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Abstract. In this paper, we deal with nonlinear Schrödinger system (NLS) in the mass-
subcritical case and nonlinear Schrödinger equation with a potential (NLSV ) (or (NLSγ)) in
the inter-critical case. We consider time behavior of solutions to these equations. For (NLS),
we define a scattering threshold, by focusing structure of the nonlinearity, which corresponds
to the best constant of small data scattering. We investigate a property of a solution on the
threshold and an optimizing sequence of the threshold. For (NLSV ), we prove a scattering result,
a blow-up or grow-up result, and a blow-up result below the ground state without a potential.
Then, we show existence of a “radial” ground state and characterize the “radial” ground state
by the virial functional. By using the “radial” ground state, we get a global well-posedness of
(NLSV ). For (NLSγ), we show blow-up results. Moreover, we obtain equivalence of conditions
on initial data below the ground state without a potential by utilizing the global well-posedness
results and the blow-up result.
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1. Introduction

1.1. Nonlinear Schrödinger equation. In this subsection, we consider the nonlinear Schrödinger
equation with power type nonlinearity.

i∂tu(t, x) + ∆u(t, x) = µ|u(t, x)|p−1u(t, x), (t, x) ∈ R× Rd, (NLS0)
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where i :=
√
−1, µ ∈ {−1, 1}, p > 1, d ≥ 1, ∂t :=

∂
∂t , ∆ =

∑d
j=1

∂2

∂x2j
, and an unknown function

u : R × Rd −→ C is a solution to (NLS0). (NLS0) denotes a laser beam in optical fiber and
vortex filament. (NLS0) is also regarded as a non-relativistic limit of nonlinear Klein-Gordon
equation (NLKG0):

− 1

c2
∂2t u(t, x)− i∂tu(t, x) + ∆u(t, x) = µ|u(t, x)|p−1u(t, x), (t, x) ∈ R× Rd, (NLKG0)

where c is the speed of light. In other words, the following holds: for a solution u to (NLKG0),

the modulated wave function uc(t, x) = eic
2tu(t, x) satisfies

− 1

c2
∂2uc + i∂tuc +∆uc = µ|uc|p−1uc

and (NLS0) is formally deduced as c→ ∞.
(NLS0) preserves in time t the following mass, energy (or Hamiltonian), and momentum:

(Mass) M(u) := ‖u‖2L2
x
,

(Energy) E0(u) :=
1

2
‖∇u‖2L2

x
+

λ

p+ 1
‖u‖p+1

Lp+1
x
,

(Momentum) M(u) := Im

∫
Rd

u(t, x)∇u(t, x)dx.

L2
x(Rd) is called mass space and H1

x(Rd) is called energy space. Also, (NLS0) has the scale

invariance as follows: If u is a solution to (NLS0), then uλ := λ
2

p−1u(λ2 · , λ · ) is also a solution
to (NLS0) for λ > 0. For this transformation, it follows that ‖uλ(0, · )‖Ḣsc

x
= ‖u(0, · )‖Ḣsc

x
,

where

sc :=
d

2
− 2

p− 1
. (1.1)

In this sense, Ḣsc
x (Rd) is scale critical space of (NLS0) and “(NLS0) is called mass-subcritical

when sc < 0 (⇐⇒ 1 < p < 1 + 4
d), mass-critical when sc = 0 (⇐⇒ p = 1 + 4

d), inter-critical (or

mass-supercritical and energy-subcritical) when 0 < sc < 1 (⇐⇒ 1 + 4
d < p < 1 + 4

d−2), and

energy-critical when sc = 1 (⇐⇒ p = 1 + 4
d−2)”.

From now on, we consider the Cauchy problem of (NLS0). That is, we treat (NLS0) with
initial condition:

u(0, x) = u0(x). (IC0)

We state local well-posedness theory of (NLS0), where local well-posedness implies existence of
time local solution, uniqueness of the solution, and continuous dependence on initial data of the
solution.

Theorem 1.1 (Local well-posedness in L2, [115]). Let d ≥ 1, 1 < p < 1 + 4
d , and λ ∈ {−1, 1}.

Let u0 ∈ L2
x(Rd). Then, there exists T = T (‖u0‖L2

x
) > 0 such that (NLS0) with (IC0) has a

unique solution

u ∈ Ct([−T, T ];L2
x(Rd)) ∩ L

q
t ([−T, T ];Lp+1

x (Rd)),

where the exponent q satisfies 1
q = d

2(
1
2 −

1
p+1). Moreover, continuous dependence on initial data

hods, that is,

lim
n→∞

‖un − u‖L∞
t L2

x
= 0

for any u0,n ∈ L2
x(Rd) satisfying u0,n −→ u0 in L2

x(Rd), where un is a solution to (NLS0)
with data un(0, · ) = u0,n. Furthermore, the solution u to (NLS0) preserves its mass in time t
(M(u(t)) =M(u0)).
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Theorem 1.2 (Local well-posedness in H1, [4, 43, 74]). Let d ≥ 1, 1 < p < ∞ if d = 1, 2,
1 < p < 1 + 4

d−2 if d ≥ 3, and λ ∈ {−1, 1}. Let u0 ∈ H1
x(Rd). Then, there exists T =

T (‖u0‖H1
x
) > 0 such that (NLS0) with (IC0) has a unique solution u ∈ Ct([−T, T ];H1

x(Rd)).
Moreover, continuous dependence on initial data holds, that is,

lim
n→∞

‖un − u‖L∞
t (I;H1

x)
= 0

for any u0,n ∈ H1
x(Rd) satisfying u0,n −→ u0 in H1

x(Rd) and any compact time interval I ⊂
(Tmin, Tmax), where un is a solution to (NLS0) with data un(0, · ) = u0,n and (Tmin, Tmax) denotes
the maximal existence time of the solution u.

