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Abstract. In this paper, we deal with nonlinear Schrodinger system (NLS) in the mass-
subcritical case and nonlinear Schrédinger equation with a potential (NLSy ) (or (NLS,)) in
the inter-critical case. We consider time behavior of solutions to these equations. For (NLS),
we define a scattering threshold, by focusing structure of the nonlinearity, which corresponds
to the best constant of small data scattering. We investigate a property of a solution on the
threshold and an optimizing sequence of the threshold. For (NLSy ), we prove a scattering result,
a blow-up or grow-up result, and a blow-up result below the ground state without a potential.
Then, we show existence of a “radial” ground state and characterize the “radial” ground state
by the virial functional. By using the “radial” ground state, we get a global well-posedness of
(NLSy). For (NLS,), we show blow-up results. Moreover, we obtain equivalence of conditions
on initial data below the ground state without a potential by utilizing the global well-posedness
results and the blow-up result.
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1. INTRODUCTION

1.1. Nonlinear Schrédinger equation. In this subsection, we consider the nonlinear Schrédinger
equation with power type nonlinearity.

idpu(t, z) + Au(t, x) = plu(t, z)|P  u(t, ), (t,x) € R x RY, (NLSy)
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where i :=+/—1, pe{-1,1}, p>1,d>1, 0, := %, A= Z;l:l 59722, and an unknown function
J

u: R x RY — C is a solution to (NLSp). (NLSp) denotes a laser beam in optical fiber and
vortex filament. (NLSy) is also regarded as a non-relativistic limit of nonlinear Klein-Gordon
equation (NLKGy):

1
—gﬁfu(t,x) — idpu(t, x) + Au(t, z) = plu(t, )P u(t,z), (t,z) € R x RY, (NLKGy)

where c¢ is the speed of light. In other words, the following holds: for a solution u to (NLKGy),
the modulated wave function uc(t, z) = e“tu(t, ) satisfies

1 . _
—6—282% + i0stte + Aue = plueP™

and (NLSy) is formally deduced as ¢ — oc.
(NLSp) preserves in time ¢ the following mass, energy (or Hamiltonian), and momentum:

(Mass) M(u) = [Jul]32.
1 A 1
(Energy) Eo(u) := iHVUH%g + Im”“”iz—«—la

(Momentum) M(u) :=1Im [ wu(t,z)Vu(t, z)dz.
R4

L2(R?) is called mass space and H}(RY) is called energy space. Also, (NLSg) has the scale
2
invariance as follows: If u is a solution to (NLSp), then uy := Ap-Tu(A2-, X-) is also a solution

to (NLSp) for A > 0. For this transformation, it follows that [lux(0, -)|[gse = [[u(0, -)| e,
where

Sc =

- 1.1
— (11)
In this sense, H?¢(R?) is scale critical space of (NLSp) and “(NLSp) is called mass-subcritical
when s, <0 (<= 1<p<1+ %), mass-critical when s, = 0 (<= p = 1+ ), inter-critical (or
mass-supercritical and energy-subcritical) when 0 < s, < 1 (<= 1+ % <p<l1l+ ﬁ), and

g 2
2

b

energy-critical when s, =1 (<= p=1+ ﬁ) .
From now on, we consider the Cauchy problem of (NLSp). That is, we treat (NLSp) with
initial condition:

u(0,z) = ug(x). (ICoh)

We state local well-posedness theory of (NLSy), where local well-posedness implies existence of
time local solution, uniqueness of the solution, and continuous dependence on initial data of the
solution.

Theorem 1.1 (Local well-posedness in L2, [115]). Letd > 1,1 <p <1+ %, and X € {—1,1}.

Let ug € L2(R?). Then, there exists T = T(|[uollpz) > 0 such that (NLSp) with (ICo) has a
unique solution

u € C([=T,T); LZ(RY)) 0 LY([-T, T]; LE(R7)),

: 1_dj1_ 1
where the exponent q satisfies 7= 50 ST

hods, that is,

). Moreover, continuous dependence on initial data

Jim flup —uf[pgorz =0
for any up, € L2(RY) satisfying uon — ug in L2(RY), where u, is a solution to (NLSy)
with data up (0, -) = uon. Furthermore, the solution u to (NLSg) preserves its mass in time t

(M(u(t)) = M(uo)).
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Theorem 1.2 (Local well-posedness in H', [4, 43, T4]). Let d > 1,1 < p < oo ifd = 1,2,
1 <p<1l+5ifd>3 and X € {-1,1}. Let ug € HX(R?). Then, there exists T =
T(|luollgrr) > 0 such that (NLSp) with (ICo) has a unique solution u € Cy([-T, T]; H:(RY)).
Moreover, continuous dependence on initial data holds, that is,
nlgglo [un — ull Lo 1,11y = 0

for any uo, € HER?) satisfying uo, — uo in HL(RY) and any compact time interval I C
(Tmins Trmaz), where uy, is a solution to (NLSq) with data uy, (0, - ) = won and (Tmin, Tmas) denotes
the mazimal existence time of the solution w.

We turn to time behavior of solutions to (NLSp). We will consider the following time behav-
iors.

Definition 1.3 (Time behaviors of solutions to (NLSp)). Let X be a Hilbert space and ug € X.
Let u be a solution to (NLSy) on (Tin, Tmax), where (Tiin, Tmax) denotes the maximal existence
time of the solution u.

o (Scattering) We say that u scatters in positive time (resp. negative time) if Tinax = 00
(resp. Tmin = —00) and there exists 14 € X (resp. ¢— € X) such that

. —itA : —itA

Jim e Bu(t) — gy lx = 0, (p im [l () i x = o) ,
which implies that the nonlinear solution u approaches a linear solution e®“4), (resp.
e*Ap_)in X as t — +oo (resp. t — —00).

e (Blow-up) We say that u blows up in positive time (resp. negative time) if Tiax < 00
(resp. Tipin > —00).

o (Grow-up) We say that u grows up in positive time (resp. negative time) if Tiax = 00
(resp. Tinin = —o0) and

lim sup [lu(t)| x = oo, <resp. limsup ||u(t)|x = oo> )
t——+00 t——o0

e (Standing wave) We say that u is standing wave if u = ¢“!Q,, o for w € R, where Q¢
satisfies

_wa,O + AQw,O = —\pr pileD, HAlS Rd- (SPw,O)

Remark 1.4. If the Schrodinger group e is unitary on X (e.g. L2, HY, H'), then the definition
of scattering can be written as

lim_Ju(t) — ¢4, ]|x =0, <p lim ||u<t>—eim¢|xzo>.

t—+o00
We also define the ground state solutions to (SP, ).
Definition 1.5. A set of the all ground state G, ¢ is defined as
G0 :={¢ € Aupo : 56,0(¢) < Suo(¥) for any ¢ € Ay o},
Sw(®) = 5 M(9) + Bo(9),
Ao = {9 € Hy(RY) \ {0} : S}, 4(¢) = 0},
where S, ¢ is called action.

There are two contradictory effects for time behavior of solutions. The linear term has dis-
persive effect, which tends to flatten the solution to (NLSy) as time goes on (see Figure 1). The
nonlinear term with A = 1 has a defocusing effect, which is the same effect with dispersive effect.
The nonlinear term with A = —1 has a focusing effect, which tends to concentrate the solution
to (NLSp) (see Figure 2).
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One may think that (NLSy) with a defocusing nonlinearity has only scattering solutions. How-
ever, it is false since if the nonlinear power p is sufficiently small, then (NLSp) is like another
linear equation. On the other hand, if the nonlinear power p is large and the solution u is small,
then the nonlinear term is more smaller, so we expect that the solution w scatters. We formally
get the boundary of the nonlinear power p. We consider the final state problem:

i+ Au = —|ulP"tu, (t,z) € R x RY,
u(t, z) — ey

N A

Figure 1 Figure 2

Estimating the integral equation by using a dispersive estimate (Proposition 3.3), we have

o0
itA —1
lu(t) — 2y 2 < / () 15 u(5)ll 2 ds

X isA -1 < [T ey -1
~ €2 i ([0 1o+l z2ds S s— 7 [Yrllzy 19l zds.
¢ ¢

Ifp>1+ %, then the last integral is finite and converges to 0 as t — oo. Barab [5] and
Strauss [106] showed that if p < 1+ 2, then non-trivial solutions to (NLSp) do not scatter in
the L2-sense, so we can not expect get a scattering result under the assumption p < 1 + %.

Instead, Hayashi-Naumkin [61] showed the following modified scattering result (see also Carles
[12], Cazenave-Naumkin [15], Ginibre-Ozawa [47], Hayashi-Naumkin [62], and Ozawa [103]).

Theorem 1.6 (Modified scattering, [61]). Let 1 < d < 3 and % < s<1+2 anduy €
H*(RY) N FH*(R?Y). There exists eg > 0 such that for any 0 < e < o, if ||uo||gsnFus < €, then
there exist unique function W, € L>®(R%) N L?(RY) such that the asymptotic formula

2
“ log t) + (9(675_26““5 log t)

and the estimate

; A
H}'(e_’mu) — Wi exp <2z’|W+|3 log t) < et it log t

L2NLge

hold, where w is the solution to (NLSg) with (I1Co) and F is the Fourier transform.

We see scattering solutions to (NLSp) with initial data near 0 (small data) under the assump-
tion p > 1+ %. In this case, the small data scattering results is given by many authors in the
suitable sense (e.g. see [16, 44, 45, 63, 65, 114, 116]).

We state known results for time behavior of (NLSy) with a defocusing nonlinearity.

Theorem 1.7 (Scattering solutions to (NLSy) in L2-critical, 27, 29, 30]). Letd > 1, p=1+13,
and A = 1. Let ug € L2(RY). Then, a solution to (NLSg) with (ICq) scatters.

Theorem 1.8 (Scattering solutions to (NLSp) in inter-critical I, [42, 78, 94, 95, 96, 122]). Let
d>3and A =1. Let u : (Tin, Trnaz) X R — C be a mazimal lifespan solution to (NLSg) with
(ICo) satisfying u € L (Tyin, Trmaz; H®), where s, is defined as (1.1). If either of the following
conditions hold:

e 1<s.<3ifd=3,5<s.<1lifd>4,

o ug € H (R and s, € (0, HU,),
then u scatters.
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Theorem 1.9 (Scattering solutions to (NLSp) in inter-critical II, [7, 20, 26, 108]). Let d = 3,

p=3, and A\ = 1. Ifug € H:(R®) for s > %, then the solution u to (NLSg) with (ICy) scatters.

Theorem 1.10 (Scattering solutions to (NL_SO) in H'-critical, [21, 85, 105, 117, 118]). Let
d>3,p=1+5 and A\ = 1. Let ug € HL(R?). Then, a solution to (NLS) with (IC)
scatters.

We turn to the focusing case. Before the Kenig-Merle’s work [77], only time behavior of the
characteristic solutions had been observed. We note that the small data scattering above is
also one of the framework. The following virial functional is very useful when we consider time
behavior of solutions to (NLSy).

.. . dip—1
(Virial functional) Ko (f) := D428, 0(f) = 2|]VfH%g - W‘f“i}}}l
where D is defined as
d d
DMfi= oo e (), DVF(f) = | T (e ()
dA |y dX |y

for (o, B) € R?, a function f, and a functional .%. The virial functional has the next property:
If zup € L2(R?), then

d? 9
e lru)lizs = 4Ko(u(?))

for each ¢t € (Tinin, Tmax). Roughly speaking, this equality implies that if Ko(u(t)) > 0 then the
solution u to (NLSp) goes far away from the origin and if Ky(u(t)) < 0 then the solution u to
(NLSp) approaches the origin. Glassey [48] and Ogawa—Tsutsumi [100] proved a existence of
blow-up solutions by controlling the virial functional.

Theorem 1.11 (Blow up solutions, [48, 100]). Letd > 1, 1 + % <p<oifd=12 1+ % <
p<1+ d% ifd >3, \=—1, and ugp € H:(R?). Then, the followings hold:
e (Finite variance) If zug € L2(R?) and “Eg(ug) < 0 or Eg(ug) = 0, Im{x - Vug, ug) 2 <
07, then the solution u to (NLSy) with (ICq) blows up.
e (Radial) If uy € H}ad(Rd), Ep(up) < 0, and we suppose an additional assumption p <5
when d = 2, then the solution u to (NLSy) with (ICy) blows up.
Berestycki-Cazenave [8] and Cazenave—Lions [14] observed solutions to (NLSp) with initial
data near the ground state to (SP,,).

Theorem 1.12 (Stability and instability of standing waves, [8, 14]). Let d > 1, 1 < p < oo if
d=1,2,1<p<1+ ﬁ if d >3, and A = —1. Let Q0 be the ground state to (SPy ).
o (Stability) If 1l <p <1+ %, then the standing wave €“'Qy, o is stable in the next sense:
for any € > 0, there exists § > 0 such that if ||ug — Quollg1 < J, then the solution u to
(NLSo) with (ICy) satisfies

inf u(t) — et - - <€
ot () = € Quo(- =l

for any t € R.

o (Instability) If 1 + 4 < p < co withd = 1,2 and 1 + 3 < p < 1+ 745 with d > 3,
then the standing wave e'Qy, o is unstable in the next sense: for any ¢ > 0, there exists
ug € HY(RY) such that |[up — Qu ol < € and the solution u to (NLSq) with (ICq) blows
up.

By the Kenig-Merle’s work [77], we can see that the ground state @, o to (SP,, o) is a boundary

between initial data with different types of time behavior solutions. In the argument, we consider
the following minimization problem and sets to control a sign of the virial functional.

nwo = inf{Su0(9) : ¢ € Hy(RY) \ {0}, Ko(¢) =0},



PWyg = | J{¢ € Hi(RY) : Suo(0) < nwo, Ko(¢) >0},
w>0

PW_y:= | J{¢ € Hy(R?) : Su0(¢) < nwo, Ko() < 0}.
w>0

Then, sets PW, 1 and PW_; are invariant under the time development of (NLSp). In other
words, if ug € PW, 1 then u(t) € PW, 1 for each t € (Tinin, Tmax) and ug € PW_; then u(t) €
PW_; for each t € (Tinin, Tmax)- It is well known for inter-critical case (1 + % <p<l+ ﬁ)
that a set of minimizers to n, o corresponds to G, o, that is, M, o = G, o holds, where

Mo = {6 € Hy(RY)\ {0} : Su,0() = nwo, Ko(9) = 0}.

Therefore, we can rewrite PW, ; and PW_ as

PWiy = J{¢ € Hy(R?) : Su0(¢) < Su0(Quao), Ko(¢) >0},

w>0

PW_; = | J{¢ € Hy(RY) : S0(9) < Su0(Quip), Kol9) < 0}
w>0
for 1+% <p<xifd=1,2, 1+§ <p< 1+$ if d > 3, and a ground state Qo to (SP,0).
Using PW, ; and PW_ ;, the following known results for time behavior of solutions to (NLSy)
with a focusing nonlinearity are shown in [1, 2, 32, 33, 35, 38, 67].

Theorem 1.13 (Time behavior of solutions to (NLSg) below the ground state in inter-critical).

Letd>1, 1+§<p<oo ifd=1,2, 1—|—§<p<1+ﬁ ifd>3, and A = —1.
o (Scattering) If ug € PWy 1, then a solution u to (NLSg) with (ICy) scatters.
e (Blow-up or grow-up) If ug € PW_ 1, then a solution u to (NLSg) with (ICq) blows up
or grows up. Moreover, if zug € L2(R?) or “d > 2, p <5 ifd =2, and uy € H}ad(}Rd) 7,
then the solution u to (NLSg) with (ICy) blows up.

The assumptions in Theorem 1.13 have the next equivalent conditions.

Proposition 1.14. Letd > 1,145 <p<ooifd=1,2, 1+3 <p<1l+ L ifd>3, A= —1,
and s, be defined as (1.1). Let ug € HL(R?) and Q0 be a ground state to (SPyp). Then, the
following two conditions (1) and (2) are equivalence.

(1) There exists w > 0 such that Sy, 0(uo) < Sw,0(Quw,0)s (1.2)
1—sc 1=sc
(2) M(uo) *< Eo(uo) < M(Q10) * Eo(Q10)- (1.3)
Under the above condition, the following two conditions are equivalence.
[ ] KO(UO) 2 0
1—sc l1—sc

o lluoll;2° IVuollz <lQuollzz* IVQiollzz (1.4)

Under the condition (1) (or (2)), the following two conditions are equivalence.

° K()(U()) <0
1—sc l1—sc

o lluoll 5 IVuollzz > 1Quoll 3 IVQ1ol

L2 (1.5)
From Proposition 1.14, we can rewrite Theorem 1.13 as the next theorem.

Theorem 1.15. Letd > 1,1+ 4 <p<ooifd=12 1442 <p<1+ % ifd>3, and
A= —1. Let Q1 be a ground state to (SP, ) with w = 1. Suppose that ug € HL(R?) satisfies
(1.3).

o (Scattering) If (1.4) holds, then a solution u to (NLSp) with (ICy) scatters.



e (Blow-up or grow-up) If (1.5) holds, then a solution u to (NLSg) with (ICy) blows up
or grows up. Moreover, if zug € L2(R?) or “d > 2, p<5ifd=2, and ug € Hrlad(Rd) 7,
then the solution u to (NLSp) with (I1Cy) blows up.

The expression in Theorem 1.15 is based on the following Gagliardo-Nirenberg inequality.
Proposition 1.16 (Gagliardo-Nirenberg inequality, [3, 40, 41, 99, 111, 121]). Let d > 1, 1 <
p<ooifd=1,2,andl <p<1+ d% if d > 3. Then, the following inequality holds:

1 41— de=1) d(p—1)

”f”i;—l < CGNHfH; : HVfHL22 (1'6)
for any f € HY(R?), where Cgy is the best constant, is attained by the ground state Q1 to
(SPuyp) withw=1if1<p<oo (d=1,2) and 1 <p <1+ ;25 (d >3), and is attained by the
ground state Qo to (SPy) withw =0 ifp=1+ 7% (d>3).

Remark 1.17. We note the following point for Proposition 1.16.

elfd>3andp=1+ %, then the inequality (1.6) is called usually Sobolev inequality
(Lemma 2.3).

d—2
, g2
e (Qo,0 is the Talenti function and can be written as Qoo = (1 + %) °

Using the expression of Theorem 1.15, the following known results in L?-critical case is given
(see [28]).
Theorem 1.18 (Scattering solutions to (NLSy) below the ground state in L?-critical). Let
d>1,p=1+% and X\ = —1. Let Q1 be a ground state to (SP, ) withw = 1. Ifug € L2(RY)
satisfies ||uollr2 < [|Q10llz2, then a solution to (NLSg) with (ICo) scatters.

Using the expression of Theorem 1.15, the following known results in H'-critical case is given
(see [31, 77, 84]).

Theorem 1.19 (Time behavior of solutions to (NLSy) below the ground state in H!-critical).

Letd>3,p=1+ ﬁ, and A = —1. Let Qoo be a ground state to (SP, o) with w = 0. Suppose
that ug € H;(Rd) satisfies Eo(up) < Ep(Qo,0)-
e (Scattering) If either of the followings hold:
o d >4 and [[Vuol[rz < [[VQoollr2,
0 d=3, ug € HL,(RY), and [Vuolz2 < V@00
then a solution u to (NLSg) with (ICy) scatters.
e (Blow-up) If “vug € L2(R?) or ug € HY ,(R?Y)” and [Vuol[zz > [[VQoollz2, then a
solution u to (NLSp) with (ICy) blows up.
As Theorem 1.13, 1.18, and 1.19, a sign of the virial functional of solutions to (NLSp) with
initial data below the ground state is invariant from a characterization of the ground state with

1—sc
the virial functional. If we try to observe on the threshold level (M (Q1,) > Eo(Q1,)) or pull
up the threshold level, then we need more detailed investigation for the ground state @) o to
(SP,.0). To consider initial data on the threshold level, that is, initial data satisfying

2
Lz

1—sc

1-sc
M (ug) = Eo(uo) = M(Q1,0) ¢ Eo(Q10), (1.7)
we use a property of the ground state Q0 to (SPy0): If

d(p—1) d(p—1)
1= 5

IA1PE = Canllf117- IVFlL"

then there exist \g € C and xg € R? such that f(z) = M\Q10(x + x0) for 1 + % < p< oo if
d=1,2and 1+ % <p<l+ ﬁ if d > 3. Fortunately, PW, 2, PWg, and PW_ 5 are invariant
under the time development of (NLSp), where

PW, 5= {up € HX(R?) : (1.7) and (1.4)},




1—sc 1—sc

PWq = {uo € Hy(R?) : (1.7) and |luol ;3 |Vuollzz = 1Quoll ;3° IVQuollzz},
PW_ o = {up € HX(R?) : (1.7) and (1.5)}.
Theorem 1.20 (Time behavior of solutions to (NLSp) on the threshold in inter-critical, [11, 37,
50)). Letd>1, 1+ 3 <p<ooifd=1,2,1+3<p<l+ 4 ifd>3, and \=—1.

o (Ezistence of special solutions) There exist two radial solutions Q4 and Q— to (NLSp)
with initial data Qo 4, Qo— € Nser H2(R?) such that the followings hold:

o M(Q4) =M(Q-) = M(Q1,0) and Ey(Q+) = Eo(Q-) = Eo(Q1,0),
o Q4 and Q_ are defined on [0,+00) and there exist eg > 0 and C > 0 such that

1Q+(t) — €"Q10 m < Ce !

for any t >0,

o [VQo+llr2 < [[VQ1pllzz holds and Q4 scatters in negative time,

o IVQo,~llzz > [[VQ1ollr2 holds and Q- blows up in negative time.

e (Time behavior of solutions on the threshold level) Let u be a solution to (NLSg) with
(ICy).

o If up € PW, o, then either u scatters or u = Q4 up to the symmetries.

o If up € PWg, then u = eith,g up to the symmetries.

o Ifug € PW_5 and “up € H. ,(R?) or zug € L*(RY)”, then either u blows up or
u = Q_ up to the symmetries.

Theorem 1.21 (Time behavior of solutions to (NLSg) on the threshold in H'-critical, [11, 36,
87,109]). Letd >3, p=1+ %5, and A= —1.
o (Ezistence of special solutions) There exist two radial solutions Q4 and Q— to (NLSp)
with initial data Qo 4, Qo,— such that the followings hold:
o Eo(Q+) = Eo(Q-) = Eo(Qoo),
o Q+ and Q_ are defined on [0,4+00) and satisfy
Jim (1Q=(t) = Qooll 7y =0,

o [VQo+llr2 < [IVQopllzz holds and Q4 scatters in negative time,
o [VQo,-lz2 > [[VQoollz2 holds and if d > 5, then Q- blows up in negative time.
e (Time behavior of solutions on the threshold level) Let ug € HL(R?) and u be a solution
to (NLSp) with (ICy).

o Ifug € PW4 2 and “uy € H},ad(Rd) when d = 3,47, then either u scatters or u = Q4
up to the symmetries.

o If up € PWgq, then u = Qo up to the symmetries.

o If ug € PW_5 and ug € H' ,(R?), then either u blows up or u = Q_ up to the
symmeltries.

Next, we pull up the threshold level. We consider initial data satisfying
1—sc¢ 1—sc¢
M e (ug) Eo(ug) < M = (Q1,0)(Eo(Q10) + £7) (1.8)

for g > 0. Unfortunately, it does not seem easy for us to find invariant sets under the time de-
velopment of (NLSp). In the scene, Nakanishi-Schlag [98] observe time behavior of the solutions
to (NLSp) by developing and using the one-pass theorem, which implies that if a solution u to
(NLSp) passes in and out of a small neighborhood {£Q. ¢}, then it can never come back again.

Theorem 1.22 (Time behavior of solutions to (NLSp) above the ground state, [98]). Let d =
p =3 and A\ = —1. Then, there exists eg > 0 such that the solution u to (NLSg) with radial data
ug € HL ,(R3) in (1.8) satisfies one of the followings:

(1) scattering in both time,

(2) blow-up in both time,

(3) scattering in positive time and blow-up in negative time,
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4) blow-up in positive time and scattering in negative time,

5) trapped by CSM in positive time and scattering in negative time,
6) scattering in positive time and trapped by CSM in negative time,
7) trapped by CSM in positive time and blow-up in negative time,
8) blow-up in positive time and trapped by CSM in negative time,
9) trapped by CSM in both time,

where “trapped by CSM in positive (resp. negative) time” means the solution u to (NLSy) stays
in the e-neighborhood of CSM in HL(R3) forever after some time (resp. before some time),
where the center-stable manifold CSM s defined as

CSM = | J{e”Quo: 0 € R}.

w>0

Moreover, the all sets of initial data is not empty, whose solution satisfies (1) ~ (9).

In the point of stability of the ground state Q0 to (SP, ) (see Theorem 1.12), it seems that
mass subcritical and “mass critical, inter critical, or energy critical” are different. Theorem 1.13
~ 1.22 (case mass critical, inter critical, or energy critical) is based on instability of the ground
state Qu0 to (SPy 0). On the other hand, we can not expect that the ground state Q.o stands
for a boundary between initial data with different time behavior solutions in mass subcritical
case since it is stable. In the situation, Masaki and his co-author showed the following results.

Theorem 1.23 (Masaki, [89, 91]). Letd > 1, max{l—l—%, 1—{—%”} <p< 1+%, A=—1,andug €
FHIs(RY), where s, be defined as (1.1) and woll zz1sel == [IF w0l griser = |||:U||5°|u0||ngc. Then,
(NLS) with (ICq) is locally well-posed in FH!*|(R?). Moreover, there exists uco € FH*|(R?)
such that the solution u. to (NLSo) with initial data u.o does not scatter in positive time and
lteoll £1se) = Le, where L. is defined as

le := inf{||uo|| zfp1se) : sOlUtion u to (NLSg) with (ICq) does not scatter in both time.}. (1.9)

Theorem 1.24 (Killip-Masaki-Murphy—Visan, [81]). Letd > 1, A € {£1}, max{1+ 2 < p <
1+ ﬁ}, to € [—00,00), and e "0Buy € FHIS. Let u be a solution to (NLSg) with initial data
u(to) = ug. If u satisfies

sup Hefimu(t)ﬂfmsa < 0,
teI’Vﬂﬂn’lf

then u scatters in positive time.

Theorem 1.25 (Killip-Masaki-Murphy—Visan, [82]). Let d > 3, A € {£1}, and s. be defined
as (1.1).
e (Ezistence of a soliton-like minimizer) Let po(d) < p < 1+ 2. If E. < oo, then there
exists a radial almost-periodic solution u. : R x R* — C such that
(1) limsup,_ o [[ue(t)l| gz = Ee,
1
(2) uc € (CeNLP)R; Hze N HZ),
(3) N(t) = 1. In particular, the orbit {u.(t)}icr is precompact in H*(R?),
where po(d) is

— \/27
pold) = 4 =2/ IR0 (3 < < 8),
L+ g1 (d>9),

E. is defined as

w s a radial solution to (NLSy) and
u does not scatter in positive time. ’

E.:=inf ¢ limsup [ju(t)]zs.
t,/'sup Imax *
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and almost periodic implies that there exist N : I — (0,00) and C : (0,00) — (0, 00)
such that a radial solution w € L°(I; H <))\ {0} to (NLSy) satisfies

rad

sup / }Wﬁmu@ﬁm+/ |l€|*<a(t, &) de p <1
tel | Jial>5H €1>C(mN(2)

N(t)
for any n > 0.

e (Minimal counterexample) Let 1 + di—l <p<l+ %. If E. < oo, then there exists an
almost periodic solution u to (NLSg) such that u attains E. and fits into one of the
following scenarios:

o (Self-similar scenario) I = (0,00) and N(t) = 3.

o (Cascade scenario) I =R, sup,cp N(t) < 1, and there exists a subsequence {t,} of
times such that N(t,) — 0 as n — co.

o (Soliton scenario) I =R and N(t) = 1.

e (Case of defocusing) Let A\ = +1 and po(d) < p < 1+ 5. If a radial solution u to (NLS)
satisfies

sup. ull e < oo,
t€lmax

then u scatters.

e (Case of focusing) Let A = —1 and 1 + ﬁ <p<l1l+ %. Let Q1,0 be the ground state
to (SPuy) with w = 1. Then, E. < ||Q1,0| s holds and E. is attained. Moreover, if
po(d) <p <1+ %, then there exists an almost-periodic solution u. to (NLSg) such that
uc attains E. and has the above properties (1) ~ (3).

Remark 1.26. (NLSp) is ill-posed in H*®(R%) for sc < 0 (see [17, 80]). However, if we restrict
to radial data, (NLSp) is locally well-posed in H*:(R?) for d > 3 and 1 + ﬁ <p<1l+3 (see
[51, 66]).

In this paper, we deal with the following equations:

e (Nonlinear Schrédinger system)

{i@tu(t,x) + Au(t,z) = —2v(t, z)u(t,z), (t,z) € R xRY, (NLS)

i0w(t, ) + kAv(t,z) = —u(t,z)?, (t,z) € R x RY,

where k > 0.
e (Nonlinear Schrédinger equation with a potential)

iatu(ta '1") + AVU(ta CC) = *|U(t, x)’p_lu(ta :E)v (tv I‘) € R x Rd? (NLSV)
where Ay ;== A —V and V : R — R is a given potential.
We consider the Cauchy problem of these equation with initial data
(u(0,z),v(0,2)) = (uo, vo) if (NLS),
u(0,2) = up(x) if (NLSy).
and time behavior of solutions to the equations.

1.2. Nonlinear Schrodinger system. We consider

1
i+ —Au = \vu, (t,z) € R x RY,
2n (1.10)
1 .
10y + ﬁAv =pu?,  (t,z) e R x RY,

where 1 < d < 6 and n,N > 0, \,u € C\ {0} are constants. From physical point of view,
(1.10) is deduced from the Raman amplification in a plasma (See [19] for more detail). When
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a so-called mass resonance condition N = 2n (k = 3 in the case (NLS)) holds, (1.10) is also

2
regarded as a non-relativistic limit of the nonlinear Klein-Gordon system
1 nec? _
50 an)t - —Au + 7u = —\u,
1 2, Nc? 9
il A 0T = -
paNV TN v T T

(see [64]). If A = v@ for some v > 0, then mass, energy, and momentum are conserved. Then,
(1.10) becomes (NLS) by the scaling

S (e (e R e

Thus, we consider not (1.10) but (NLS). The equation (NLS) has scale invariance: Since the
nonlinear terms are quadratic, if (u,v) is a solution to (NLS), then

(upy (t, @), v\ (t, 7)) = ()\QU()\Qt, Azx), /\211()\215, Az)) (1.11)
is also a solution to (NLS) for A > 0. Corresponding transform of initial data is
((u0) (3 (), (v0) (@) == (Nuo(Aa), Nwo(Ax)) (1.12)

for A > 0. H*e-norm (s. = ¢ 2) is invariant under the scaling (1.12), so the scale critical Sobolev
space is H*¢(R?). Therefore, the equation (1.10) is called L2-subcritical if d < 3, L?-critical if
d=4, H3-critical if d = 5, and H'-critical if d = 6. When x = %, the identities
) = O R )~ 2y),
(P )| () = e PO (031 £ (0 — 216y)

imply that the class of solutions to the linear Schrodinger equation is invariant under Galilean
transform

(1.13)

[e2"

(u,v) — (em'goe_it‘gopu(t, x — 2&ot), eQiz'goe_Qitlfo‘Qv(t, x — 2&pt)) (1.14)

for £, € R?. The invariance is inherited in the nonlinear equation (NLS).
Hayashi-Ozawa-Tanaka [64] showed the following local well-posedness in L? x L?, H' x H',
and H' x H' N |z|71L? x |z|1L2.
Theorem 1.27 (Local well-posedness in L% x L2, [64]). If1 < d < 3, then for any p > 0, there
exists T(p) > 0 such that for any (ug,ve) € L*(R?) x L2(R?) with ||(ug,vo)||2xr2 < p, (NLS)
with (IC) has the unique solution (u,v) € X(I) x X(I) with I = [-T(p),T(p)], where
X(I) = (Cen LE)I; L) N L (I L),

(go,7m0) = (4,00) if d =1, 0 < q% =1- % < 1 with ro sufficiently large if d = 2, and

(qo,m0) = (2, d2d2) if d > 3. If d = 4, then for any (up,vo) € L*(R*) x L?(R*), there exists

T(ug,vo) > 0 such that (NLS) with (IC) has the unique solution (u,v) € X(I) x X(I) with

I = [T (up,vo), T (ug,v9)]. Moreover, the unique solution (u,v) to (NLS) conserves its mass:
(Mass) M (u,v) := ||ull72 + 2[jv[|72

with respect to time t.

Theorem 1.28 (Local well-posedness in H! x H', [64]). If1 < d < 5, then for any p > 0, there
exists T(p) > 0 such that for any (ug,vo) € H'(R?) x HY(R?) with ||(uo,vo)|| g < p, (NLS)
with (IC) has the unique solution (u,v) € Y(I) x Y(I) with I = [-T(p),T(p)], where

Y(I) = (Cen LE)(I; Hy) N LP (I W),
(qo,70) = (4,00) ifd = 1,0 < 2 =1~ % < 1 with ro sufficiently large if d = 2, and

40
(qo,m0) = (2, d2d2) if d > 3. If d = 6, then for any (ug,vo) € H'(R®) x HY(RY), there erists

v
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T (up,vo) > 0 such that (NLS) with (IC) has the unique solution (u,v) € Y (I) x Y(I) with
I = [—T(ug,v0), T (ug,v0)]. Moreover, the unique solution (u,v) to (NLS) conserves its mass,
energy, and momentum:

(Energy) E(u,v) := | Vullz + &[|Vv[F2 — 2Re/ v(m)u(x)zdx,
Rd

(Momentum) M(u,v) = Im Rd{u(ac)Vu(x) + v(z)Vo(z) }da

with respect to time t.

Theorem 1.29 (Local well-posedness in H' x H' N |z|7'L% x |z|7'L2, [64]). If 1 < d < 5,
then for any p > 0, there exists T(p) > 0 such that for any (ug,vo) € HY(RY) x HY(R?) with
(zug, zvg) € L2(RY) x L2(RY) and ||(ug, vo)|| grsmr + ||[(zuo, 2v0)||p2x 2 < p, (NLS) with (IC)
has the unique solution (u,v) € Z(I) x Z(I) with I = [T (p),T(p)], where

Z(I) :={uweY):aue X(D}, |lulza) = lullya) + lzulxa)-

If d = 6, then for any (ug,vo) € H'(R®) x HY(R®) with (zug,zve) € L*(R®) x L?(R®), there
exists T'(ug, vg) > 0 such that (NLS) with (IC) has the unique solution (u,v) € Z(I)x Z(I) with
I = [T (up,v0), T (uo,vo)]-

We turn to time behavior of solution to (NLS), which is defined as a similar to (NLSy). We
define time behaviors of solutions to (NLS) clearly.

Definition 1.30 (Time behavior of solutions to (NLS)). Let (ug,v9) € X x X for a Hilbert
space X and (u,v) be a solution to (NLS) with (IC). Let (Tinin, Tmax) be the maximal lifespan
of the solution (u,v) to (NLS).
e (Scattering) We say that the solution (u,v) to (NLS) scatters in positive time (resp.
negative time) if Tihax = 00 (resp. Thin = —o0) and there exists (¢4,94) € X x X
(resp. (¢—,1—) € X x X) such that
lim (e 2u(t), e B0 (t)) = (¢4, 94) [ xxx =0,

t—+o00
(vesp.  tim_[[(e="2u(t), e 20(t)) = (6-, v-)llxxx = 0).

e (Blow-up) We say that (u,v) blows up in positive time (resp. negative time) if Ty ax < 00
(resp. Tinin > —00).

e (Grow-up) We say that the solution (u,v) grows up in positive time (resp. negative
time) if Tax = 00 (resp. Tnin = —00) and

limsup  [[(u(t), v(t))[lxxx = .
t——+o0 (resp. t——00)

e (Standing waves) We say that the solution (u,v) is a standing wave if (u,v) forms

(€™, e?h),,) for w > 0, where (¢, 1) is a solution to the following elliptic equation:

_W¢w + Ad)w = _2ww¢wa U Rda
—2wihy + kAY, = —¢2, 1z € R?

w?

