredholm type. As a matter of fact, we prove in this paper that a class of pseudo-differential operators

cannot be a Fredholm operator acting on suitable Besov spaces under some reasonable conditions.

Theses peculiar features can be realized by key technical lemmas and some remarkable properties of

Besov spaces. This article is organized as follows. The rest of this first section consists in introducing

some basic notations used through this article. In Section 2, the notions of some useful mathematical

tools and the definition of Besov spaces are introduced, and some valuable properties of Besov spaces

are discussed in details. Section 3 is devoted to the main result of this paper, where we introduce and

discuss a principal theorem for a certain class of pseudo-differential operators. We clarify the sufficient

conditions for the operators in question acting on suitable Besov spaces not to be a Fredholm operator.

Section 4 deals with some preliminary results whereby we can prove our main theorem. Lastly, we are

going to give a proof of the main theorem in Section 5.

An elementα = (α1, . . . , αn) of Zn
+ is called a multi-index and the length ofα is given by|α| =

α1+ · · · +αn. For pointsx = (x1, . . . , xn) ∈ Rn, we define

xα = xα1
1 · · ·xαn

n , ∂j = ∂xj =
∂

∂xj
, ∂α

x = ∂α1
x1

· · · ∂αn
xn

, (1)

Dx =
1

i
∂x, Dxj =

1

i
∂xj , with i =

√
−1, Dα

x = Dα1
x1

· · ·Dαn
xn

. (2)
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If X ⊂ Rn is open, fork ∈ N, we letCk(X) denote the Fŕechet space ofk times continuously

differentiable functionsX → C. For k = 0, we get the spaceC(X) of continuous complex-valued

functions onX. We let
C∞(X) =

∩
k∈N

Ck(X) (3)

be the Fŕechet space of infinitely continuously differentiable functions. IfI is a subset ofR, then

Ck(X; I) is the set of functions inCk(X) taking their values inI. Foru ∈ Ck(X), the support ofu

is the smallest closed subsetF of X outside whichu vanishes identically, and is denoted by suppu.

That is to say,
suppu = {x ∈ X : u(x) = 0 }−C (4)

where the superscript−C means to take the closure of the set. Fork ∈ N ∪ {∞},

Ck
0 (X) = {u ∈ Ck(X) : suppu is compact}. (5)

Let X ⊂ Rn be an open set, and let0 6 ρ 6 1, 0 6 δ 6 1, m ∈ R andN ∈ N \ {0}. Then,

Sm
ρ,δ(X × RN ) is the space of alla ∈ C∞(X × RN ) such that for all compact subsetsK ⊂ ⊂ X and

all α ∈ Zn
+, β ∈ ZN

+ , there is a constantC = CK,α,β(a) > 0 such that

|∂α
x ∂

β
θ a(x, θ)| 6 C(1 + |θ|)m−ρ|β|+δ|α|, (x, θ) ∈ K × RN . (6)

We say thatSm
ρ,δ is the space of symbols of order m and of type(ρ, δ). We observe thatSm

ρ,δ(X ×RN )

is a Fŕechet vector space with the seminorms:

PK,α,β(a) = sup
(x,θ)∈K×RN

|∂α
x ∂

β
θ a(x, θ)|

(1 + |θ|)m−ρ|β|+δ|α| (7)

for K compact inX, α ∈ Zn
+ andβ ∈ ZN

+ , cf. [18] (see also [27]).

2. Bezov space and preliminary

In what follows, just for simplicity, we often make use of the symbolΞ(a;m) which means the

power signam. Let N0 = N ∪ {0}. We define⟨ξ⟩ =
√
1 + |ξ|2 with the Euclidean norm|ξ| for

ξ ∈ Rn. Next we shall define the Fourier transformF of u as

Fu(ξ) = û(ξ) :=

∫
e−ix·ξu(x)dx with i =

√
−1 (8)

for bothu ∈ S(Rn) andits extension toS ′(Rn), whereS(Rn) is the Schwartz class onRn, namely,

the space of smooth functionsu(x) being rapidly decreasing, andS ′(Rn) is the dual space ofS(Rn),

called the space of tempered distributions onRn. Notice that the inverse transformF−1 of F is given

by

F−1f(x) = f̌(x) := (2π)−n

∫
eiξ·xf(ξ)dξ (9)

for the elementf in S(Rn), cf. [20].
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Let us fixa functionφ0 ∈ C∞
0 (Rn) such that

supp(φ0) ⊂ {ξ ∈ Rn : |ξ| < 2} and φ0(ξ) = 1 ∀ ξ ∈ U(B0(1)) (10)