We turn to time behavior of solutions to (NLS0). We will consider the following time behav-
iors.

Definition 1.3 (Time behaviors of solutions to (NLS0)). Let X be a Hilbert space and u0 ∈ X.
Let u be a solution to (NLS0) on (Tmin, Tmax), where (Tmin, Tmax) denotes the maximal existence
time of the solution u.

• (Scattering) We say that u scatters in positive time (resp. negative time) if Tmax = ∞
(resp. Tmin = −∞) and there exists ψ+ ∈ X (resp. ψ− ∈ X) such that

lim
t→+∞

‖e−it∆u(t)− ψ+‖X = 0,

(
resp. lim

t→−∞
‖e−it∆u(t)− ψ−‖X = 0

)
,

which implies that the nonlinear solution u approaches a linear solution eit∆ψ+ (resp.
eit∆ψ−) in X as t→ +∞ (resp. t→ −∞).

• (Blow-up) We say that u blows up in positive time (resp. negative time) if Tmax < ∞
(resp. Tmin > −∞).

• (Grow-up) We say that u grows up in positive time (resp. negative time) if Tmax = ∞
(resp. Tmin = −∞) and

lim sup
t→+∞

‖u(t)‖X = ∞,

(
resp. lim sup

t→−∞
‖u(t)‖X = ∞

)
.

• (Standing wave) We say that u is standing wave if u = eiωtQω,0 for ω ∈ R, where Qω,0
satisfies

−ωQω,0 +∆Qω,0 = −|Qω,0|p−1Qω,0, x ∈ Rd. (SPω,0)

Remark 1.4. If the Schrödinger group eit∆ is unitary on X (e.g. L2, Ḣ1, H1), then the definition
of scattering can be written as

lim
t→+∞

‖u(t)− eit∆ψ+‖X = 0,

(
resp. lim

t→−∞
‖u(t)− eit∆ψ−‖X = 0

)
.

We also define the ground state solutions to (SPω,0).

Definition 1.5. A set of the all ground state Gω,0 is defined as

Gω,0 := {φ ∈ Aω,0 : Sω,0(φ) ≤ Sω,0(ψ) for any ψ ∈ Aω,0},

Sω,0(φ) :=
ω

2
M(φ) + E0(φ),

Aω,0 := {φ ∈ H1
x(Rd) \ {0} : S′

ω,0(φ) = 0},

where Sω,0 is called action.

There are two contradictory effects for time behavior of solutions. The linear term has dis-
persive effect, which tends to flatten the solution to (NLS0) as time goes on (see Figure 1). The
nonlinear term with λ = 1 has a defocusing effect, which is the same effect with dispersive effect.
The nonlinear term with λ = −1 has a focusing effect, which tends to concentrate the solution
to (NLS0) (see Figure 2).
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Figure 1 Figure 2

One may think that (NLS0) with a defocusing nonlinearity has only scattering solutions. How-
ever, it is false since if the nonlinear power p is sufficiently small, then (NLS0) is like another
linear equation. On the other hand, if the nonlinear power p is large and the solution u is small,
then the nonlinear term is more smaller, so we expect that the solution u scatters. We formally
get the boundary of the nonlinear power p. We consider the final state problem:{

i∂tu+∆u = −|u|p−1u, (t, x) ∈ R× Rd,
u(t, x) −→ eit∆ψ+.

Estimating the integral equation by using a dispersive estimate (Proposition 3.3), we have

‖u(t)− eit∆ψ+‖L2
x
≲
∫ ∞

t
‖u(s)‖p−1

L∞
x
‖u(s)‖L2

x
ds

∼
∫ ∞

t
‖eis∆ψ+‖p−1

L∞
x
‖ψ+‖L2

x
ds ≲

∫ ∞

t
s−

d(p−1)
2 ‖ψ+‖p−1

L1
x
‖ψ+‖L2

x
ds.

If p > 1 + 2
d , then the last integral is finite and converges to 0 as t → ∞. Barab [5] and

Strauss [106] showed that if p ≤ 1 + 2
d , then non-trivial solutions to (NLS0) do not scatter in

the L2-sense, so we can not expect get a scattering result under the assumption p ≤ 1 + 2
d .

Instead, Hayashi–Naumkin [61] showed the following modified scattering result (see also Carles
[12], Cazenave–Naumkin [15], Ginibre–Ozawa [47], Hayashi–Naumkin [62], and Ozawa [103]).

Theorem 1.6 (Modified scattering, [61]). Let 1 ≤ d ≤ 3 and d
2 < s ≤ 1 + 2

d and u0 ∈
Hs(Rd) ∩ FHs(Rd). There exists ε0 > 0 such that for any 0 < ε ≤ ε0, if ‖u0‖Hs∩FHs ≤ ε, then
there exist unique function W+ ∈ L∞(Rd) ∩ L2(Rd) such that the asymptotic formula

u(t, x) =
1

(2it)
d
2

e
i|x|2
4t W+

( x
2t

)
exp

(
λ

2
i
∣∣∣W+

( x
2t

)∣∣∣ 2d log t)+O(εt−
3
4
d+δ log t)

and the estimate ∥∥∥∥F(e−it∆u)−W+ exp

(
λ

2
i|W+|

2
d log t

)∥∥∥∥
L2
x∩L∞

x

≲ εt−
d
4
+δ log t

hold, where u is the solution to (NLS0) with (IC0) and F is the Fourier transform.