(SP)

Hayashi-Li-Ozawa [60] investigated solutions to (NLS) near the trivial scattering solution
(0,0) under (ug,vo) € H2 2(RY) x H2 2(RY) (d > 4) and (ug,vo) € FH2(R?) x FH2(R3)
with || f ||fH 1= fllez+If H]-'H 1 - Hayashi-Ozawa—Tanaka [64] proved also the existence of the
ground sate to the elliptic equation (SP,,) for 1 < d < 5. We recall the ground state to (SP,,).
A set of the all ground state G, is defined as

Go i ={(0,0) € Ay : Su(9, 1) < Su(P, V) for any (P, V) € A},
(Action)  Su(0,4) i= S M(6,9) + 55(6,0),
Ay i={(6,9) € H'(R) x H'(R)\ {(0,0)} : (¢, 9) = 0.
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Dinh [23, 24] observed solutions to (NLS) with data (ug,vo), which is near the ground state
to (SP,) and showed a stability result with d = 3 and an instability result with d = 4,5. The
existence of blow-up solutions is known in [64, 101]. Hayashi-Ozawa-Tanaka [64] proved a blow-
up result under the finite variance condition and Ogawa—Uriya [101] gave a blow-up result under
the radial condition. In [53] (or a masters’s thesis), the author showed the following result under
1

the mass-resonance condition Kk = 5-

Theorem 1.31 (H. [53]). Letd =5 and k = 5. Let (ug,vo) € H*(R®) x HY(R®) and (¢.,,.,) be
the ground state to (SP,,). We assume that there exists w > 0 such that S, (ug, vo) < Sw(Pw, Vw).
(1) If K(ug,vo) > 0, then the solution (u,v) to (NLS) with (IC) scatters.
(2) If K(ug,v0) < 0, then the solution (u,v) to (NLS) with (IC) blows up or grows up.
Moreover, if (zug,zvg) € L*(R%) x L*(R3) or (ug,vo) is radially symmetric, then the
solution (u,v) to (NLS) with (IC) blows up,

where a functional K is called the virial functional and is defined as
K(f,9) := D*""S,(f.9) = 8V fII72 + 85|Vl L2 — 20Re(g, f*) 2.

The Galilean invariance plays an important role in the argument of scattering part in Theo-
rem 1.31. Roughly speaking, (NLS) with the mass-resonance condition is similar to the single
nonlinear Schrodinger equation (NLSp). On the other hand, it is not clear whether (NLS) is
similar to the single one in general. There are few works related to the global dynamics of the
(NLS) without mass resonance condition. Inui-Kishimoto-Nishimura [72] obtained a scattering
result below the ground state in the L2-critical case (d = 4) under the assumption of radial
symmetry. Moreover, they also showed a blow-up result below in the case d = 5,6 and a blow-
up or grow-up result in the case d = 4 under the assumption of radial symmetry in [73]. The
author-Inui-Nishimura [58] showed a scattering result below the ground state for (NLS) without
the mass resonance condition.

Theorem 1.32 (H.-Inui-Nishimura, [58]). Let d = 5 and k # 5. Let (ug,v9) € H} ,(R5) x
H! (R®) and (¢u, ) be the ground state to (SP,). We assume that there exists w > 0 such
that S, (uo,v0) < Su(Puw, Vw) and K (ug,vo) > 0. Then, the solution (u,v) to (NLS) with (IC)

scatters.

Remark 1.33.
(1) If (ug,vo) € HL 4(R%) x HL ;(R®), then the solution (u(t),v(t)) is also radially symmetric
for all time and its momentum M (u(t),v(t)) is identically zero.

(2) In the opposite case K (up,v9) < 0, Inui-Kishimoto—Nishimura [73] showed that the
solution blows up in both time directions. And so, the behavior of the radially symmetric
solution to (NLS) below the ground state completely determined by the sign of the

functional K at initial time.

Remark 1.34. After Main theorem 1.32 was announced on arXiv, Wang—Yang [120] gave the
same result independently by using the argument in [32]. Moreover, they also proved a scattering
result for non-radial solutions under |k — 1| < & by using the argument in [33].

In the four (mass critical case) and five (inter critical case) dimensions, the ground state
(dw, Yw) to (SP,) expresses a sharp threshold between scattering solutions and other solutions
(see [72], Theorem 1.31, and Theorem 1.32). However, three dimensional case seems to be
different from those cases as the single equation in the point of stability of the ground state

(bw, V) (see [23, 24]). In three dimensions, we study (NLS) with mass resonance condition

(k = %) in a homogeneous weighted space FH %(R?’), not in the homogeneous Sobolev space

Jine (R3) since we want to work with the scaling critical space without radial symmetry. Let us
make the notion of the solution clear. We need a slight modification of the notion compared with
L? or H! solutions because the Schrédinger flow is not unitary in the homogeneous weighted

space FH.
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Definition 1.35 (Solution). Let I C R be a nonempty time interval. We say that a pair
of functions (u,v) : I x R® — C2 is a solution to (NLS) on [ if (e‘itAu(t),e_%“Av(t)) €
C't(I;]:H%) X C’t(I;]:H%) and the Duhamel formula

. . t .
e Bu(t) = e T Pu(r) + 22’/ e~ 52 (va)(s)ds,

t
e—%itAv(t) =€_§iTA’U(T)+Z‘/ e—%isA(,uZ)(s)ds

holds in FH?2 for any t,7 € I.

This definition of solutions is not time-translation invariant. That is, if (u,v) is a solution
to (NLS), then (u(- 4+ 7),v(- + 7)) is not necessarily a solution for 7 € R. To state the local
well-posedness for (NLS), we introduce the function spaces Xy, (t), Wi, and W defined by
norms

s = | (—a) P4

= . 1.15
17 = 16133 (1.15)

-

)
r
La:

For a space X;j (t), we omit the second exponent when r = 2, that is, X5 (t) = Xu2(t).
We discuss these function spaces in more detail in subsubsection 3.1.2 and 3.1.3, below. The
following is our result on the local well-posedness. A more detailed version is given later as
Theorem 3.18.

Theorem 1.36 (Local well-posedness in FH? x ]-"H%) Letd =3 and k = % For any initial

time to € R and data (up,vo) € Xll//22(to) X Xll/Z(to), there exist an open interval I > ty and a

unique solution (u,v) € (C’t(I;Xll//QQ) NWi(1)) x (Cy(I; Xll/Z) NWa(I)) to (NLS) with the initial
condition (u(ty),v(to)) = (uo,v0). Moreover, the solution depends continuously on the initial

data.

Now, we turn to the large time behavior of solutions to (NLS). It can be said that the main
purpose is to investigate threshold phenomena between scattering solutions near a prescribed
“trivial scattering set” and non-scattering solutions, taking a system nature into account. We
define S; as the set of initial data (ug,vo) € FH2 (R3) x FH2 (R3) for which the corresponding
solution scatters. A straightforward generalization of the quantity (1.9) is

inf {(Juol2 , +allwoll2 )2 (uo,w0) & S | (1.16)

with some constant o > (0. However, there may not be a strong motivation to study the distance
from the trivial solution (0, 0) other than the similarity to that in the single equation case, (1.9).
We want to find a different way of sizing which is connected with a system nature. To this
end, we look at the fact that not only the zero solution (0,0) but also all solutions of the form

(0, e%imvo) can be also regarded as a trivial scattering solution for arbitrary vg € FH %(R?’).
Taking this fact into account, one natural choice of the scattering threshold would be with

respect to the distance of a data from the set {0} x FH 2 (R3). This choice leads us to consider
the following optimization problem:

Ly, 1= inf{Hu()HfH% : (uo,v0) € S+} € (0, 00]. (1.17)

By using a stability type argument, we will show that ¢,, > 0 for any vy € F H %(R‘g) (see,
Proposition 3.20). The following criterion is obvious by the definition of /,,.

Proposition 1.37 (Sharp small data scattering). Letd =3 and k = 1. Let (ug, vo) € FHz (R3)
fo%(Rg) and (u,v) be the solution to (NLS) with (1C). If ||uol|

i < Ly, , then (u,v) scatters.
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The above criterion “Huo||]__H 3 < {y,” is sharp in such a sense that the number £,, may not be
replaced with any larger number. The following two questions arise: (a) to obtain a condition
which implies ¢,, is finite; (b) to show the existence of a minimizer to ¢,, (when ¢, is finite).

It will turn out that the following quantity Elo plays an important role in the analysis of £,,.

Definition 1.38. For v € fH%(R‘g) and 0 < ¢ < oo, we let
(u,v) is a solution to (NLS) on [0, Tinax), }

v(0) = vo, [[u(O)]| ;3 <0 w(0) € FH=(R?)

where W;([0, Tmax)) (j = 1,2) is a Strichartz-like function space defined in subsubsection 3.1.3,
below. Further, define

Ly, (€) := sup {H (2 V) [ W ([0, Timax)) x Wa ([0, Timax))

620 = sup{l : L,,({) < oo} € (0, 00].

We have E}:O < Ly, by their definitions (see Lemma 3.27 for more detail). Intuitively, this can
be seen by noticing that if HUOH}'H 1 < 05, then not only (u,v) scatters but also we have a priori
bound [ (w, v)|[w, ([0,00)) x W2 ([0,00)) < LUO(HUOH}-H%) < 00. As for the single-equation (NLSy), it
is known that these two kinds of quantities coincide each other (see [90]). Our first result is as
follows.

Main theorem 1.39 (H.-Masaki, [59]). Let d = 3 and k = 3. 5, = min{ly, £y, } holds for any
vy € .FH%(R?’), including the case where the both sides are infinite. In particular, 63 = {g holds.

It is worth noting that &T)O = oo guarantees £,, = oo but the inverse is not necessarily true.
Our interest in the sequel is to see what happens when Elo < 00. In the case vy = 0, we have
EEF) = {p, including the case of the both are infinite, as seen in Main theorem 1.39.

Main theorem 1.40 (H.-Masaki, [59]). Let d = 3 and k = 5. If Eg) < 00, then there exists a
minimizer (u(©,v(0) to fo(= Eg;) such that
0 () — 0) _
(1) vO(0) = 0 and [u@ )], , = to,
(2) (u©,0©) does not scatter.

So far, we do not know whether K(T) < oo or not. It will turn out that this question is important
to understand the attainability of /,, for all non-zero vy. One quick consequence of 0 = 0o is
lyy = f}:o for all vg, which follows from Main theorem 1.39. We will resume this subject later.

Let us move on to the case vy # 0. Suppose EZO < 00. Then, we have either

O =Ly, or Ll < Ly (1.18)

The following Main theorem 1.41 is about the first case and Main theorem 1.42 is about the
second case.

Main theorem 1.41 (H.-Masaki, [59]). Let d = 3 and k = 5. Fiz v € .FH%(R?’) \ {0}.
Suppose that ZI,O = Vly, < lo. Then, there exists a minimizer (u(”o), v(”(’)) to 4y, , that is,
(vo) _ v _
(1) o0 (0) = vy and [lu®(O)]_, } = buo,

(2) (u*),v(*0)) does not scatter.

The case &TJO = ly, = o < 00 is excluded in the above theorem. We consider this exceptional
case in Remark 1.43, below.
Let us consider the second case of (1.18). In this case, the following strange thing occurs:

Take ug € FH %(RS) with HUOH;H 1= &TJO and consider the corresponding solution (u,v) with
the data (ug,vo). Then, on one hand, the solution (u,v) scatters for any choice of such ug since
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st < 4,,. However, on the other hand, for arbitrarily large number N > 0, one can choose

ug € ]:H%(Rg) so that the corresponding solution (u,v) satisfies

[[uoll

| (s ) I, (0,00)) x W ([0,00)) = V-
The next theorem tells us how this is “attained”. Notice that the second case of (1.18) occurs

only when ¢y = EIO < 00, thanks to Main theorem 1.39. Consequently, there is a minimizer to
£y in this case, by means of Main theorem 1.40.

Main theorem 1.42 (H.-Masaki, [59]). Let d = 3 and k = 3. Fiz v € ]-'H%(RS’) \ {0}.
Suppose that £}, < lyy. Pick a sequence {ugpn}n C ]-"H%(R?’) satisfying ||uo n ‘fH% < b, for all

n>1,

— gt

T g

FH?
and
i [ (un, vn) [l (10,00))x Wa([0,00)) = 00

where (un,vy) s a solution with the initial data (u,(0),v,(0)) = (uom,vo). Then, there exist a
subsequence of n, a minimizer (u(®, v(®) to £y, and two sequences {x}n C R and {hy}n C 2%
such that

|10g hn‘ + \ﬁn\ — OO
and
e (ug ) gy —> u(0) in FHz(R?)
hold along the subsequence. In particular, along the same subsequence, it holds for any T €
(07 ﬂrlax<u(0), U(O))) that

(un(t),vn(t)) - (e_it|gn‘2+ixfnu(o)71

o (t,2 — 26n1) ’€—2it|§n|2+2ix'fnv[(]?7):1] (t,z — 25nt))

LatA
+(0,€2 Uo)+0X11//22

xx12 (1)

for 0 <t < 7h2, where Tax(u®,v(0) is the mazimal existence time of (u(®),v(0).

Remark 1.43. The special case EI,O = ly = ly, < 00 (vg # 0) is not included in the above two
theorems. In this exceptional case, the conclusion of Main theorem 1.41 or Main theorem 1.42
holds. Namely, if there does not exist a minimizer to ¢,, as in Main theorem 1.41, then the
conclusion of Main theorem 1.42 holds.

Let us summarize the above results. Let vy € FH %(RS’) be a given function. If EI,O = 00,
then we have £,, = co (Main theorem 1.39) and hence any solution satisfying v(0) = v scatters
(Proposition 1.37). On the other hand, if E:r,o < o0 and vy # 0, then we have either Main theorem
1.41 or Main theorem 1.42 according to the dichotomy (1.18). Remark that the first case in
(1.18) contains an exceptional case discussed in Remark 1.43. When vg = 0, we do not have the
dichotomy, we have {y = 63 (Main theorem 1.39). If ¢y is finite then there exists a minimizer
(Main theorem 1.40).

The question whether ¢y = oo or not would be an interesting question to the system (NLS).
We do not have the answer yet. Let us formulate the problem without using our terminology:

Question. In (NLS), does vg = 0 implies scattering of the corresponding solution for any ug?

If it were true, that is, if {y = E;g = 00, then Main theorem 1.39 tells us that ELO = ly, is true
for any v, as mentioned above.

Although we do not know the exact value of ¢,,,, we are able to have a condition which implies
the finiteness of ¢,, and to give an upper bound for ¢,,. A simple one is a condition in terms of
the energy.
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Theorem 1.44 (H.-Masaki, [59]). Let d = 3 and k = 5. Fiz nontrivial ug,vo € fH%(R?’) N
HY(R3). If E(ug,vy) <0, then the corresponding solution (u,v) does not scatter. In particular,
oy < lluoll -

As a consequence, one sees that a standing wave solution, not only the ground state but
also all excited states, is not a minimizer of the optimizing problem (1.17). Let (¢, ) be a
solution to the elliptic equation (SP,). We have E(¢y,1,) < 0 (see [64, Theorem 4.1]). As
a result of Theorem 1.44, there exists an open neighborhood N' C R? of (1,1) € R? such that
(c1Pw, c2t0,) ¢ Sy for all (c1,c2) € N. Hence, any solution to (SP,) is not an optimizer to
(1.17). In particular, £y, is strictly smaller than ||qbw||]__H 1~ Similarly, (¢w, ) is not a solution
to (1.16) for any o > 0. We can also find intuitively the fact from the orbital stability of a
standing wave (!¢, e?),,) in HY(R3) x HY(R?) (see [23] for more detail).

In our context, we want to find a condition which is stated in terms of vy only. We give two
criteria in this direction. The first one is for large data case:

Corollary 1.45 (H.-Masaki, [59]). Let d = 3 and k = 5. For any v € }'H%(RS) N HY(R3)

with vo # 0, there exists co > 0 such that the estimate Loy, So, ¢z holds for any ¢ > cg.

The second one is criterion for a specific vy:

Corollary 1.46 (H.-Masaki, [59]). Letd =3 and k = 1. Let vy € ]—"H%(Ri)’) NHY(R3). If there
exists € R such that a Schrédinger operator —A — 2Re(evg) has a negative eigenvalue then

by, < 00. Moreover, if p € ]:H%(]l@) N HY(R®) is a real-valued eigenfunction associated with a
negative eigenvalue € < 0 of —A — 2Re(evy) then the estimate

lell 73
loy < —==0— | Vg 2
V2lelllellze

holds.

Remark 1.47. The estimate given in Corollary 1.46 is scaling invariant. Indeed, if ¢(x) is
an eigenfunction of —A — 2Re(evg) associated with a negative eigenvalue é then o) is
an eigenfunction of —A — 2Re(ei9(v0){ a}) and the corresponding eigenvalue is A2&, where !
denotes the scaling (1.12).

Remark 1.48. Tt is possible to study the optimizing problem (1.16). Let us introduce a slightly
different formulation: For p > 0, we let

B(p) i=inf {|luoll .,  (uo,v0) & S woll 3 < - (1.19)

Then, for any p > 0 such that B(p) is finite, there exists a minimizer, say (u,,v,), to B(p). The
minimizer satisfies ZJLP =y, and u, is a minimizer to /,,, that is, £,, = HuprH% (Theorem
3.44). Further, it turns out that the analysis of B(p) is applicable to that of (1.16) (Theorem

3.45). Remark that B(0) = ¢y holds and that B(p) is non-increasing in p. Hence, ¢y < oo, which
is our question, can be also phrased as “B(p) < oo for any p > 0.”

Remark 1.49. One can deduce similar results in the frame work of FH!(R3) x FH'(R3) or
(FHYR3)NHY(R?)) x (FHY(R3)NH'(R3)). The main difference of the results in these settings
is that one can show that the minimizers belong to the corresponding space, and hence they
are global-in-time solutions due to the mass conservation. We would remark that it is not clear
our minimizers given in the paper coincide those obtained in the above setting. Since we are
working with minimization at fixed time ¢ = 0 and there is no time translation invariance, we
do not know whether the minimizers have compact orbit nor enjoy additional regularity.
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1.3. Nonlinear Schrédinger equation with a potential. (NLSy ) has physical background
as follows: (NLSy) with V' € L>®(R%) is a model proposed to describe the local dynamics at
a nucleation site (see [104]) and (NLSy) with a harmonic potential V(z) = |z|? is a model
proopsed to describe the Bose-Einstein condensate with attractive inter-particle interactions
under a magnetic trap (see [6, 49, 119]).

We introduce local well-posedness results of (NLSy ) before we consider time behavior of
solutions to (NLSy ). Cazenave [13, Theorem 4.3.1] showed the following:

Theorem 1.50 (Local well-posedness of (NLSy) I, [13]). Letd > 1,1 <p< oo ifd =1,2, and
l<p<1l+ ﬁ if d>3. Let V be a real-valued function and V € L"(R?) + L®(R?) forn > 1
ifd=1 and n > % if d > 2. Then, for any ug € HX(R?), (NLSy) is locally well-posed, that is,
the followings hold:

e (Existence and Uniqueness) (NLSy ) with (IC) has the unique solution

(VS Ct((Tmma Tmam)§ Hxl) N Otl((Tmma Tmax); H_l)-

T

o (Blow-up alternative) If Ty < 00 (resp. Tpin > —00), then

i Ol =oo. (resp. i a0l =oc)

e (Continuous dependence on the initial data) If ug, — uo in HE(R?), then for any
compact time interval I C (Tpin, Tmaz), there exists ng € N such that the solution u, to

(NLSy ) with initial data ug,, is defined on I for any n > ng and satisfies u, — u in
Cy(I; HY) as n — oo.

To state a local well-posedness result in Hong [68] and the author-Ikeda [54], we define a
potential class Ko(IR?) as the norm closure of bounded and compactly supported functions with

respect to the global Kato norm
Il = smp [ A0,

zeR3 JR [z —y ’

that is,

Ko(R3) := {f € L>°(R3) : supp f is compact.}” ' H’C.

If V satisfies ||V_||x < 47 for V_(x) := min{V (z),0}, then —Ay and 1 — Ay are non-negative.
More precisely, Hong [68] proved

V_
(a0 D = 191+ [ vl > (1- Sy vsg. o

(A=AV)f ez = I1f172 + (AV)f, f)rz > 0

for any f € H'(R3)\ {0}. Therefore, the fractional operators (—Av)% and (1 — Av)% are
well-defined on the domain Hy{,(R?), whose norm is defined as Hf||?{\1/ =1 - Av)%f||%2. We
also define Sobolev spaces with a potential WiP(R3) := (~Ay)"2LP(R?) and WiP(R?) :=
(1—Ay) 3LP(R3). If V € L2(R3) N Ko(R3) satisfies ||V_||x < 47 for V_(z) := min{V (z),0},
then —Ay has no eigenvalues, —Ay is self-adjoint into L?(R3) (see [68]), so the Schrodinger
evolution group {e"*V};cr is generated on L?(R) by the Stone’s theorem. The following local

well-posedness is proved by the fixed point argument with the Strichartz estimate for {eitAV}teR
(Proposition 4.4).

Theorem 1.51 (Local well-posedness of (NLSy/) II, [54, 68]). Let d =3 and 1 < p < 5. Let
Ve L%(R?’) N Ko(R3) satisfy |[V_||x < 47 for V_(x) := min{V (x),0}. Then, for any p > 0,
there exists T(p) > 0 such that for any ug € HL(R3) with uollgr < p, (NLSy) with (IC) has

the unique solution

we Cy(I; HY) n LI(I; W°)
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with T = [~T(p), T(p)):
The solution u given Theorem 1.50 or 1.51 has conservation laws.

Theorem 1.52 (Conservation laws). Let u be a solution given Theorem 1.50 or 1.51. Then,
the solution u conserves its mass and energy

(Mass) M (u) := ||ul|72,
1 1 1 1
(Energy) Ev(u):= §\|(—AV)2UH%3 - Im”“”i;l

with respect to time t.

We turn to time behavior of solutions to (NLSy ), which is defined as a similar manner to
(NLSp). We define time behaviors of solutions to (NLSy/) precisely.

Definition 1.53 (Time behaviors of solutions to (NLSy)). Let ug € HL(R?). Let u be a
solution to (NLSy) on (Timin, Tmax), Where (Tiin, Tmax) denotes the maximal existence time of
the solution .

o (Scattering) We say that u scatters in positive time (resp. negative time) if Tiax = 00
(resp. Tiin = —00) and there exists 14 € HL(R?) (resp. 1 € HL(R?)) such that

t—4o00

lim [Ju(t) — e®2Vepy || g1 =0, (resp.tlim Hu(t)—eitAvlb_HIp:O).
xT ——00 x

e (Blow-up) We say that u blows up in positive time (resp. negative time) if Tipax < 00
(resp. Tinin > —00).

e (Grow-up) We say that u grows up in positive time (resp. negative time) if Tiyax = 00
(

resp. Thin = —00) and

limsup [lu(t)|| g1 = oo, <resp. limsup [lu(t)|| g2 = oo) :
——00

t——+o0 t——

e (Standing wave) We say that u is standing wave if u = ¢™'Q,, v for w € R, where Q,, v
satisfies

~wQuwv +AvQuy = —|QuvIP ' Quv. (SP,,.v)

We introduce known results for time behavior of the solutions to (NLSy ). Killip-Murphy—
Visan—Zheng [83] showed a scattering result and a blow-up result under d = 3, p = 3, ygy €
HL(R3), and V(z) = # for v > —%. Lu-Miao-Murphy [88] showed a scattering result and a

blow-up result under 3 <d <6,1+3 <p <1+ 5 uy€ H(RY), and V(z) = # for

~1 (=3, 3<p<3),
> 2
! —(%)ﬁ(%—ﬁ), (d=3,3<p<b5ord<d<6).
Zheng [124] showed a scattering result under d > 3, 1 +§ <p<1l+ 514727 ug € Hrlad(Rd),
V(x):#,a>—iifd:3,g<p§3,andfy>—(%)M(%—ﬁyifd:3,3<p<5or

d > 4. Tkeda—Inui [71] showed a scattering result and a blow-up or grow-up result under d = 1,
p>5,up € H(R), V = mdy (delta function) for m > 0. Ikeda [70] showed a scattering result
under p > 5, V, V' € LIR) := {f € L'R) : (1 +| - |)f € LY(R)}, 2V’ € LY(R) + L=(R),
2V’ < 0 and a blow-up or grow-up result under p > 5, V' € LY(R) + L>®(R), V' + 2V > 0.

Hong [68] got Theorem 1.55 for time behavior of solutions u to (NLSy ) by using the following
characterization (Proposition 1.54) with d = p = 3 of the ground state Q1 to (SP. ) with
w=1.
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Proposition 1.54 (Gagliardo-Nirenberg inequality with a potential). Let d > 3, 1 < p <
1+ ﬁ, Ve L%(]Rd), V>0, and V #0. Then, the following inequality holds:

d(p—1)

IFIE5E < Canll f172 ||( AV)Efll”
for any f € HY(R?) \ {0}, where Cqy is the best constant and is defined in Proposition 1.16.

Theorem 1.55 (Hong, [68]). Let d =3, p =3, and uy € HY(R3). Let Q1 be the ground state
to (SPy ) wzth w = 1. Assume that V € L2(R3) N Ko(R3) satisfy V>0, - VV <0, and
2%V € L2 (R3) for any a € (NU {0})3 with |a| = 1. We also suppose that

M(uo)TEv(uo) < M(Q1,) =3 Eo(Q10) (1.20)

d(p—1)
p+1— 2

and
1—s

1-sc 1 %
luoll 2= I(=Av)zuollrz <[1Quoll 5 VQuollzz- (1.21)
Then, the solution u to (NLSy) with (IC) scatters and satisfies

1
a2 (=Av)2u(t)| 2 < 1Quoll2[VQ10ll22
for any t € R.

Natural questions arise from this theorem. It is whether a range of the exponent p for
nonlinearity can be extend or not. In addition, it is whether we can determine behaviors of a
solution to (NLSy ) with initial data ug satisfying ||U0HL3”(*AV)%UOHL§ > [ Qrollr2VQ10ll L2
or not. Then, the author and Tkeda got the following result.

Main theorem 1.56 (H.-Ikeda, [54]). Let d = 3, % <p <5, and up € HY(R?). Let Q1
be the ground state to (SP, o) with w = 1. Suppose that V satisfies z*0°V € L%(R‘g) for any

ac (NU{0})? with |a| =1 and V > 0. We also suppose that ug satisfies (1.20).
(1) (Scattering) If V € L%(R3)OK0(R3), x-VV <0, and ug satisfies (1.4), then the solution
u to (NLSy) with (IC) exists globally in time and

1—sc l—sc
lu()llze [Vu(?) 2° [VQuollzz
for any t € R. Moreover, if ug and V are radially symmetric, then the solution u to
(NLSy) with (IC) scatters.
(2) (Blow-up or grow-up) If “V € L%(]R?’) NKo(R3) or V € L7(R®) for some 3 < o < 007,
2V +ax-VV >0, and

1—sc

1-sc 1 1§£g
luoll 2 I(=Av)2uollzz > |@uoll5* IIVQuollzz, (1.22)
then the solution u to (NLSV) with (IC) satisfies

1—sc
HU(t)IIL - Av)zu(t)| s > 1Quoll2* IVQiollzz
for any t € (Tmin, Timaz) and blows up or grows up. Furthermore, if either the following
(i) or (ii) holds:
(i) “up and V are radially symmetric”, x-VV >0, and V € L*°(R3),
(ii) 2ug € L2(R?) and “V € L%(R?’) NKo(R?) or V € L7 (R?) for some 3 < o < 00,
then uw blows up.

As a corollary of Main theorem 1.56, we can get the following result.

Corollary 1.57. The similar blow-up or grow-up result and blow-up result (ii) in the mass-
critical case p = % to Main theorem 1.56 holds. We assume that the potential V satisfies
the same assumptions as in Main theorem 1.56 (2). The initial data ug € H*(R®) satisfies
Ev(ug) < 0 instead of (1.22). Then, the same conclusion as Main theorem 1.56 (2) holds.



22

Remark 1.58. Mizutani in [93, Theorem 2.2 and Example 3.3] proved that if V' € L%(R?’) and
V >0, then there exist 1+ € HL(R3) such that

tilinoo ||6ztAv,(/) itAwiHH% =0,

where the double sign corresponds. This implies that the scattering solution u in Main theorem
1.56 (or Theorem 1.55) approaches not only a linear solution (with a potential) but also a free
solution (linear solution without a potential) as t — +o0.

We compare Main theorem 1.56 with Theorem 1.55.

Remark 1.59. Main theorem 1.56 extends a range of the nonlinear power p. In Main theorem
1.56, it is assumed that ug and V are radially symmetric in scattering part to use the argument
in [32]. The author think that we can remove the radial assumption of scattering result in Main
theorem 1.56 by using the argument in [77]. We characterize sufficient condition of scattering

by [[Vuollz2 not ”(—Av)%uOHL%. Since [|Vug|lr2 < H(—Av)%uoHL% holds by V' > 0, our result
utilized weaker expression in this point. Main theorem 1.56 also contains a blow-up or grow-up
result and a blow-up result.

We notice that Main theorem 1.56 does not separate
{up € HL4(R?) - M(ug) =" By (un) < M(Qu0) = Eo(Quo)} (1.23)

since there exists no V € L%(R?’) satisfying - VV < 0 and 2V + 2 - VV > 0. The conditions
x-VV <0and 2V +x-VV > 0 are used to control the virial functional Ky, which is defined as

d dip—1
Ku(f) = g5| - Sl (@) =2V - [ @ wvlsPar - S

Sw v (f) = *M(f) + Ev(f).

To separate (1.23), we consider an expression corresponding to (1.2). We define a set of “radial”
ground state solutions to (NLSy/) as

gw,V, rad ‘= {¢ € -Aw,V, rad * Sw,V((ﬁ) < Sw,V(w) for any v € -Aw,V, rad}y (124)
where
-Aw ,V,rad ‘= {¢ € rad( d) \ {0} : Sclu,V(zp) = 0}
We characterize a “radial” ground state to (NLSy ) by the minimization problem
rov = nf{Su v () f € Hipa(R)\{0}, KS(/) =0}, (1.25)
(0% (6% d (0%
Kw:‘ﬂ/(f) =D ﬂSw,V(f) = a w,V(e )\f(eﬁ/\ : ))
A=0
for (a, B) € R? satisfying
a>0, B>0, p:=2a—d8>0. (1.26)

We want to deal with (1.25) with («, 3) = (d,2) as the case (NLSp). However, S, does not
)i

2)
include - VV, so we treat (1 25) with (a, 8) = (1,0) to prove the existence of a “radial” ground
state first. We note that Kw v ((a,8) =(1,0))isc

as

alled the Nehari functional and can be written

Now (F) = K () = wllfllfa + 1 (=Av)2 fIZ — 1 F1730-

To compare, we also consider a minimization problem, which removes the constraint of spherical
symmetry from (1.25):

nl = int{S,v(f) : f € H'(RY)\ {0}, K2E(f) = 0.
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It is known that nfjg and rfj‘:g are attained by the ground state Qo to (SP. ) (e.g. see [10]).

Therefore, ngg and rfj:g are independent of (a,3) and the identity ngg = 7“5:05 holds. For
simplicity, we use notations n,, ¢ := ”3:0 and 7,0 = rgjg .

For ni?/ and ri’(%/, the author and Ikeda proved the following theorem.

Main theorem 1.60 (H.-lkeda, [55]). Letd=3, w >0,V >0, and V # 0.

e (non-radial case) Let 1 <p <5 andV € L%(R‘g) + L?(R3) for some 3 < o < co. Then,

nl’(%, = Ny 0. Moreover, if V € Ko(R3) or V> 0 holds, then niov 18 not attained.

w
3
e (radial case) Let 1 <p <5 and V € L2 ,(R3). Then, ri’(‘)/ is attained. Moreover, a set
of elements attaining ri’(%/ coincides with a whole of “radial” ground states of (SP, v),
that is, it follows that Mi’(%/ rad = Yw,V, rad, where

MY roa = {6 € Hjpq(R)\ {0} 1 Suv () =30, KOS9 (9) = 0}, (1.27)
As a corollary of Main theorem 1.60, the following result holds by the fact that ni(%/ is not

attained and ri)’(%/ is attained.

3
Corollary 1.61. Letd =3, 1 < p <5, and w > 0. LetV € Lfad(R?’), V>0,V #0, and
“V e Ko(R3) or V> 07". Then, ni’g/ < ri”(‘)f holds.

Then, we investigate radial solutions to (NLSy) with initial data ug, whose action S, v (uo)
is less than that of the radial ground state to (SP.,v).
3
Theorem 1.62. Letd =3,1<p <5,V € L2 (R¥)NKo(R?), |V_||x < 47, and up € H}

rad

Let Qu.v be a “radial” ground state to (SP, ). Assume that there exists w > 0 such that

S (o) < Suv(Quy) (=7,%) and Ny (ug) > 0.

Then, the solution u to (NLSy) with (IC) exists globally in time and satisfies N,y (u(t)) > 0
for any t € R.

We compare the condition in Theorem 1.62 with that in Main theorem 1.56 (1).
3
2

Proposition 1.63. Letd =3,V € Lmd(R?’), and V > 0.

(1) Let % < p < 5. The condition (1.20) in Main theorem 1.56 is equivalent to “there exists

w > 0 such that S,, v (ug) < ni(%/ i

(2) Let 1 <p <5,V #0, and “V € Ko(R3) or V> 0". Let Quv be a “radial” ground state
to (SPy.v). For each w > 0, there exists ug € H: (R3) such that ug satisfies

rad

ni({/ < Suv(ug) < Ti’g/ and N, v (ug) > 0.

(R?).

Proposition 1.63 implies that Theorem 1.62 can deal with initial data, which does not satisfy
the assumptions of Main theorem 1.56. However, we can not see that the solutions in Theorem
1.62 scatters or not.

We recall that it is proved that the existence of a “radial” ground state Qv to (SP, ) and
Qu,v is characterized by ri’?/ in Main theorem 1.60. However, it is not expected that one can
prove scattering result by ﬁsing the above characterization of the ground state (), . In fact,
it is unclear whether that we can control the virial functional Ky or not. Then, we study the

minimization problem r{, with («, ) satisfying (1.26), which contains not only rul}’(‘]/ but also

d,2
TV
To state next main result, we define the following quantity:

1
wp := —=essinf(2V +x - VV).
2 zerd
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Main theorem 1.64 (H.-Ikeda, [56]). Letd >3 and 1+ 5 <p <1+ 5%5.

e (Non-radial case) Let z*0%V € Lg(Rd) + L7 (RY) for some ¢ < 0 < oo and any a €
(NU{O}? with |a| <1,V >0, 2-VV <0, and 2V +x-VV > 0. Then, for each (o, B)
satisfy (1.26) and each w > 0, ng‘@ = Ny,0 (= Sw,0(Qu,0)) holds. Moreover, if we assume
x-VV <0, then ngv is not attained.

e (Radial case) Let x°0°V € Lg(Rd) + L®(R%) for any a € (NU{0})? with |a| < 1,
V>0, z-VV <0, and wy < co. Let V' be radially symmetric. Then, TS:V s attained
for each (a, B) with (1.26) and each w > 0 satisfying w > wy. Moreover, if 0V €
Lg(Rd) + L®(R?) for any a € (NU{0})? with |a| <2 and 3x-VV +2V2Val <0, then
Mzi’@’md = Gu,V,rad holds, where V2V denotes Hessian matriz of V and Mg:";md and
Guw,V,rad are defined as (1.24) and (1.27) respectively.

We note that the following results hold from the same argument as Main theorem 1.64.