(which is a neighborhood of the unit ball). We define functionsφj ∈ C∞
0 (BRn), j ≥ 1, by

φj(ξ) := φ0(Ξ(2;−j)ξ)− φ0(Ξ(2;−j + 1)ξ)

and the sets

K0 := {ξ ∈ Rn : |ξ| 6 2} and Kj := {ξ ∈ Rn : Ξ(2; j−1) 6 |ξ| 6 Ξ(2; j+1)}, ∀ j ≥ 1.

The sequence of functions{φj}j∈N0 is called a dyadic partition of unity [17]. Associated to a dyadic

partition of unity, we can always define operators

φj(D) : S(Rn) −→ S(Rn)

by
φj(D)u = Op(φj)u = F−1(φjF(u)).

Let E andF be Banach spaces. We denote by the symbolB(E,F ) the totality of bounded linear

operators fromE to F . ForT ∈ B(E,F ), T ∗ is an adjoint operator ofT , namely,T ∗ : F → E when

T : E → F . Then the kernel of the operatorT is defined by

N (T ) ≡ Ker T := {u ∈ E : Tu = 0 in F }. (11)

The setN (T ) is a closed subspace of E. IfT satisfies the following three conditions:

(C1) α(T )∗ = dimN (T ) < ∞.

(C2) R(T ) ≡ Im(T ) is a closed subspace ofF , that is,R(T ) ⊂ F .

(C3) β(T ) := dimN (T ∗) < ∞,

thenT is said to be a Fredholm operator orT is said to be of Fredholm type.

Now we are in a position to introduce the Besov space, which plays an important role in this paper.

Let s ∈ R and1 < p, q < ∞. The Besov spaceBs
pq(Rn) is the space of all tempered distributions

u ∈ S ′(Rn) such that

∥u∥Bs
pq(Rn) :=

 ∞∑
j=0

Ξ(2; jsq)∥φj(D)u∥qLp(Rn)

1/q

< ∞. (12)

It is a Banach space with norm∥·∥Bs
pq(Rn). The Besov spaces admits the following perculiar properties

[25]. For an approximation method, the setS(Rn) is dense inBs
pq(Rn) for all s ∈ R and1 < p, q <

∞. As for the duality, the dual ofBs
pq(Rn) can be identified withB−s

p′q′(Rn) using the dual pair

(f, g) :=

∫
Rn

f(x)g(x)dx, ∀ f, g ∈ S(Rn).
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As to theinterpolation,

(Bs1
pq1(R

n), Bs2
pq2(R

n))θ,q = Bs
pq(Rn), ∀ 1 < p, q, q1, q2 < ∞ and s = (1− θ)s1 + θs2

holds.

3. Main result

In this section we shall introduce the main result of this article, which asserts that the pseudo-

differential operatorA = Op(a) with symbola = a(x, ξ) ∈ S0
1,0(Rn × Rn) cannot be a Fredholm

operator acting on suitable Besov spaces. As a matter of fact, it is the Besov spaceB0
pq(Rn) for any

1 < p, q < ∞ of this type that we are going to treat below.

Lemma 1. For each 1 < p, q < ∞, there exists a positive constant C = C(p, q) > 0 such that

1

C(p, q)
∥u∥B0

pq(Rn) 6 ∥u∥Lp(Rn) 6 C(p, q)∥u∥B0
pq(Rn) (13)

holds, whenever u ∈ S(Rn) is a function with

supp(F(u)) ⊂
m+2∪
k=m

Kk, ∃m ∈ N0,

where the sets {Kj}j∈N0 are series of dyadic partitions of unity. Note that the constants C do

not depend uponm.