We see scattering solutions to (NLS0) with initial data near 0 (small data) under the assump-
tion p > 1 + 2

d . In this case, the small data scattering results is given by many authors in the
suitable sense (e.g. see [16, 44, 45, 63, 65, 114, 116]).

We state known results for time behavior of (NLS0) with a defocusing nonlinearity.

Theorem 1.7 (Scattering solutions to (NLS0) in L
2-critical, [27, 29, 30]). Let d ≥ 1, p = 1+ 4

d ,

and λ = 1. Let u0 ∈ L2
x(Rd). Then, a solution to (NLS0) with (IC0) scatters.

Theorem 1.8 (Scattering solutions to (NLS0) in inter-critical I, [42, 78, 94, 95, 96, 122]). Let
d ≥ 3 and λ = 1. Let u : (Tmin, Tmax)×Rd −→ C be a maximal lifespan solution to (NLS0) with

(IC0) satisfying u ∈ L∞
t (Tmin, Tmax; Ḣ

sc
x ), where sc is defined as (1.1). If either of the following

conditions hold:

• 1
2 ≤ sc ≤ 3

4 if d = 3, 1
2 ≤ sc < 1 if d ≥ 4,

• u0 ∈ Ḣsc
rad(R

d) and sc ∈ (0, 12) ∪ (34 , 1),

then u scatters.
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Theorem 1.9 (Scattering solutions to (NLS0) in inter-critical II, [7, 20, 26, 108]). Let d = 3,
p = 3, and λ = 1. If u0 ∈ Hs

x(R3) for s > 49
74 , then the solution u to (NLS0) with (IC0) scatters.

Theorem 1.10 (Scattering solutions to (NLS0) in Ḣ1-critical, [21, 85, 105, 117, 118]). Let

d ≥ 3, p = 1 + 4
d−2 , and λ = 1. Let u0 ∈ Ḣ1

x(Rd). Then, a solution to (NLS0) with (IC0)
scatters.

We turn to the focusing case. Before the Kenig–Merle’s work [77], only time behavior of the
characteristic solutions had been observed. We note that the small data scattering above is
also one of the framework. The following virial functional is very useful when we consider time
behavior of solutions to (NLS0).

(Virial functional) K0(f) := Dd,2Sω,0(f) = 2‖∇f‖2L2
x
− d(p− 1)

p+ 1
‖f‖p+1

Lp+1
x
.

where Dα,β is defined as

Dα,βf :=
d

dλ

∣∣∣∣
λ=0

eαλf(eβλ · ), Dα,βF (f) :=
d

dλ

∣∣∣∣
λ=0

F (eαλf(eβλ · ))

for (α, β) ∈ R2, a function f , and a functional F . The virial functional has the next property:
If xu0 ∈ L2

x(Rd), then
d2

dt2
‖xu(t)‖2L2

x
= 4K0(u(t))

for each t ∈ (Tmin, Tmax). Roughly speaking, this equality implies that if K0(u(t)) > 0 then the
solution u to (NLS0) goes far away from the origin and if K0(u(t)) < 0 then the solution u to
(NLS0) approaches the origin. Glassey [48] and Ogawa–Tsutsumi [100] proved a existence of
blow-up solutions by controlling the virial functional.

Theorem 1.11 (Blow up solutions, [48, 100]). Let d ≥ 1, 1 + 4
d ≤ p < ∞ if d = 1, 2, 1 + 4

d ≤
p ≤ 1 + 4

d−2 if d ≥ 3, λ = −1, and u0 ∈ H1
x(Rd). Then, the followings hold:

• (Finite variance) If xu0 ∈ L2
x(Rd) and “E0(u0) < 0 or E0(u0) = 0, Im〈x · ∇u0, u0〉L2

x
<

0”, then the solution u to (NLS0) with (IC0) blows up.
• (Radial) If u0 ∈ H1

rad(Rd), E0(u0) < 0, and we suppose an additional assumption p < 5
when d = 2, then the solution u to (NLS0) with (IC0) blows up.

Berestycki–Cazenave [8] and Cazenave–Lions [14] observed solutions to (NLS0) with initial
data near the ground state to (SPω).

Theorem 1.12 (Stability and instability of standing waves, [8, 14]). Let d ≥ 1, 1 < p < ∞ if
d = 1, 2, 1 < p < 1 + 4

d−2 if d ≥ 3, and λ = −1. Let Qω,0 be the ground state to (SPω,0).

• (Stability) If 1 < p < 1 + 4
d , then the standing wave eiωtQω,0 is stable in the next sense:

for any ε > 0, there exists δ > 0 such that if ‖u0 −Qω,0‖H1
x
< δ, then the solution u to

(NLS0) with (IC0) satisfies

inf
θ∈R,y∈Rd

‖u(t)− eiθQω,0( · − y)‖H1
x
< ε

for any t ∈ R.
• (Instability) If 1 + 4

d ≤ p < ∞ with d = 1, 2 and 1 + 4
d ≤ p < 1 + 4

d−2 with d ≥ 3,

then the standing wave eiωtQω,0 is unstable in the next sense: for any ε > 0, there exists

u0 ∈ H1(Rd) such that ‖u0−Qω,0‖H1 < ε and the solution u to (NLS0) with (IC0) blows
up.

By the Kenig–Merle’s work [77], we can see that the ground stateQω,0 to (SPω,0) is a boundary
between initial data with different types of time behavior solutions. In the argument, we consider
the following minimization problem and sets to control a sign of the virial functional.

nω,0 := inf{Sω,0(φ) : φ ∈ H1
x(Rd) \ {0}, K0(φ) = 0},



7

PW+,1 :=
⋃
ω>0

{φ ∈ H1
x(Rd) : Sω,0(φ) < nω,0, K0(φ) > 0},

PW−,1 :=
⋃
ω>0

{φ ∈ H1
x(Rd) : Sω,0(φ) < nω,0, K0(φ) < 0}.