Remark 1.65. The followings hold:

e (Non-radial case) If we replace %0V € Lg(Rd) + L7(R?) for some ¢ < o < oo with

2%0%V € L"(R?) + L°(RY) for some % < n < o < oo, then Main theorem 1.64 also
holds in d = 2. If we replace z%0%V € L%(Rd) + L7(R?) for some ¢ < o < oo with
%0V € LY(RY) + L7 (R?) for some 1 < ¢ < 0o, then Main theorem 1.64 also holds in

d=1.
e (Radial case) If we replace %0V € Lg(Rd) + L>®(RY) with 2°0°V € L"(RY) + L>®(R?)
for some % < 1 < oo, then Main theorem 1.64 also holds in d = 2.

As a corollary of Main theorem 1.64, the following result holds by the fact that ng’v is not

attained and rf:’v is attained.

Corollary 1.66. Letd > 2, 1+ 2 <p<1+ 25 ifd>3, and1+2 <p<ooifd=2. Let
°0°V € L"(RY) + L7(R?) for somen > 1 ifd =2, n = %l ifd >3, somen < o < oo, any
ac (NU{0PD? with |a| <1,V >0, z-VV <0, and 2V +z-VV > 0. Then, ngz‘ﬁ/ < rz"ﬁ/ holds
for each (cv, B) with (1.26) and w > 0.

Then, we investigate solutions to (NLSy ) with initial data ug, whose action S, v (ug) is less

a’/B a’/B
than N,y Or T,y

Theorem 1.67. Let d > 3 and1+% <p< 1+£.

e (Non-radial case) Let ug € HY(R?), V € L"(R?) + L7 (RY), 2°0°V € L%(Rd) + L7 (RY)
for some 3 <n <o <ooand anya € (NU{0})? with |[af =1,V >0, z-VV <0, and
2V +x-VV > 0. We also assume that there exist (c, 3) satisfying (1.26) and w > 0
such that

S (o) < %% =1 (= Su0(Quo))  and K24 (ug) > 0.

Then, the solution u to (NLSy) with (IC) exists globally in time and satisfies Kfj‘ﬁ/(u(t)) >
0 for any t € R.

e (Radial case) Let ug € HY ;,(RY), 2°0°V € L%(Rd) + L®(RY) for any a € (NU{0})? with
la|] =1,V >0, - VV <0, and wy < oco. Let a radial function V' satisfy the following
(i) or (ii):

(i) d=3, V e L7(R3) N Ko(R3),
(ii) d >3, V € L"(RY) + L=(R?) for some 4 < n < oo.
We also assume that there exist (o, B) with (1.26) and w > 0 satisfying w > wo such that

Sw,v(ug) < Tg:‘ﬁ/ and Kg:‘ﬁ/(uo) > 0.
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Then, the solution u to (NLSy ) with (IC) exists globally in time and satisfies Kfj‘ﬁ/(u(t)) >
0 for any t € R.

We compare the condition in Main theorem 1.64 with that in Main theorem 1.56 (1).
Proposition 1.68. Letd >3 and 1 + % <p<l+ ﬁ.

(1) Let ug € HY(R?), V € L"(RY) + L7 (RY), 2°0°V € L%(Rd) + L7(RY) for some 4 < <
o < oo and any a € (NU{0}? with |a| =1, V >0, - VV <0, and 2V +z-VV > 0.
The condition (1.20) in Main theorem 1.56 is equivalent to “there exist (o, B) satisfying
(1.26) and w > 0 such that S, v (up) < ng‘ﬁ/ 7

(2) Let V, x - VV € L%(Rd) + L°(RY) for some g <o <oo, V>0z-VV <0, and
2V +2-VV > 0. Let Quv be a “radial” ground state to (SP,yv). For each (o, f3)
satisfying (1.26) and w > 0, there exists ug € H' (R?) such that ug satisfies

rad
n®% < S,y (ug) <r®P  and KD (ug) >0
w,V = Pw, VU0 w,V w,v\uo) = U.

Remark 1.69. When 8 # 0, the term x - VV appears in ng, which can be written as (4.43).
Thus, we impose the assumption z*0%V € L%(Rd)—i—Loo(Rd) for any a € (NU{0})? with |a| = 1 in
Main theorem 1.64, which assures that K|, is well defined. The repulsive condition z-VV < 0
is used to control the fourth term in (4.43). The condition of the frequency w > wy implies

2w+2V+2-VV >0

and is used to control the third term in (4.44). On the other hand, when § = 0, we do not need
the assumptions on z - VV and can replace w > wy with w > 0.

Since we use many assumptions of a potential in Theorem 1.64, we wonder that if there is
actually a potential satisfying all the assumptions. For example, a potential

_ {log(1 + [a])}?

V(z) o , (r>0,0<0<pu<2 pu>0)
satisfies all assumptions in Main theorem 1.64. From now on, we consider the equation (NLSy/)
with a inverse power potential V(z) = #, which is the above potential with § = 0 and has a

“good” property for the scaling argument:
O+ Au = —[ulP~lu,  (t,2) € R x RY, (NLS,)

where Ay, = A — #, v >0, and 0 < o < min{2,d}. The Cauchy problem of (NLS,) is locally
well-posed in the energy space H'(RY) by Theorem 1.50.

For simplicity, we use the notations: S, := S“”\ T K, = K‘vw, E, = EIWIM’ Ny =
T xr xT
nz’fwlu, Twr 1= rj’lﬁyw, and Q. = Q‘*”IJ\M’ We note that ny,, and 7, ~ are independent of
’ kS

(o, B) from Main theorem 1.64 and Proposition 4.48.

Theorem 1.70 (Local well-posedness of (NLS,), [13]). Let d > 1, 1 < p < o0 if d = 1,2,
l1<p<1l+ % ifd>3,v>0, and 0 < p < min{2,d}. Then, for any up € H(R?Y), (NLS,)
1s locally well-posed, that is, the followings hold:

o (Ezistence and Uniqueness) (NLSy) with (IC) has the unique solution
u e Ct((Tmma Tma:p); H%) N Ctl((Tmmv Tmax); Hz_l)

e (Blow-up alternative) If Tyay < 00 (resp. Tpin > —00), then

i @l =oo. (resp. i a0l =oc)

maz min
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e (Continuous dependence on the initial data) If uo, — ug in HL(R?), then for any
compact time interval I C (Tin, Tmaz), there exists ng € N such that the solution u, to
(NLS,) with initial data uo,y, is defined on I for any n > ng and satisfies u, — w in
Cy(I; HY) as n — .

Moreover, the solution to (NLS,) preserves its mass and energy with respect to time t.

We introduce a known result for time behavior of solutions to (NLS,). For blow-up, Dinh
[25] proved the following result.

Theorem 1.71 (Dinh, [25]). Letd > 1, 1+ 5 <p< oo ifd=1,2, 1+ 5 <p <1+ ;5 if
d>3,v>0, and 0 < pp < min{2,d}. Let Q1 be the ground state to (SP. ) with w =1. We
assume that ug satisfies (1.20).

o (Global well-posedness) If ug satisfies (1.4), then the solution u to (NLS,) with (IC)
exists globally in both time directions.

o (Blow-up) We assume |z|ug € L2(R?) or “d > 2,1 < p <5, and ug € HL ,(R?)”. If

ug satisfies Ey(ug) < 0 or “(1.5) and E,(ug) > 07, then the solution u to (NLS,) with
(IC) blows up in both time directions.

To prove Theorem 1.71, Dinh [25] used the fact:
PW, 3:= {up € H*(R?) : (1.20) and (1.4)} and PW_3:= {ug € H'(R?): (1.20) and (1.5)}

are invariant under the time development of (NLS, ), which follows from the characterization of
the ground state Q1 to (SP, ) with w = 1 by Proposition 1.16. We have invariant sets

PW,a = |J{uo € H'(RY) : Sy (uo) < Su0(Quyo) and K (ug) > 0}
w>0
and
PW_y = | J{uo € H'(R?) : Sy (u0) < S0(Quyo) and K (ug) < 0}
w>0
with respect to the time development of (NLS,) from Proposition 1.68. Moreover, the Gagliardo—
Nirenberg inequality with the inverse power potential:

Proposition 1.72 (Gagliardo-Nirenberg inequality with the inverse power potential). Letd > 1,
l<p<ooifd=121<p<l+Aifd>3~v>0,and0 < p < min{2,d}. Then, the
following inequality holds:

) pr1_dE=1) L dr-1)
£ < Canllf1I7 - ||( )2 fllg2?
for any f € H'(R?) \ {0}, where Cgy is the best constant and is defined in Proposition 1.16.

generates the invariant sets
PW, 5 := {up € H'(R?) : (1.20) and (1.21)} and PW_5:= {up € H'(R?) : (1.20) and (1.22)}.
The Proposition 1.68 unifies the sense of “below the ground state without potential”. Namely,
the identities
PWi3sUPW_3=PW,4UPW_,4=PW,.5UPW_j;
hold. We note that

1—sc¢ 1—sc

1—sc
1 o
Juoll 2 [[Vuollrz = 1Quoll5° VQuollr2 and ||U0HL Ay 2uollze = [Quoll & [V Quollze
never hold under the assumption (1.20) (see Lemma 4.49). It is a natural question that the
relation of the conditions on the initial data below the ground state without the potential: (1.4),
(1.5), (1.21), (1.22), K,(ug) > 0, and K,(up) < 0. First, we state the following result for the
time behavior of solutions to (NLS,).

Theorem 1.73 (Boundedness versus unboundedness I). Let d > 1, 1+ % <p<ooifd=1,2,
l+4<p<l+ A ifd>3,7>0, and 0 < pu < min{2,d}. Let j =4,5.
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e (Global well-posedness) If ug € PW_ j, then the solution u to (NLS,) with (IC) satisfies
u(t) € PWy ; for each t € (Tmin, Tmae) and ezists globally in time. In particular, H!-
norm of the solution u is uniformly bounded in mazimal lifespan.

e (Brow-up or grow-up) If ug € PW_ ;, then the solution u to (NLS,) with (IC) satisfies
u(t) € PW_; for each t € (Tmin, Tmaz) and blows up or grows up. Moreover, if ug
satisfies ug € |z| "' L2(RY) or “d>2, 1 <p <5, and ug € H' (R?)”, then u blows up.

rad
Combining Theorem 1.71 and 1.73, we obtain the following equivalence of conditions on the
initial data below the ground state.

Main theorem 1.74 (Equivalence of conditions on the initial data below the ground state).
Letd> 1,144 <p<ooifd=1,2,1+3 <p<l+z5ifd>3,~v>0, and0 < p < min{2,d}.
We assume that ug satisfies (1.20). The three conditions (1.4), (1.21), K, (ug) > 0 are equivalent.
On the other hand, the three conditions (1.5), (1.22), K (ug) < 0 are equivalent. In other words,
PW,5=PW,,=PW,s5 and PW_3=PW_, = PW_y hold.

As a corollary of Main theorem 1.74, the following result holds.
Corollary 1.75. Letd > 1,1+ 4 <p<ooifd=1,2,1+3 <p<l+%4 ifd>3,v>0, and
0 < pu < min{2,d}. If ug € HY(RY) \ {0} satisfies E-(ug) <0, then ug € PW__; (7 = 3,4,5).

We also investigate time behavior of solutions to (NLS,) with the radial initial data below
the “radial” ground state Q. to (SP, ) with V' = ﬁ

Theorem 1.76 (Boundedness versus unboundedness IT). Let d > 1, 1+ % <p<xifd=1,2,
1+3<p<l+5ifd>3,v>0, and 0 < u < min{2,d}.
o (Global well-posedness) If ug € PW_ g, then a solution u to (NLS,) with (IC) satisfies
u(t) € PWy g for each t € (Tiin, Tmaz) and exists globally in time, where

PW,g:= U {ug € H 4(RY) : Swy(uo) < 1wy and Ky (ug) > 0}.
w>0

In particular, H -norm of the solution u is uniformly bounded in maximal lifespan.
o (Blow-up or grow-up) If ug € PW_g, then a solution u to (NLS,) with (IC) satisfies
u(t) € PW_g for each t € (Thin, Tmaz) and blows up or grows up, where

PW_g = | J{uo € H},q(R?) : Sur(u0) < 1wy and K (ug) < 0},
w>0
Moreover, if d > 2 and p < 5, then u blows up.

1.4. Organization of the paper. The organization of the rest of the paper is as follows.

In Section 2, we define some notations and collect some tool, which are used throughout this
paper.

In Section 3, we prove theorems for nonlinear Schrodinger system (NLS). In Subsection 3.1,
we define spaces, which are used to prove theorems for (NLS). In Subsection 3.2, we collect some
tools for Section 3. In Subsection 3.3, we give local well-posedness of (NLS) and equivalence
conditions to scattering. In Subsection 3.4, we prove that solutions to (NLS) with nonpositive
energy does not scatter. In Subsection 3.6, we investigate properties of L,,, and &to. In Subsection
3.7 and 3.8, we show linear profile decomposition. In Subsection 3.9, we prove Main theorem
1.39, 1.41, and 1.42. In Subsection 3.10, we deal with the other optimization problems. In
Subsection 3.11, we show corollaries of Theorem 1.44.

In Section 4, we prove main theorems for nonlinear Schrédinger equation with a potential
(NLSy) and (NLS,). In Subsection 4.1, we collect some tools for Section 4. In Subsection 4.2
~ 4.6, we prove theorems for (NLSy ). In Subsection 4.7, we prove theorems for (NLS,).

2. PRELIMINARIES

In this section, we define some notations and collect some tools, which are used throughout
this paper.
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2.1. Notations. For non-negative X and Y, X < Y denotes X < CY for some C > 0. If
X <Y < X holds, we write X ~ Y. We use subscripts to indicate the dependence of implicit
constants, e.g. X <, Y denotes X < CY for some C' = C(u). We write o’ € [1,00] to denote
the Holder dual exponent to a € [1, o0], that is, a and a’ satisfy é + % =1.

C>®(R%) is a space of smooth functions and C2°(R?) is a space of smooth functions with a
compact support. L? (Rd) denotes a usual Lebesgue space for 1 < p < oo, that is,

LP(R?) := {f : R? — C is a Lebesgue measurable function : || f|z» < oo},

where

1w == </]R'1 |f(m)|pd$> T, (1<p<oo),

esssup | f(z)], (p = o0).
z€R4

For 1 < p < oo, a space ¢ is defined as 7 := {{ap}tnex C C: [jay|ler < 00}, where

(S haal)". (1 <p<oo)

lanller :== < nex

sup |an|, (p = o0).
neX

S(R) is the Schwartz space and defined as
S(RY) := {f € C°(RY) : [|2"0° f|| 1 < oo for any a,b € (NU {0})?}.
S'(RY) is a set of a whole of the tempered distribution, that is,
S'(RY) := {F : S(RY) — C : F is linear and continuous.}.
(-, -)x denotes the X-inner product for a Hilbert space X. For a Banach space X, L](I; X) de-

notes the Banach space of functions f : I xR? — C, whose norm is ”fHL‘g(I-X) = H ”f”XHLq(I) <
’ t

co. If a time interval is not specified, that is, if we write || - [[zsx, then the ¢-norm is taken
over R. The norm of X x Y and X NY are defined as |(f,9)llxxy = ||fllx + |lg]ly and
I fllxay = IIfllx + I f|ly, respectively for Banach spaces X and Y.

We define the Fourier transform and the inverse Fourier transform on R? respectively as

-~

F€) = Fi§) = Cm [ e @ptn, FU@) = fw) = emE [ e

where -€ := 16+ +a4-Eg. WHP(RY) = (1—-A)"2LP(R?) and W*P(RY) = (—A) "2 LP(RY)
are inhomogeneous Sobolev space and homogeneous Sobolev space, respectively for s € R and
p € [1,00], where (1 —A)2 = F (1 +[£[>)2F and (—A)z = |V|* = FL|¢|*F. When p = 2, we
express W52(R%) = H*(R?) and W*2(R%) = H*(R?).

Let (Twin, Tmax) be the maximal lifespan of the solution to (NLS), (NLSy), or (NLS,). Let
[0, Timax) be the maximal positive lifespan of the solution to (NLS), (NLSy), or (NLS,). We
convert (NLS) and (NLSy ) respectively into the following integral system by Duhamel’s princi-
ple:

t
u(t) = ePugy + 22'/ e T=3)8 (v1) (s)ds,
0
t
v(t) = "By, —|—i/ e t=9)A (42) (s)ds
0
and
u(t) = ey + i / =AY (|u|P~ ) (s)ds,
0

where the Schrodinger group €2 is defined as ¢/ f(z) = (e~ )V (z) and {eAV },ep is the
Schrédinger evolution group generated on L2(R?) by Stone’s theorem.
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We define the following functions for R > 0 and r = |z|. A cut-off function 2 € C*(R?) is
radially symmetric and satisfies

2 (0<r<1),
Xr(r) = R*% (%) , where Z'(r):= < smooth (1<r <3), (2.1)
0 3<r),

Z"(r) < 2 for any r > 0. A cut-off function Zx € C°(R?) is radially symmetric and satisfies

1 0<r<),

Yr(r) =% (%) , where #(r):= < smooth (1<r <2), (2.2)
0 (2<n),
and —2 < #'(r) < 0 for any r > 0. A function 2% € C*(R?) is defined as
Pr(r) =% (%) , where Z(r):=1—-%1(r). (2.3)

We also define the characteristic function of A as 14(z) for a set A C R?, that is, 14(z) = 1 if
re€Aand 14(z) =0if z ¢ A.

2.2. Some tools. In this subsection, we introduce some standard tools, which are used through-
out this paper.

Lemma 2.1 (Young’s inequality). The following inequality holds:

1 1
ab < —af + —b?
p q

for any a,b >0 and any p,q > 1 wz’th%+%:1

Lemma 2.2 (Holder’s inequality). Let d > 1. For any q,q' > 1 with % + % =1, f € LIY(RY),
and g € LY (R?), we have

gl < [ fllzallgll por-
Lemma 2.3 (Sobolev’s embedding). Let d > 1. For any q,r > 1, s > 0 with % =Ll
1fllLe S 1 lyisrs
that is, W*"(R%) ¢ LY(R?) holds. For any q,r > 1, s > 0 with
[fllLa S 1 f llws.r,

=
Qlw
-

>

*ZM—!
&.\fn

1
q

that is, W*"(R%) C LY(R?) holds.

Lemma 2.4 (Radial Sobolev inequality, [100]). Let d > 2 and p > 1. There exists Cy > 0 such
that for any R > 0 and any f € md( 4), the following inequality holds:

_ (= 1)(p 1)
p+1 COR

—1
1712 ) < 11152 o |V F 1 2 o

Lemma 2.5 (Compact embedding). Let d > 2 and 2 < ¢ < 1 + ﬁ. Then, the embedding
H! (RY) cc LI(RY) is compact.

rad

The following proposition is cited in [13, Lemma 8.1.2]

Proposition 2.6 (Pohozaev identities). Let d > 1 and 2 < p+ 1 < 2*. A solution Q0 to
(SPu.0) satisfies the following Pohozaev identities.

H 2(p+ Nw

_ | 2(p+1)
e d 42— (d—2)p

+1
||Qw70Hip+1 = Hva,OH%g-
xT

dp—1)
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This proposition deduces the following relations:
dp—1)—4

EO(Qw,O) = Qd(p — 1) ||va,0||%%v (2,4)
2(p+1) 1
CGN = d(p — 1) . d+2—(d—2)p (p—1)d—4 ° (25)

2 (
1Quoll, *  IVQuollz, *

3. PROOF OF THEOREMS FOR NLS SYSTEM

3.1. Notations for Section 3. We define some notations and spaces, which are used in this
section.

We recall the standard Littlewood-Paley projection operators. Let ¢ be a radial cut-off
function satisfies 1{j¢j<4/3y < ¢ < 1yj¢j<5/3)- For N € 22 the operators Py is defined as

~

Pyf(€) = fn (&) = un (&) F(©),
where ¢y (z) = ¢(z/N) and
Yn(z) = dn(z) — dny2(2). (3.1)
3.1.1. The Galilean transform and the Galilean operator. The Galilean operator
Tnt) = 2 + @%v,

which is a multiple of the infinitesimal operator for transforms appearing in (1.14), plays an
important role in the scattering theory for mass-subcritical nonlinear Schrodinger equation. We
define the multiplication operator

i7rL|w|2

(M () f](2) := e 2" f(x) (t#0)

and the dilation operator
DW)f)(x) = 2it) 3 () (@ #0).

It is known that the Schrédinger group is factorized as e® = M (t)D(t)FMau(t) by using
2

2
these operators. This factorization deduces the identity

AP (z)e A = My (1)®(2itV) My (~t) (3.2)

1

2
for suitable multiplier ®, where ®(iV) denotes the Fourier multiplier operator with multiplier
P(€), that is, ®(iV) := F1®(¢)F. The Galilean operator is written as follows:

) X t
T (t) = ez ge~2mitd = My, (£)i—V My (—t),
m
where the second equality holds for ¢ # 0. We define a fractional power of .J,,, by

4 4 2 \2
JE () == eﬁ”ﬂxﬁe*ﬁzm = My, (t) (—%A) My (—t) for seR.

Remark that the second formula is valid for ¢ # 0.
3.1.2. Function spaces. We define a time-dependent spaces X;; = Xﬁ;r(t) by using the norm
1l sz o= [T @) fllz sy ~ MEPIVIEMm (=) fll L rs)- (33)

When r = 2, we omit the exponent r, that is, Xﬁz = X352 We can see immediately by the
definition of J£, that the equivalence of norms in (3.3) for ¢ # 0. It is natural to write

1 . 1 . .
feem™FH® «= e~ > f ¢ FH®.
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Then, we have ezm A F % = X2, (t). We use Lorentz-modified space-time norms. For an interval
I,1<g< o0, and 1 < a < oo, the Lorentz space L{(I) is defined by using the quasi-norm

1
1z ny = IAE € I 1] > A7 om0
For a Banach space X, L{"®(I; X) is defined as the whole of functions u : I x R® — C satisfying
Jull Lo r,x) = IMlw®) x| oo gy < oo
The following equivalence is useful:
HfHLg’O‘(I) ~f- 1{2’“*1§\f|§2k}“L§(I)HZO‘(kEZ)-
We also define Besov space as follows:
By (BY) = {f € SR | £l 5, < oo},
where ||f|| 5. = [127V¥]|¢w * f”LﬁHZ‘}V and ¢ is defined as (3.1).
p,q

3.1.3. Specific function spaces. We define an admissible pair.

Definition 3.1. If a pair (g, ) satisfies

2 3 3
2<g<oo, 2<r<6, and —+-=—,
q T 2

then (g,r) is an admissible pair.

Remark that we do not include two end points (0c0,2) and (2,6) to admissible pairs. It is
because they require exceptional treatments sometimes.
We use the following concrete choice of function spaces. The same exponents were used in

[81, 89]. We define
1 1 17 11 2 2
——=(=—=] and [(=,=):=(2,=]).
q1 71 6 18 qr 3’9

The pair (g1,71) is admissible. The pair (g, ) satisfies the critical scaling relation %—i— % =2,
and is not a admissible pair. These exponents satisfy the following relations:
1 1 1 1 1 1 1 1 3 3 1
*,::"1'*, *,::‘F*, and = — —=——==—.
@ 9 @ T ¢ q rn T 2
We define the spaces
weak 3,00 17 30075 9277 3273 1.2 3T 6,237
S =Ly L, =L} Li, S:=Ly°L,=L}"Li, and W;:=L; X2j_2 =1L, XQj_2

for the solutions and the spaces

G2y hrt _ Sy hd
Nj =L XET = L7 X2

for the nonlinear terms. We use a notation S™**(I) to indicate that the norm is taken over the
space-time slab I x R3, and similarly for the other spaces.

3.2. Some tools for Section 3. In this subsection, we introduce some standard tools in this
section.

Lemma 3.2 (Riemann-Lebesgue lemma). Let d > 1 and f € L*(RY). Then, we have
/ e" T f(x)dr — 0 as €] — oo.
R4

Proposition 3.3 (Dispersive estimate). Let d > 1, t # 0, and p € [2,00|. Then, it follows that
etA . [P (RY) —s LP(R?) is continuous and

. _del1 _1
e Flly < (@rle)™2F )£

for any f € LE (R9).



32

Proposition 3.4 (Strichartz estimate, [39, 46, 76, 86, 107]). Let d > 1, to € R, and I(> t)

be a time interval. If (qi,m1) and (q2,r2) satisfy q% + % = q% + % = %, 2 < q1,q2 < o0,
(q1,71,d) # (2,00,2), and (q2,72,d) # (2,00,2), then
t
it A i(t—s)A
S PR VPR I (T Sl
to L‘tll(Ingl) + sbox )

We also need Strichartz estimates for the spaces L¥* X5, which were proved in [90, 97].

Proposition 3.5 (Strichartz estimates, [97]). Let d =3, s >0, and to € I C R.

(1) For any admissible pair (q1,71), we have

N
ez 2 f oo iy, iz S I lLrgze:

(ii) For any admissible pairs (q1,r1) and (g2,72), we have
t

’ / eﬁi(t_s)AF(s)ds
to

Lemma 3.6 (Embeddings, [81]). Let d = 3. The following inequalities hold:

S

F| . ,
. . (1272 ST
L (IX 5 )NLIV (1X ) L2 (I X, 2)

[l guwear S Nlulls <5 llullw;,

where j = 1,2.

Lemma 3.7 (Square function estimate). For 0 < s <2 and 1 < p < oo, we have

1
I9F Al ~ || (D2 1PaIvIEFP)?
Ne2Z

7
Lemma 3.8 (Hoélder’s inequality in Lorentz spaces, [69, 102]). Let d > 1. Let 1 < q,q1,q2 < 00
and 1 < a,aq, s < 00 satisfy

1 1 1 1 1 1

- =—+— and —=—+ —.
q q1 q2 « (631 05)]

Then, the following estimate holds:
1Fglge < IFl oo gl s

Lemma 3.9 ([79]). For any 1 < p,q,r < oo with I% = %+% and 0 < a, a1, < 1 with
a = a1 + as, we have

IIVI*(fg) = FIVI% = gIVI*Fll S VI Fll g TVI*2gll Ly -

Lemma 3.10 ([89]). Let d = 3 and B be a bounded subset of R x R3. Let f € }'H%(R?’) and
1 <p,q <oo. Then, it follows that for any € > 0, there exists a constant C. > 0 such that

; 1
2|2 fll 25y < el £l

Lemma 3.11. Letd=3. Let 1 <r <oo, 0< s < % and let x € S(R?). Then, a multiplication
operator yx is bounded on X3

itA
Fib T Celle fllpeorg.

Proof. We take (r1,r2) satisfying % = % — 5 and % = % + % Using Lemma 2.3, we have
Ixull g ~ [PV M (=) xull

S P IVIEMm(=t)ul g Ixl ge + [[E" M (=t)ul| L [V Xl 22

S P IVIEMm(=t)ull g Ixl ge + N[E V"M (=t)ul| g [V "X 72

S Ml g
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Lemma 3.12 (Nonlinear estimates). Let I C R. We also assume 7 € I in (5) and (6). The
following inequalities hold:

(1) HUﬂHNl(I) N HUHSW“’“(I)HUHWQ(I) + Hunl(I)HUHSwmk(I) S H’U’HW1(I)HU”W2(I)

(2) Muruzl|nyry S lluallw, (1wl gwearry + || gwearpylluzllwy () < N llwg (o llwzllw, ()
3) ||vu < v U + v U
(3) [lvull I X; 1) S | HLOO( %H Is(ry + [lvllscnll HL (IXQQ)
(4) lluruall 3. 118 Sl 1 Nluzllsay + luallsalluz| ,
L2 x2 1) L (1iX7,) @) L°°(IX12/2)

Slullsayllvllson

t
/ =98 (va)(s)ds
T S(1)

t
/ e%i(t_sm(ulug)(s)ds
T S(I)

Proof. We prove the inequality (1). Using (3.3) and Lemma 2.2, 3.8, and 3.6,
1
vzl vy () = [[(=482A) 3 (My(=t)v - M1 (~t)u )H 5,

S llutllsenllvallsr-

2;edty

S I(—42A) T My (—t)o| s [IM (=t)u ( Hull 5. 3

L?Q(I,Lj) Ly (LLg)
1
+ M (—t)v o [|(—4t2A)I M (—t)u
[Ma(=t)vl| B3 It )EM (=) ||Lf,2(I;Lﬁ)
~ 2
e P A LI TN &/ ST S

= HUHW2(1 [[wll gwear(7y + [[0l] gwearc(ry l1wllwy (1)

S lvllwe o llullw, oy

The inequality (2) holds by the same argument with (1). We prove the inequality (3). Applying
(3.3), Lemma 2.2, and 3.8,
1
ol 3, (—4t2 )T (M (~t)oM 1 (~t)u )H o, 18

18 = ||
L™ (I le/gg) £ (L)

1
5H(_4t2A)4M1(_t)v||Lt°°’°°(I;L§)HM (—t)ull 2l
1
FIM 0 g g HZA) My (tul o
S 1w + ||v U .
o it s + Ielscoal_, o3

The inequality (4) holds by the same argument with (3). The last two inequalities are conse-
quences of inhomogeneous Strichartz estimate for non-admissible pairs by Kato [75]. U

Lemma 3.13 (Interpolation in X;;"). Let I C R. The following inequality holds.

gy S T2 s 1l s
for 1 < p,p1,p2 <00, 1 <v,71,72 <00, 1 <rry,re <oo, 0 <60 <1 with % = 17_19%-;%,
%:%4-%, s=(1—0)s1+0s2, s1 # s2, and%:%—i—%.
Proof. Since [[ullpsr S ||uH1 11 ||uH?/.V;2,T2 holds (see [9, Theorem 6.4.5]), we have
[ull sr ~ [ | Mo (=)l
S (1 M (=)l )0 (2 | M (=) u2.72)°
2 el

Therefore, Lemma 3.8 deduces

0 0
el gy S It Wil | gy S N5 g enprs Nl
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The following embedding is a general case of W;(I) C S(I) (see Lemma 3.6).

Lemma 3.14 (Sobolev type embedding). Let d = 3 and I C R be a time interval. Let 1 <

P1, P2, 71,72 <00, 1 <y < o0, and 0 < s <1 satisfy p% = s—l—pi2 and % = % — 5. Then, the

embedding Ly* " (I; X5 LYY (I LYY holds.  In particular, the following inequality holds
for any uw € L»"(I; X32):

g gy S el g s
Proof. By Lemma 2.3 and 3.8, we have
ull poro (g = IMm(=t)ull poron g pmy S VIEMm(=t)ull poron g2

ST 1w MEPIVIEPMm(=t)ul[ gr2m L7 S llull po2m X252y
LE(D) £ ) e (I )
t

The following lemma is cited in [89, Proposition 2.5].

Proposition 3.15. Let 1 < p; < oo, s; € R, and 1 < ¢gj,7; < oo for j = 1,2. Let v €
LAY (R, Mgl )N LP?(R; M32,.). For any ¢ > 0, there exist a function v(t,z) defined on

R x R3 and §, M, R > 0 such that suppv C {(t,z) ER xR3:6 < |[t| < M, |z| < R} and

D 0=l S

j=1,2
where the norm || - || v (t) 18 defined as
q,r
js itA  —itA
£z oy = 12756 2 0™ fll gy ~ WM (=0l 5

Proposition 3.16. Let d = 3. Let 1 < p; < oo, s;,m € R, and 2 < r; < oo for j =1,2. Let
ve LI (R; X)) N Ltpz’z(]R; X;2"). For any € > 0, there exist a function ¥ = 0(t,z) defined
on R x R3 and 6, M, R > 0 such that supp? C {(t,z) ERxR3:6 < [t| < M, |z| < R}

Z v — 6||ij‘2(R;XZ{’”) <e

j=1,2
Proof. Since it follows from [9, Theorem 6.4.4] that ijg(RB) C W, (R3), that is, 1fllymimi S
| f]l 525 holds, we can get the desired result by using Proposition 3.15. Indeed, we have
'rj,2
D Mo =Bl iz sy ~ D MY Min(=6)(0 = D) oy g s,
j=1,2 j=1,2
S 3 M M0 = D) g s S &
j=1,2 3
U

3.3. Local well-posedness. In this subsection, we establish a local theory in (CtX 11 //22 NW) x

(C X 11 / QQWQ) for (NLS). The result is given as a consequence of Strichartz estimate (Proposition
3.5) and the estimates of the previous subsection (Lemma 3.6 and 3.12). Also, we derive a
necessary and sufficient condition for scattering (Proposition 3.19) and give a scattering result
for small data (Proposition 3.20).

Let us first establish a weak version of the local well-posedness.

Proposition 3.17. Let d =3, k = %, and T € R. There exists a universal constant § > 0 such

that if (ur,v;) € S'(R3) x S'(R3) satisfies

i(t—1 ll —T
I, €2 D30 gy csr) <
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for some interval I 5 7, then the integral equation

t
u(t) = A, + 22'/ =92 (va) (s)ds,

T

t
o(t) = ezilt=Ay +¢/ 2192 (42)(s)ds

T

has a unique solution (u,v) € S(I) x S(I) in S(I) x S(I) sense and (u,v) satisfies
(t—T Litt—r
1, 0)ls(nyxsey < 2012z, €220 s xsr)-
Proof. We define a map (®, V), a set F, and a distance d on F as

t
B(u(t), v(t)) = eit=DDy 4 9 / (=2 (477) (s)ds,

t
W(u(t), v(t)) = e2ilt="A_ 4+ / 21 =9)A (42)(5)ds,

T

3 Litt—r
B = {(u,0) € SU) x S+ [ 0)lsensiny < 2MEE D ur, HE20) g5

d((u1,v1), (ug,v2)) = |[(u1,v1) — (u2,v2)lls1)x5(1)-

From the last two estimates of Lemma 3.12, we have
1(@(u,v), ¥(u,v))ls(ryxsr < (e 2u, ezit=A vr)|ls(ryxsr + ¢ llullsll(w, v) sy xsn
< (14 4c8) || ("2, eéi(H)Avr)Hsu)xsu)
and

d(((p(uh Ul)v \Il(ulv ’Ul))a ((I)(u27 UQ)? \Il(u% ’Ug)))
< clluillsayllur = uallsry + ellor — v2llsn lluzllsy + e llur + uzllsn llur — uzlls

<C{H U17vl)||s I)xS(I +||(U2,02)||s xS }d (u1,v1), (ug,v2))
< 4cdd((ug,v1), (u2702)).

Therefore, if we take a positive constant § > 0 satisfying 4cd < %, then (®,¥) is a contraction
map on F. [l

Theorem 3.18 (Local well-posedness). Let d = 3 and k = % For any initial time tg € R

and any data (ug,vg) € X1;2( 0) X X11/2(t0), there exist an open interval I 3ty and the unique

solution (u,v) € (Cy(I; Xll//22)0W1 (1)) x (Ce(I; Xll/Q)ﬁWg(I)) to (NLS) with the initial condition
(u(to),v(to)) = (ug,vo). Moreover, there exists a universal constant § > 0 such that if the data

satisfies

I| (e’ i(t— tO)Au eQz(t to) A UO)HW1(I)><W2(1) <0,

then the solution satisfies

S H (ei(t_tO)AuO, e%i(t—tO)AUO)

H(U?U)HW1(I)XW2(I) ”W1(1)><W2(I)'

Furthermore, the solution depends continuously on the initial data, that is, for any {(uon,von)}

satisfying (uo.n, vo.n) — (uo,vo) in X 12 (to) ><X11/2 (to) as n — oo and any compact time interval

1/2
I C I, there exists ng € N such that (NLS) with initial data (uop,von) has a unique solution

(tny vn) € (Co(T; X173) N WA (1)) x (ColT; X17%) n Wi (D)) for any n > ng and (un, vs) — (u,v)

in (Cy(T; X113) N WD) x (Cy(T; X17%) n Wa(I)) as n — oo,

Proof. The strategy of the proof is as follows: We first obtain a S-solution. Then, we show it is

a solution in the sense of Definition 1.35 by a persistence-of-regularity type argument.
By Lemma 3.6 and Proposition 3.5, we have

(76100, e37(t—10)A v0)llsmyxsry S [1(€" 0% ,ezi(t=to)A v0)| w1 (R)x Wa(R)
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< (e 0B yg, e 208y | 1 1 < oo

FH2xFH?2
Hence, we can chose an open interval I > ¢y so that

(76710, e37(t—10)A vo) | s(ryxs(ry < 6.