Proof. First of all, note that ifu ∈ S(Rn) is such that

F(u)(ξ) =

m+3∑
j=m−1

φj(ξ)F(u)(ξ),

using the convention thatφ−1(ξ) = 0. Hence it is easy to see that

u =
m+3∑

j=m−1

φj(ξ)φj(D)u and ∥u∥B0
pq(Rn) =

 m+3∑
j=m−1

∥φj(D)u∥qLp(Rn)

1/q

. (14)

Due to the equivalence of norms in finite dimensional vector spaces, together with Young’s inequality,

the results yields form the following estimate

∥u∥Lp(Rn) =

∥∥∥∥∥∥
m+3∑

j=m−1

φj(D)u

∥∥∥∥∥∥
Lp(R−n)

6 C1

 m+3∑
j=m−1

|φj(D)u∥qLp(Rn)

1/q

(15)

6 C2

m+3∑
j=m−1

∥φj(D)u∥Lp(Rn) 6 ∥u∥Lp(Rn). (16)

�
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Lemma 2. If 1 < p, q < ∞, then for each θ ∈ (0, 1), there exists a positive constant Cθ > 0

such that
∥u∥B0

pq(Rn) 6 Cθ ∥u∥1−θ
Lp(Rn) ∥u∥H1,p(Rn), ∀u ∈ S(Rn) (17)

holds.

Proof. The following estimates with the exponentsθ and1 − θ follow from usual results of th

interpolation theory. Indeed, the fact that

(Lp(Rn),H1
p (Rn))θ,q = B0

pq(Rn)

implies that

∥u∥B0
pq(Rn) 6 ∥u∥Bθ

pq(Rn) 6 Cθ∥u∥1−θ
Lp(Rn)∥u∥

θ
H1

p(Rn), ∀u ∈ S(Rn). (18)

�

Theorem 3. Assume that a = a(x, ξ) ∈ S0
1,0(Rn × Rn). If there exists a sequence

{(yk, ηk)}k∈N0 ⊂ Rn × Rn

such that
lim
k→∞

|ηk| = ∞ ans lim
k→∞

|ηk|ra(yk, η) = 0, ∃ r > 0, (19)

then the operators
A = Op(a) : B0

pq(Rn) −→ B0
pq(Rn)

are not Fredholm operators for any 1 < p, q < ∞.

The complete proof of the above theorem shall be given in Section 5.

4. Some preliminary results

In this section we shall introduce some useful preliminary results and discuss several fruitful

properties for mathematical tools which are employed in the next section. First of all, we put

K :=

{
u ∈ S(Rn) : supp(F(u)) ⊂

{
ξ ∈ Rn :

1

2
< |ξ| < 1

} }
. (20)

Let 0 < τ < 1
3 fixed. For all s ∈ R and(y, η) ∈ Rn × Rn, we define the bijections

Rs = Rs(y, η) : S(Rn) −→ S(Rn)

byRsu(x) := Ξ(s; τn/p) · eisxηu(sτ (x− y)).

Lemma 4. For all 1 < p, q < ∞, there exist some positive constants D(p, q) > 0 and S0 > 0

such that
1

D(p, q)
∥u∥B0

pq(Rn) 6 ∥Rsu∥B0
pq(Rn) 6 D(p, q) ∥u∥B0

pq(Rn) (21)
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for all u ∈ K as far as s > S0. Note that the constants D(p, q) depend upon p and q, but not on

(y, η). If |η| ≥ 1, then we can choose S0 = Ξ(2; (1− τ)−1).

Proof. A simple computation leads to the Fourier transform ofRsu given by

F(Rsu)(ξ) = Ξ(s;
τn

p
− nτ) e−iy(ξ−sη) û(s−τ (ξ − sη)). (22)

Therefore ifξ satisfiesF(Rsu)(ξ) ̸= 0, then we have

1

2
< |Ξ(s;−τ)(ξ − sη)| < 1.

If η = 0, then it follows immediately that

supp(F(Rs(u))) ⊂
{
ξ ∈ Rn :

1

2
sτ < |ξ| < sτ

}
∀ s > S0, (23)

whereS0 is chosen such thatsτ < (s/2)|η| for all s > S0. This implies that, as far ass ≥ S0, there

exists a constantm ∈ N0 such that

supp(F(Rsu)) ⊂
m+2∪
k=m

Kk,

where the setsKk are a series of dyadic partitions of unity described in Section 2. A consideration of

Definition of the mappingRs together with a little computation leads to

∥Rsu∥Lp(Rn) = ∥u∥Lp(Rn) ∀u ∈ S(Rn).