Then, sets PW+,1 and PW−,1 are invariant under the time development of (NLS0). In other
words, if u0 ∈ PW+,1 then u(t) ∈ PW+,1 for each t ∈ (Tmin, Tmax) and u0 ∈ PW−,1 then u(t) ∈
PW−,1 for each t ∈ (Tmin, Tmax). It is well known for inter-critical case (1 + 4

d < p < 1 + 4
d−2)

that a set of minimizers to nω,0 corresponds to Gω,0, that is, Mω,0 = Gω,0 holds, where

Mω,0 := {φ ∈ H1
x(Rd) \ {0} : Sω,0(φ) = nω,0, K0(φ) = 0}.

Therefore, we can rewrite PW+,1 and PW−,1 as

PW+,1 :=
⋃
ω>0

{φ ∈ H1
x(Rd) : Sω,0(φ) < Sω,0(Qω,0), K0(φ) > 0},

PW−,1 :=
⋃
ω>0

{φ ∈ H1
x(Rd) : Sω,0(φ) < Sω,0(Qω,0), K0(φ) < 0}

for 1 + 4
d < p <∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3, and a ground state Qω,0 to (SPω,0).

Using PW+,1 and PW−,1, the following known results for time behavior of solutions to (NLS0)
with a focusing nonlinearity are shown in [1, 2, 32, 33, 35, 38, 67].

Theorem 1.13 (Time behavior of solutions to (NLS0) below the ground state in inter-critical).
　
Let d ≥ 1, 1 + 4

d < p <∞ if d = 1, 2, 1 + 4
d < p < 1 + 4

d−2 if d ≥ 3, and λ = −1.

• (Scattering) If u0 ∈ PW+,1, then a solution u to (NLS0) with (IC0) scatters.
• (Blow-up or grow-up) If u0 ∈ PW−,1, then a solution u to (NLS0) with (IC0) blows up

or grows up. Moreover, if xu0 ∈ L2
x(Rd) or “d ≥ 2, p ≤ 5 if d = 2, and u0 ∈ H1

rad(Rd)”,
then the solution u to (NLS0) with (IC0) blows up.

The assumptions in Theorem 1.13 have the next equivalent conditions.

Proposition 1.14. Let d ≥ 1, 1+ 4
d < p <∞ if d = 1, 2, 1+ 4

d < p < 1+ 4
d−2 if d ≥ 3, λ = −1,

and sc be defined as (1.1). Let u0 ∈ H1
x(Rd) and Qω,0 be a ground state to (SPω,0). Then, the

following two conditions (1) and (2) are equivalence.

(1) There exists ω > 0 such that Sω,0(u0) < Sω,0(Qω,0), (1.2)

(2) M(u0)
1−sc
sc E0(u0) < M(Q1,0)

1−sc
sc E0(Q1,0). (1.3)

Under the above condition, the following two conditions are equivalence.

• K0(u0) ≥ 0

• ‖u0‖
1−sc
sc

L2
x

‖∇u0‖L2
x
< ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

(1.4)

Under the condition (1) (or (2)), the following two conditions are equivalence.

• K0(u0) < 0

• ‖u0‖
1−sc
sc

L2
x

‖∇u0‖L2
x
> ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

(1.5)

From Proposition 1.14, we can rewrite Theorem 1.13 as the next theorem.

Theorem 1.15. Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3, and

λ = −1. Let Q1,0 be a ground state to (SPω,0) with ω = 1. Suppose that u0 ∈ H1
x(Rd) satisfies

(1.3).

• (Scattering) If (1.4) holds, then a solution u to (NLS0) with (IC0) scatters.
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• (Blow-up or grow-up) If (1.5) holds, then a solution u to (NLS0) with (IC0) blows up
or grows up. Moreover, if xu0 ∈ L2

x(Rd) or “d ≥ 2, p ≤ 5 if d = 2, and u0 ∈ H1
rad(Rd)”,

then the solution u to (NLS0) with (IC0) blows up.

The expression in Theorem 1.15 is based on the following Gagliardo-Nirenberg inequality.

Proposition 1.16 (Gagliardo-Nirenberg inequality, [3, 40, 41, 99, 111, 121]). Let d ≥ 1, 1 <
p <∞ if d = 1, 2, and 1 < p ≤ 1 + 4

d−2 if d ≥ 3. Then, the following inequality holds:

‖f‖p+1
Lp+1 ≤ CGN‖f‖

p+1− d(p−1)
2

L2 ‖∇f‖
d(p−1)

2

L2 (1.6)

for any f ∈ H1(Rd), where CGN is the best constant, is attained by the ground state Q1,0 to
(SPω,0) with ω = 1 if 1 < p <∞ (d = 1, 2) and 1 < p < 1 + 4

d−2 (d ≥ 3), and is attained by the

ground state Q0,0 to (SPω,0) with ω = 0 if p = 1 + 4
d−2 (d ≥ 3).

Remark 1.17. We note the following point for Proposition 1.16.

• If d ≥ 3 and p = 1 + 4
d−2 , then the inequality (1.6) is called usually Sobolev inequality

(Lemma 2.3).

• Q0,0 is the Talenti function and can be written as Q0,0 =
(
1 + |x|2

d(d−2)

)− d−2
2
.

Using the expression of Theorem 1.15, the following known results in L2-critical case is given
(see [28]).