For this interval, we have a unique S-solution (u,v) € S(I) x S(I) by Proposition 3.17. We shall
show this is a solution in the sense of Definition 1.35. By Proposition 3.5 and Lemma 3.12, one
has

[[(w, 0) [l (1) x wa (1)
< |I(e 1002, €200 Ly ew(ny + € VTl (1) + €1l van)

< (et Ay, 652<t_t0)AU0)||W1(I)><W2(I) + ¢ || (w, V) [lwy (yxwe () 1 (4 ) | sy s

and
H (ua U) HLoo(I Xll//;)XL?O(I;Xll/Q)

SCH(uo,UO)HX;;;@O)XXIIMGO)+CHUﬂHtg Xlg/jg +cflu HLtg,z(I;Xl%,%)

< €10, 20) g 2y 100D 0500 100 ey e

Lin each interval.

We subdivide the interval I into U] ofj so that we have c || (u,v)|[s(1,)xs(1;) < 3

Suppose ty € Iy. We have

t to)A

Ly
[ (u, U)HWl To)xWa(Io) = 2”( u0762l(t tO)AUO)le(Io)XWQ(Io)

and

H(u7U)‘|L§>O(IO;X11//22)XLOO(I X1/2 S ||(U0,’U0)” 1/2(t )XXl/Z(to)'

Repeat the argument to obtain (u,v) € (L$°(I; Xll//g) NWi(I)) x (LfO(I;Xll/2) N Wa(I)). The
continuous dependence on initial data is a special case of Proposition 3.23. We omit the details.
O

Proposition 3.19 (Scattering criterion). Let d =3 and k = . Let (u,v) be a unique solution
to (NLS) given in Theorem 3.18. Then, the following seven statements are equivalent.
(1) (u,v) scatters in positive time;

) There exists T € Imaz such that || (w, V)| w, ([r,Tumax)) x Wa (7, Tiax)) < 005
3) There exists T € Iaz such that |[(w, v)[| (r, Timae)) x S, Tmax)) < 005
4) There exists T € Imaz such that |[ullw, (r Tmw)) < 005

) There exists T € Imaz such that ||[v|lw, (. Tmax)) < 005

) There exists T € Liaz such that ||ul|g(r1a.0) < 005

) There exists T € Imaz such that ||[v]| g((r 1)) < 00

AN N N N S
- O Ot \)

Proof. We prove (1) = (2). By the definition of scattering in positive time, we have Ty = c0.
We set that (uy,vy) € IH%(R?’) X .FH%(R?’) satisfies

—itA —LiA . _
Jim [ 2 u(t), 52 0(0) — (e o)y o =0 (3.4)
Applying Proposition 3.5, we have
(e Py, ea™ 0-) W ([0,00)) x W ([0,00)) S H(U+av+)HIH% < FOy < o0

Thus, there exists 7 > 0 such that

i 1
(€ ur, €22 00) [y ((r.00)) x Wa ([r.00)) < 2
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where 6 > 0 is given in Theorem 3.18. Furthermore, we have

. 1. .
(€2, e B, ) — (M)A (), ezit—10)A v(0)) 1w ((0,00)) x Wa([0,00))

S (g, v4) = (72 u(to), e 21020 ko))

~

| s

1.1 <
FH2XxFH?2
for sufficiently large to > 7 by Proposition 3.5 and (3.4). Then,

i(t— Lit—
110 u(to), €220 (t0)) lw (7,000 x Wa(fr,00)

< (€™ ur, €2 20 ) Wy ([r.00))x Wa ([r100)

i(t— Lit—
+ (e g, 20 — (MR uty), €2 B 0(t0)) [, (7,00 x Wi (1,00))
<.

By theorem 3.18, there exists a solution (@, v) to (NLS) such that (u(to),v(to)) = (u(to), v(to))
and ||(@, ) |lw, (jr,00)) x Wa(r,00)) < 0. By the uniqueness of solution to (NLS), we have (u,v) =
(u,v). Therefore, we have ||(u, v)|lw, ((r,00))x Wa([r,00)) < €O-

We prove (2) = (1). Let ¢; > to > 0. Using Proposition 3.5 and Lemma 3.12, we have

. . tl 3
lem 8 u(ty) — e Bulta)|] g =2 / e (va) (s)ds

to

FH?2

t1
=2 / M =92 (1) (s)ds

to 1/Q(M)
t
<2 /ei(t_S)A(vu)(s)ds
2 L5 ([ta t1]; XI/Q)

< c||val| vy ((ta,12])

< CHuHW1([t2,t1])HUHWQ([tQ,tﬂ) — 0 as t; >ty - 00
and

_ 1,
||€ 22t1A (tl) —e 2Zt2A,U(t2)|| L1 S C ||u||%’V1([t2,t1D — 0 as tl > t2 — OQ.

FH2

Therefore, (u,v) scatters in positive time.

From Lemma 3.6, (2) = (3) holds.

We prove (3) = (2). For any £ > 0, there exists 7 < 7y < Tinax such that
[1Cs )8 ([0, Tona)) % S (70, Toman)) < €

Using Proposition 3.5, we have

| (s V)W ([0, 77) x W ([ro,) < € I (u(T0), v(70))]] . fl/g(ro) FEP
+ ¢ || (w, V)| s(ro.17) x S ([ro, ) 11 (s V) W ([0, 77) x W ([70,77)
<
< CH(u<m)’U(TO))HXllf/Q(ro)xxl%(To) +c5H( Wy V) Wy ([0, 1) x Wa ([0,70)
for any T' > 719. Taking ce < %, we obtain
| (s )l ([0, 77) x W ([0, 7). < 20H(u(To%U(To))\lxl%/z(m)x).(l%(m)-

Letting T — Tinax, we get (2).
We prove (4) <= (5), which implies (2) <= (4) <= (5). Suppose (4). Take 179 € (7, Tnax) t0
be chosen later. For any T € (79, Tinax), we have

lvllws ((ro,1)) < € HU(TO)HXI%(TO) + cllullw, (o, o) IV lwa (70, 1) -
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Here, we choose o satisfying c||ullw, () < 5. Then, we see

1

5-
[ollws(fro, 1)) < 2¢ ”U(TO)HXI%(TO)'
Since T € (70, Tmax) is arbitrary, we obtain (5). By the same argument, we have (5) = (4).
We prove (6) <= (7), which implies (3) <= (6) <= (7). Suppose (6). One deduces from
Proposition 3.5 and Lemma 3.12 that

lollsrmy < cllo(mll 3 +ecllullég

)(12 (7)
for any 79 € (7, Tmax). Here, we note that the implicit constant is independent of 7. Hence, we
obtain (7) by letting 7 1 Tiyax. Suppose (7). Take 19 € (7, Tmax) to be chosen later. For any
T € (10, Trmax), We see

7,70))

[ells((royy < cllutmoll 1+ cllullsm,myllvlls.r):
)(1/2(70)

where the constant ¢ is independent of 7 and T'. We now choose 7y s0 that ¢ [v]|s((ry Tmax)) < 3-

This is possible by the property (7). Then, the above inequality implies that

[ulls((ro, 1)) < 2¢lulro)]l 4
1/2(70)

Since T' € (79, Tmax) is arbitrary, we obtain the result. O

We turn to a sufficient condition for scattering. One of the simplest conditions is due to
smallness of the data.

Proposition 3.20 (Small data scattering). Let d = 3 and k = 1. Let (ug,vp) € ]:H%(R?’) X

fH%(R?’) and let (u,v) be a corresponding unique solution given in Theorem 3.18. Then, we
have the followings.

(1) There exists n1 > 0 such that if ||(e"Suy, e%imvo)HSXg <, then (u,v) scatters.

(2) There exists na > 0 such that if H(ei’fAuo,e%imvo)HWMW2 < ng, then (u,v) scatters.

(3) There exists n3 > 0 such that if ||(“07UO)HfH% ok S then (u,v) scatters.

These follow from Proposition 3.17, 3.19, and 3.5.

3.4. Nonpositive energy implies failure of scattering. In this subsection, we give a proof
of Theorem 1.44. To begin with, we will prove that if a data belongs H' x H', in addition,
then the corresponding solution given in Theorem 3.18 stays in H' x H' and the mass and
the energy make sense and are conserved. Furthermore, as is well-known, since our equation is
mass-subcritical, the conservation of mass implies the solution is global.

Proposition 3.21. Let d =3 and k = 5. For any to € R and any (ug, vo) € (Xll//g(to) NH) x
(Xll/g(to)ﬂHl), there exists a unique time global solution (u,v) € (Cy(R; Xll//gﬂHl)ﬂWuoc(R)) X

(Cy(R; X1/ AV HY) N Wa10e(R)) to (NLS) with the initial condition (u(to), v(to)) = (ug,v0). The
solution has conserved its mass and energy. Furthermore, if the solution scatters in FH: xFH3
sense then, the solution also scatters in H' x H' sense.

This is done by a persistence-of-regularity argument. We omit the details of the proof. Now,
we prove Theorem 1.44.

Proof of Theorem 1.44. Suppose that a solution (u,v) given in Proposition 3.21 scatters in

FH? x FHs. Then, the solution scatters also in H' x H', that is, there exists (u4,v+) such
that
1, v) = (™ us, e2™v) | pawrs < (u,v) = (€™Pus, 2™ vs) || g1

(3.5)
—>0 as t > +o0
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By the density argument, we assume (u+,v+) € C°(R?) x C°(R?). Combining this limit and
Lemma 3.3, we have

[(w(), o)z xrz — 0
as t — F+oo. Hence,

2Re / olt, 2yultsz) d| < 2o(t)] g2 u(t)]Z, — 0
R3 ‘
as t = oco. We deduce that
1
. 2 2
Blug,v0) = lim_B(u(t),v(t) = [Vus |35 + 5 [ Tos |2 >0

Further, E(ug,vo) = 0 implies (ut,vy) = (0,0). By (3.5) and the mass conservation implies
(’LL(),’U()) = (0,0). O

3.5. Stability. In this subsection, we establish a stability result. Roughly speaking, the propo-
sition implies that two solutions are also close each other if their initial data are close and the
equations for them are close.

Proposition 3.22 (Short time perturbation). Let d = 3 and k = L. Let I be a time interval

2
and to € I. Let (u,0) : I x R® — C? satisfy
10 4+ AT = —20U + eq,
RUURE 5 (3.6)
10U + EA’U = —u°+ e
for some function (e1,ez2) € .FH%(R:)’) X ]-"H%(R?’). There exists a constant eg > 0 such that for
any 0 < e < eg, if (up,vp) € ]:H%(R?’) X ]-"H%(]RS) satisfies
(@, 0) lw, (yxwa(ry < €05 [I(e1s e2) vy (nyx o (1) < €,
and
i(t— ~ Litt— ~
(71 (ug — ato) ), €2 =" (wo = B(t0)) Iy, (1) wwa(r) < &
then a solution (u,v) to (NLS) with initial data (u(to),v(to)) = (uo,vo) obeys
1(u,v) = (@, 0) lwy (xwa(y S and  ||(vT — T, u® — @) || vy (< (1) S €
Proof. We define (w, z) = (u,v) — (u,v). Then, (w, z) satisfies
t
w(t) = 02y (1) + z/ =98 (201 — 200 + e1)(s)ds,

to

Z(t) —_ e%i(tftO)Az(tO) +Z/ e%’i(tfs)A(,u? _ 62 + eQ)(S)dS.
to

Using the following identities
v —vu = (u—u)(v—0) + (@ — )0+ (v —0)u = Wz + W0 + 24, 37)
w? =0 = (u—0)% +2(u—0)u = w? + 2w, '
we can rewrite the integral equation as follows:
t —
w(t) = 1%y (1) + Qi/ =98 (2w + 2w + 221 + e1)(s)ds,
to
i
2(t) = e2i=10)A 4 (40) 44 / 2 =98 (2 4 205t + e9)(5)ds.
to
Proposition 3.5 and Lemma 3.12 deduce
lwllw, ) <€+ cllwz +wo+ 2+ e1ll v
< e+ cllwlw, nllzllwa ) + cllwllw,llolwa iy + ellzllwa i lwllw, gy + cllelly o
< ce + cllwllw, (llzlwa ) + ceollwllw, (1) + ceollzllw, ()
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< ce + | (w, 2) iy, (ryxwsry T c20ll (@, 2w nyxama( (38)

and

||Z||W2(I) < ce +cl/(w, Z)||12/V1(I)><W2(I) + ceol|(w, Z)HW1(I)><W2(I)' (3.9)

Combining these inequalities, we have

1w, 2) llws (1yxwa(ry < & + ¢ [l(w, 2)|5, (1 xwar) + <€oll (W, 2)lws (1) xwa (1)

If g¢ is small, we obtain

1w, 2)llws (1) xwa(ry < & + ¢ 1w, 2) 3, (1) xwa )

which implies

[(w, 2)lw, (yxwa(r) < ce (3.10)
for € < gq if gg is small. Combining (3.7), (3.8), (3.9), and (3.10), we have

(v — 0, u? = @)y, (1) () < ce.
[l

Proposition 3.23 (Long time perturbation). Let d = 3 and k = % Let I be a time interval
with to € I and M > 0. Let (u,9) : I x R — C? satisfy (3.6) for some functions (e1,e2) and
(@, 0)lw, (ysxwe(ry < M. Let (ug,v0) € Xllg(to) X X11/2(t0) and let (u,v) be a corresponding
solution to (NLS) with (u(tg),v(to)) = (ug,v0) given in Theorem 3.18. There existe; = e1(M) >
0 and ¢ = ¢(M) > 0 such that for any 0 < e < &1, if

(k). 7(t0)) = (. 0)l 72,2720 + 01 e2) s < <

then the mazimal existence interval of (u,v) contains I and the solution satisfies
s 0) = @ O e 152723 0w (e 1By S O
Proof. By the time symmetry, we may assume ty = inf I without loss of generality. Take the
constant g9 given in Proposition 3.22. Since ||(w,?)|lw, (r)xwy(r) < M, there exists J € N such
J J . ~ ~ ~ ~
that I = Uj_y Ij = Uj_y[tj—1,t5) with [[(@, 0) lwy (1) xwa(r;) < €0- We set (w,z) = (u,v) — (u, ).
Put

kj = (V8 = 0, u® — ) || vy (1) % Na (1) -

From Proposition 3.22, we see that there exists a constant Cy > 0 such that if a constant n; > 0
satisfies 7; < ¢ and

i(t—t; Li(t—t;_
("5 w(t51), e2 5022 (85 0)) w1y xwary) < 5 (3.11)
holds, then

[(w, 2)lwy (1) xwa(r;) + K5 < Conj- (3.12)

By the integral equation, we have

‘ ) ti—1 _
6l(t—tj—1)Aw(tj71) = el(t_tO)Aw(to) + z/ ’ ez(t_s)A(Qvﬂ — 20u + e1)(s)ds,
to
. . t._l )
eéz(t_tj_l)AZ(tjfl) _ e%z(t—to)AZ(to) + l/ ! e%z(t—s)A(u2 — 2 + 62)(S)d8.
to

Using Proposition 3.5,

Hei(t_tjfl)Aw(tj—l) HWl(Ij)

< clle™™%w(to)ll .,

iy TC

t71 . pa—
/ ’ e~ A (20T — 200 + e1)(s)ds
to

oL
FH2
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tj_1 =~
[ e e = 25T 4 ) (s)ds

=cllw(t +c
lotto)l 5

1
1/2 to)

XE/Q(tjfl)

t
/ e 92 (20 — 200 + e1)(s)ds

to

< cllw(t 1 +c
<clluto)l

1/2 0)

1
Loo(to,tjfl;XF/2)

S c ||'U)(t0)|| . % +c H'Uﬂ - fﬁﬁ”]\h(to,tj,ﬂ +c H61HN1(1‘/0,tJ’,1)
)(1/2(t0)
and

A ~
e 082 (851l ry) < I=Cto)ll 5, +€ 1 = T2 Nyt 1) + € lle2llnaeo gy 1)
1 \to

which deduce
D3 ut50), B D8 0) s 1wy

<cllwlioh o)l g o+ elenen)mon vt

+c ||(Uﬂ - 55’ U2 - aQ)||N1(t(),tj_l)XNz(t(),tj_1)

+ cll(e1, e2)lny (1) x Na (1)

< cl[(w(to), z(to))]| .

o1
l/g(to) X2 (to)

j—1
+ CZ (0T — D, w® = U2)|| vy (1) % Na (1)
=1
j—1
<Cre+C1 Y Ky (3.13)
=1

for some constant C7 > 1. Let us take a constant o > max{2,2CyC4}. For &’ < g¢, we set
n; =n;(e) = ad 71 (3.14)
for each j € [1,J + 1]. Then, we have
m<m<--<ny<n=¢ < e

We also remark that n; is increasing in ¢’. 'We now show by induction that (3.12) holds for
jell,J]aslong ase <egande < 0%771 (¢"). To do so, it suffices to show that (3.11) is satisfied
for j € [1,J] under this condition. When j = 1, (3.11) is fulfilled by the assumption. Assume
for induction that (3.11) is true for 1 < j < k, where k € [1,J — 1]. Since (3.12) is also true for
j € [1,k], we deduce from (3.13) that

k
H (ei(t—tk)Aw(tk)’ e%i(t—tk)Az(tk)) |‘W1(Ik+1)xw2(1k+l) < Cie+C4 Z ) (3.15)
(=1

By the assumptions of ¢, «, and (3.14), we have
Cie <m=a "
and

1 1,
Cirp < C1Cone < 30 = 50/ 1

for ¢ € [1, k]. Combining these estimates, we have

k k
_ 1
016 + Cl E Ke <« k (1 + 5 E O/) MNi+1 < Nk+1, (3.16)

/=1 /=1

where we have used the assumption o > 2 in the last inequality. Hence, (3.11) for j = k + 1
follows from (3.15) and (3.16), and so we see that (3.12) holds for 1 < j < J. Then, (3.16) is
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also true for k € [1,J]. Set 1 := 0%771 (e0) and assume € < g;. We define &’ by the relation
€= C%m(s’). Notice that ¢’ < &g and &' = C1a’e. By (3.12), a > 2C1C, and (3.14),

7 7 7
1
1w, 2wy xwary < DN, 2)llws ) xwaryy < D Conj = cn > CiCon;
j=1 =1 =1

J
1 1 ; g a7 (ad -1) 1
< SN e e O ) < & =q’
—01;2‘1& T a1 “—0°Y®

1

where we have used the assumption a > 2 in the last inequality. Further, we apply (3.16) for
k = J. Then,

[(w, 2)]

_ = 92 9
<clwloh oDl 3 o, +el0T =000 =@ llwavn + ellensea)l v
J
< Cie +Cy Z/@j <njp1=¢ = Cra’e.
j=1

O
3.6. Properties of L,, and 6:50. In this subsection, we investigate properties of L,, and 6:50.

Proposition 3.24. Let d =3 and k = 5. For any v € fH%(R:}), there exist e >0 and § > 0
such that

Lug(e) < €200 lwa 0,000 + 02
holds for 0 < e < e1. Here, the constants €1 > 0 and 6 > 0 depend only on He%itA
In particular, EI,O > 0 for any vy € fH%(R?’).

UO”Wz([O,oo))'

Proof. Apply Proposition 3.23 with (@, v) = (0, e%imvo) and (e1,e2) = (0,0), the desired result
holds. Il

Proposition 3.25 (Properties of L,,). Let d = 3 and k = 3. For each fized vy € ]:H%(R?’),
the function Ly, is a non-decreasing continuous function defined on [0, 00).

Proof. 1t is clear that L, is a non-decreasing function defined on [0, c0). We prove the continuity.
It is obvious that

1
Luy (0) = (€2 0]y (0.00)) < 00-

The continuity of L,, at £ = 0 holds by Proposition 3.24. Fix ¢y € (0, c0) such that L, (¢y) < oco.
Let us prove right continuity of L, (¢) at ¢ = fy. Pick ¢ > 0. Take § > 0 so that § < 1 and
cd < g, where €1 = €1(Ly, (o)) and ¢ = ¢(Ly, (o)) are the constants given in Proposition 3.23
with the choice M = L,,(¢y). Fix ¢ € (¢y,lp + 6). Then, for any up; € }'H%(R‘g) satisfying
lluo1]l . 1 (R?) < ¢, the function
U FH?2
up,2 = A U0

satisfies ||u0,2||]__H% <y and ||ug1 — u072|]fH% < 6. Let (u1,v1) and (ug2,v2) be two solutions to
(NLS) with initial data (ug,1,v0) and (ugz2,vo), respectively. Note that

| (w2, v2) [l ([0,00)) x Wa([0,00)) < Lo (0)

since HUO,QHJ__H% < {y. Hence, we have

(| (w1, v1) = (w2, v2)|lw, (j0,00)) x W ([0,00)) < €0 < €
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by Proposition 3.23. Thus, it follows that
[1(urs v1) [y (10,000 x Wa([0,00)) < Il (12, v2) llw (10,00)) x Wa (0,00)) T € < Lo (bo) + €.

Taking the supremum over such ug; € FH 3 (R3), we obtain
L”Uo (6) < L'Uo (60) +te

for ¢ € (Lo, o+ 9). This shows the right continuity of L,, at £ = ¢y together with non-decreasing
property. The left continuity is a consequence of the continuous dependence on initial data in
Theorem 3.18. We omit the details.

Let us move on to the case L,,(fp) = co. We may suppose that ¢y := inf{l : L,,({) = oo}
otherwise continuity is trivial by definition. Under this assumption, we prove that L,,(¢) goes
to infinity as £ 1 £y. Assume that

Co :=sup L, (¢) < o0
<Ly

for contradiction. Let &1 = £1(C) be the constant given in Proposition 3.23. Fix 0 < & < 1 so
that efp < 1. Then, for any fixed ug; € }"H%(R?’) with HquHfH% < {p, the function
u(),g = (1 — E)UOJ
satisfies \|u0,2||ﬂq?1Z < (1 —¢€)ly. Let (u1,v1) and (ug,v2) be two solutions to (NLS) with initial
data (uo,1,v0) and (up.2,vp), respectively. One sees that
[ (2, v2) ([, (0,00)) x Wa (0,00)) < Lo ((1 = €)lo) < Cp < 0.

In addition, we have

H’U,()J — UO,Q 1= EHUOJHJ_—H% S 650.

FH2
Applying Proposition 3.23, we obtain

[ (w1, v1) [, ([0,00)) x W ([0,00)) < I1(w25 v2) [, (0,00)) x Wa ([0,00)) T €40
< Ly, (1 = e)lp) + celpy < o0,

where ¢ = ¢(Cp) is a constant. Taking supremum over ug 1, it follows that
Ly, (bo) < Ly, ((1 —€)lpy) + cely < 0.
This is a contradiction. [l

By using the non-decreasing property of L,,, we have the following:

Proposition 3.26 (Another characterization of &T,O). Let d = 3 and k = % The following
identity holds:

5, =1inf{€: Ly, (¢) = oo}
for any vy € ]-"H%(R?’).

Proof. When L, (¢) is finite for any ¢ > 0, we see that the both sides are infinite. Otherwise,
the two sets {€ : L,,(¢) < oo} and {¢: L,,(¢) = oo} give us a Dedekind cut of a totally ordered
set [0,00), by means of Propositions 3.24 and Proposition 3.25. O

A consequence of the alternative characterization is that
L'UO (e:ll-)o) = 00
holds for any vy € FH > (R3). This follows from the continuity of L,,. We also have the following:

Lemma 3.27. Let d =3 and k = 5. ly, > K:ﬂo for any vy € ]—'H%(R3).
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Proof. If £,, = oo, then Lemma 3.27 holds. Let ¢,, < oo. By the definition of ¢,,, for
any € > 0, there exists ug € }'H%(Rg) such that HUOHIH% < {y, + € holds and the corre-

sponding solution (u,v) to (NLS) with (IC) does not scatter. Since Proposition 3.19 deduces
[ (25 ) [, (10, T )) x Wa ([0, Timax)) = O from the failure of scattering, we obtain L, (£y, +¢) = oo.

This implies the relation Z:r,o < ly, + €, thanks to Proposition 3.26. Since € > 0 is arbitrary, we
have the desired conclusion. O

The following is one of the key property to prove Theorem 1.39.
Proposition 3.28. Let d = 3 and k = 1. EB > EZO holds for any vy € FH%(R?’).

Proof. Fix vy € FH %(R?’). We assume that 68 < K:r,o for contradiction. Then, we have

) s o0
LO(%>ZOO and Lv0<0+2 0><oo

t gt
Using the fact that Lo(%) = oo and the scaling argument, one can take data {(Upn,0)} so

that the corresponding solution (U,,V;,) to (NLS) satisfies

o+ 2,
Wonll s < = (3.17)
and
(U, Vi) llw, (j0,0-17) x W (j0,0-1]) = 7 (3.18)
for all n > 1. Let (uy,v,) be another solution to (NLS) with the initial data (Upy,vo). Since
el

Lyy (-57%) < 00, one sees from (3.17) that (un,v,) is global in time and

(i i) lw ([0,00)) < Wa([0,00)) < Lo <€$ g&to) <
We now set (U, Upn) = (un, vy) — (0, e%imvo). Then, (uy, vy,) solves
iyt + Al + 20,21, = —2(e2 g )iy,
104U, + %Aﬁn +u2 =0,
(@ (0),04(0)) = (Uo,n 0)
and so it is an approximate solution to (NLS) with an error
e = —2(e%imvo)%, ey = 0.

Take 7 > 0 and set I = [0, 7]. We have

< |l.Lita LitA &+ 4
I Cerse) ot S leB ™ vollws n lunllwary < leF vollwy o Lu (“052).

The right hand side is independent of n, and tends to zero as 7 | 0. Now, we apply the
to gt .

Proposition 3.23 with M = LUO(KO—;&’O )+ ||e%’tAvo||W2([0,00)). Choose 7 sufficiently small so that

the above upper bound of the error becomes smaller than the corresponding ¢;. Since (U,, V;,)

is a solution with the same initial data as (up, v, ), we see from Proposition 3.23 that (U,, V)

extends up to time 7 and obeys the bound

[ (Uns Vi) llws (1yxwa (1) < 1@ D) llwr (nxwa (1) + Cet

o+ 0 1
< LvO( 5 m) + [|le2™ v lwy 0,00 + Cer-

However, this contradicts (3.18) for large n. O
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3.7. Linear profile decomposition. In this subsection, we obtain a linear profile decomposi-
tion (Theorem 3.38). Let us first introduce several operators and give a notion of deformation,
which is a specific class of bounded operator.

Definition 3.29 (Operators). We define the following operators.
(1) (Dilation)
(D(W)(f.9)(@) = (fay 9ny) = (B f (ha), h*g(hw)) for h € 27,
(2) (Translation in Fourier space)
(T)(f.9)(x) = (€7 f(x),e***g(x)) for &€ R,
Definition 3.30. We say that a bounded operator
G =(G1,G2) = T(§)D(h) for (£ h) € R® x 2°

on ]-'H%(]R?’) X}—H%(RS) is called a deformation in FHz x FHz. Let a set G C £(]—'H% X./TH%)
be composed of all deformations, where £(FH 3 x FH %) denotes a whole of bounded linear
operator on ]-'H% X ]-'H%.

Remark 3.31. G is a group with the functional composition as a binary operation. The identity
element Id is T(0)D(1) € G. For any G = T(£) D(h), the inverse element is G~! = T(—%)D(%) €
G. We check that G forms a group.

Next, we introduce a class of families of deformations.

Definition 3.32 (A vanishing family). Let d = 3. We say that a family of deformations
{Gn = T(&)D(hy)}n C G is vanishing if |&,] + |log hy,| — o0 as n — oo holds.

Lemma 3.33. Let d = 3. A family {G,}, C G is vanishing if and only if a family of inverse
elements {G 1}, is vanishing.

Proof. We set G,, = T'(&,)D(hy,). Let G, be vanishing. If |log hy,| — o0 as n — oo, then
&n
I,
as n — oo. Let |§,| — oo as n — oco. If

&n

00
hn jL) Y
then there exists M > 0 such that, for any k£ € N, there exists ny > k such that

S
T

1
+ logh— > |log hy| — o0

n

_|_

1
log —
oghn

+ < M. (3.19)

1
log —
g hnk
This inequality implies
€| + [og hpy | < M(|hy, | +1).
Combining this inequality and ||+ |log hy,| — 00 as n — oo, we have |hy,, | — 00 as k — oo.

However, this contradicts (3.19). Therefore, G, ! is vanishing. The other direction follows from
the same argument by the relation (G, 1)~! = G,. O

The following characterization of the vanishing family is useful.

Proposition 3.34. Let d = 3. For a family {G,}n, C G of deformations, the following three
statements are equivalent.
(1) {Gn}n is vanishing.
(2) For any (¢,%) € FH2(R3) x FH2(R3), Go(e, 1) — (0,0) in FHz(R3) x FHz(R3) as
n — oo.
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(3) For any subsequence {Gn, i, there exist a subsequence {Gn, }i and a bounded sequence
{(fia)}h C ]:H%(]Rs) X ]:H%(Rg) such that (fi,q1) — (0,0) and ggkll(fl,g,) S
(,) # (0,0) in FH2(R3) x FH2(R3) as | — oo.

Proof. We mimic the argument in [90, 92]. (2) = (3) holds by taking k; = k and (fx, gx) =
gnk (¢7¢) fOI' some (¢? 1/}) 7& (07(])

Next, we prove the contraposition of (3) = (1). If G,, is not vanishing, then the corresponding
sequence of parameters is bounded. Hence, there exists a subsequence {G,, }r and G € G such

that G,, — G in E(]:H% X FH%) as k — oo. Then, for any subsequence {Gn, }; and for any

bounded sequence {(f, g;) }; such that (f;, g;) — (0,0) in ]:H%(]R‘g) X .FH%(]R:}) as | — 00, one
has

(G 11 0) oy | = 101, G 19) 3
< |(£1:919) g |+ [(f1s G 16 = G16) 4 |
< |{f1,619) Firh L+ ||fl||_7__H2 Gy, 10 — gl?b”_;.—g%
— 0 as | > o0
for any ¢ € ]-"H%(R?’). Similarly, |(G, ggkl,w ‘ —+ 0 as k — oo for any ¢ € .7-"H2(]R3)

that is, (Gn, )" (fry> 9k,) — (0,0) in .7-"H2(]R3) X ]-"H2 (R3) as k — oo. Hence, (3) fails.
Finally, we prove (1) = (2). We take any (f,g) € fH%(]R3) X .FH%(]R?’) and any (¢,) €
]:H%(R3) X fH%(]R?’). By the density argument, we assume (f,g) € C°(R3) x C°(R?) and
(¢,1) € CX(R3) x CX(R3). If |log hy| — 00, then for any subsequence {h,, }, there exists a
subsequence {hnkl} such that hy, — 0asl— oo or hy, — 00 asl — co. The inequality

‘<gnkl (f.9), (¢, ¢)>}'H%><}'H%‘ < Hgnkl (f, Q)HLQXLQH(‘ |, |- W})”LQ’XL;’ ~ (hnkl)2_%'

deduces the desired result by taking r > 3 if hny,, — 0 and r < 3if By, — 0o. Next, we
consider the case: |logh,| is bounded and |£,| — o0 as n — oco. If we take a subsequence
{hny,} C {hn,} for any subsequence {hn,} C {hn} satisfying hy, — ho € 27 as | — oo, then

én
(G 1 £, 0) o a | < (102, By = BEF (o) | o I8 g + (€ B3 F(ho), 6) |
— 0 as [ — oo,
where the second term converge to 0 as [ — oo by Lemma 3.2. U

We now introduce a notion of orthogonality.
Definition 3.35 (Orthogonality). We say two families of deformations {Gy}, {G.} C G are
orthogonal if {G;1G,} is vanishing.

Remark 3.36. Let {G} = T(&,)D(h})} € G (j = 1,2) be two families of deformations. {G1}
and {G2} are orthogonal if and only if
hl h2 |§1 o 2|

n n
ny —
2 Tt >

as n — oo. This equivalence holds from the identity (G!)~'G2 = T (s 5")D(h1 )
Proposition 3.37. Let d = 3 and {G,}, {gn} C G. Define the relation ~ as follows: If {G,}
and {G,} are not orthogonal then {Gn} ~ {Gn}. Then, ~ is an equivalent relation.

Proof. The reflexivity of ~ follows from a sequence of the identity {G,, = Id} is not vanishing.
The symmetry of ~ follows from Lemma 3.33. The transitivity of ~ holds by Proposition 3.34.
If {G}} ~ {G2} and {G2} ~ {G2}, then there exists a subsequence ny such that

Ga)'G2 —Gedq, (¢2)'¢ —Ged
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in E(]—"H% X ]-'H%) as k — oo. Then, we have
(Gh)7'Gh, = 1(Gn,) 'R 1(Gr, ) GE] — GG € G,

in E(]:H% X ]-"H%) as k — oo. This implies that the sequence {((G})~1G3)~11 = {(G3)~1Gl}
does not satisfy the third assertion of Proposition 3.34, that is, it follows that

(fklagkl) + (070) or (ggk)ilgik(fklvgkl) + (¢71/}) 7é (070)
for any {(fn,,gn,)}r and {ng, } C {nx}. Indeed, if (f,, gr,) — (0,0), then
[(Gre) "G fis ) iy | < 1y G1G10) s |+ gy (G 1) ' 18— 616G

FH2 FH?
— 0 as k— o0
for any ¢ € fH%(R?’) and
[((Gn,2) ™ Gy 2900 )

for any ¢ € }'H%(RS). Thus, we have (G )7 'Gh (fr, 9k) — (0,0) in }'H%(RS) X }'H%(RS)
as k — 0o. Therefore, we obtain {Gl} ~ {G3}. O

]__H2‘—>O as k — oo

Let us now state the linear profile decomposition result.

Theorem 3.38 (Linear profile decomposition). Let d = 3 and {(fn,gn)} C ]:H%(]Rg) X
FH3 (R3) be a bounded sequence. Passing to a sequence if necessary, there exist profile {(f7,¢%)} C
}_H%(R:”) X fH%(]R?’), {(R], L))} c }'H%(R‘g) X .FH%(R3), and pairwise orthogonal families
of deformations {G), = T(&})D(h)}n € G (j =1,2,...) such that for each J > 1,

(fns Gn) = ng (f). ) + (R, L)

for any n > 1. Moreover, {(R;, L)} satisfies

g P <)
(G e ) {(0,0) (72)

in ]—"H%(]R3) X .FH%(R?’) asn — oo for any j > 0, where we use the convention (RY, L%) =
(fn> gn), and

limsup || (e
n—oo

itA LitA
"AR; 3" L;{L)HL?‘X’LQXL;I"X’LQ —0 (3.20)

as J — oo for any 1 < q,r < oo satisfying % € (%, 1) and % + % = 2. Furthermore, we have
Pythagorean decomposition:

anH2 ZHfsz + HR‘]H2 a3 Ton(D);
(3.21)
gl Z g%, 3 + IILiHiH% + on(1),

where o,(1) goes to 0 as n — oco.

Proof. We define

There exist &, € R? and h,, € 2% such that

v({(frgn)}) =14 (f.9) € FHZ x FH2 | (GI) " (far gn) —> (f.g) in FEH? x FII3
as m — 00, up to subsequence.
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and

n({(fn, gn)}) = sup 1(f: 9]l

.
(f.9)ev({(fn.gn)}) FHIxFH?