Therefore, by employing Lemma 1, we conclude that there exists a constantC = C(p, q) > 0 such

that
∥u∥B0

pq(Rn) 6 C(p, q)∥Rsu∥Lp(Rn) 6 C(p, q)2∥Rsu∥B0
pq(Rn) (24)

and
∥Rsu∥B0

pq(Rn) 6 C(p, q)∥Rsu∥Lp(Rn) 6 C(p, q)2∥u∥B0
pq(Rn). (25)

�

Lemma 5. Assume that a = a(x, ξ) ∈ S0
1,0(Rn × Rn). Let {(yk, ηk) ∈ Rn × Rn}k∈N0 be a

sequence such that
lim
k→∞

|ηk| = ∞.

If u ∈ S(Rn), then setting

sk = |ηk| and Rk = Rsk

(
yk,

ηk
|ηk|

)
,

we have
lim
k→∞

∥Op(a)Rku∥B0
pq(Rn) = 0, ∀ 1 < p, q < ∞, (26)
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as far as limk→∞ |ηk|r a(yk, ηk) = 0 for some r > 0.

Proof. First, observe that

∂xj (Rsu(x)) = isηj Rsu(x) + sτ Rs(∂xju)(x). (27)

The above observation together with the fact that

∥Rsu∥Lp(Rn) = ∥u∥Lp(Rn) ∀u ∈ S(Rn)

yields to the estimate

∥Rsu∥H1
p(Rn) 6 (1 + s⟨η⟩)∥u∥H1

P (Rn) ∀ s ≥ 1. (28)

By virtue of Lemma 2 we can deduce that

∥Rsu∥B0
pq(Rn) 6 Cθ(1 + s⟨η⟩)θ ∥u∥H1

p(Rn). (29)

Now we can choose0 < θ < min{r, τ} and finally conclude that

∥Op(a)Rku∥B0
pq(Rn) 6

∥∥Rk

(
R−1

k Op(a)Rku
)∥∥

B0
pq(Rn)

6 Cθ

(
1 + |ηk|

⟨
ηk
|ηk|

⟩)θ ∥∥R−1
k Op(a)Rku

∥∥
H1

p(Rn)
−→ 0. (30)

�

Lemma 6. If u ∈ K, then

lim
s→∞

Rsu = 0 weakly in B0
pq(Rn). (31)

Proof. For everyu, v ∈ S(Rn), we have∣∣∣∣∫
Rn

(Rsu)(x)v(x)dx

∣∣∣∣ 6 Ξ(s;
τn

p
− nτ)∥v∥L∞(Rn)∥u∥L1(Rn). (32)

Hence it follows that

lim
s→∞

∫
Rn

(Rsu)(x)v(x)dx = 0. (33)

If u ∈ K, thenRsu is uniformly bounded inB0
pq(Rn). SinceS(Rn) is dense in the Besov space

B0
pq(Rn) and the dual space ofB0

pq(Rn) can be identified with

B0
p′q′(Rn) with

1

p
+

1

p′
= 1,

1

q
+

1

q′
= 1

according tothe fundamental properties of Besov spaces described in Section 2, we finally obtain the

required result. �
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5. Proof of the main theorem

Let u ∈ S(Rn), u ̸= 0, satisfying

supp(F(u)) ⊂
{
ξ ∈ Rn :

1

2
< |ξ| < 1

}
.

Suppose thatA = Op(a) : B0
pq(Rn) → B0

pq(Rn) is of Fredholm type. Then there are operatorsB and

K in B(B0
pq(Rn)) such thatK is compact and

BA = I + K.

Let us now defineRk := Rsk(yk, ηk/|ηk|) with sk = |ηk|. We assume without loss of generality that

|ηk| ≥ Ξ(2; (1− τ)−1) for all k. Then Lemma 4 implies that

∥u∥B0
pq(Rn) 6 Dpq

(
∥|B|∥B(B0

pq(Rn))∥ARku∥B0
pq(Rn) + ∥KRku∥B0

pq(Rn)

)
. (34)

On the other hand, the limit result

lim
k→∞

∥ARku∥B0
pq(Rn) = 0

follows from Lemma 5, and
lim
k→∞

∥KRku∥B0
pq(Rn) = 0

yields from Lemma 6, respectively. Therefore we conclude that

∥u∥B0
pq(Rn) = 0.

However, recall that we have assumed thatu ̸= 0, which leads us to a contradiction. �
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