Theorem 1.18 (Scattering solutions to (NLS0) below the ground state in L2-critical). Let
d ≥ 1, p = 1+ 4

d , and λ = −1. Let Q1,0 be a ground state to (SPω,0) with ω = 1. If u0 ∈ L2
x(Rd)

satisfies ‖u0‖L2
x
< ‖Q1,0‖L2

x
, then a solution to (NLS0) with (IC0) scatters.

Using the expression of Theorem 1.15, the following known results in Ḣ1-critical case is given
(see [31, 77, 84]).

Theorem 1.19 (Time behavior of solutions to (NLS0) below the ground state in Ḣ1-critical).
　
Let d ≥ 3, p = 1+ 4

d−2 , and λ = −1. Let Q0,0 be a ground state to (SPω,0) with ω = 0. Suppose

that u0 ∈ Ḣ1
x(Rd) satisfies E0(u0) < E0(Q0,0).

• (Scattering) If either of the followings hold:
◦ d ≥ 4 and ‖∇u0‖L2

x
< ‖∇Q0,0‖L2

x
,

◦ d = 3, u0 ∈ Ḣ1
rad(R3), and ‖∇u0‖L2

x
< ‖∇Q0,0‖L2

x
,

then a solution u to (NLS0) with (IC0) scatters.

• (Blow-up) If “xu0 ∈ L2
x(Rd) or u0 ∈ Ḣ1

rad(Rd)” and ‖∇u0‖L2
x
> ‖∇Q0,0‖L2

x
, then a

solution u to (NLS0) with (IC0) blows up.

As Theorem 1.13, 1.18, and 1.19, a sign of the virial functional of solutions to (NLS0) with
initial data below the ground state is invariant from a characterization of the ground state with

the virial functional. If we try to observe on the threshold level (M(Q1,0)
1−sc
sc E0(Q1,0)) or pull

up the threshold level, then we need more detailed investigation for the ground state Qω,0 to
(SPω,0). To consider initial data on the threshold level, that is, initial data satisfying

M(u0)
1−sc
sc E0(u0) =M(Q1,0)

1−sc
sc E0(Q1,0), (1.7)

we use a property of the ground state Qω,0 to (SPω,0): If

‖f‖p+1
Lp+1 = CGN‖f‖

p+1− d(p−1)
2

L2 ‖∇f‖
d(p−1)

2

L2 ,

then there exist λ0 ∈ C and x0 ∈ Rd such that f(x) = λ0Q1,0(x + x0) for 1 + 4
d < p < ∞ if

d = 1, 2 and 1 + 4
d < p < 1 + 4

d−2 if d ≥ 3. Fortunately, PW+,2, PWQ, and PW−,2 are invariant

under the time development of (NLS0), where

PW+,2 := {u0 ∈ H1
x(Rd) : (1.7) and (1.4)},
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PWQ := {u0 ∈ H1
x(Rd) : (1.7) and ‖u0‖

1−sc
sc

L2
x

‖∇u0‖L2
x
= ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x
},

PW−,2 := {u0 ∈ H1
x(Rd) : (1.7) and (1.5)}.

Theorem 1.20 (Time behavior of solutions to (NLS0) on the threshold in inter-critical, [11, 37,
50]). Let d ≥ 1, 1 + 4

d < p <∞ if d = 1, 2, 1 + 4
d < p < 1 + 4

d−2 if d ≥ 3, and λ = −1.

• (Existence of special solutions) There exist two radial solutions Q+ and Q− to (NLS0)
with initial data Q0,+, Q0,− ∈ ∩s∈RHs

x(Rd) such that the followings hold:
◦ M(Q+) =M(Q−) =M(Q1,0) and E0(Q+) = E0(Q−) = E0(Q1,0),
◦ Q+ and Q− are defined on [0,+∞) and there exist e0 > 0 and C > 0 such that

‖Q±(t)− eitQ1,0‖H1
x
≤ Ce−e0t

for any t ≥ 0,
◦ ‖∇Q0,+‖L2

x
< ‖∇Q1,0‖L2

x
holds and Q+ scatters in negative time,

◦ ‖∇Q0,−‖L2
x
> ‖∇Q1,0‖L2

x
holds and Q− blows up in negative time.

• (Time behavior of solutions on the threshold level) Let u be a solution to (NLS0) with
(IC0).

◦ If u0 ∈ PW+,2, then either u scatters or u = Q+ up to the symmetries.
◦ If u0 ∈ PWQ, then u = eitQ1,0 up to the symmetries.

◦ If u0 ∈ PW−,2 and “u0 ∈ H1
rad(Rd) or xu0 ∈ L2(Rd)”, then either u blows up or

u = Q− up to the symmetries.

Theorem 1.21 (Time behavior of solutions to (NLS0) on the threshold in Ḣ1-critical, [11, 36,
87, 109]). Let d ≥ 3, p = 1 + 4

d−2 , and λ = −1.

• (Existence of special solutions) There exist two radial solutions Q+ and Q− to (NLS0)
with initial data Q0,+, Q0,− such that the followings hold:

◦ E0(Q+) = E0(Q−) = E0(Q0,0),
◦ Q+ and Q− are defined on [0,+∞) and satisfy

lim
t→+∞

‖Q±(t)−Q0,0‖Ḣ1
x
= 0,

◦ ‖∇Q0,+‖L2
x
< ‖∇Q0,0‖L2

x
holds and Q+ scatters in negative time,

◦ ‖∇Q0,−‖L2
x
> ‖∇Q0,0‖L2

x
holds and if d ≥ 5, then Q− blows up in negative time.

• (Time behavior of solutions on the threshold level) Let u0 ∈ Ḣ1
x(Rd) and u be a solution

to (NLS0) with (IC0).