It is obvious by definition that
N({(fn, gn)}) < lim sup [|(fn, gn )|

FHY<FHT"

Let J =1. o

If n({(fn,gn)}) = 0, then this theorem holds by taking (f7,¢’) = (0,0) for any 1 < j < J.
Hence, we assume 7({(fn,gs)}) > 0. Then, we can take {}} c R3, {hl} c 2% and (f',¢') €
fH%(R:)’) X FH%(R?’) satisfying

1
L) R (G I
and
(g'rlz)_l(fnagn) — (flvgl)
in ]-"H%(R?’) X FH%(R?’). Here, we define
(Rp Ly) i= (fus 9n) = Gu( 1. 0)- (3.22)
We remark that
(frugn) = g%(flagl) + (Rgu L711)
and
(Go) ™ (B L) — (f1.9") = (f1.9") = (0,0) (3.23)
in fH%(R3) X .FH%(]R?’) holds. By the decomposition (3.22) and (3.23), we have
52,y = 1PN +IRAI, + 2Re(r (L) RE) Ly — 1P, + IR,

FH?2
as n — 0o. Therefore, we obtain (3.21) with J = 1.
Let J = 2.
If n({(RL, L1)}) = 0, then this theorem holds by taking (f7,¢’) = (0,0) for any 2 < j < J.
Hence, we assume n({(RL, LL)}) > 0. Then, we can take {2} C R?, {h2} C 2%, and (f2,4°) €
]:H%(Rg’) X FH%(RZS) satisfying

SR IO < 1%t i

and
(Gn) " (B L) — (f%.97)
in ]-"H%(R?’) X FH%(]R?’). Here, we define
(RBn Ly) o= (Ry. L) — Ga(f%, 9%).
We remark that

2
(Fargn) = D GH(.g%) + (27, 07)
j=1
and
(Gn) (R Ly) — (f%.6°) — (f%,4%) = (0,0)
in ]-"H%(R?’) X ]-“H%(]R?’) holds. By the same argument with J = 1, we obtain
IBLE, = 17212,y + I, + ou) (3.24)
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and
L2 2 212
1Zal% .y = 9?12y + ILRIE 4 + on(1). (3.25)
Combining (3.21) with J = 1, (3.24), and (3.25), we have (3.21) with J = 2. Here, we prove
that {G}}n, {Ga}n C G are orthogonal by using Lemma 3.34. For any subsequence (G} )~'G7,
of (G) G2, we have (G, (B, LL,) — (0.0) and

((Gn)71G0)  (Gn) ™ (Ruy L) = (Gr) ™ (Ray, L) — (f2,9%) # (0,0).
Therefore, {G}}n, {G2}n C G are orthogonal.
Let J > 3.
We can construct {&} € R3, {hl} Cc R, (f7,¢%), (R), L)) € .FH%(R?’) X ]-"H%(]R‘g) for any
1 < j < J inductively. When there exists 1 < j < J such that n({(RﬁL,LZl)}) = 0, then this
theorem holds. Thus, we assume that n({(R}, L%)}) > 0 for any 1 < j < J. We remark that
(Y CR3, (W} C R, (fi,¢%), (R}, LL) € FH2(R3) x FHz(R3) satisfy

1 o o
BB <100 (3.20)
(G RTL LT — (), (3.27)
(RS, LY) = (RL LY — (G ), (3.28)
and
(G~ (RY, L}) — (0,0) (3.29)
for any 1 < j < J. We also remark
J
(frs Gn) ZQ% I.¢) + (R, LY). (3.30)
We prove (3.21) by induction. We assume
Il Z Iy + IRy +on(D). (3.31)
Combining (3.28) and (3.29), we have
1Ry = Iy + IR,y + on (D). (3.32)

From (3.31) and (3.32), we obtain (3.21). By the same argument as J = 2, {G}},, {G4™'}n, € G
are orthogonal for any 1 < j < J —1. For any i,k € N with 1 <7 < k < J, we prove that
{Gi}n,{GF},, C G are orthogonal by induction, that is, if {G},,{G¥},, C G are orthogonal for
any 1 <k—i < K (1 < K <J-2), then the same result satisfies for k —i = K + 1. Subtracting
(3.30) with J =i from (3.30) with J =k — 1, we have
(R, Lh) = D Gh(F.g7) + Ry LY. (3.33)
j=i+1
Operating (G¥)~! to (3.33) and taking n — oo,
((G)71G8) (@) Ry L) = (G) " (Ry, L)
k—1
= D (@G ) + (G RN LTY
j=i+1

—(0,0) + (f*,4") # (0,0)
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in ]-"H%(R?’) X ]-"H%(]RS) by the assumption of induction and (3.27). On the other hand,
(Gn) ™ (R, Ly,) — (0,0)

in }'H%(R:s) X ]—"I-'I%(R?’) as n — co. Therefore, {G},,{GE}, C G are orthogonal by Lemma
3.34. We prove (3.20). By (3.21), we get the following estimate:

i{uffu? 12 b < timsun {12,y + lonl2, < oo

Jj=1

Taking supremum in J for this estimate, we obtain

oo

312 Jn2 < { 2 2 }
Sy + 19712 5} < timsup {1l y + llgul ) < oo
Jj=1

Thus, we get lim;_ ||(f7, /)| 1 = 0. Using (3.26), we have

FH 3 xFHZ
lim n({(R;,L)}) = 0. (3.34)
J—o0

The proof is completed if we show that lim; .. n({(R7, L})}) = 0 implies the desired smallness

property (3.20). This part is established by the forthcoming Proposition 3.39. We assume that

1.
ztAR;i’ eﬁltALJ)

Jim lim sup [|(e wllLeeorrxpaeopy, >0

J—=00 n—oo
for contradiction. Then, there exist g > 0, subsequences {J;} C {J} and {n;} C {n} such that

||( ZtAR#;,GQZtALJk)HLq LT LI LT > €0

for any Ji and n;. The definition of  and Proposition 3.39 deduces
N({(Rye, L) }) = n({(Bpk, Lik)}) Zaeonqnr 1> 0,

where a positive constant M > 0 satisfying H(Ri,Li)HfH% ik S H(fn,gn)HfH% ik S M.

This contradicts (3.34). O

3.8. Control of vanishing. To complete the proof of Theorem 3.38, we show the following in
this subsection.

Proposition 3.39 (Control of vanishing). Let d = 3. If a sequence {(Ry,, Ly)}n C .FH%(RE‘) X
fH%(R3) satisfies
1R Ll 3 gt <M
and
R e A
for some M >0, 9 >0, and 1 < q,r < oo with l € (%,1) and%—{—%:Z, then
N({(Bn, Ln)}) 2nreo.q 1-

To prove the proposition, we need the following lemma.

Lemma 3.40 (Improved Strichartz estimate). Let d =3 and I C R be a time interval. It holds
that

A A
1€ Fll s rins) S ||f||3 ., sup |le” waHLs,-L:,»)
FHS Neoz

where Yy is defined as (3.1).
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Proof. By Lemma 3.7, we have

1
. . 27
e fllay = My (=D fllg ~ || (3 [Py (=2 1[7) ||
Ne2Z

for each ¢ > 0, where the implicit constant is independent of ¢ by virtue of the scaling. Denote
gN = Pﬂ M 1 (—t)e'A f for simplicity. By a convexity argument, one has

H(Z‘QN‘) L3(I;L3) /]R3<Z|9Nt$ > (Z|9Mt$ )idacdt
S Z / lgn ()2 [gas (t, )| 2 dadt,

M,Ne2Z N<M

where we have used the symmetry in the last line to reduce the matter to the case N < M.
Take r1 and ro so that % <r;<3<rg < % and % = % + % By Lemma 2.2, we have
3 3 1 1
[ ot Bloar(t. ) Fdade < ol sy lon gy Noae g Noaa gz
Hence,

e me”p([ \L3) < sup HQNHLg(I;Lg)‘ Z HgNHLt”(I;L;l)HgMHL?(I;L;Q)
Ne2” M,Ne2Z,N<M
Remark that
gy = Fyy F'DFMy(t)f = DOFMy(t)gnf = My () e Syn .
By Lemma 3.14 and 3.5, we have

lgn ez iz = €™ On il < €™ Yn fl]

2r 10-3r _6r
Lt37‘78’ (I X1/22'r ' 16—37r 37‘)
5.5 1 5.5 1
SN F L r0zse = (|73 ¢n]e]o fll2 S N773 |yl £ 2
for % <r< %. Thus, we obtain
Z HQNHL?(I;L;l)HQMHL:?(I;L?)
M,N€2Z,N<M
< Z Z ||9N||L§1(1;L;1)HQNRHL?(];L;?)
R>1 Ne2Z
_i_’_ﬁ 1 1
SO RS wlals £l lenalels £l
R>1 Ne2?Z
—2+3 1 2 1 2
<SRN Juwlalef12) P (3 IonnlalifI3:)?
R>1 Ne2Z Ne2Z
5 1
—m / Z [ (@] £ () Pdar) / > [onr(@)|afé f(a)dr )
R>1 Ne2Z
5
< 2 -t g < 2
2 DR <A
R>1
from Lemma 3.7. This completes the proof. O

Proof of Proposition 3.39. In what follows, we denote various subsequences of n again by n. By
the pigeon hole principle,

itA €0 LA €0
e* RnHL,‘g"’O(Ii;L;) > 2 le=" LNHL;I"X’(Ii;Lg) 2 1
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holds for infinitely many n, where I := [0,00) and I_ := (—o0,0]. We only consider the case
1" Rull = o.copr) = (3.35)

holds for infinitely many n. The proof for the other case is similar. By the interpolation and
boundedness lemma, there exists § = 6(q,r) > 0 such that

itA itA |10 1-0
1€ Rall Lz (0,00);27) S €77 Ball” 3 [l
L3 ([D,oo),Xl N
Indeed, if we take ql,qg,q;),,m,rg,rg,esatisfying% *-i-q;’ ; = *‘1‘*’ T19 = %_% q%@ - %+%’
7@(11—0) — % — 6, and (1 7 = % + q%, then it follows from Lemma 3.14 that

||€itARnHLg’°°([0,oo);L§) = HM%(—t)eitAR ”Lq"”([O,OO);LE)
< My () Ry | oy My (=R

LI ([0,00) qu(l 920 ([0,00);L72(1=9))
< ”67't R H b '%’3 ” it R ”1 .
L (000X ) 8 ([0.00):X 21
< ||eztAR ||6 L Hez‘tARn 17?2 .
L3([O 00); X1/2) LZ&! (J0,00 )X1§/2 )
< ”eltAR ||9 3 ||Rn”17.01’ (3‘36)
L3([0,00); X13/2 FH2

where the last inequality is used Lemma 3.5 (q% + % = 2). By the definition of J, //2,

(—4752A)é/\/l%(—t)eitA = M%(—t)eimuﬁ. Therefore, it follows that

we have

itA 2 A\ itA
[e" R HL%,,([O, X 1/2 = ||(~ )6 %( )e" SR ||L§([o,oo),Lg)

itA) L A £
= M1 (=) 2|3 Rull 1310,00):22) = l€" 213 Rall 13 0,00:3) -

Applying (3.35), (3.36), this identity, an assumption in this proposition, and Lemma 3.40, we
obtain

3(1-0)

€0 itA itA 3
< |le’ o
(2)7 <16 Rallfyoy, <167 R, Bl

30-0) Ay L
<M 7 |let |$|3Rn‘|i§([0,oo);L3)

3(1-6) 1 2 itA 1
S M |23 Ball” o ]31611;2!!6” N |2l5 Rl 3 (j0,00):3)

3(1 0)

2 it 1
=M Rl s ]\S[upzﬂelt UN|]3 Rl 23 (0,00):3)

3(1—0)
S M~ o +2

sup [l ¢ |z|5 Ry 23 ([0,00%:28)
Ne2?

that is,
sup [le™A (5w Rull (j0,00008) 2Mcoar 1
Ne2Z
One can choose a sequence N, so that
itA |, %
"2 |39, Rall 13 (0,00):22) 2 1- (3.37)
Since the scaling property and Lemma 3.4 give us

% 1 7
1”2 |15 9, Rall 13 (0.7 n2]:23) N3||€tA(N |]) 39 R (N, n) L3 (0,7:23)

< NgHlHLtm([O,T])”eZtA(Nn|x’)§an(Nn'>||L?([O,T};L%)
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1
2 [[(Np |

IRall,,

Nit SYR(No)ll 2

1
T12,

~—

AN N

w"" 3(»\::1

T1

N

Nl

one can choose 19 = 179(M, €9, q,7) > 0 small so that (3.37) is improved as

1€ |25 9n, Rl 3 ((ry N2 ,00):22) 2 1

for all n > 1. Lemma 2.2 gives us

ez ]34 N, Rl 3 [TONQ,oo)'L3)

17
< |[[t]7 €A 2[5 ¢, Rul| 5 oo [l £ 737 1A 2[5, Rl :
e € 0, Bl 5 N ot
Using Lemma 3.8, 3.14, and Proposition 3.5,
A -3 itA) L
[t~ 512|254, Re IILt%7 ¥ SMET380 aa olle” ‘x|5¢N”R"HLf?4’%L?
Sl g g
< itA
I el Bl 7. 33
< |25+ 519w, Rall 22
SN
we reach to the estimate
—% 3 gtA| L
Ni 2 ||t €2 2|3 YN, Rall Lo (ro N2 00):20) 2 1
for all n > 1. There exist ¢, > ToNg and y, € R3 such that
_4 3
Ny 3t e 2 (2[5, Rn) (yn)] 2 1. (3.38)

By the integral representation of the Schrodinger group, we obtain
1
N Stz (el eb, o) (y)]

_4| 3 ilz—yn|?
= NG |3 (it / TR 2 o (2) B () d
R3

w

_3 :yn )2 1
SNH| [ T (N ol b, @)l Buo)ds
RS
Z'Nr%lx‘Q _1 nyn 2
= | [, € ol S o @lalt (7 N R (V) (3.39)
Let
N,
£, = — Y RS p = N, € 22,
2ty

Define a deformation G, € G so that G, ' = T(&,)D(hy,). Since {Qn(Rn,L )}n is a bounded
sequence in FH2 (R3) x FHz (R3), it weakly converges to a pair (R, L) € FHz (R3) x FH2 (R3)
along a subsequence. It is obvious that (R,L) € v({(Rn,Ly)}). Notice that 0 < Ni< 1
Hence, by extracting a subsequence if necessary, one has

4t, — 41o°
e el ba@et e N R e — [

2

(|| 54 ()| R(z)dz
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as n — oo, where = € Ris the limit of along the (sub)sequence. Plugging this with (3.38)
and (3.39), we conclude that

NE |2 D~ o
15 /Rg T (2] 759 ()] 2 R(w)dz| Sy ||(R, D)l iy gy < 1 (Bas La)}).
This is the desired estimate. 0

3.9. Proof of Main theorems 1.39, 1.41, and 1.42. In this subsection, we prove Main
theorem 1.39, 1.41, and 1.42. The following proof shows all these theorems.

Proof of Main theorem 1.39, 1.41, and 1.42. Fix vy € .FH%(R?’). First, we consider the case
EI,O = 00. In this case, we can obtain Elo = ly, = lp = 0o. Indeed, we have oo = ELO < {,, by
Lemma 3.27. On the other hand, we have co = E;r,o < EEF) < ¢y by Proposition 3.28 and Lemma

3.27.
From now on, we assume K:r,o < 00. By the definition of E:ﬂo, we have L, (do — 1) < o for

each n € N, that is,

n

(u,v) is the solution to (NLS) on [0, c0),
< 00

sup {H(u, V)llwi(10,00))x Wa ([0,00)) 0(0) = vo, |u(0)|| .1 < £, — 1L
' FHz — Y

We note that Thax = 0o because of Proposition 3.19. Since L,,(¢) < oo for any 0 < £ < EUO,
Ly, (ELO) = 00, and Ly, is non-decreasing, we can take a sequence {m,} of N such that

1 1
Lo (8 = ) < T (s = )

for each n € N. We take a sequence {uq,} C FH %(R?’) satisfying

- T:Ln < Nuowll,y < €h, — miﬂ (3.40)
and
Ly, (520 - L) < ns vn) Wi (10,00)) x Wa([0,00)) < Lo (EIO - >,
mpy Mp+1
where (up,vy,) is the solution to (NLS) with initial data (ugn,v0). We notice that
Jim {uonll -, =}, and Jim = [, vn) [lw ([0.00)) x Wa([0,00)) = 0 (3.41)

from m,, — 0o as n — oo, (3.40), and the continuity of L,, (Lemma 3.25). Since {(uon,v0)} C
FH %(R?’) x FH %(]R‘?) is a bounded sequence, we apply Theorem 3.38 to this sequence. Then,
there exist profile {(¢7,47)} C ]:H%(]R3) X ]:H%(]R‘g), remainder {(RJ, L)} C .FH%(}R?’) X
FH %(R?’), and pairwise orthogonal families of deformations {GJ = T(&))D(hd)}, € G (j =
1,2,...) such that

J
(omsv0) = Y GI(¢7,47) + (R;, L)) (3.42)
J=1

for any J > 1. Since vg is independent of n, there exists unique jo such that Y0 = vy and
Q,JLO = Id. Furthermore, the remainder for v-component is zero: L7 = 0. Rearranging the profile
(¢?,47), we may let jo = 1. Then, the above decomposition reads as

J
(to.n, v0) = (8", v0) + > GA(#7,0) + (R, 0).

=2



From Theorem 3.38, we have Pythagorean decomposition:
lwonl?. ) Z 17125 + IR,y + 0n(1)

for each J > 1. The parameters are asymptotlcally orthogonal: if j # k, then
fi & — €kl

7k hj X —> 00 as n — oo.

n n n

The remainders satisfy
(GH)™'RI — 0 in fH%(]Rg) as n — 0o

forany 1 < j < J.

itARJ

n”Lf’wL}; =0

lim limsup ||e
J—=00 n—oo

foranyl<q,r<oowithé€(%,1) and%%—%zl

We will prove that there exists only one j; satisfying ¢/t # 0 and it satisfies ||/t ||FH

From (3.43), we have
J
: Jp2 112 — (g1 )2
limsup | Ry~ 4 + E 1 17117, = (6)7
=

and hence,
11msupllRJII y <ty and ¢l

—= UO
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(3.43)

(3.44)

(3.45)

L =0

(3.46)

(3.47)

holds for any j > 1. Let (®;, ¥;) be the solution to (NLS) with initial data (¢’, 7). We assume

for contradiction that all (®;, V) scatter, that is,

[1(@5, W) lws (10,000 x Wa([0,00)) < O©
is true for any j > 1. We set

J
~7{7~T{ . Z [h] 5] t 1")7 (\I’])[h%,f%](tux))

and
(@] 7)) = (@].5]) + (*R].0).
where
(®5) g (t: @) 1= b, e 0D (18, b (2 — 218)),
(05) g (1 0) 1= b, "2 =20 w5 (nd 1, b (0 — 2t1)).
We note that (( ')[h%f']’( ')[hj &)
(1.11) and (1.14). Then, (u’, 7)) solves

J J
0] + AT = Z(z’at(@j)[h%’gm +A(R))s 1) = 2 >, wi e (
j=1 j=1
1 J 1 J
0T, + AT = 3 (10()) ey + 3A s ) = = (P
j=1 Jj=1

We also set

[h L ER]

- o~y L ~
&, = i0i; + AU + 2050 and €, = 0,0, + §Avg + (u)?.

Here, we introduce the following two lemmas, which are proved later.

) is a solution to (NLS) with initial data Gi (7,47 from
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Lemma 3.41. For any € > 0, there exists J; = Ji(g) such that
=) - (@02

hfgsipH( D2 = (@ Z) W (10,00) x W ([0,00)) <

for any J > Ji.
Lemma 3.42. [t follows that

}1_{1010 hin sup || (&f 0> €5 TL)HNl( [0,00)) x Na([0,00)) = O

Using Lemma 3.41 with € = § and (3.47), it follows that there exists J; such that for any
J > Ji, there exists n; = n;(J) such that

H( Ups n)HW1 ([0,00)) x W2([0,00))

< ”(N;{l?Nr{l)HWl ([0,00)) x W2 ([0,50))

@, Z)) = (@ Z0) wa (0,00)) x Wa ([0,00)) + 1€ it llwr (0,00

J1
J
< D@5 U liws jo,00)) x w000y T IR 3 +1
j=1
J1
<D @5 )y, (0,000 x W00y + o + 1 =2 M (3.48)
j=1

for any n > ny. Let ey = e1(M) be given in Proposition 3.23. Then,
|(uon —u (0) vy — U, ( ) =0. (3.49)

Lemma 3.42 implies that there exists Jo such that for any J > Jo, there exists ny = na(J) such
that

||]-'H2 ><.7-'H2

|’(g{,n7gg,n)||N1([O,oo))><N2([0,oo)) < 5 (350)

for any n > ny. We set Jy := max{.Ji, Jo} and ng := max{ni,n2}. By (3.48), (3.49), (3.50), and
Proposition 3.23, we deduce that (u,,v,) satisfies

(| (s ) | ([0,00)) x Wa ([0,00)) SM €1 < OO

for any n > ng. However, this contradicts (3.41). Therefore, there exists j; > 1 such that
(215 3 ) W ([0, Toma)) X W2 (10, Tana)) = O©-

By (3.46), (3.47), Proposition 3.26, and 3.28, we have ||¢/! H g = =0}, and ¢/ = 0 for all j # ji.

Indeed, if j; = 1, then £}, < ||¢1H gy < 0h, and if j; # 1, then KT << HWIHFH% < . We
encounter a dichotomy, j; =1 or j1 =2.

Now, we suppose that j; = 1 (, which corresponds to Theorem 1.41). Since a solution (®1, ¥y)
to (NLS) with initial data (¢',v9) does not scatter, we have £,, < ||¢1H = EZO by the

definition of ¢,,. Combining this inequality and Lemma 3.27, we obtain ﬁvo = E}:O = H(;bleHQ
This shows that ¢! is a minimizer to £,,. Moreover, it follows from Proposition 3.28 and Lemma
3.27 that ¢,, = &T)O < Eg < {y. Therefore, we have the identity E;r,o = min{4y, ly, }

Let us move on to the case j; = 2 (, which corresponds to Theorem 1.42). In this case, it
follows that (¢?, 1/1 ) = (0,v9) and (¢%,%?) = (¢?%,0). Since (®3, ¥s) does not scatter, we have

ly < quQH g = EUO by the definition of ¢y. Using Proposition 3.28 and Lemma 3.27, we obtain

by < H¢2|| g = =0, < ZT < {o. In particular, we have £, = £y = qu52|| . This shows that ¢?
is a mlnlmlzer to £y. In addition, we have

(UO,mUO) = Z g‘TYL(QSJﬂ/}J) + (ngo) = (077)0) + g72L(¢27 0) + (R?w 0)7

7j=1,2
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and hm |R2|| .1 =0

hm llwo.nl| = i

FH? vo?

by (3.41), (3.42), (3.43), and ”¢2HIH% = KUO. Remark that we have also the identity 6:50 =

min{lo, {,,} in this case. Let Tax denote the maximal existence time of a solution to (NLS)
with initial data (¢%,0). Fix 0 < 7 < Tiax. Recall that (®;, ¥;) denotes the solution to (NLS)
with initial data (¢7,47) and ((CI’j)W- L (\I/j)[hj Ej}) denotes the solution to (NLS) with initial

data g%(qu,q/)j). We set
~ o~ 1,
(s Tn) = Y (@) g ey (W) ey) = (0 €2 % 00) + (22)ppz ez (P2)z ) -
j=1,2
Then, (ty,vy,) solves

i0ytin + Aty = Y (i00(®) g ey + D@ g 1) = —2(P2)pn e21( @)z 21,
j=1,2

i0¢0n + % A, = 21:2(2’@(‘1’]')[&;,521 + %A(‘I’J’)[hz;,gm) = —(®2)jiz 2
We also set o
€1 = 104ty + Al + 2051, = 2(01) 1 611(P2) 2 g2
o 1= 10,y + %A’ﬁn + ()2 = 0.
We check the assumptions of Proposition 3.23. One has
1Gems B )llw 10,7/ (h2)20) < Wa 0,7/ (h3)2)

Li
< 110, €2"200) lw, (j0,00))x W (10,00)) (@2 W) llwws (10,7 x a0,y =2 M < 00,

Il (wo,n, v0) — (Un(0),0,(0))]| 1 — 0 as n— oo,

= ROy
FHZxXxFH?2 FH2xXFH?2
and
1(€1,m5 €2,0) 113, (10,77 (h2)2)) x Na(0,7/(12)2)) = €1l Ny (0,7 /(n2)2)) —> 0 as n — o0,

where the last limit is shown as in the same spirit of Lemma 3.42 with a help of the first estimate.
Therefore, we obtain

1.
(tns vn) — (0,2 0g) — ((‘1)2)[h%,§%}7 (‘%)[h%,gg]) —0

in Lg2([0,7/(h2)%); X1)a) x Li*([0,7/(h2)2); X1/%) as n — cc.

In both cases, we have the identity EUO = min{/p, {,, }, hence we have Theorem 1.39. If we
assume that £y > E:ﬂo then the second case is precluded. This is nothing but Theorem 1.41.

Similarly, the assumption ¢,, > EZO precludes the case j; = 1. This shows Theorem 1.42.
Indeed, the above argument applies to the minimizing sequence satisfying the assumption of
Theorem 1.42 and leads us to the same conclusion in the case j; = 2. (I

To prove Lemma 3.41 and 3.42, we first prepare the following claims.

Lemma 3.43. Let d = 3. Let {(h%,g%)}(j7n)e[1’J]><N C 2Z x R3 satisfy (3.44) and let (®;,¥;) €
W1([0,00)) x Wa(]0,00)). We consider e{m and e‘] defined by

J J
w = B (@) e D (W) ) ZFl Diwgi (Uidngeh))
j=1 Jj=1

and

<i ) ZFQ [h] &) )

Jj=1
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where Fy(w,z) := 22w and Fy(w) = w?. Then,
H(e{,n? ein)||N1([O,oo))><N2([()7oo)) —0 as n — oo.

Proof. Thanks to Proposition 3.16, we only have to consider the case: supp (®;, ;) C [m, M] x
Bgr(0) holds for some m, M, R > 0 and for any j € [1,J], where B,(y) denotes a ball in R? with
radius 7 > 0 and center y € R®. By the definition of (ef 7 ), we have

1

et ll v (o,.00)) = H(—4t2A)Z<2 > Ml(—t)(q’j)[hg;“gl]/\/l%(—t)(q’k)[hg,gﬂ)‘

52 (0,00):L1T)

1<5,k<J
7k
1
Se D0 (AR M=) (W) g My D@ e .
1<5,k<J ([0,00);Lz")
J#k
and
1
ledallvaooon = |(F0H( 32 MyO@ My D@ an) | 22 0
1<5,k<J ¢ ([0,00);Ls")
J#k
1
Se D ||[CPAV M@ My O @iugen | g2 B
1<]7k‘<J ) yHx
Jj#k

j k
When Z—é + :7: >4 /24 2%, time supports of ((IDJ-)W“ i and (\I'j)[hz;,gi;} with different index do
not intersect and hence,

H (—4EA) s My (=) () g e Ms (=) (P s et

2

65 18 =0
L7 ([0,00);LAT)

and

|(=2a)imy (-t (@)

gt M3 (D (@)
hold for such n and (j,k). Therefore, it suffices to prove under an additional assumption

supneN(% + %) <4/2+ 2% for any 1 < j, k < J. Changing notations if necessary, hi, = h,,
2 2 ] 2 2
and supp (((bj)[hmffﬂ’ (\Ilj)[hmf%}) C [gnié, M i] XB% (2t§¥l) If t(hn)2 S [?W, %], then

m  h2
(3.44) deduces

n7 n]

18
L5 *([0.00); L)

€7l ‘Sn

[ (& — 2t8%) — (= 2t€3)| = 2thn 8], — &5] > ;

—> 00 as n — OoQ.

Since the spatial support of ®; and ¥, are contained in Bg(0), there exists ny € N such that

1
(A2 D) M (=0T, )M D (i ] = 0
and
1
[(—£22) My (=0)(®5),, o Mo (—D(@h)pi, g1 =0
for any (t,z) € [0,00) x R? and any n > ny. O
Proof of Lemma 3.41. Set
J J
(" 5 = (@, 20 = @ E) = (O @) e D (Bidpen)
j=J1+1 j=J1+1
Then, we have
(@ (0), 5 (0 Z Gh (&, ).

j=J1+1
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It follows from (3.44) that

J J
LIy 2 - Z 2 JIV2 - Z iz
Jgn’W ()Hfg% 1¢]] S hm»W) (O WfH% HwaH% 0
o =

for any J > J; > 1. Here, we have
J
5112
IR,y <o
j=J1+1
by (3.43). Hence, for any € > 0, there exists .J; such that

~J,J ~J,J
Tim (|7 (0). 5Oy, n << (3.51)
for any J > J;. ('127{"]1,'27,{7‘]1) satisfies the following equation:
J
iOpiy ™+ A = = 3 FL((@5) g ey (V) 1)
j=J1+1
J
i0pT L + A~“1 == Y B((®)y.0):
j=J1+1
where F; and F5 are defined in Lemma 3.43. We define functions 6{77{1 and ’ég:il as
J J
~JJ
we= Z Vel 2 Epgen) = O Fr@)pap (W)
j=J1+1 j=J1+1 Jj=Ji+1
J J
oI
G = Y @) - 2 B((®)yq):

j=J1+1 j=di+1

( JJ1 J,J1)

The above equation satisfied by can be rewritten as

ZatUJJl + A’dJJl + Fl( JJ1 J,Jl) — ’eVJ,Jl

1n >
Za'UJJ1+ AﬂJJl—I—F( JJl)_gJJl

We also rewrite the differential equation to a integral equation.

t
B0 = SSTEO) +1 [ IR 6). T 5) — 2 o) Y
t
TP () = €2 AT (0) 4 /0 e IRy (@ (s)) — e (s) ds.
Using Proposition 3.5 and 3.12,

J,J ~JJ
1" lwr (j0,00)) < € lluz ™ (0)]]

1350 wao.00)) < 1T O3 + T 3 0,000y + € 185" 1 (0,00))-

,J .
wid el w000 1007 lwa o,00)) y =+ cllEL Iy (0,000

Combining these inequalities,

1@ Tl (0,000 x Wa (0,000 < € 1@ 0), B0 (D3 i (3.52)

+ el @, T ) I, (0,000 x Waio00)) + €@ B ) |V, (0,50)) % Na((0,00)) -

Lemma 3.43 deduces

~J,J1 ~J,J
Jim [(er " €0 ) v (10,000 xVa([0,00)) = O (3.53)
for any J > J;. Combining (3.51), (3.52), and (3.53),

1 Tl 0,00 x w00y < €2 + el T )iy, 0,000 x wa(i0,000 (3:54)
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for any J > J; and n > ng(J, J1,¢). It follows that there exists €g > 0 such that if 0 < ¢ < g

then the inequality (3.54) implies
H(ﬂ?{"h;5#"]1)||W1([0,oo))xwg([0,oo)) < 2cg,

which completes the proof. O

Proof of Lemma 3.42. By the definitions of 'ev‘l] ., and E2J -

~J _ ~J itA pJ J . S
I ooy = | F1(@] + R, Z) ZFl 31w, 5n1’(‘l'f)[h%,£%1))Nl([o,oo»

< HFl(wJO +eZtAR1L"]n go) F1(~r{07gn )HN1 ([0,00))
+ | Pu(@;) + e R),Z]) — Fu(w® + e Ry, Z0) | vy (0,00))
+ | (@, Z)) — Fl(N;{OaZ;{O)HNl([Opo))

+HF1 Wy, Zy) ZFl W 5]1’(%)[’1%75%1)’Nl([o,oo»’

185 | Na((0,00)) < I1F2(W;0 + €A Ry)) — Fa(w” )||N2([0,oo))
+ || Fa(@;, + "2 Ry) — Fa(@;° + € Ryl vy((0,00))
+ | Fa(@;) = Fa ()] ny (0,00))

n HFQ@g) - ZJ:F2((@j)[h;;,gi;l)‘
j=1

The last term of the right hand side goes to zero as n — oo for all J by Lemma 3.43. Moreover,
the second and the third terms become small if we take Jy sufficiently large by Lemma 3.41 and
3.12. Indeed, we have

1Ex (@) + ARy, Z)) — Fu(@;° + "2 Ry Z0) || v, (0,00))
< 2|7 (@] ~J0)HN1 (000 T 2T (E] = Z0) |y (0,00 + 211G NJO)G“ARJHM(OOO))

< HZJHWQ ([0,00)) H - NJOHWl ([0,00)) + {HwJOHW1 [0,00)) + ||eZtARJHW1(Ooo) }HZ - zn ”Wz ([0,00))

Na([0,00))”

IFy (@5, Z) — Fu(w®, Z00) || vy [Ooo))
SNz W 0,000 1T — @2 [l ((0,00)) + 1T 1l (0,000 1Zs) — Z 1w (0,00))

|Eo (@ + "2 R;)) — Fy(;0 + €2 R;) >IIN2<[o )
= ||y + @;0 + 2" A Ry)) (105 — @;°) || vy ((0,00)
SN + @ + 26" Rl (10,000 | @51 — @20l ([0.00)

HA R (10,000 HI W5 — @3 1wy ([0,00))

S @3 1l (0,000 + 10522 11w 0,00) + e
and
1F2(w3) = Fa(@;°) I vz (0,00)) S L@ lwa 0,00)) + 18522 1lwe (0,00)) HIT = @500y (0,00))-

Thus, we have to estimate the first term. We may assume by Proposition 3.16 that supp (®;, ¥;) C
[m, M] x Bo(R) holds for some m, M, R > 0 and for all j € [1, Jy]. We set

L, = [(hf) "m, (h},) 72 M].
If t ¢ I then ((<I>j)[hj i (\I/j)[hj €j]) = (0,0) by the assumption for time support of (®;, ¥;).
Thus, we have

HFl(@;{O + eZtARg7 7{0) Fl(wn07 27{ )HNl([O,oo)\Ujng;) =0
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and

1Ey(w;° + e Ry) — Fy(w™ = [|Fa(e" Ryl

M o.00n 022, 1)) Na([0,00\U70 1)

By Lemma 3.12 and (3.45),
limsup || F(e"*R;))||

n—oo

< lim sup ||F2(€itAR1{) [ V3(0,00))

Na([0,00)\U72,) = 700

< limsup || Ry [l (0,00)) €72 By [l sweatc (0,00
n—oo

— 0 as J — oo.

We shall consider

”Fl(wjo""eltARiv 1{0) Fl( 1{07250)”]\7 (UJO I])

and

MWW+¥“W—B@MM(hm

B, | RE
hE T
71 + implies N I k=g, Changmg scales and notations if necessary, we may assume B = 1.

We only have to treat the case: —|— is bounded for any n and 1 < j, k < Jy since >

Then, orthogonality (3.44) becomes ]5% —&F| — o0 as n — oo for any j # k. We want to
estimate

1Fa (@, + ™Ryl Z00) — Fu (@30, Z00) || vy ()

n?n TL’TL

and
||F2(~‘]O + "2 R)) — Fo(@”) || vy (e 7))

where m/ := mﬁ <mand M := W > M. We set x4 (t, z) = L 2 () DR (2 — 2t€)), where %
is defined as (2.2). We recall

i gied |2 .
((I)j>[1,§£l] (t,x) =€ Sn e itlen Q;(t,x — 2t&))
and
el _oied |2 -
(W)))y g (t:3) = 2 re 20w (12— 21€)).
Hence,

supp ((2) 1 10 () er) Csuppxd, € ({8} x Bar(2t€))) =: %,
m/<t<M'

By the orthogonality (3.44), A (1 < j < .Jy) are pairwise disjoint for large n. For such n, we
have

Xn (@), = {(cbj)&&], E: ;‘Z; and X2 (U5) ) = {(\mo[,%], EIZ ;j;
Let %, = (x})2. Then,
L FL (@0 + " RYZR) = FL(d w0 + xR AER) = FL((@) gy + X" Rl (U5) ay)
and
N Fa(@2 + " RY) = B(xd @ + X" Ry) = o (D) ) + X" Ry)
for each 1 < j < Jy and provided sufficiently large n. Similarly, we have
X1 (@50 50) = Fr (0w xdZ0) = Fi((99) ey (Y er)
and
WRE) = BOGT) = B((®), )
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for large n. Further, we may see that 1 — ijl X, =0on U}-]‘):lsupp (<I>j)[1 5j](t, x). Therefore,

J
(1= SR R + R =0,
j=1

( ZJ: )F2 wJo i eszJ ( ZJ: ) ztARJ)
(1 . ;gg’l)m(@{o, 70y =0, and (1 - ;;zg;)pg(a#) — 0.