◦ If u0 ∈ PW+,2 and “u0 ∈ Ḣ1
rad(Rd) when d = 3, 4”, then either u scatters or u = Q+

up to the symmetries.
◦ If u0 ∈ PWQ, then u = Q0,0 up to the symmetries.

◦ If u0 ∈ PW−,2 and u0 ∈ H1
rad(Rd), then either u blows up or u = Q− up to the

symmetries.

Next, we pull up the threshold level. We consider initial data satisfying

M
1−sc
sc (u0)E0(u0) < M

1−sc
sc (Q1,0)(E0(Q1,0) + ε20) (1.8)

for ε0 > 0. Unfortunately, it does not seem easy for us to find invariant sets under the time de-
velopment of (NLS0). In the scene, Nakanishi–Schlag [98] observe time behavior of the solutions
to (NLS0) by developing and using the one-pass theorem, which implies that if a solution u to
(NLS0) passes in and out of a small neighborhood {±Qω,0}, then it can never come back again.

Theorem 1.22 (Time behavior of solutions to (NLS0) above the ground state, [98]). Let d =
p = 3 and λ = −1. Then, there exists ε0 > 0 such that the solution u to (NLS0) with radial data
u0 ∈ H1

rad(R3) in (1.8) satisfies one of the followings:

(1) scattering in both time,
(2) blow-up in both time,
(3) scattering in positive time and blow-up in negative time,
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(4) blow-up in positive time and scattering in negative time,
(5) trapped by CSM in positive time and scattering in negative time,
(6) scattering in positive time and trapped by CSM in negative time,
(7) trapped by CSM in positive time and blow-up in negative time,
(8) blow-up in positive time and trapped by CSM in negative time,
(9) trapped by CSM in both time,

where“trapped by CSM in positive (resp. negative) time” means the solution u to (NLS0) stays
in the ε-neighborhood of CSM in H1

x(R3) forever after some time (resp. before some time),
where the center-stable manifold CSM is defined as

CSM :=
⋃
ω>0

{eiθQω,0 : θ ∈ R}.

Moreover, the all sets of initial data is not empty, whose solution satisfies (1) ∼ (9).

In the point of stability of the ground state Qω,0 to (SPω,0) (see Theorem 1.12), it seems that
mass subcritical and “mass critical, inter critical, or energy critical” are different. Theorem 1.13
∼ 1.22 (case mass critical, inter critical, or energy critical) is based on instability of the ground
state Qω,0 to (SPω,0). On the other hand, we can not expect that the ground state Qω,0 stands
for a boundary between initial data with different time behavior solutions in mass subcritical
case since it is stable. In the situation, Masaki and his co-author showed the following results.

Theorem 1.23 (Masaki, [89, 91]). Let d ≥ 1, max{1+ 2
d , 1+

4
d+2} < p < 1+ 4

d , λ = −1, and u0 ∈
FḢ |sc|(Rd), where sc be defined as (1.1) and ‖u0‖FḢ|sc| := ‖F−1u0‖Ḣ|sc| = ‖|x||sc|u0‖L2

x
. Then,

(NLS0) with (IC0) is locally well-posed in FḢ |sc|(Rd). Moreover, there exists uc,0 ∈ FḢ |sc|(Rd)
such that the solution uc to (NLS0) with initial data uc,0 does not scatter in positive time and
‖uc,0‖FḢ|sc| = `c, where `c is defined as

`c := inf{‖u0‖FḢ|sc| : solution u to (NLS0) with (IC0) does not scatter in both time.}. (1.9)

Theorem 1.24 (Killip–Masaki–Murphy–Visan, [81]). Let d ≥ 1, λ ∈ {±1}, max{1 + 2
d < p <

1+ 4
d+2}, t0 ∈ [−∞,∞), and e−it0∆u0 ∈ FḢ |sc|. Let u be a solution to (NLS0) with initial data

u(t0) = u0. If u satisfies

sup
t∈Imax

‖e−it∆u(t)‖FḢ|sc| <∞,

then u scatters in positive time.

Theorem 1.25 (Killip–Masaki–Murphy–Visan, [82]). Let d ≥ 3, λ ∈ {±1}, and sc be defined
as (1.1).

• (Existence of a soliton-like minimizer) Let p0(d) < p < 1 + 4
d . If Ec < ∞, then there

exists a radial almost-periodic solution uc : R× Rd −→ C such that
(1) lim supt→∞ ‖uc(t)‖Ḣsc

x
= Ec,

(2) uc ∈ (Ct ∩ L∞
t )(R;Hsc

x ∩H
1
2
x ),

(3) N(t) ≡ 1. In particular, the orbit {uc(t)}t∈R is precompact in Ḣsc
x (Rd),

where p0(d) is

p0(d) :=

{
1 + 15−2d+

√
4d2+100d+145

5(2d−1) , (3 ≤ d ≤ 8),

1 + 4
d+1 , (d ≥ 9),

Ec is defined as

Ec := inf

{
lim sup
t↗sup Imax

‖u(t)‖Ḣsc
x

∣∣∣∣ u is a radial solution to (NLS0) and
u does not scatter in positive time.

}
,
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and almost periodic implies that there exist N : I −→ (0,∞) and C : (0,∞) −→ (0,∞)

such that a radial solution u ∈ L∞
t (I; Ḣsc

rad) \ {0} to (NLS0) satisfies

sup
t∈I

{∫
|x|>C(η)

N(t)

∣∣|∇|scu(t, x)
∣∣2dx+

∫
|ξ|>C(η)N(t)

∣∣|ξ|sc û(t, ξ)∣∣2dξ} < η

for any η > 0.
• (Minimal counterexample) Let 1 + 4

d+1 < p < 1 + 4
d . If Ec < ∞, then there exists an

almost periodic solution u to (NLS0) such that u attains Ec and fits into one of the
following scenarios:

◦ (Self-similar scenario) I = (0,∞) and N(t) = t−
1
2 .

◦ (Cascade scenario) I = R, supt∈RN(t) ≤ 1, and there exists a subsequence {tn} of
times such that N(tn) −→ 0 as n→ ∞.

◦ (Soliton scenario) I = R and N(t) ≡ 1.
• (Case of defocusing) Let λ = +1 and p0(d) < p < 1+ 4

d . If a radial solution u to (NLS0)
satisfies

sup
t∈Imax

‖u‖Ḣsc
x
<∞,

then u scatters.
• (Case of focusing) Let λ = −1 and 1 + 4

d+1 < p < 1 + 4
d . Let Q1,0 be the ground state

to (SPω,0) with ω = 1. Then, Ec ≤ ‖Q1,0‖Ḣsc holds and Ec is attained. Moreover, if

p0(d) < p < 1 + 4
d , then there exists an almost-periodic solution uc to (NLS0) such that

uc attains Ec and has the above properties (1) ∼ (3).

Remark 1.26. (NLS0) is ill-posed in Ḣsc(Rd) for sc < 0 (see [17, 80]). However, if we restrict

to radial data, (NLS0) is locally well-posed in Ḣsc(Rd) for d ≥ 3 and 1 + 4
d+1 < p < 1 + 4

d (see

[51, 66]).

In this paper, we deal with the following equations:

• (Nonlinear Schrödinger system){
i∂tu(t, x) + ∆u(t, x) = −2v(t, x)u(t, x), (t, x) ∈ R× Rd,
i∂tv(t, x) + κ∆v(t, x) = −u(t, x)2, (t, x) ∈ R× Rd,

(NLS)

where κ > 0.
• (Nonlinear Schrödinger equation with a potential)

i∂tu(t, x) + ∆V u(t, x) = −|u(t, x)|p−1u(t, x), (t, x) ∈ R× Rd, (NLSV )

where ∆V := ∆− V and V : Rd −→ R is a given potential.

We consider the Cauchy problem of these equation with initial data{
(u(0, x), v(0, x)) = (u0, v0) if (NLS),

u(0, x) = u0(x) if (NLSV ).
(IC)

and time behavior of solutions to the equations.

1.2. Nonlinear Schrödinger system. We consider
i∂tu+

1

2n
∆u = λvu, (t, x) ∈ R× Rd,

i∂tv +
1

2N
∆v = µu2, (t, x) ∈ R× Rd,

(1.10)

where 1 ≤ d ≤ 6 and n,N > 0, λ, µ ∈ C \ {0} are constants. From physical point of view,
(1.10) is deduced from the Raman amplification in a plasma (See [19] for more detail). When
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a so-called mass resonance condition N = 2n (κ = 1
2 in the case (NLS)) holds, (1.10) is also

regarded as a non-relativistic limit of the nonlinear Klein-Gordon system
1

2c2n
∂2t u− 1

2n
∆u+

nc2

2
u = −λvu,

1

2c2N
∂2t v −

1

2N
∆v +

Nc2

2
v = −µu2

(see [64]). If λ = νµ for some ν > 0, then mass, energy, and momentum are conserved. Then,
(1.10) becomes (NLS) by the scaling

(u, v) 7→

(√
ν

2
|µ|u

(
t,

√
1

2n
x

)
,−λ

2
v

(
t,

√
1

2n
x

))
.

Thus, we consider not (1.10) but (NLS). The equation (NLS) has scale invariance: Since the
nonlinear terms are quadratic, if (u, v) is a solution to (NLS), then

(u[λ](t, x), v[λ](t, x)) := (λ2u(λ2t, λx), λ2v(λ2t, λx)) (1.11)

is also a solution to (NLS) for λ > 0. Corresponding transform of initial data is

((u0){λ}(x), (v0){λ}(x)) := (λ2u0(λx), λ
2v0(λx)) (1.12)

for λ > 0. Ḣsc-norm (sc =
d
2−2) is invariant under the scaling (1.12), so the scale critical Sobolev

space is Ḣsc(Rd). Therefore, the equation (1.10) is called L2-subcritical if d ≤ 3, L2-critical if

d = 4, Ḣ
1
2 -critical if d = 5, and Ḣ1-critical if d = 6. When κ = 1

2 , the identities

[eit∆(eix·ξ0f)](x) = e−it|ξ0|
2+ix·ξ0(eit∆f)(x− 2tξ0),

[e
1
2
it∆(e2ix·ξ0f)](x) = e−2it|ξ0|2+2ix·ξ0(e

1
2
it∆f)(x− 2tξ0)

(1.13)

imply that the class of solutions to the linear Schrödinger equation is invariant under Galilean
transform

(u, v) 7→ (eix·ξ0e−it|ξ0|
2
u(t, x− 2ξ0t), e

2ix·ξ0e−2it|ξ0|2v(t, x− 2ξ0t)) (1.14)

for ξ0 ∈ Rd. The invariance is inherited in the nonlinear equation (NLS).
Hayashi–Ozawa–Tanaka [64] showed the following local well-posedness in L2 × L2, H1 ×H1,

and H1 ×H1 ∩ |x|−1L2 × |x|−1L2.