Thus, it follows for large n that

IF1 (@50 + €2 Ry Z00) — Fy (w0, Z00) || vy (e 7))

TL’TL

_ HZ F’1 [1 g] +X] ZtAR‘] [1 5] ZFl 1£J ( ])[1’5%])‘ N1([m’,M/])
Jo

< D@3, + e B () eg)) = 1 (@) ey (W) v, (o
j=1
Jo

= Z HF1 (X%eitARq{a (‘I’j)u,gﬁ;]) HNl([m’,M’]) =1

and
[ Fo (@0 + €2 R ) — Fa(w) | vy [m/ M)

Jo
_ =7 ztA J ztA J
—H(l—ZX%) Rn) +ZF2 [1£J]+X% R;) ZF? Die) ‘

Na([m!,M'])
S Z HF2 1 et XJ ZtARJ) F2((‘I)j)[1,gﬁ;])HNz([m',Mf])
Jo
+ HF ( ZtARJ)HNQ (Im/,M")) -+ Z ”FQ XJ ztARJ)HNZ([m’,M’])
j=1

= I+ IIT + IV.
First, we estimate I1/. By Lemma 3.12, we have

IIT S (€2 Ry lwy (o v 172 Ry | sseas (s arrp) S ||Ri||n~]% €2 Ry || wea (fmr ar7)) -
Since R is uniformly bounded in FH %(R?’) Lemma 3.12 and (3.45) deduce

ztA J —
}L%ollrinsup|]F( Ro) | Ny (e ) = 0.

Next, we estimate IV. We change of variable z — 2t&) = y and apply (1.13). Then, we have
. . e
1F2 (e R | vy (o )y = ([P (Zre™ e Ry | vy (a7

Lemma 3.11 and Proposition 3.5 imply [|#re™® R} |w, (m,ar]) is uniformly bounded. Thus,
using (1.13) and (3.45), it follows that

ApJ it —igh -z pJ itA —ith-x pJ
IE2 (e RO Ny nap) S 12 €™ Ry || gweate (e a1 ZRE™ €5 Ryl wry (1)
S ||€Zt (& i xRiHSweak([m/7Ml])
i %2_. . % A .
= [|e el =i En (A R) (@ + 2665 || gweats (e, 117])
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= ||€itAR,,{HSweak([m/’M/D — 0 as n — oo.
Finally, we estimate I and I1. We consider only the case j = 1, that is, we deal with
|71 (xne™ Ry, (T1)per)) HNI([m’,M’])
and
[ F2((®1)e1) + Xne™ Ry — Fa((®1)(1.e HNQ( ' M)
By the same argument with the proof of Lemma 3.12, we have
IFLOane™ Ry, (%1) g1 ) vy (s a7

= 2| (~4£2A) 3 M (—O)xhe B RIMu (— D penll g2 181
: ([, M");Ls™)

< [(—4£2A) M (—t)y et A RY o (1 T
~ H( ) %( )Xne HL4 [m M L2 H( 1)1671}“[/: 2([ ’M’} LQ)

S gy [P MO @) g

< 1 ZtARJ i}
(P AT

1 _itA pJ
+HX ' R H L62[ /M/] LT)

([m lvM/];Lg)

+ HXneltARr{Hchak([m’,M’])H(qjl)[l,f,ﬂHWl([m’,M/])-

[1(®1)1,e11llw, (jm, 2177 18 uniformly bounded in n. From (3.45), we have

lim lim sup erlleitAR;{HSweak([m/ my < lim limsup HeitAR,r{HSweak([m/ ) = 0.
—00 0o ’ J—=00 nooco ’
By Lemma 3.8,
1 1
\ < (¥ 2 )\ 2, .
(W), gl]H 2 ot M) ¢ 1)[1,5,{}\\L??([m/’M/];Lg)H( 1)[1,&]‘|Lg,2([m,7M,];Lg)

Lemma 2.3 and (3.3) deduce
1
1D penlizg = M (=) (Tpeyllze S NVIEM = (T0peall

1

_1 1 1 1
= =2 IEEIVEML (=) (T)p gl e S 721D pel

118
X275
/

and hence,

1) et 22 g arzey S 12 e a1 (F ) e |

L2 ([m M’]-X%’%)
’ 12

= ()2 [ (U1) g |

L32(Im!,M"); X1/2 )
On the other hand, we have
G < ||(¥ = || ¥
1€ 1)[1,5}1]HLtg,z([m,’M,th (W), 5,1]||L32 (i I 1!|L?,2([m,’M,} PES

by Lemma 3.14, where we note that (3, %) is an admissible pair. Therefore, to give desired
estimate on [m/, M'], it suffices to show that

lim sup ||@peitd e RY —0 as J — oo. 3.55
msup |9 e arnid, (3.55)

1
Since the multiplication by %% is a bounded operator on L>([m/, M']; X ! /2) from Lemma 3.11,
if we obtain (3.55), then

||@ReitA€7i£}z-xRi” e , < H@ReztA —igk- zRJH
Ly (Im/ , M X 2,) 3 ([m/,M']; Xf/Q)

< 1Fhe B R etk gl

L3 (fm! MY X 2,) Lge (! MiX )
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1
< || PretLeEn l‘RJH2 L IRIIZ ., — 0 as J— .
LE([m' ,M');X2,) FH?2

Let us check (3.55). It follows that
H@Reime_i&'“beHX% ~ M% H‘V’%M%(_t)@ReitAe—ié}eriHL%

1/2
for t # 0 by (3.3). WetakeO<5<f,f<9<1 18<q1<2,and 18<q2<zsa‘c1sfy1ng
1-26 200—-6) 6 1 2 6 21-6) 7 1 1 1

= +o, —=c4-= +

2 3 6 ¢ 9 6 9 18 2 ¢ @

Using Lemma 3.9,
itA _—ifl.x pJ
|FeBe TR

1/2
~ RV My () Zpe e R |
1 1 ; _gel, 1 i _iel. 1
St ZR[V[2 My (—t)e™ ST Ry 3 + [HZ My (—t)e™ S B[V |2 D 2
+ [ IVIE My () e SR V1200 D |
< [t]2 | FIV |2 My (<D™ ST T R 1 + [t]2 [ My (<) e TR o V]2 %R]| 1
2 z 2 L2 L,
+ 21712 My () B e TR o [|V]2 00 D] o
< 2| BRIVIE My ()BT Ryl g + Clg 12 | My (—t)e S R g
+ Ca 13| V]2 My ()20 R | .
By Lemma 2.3, we have
[t 7 [ My (~t)e BT R o < [0 [¢]2] V]2 My (~t)e e TN RY |
2 L2

N’t’%(l—O)HeitA zfanJH %
X1

2

< (M/)%(I—G) HeztA —ig) zRJH

m\»—thq;

for m' <t < M.
12 [V]2 My (=t)e ™S R par ~ [¢]20-0) et Be T8 R

7 »q1
1/2

< (M/)%(1—9) HeitAe—if}L-:vR;{H o

1/2
for m’ <t < M’. Applying Lemma 3.8, 3.13, and Proposition 3.5,

itA e—ig},x R/
| ””L 2w, MY X B

1/2
Sy, | Be TR o
* (e 21)) LT (e X
5 (M/) ||eztA —ig)- mRJ”l 0 03 ||eztA —ig)- :cRJHG()OO 18
([m/M]Xl/Q) L= ([m/ , M']; X12/27)
5 (M/)cSHeztA —igL- :URJHI 0 HeitAe—i&l JHG 1 s
= ML) LE2 (b MK, )

1) A 1 0
S (M7)°[|e e wR‘]Hchak ) HR;{HFH%

([m
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Since It follows from (3.45) that

) a el _ .
lim sup || e~ %n zRi”Sweak([m/’Ml]) = limsup ||€ltAR,;{”Sweak([m/,M/]) — 0 as J — oo,
n—oo n—oo
we have
. A _igl.
lim sup || e~ %n T RY|| 9., — 0 as J— oo,
n—00 L?([m’,M’];XF/’Ql)

where, we note that

1
HlHQ — (M/ o m/)26 < i(M/)%‘

1
L8 (I, M)

If we also use Lemma 3.10, then we get

1 1 it —igl. J itA 1L el J
1214121912 My (=)™ e R 2 iz ~ |19 o267 B 2 g ary2)

S e 2 2e ™ R 12 (s 022 (B (0))

< Ry + Colle™ e SR g
t

oo

(0.00):LE)’

where the first equivalence is used (3.2). Therefore, we conclude from (3.45) that
: 11 A _igl.
hgl_}S;p |ZR|t|2 ]V|2M%(—t)ezme Zgan;{||L§([m/,M/];Lg) — 0 as J — oo.

Moreover, we can estimate

[E (@)1 + xne ™ Ry) — Fa((P1)p,en)) | s e 217

= [|2(®1) e xne ™ Ry + (XrlzeitARi)QHNQ([m/,Mq)

by the same argument. O

3.10. Study of related optimization problems. We next consider the optimizing problem
B(p) defined as (1.19).

Theorem 3.44. Let d = 3 and k = % B(p) is non-increasing and right continuous. Suppose

p > 0 is such that B(p) < oo is true. Then, there exists a minimizer (u,,v,) to B(p) with the
following properties:

W) Nl = Blo) and [log] .y < p:
(2) (up,vp) ¢ S
Moreover, the identity

Blp) = nf{{u, : [[voll _,y < p} = int{e], : |

’UOHJ_-H2 3 gp}

holds and the minimizer satisfies £y, = Ej,p = ||up||]__H%. Furthermore,

|UOH]_-H

sup{Lug (£) : flvoll -1 < P} Spe 1.
for any £ € [0,B(p)).
Proof. Non-increasing property of B(p) follows from its definition. The identity
B(p) = inf{y : ol 3 < o} (3.56)

is also immediate by its definition.
Introduce Bf(p) as follows:

L(€; p) = sup{Lu, (£) : [lvoll -3 < P},

FH?
and

B (p) :==sup{l: L(¢, p) < oo} = inf{l: L(, p) = oo} € (0,00].
By Proposition 3.24 and 3.5, one has L(¢,p) <, 1 for £ <, 1. Hence, Bf(p) > 0 for any p > 0.
Mimicking the argument in Proposition 3.25, we see that, for each fixed p > 0, L({,p) is a
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non-decreasing continuous function of ¢ defined on [0, 00). Further, we see that Bf(p) is right
continuous by a standard argument.
We now claim that

B (p) < B(p)- (3.57)
Indeed, we have
Bf(p) = inf{£ : L(¢, p) = o0}
< inf{¢ : There exists vy € FH%(]R?’) such that L,,(¢) = oo and ||v0|| 1 < p}
—inf{el, < ool 3 <}
<inf{ty, : ool .,y < o} = Bo)

where the first inequality follows from fact that the existence of vy € FH %(RE’) such that
L,,(¢) = oo and HUO”IH% < p implies L(¢, p) = oo
Fix p > 0 satisfying B(p) < co. Take an optimizing sequence (uy,(t),v,(t)) to Bf(p) satisfying
1
Bl (o)~ - < lluoall 3 <B0). ool 3 <0

and

1 < | (U, v0) lw ([0,00)) x Wa([0,00)) < 09

where (40, vo,n) = (un(0),v,(0)). Then, by a similar argument to the proof of Theorem 1.39, we
obtain a minimizer (u,(t),v,(t)) to Bf(p), which completes the proof of B'(p) = B(p). We omit
the details of the proof but point out different respects compared with an optimizing sequence
for EIJO. The biggest difference is that the second component vy, of the optimizing sequence may
vary in n. As a result, we do not have a priori information about the second component in the
profile decompositions, hence the decomposition takes the form

(wo,ns v0,n) Zgj (¢, ¢7) + (R;), L)

A contradiction argument shows there exists at least one j such that (¢7,¢7) ¢ S;. We may
let 5 = 1. One has

161 gy, < Timsup lluoall -y = B'(p) (3.58)
and

(o < limsup uonll -y < p

by the Pythagorean decomposition. Since (¢!, ¥!) ¢ S, and leHfH% < p, one has

1641 = Blp)

by the definition of B(p). Together with (3.57) and (3.58), we see that B(p) = Bf(p) = ||¢! ||]__H2
holds and that the solution corresponds to the data (¢',1!) is a minimizer to both of them. By
(356) and (¢17¢1) ¢ 8+7

B(p) = inf{ly, : o]l ;3 < p} < Llyr < ']l .3 = Blo).

Hence, ||¢! H = Ly = B(p). Similarly, we have qulH = KT O
We now turn to the study of optimizing problem (1.16). Let us formulate the problem in

an abstract setting. Let f(z,y) be a function on [0,00) x [0, 00) satisfying the following three
conditions:
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Non-decreasing with respect to the both variables, that is,

0<z1 <22, 0<y1 <o = fx1,51) < f22,92).

Continuous, that is, for any (z,yo) € [0,00) x [0, 00),

f($7y) = f(xO,yO)‘

lim
[0700) X [0,00)9(:17,y)—>(:ro ,Y0)

e f(0,0)=0.
e No leaking to the infinity, that is,
inf { £(Juoll 3 ol 1) < (0, v0) € 81} < min{;ggo £(,0), Jim. f<o,y>}. (3.59)
Let
Cp = nf{f([Juoll 1 [lvoll 1)+ (w0, v0) & St}

Theorem 3.45. Let d =3 and k = % Let f satisfy the condition above. Then, it follows that

tr= inf Sl llool y)= i F(lh. ol )

-1
. . FH?2
voEFH?Z vo€EFH?2

Furthermore, there exists a minimizer (ul)(t), v (1)) to £ such that

1) FUD O3 DO ) = Ly
(2) (u D), v (t)) does not scatter;
(3) ulD(0)

The minimizer is not a ground state.

_ _
I8 = G0y = Cyin oy

Remark 3.46. The condition (3.59) is hard to check for general f since one does not know much
about the set Sy. Following two are examples of a sufficient condition for (3.59) that does not
involve &y:
L4 hmxﬁoo f(xv 0) = hmy%oo f(07 y) = +00;
e there exists a solution (¢, 1Y) to (SP,,) with w = 1 such that
3 3 . . .
(10l 1001 ) <min{ i 70,0, i 10}

The problem (1.16) corresponds to the choice f(z,y) = (2% + agy?)/2. The function satisfies the
first sufficient condition.

Proof. Since S; # (), we have £; < oco. Take a minimizing sequence for £;, that is, take a
sequence of initial data such that (ugn,vo,) ¢ St and

1
U = flluonll 2y ol 2y ) < by + o

-1
FH?2

We claim that (Hu0=”H;H%’ HUO=”H;H%) is bounded. If not then HuomeH ‘IH% is

not bounded. Let us consider the case HuO’””fH 3 is not bounded. Take a subsequence so that

[0,

1 or |lug,

1 —> 00 as n — 0o0. Then, by the nondecreasing assumption,

FHZ
F(lwonll - 11,0) < f(luonl

Letting n — 00, one obtains lim,_, f(x,0) < ¢ ¢- This is contradiction. Hence, the claim is
proved.
Take a subsequence so that (||ug ||

FHY’ HvO,nH]_—H%)'

Y HUO’"HFH%) converges to a point, say (Zeo,Yoo). By
the continuity of f, we have

f($007 Yoo) = gf-
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On the other hand, (ugn,von) ¢ S+ gives us B(H’UQ’nH]__H%) < ||u07n||]__H%. So, by the continuity
of B, we have B(yoo) < Too. Let (Uuso,Vo0) ¢ St be the initial data of a minimizer to B(yoo)

given in Theorem 3.44. It satisfies

tsell 3 = o = £, = Blyoo) < 700 amd ) < e

i ol

The minimizer is what we desired because

gf < f(”uOO”]_—H%’ HUOOH]_—H%) < f(xooayoo) = gf?
which implies that f(HuoonH%, HUOOHIH%) =/y. O

3.11. Proof of corollaries of Theorem 1.44. We have proven Theorem 1.44 in Subsection
3.4. Let us show its corollaries.

Proof of Corollary 1.45. For given vy € }“H%(R?’) N HY(R3) with vy # 0, we take
uo = vo(2)2|vo(z)|2 € FH2(R®) N HY(R?).

Then, we have
2
1 c
E(c2dug, cvg) < cd?||[Vugl|72 + 5||VUOH%2 —2¢%d?||vo 35

for ¢ > 0 and d = ||VUOHL2HUO||Z§)/2. There exists ¢o = co(vg) > 0 such that the right side is
negative for any ¢ > ¢g. For such ¢, the corresponding solution does not scatter by virtue of
Theorem 1.44. This also shows the bound

—3/2
it Vol zlfwol 272

We have the desired result. O

1 1
levy < chduﬂ”}—H% = c2||vo|

Proof of Corollary 1.46. We have
— A — 2Re(e®vg)p = Ep.
Remark that ¢ is real-valued. Multiplying this identity by ¢, and integrating, we have
(—Ap, @)1z — (2Re(ev)p, ) 12 = &, @) 2.
This can be rearranged as
Vel —2Re [ wule) oo }do = el
Here, we take ug = /2. Then,

1 .
E(cug,vo) = *||Ve|32 + iHV”UOH%Q — 2Re/3 vo(z){c2e?p(x)?}da
R

~ 1
= Pl + 51 9voll3s:

~ . [ Vvoll?
From € < 0, the choice ¢ = =&
2lelllell -

Theorem 1.44. This also implies the bound

gives us E(ugp,v9) = 0. Therefore, (cup,vo) ¢ S+ by

el -3
lyy < [cug| Voo l| 2.

3 = T
FHE 20l llell 2

We complete the proof. O
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4. PROOF OF THEOREMS FOR NLS WITH A POTENTIAL

4.1. Some tools for Section 4. We collect some standard tools, which are used in this paper.
Lemma 4.1 (Norm equivalence, [68]). Ifd =3,V € L%(R?’) NKo(R3), and |V_||c < 4, then
[ lsr ~ 1 lyirsrs (1 lwgr ~ (1LF lwsers

wherel<r<%and0§s§2.

Theorem 4.2 (Dispersive estimate, [68]). If d =3, V € L%(R3) N Ko(R3), and ||V-|k < 4w,
then

1

A 3¢1
12 Flle S 12

Definition 4.3 (H*-admissible and Strichartz norm). We say that a pair of exponents (g, ) is
called H?-admissible in three dimensions if 2 < ¢,r < oo and

2,33
qg r 2
We define Strichartz norm by
ulls(r2) = sup lull ez,

(g,7):L2-admissible
2<g<00,2<r<6

and its dual norm by

U = inf U .
H ||S'(L2) (g,r):L%-admissible H HL;I/LHTD/
2<q<00,2<r<6

Proposition 4.4 (Strichartz estimates, [39, 76]). Ifd =3, V € L3 (R3)NKo(R?), and |V_||x <
47, then the following estimates hold.

e (Homogeneous estimates)

itA
12V Fllsczzy S IfNlzz-

If (¢,7) is H5-admissible and is in a set Ay, defined as

6 6 1
(q77")32§QS007 Sré O<Sc<7 )
3 — 2s, 1—2s. 2

As =

c (g,7) : A <q< 0 <r< 1< <1
Gr) g Ty, SU=00 gy =TS g = ’

then
itA
1€V Fllparr S W1 gse-

e (Inhomogeneous estimates) Let to C 1.

t
/ AV (. 5)ds

to

S s 220y
S(L2;1)

If (q,7) is H%-admissible and is in a set A, then

¢
/ AV P (. 5)ds

0

S NIVl g2,
LI(I;Ly)

where implicit constants are independent of f and F.

Lemma 4.5 (Fractional calculus, [18]). Suppose G € C1(C) and s € (0,1]. Let 1 < r,r9 < 00
and 1 < r; < oo satisfying % = % + % Then, we have

VG NG Ol IV Flr-
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Lemma 4.6 (Hardy’s inequality, [123]) Letd>1,1<qg<o0, and 0 < pu<d. Then, we have
I3
[, mrl @l < 915 7l

Lemma 4.7 (Radial Sobolev embedding, [112, 124]). Let d > 3. For f € Hrad(Rd) and % <
s< 41 , it follows that
I 1P fllee < 1 -

Proposition 4.8 (Virial identity, [13, 68]). Let u be a solution given in Theorem 1.50 or Theo-
rem 1.51. We assume that x°0°V € L"(R?) + L= (RY) for any a € (NU{0})? with |a| = 1, some
n>1ifd=1, somen>1ifd=2, andn:g if d > 3. We define a function

- / 2P Jult, z) d.
Rd

I'(t)=4Im | w(t,z)x - Vu(t,z)dz,

R4
Doz, (= kv ()

Proposition 4.9 (Localized virial identity, [25, 68, 113]). Let u be a solution given in Theorem
1.50 or Theorem 1.51. For a given suitable real-valued weight function w, we define a function

I(t) := /]Rd w(x)|u(t, z)|>dz.

Then, the following identities hold:

Then, the following identities hold:

I'(t) = 8”Vu(t)||%% - 4/Rd(x SVV)|u(t, )| *dx —

I'(t)=2Im [ wu(t,z)Vw(z) - Vu(t,z)dz.
Rd
If w is radial, then we can write

I'(t) = 2Im / wir)
Rd

I'(t) :/Rd Fl(w,r)|x~Vu(t,x)]Qd:z:+4/dw(r

u(t, z)x - Vu(t, z)dz,
)

\Vu(t, z)|>dz — / Fo(w, r)|u(t, z) [P dx

/ Fy(w,r)|u(t, z)|*dx — /Rd w’ﬁr) (z - VW) |u(t, z)|*dx.
where r = |z| and
A =1 {50 - O R = 222D L + SR )

73 p+1
(d-1)3B-d) ,
3 w'(r).

4.2. Proof of Main theorem 1.56. In this subsection, we prove Main theorem 1.56.

F3(w,r) := w® (r) + Q(dT_l)w(g) (r) + (d—ligd—?))w,,(r) +

4.2.1. Local well-posedness of (NLSy ). In this subsubsection, we investigate local well-posedness

Proof of Theorem 1.51. We define a function space E, a metric d on E, and a map ®,,, respec-
tively as follows

1
E = {ue€ C(I; Hl(Rg)) : H(l — Av)2ullgz2;) < 2¢||uollg1
d(u,v) := [lu — vl g(z21),

t
oy (1) 1= AV g + / (=AY (14, 2=L) (5)ds.
0
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We take a constant g satisfying

4
4 — (1<p<3),
max{2,}<6< 3—p ( b )
5P 00 (3<p<5h).
Using Proposition 4.4, Lemma 4.1, 4.5, and 2.3, we have
1 1 1 _
11 = Av)2 Py (u) 2,1y < cll(1 = Av)2uoll Lz +¢l[(1 = Av)> (Juf” lU)HL

p—1
< clluolly + el el e
1
< e uollms + T3 [Jul” 3, 11 = Av)2ull e rr2)
Lt B—2 (I;Li<p71>)

1
< cuollm + T lul” 35, soop-ns 11— Av)2ull ez
L, P2 (rw, PEroE)

1
< clluollm +eTHI(1 = AV)2ul" 3, opns (1= Av)3ull g2y
Lt B—2 (I;L5(3p_5)+4)

1 1
< elluolls +eTH (1~ Av)Bullfa

1 _
< {1+ 2c)PT? HUOHZI;}CHUOHH;
and

[ @ug (1) = Pug (W) s(z21) < ROPTF o]y i le = vllsz.-

If we take T' > 0 sufficiently small satisfying (2¢)PT'5 e lJuo % 1 < 1, then @, is a contraction map
on F and hence, there exists a unique solution to (NLSV) on F. Il

Theorem 4.10 (Local well-posedness in H* N |z|1L?). Letd =3, 1 <p<5,V € L%(R?’) N
Ko(R3), and |V_||x < 4n. Let u be a solution to (NLSy) given in Theorem 1.51. If | - Jug €
L?(R3), then a map t ~ | - |u(t,-) belongs to Cy(I; L2).

The proof of this theorem is based on the argument in [13, Lemma 6.5.2].
Proof. We set I =1[0,T) with 0 < T < co. Let € > 0. We define a function
—e| |2
Fo() = e T Jult) 12,

Then, we have

f =2

= / 6725|x|2\x|2\u(t,w)|2dt: 2Re/ ef25|z|2\$|28tu(t, z)u(t, z)dz
dt R3 R3

= 2Re /R3 e 2P |5 2L Au(t, 2) — iV (2)ult, ) + i|u(t, 2) P u(t, 2) bult, ) da

= 2Im V(6_25‘$|2|x]2) -Vu(t, z)u(t, z)dx
R3

= 4Im/ (1-— 2£\x|2)6725|zl2x -Vu(t, z)u(t, x)dx.

Integrating this identity on [0, ¢],

fe(t) = f(0 +4/ Im/ {675‘9”| 25]w|2)}e*5‘m|2x‘Vu(t, z)u(t, z)dzdt.

elzf?

Since e 171" (1 — 2¢|z|?) is bounded for z and ¢, and ||e~ |z[uollr2 < |lzuol z2, it follows that

t
ﬁ@SWWM%+CAHW$N@Mk@%-
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This inequality deduces

C t
VED < lowlz + 5 [ 1Vu()l1zds

for any ¢ € I. Taking a limit as € \, 0 and using Fatou’s lemma, we see that zu(t) € L2 for any
tel. O

4.2.2. Scattering part. In this subsubsection, we prove the scattering part in Main theorem 1.56.

Proposition 4.11 (Coercivity I). Letd=3 and L <p <5,V >0, and V € L%(]R3) N Ko(R3).
Let Q1,0 be the ground state to (SP, ) with w = 1. Assume that up € H'(R3) satisfies
1-sc 1 1=sc
M(ug) < Ey(uo) < (1 —6)s M(Q10) * Eo(Qu0) (4.1)
for some 6 > 0 and (1.4). Then, there exist ' = 0'(0) > 0, ¢ = (4, [luolz2) > 0, and
R = R(¢, ||u0||L2) > 0 such that the solution u to (NLSy) with (IC) satisfies

1—

1 1l—s¢
(1) u(t )IIL HVU( )IIL2 < (1 =207 == [[Quoll 5°
(2) [IVu(®)l2; — 383 llu(t Wi 2 e lu®f s

1 1—sc
(3) 1 u(t )HL IIV(@gU(t))IILg < (1=8)=E=0Quoll3° IVQiollrz

hold, where % is defined as (2.2). In particular, we can see global well-posedness in Main
theorem 1.56 by this proposition (1).

Proof. We prove (1). By V > 0, Proposition 1.16, and (2.5), we have

(1= 8)% M(Q10) = Bo(Q10) > M(ug) = Ey (uo)

2=s0) /1 1
se 2 (p—1)(1—sc) (p—1)sc+2
> @l (G ~ 7 CanluIf " vutol V)
=2 {(p—1)sc+2} 1)set2
o o - — 2 O Ivuol;
= —|lu 9 ¢ u T2 — .
20 ©O3 =D QB ||vc21,oHL%
and hence,
1-sc
lu(®l 5 IVu(t)]lz2
(1 - 6)i Z g L - )
HQLoHLgc IVQiollL2
where ¢(y) := 3§£ %)y — 3p4 7y3<p;1). Then, g has a local minimum at yg = 0 and a local

maximum at y; = 1. Combining these facts and the assumption of Proposition 4.11 (1), there
exists 0’ = §’(d) > 0 such that

1—sc

Sc 1 1-sc
lu@)ll 5 IVu(t)llzz < (1= 207500 [|Quoll 5 IVQ1ollz,

which completes the proof of Proposition 4.11 (1).
We prove (2). Using Proposition 1.16, this proposition (1), and (2.5),

1 1
En(u(t) = 5 Vu(®); - ?CGNuu( 800 () &5

1
> Va0l (3 -

_f3-=7 4 ) e
- {6(p— DREE 1)‘5 } IVu)|z2-

- _ !
f 1C'GN(l 26%)

027y of )
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This inequality deduces
7T—3p

IVuo)lEs - S Izt = 22 Eue) + TR u 1,

ke e T AR VO

3(p—1)¢ +1
t p
(p+1)(1—28) [Ju( )HL’;“’
which completes the proof of Proposition 4.11 (2).
Finally, we prove (3). H@Eu(t)HL% < [Ju(t)[| 2 holds clearly. Since

= 2| Vu(t) 3 >

IV (@guO)l; = 125 V00l - 2z [ #p@@9) (5 ) eaPes (42

< [ Vu(t)[22 + 5 M (uo),

ﬁ
we have
1—sc¢

5l 3 19wz < I lF {IVu)s + oM o)}

N|=

1=se c 1
< M@l gz IVu®llzz + 7 M (uo) >
1—s¢ 1
<(1- 25') o ollzz | (ug)2ee
l Sc
< (1= 4")setD < [IVQuiollL2
for sufficiently large R = R(9, [[uo||2)- O
We define the exponents
5(p—1 30(p—1 o(p—1 30(p—1
G0 = p-1  _ 301 . (p—1) Y= (P—1)
2 15p — 23 2p 27p — 35

We note that (o, go) is H-admissible, (qo, 7o) is L?-admissible, and (p,v) is dual L*-admissible.
These exponents appear in [88].

Lemma 4.12 (Small data global existence). Let d = 3, % <p<b5T>0,Ve L%(R?’)HICO(R?’),
and ||ur|| gse < A. There exists eg = e9(A) > 0 such that for any 0 < & < &g, if

e D% url o 1, oc ) < &
then (NLSy) with initial data w(T) = up has a unique solution u on [T, o) and
HUHL;JO(T,OO;L?) Se
Proof. Let I := [T, 00). We define a function space E, a distance d on E, and a map & as follows

E = {u € Cy(I; H) N L (I; Wie™) L S }
* ? Y x Y

Hu“L‘th(I;LZO) <2

d(uy,uz) = ||ur — U2HL§0(1;L;0)7
. t .
B(u)(t) = -TIAV 4 / (=AY (| P=1y) (5)ds.
T

Using Proposition 4.4, Lemma 4.1, and 4.5, we have
H‘I)(U)HL;IO(I;LZO) <e+tc H’u‘piluHLf(I;W;‘C”)

< et el oo [l ravzery < (14224
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and
[ (u )||L°° LHE)NLDO (Lwem0) = € lur|[gze + ¢ HUHL‘IO(I L20) ”UHL;JO(I;W;”O)
< (14 2PcsP A,
Thus, if € > 0 satisfies max{2Pc2AeP~2,2PceP~1} < 1 then
Hu”LtOO(I;H;C)ﬁLfO(I;Wic’m) < 2cA and ||UHL§0(I;L20) < 2.

Also, for u,v € F,

||¢(U) ( )HLqO ILTO) < C{HUHL‘IO(I qu + ||U”Lq0([ L‘IO } ”U - U”LgO(I;LQO)

1
< 2PceP™H|u — U”L;IO(I;L;O)

1
< *HU - UHLqO (5;LyY)

Therefore, ® is a contraction map on F, and hence, there exists a unique solution u to (NLSV)
on F.

Lemma 4.13 (Small data scattering). Let d = 3, % <p<dT>0,andV € L%(R?)) NKo(R3).
u € L{°(T,00; HY) is a solution to (NLSy) satisfying lull oo (1,00;11) < E. Then, there exists
€o > 0 such that for any 0 < € < g9, if

A
H@ #=T) Vu )”Lgo(T,oo;Lgo) <g,

then u scatters in positive time.

Proof. We take €5 > 0 as in Lemma 4.12 with A = FE. From Lemma 4.12, the unique solution
u to (NLSy ) satisfies

||U’HL§0(T,OO;W;C’TO) < 2cE and HU’HL?O(T,OO;LZO) < 2.

Here, we take exponents ¢1, 71, g2, r2, and r as follows.
Case % <p<3:
We choose

6(p—1)
q1 = 2(p - 1)+7 = ?Ei—f)) ’ q2 ‘= ooia ro = 2+7 ri= 3(p - 1)7
satisfying that (qi,71) and (go,r2) are L?-admissible pairs, the embedding W9 < L" holds,
W™ and W™ are equivalent, and le/rz and W"2 are equivalent.
Case 3<p<5:

g M- -1 o de-y o 3k-D o 61
1- p+1 3 1- 3p2_7p+27 2 p_3 ) 2 » ) . 3p_5
Then, (qi,71) and (g2,72) are L?*-admissible pairs, the embedding W™ < L" holds, Wéc’”
1,72

and W™ are equivalent, and W and W12 are equivalent. Then,

ol rogrzery < uTlse + ezt a0l 0z mpgrzero, < o0
and

< cllul@)m + e lllul~ ul s

el 7 ooty < 2Tl )

S c H'LL( )HHl +c Hu”qu T,00; L7, HuHLg2(T,OO;Wzl’T2)

< clu(T)|[my +c IIUIILq1 Toonivzeriy 18l oz (oo prtiray < 00
hold. Thus, we have
u € L{*(T, 00, HY) N LP (T, 00; Wi=™) N LI (T, 00; W™ ) N L{(T, 00; W,™2).
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Therefore, we obtain
< [[[ulP~ ul

eV ale) = S u(r) gy = |

/ =18V (|uP=Ly) (s)ds

1.6
H! LE(1t;Wa'®)
-1
< cllulfan pgpzery Ul o pyirey —> 0 as > 7 — o0,
Therefore, {e~*Avu(t)} is a Cauchy sequence in H'(R?). O

Theorem 4.14 (Scattering criterion). Let d = 3, % <p<b5,V>0Ve L%(RB’)QICO(R?’), and
V is radially symmetric. Suppose that u : R x R® — C is radially symmetric and a solution
to (NLSy) satisfying ||ul|peey < E for some E > 0. Then, there exist € = £(E) > 0 and
R = R(E) > 0 such that “if

liminf/ lu(t, z)|?dr < €2,
t—o0 ‘$|SR
then u scatters in positive time”.

The proof of this theorem is based on the argument in [112, §4]. We have to change exponents
of function spaces.

Proof. Set 0 < e <1 and R > 0, which will be chosen later. Using Proposition 4.4, we have
”eitAVuoHL;?OLgO < clluo|| gse < 0.
Thus, there exists Ty > 7! such that
162V || L0 7 s 20y < & (4.3)

By the assumption of this theorem, there exists T' > Ty such that
/ |u(T, x)|*dx < 22 (4.4)
|z|<R
By the integral equation, we have

TV = B 4 [ SISt (s)ds 4 [ I (upta(s)ds
I I

= eitAVuO + I (t) + FQ(t) (4.5)

where I := [0,T — 7% and I := [T — 79 T]. Here, we will choose 0 < 6 = 0(p) < 1 later.
First, we estimate HFIHLfO (T.00:190)- BY the integral equation, we have

Fl(t) _ ei(thJrE*e)Avu(T _ 879) _ €itAVU().

We take a positive constant p satisfying

3p—17 . [3p—7 5p—9
3(p—1) <M<mm{ p—1 ’5(p—1)}
and set
. 20(p — 1) R 4p—1) .
15(1 — p)p + 15 — 27 —3(1—p)p—3u+7
Then, the following relations hold:
i:i+l, 2 43 3 rap > 2, g3(l—p) > 2.

@0 g 3 @(l-p) gl-p 2
Proposition 4.4 implies

[y ) S (T~ e )z + lluollzz = 2lluoll 2 S 1. (4.6)

Lgs(lfu)(T’oo;Lgo(lfu)



76

On the other hand,

IR (0)]l1 < / DAY (ufp=Las) (5) | o ds < / (t = ) F u(s) |2, ds
I
£

I
< P T= —3 < _p\—1
NHUHL?OH% o (t—s)2dsSp(t—T+e") 2

from Theorem 4.2 and Lemma 2.3. Thus, we have

1 1

- L/
Pl s ooy S N(E =T+ €70) 75 | pran oy ~ €700, (4.7)
Combining Lemma 2.2, (4.6), and (4.7), we have

(5—L)o
1L 30 (7,0052.20) < ||F1||Lq3<1 w (T, ;Lgoa—m)HFIHZIW(T,oo;L%’) Ser (4.8)

Next, we estimate || Fa|| L9 (7,00, L0} Applying Proposition 4.9 and the assumption of this theo-
rem, we have

d

2
pn Qfg (x)|u(t, z)|*dx

C
< 2| Vel llu®)lzVu®)liz < 5

where % is defined as (2.2). Thus, we have
2

c d c
—<— | & t,x)Pde < —
£ g [ @ oPa < £
Integrating each terms in this inequality on [¢, T,
c

RIRE /R @g(x)|u(T,m)|2d:L‘—/Rs Y () lult, )l < (T~ 1),

The left inequality implies
Yr (x)|u(t, z)|?de < / W (x)|u(T, z)|*dz + E(T —t). (4.9)
R3 2 R3 2 R

Here, we choose R > 0 satisfying R > ¢ =279, By taking supremum over I, for (4.9) and using
(4.4), we have

~

sup | P (x)|u(t, 2))?de < 2e% 4?00 < 2,
2

tely JR3
that is,
gl sy < = (4.10)
By Lemma 2.2, (4.10), Lemma 4.7, and 2.3,
full 10 10 <1 10 [Jull w < e 100yl 10
L (In;L3°) L3 (I2) Lge(I2;Ls) L3°(Ig;Ls° )
<10’ S [ Fnul s 111 = Pl "
Lgo(I2;Lg3 ) 2 L§e(I2;Lg3 )
_39 2
Se 10 Hgguupm(]? L2)HUHL00([2 :L8) + H( @R)UHLW(b (L) HUHLOO (I; LQ)}

3
5

< i {ecd|u)? el Helbul } lull?
- Lo (Ig;HY) L (In;s L0 (x| > R/2)) W Lee (15;1.2)

ces —i—ce%(%e)} 505%_1%9. (4.11)
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By using Proposition 4.4 and a continuity argument, we have

|||V’S°u||2(1 30 + ||'LL||L10 (I2;L10) <1+ |12|. (4.12)
¢

23

From Proposition 4.4, Lemma 4.5, 2.2, (4.12), and (4.11) it follows that

-1
||F2HL;10(T,OO;L30 5 |||v‘sc(|u|P U)HL2(I 'L%)
p— S
< 5@ a0, IVEeul )
1 1— p-1
S (14 |L)) O{||U|| 0 1 H“HLN (In; Llo)}
t ( 23 ac

Thus, if we take 0 = 5%19 € (0,1), then

1Bl 0 (7, psp o0y S €27 (4.13)
Combining (4.5), (4.3), (4.8), and (4.13), we obtain
DAY T 0, a0y S € + 2,
From Lemma 4.12 and 4.13, the solution u scatters in positive time. (Il

Proposition 4.15 (Virial/Morawetz estimate). Let d = 3, % <p<b5T>0V2>0V¢

L%(R3) NKo(R3), x-VV <0, 2°9°V € L%(R:)’) for any a € (NU{0})3 with |a| = 1, and V be
radially symmetric. We assume that u is a radial global solution to (NLSy) satisfying (4.1) and
(1.4). Then, it follows that

R 1 1
— p+1 <4
//MR u(t, )] dmdt~T+52+Ep1

2

for sufficiently large R = R(5, M (up), Q1,0)-
Proof. We set a radial function
|22 (lz] < 1),
w(x) = ¢ smooth (1 < |z| < 2),
Bal -4 (2 < Jal),

satisfying d,w > 0 and 92w > 0. We define wg as

for R > 0. We define a function M (t) as

M(t) :=2Im | wu(t,z)Vwg(z) - Vu(t,z)dz.
R3
By Lemma 2.2, we have
(M (@) S Tlu®)ll 2 [Vu@)] 2 R-
Since ||u(t)[| g2 is uniformly bounded from Proposition 4.11 (1), we have

sup [M(t)] Sgu0 R (4.14)
teR

Since |z||Vu| = |z - Vu| a.e. in R? for u € H! ,(R3) (see [100]), using Proposition 4.9,

i — n(r 2 _/ p+1
dtM(t)_zl/ng (%) 1Vu(t,)da [ Pontwn)lu(t.a) o
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R
- [ Fartenluttofds -2 [ Tu (1) @ IVl
R3 R3 T R
=t l|z|<r + IRp<|z|<2R T L2R<|2|s (4.15)

where I is an integral restricted £ M (t) to a set A, r = ||, and

Fy p(w,r) = 2(;94__11) {w” (%) + ?w' (;)} , By pw,r) = %w(‘l) (;) + % (3) (%) '

For an integral I|,<g, it follows from (4.2) and Proposition 4.11 (2), (3) that

12(p — 1) +1 / 2
I — 2 _ P 4 .
o<k = 8IIVu(t)|[72 1z 1<r) P Il o1 0< ) MSR(UC VV)lu(t, z)|"dx
12(17 ) 1
2 p+
> 895 Vulity — = P N2
12(19— ) p+1 p+1
e I —||u(t)HLp+1(‘x|<R)}
> 8V (@ u(t) 2 — o5 M (o) — LD g u(e) 2, - ( 20Dy ot
= 3 Ly g\ p+1 e+ LB (E<|o|<R)
12(19 1)
p+1 p+1
> | @Ol - - M(w)——+1 eI 5 iy (4.16)

where % is defined as (2.2). For Ir<|y|<2r, We have

Ir<ja|<2r 2 —/ Py p(w, r)|u(t, )"+ da —/ Fy g(w,r)|ult, z)|*dz
R<|z|<2R R<|z|<2R

&
> —clul) 175 oy — M (w0) (417)

For I)r<|s|, we have
12(p—1
b=~ 220 [ R [ R wvjtaPar
- P+l Jor<p v R<|z| T

1
> —clu( )Hi—:’Ll(ZRﬂmD' (4.18)

Combining (4.15), (4.16), (4.17), (4.18), Lemma 2.4 and Proposition 4.11 (1), we obtain

d 1 d 1
1
1%/ ut )HZ;H Ss o M(E) + 73 M(uo) + Jlut )HLp+1(R<| ) So@uo g M(E) + 5 M(uo) + -
Integrating both sides of this inequality on [0, 7],
T " T
%, P dt < M)+ =M —.
|| 190 Ss0u sup 1M+ M)+
Therefore,
R 1 1
— p+1
/ /|x on u(t,z) P dadt < S6,.Q10 T R2 + -1

from (4.14), which completes the proof of this proposition. O

Proposition 4.16 (Potential energy evacuation). Let u be a solution to (NLSy ) satisfying the
conditions in Main theorem 1.56 (1). Then, there exist a time sequence {t,} with t,, — oo and
a radius sequence { Ry} with R, — oo such that

lim inf / |u(t, z)|PTdz = 0. (4.19)
|| <Rn

n—oo
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Proof. Applying Proposition 4.15 with 7' = R3 implies
RS
/ / u(t, z)[PHdedt < 1l 0 Ro (4.20)
R3 lz|< R ~ R? Rp— Rr—1

2

By contradiction, we prove

lu(t, z) [P dx = 0. (4.21)

We assume that

for any t > tg. Therefore, we have

R3 R3
u(t, z)[PHdzdt > / / u(t, z) [P dzdt
RS/ /a; I<iR I drdt 2 <Lt % DI de

> — / lu(t, z) [P dxdt
ja| <4t

1 R3 3 _
/ C(al—R to g—>%>0 as R — oo.

_ Zdt = .
“R® ), 2 RS2
This contradiction (4.20). Consequently, we can take sequences {t,,} : t, — oo and {R,} :
1
R,, = 3t} — oo such that (4.19) holds from (4.21). O

Finally, we prove the scattering part in Main theorem (1).

Proof of Main theorem 1.56 (1). We recall that global well-posedness has been already shown
in Proposition 4.11 (1). Fix ¢ and R as in Theorem 4.14. Then, take sequences {¢,,} and {R,,}
satisfying t, — oo and R,, — oo as in Proposition 4.16. From Lemma 2.2 and Proposition 4.16,
we obtain

e T
P P+
/ |u(tn, z)|?dx < / dx / |u(ty, z)|PT da
|z[<R |z[<R |z[<Rx
2

3(p—1)

P+l
< R pHt (/ \u(tn,x)\pﬂdx) — 0 as n — oo.
|z|<Rn

Applying Theorem 4.14, the solution u to (NLSy) scatters in positive time. O

4.2.3. Blow-up or grow-up part. In this subsubsection, we prove the blow-up or grow-up part in
Main theorem 1.56 (2).

Proof of Proposition 1.54. The inequality holds by Proposition 1.16 and V' > 0. We set the best
constant CéN and prove C’éN = Cgn. We define a functional

Hf”ﬁil
d(p—1)

14l 1,48
£ 172 - H( Av)z fll2°

for f € HY(RY). Proposition 1.16 and V > 0 imply Con = Lo(Q10) > Lo(f) > Lv(f) for
any f € HY(R?) \ {0}, where Q10 is the ground state to (SP, ) with w = 1. This inequality

Ly(f) =
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deduces Caon > CéN. On the other hand, we consider a sequence {Q1o(n-)}. Then, we have
Ly(Qip(n-)) < C&N for each n € N. Thus, it follows that

C(T;N > nlglgo Ly(Qio(n-)) = Lo(Q1,0) = Can-

Therefore, we obtain CéN = Cgn. To finish the proof, we see that the inequality is not attained.
If Lo(f) = Can, then f(z) = XQ1,0(z + o) for some A\g € C and zop € R?. Since Q10 >0
for any z € R4, V > 0, and V # 0, we have Cgn = Lo(MQ1,0(- +20)) > Ly (AQ1,0(- + o)),
which implies the desired result. O

Lemma 4.17 (Coercivity IT). Letd =3, I < p <5,V >0, and “V € L?(R?) N Ko(R3) or
V € L7(R3) for some 3 < o < o00”. Let Q1,9 be the ground state to (SP,, o) with w = 1. Assume
that uy satisfies (4.1) and (1.5). Then, there exists 6’ = 6'(6) > 0 such that the solution u to
(NLSy ) with (IC) satisfies

1—sc

1 se
@5 1AVl > 1+ )% [Quols IV@rols:
for any t € (Tin, Trmaz) -

Proof. By the similar argument in Proposition 4.11 (1) with Proposition 1.54, we have

(1- 5)iM(Q1,0) =3 Eo(Q1,0)

>{(p—1)sc+2}

1)sc+2
Lo o, - — 2 Ol At ol
—llu c — u — .
and hence,
1
[Ju(t )II Sl —Av)ru®)s
(1-0)% 2 g B -1
HQ1,0HL§° IVQuollz2

where g(y) := %yﬂ — ﬁyg’(p; . . The rest of the proof is the same argument as Proposition
4.11 (1). O

Lemma 4.18. Letd > 1 and 2 < p+1 < 2*. Let u be a solution to (NLSy) given in Theorem
1.50 or Theorem 1.51. We assume that u € Cy([0,00); HL(RY)) and

Co:= sup [[Vu(t)|r2 < oo.

te[0,00)
Then, we have
u(t) 22 ryap < 0R(1) +1 (4.22)
foranyn >0, R>0, and t € [O,W]

Proof. Let Qfg be defined as (2.3). We note that ||V£”§ |Lee < %. We define a function

I(t) := Zr(z)|u(t, z)|*d.

Rd 2
Using Proposition 4.9, we have

I(t):I(O)+/ c;i[( )ds§1(0)+/0 |I'(s)|ds

40 M (u)Y/?t
< 1O+ UV 2y e sup [Vu(®)zzlu(®)zz < 1(0) + M

te[0,00)
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for any ¢ € [0,00). Since ug € HL(R?),

— 2 2 —
10) = [ Zg@lun@)Pds < uol2y 5, = on(1).
The inequality [|u(t )||L2 (R<[2]) < I(t) deduces (4.22) for any t € |0, W . O

Lemma 4.19. Let d = 3, 1 < p < 5, “V € L%(R?’) N Ko(R?) or V€ L°(R3) for some
3<0<00”, 2% € L%(RS) for any a € (NU{0})? with |a| =1, V >0, and z-VV +2V > 0.
Let u € C([0,00); H') be a solution to (NLSy). We define a function

I(t) := /R3 Zr(z)|ult, 1‘)\2d:c,

where Zr is defined as (2.1). Then, for any p+ 1 < q < 6, there exist constants C =
C(q, M(u),Co) >0 and 6, > 0 such that for any R > 0 and t € [0,00), the estimate

3 1)
I"(t) < 8{!vu(t)llig - 2Ep+1 )3 +/ V(2)[u(t, %zx}

1)
+ C |u(t )H(Lp2+3<\x| ﬁ”“( )HL2 (R<lel) T Cla- vV”LQ(R<| |<3R)

holds, where 6, % € (0

Proof. Using Proposition 4.9, we have
12( )

,}%] and Cy 1s given in Lemma 4.18.

I"(t) = 8||Vu(t)l|7; — [u(t Hiﬁl /3 V(z)lu(t,z)Pde + R1 + Ro + R3 + Ru,

where Ry, = Ry(t) (k=1 2, 3,4) are defined as

Ry := 4/]R3 { 2" <R> - %3&”’ (;)} \x-Vu]zd:E+4/Rs {Ij%’ (%) —2} \Vu(t, z)|*dx,
. —2;;1)/]@ {3{ (5)+ @%' (%) —6} fu(t, 2)[P+ da,

Ry = — /R {;23544) (%) + %%@ (;)} lu(t, z)|dz,

Ryi= -8 /RS V(@)|u(t, z)Pda — 2/ B g (%) (z - VV)|ult, z)|dz.

R3 T
Q= {xeR?’::Q%” (%) —%%' (%) zo}.

Ri 54/9{%" (%) —?3{’ (;)} ]Vu(t,x)\zd:n—i—él/g{]:%’ (%) —2} \Vu(t, )2z

_ 4/Q {27 (%) -2} IVu(t,2)Pds <0

We estimate Ro. Lemma 2.2 and 2.3 deduce

1)(1-64) 1)6
Ry S IO gy < NI Tl B

L2+ Li( R<|a:| L2(R<|z|)
(p+1)(1—-04) +1)6 (p+1)6
< ) 180 ) | %R Santtncn Tu@I G

We estimate R3.

1 r 4 r
Ry = — /R<|I|<3R {RQ%(@ (5)+=2® (R)} Jult,x)[2dz < R2 ()22 <o
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We estimate Ry4. By V>0, - VV + 2V > 0, Lemma 2.2, and 2.3, we have

=— T- u(t, z)|*dx — z)|u(t, z)|*dx
Ry = 4/|x§R( VV 4 2V)|u(t, z)|*d 8/ V(z)u(t,x)|*d

<|=|
R r
—2/ =27 (=) (- VV)|u(t, z)|*dx
ecaan () @ YV lutt.2)
R T
§—2/ —2" (=) (- VV)|u(t, ) |Pdz
eemaan () @ WV lutt.o)
< vV t
Sz ||L2(R<| ‘<3R)|| u(t)|| e (r<|2|<3R)
< WA Vul(t
o= FVIg o V0
Sz VvV s
L2 (R<|z|<3R)’
which completes the proof of this lemma. O

Lemma 4.20. Letd > 1, 1+% <p<xifd=1,2, andl—i—% <p< 1+ﬁ if d > 3. Assume
that ug € H'(RY) satisfies (1.20) and (1.22). Let u be a solution to (NLSy) with (IC) given in

Theorem 1.50 or Theorem 1.51. Let z°0°V € L%(Rd) + L®(R%) for any a € (NU {0} with
la| =1 and - VV + 2V > 0. Then, there exists 6 > 0 such that

Ky (u(t)) < 2[|Vu(t)|l72 - di;er—ll) [[u(t )||pp+1 + 2/3 V(2)|u(t, z)|dz < —.

fOT’ any te (Tmim Tmax)-

Proof. The left inequality follows from

—/ (x-VV)]u(t,x)\de——/‘(a:-VV—l—QV)\u(t,x)]de—i—Q/ V(@) u(t, z) 2z
R3 R3 R3
< 2/Rg V(2)ult, z)|2dz.

We prove the second inequality. By the assumption (1.20),

am ) [y ™
and

By (up) < 1Ev(u0) +3 { M(Zlo()))} B Ey(Q1yp) = {]\m}sc Eo(Q10) —e1.  (4.23)

Using the estimate (1.22), we have

Eo(Q10) — Ev(uo)] >0

Q1))
(uo)

give

I(-av)buls > { 28 } 19 Quolis (1.24)
y

for any t € (Tiin, Tmax)- (4.23), (4.24), and (2.

HVu(t)H%% — ;léi_i_i t ||pp+l +/ V |’LL t gj le'
- d(PQ— DE\/(U) _ d(p44||( AV)QU||L2
<MD )\ (M@ Eo@l,o)—el] -de=p=td A}fﬁjﬁ‘;)} Q.
d(p— 1) 1
= 9 g1 = —5(5.
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Proof of blow-up or grow-up result in Main theorem 1.56 (2). We assume that

Thwax =00 and  Cp:= sup [Vu(t)|p2 < oo
te[0,00) v

for contradiction. By Lemma 4.20, there exists 4 > 0 such that

3(p— 1)
IVl — 5 st + [ V@luta)Pds < o

for any ¢ € [0,00). We consider the function I(¢) as in Lemma 4.19. From Lemma 4.19 and
4.18, we have

1)6.
ﬂ@s—%+cumwigﬂ Rﬂwnm3¢4+vau

L2 (R<|z|<3R)
= -8 + 017 = t 4 or(1) (4.25)
for (an}; n>0,R>0,and s € [O, W] We take n = ng > 0 sufficiently small such as
p+1)0q
Cny *> <26. Then, (4.25) implies
I"(s) < —60 + og(1) (4.26)
noR
for any R > 0 and s € [O, 7400]\40(“0)1/2}. We set
noR
T=T(R) =R :=——"—7.
( ) (&7 4C()M(U0)1/2
Integrating (4.26) on s € [0,¢] and integrating on ¢ € [0, T, we have

I(T) < I(0) 4 I'(0)T + % (=66 + or(1))T? = I(0) + I'(0)ag R + % (=65 + or(1)) adR?. (4.27)

Here, we can prove

I(0) = og(1)R* and I'(0) = og(1)R. (4.28)
Indeed,
10)= [ laPluote)?ds+ B2 (L) jug(a) Pda
el <VR VER<|z|<3R R
< RM (up) + CRQHUOHLg(\/T%gzD = or(1)R?,
and
! TN R / r
I'(0) = 4Im up(x)z - Vug(x)dr 4+ 2Im —-Z (—) up(x)z - Vug(x)dx
el <VR VER<|¢|<3R T R

< 4VR |Juo| g2 Vuol £z + eRlluoll 3 (y/g< o I V0]l 2 = 0r(1)R.
Combining (4.27) and (4.28), we get
I(T) < (or(1) — 3603)R%.
We take R > 0 sufficiently large such as og(1)—38a3 < 0. However, this contradict I(T) > 0. O
4.2.4. Blow-up part. In this subsubsection, we prove the blow-up part in Main theorem 1.56 (2).

Proof. We assume that Tiy.x = 00.
Let zug € L?(R3).
Then, it follows from Proposition 4.8 and Lemma 4.20 that

2
@Hm(t)ﬂig = 4Ky (u(t)) < —46 < 0.
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This is contradiction. Therefore, the solution u to (NLSy ) blows up.
Let V' and ug be radially symmetric.
We define radial functions
%rQ (r<1),
F(r) = {smooth (1 <r<2),

3r (2<r).
satisfying 1 — F” > 0 and Fg(r) = R*F (%). We note that
2(p—1) n{T / r
- F ( ) —F( Jilsa{t-F (%)} 4.29
’ p+1 { o i ~ R (429)
for any r > 0. Using Proposition 4.9,
QImj u(t, z)VFp(x) - Vu(t, z)dx

= [ () s - 2f+ 2 ARG G
- [A# R 5 )} ’“‘de—z /R (R
— 2 () - [ [ { F"(;)
L () + 5 (7)
—2fv(u(t) +2 | <m{ 5 e
o [ )y 2§f+11) {—3 w8 () + 5P () o as
ol @O )+ 5 () f

. . oo (T "2
— 2Ky (u(t)) + 1 4/Rg|m| {1 F (R)} W/ 2d + I + Is. (4.30)
From Lemma 4.20, there exists § > 0 such that
Ky (u(t)) < —9. (4.31)
We can see that
1

We estimate Io. Applying (4.29), Lemma 2.4, and 2.1, we get
I, < /R§|a:| {1 —F” (%)} |u|p+1d1: < /ROO {1 —F" (%)} \u(r)|p+1r2dr
- /OO / % 1 F" (%) } ds|u(r)[P+ir2dr
=, ]t i () fas
< J, [ g {1 () s

+3 p—1 d S
< el _ n( =
< /R IO oy IV E gy o {1~ F7 () } s
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I Ry (O = = e B 4 n(S
_/R {s 2Ol 2 ey b T VU i) ds{l—F (R)}ds

< [~ 5 R Vu(t)||? 1-F"(=)}d
S [T O ey + I VO oz s
2(p+3)

_p=1 ___8 S
Se SR ul)l| 3 hey +5/ / [ (r) *r zdr—{l—F” (E)}ds

R )] {1=F"(2)} dslu'(r) 2rd
BRI 0 eyt [ [ 5 {1 () st e

_p=1l 8 2(%? " 2,2
= e 5 R ) 3 gy + € /R {1—F <E>}\u( r)|r2dr. (4.33)
By the same estimate as I, we have
r
nEle Vg, /qu {1 .y <E>} I/ (t, r)|dz. (4.34)

Combining (4.30), (4.31), (4.32), (4.33), and (4.34),

(p+3)

d _p=l 8 (@+3)
2Im— / u(t, ©)VFp(x) - Vu(t, z)de < —25 + %M(uo) + ce 5= R 5 M (up) 5-»

dt
L - 4 ]. - FI/ ey ! 1’; 1 d.]f.
_|_ <CE—|—CH.’17 C ” 2 <‘ |) > /<| { ( >}|U( 9 )|

Thus, if we take € > 0 sufficiently small such as ce < 2 and take R > 0 sufficiently large such as

3p_ 7 C _p—1 8 w
L7 (R<la) <=5 < 2 and ﬁM(UO) +ce PR 52 M(ug) 57 <8, (4.35)

then it follows that

clle-VV] s

QImi u(t,z)VFg(z) - Vu(t,x)der < —6 < 0.
dt Jgrs

Integrating this inequality on [0, 1),
2Im [ wu(t,x)VFg(x) - Vu(t,z)dr < =6t +2Im | wuo(x)VFgr(x) - Vug(z)dz. (4.36)
R3 R3
If we take Ty > 0 satisfying

—_— 1
—ot + QIm/ uo(x)VEg(x) - Vug(z)dz < —5(515 (4.37)
R3
for any t > Tp, then it follows from these inequalities that

1
50t < < eRM (ug)?||Vu(t)|| . (4.38)

2Imd/ u(t,z)VFgr(z) - Vu(t, z)dx
dt Jgrs

Therefore, we have ct? < ||[Vu(t)||2, for any ¢ > Ty. From (4.30), Lemma 4.20, (4.34), Lemma
2.4, (4.32), (4.35), and Lemma 2.1,

2Imi u(t,x)VFg(x) - Vu(t,x)dx
dt Jps

2(p+1)
+cllz-VV| Vu(t)||3, +
¢l HLé(Rng” u(t)]z2

< 4/11@3 {IVu(t,$)2 + V(z)|u(t,z)]* = 3(p—1) |u(t,x)]p“} da

p—1

M (ug) + oy M (u) 5| Vult)]| §

R Rr—1
=6(p — )Ev(uo) — 3p = )| Vu(®) |72 — Bp = 7) /RS V(@)|u(t, )|*dz

p—1

<5 M (o) + == M (uo) & [ Vu(t) | 3

YV Vu(t)||?
+cllz HL?(RﬁlxI)H U()HL%"'RQ

c
Rr—1
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3p—7
2

C C p+3

R 5-r

Since ||Vu(t)||?, > Ct* and Ey, M are independent of ¢, there exists 71 > T such that

<6(p—1)Ev(uog) —

IVu®)Z2 +

d _— 3p—17
oIm— [ u(t,r)VFr(z)  Vu(t,z)dr < —L—L|Vu(t)|2,.
dt R3 4 x

Integrating this inequality on [T7,¢],

Im [ w(t,z)VFgr(z) - Vu(t,z)de —Im [ w(Ti,x)VFg(x)  Vu(Ti,z)dx
R3 R3
_3p— 7 [t

T

<

IVu(s)[|72ds.

From (4.36), (4.37), and (4.38), we get

3p—7 [ —
p8 ||Vu(s)H%2ds < —Im u(t,x)VFg(x) - Vu(t,z)dx < cRM(uO)%HVu(t)HL%.
T R3
We set
t 1 3p—7 2
t) := 2,d d A:= .
$) = [ IVu@)lids and 4= g (BT
Then,
S'(t)
AL )
—S()?
Integrating this inequality on [T} + 1,t),
1 1 1
At—-T1—1) < — < < 0.

=S +1) SO = ST+ 1)

However, this inequality is contradiction if we take a limit ¢ — oo. O

4.2.5. Corollary of Main theorem 1.56. In this subsubsection, we prove Corollary 1.57 by using

Lemma 4.18 and Lemma 4.19 with p = % We also use the following lemma, which is a slight

modification of Lemma 4.20.

Lemma 4.21. Letd =3 and p = % Let V satisfy “V € L%(R?’) NKo(R?) and ||V_|jx < 477 or
V € L7(R3) for some 3 < o < oco. Let z°9°V € L%(RS) for any a € (NU{0})® with |a| =1 and
x-VV +2V > 0. Assume that ugp € H*(R3) satisfies Ev(ug) < 0. Then, we have

Ky (ult)) < 2| Vult); — S1u(@l Y +2 [ V@lult.o)Pds = 4By (uo)
L3 R3

for any t € (Tin, Timaz), where u is the solution to (NLSy) on (Thin, Tmaz)-

Proof. The first inequality is proved by the same argument as the proof of Lemma 4.20. The
second identity is proved by the definition of the energy FEy . O

Proof of Corollary 1.57. Corollary 1.57 is deduced by the same argument as the proof of Theo-
rem 1.56 (2). In the argument, Lemma 4.18, 4.19, and 4.21 are used. O

4.3. Proof of Main theorem 1.60. In this subsection, we prove Main theorem 1.60.



87

4.3.1. Non-radial case. In this subsubsection, we prove the non-radial case in Main theorem
1.60.

Lemma 4.22. Letd=3,1<p <5, andw >0. Let V € L%(R‘%) + L®(R3) and V > 0. Then,
it follows that

)mwwﬁm¢HﬂNNWLMWWSN

+1)

b—
2(p+
{’ inf{l|gl7: , « 6 € H'(R*)\ {0}, Moy () <0},

where

1
1612 = wllél2; + I(-Av)F6|2;.

Proof. We only prove the first equality. The second equality holds by the same argument for
the first equality. We set

~1,0 p—1 . p+1 1,3
WV : w < 0.
L = (i 6 € IR\ 0}, Au(9) <0}
When ¢ € HL(R3)\ {0} satisfies M, v (¢) = 0, we have S, v (¢) = %H(ﬁ”iﬁl, SO nw V= nl OV

holds. When ¢ € HL(R3)\ {0} satisfies A, v(f) < 0, there exists 0 < A < 1 such that
Nov(Ap) = 0. For such 0 < A <1, it follows that

0 p—1 1 p—1 1 1
nvs&w@m:2(+nwwgﬂzﬂp+)*ww@g_% ﬂw@g. (4.39)
Therefore, we obtain niov < ﬁi[%/ O

Proposition 4.23. Letd =3, 1 <p <5, andw > 0. Let V € L%(R?’) + L2 (R3) for some
% <o< oo andV > 0. Then, ni’gf = ny,0 holds.

Proof. This proof follows from the same argument with (o, 3) = (1,0) as Proposition 4.36. [

Lemma 4.24. Let d = 3, V € Ko(R?), and ||V_||x < m. Then, the integral kernel K (z,y) of
(w— Ay) 1 satisfies K(x,y) > 0 for any w > 0 and any x,y € R® with x # y.

Proof. From the proof of [22, Proposition 5.1], it follows that

(27t) "2 3 \w—sgﬁ
1= V_li/n° ’

where K (t,x,%) is the heat kernel of ev. Combining this expression and the following formula:
o0
(w—Ay) = / AV e L,
0

we obtain the desired result. For the proof, see also [110]. g

K(t,z,y) =

Proposition 4.25. Besides the assumptions of Proposition 4.23, we assume that V # 0 and
“V e Ko(R3) or V>0". Then, ni’(%/ is mot attained for any w > 0.

Proof. On the contrary, we assume that ¢ attains ni(%/ From |[V]¢|| < |V¢| (see [52]) and
Lemma 4.22, |¢| also attains niov We may assume ¢ > 0. If V € Ko(R3?), then ¢ > 0 holds by
Lemma, 4.24. Therefore, we can take y € R? satisfying

Nov (8(- —y)) <Noy(¢) =0. (4.40)

Since Ny, v (A¢(- —y)) > 0 for small X € (0,1) and N, v(é(- —y)) <0, we can take Ao € (0,1)
such that N, v (Ao¢(- —y)) = 0. By the definition of ni({/ and (4.40), we obtain

_ 2 2 _ 10
loC =)l 1l |, =1y

Lo p—1 p—1
) < . —
n,y < Swv(Ao(- —y)) < 2(p+ 1) v < 2(p+1)
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This is contradiction. O
The following proposition is more general case of Proposition 1.63 (1).

Proposition 4.26. Let d =3 and % <p<5, Ve L%(RS) + L7(R3) for some 3 < o < o0, and
V > 0. Let Quo be the ground state to (SP. ). The following two conditions (1) and (2) are
equivalent.

(1) M(ug) =" By (up) < M(Qq, 0) = -~ Fo(Qu0).
(2) There exists w > 0 such that S, v (up) < nwg/(: N0 = Suw,0(Qu,0))-

Proof. This proof follows from the same argument as Proposition 1.68 (1). O

4.3.2. Radial case. In this subsubsection, we prove the radial case in Main theorem 1.60.

Lemma 4.27 (Reflexivity). Let V>0 and V € L%(]R?’). Then, (H(R3), (-, '>H‘1,) is a real
Hilbert space with an inner product

(.9, = ((—AV)2 £, (~Av)

g)r2 = Re | Vf(z) Vg(z)+V(x)f(z)g(z)dz.

R3

NI

In particular, (HE(R?), (-, -)H‘l/) is a reflexive space.

Proof. By the direct calculation, we can see linearity in the first exponent and conjugate sym-
metry of (-, >H‘1, If f =0, then Hf”H‘l/ = 0 holds clearly. Conversely, if Hf”H‘l, = 0, then
f=0 fr(?m 0 < |[|flljn < HfHH‘l/ = 0. We prove that (H,(R3),]| - ||H‘1,) is a Banach space. Let
{fn} € HL(R?) be a Cauchy sequence. Then,

0 < |[[fm — fallzn < ||fm_fn||H‘l/ — 0 as n>m — o0
by V > 0. Thus, {f,} is a Cauchy sequence in H'(R?). Since H'(R?) is a Banach space, there

exists a function foo € H'(R3) such that f, — fso in H'(R?). By Sobolev’s embedding, we
have

0< ||fn_f00||?{‘1/ < (1+C||VHL%)||fn_fOOH§‘{1 — 0 as n — oo.

This implies that (H(R3), ]| - HH%/) is a Banach space. O

Lemma 4.28 (Compact embedding). Letd=3,1<p <5,V >0, andV € L%(R3) + L>®(R3).
Then, the embedding HV aa(R?) CC LPTH(R?) is compact.

Proof. This lemma follows from || f|| 1 < HfHH‘l/ and Lemma 2.5. O

Lemma 4.29. Letd=3,1<p <5, andw >0. Let V € L%(RS) + L®(R3) and V > 0. Then,
it follows that

oy = (p )lnf{||¢|!pp+1 b € HLyRY)\ {0}, Nov (@) < 0}
P~ R3
= f cH 0}, N, < Q).
2(p+ ) in {||¢||H1 ¢ md( ) \{ } ,V(QS) = }
Proof. This lemma follows from the same argument as Lemma 4.22. O

The following theorem implies attainability of ri’(‘), in Main theorem 1.60 (radial case).

Theorem 4.30. Letd=3,1 <p <5, andw > 0. LetV € L%(R?’) and V> 0. Then, there
exists a function Qv € H1 (R3)\ {0} such that Quv attains rolj’(%/ and Ny, v(Quv) = 0.

rad
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Proof. We take a minimizing sequence {¢,} C HL ,\ {0} of ri’(‘),, that is, ¢, satisfies

p—1 prl p—1 2 1,0
n = n = Pw n ; d w n) — Y.
2(p + 1) ||d) HLg-H 2(p + 1) H¢ ”Hi,v S 7V(¢ ) \( Tw,V an N 7V((b ) 0

Then, {¢,} is bounded in L2(R%) and H{(R%). From Lemma 4.27 and Lemma 4.28, we can
take a subsequence of {¢,} (, which is denoted by the same symbol) satisfying ¢,, — Qv in

L(R3) and H,(R3) and ¢, — Quy in LET'(R?). Therefore, we get
1 . . 1
2, I(=Av)2Qu vz <liminf [[(=Av)>dnl| L2,

+l p—1 +1
2(p+ 1) ”Qw V”i;Dle = 2( n 1) H¢HHI£;7+1 = TWV > nwV =Ny > 0.

The last inequality implies that @), v # 0. In addition, these relations deduces that
Nw,V(Qw,V) < lim ianw,V(¢n) =0.
n—oo

Therefore, there exists A € (0,1] such that N, v (AQu,v) = 0. For such A\, we have

1,0 +1 +1 1,0
Toy < Sw,V()‘Qw,V) = H Qu V”ipﬂ = 2( ||Qw V||Z£p+1 =T,y

2( 1) 1)
We can see that A must be 1 and N (Q,,v) = 0 holds. O

Remark 4.31. Theorem 4.30 implies that M, v raq is not empty under the assumptions of the
proposition.

Proposition 4.32. Let d=3,1<p<5 andV € L%(RS) + L>®(R3). Let V be radially
symmetric. Then, MM 4 C Gu,V, rad holds.

w,V, ra

Proof. We take any ¢ € ./\/lw V.rad- Lhen,

NLv(9), ) = O Nov (€*9) o= - 1)H¢|li§+11 <0. (4.41)

Take any w € H (R3). We define two functions f and g as follows:

f(s,t) == Suv(p+sw+te), g(s,t):=Noyv(d+sw+te), (st)eR>
Then, f and g satisfy f,g € C'(R?),
9(0,0) = Now(¢) =0, and  g:(0,0) = (N, 1 (¢), ¢) # 0.
By the implicit function theorem, there exists a real-valued functlon v € CY(—46,6) such that
7(0) =0,
9(5,7()) = 0, gu(5,7()) + (5, 21()7'(5) = 0, s € (~6,).

Since N, v (¢ + sw+~(s)¢p) = 0 for s € (—0,9), f(s,7(s)) has a local minimum at s = 0. Hence,
we have

_4ad = (s’ w) — (S, M
= dsf(oaﬁy(o)) _< w,V(¢)7 > < w,V(¢)7¢>< LZ,V(¢)7¢>

Since (S, 1/ (¢), 2) = 0 and (N, 1,(¢), 2) = 0 hold for any z € HL (R3)L, there exists a Lagrange
multlpher 1 € R such that
b (®) =nN v (9). (4.42)
Since
0= Nw7V((Z)) = < ;,V(¢)7¢> = T7< o{z,V(gb)a ¢>
and (4.41), we have n = 0. Combining n = 0 and (4.42), we have S/, ,(¢) = 0. We take any

Y € Ayviraa. Then, Ny (v) = (SI, (1),%) = 0. Since ¢ is in M, 4, we get S,y (¢) <
Sw.v(®). Therefore, we obtain ¢ € G, v, rad- O
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Proposition 4.33. Letd = 3, 1 < p < 5, and V € L2(R3) + L®(R3). Let V be radially
symmetric. If MM 4 s not empty, then G, v, rad C Molﬁ/ raq olds.

w,V, ra

Proof. We take any ¢ € G, v, rad and a function ¢ € Mi({/ rad € Yw,V, rad, Where the last inclusion

is used Proposition 4.32. Let w € H} ;(R3)\ {0} satisfy N,y (w) = 0. Then, we have
Sw,V(¢) = Sw,V(w) < S‘,JJ/(U)).
Moreover, it follows that N, v (¢) = (S, 1/(¢),#) = 0. Therefore, we obtain ¢ € Mi’f)w rad- O

3
2
rad

Corollary 4.34. Letd =3, 1 <p <5, andw > 0. Let V € L
follows that G, v, raqd = M}ﬁ, rad-

(R3) and V > 0. Then, it

This corollary is deduced immediately by Theorem 4.30, Proposition 4.32, and 4.33.

4.4. Proof of Theorem 1.62. In this subsection, we prove Theorem 1.62 and Proposition 1.63
(2).

Proof of Theorem 1.62. We note that N, v (ug) = 0 implies that up(z) = 0 by the definition of

ri’g/ and the assumption S, v (ug) < ri’g/. Then, we consider only case N,y (ug) > 0. First, we

prove that the solution u to (NLSy) satisfies N, v (u(t)) > 0 for any ¢ € (Tiin, Tmax). If there
exists to € (Tmin, Tmax) such that N, v (u(tg)) = 0, then S, v (u(to)) > ry,v by the definition
of r,, . On the other hands, we have S, v (u(t9)) = Sw,v(uo) < 7, by the conservation laws.
This is contradiction. Since N, v (u(t)) > 0 for any ¢ € (Tmin, Tmax), we have

1,0 p—1 2 2
N> S > t ~ t
> Savlun) = gl ~ )l
for any ¢t € (Tinin, Tmax). This inequality implies that the solution u to (NLSy ) exists globally
in time. (|

Proof of Proposition 1.63 (2). We consider AQ,, v for A > 0 and the “radial” ground state Q. v
to (SPy,). We define a function f as f(X) = S, v (AQw,v). Solving f'(Xg) = 0, we get Ao =1

from N, v (Quv) = 0. Thus, the function f has a maximum value f(Ag) = S, v (Qu,v) = r}d’?,

at A = A\g. Therefore, there exists 0 < § < 1 such that ni}(%/ < f(A) < r}u’gf for any A € [§,1). On
the other hand, we have N, v (AQu,v) > 0 for any A € (0,1]. Therefore, if we set ug = AQu,v
for A € [6,1), then we obtain the desired result. O

4.5. Proof of Main theorem 1.64. In this subsection, we prove Main theorem 1.64.

4.5.1. Non-radial case. In this subsubsection, we prove the non-radial case in Main theorem
1.64.

We note that K 5‘5 can be written as follows:

. 20 — d 20 — (d — 2 2 — d
K29 = 2B, + 2= s, + 2P | vl
B 2 (p+ 1o —dp +1
-5 Rd(x'vv)\f(x)\ dr — T’\f”igﬂ (4.43)
200 — (d — 2 200 — (d — 2 1
_ wf2a (2 )B}||f||%%+W||(_Av)zf||%%
2 (p+ 1o —dp +1

and (1.26) deduces the following relations:
f:=2a—(d-2)>p>0, >0, (p+la—-ds>({p—-1)a—-23>0.
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We define the following functional:
Tﬁ,’é’(f) = Suv(f) — m
= (w4 2V 2 YY) f(a) e DOt
2{2a — (d — 2)B} Jga (p+ 1){2cx (d Q)ﬁ} Lz
Lemma 4.35. Let d > 1, 1—1—% <p<ooifd=12, 1+§ <p< 1—1—@ if d > 3, and let
(o, B) satisfy (1.26). Let z°0°V € L"(RY) + L>®(R%) forn =14ifd =1, somen > 1 ifd = 2,

n=2%ifd>3, and any a € (NU{0})? with [a| <1,V >0, z-VV <0, and wy < 0o. Ifw >0
satisfies w > wyg, then

&y = mf{T0(9) : o € HY(RY\ {0}, K& (¢) < 0}

E2V(f)

holds.

In the next proposition, we prove that ny, is independent of (c, 8) under the assumptions
of Main theorem 1.64 (non-radial case).

Proof. This lemma follows from the same argument as Lemma 4.22. We note that corresponding
inequality to (4.39) follows from w > wy. O

Proposition 4.36. Letd > 1, 1+§<p<oo ifd=1,2, 1—1—3 <p< 14—d472 ifd>3,w>0,
and let (o, B) satisfy (1.26). Let x°0°V € L"(R?) + L°(RY) forn =1 if d = 1, some n > 1 if
d=2,n=2ifd>3, somen <o < oo, and any a € (NU{0})? with [a| <1,V >0, 2-VV <0,
and 2V +x - VV > 0. Then, the identity nfj‘ﬁ/ = ny0 holds.

Proof. When V' = 0, this proposition is trivial. We assume V' # 0. First, we prove n ’B > Ny 0-
We take any ¢ € H'(R?) \ {0} satisfying Ky (¢) = 0. Since Kp (¢) < K20 (¢) =0 by V>0
and z - VV < 0, we have

nwo < Top (9) < ToP () = Sw,v(¢)

by Lemma 4.35 and 2V + x - VV > 0, which implies ny 0 < n . Next, we prove ny, o > n
We note that the ground state Q0 to (SPy ) attains n . For any {y,} satisfying |y,| — oo
it follows that

75

Sy (Quo( = yn)) — Su,0(Quo) =nwo as n— oo
by V € Lg(Rd) + L7 (R?) for some ¢ < o < co. For any {y,} satisfying |y,| — oo, we also have
K39 (Quol- = 9n)) > KE§(Quol- =) = K55 (Quo) =0
by V>0 and 2 - VV < 0. Since Kﬁ”é(@w7o(' —yn)) > 0 and Kg”‘ﬁ,()\@w,o(- —yn)) < 0 for a

sufficiently large A > 1, we can take A\, > 1 with Kg:g()\an,O(- —yn)) = 0. For this sequence

{An}, we have A, — 1 as n — oco. Indeed, K20 (AnQuo(+ — yn)) = 0 and K2 (Quo) = 0

deduces
_(p+1l)a—dp
- p+1

e /R V(@) Quole — e~ /RJI‘ VV)Quo(a — yn)?da

Thus, we have A\, — 1 as n — oo. Hence, Sy, v(AQuo(- — yn)) — Sw0(Quo0) = Nwo as
n — 00 and K3 (AnQu,v (- — yn)) = 0 for each n € N. This implies ny, o > ). O

- +1
(=X Quoll 7t

In the next proposition, we complete the proof of non-radial case in Main theorem 1.64.

Proposition 4.37. Besides the assumptions of Proposition 4.36, we assume that x - VV < 0.
Then, n’, is not attained.
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Proof. We note that V> 0 and - VV < 0 imply V > 0. We assume for contradiction that
there exists ¢ € H'(R?) such that ¢ attains ng"B/ We take y € R? satisfying

K30 (6(- —y) < Koy (¢) =0 (4.45)

and
/ @V +2-VV)|o(z — y)[2de < / QV + 2 - VV)|o(z)|2da. (4.46)
Rd Rd

We note that if we take y € R? with sufficiently large |y|, then this inequality holds by %%V &
L%(Rd) + L(R?) for some 4 < 0 < oo and any a € (NU {0})¢ with |a] < 1, V > 0, and
x-VV < 0. Since Kg@()@( —y)) > 0 for some 0 < A < 1, combining this inequality and
(4.45), there exists 0 < A9 < 1 such that Kg’e()\0¢(~ —y)) = 0. Therefore, the definition of
ngy and (4.46) imply

n%y < Suv(Mod(- — 1) = Top (M (- —9) < TSHS(- — ) < TEP(@) = Swv(9) = nly.

This is contradiction. O

1
Proof of Proposition 1.68 (1). By the equation (SP,, (), we have Q0 = wﬁQl,o(w% -). Then,
d+2—(d—2)p

Su0,0(Quo) =w 2-1 S 5(Q1,0)

holds. Thus, the condition S,, v (up) < n_’y, in Proposition 1.68 (1) is equivalent to

d+2—(d—2)p

Swv(ug) <w 20708 4(Q1,0)

d+2—(d—2)
by using Proposition 4.36. Here, we define a function f(w):=w 20-D pSLo(Ql,o) — Su,v(uo)

on w € (0,00). Solving f'(wo) = 0, we get

2(p—1)

. :{ p—1 . M(uo) }d“d”
0 d+2—(d—2)p S10(Q10) '

The function f has a maximum value at w = wp by p > 1 + %. Therefore, if there exists w > 0
such that S, v (uo) < Sw,0(Qu,0), then f(wp) > 0 holds. Since

2(p—1) 2(p—1)
d+2— (d — 2)p dp—(d+4) dp — (d + 4) 5170(Q170) dp—(d+4)
p—1 dir2—(d—2)p By (up).

flwo) = { Hd+2—(d=2p} pryg) it

f(wp) > 0 implies

{d+ - o e 2>p}sC 5 {ddf; _(Céjf)g)p} S10(Qro) > M(uo) 5 By (o).

Here, calculating S1,0(Q1,0) by using Proposition 2.6, we have

2{d+2—(d—2)p}]™
dp — (d+4)

S1,0(Q10) = p—1 [

1—sc Se
Tdtr2—(d-2)p M(Q10) > Eo(Q1,0)*-

Therefore, we obtain

1 1—

e Eo(Qr0) > M(ug) v Ev(u).

M(Q1,0)
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4.5.2. Radial case. In this subsubsection, we prove the radial case in Main theorem 1.64.
Lemma 4.38 (Positivity of Tj;é). Letd>1, 143 <p<ooifd=121+5<p<l+%
if d > 3, and let (o, B) satisfy (1.26). We assume that z°0°V € L"(R?) + L>®(R?) forn =1 if
d=1, somen >1ifd=2, 17:% if d >3, and any a € (NU {0} with |a] <1, V >0, and
wo < 00. If w > 0 satisfies w > wo and f € H'(R?) \ {0} satisfies Kg‘ﬂ/(f) = 0, then we have
T390 (f) > 0.

Proof. This proposition follows from (1.26) and 2w 4+ 2V + 2 - VV >0 a.e. 2 € RY, O
Lemma 4.39 (Equivalence of H'-norm and S, ). Letd > 1, 1+ % <p< xifd=1,2,
1+2 <p<l+4 % ifd>3, and let (o, B) satisfy (1.26). Let z°0°V € Lg(Rd) + L®(R?) for
n=1ifd=1, somen>1ifd=2, n:g ifd >3, and any a € (NU{0}? with |a] <1,V >0,

and wy < 0o. We assume that w > 0 satisfies w > wo and f € HY(R?) satisfies Kfj‘ﬁ/(f) > 0.
Then,

{(p— Do — 28} Suy(f) < 2= Da=25

2P, < Ap+ D — dBYSup())

holds.
Proof. The first inequality holds clearly. We prove the second inequality.

Lo 28 o< @D+ KH)

—{(p+ Da—do}Sv(D) - 5 [ ot 2V o WVl
Rd
<A{lp+Da—dBiSuv(f)
(Il

Lemma 4.40 (Positivity of K). Letd > 1, 1+4 <p<ooifd=12 144 <p <1+ if
d >3, and (o, B) satisfy (1.26). Let 2°0°V € L"(RY) + L®(R?) forn=1ifd =1, somen > 1
ifd=2,n=2%ifd>3, and any a € (NU{0})? with [a| <1, V >0, and v - VV < 0. Suppose
that {fn} is a bounded sequence in H*(R?)\ {0} and satisfies |V fu| 12 — 0 as n — oo. Then,
there exists ng € N such that Ka‘ﬁ/(fn) > 0 for any n > ng.

Proof. We take a positive constant C' such as sup || fn||r2 < C. Applying Proposition 1.16, we
neN

have
o w(2a —dp 200 — (d —2)8 dﬁ
Ke(fa) 2 CEO Dy, 202Dy gp e, o) ) Pl
p p+1a—dB d+2-(d-2)p
ARG ¥CGN||anHL2 Il *
2 R4 +1
20— (d—-2)8 (p+1)a—dp d2-(d-2)p dp—(d+4) 2
> {22 E=20 e e =B IVfals * HIVSlR.
When ||V fu|[z2 # 0 is sufficiently small, we obtain Kj‘ﬁ/(fn) > 0. O

Lemma 4.41 (Positivity of rjj;@). Letd>1,1+3<p<ooifd=121+3<p<l+ %
if d >3, and let (o, B) satisfy (1.26). Let x°0°V € L"(RY) + L>®(R?) forn =1 ifd = 1, some
n>1ifd=2n= g ifd =3, and any a € (NU {0})? with |a| <1,V >0, z-VV <0, and
wo < 00. If w > wy, then we have 7“56 > 0.

Proof. We take any ¢ € H. ,(R?)\ {0} satisfying Kfj@(qﬁ) = 0. Then,

200 — (d—2)p (2a dp) 200 — (d—2)8

2
—LIvol2, < >

I3 + IVol2,
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+ w /R V(z)|p(x)2dz S/Rw L VV)|6(x)Pda

. (p + 1)04 —dpj p+1
= TWHLgﬂ

(p+1a—dB d+2—(d—2)p d(p—1)
< P Calel,y ¢ Vel

by K Z‘e(o) =0 and Proposition 1.16. Using this inequality and Lemma 4.39, we have

d+2—(d—2 1

(d+4)
1Sl = HV¢HL2 SHqﬁH’}{ H¢H ~Suv(e) T .

O

Lemma 4.42. Letd > 1, 1—1—% <p<xifd=1,2, 1—|—% <p< 1—|—d472 if d > 3, and let (o, B)
satisfy (1.26). Let z°0°V € L”(Rd) + L®R?) forn=14ifd=1, somen>1ifd=2,1n= g if
d>3, and any a 6 (NU{0D? with |a| <1,V >0, 2-VV <0, and wy < co. If w > 0 satisfies
w>wp and ¢ € H (Rd) \ {0} satisfies Ka’ﬂ v(®) <0, then there exists 0 < X < 1 such that

G) =0 and Y < Suv (M) = T2 (AG) < TH(9).

md

In particular,
roy = inf{T30(6) 1 ¢ € Hiy(R)\ {0}, K2 (6) <0}
holds.

Proof. This lemma follows from the same argument as Lemma 4.22. O

The following theorem is attainability of 7, in Main theorem 1.64 (radial case). The proof
is similar to the argument in Theorem 4.30. However, the argument does not need a reflexivity

of H‘l/

Theorem 4.43. Let d > 2, 1+% <p<ooifd=2, 1+% <p< 1+£ if d > 3, and let
(o, B) satisfies (1.26). Let °0°V € L"(R%) + L>®(RY) for somen > 1 ifd =2, n = % ifd >3,
and any a € (NU{0N)? with [a] <1,V >0, 2-VV <0, and wy < oo. If w > 0 satisfies w > wo,
then 7"56 1s attained.

Proof. We take a minimizing sequence {¢,} C H. ;(R?)\ {0}, that is, ¢, satisfies
Kfjé(d)n) =0 forany neN (4.47)
and
Swv(Pn) = (¢n) N rw V as n — oo.

We see that {¢,,} is a bounded sequence in L?(R%) and H{,(R?) by Lemma 4.39. From V > 0,
{$n} is also a bounded sequence in H!(R%). From Lemma 2.5, we can take a subsequence of {¢,, }
(, which is denoted by the same symbol) satisfying ¢,, — Qu v in H1(R?) and ¢,, — Q. v in
LETH(RY). Therefore, we get

1Quvllrz < liminf||én[l L2, (4.48)
n—oo
1 o 1
J(=A0)FQuyllys < limint [ (—Ay)Féull 2, (4.49)
n—o0
HQw,VHLgﬂ = nh_g)lo ||¢nHLg+1~ (4.50)

To prove (4.49), we used the following inequality

/ V()| Quy (2)2de < liminf / V(@) [6n(2)2da, (4.51)
Rd n—oo ]Rd
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which holds by the following argument. Using the Holder’s inequality,

[ vea@ay@is < ([ vipa)’ (/Rdv<ac>\@w,v@:)r%)é

and taking liminf of the both sides, we get the desired inequality (4.49). The relations (4.48),
(4.49), and (4.50) deduce

S (Quv) < liminf S,y (¢n) = 157y

We prove that @,y is not trivial. We assume @,y = 0 for contradiction. Then, we have

_(p+Da—dp p+1
=T el
) w2 ) 2a — (d—2)p3
— tim {220, 2, 4 222D, 2,

25 [ v@@pd =5 [ @ 9Vlo. @k

S 200 — (d —2)pB
- 2
by (4.50) and (4.47), that is, liminf, o0 [Vén |2 = 0. From Lemma 4.40, we get Kfj@(qf)n) >0

for sufficiently large n. This contradict (4.47). We prove that Qv attains rze Combining
(4.48), (4.49), and (4.50), we have

K20 (Quy) < lim inf K2 (¢n) =0, (4.52)

liminf ||V, |7, >0

2 Quv) < lim inf 7] Cpn) =105
We note that the inequalities
(=2 9V)EQuy 12 < liminf [[(~z - V) Egn 12,
12w + 2V +2-VV)2Quv |z < lim inf [|(2w + 2V + - V)26 ll12
follows from the same argument as (4.51). From (4.52), there exists A € (0, 1] such that
KS:@()‘QW,V) =0,
and hence, we have
o < Suv(AQuy) = T07(AQuy) < ToP (Quy) < 1o
Therefore, A must be 1 and @,y attains ’ﬁ O

Lemma 4.44. Let d > 1,1+ 3 <p<ooifd=12,1+3<p<1l+ 75 ifd>3, and let
(o, B) satisfy (1.26). Let x°0°V € L"(R?Y) + L¥(RY) forn > 1 ifd =1, somen > 1 if d = 2,
n==%ifd>3, and any a € (NU{0})? with |a| <2 and 3z - VV + V2V <0. Then,

B _ (DB _ _(p=Do{lp—Da—-28} - pi1
(D m(D*F = w)Suv(f) < P 111

holds for any f € H'(R?). In particular, if f satisfies Kf;‘ﬁ/(f) =0, then it follows that

a o -1 —1Da—-2
DK < i) - LD 2 g,

Proof. By the simple calculation, we have

_ 1 1
DN flGs = pllflzz. DIV =EIVAL DI ,0 = {(p+ Da — dBYIFI,
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a,B T 2)2de = x o) 2dr — €T - x)|2dx
0 [ V@li@Pde=p [ V@Ii@Pd -5 [ @ VV)ifa)Pds

and

D% [ (@ VV)|f(@)Pds = {20~ (@+ 18} [ (@ VV)|f@)Pds 5 [ @VPVaT)|f(0) .
Rd Rd Rd

These identities and 3z - VV + V2V 2T < 0 imply the desired results. (I

Proposition 4.45. Beszdes the assumptions of Lemma 4.44, we assume that V is radially
symmetric. Then, Mw Virad C Guw,V,rad holds.

Proof. We take any ¢ € ./\/lw Virad- From Lemma 4.44, we have
(p—Daf(p — a — 26}

e 75
< —uTo(0) - e lolih <0 (@53)
Thus, there exists the Lagrange multiplier n € R such that
S (@) = n(KSP) (). (4.54)

This identity deduces

0= K37(9) = DSy (9) = (SLy (@), D7) = n((KSy)' (#), D).
This implies n = 0 by (4.53). Therefore, we obtain S/, y,(¢) = 0 by (4.54). We take any 1 €
Ay v,rad- Then, we have Kie(w) = (S;yw),l)o‘ﬁ(w» = 0. Therefore, we obtain S, v (¢) <

Sw,V(¢)a that iS, ¢ € gw V,rad-: U
Proposition 4.46. We assume the same conditions as Proposition 4.45. If Mw\/md 18 not

empty, then G, v red C /\/lw V.rad holds.

Proof. We take any ¢ € G, vraa. We take a ¢ € Mw Viad C Gu.,Virad, Where the last inclusion
holds by Proposition 4.45. Let w € HL (RY) \ {0} satisfy Kﬁé(w) = 0. Then, it follows
that S, (¢) = Suv (1) < Swv( ). In addition, we have K2/ (¢) = (S, 1/(¢), D*F¢) = 0.
Therefore, we obtain ¢ € /\/lw Vrad> that is, G, v,raa C Mw Vrad holds. O
Corollary 4.47. Let d > 2, 1—1—3 <p<ooifd=2, 1+3 <p< 1+$ if d > 3, and let
(o, B) satisfy (1.26). Let 2°0°V € L"(RY) + L=®(R?) for somen > 1 ifd =2, n = g if d > 3,
and any a € (NU{0))? with |a| <2,V >0, 2-VV <0, 3z-VV +2V2V2T <0, and wo < .
If w > 0 satisfies w > wyq, then MS:@,md = Gu.V,rad holds.
This corollary holds by Theorem 4.43, Proposition 4.45, and 4.46.
4.6. Proof of Theorem 1.67. In this subsection, we prove Theorem 1.67 and Proposition 1.68

(2). The non-radial case in Theorem 1.67 is deduced by the same argument as the radial case
in Theorem 1.67 and Proposition 1.68 (1). Hence, we only prove the radial case.

Proof of Theorem 1.67. We note that Ka’ﬁ v (up) = 0 implies that ug(xz) = 0 by the definition of
7’56 and the assumption S, v (ug) < ri, 5 . Then, we consider only case K V(uo) > 0. First, we
prove that K 36( (t)) > 0. If the conclusmn does not hold, then there exists ¢y € (Twin, Tmax)
such that Kfj‘ﬁ/(u(to)) = 0. For such ty, we have 7’36 < S v(u(to)) by the definition of 7“5"6;

On the other hand, the conservation laws implies S, v (u(to)) = Suv(ug) < rw’€ This is
contradiction. From Lemma 4.39, we have

19 > S (o) = Suy (u(t)) ~ Jlu(t) 3.

Therefore, the solution u to (NLSy) exists globally in time. O
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Proof of Proposition 1.68 (2). The proof is the same as the argument of Proposition 1.63, so we
omit it. ]

4.7. Proof of Main theorem 1.74. In this subsection, we prove Theorem 1.73, Main theorem
1.74, and Theorem 1.76.
We note that (1.26) deduces the following relations:

n=20—(d-2)>20—(d—p)B>p, 20— (d-—pp>0,
(p+Da—-ds>p—-1)a—-28>0.
Proof of Proposition 1.72. The proof follows from the same argument as Proposition 1.54. [

We prove that rg% is independent of (a, 8) for d = 1. In Main theorem 1.64, it has been
already shown that 7.5 is independent of («a, 3) for d > 2.

Proposition 4.48. Letd=1,1<p <oo,v>0, and 0 < pp < 1. Let (o, 3) satisfies (1.26).
Then, we have

7/8 J—
oy = Inf, max Swa(e(r));

where
C:={c € O([0,1]; Hyy(R)) : ¢(0) = 0, Su(c(1)) < 0}.
In particular, vy is independent of (v, ).
The proof is based on [71, Lemma 2.3].
Proof. We set

P B B S )

76

To prove Z < ry%, we prove that there exists {¢,} C C such that

Jnax S Alen()) — 108

as n — oco. We take a minimizing sequence {¢,} to rg’g, that is,
Swn(@n) —> 15 ’ﬂ as n— oo and Ka’ﬁ(gbn) =0 for each n € N.
We set ¢, (7) 1= e‘”én(em -) for 7 € R. Then,

-~ w T « T
Sur(En(r)) = 2P g2, + 2P|V, 12,
1
Zel2a=(=p)pir [ T 2dp — lpta—p}r ptl
+3e | rtent@as - —e I9nlz%L

s0 Su~(cn(1)) < 0 for sufficiently large 7 > 0. Moreover, we have max,cr Su~(¢n(7)) =

(c (0)) = Suq(dn) — 155 as n — oo by K35(¢n) = 0. We define a function ¢, for

€10,1], L > 0, and M > 0 as follows:

_Je.2Lr - L), (3
Cn(T) = {(47_)M'cvn(_é)7 (O
If L >0 and M = M (n) are sufficiently large, then ¢, € C, S, ,(cn(1)) <0, and

m{g}i] Swn(en(T)) = Suqy(dn) — rfj:fj as n — oo.

Therefore, we obtain Z < rwjg We prove Z > ro" We take any ¢ € C, that is, ¢(0) = 0 and
Sw(c(1)) < 0. Since Kffg(c(())) =0and K\ € C’(Hl( ); R), it follows from Lemma 4.40 that
Kﬁe(c(r)) > 0 for sufficiently small 7 € (0,1). On the other hand, we have

K22 (e(1) < {(p + Lo — B}Sur (e(1)) < 0.
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By the intermediate value theorem, there exists 7. € (0, 1) such that Kgf (¢(1e)) = 0. Therefore,
we obtain

< <
A < Sunle(re)) < max So,(e(7)

for any ¢ € C. Taking infimum of this inequality over ¢ € C, the desired result is gotten. O

4.7.1. Global well-posedness in Theorem 1.73 and 1.76. In this subsubsection, we prove global
well-posedness in Theorem 1.73 and 1.76.

Lemma 4.49 (Coercivity I). Let d > 1, 1—|—% <p<oxifd=1,2, 1+% <p< 1+£ if
d>3,v>0,0<p<min{2,d}, and up € PW, 5 UPW_5. Let Q1 be the ground state to
(SPu0). We assume that ug satisfies (4.1).
o (Case PW,5) If up € PW, 5, then a solution u to (NLS,) with (IC) satisfies the
following: there exists 6’ > 0 such that

—=c 1 1
lu)ll3° [(=Ay)2u()llrz < (1 - 8 ||Q10 12" IV@Quoll 1z

for any t € (Thin, Trmaz) -
o (Case PW_5) If ug € PW_j5, then a solution u to (NLS,) with (IC) satisfies the
following: there exists 6’ > 0 such that

1—s¢ 1—sc

e 1 1 e
lu)ll 2= 1(=A)2u®)]rz > (1+ )% [1Quoll 3° VQ1ollzz
for any t € (Thin, Tmaz)-

1—sc l—sc
Sc

Proof. This lemma follows from the same argument with Proposition 4.11 (1) and 4.17. |

The case PW 5 result in Lemma 4.49 deduced global well-posedness in Theorem 1.73 with
j=>5.
Proof of global well-posedness in Theorem 1.73 with 7 = 5. The desired result follows from the
fact that H'-norm of the solutions is uniformly bounded with respect to time ¢. O

Lemma 4.50 (Coercivity II). Letd > 1, 1+ 3 <p<ooifd=1,2,1+4% <p <1+ % if
d>3,v>0, and 0 < p < min{2,d}.
o (PW, 4 (resp. PWy ) case) If ug € PW, 4 (resp. PWy ), then a solution u to (NLS.)
with (IC) satisfies u(t) € PWi 4 (resp. PWy ) for each t € (Tin, Trnaz)-
o (PW_, (resp. PW_g) case) If ug € PW_ 4 (resp. PW_g), then a solution u to (NLS.)
with (IC) satisfies u(t) € PW_ 4 (resp. PW_g) for each t € (Tpin, Tmaz) and

K (u(t)) < 4(Sw~(uo) — nuwy (resp. 1w.)) <O.

Proof. The case PW, ¢ (resp. PW_g) follows from the same argument as the case PW, 4
(resp. PW_4), so we treat only PW, 4 and PW_ 4. When K, (up) = 0, we have ug = 0 by
the definition of n, . Thus, Lemma 4.50 holds. Suppose that K, (ug) # 0. If there exists
to € (Thin, Tmax) such that K, (u(tp)) = 0, then

Suwny(ufto)) = Sw (o) < My < Swq(ulto))-

This is contradiction. Therefore, K, (u(t)) # 0 for each t € (Tinin, Tmax). In particular, the sign
of K (u(t)) corresponds with that of K (ug) by the continuity of the solution. Let K (ug) < 0.
We define a function

Ty (A) = Suny(ePu(t, e ).

We note that

d d? d
Juw(0) = Sw,“/(“(t))7 ﬁjww(o) = Kv(“(t))a WJUJW()‘> < 45‘]%7(/\)-
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The equation %Jwﬂ()\) = 0 for A has only one negative solution. We set that the solution
A=\ < 0. Integrating 257, ,(\) < 44 J,, - (A) on [Ag, 0], we have
Ko (u(t)) = 0 < 4(Swq (u(t) = Juqy(Xo)) < 4(Suq(ult) — nwy) <O
Therefore, we obtain
Ko (u(t)) < 4(Su(uo) —nwy) <0
for any t € (Timin, Tmax)- O
As a corollary, global well-posedness in Theorem 1.73 with j7 = 4 and Theorem 1.76 holds.

Corollary 4.51 (Global well-posedness). Let d > 1, 1+ 3 i<p<ooifd=1,21 + 3 i<p<
1+ ifd>3,7>0, and 0 < p < min{2,d}. If ug 6PW+] (j =4,6), then asolutwnu to
(NLS,, ) with (IC) exists globally in time.

Proof. From ug € PW, 4 (resp. PW, ) and Lemma 4.50, we have u(t) € PW 4 (resp. PW )
for each t € (Timin, Tmax). K~ (u(t)) > 0 deduces

i dlip—1) 1
2[[(—A))Zu(t)||72 = ﬁll u(®)|[73-
Therefore, we obtain
w dp—1)—14 1
My (0D 1) > S (0) 2 5 o) + S 2 D) Butt) I 2 [0y
which implies the desired result. O

4.7.2. Blow-up or grow-up result in Theorem 1.73 and 1.76. In this subsubsection, we prove
blow-up or grow-up results in Theorem 1.73 and 1.76.

Lemma 4.52. Letd > 1, 1 <p<ooifd =12 1<p< 1+ ifd >3~ >0, and
0 < p < min{2,d}. Let u € C([0,00); HY(R?)) be a time global solution to (NLS.). We define
a function

1) = [ Znw)lutt, )Pz,
Rd
where 2 is defined as (2.1). Then, for ¢ € (p+1,00) ifd=1,2 and q € (p+ 1, -2 i 2) ifd >3,
there exist constants C = C(q, M (u),Co) > 0 and 6, > 0 such that the estimate

1)6, c
1'(8) < 4K (u(®) + C lu® I Ao + 7
holds for any R > 0 and t € [0,00), where 0 := % € (0, p+1) and Cy is given in Lemma

4.18.

Proof. This proof follows from the similar argument to Lemma 4.19. Using Proposition 4.9, we
have

I"(t) = 4K, (u(t)) + R1 + Rz + Rs + Ra,
where Ry = Ry(t) (k=1,2,3,4) are defined as

Ry = 4/]R {TQ 2" (ﬁ) - %%/ (;)} Iz - Vu|2dx+4/Rd {]:”3{' (%) - 2} Vu(t, z)[2dz,

(4.55)

Ry = _2§3”+‘1”/Rd {3{ (%) + (d_rl)R%' (% —2d} lu(t, )P+ dz, (4.56)

w2 () ()
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- 1)7{3 —d)R

2 (;)} lu(t, z)[2dz, (4.57)

R r
Ry :=2 / {%’( —2} u(t, x)|“dx. 4.58
" Jrc U R) |z !“‘ o)l e
We estimate R1, Ro, R3 by the same argument as Lemma 4.19 and can get

(p+1)9 ¢

Ri1 <0, Rg< CH’LL( )|’L2(R<|z\)’ Rs < ﬁ

R4 is estimated as R4 < 0, which completes the proof of the lemma. O

Proof of blow-up or grow-up in Theorem 1.73 and 1.76. This proof follows from the same argu-
ment with blow-up or grow-up in Main theorem 1.56. In the argument, we use Lemma 4.52. [

Using Theorem 1.71 and 1.73, we prove Main theorem 1.74.

Proof of Main theorem 1.74. We note that
PW, jUPW_ ; ={ug € H'(R?) : (1.20)}
for any j = 3,4,5. If ug € PW, ; (j = 3,4,5), then a solution u to (NLS,) is uniformly

bounded in H'(RY). On the other hand, if uy € PW_; (j = 3,4,5), then a solution u to
(NLS,) is unbounded in H'(R%). O

To complete this subsubsection, we prove Corollary 1.75 by Main theorem 1.74.
Proof of Corollary 1.75. Let E,(up) <0 and ug # 0. (1.20) holds clearly. E,(up) < 0 implies

1 1 1 +1
5”(—A7)2U0H%g < Im”“‘)”ig“’

so we have

K (w0 < 20~ bl — 22D

4—dp—1
Dty < 22202y a

1
Pl < Ay} <0,

O

4.7.3. Blow-up result in Theorem 1.73 and 1.76. In this subsubsection, we prove the blow-up
results in Theorem 1.73 and 1.76. This proof is based on [48] and [100] (see also [67]). First, we
prove the following lemma to get the blow-up results.

Lemma 4.53. Let d > 1, 1+%<p<ooz’fd:1,2, 1+§<p<1+£ ifd>3,v>0, and
0 < p <min{2,d}. Let w > 0. Then, we have

Nuy = nf{Us4(f) 1 f € H'(RY)\ {0}, K,(f) <0},
Twry = {Usy(f) 1 f € HY RN\ {0}, K (f) <0},

where Uy, is defined as Uy ~(f) := Su~(f) — ﬁ[(v(f).

Proof. This proof follows from the same argument with Lemma 4.22. U

Proof of blow-up in Theorem 1.73 and 1.76.
Case ug € |z|1L2(RY) :
When ug € |2|"1L2(R?), there exists a positive constant § > 0 such that

2
—sllzu(t)[|7: = 4K, (u(t) < =6

for any t € (Tinin, Tmax) from Proposition 4.8, Lemma 4.50, and 4.20. This inequality implies
the desired result.
Case ug € H  (RY) :

Let ug € PW__; (j = 4,5). We consider the functional I in Lemma 4.52.
I"(t) = 4K, (u) + R1 + R2 + R3 + Ry,
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where R1, Ra, Ra, and R4 are defined as (4.55), (4.56), (4.57), and (4.58) respectively. We have
already gotten R; <0, Rg < %, and Ry <0 in Lemma 4.52. We estimate Ro.

+1 c p43 =
Ro < c||u(t )||ip+1 (R<lz) < @M(U) 4 'EHVU(t)HL;(RQID

SIvu3;, (@=2 p=5),
¢ M(w)5r +2{d(p — 1) — 4}e|[Vu(t)||2,, (otherwise)

M 4
—p £5—p

IN

by Lemma 2.4 and 2.1. Let 0 < ¢ < %. We take a positive constant § > 0 such as

Swy(u) < (1 —=0)nyy. Since ny, < U, ~(u(t)) by Lemma 4.53, we have

1" c pt3 2 c
I'(t) < 4K, () + —rme— M) 5 + 2{d(p — 1) — = Vu(t) 2, + -
5—p g5-p
C
< 4d(p — 1) Sy (u) = 2wd(p — 1) M (u) — 2(1 — e){d(p — 1) — 4}[|Vu(t) |7, + 72
c p+3
~ (2= (1= )+ 42— ) [ olult)Pde + e M)
R 5 gb5-p
c g
< 4d(p B 1)5%’?(’“’) - 4d(p - 1)(1 - 5)Uw,“/(u) + ? + 2(d—1)(p—1) 4 ( )
R 5 g5
C c pt3
<4d(p—1)1 = 0)nwy —4d(p —1)(1 —e)nyy + =5 2 + e M (u)5-»
5—p g5—p
C c pt3
=4d(p — 1)(e = 6)nwy + Rr? + —Sanen 1 M (u)5-»
5—p g5—p
for d > 2 and p < 5. Taking 7 < 2{d(p — 1) — 4}, we have
C
I"(t) < 4d(p — 1) (e — Onwqy + — 72
for d = 2 and p = 5 by the same manner. Thus, if we take sufﬁciently small 0 < ¢ <

min{é, 2dp=D—4uy ng sufficiently large R > 0, then we obtain I”(¢f) < 0. This implies the
2d(p—1)—8

solution u to (NLS,) blows up. The proof of the case uy € PW_g is proved by replacing n,, -
with 7y, . O
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