Theorem 1.27 (Local well-posedness in L2 ×L2, [64]). If 1 ≤ d ≤ 3, then for any ρ > 0, there
exists T (ρ) > 0 such that for any (u0, v0) ∈ L2(Rd) × L2(Rd) with ‖(u0, v0)‖L2×L2 ≤ ρ, (NLS)
with (IC) has the unique solution (u, v) ∈ X(I)×X(I) with I = [−T (ρ), T (ρ)], where

X(I) = (Ct ∩ L∞
t )(I;L2

x) ∩ L
q0
t (I;Lr0x ),

(q0, r0) = (4,∞) if d = 1, 0 < 2
q0

= 1 − 2
r0

< 1 with r0 sufficiently large if d = 2, and

(q0, r0) = (2, 2d
d−2) if d ≥ 3. If d = 4, then for any (u0, v0) ∈ L2(R4) × L2(R4), there exists

T (u0, v0) > 0 such that (NLS) with (IC) has the unique solution (u, v) ∈ X(I) × X(I) with
I = [−T (u0, v0), T (u0, v0)]. Moreover, the unique solution (u, v) to (NLS) conserves its mass:

(Mass) M(u, v) := ‖u‖2L2
x
+ 2‖v‖2L2

x

with respect to time t.

Theorem 1.28 (Local well-posedness in H1×H1, [64]). If 1 ≤ d ≤ 5, then for any ρ > 0, there
exists T (ρ) > 0 such that for any (u0, v0) ∈ H1(Rd)×H1(Rd) with ‖(u0, v0)‖H1×H1 ≤ ρ, (NLS)
with (IC) has the unique solution (u, v) ∈ Y (I)× Y (I) with I = [−T (ρ), T (ρ)], where

Y (I) = (Ct ∩ L∞
t )(I;H1

x) ∩ L
q0
t (I;W 1,r0

x ),

(q0, r0) = (4,∞) if d = 1, 0 < 2
q0

= 1 − 2
r0

< 1 with r0 sufficiently large if d = 2, and

(q0, r0) = (2, 2d
d−2) if d ≥ 3. If d = 6, then for any (u0, v0) ∈ H1(R6) × H1(R6), there exists
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T (u0, v0) > 0 such that (NLS) with (IC) has the unique solution (u, v) ∈ Y (I) × Y (I) with
I = [−T (u0, v0), T (u0, v0)]. Moreover, the unique solution (u, v) to (NLS) conserves its mass,
energy, and momentum:

(Energy) E(u, v) := ‖∇u‖2L2 + κ‖∇v‖2L2 − 2Re

∫
Rd

v(x)u(x)
2
dx,

(Momentum) M(u, v) := Im

∫
Rd

{u(x)∇u(x) + v(x)∇v(x)}dx

with respect to time t.

Theorem 1.29 (Local well-posedness in H1 × H1 ∩ |x|−1L2 × |x|−1L2, [64]). If 1 ≤ d ≤ 5,
then for any ρ > 0, there exists T (ρ) > 0 such that for any (u0, v0) ∈ H1(Rd) × H1(Rd) with
(xu0, xv0) ∈ L2(Rd) × L2(Rd) and ‖(u0, v0)‖H1×H1 + ‖(xu0, xv0)‖L2×L2 ≤ ρ, (NLS) with (IC)
has the unique solution (u, v) ∈ Z(I)× Z(I) with I = [−T (ρ), T (ρ)], where

Z(I) := {u ∈ Y (I) : xu ∈ X(I)}, ‖u‖Z(I) := ‖u‖Y (I) + ‖xu‖X(I).

If d = 6, then for any (u0, v0) ∈ H1(R6) × H1(R6) with (xu0, xv0) ∈ L2(R6) × L2(R6), there
exists T (u0, v0) > 0 such that (NLS) with (IC) has the unique solution (u, v) ∈ Z(I)×Z(I) with
I = [−T (u0, v0), T (u0, v0)].

We turn to time behavior of solution to (NLS), which is defined as a similar to (NLS0). We
define time behaviors of solutions to (NLS) clearly.

Definition 1.30 (Time behavior of solutions to (NLS)). Let (u0, v0) ∈ X × X for a Hilbert
space X and (u, v) be a solution to (NLS) with (IC). Let (Tmin, Tmax) be the maximal lifespan
of the solution (u, v) to (NLS).

• (Scattering) We say that the solution (u, v) to (NLS) scatters in positive time (resp.
negative time) if Tmax = ∞ (resp. Tmin = −∞) and there exists (φ+, ψ+) ∈ X × X
(resp. (φ−, ψ−) ∈ X ×X) such that

lim
t→+∞

‖(e−it∆u(t), e−κit∆v(t))− (φ+, ψ+)‖X×X = 0,(
resp. lim

t→−∞
‖(e−it∆u(t), e−κit∆v(t))− (φ−, ψ−)‖X×X = 0

)
.

• (Blow-up) We say that (u, v) blows up in positive time (resp. negative time) if Tmax <∞
(resp. Tmin > −∞).

• (Grow-up) We say that the solution (u, v) grows up in positive time (resp. negative
time) if Tmax = ∞ (resp. Tmin = −∞) and

lim sup
t→+∞ (resp. t→−∞)

‖(u(t), v(t))‖X×X = ∞.

• (Standing waves) We say that the solution (u, v) is a standing wave if (u, v) forms
(eiωtφω, e

2iωtψω) for ω > 0, where (φω, ψω) is a solution to the following elliptic equation:{
−ωφω +∆φω = −2ψωφω, x ∈ Rd,
−2ωψω + κ∆ψω = −φ2ω, x ∈ Rd

(SPω)

Hayashi–Li–Ozawa [60] investigated solutions to (NLS) near the trivial scattering solution

(0, 0) under (u0, v0) ∈ H
d
2
−2(Rd) × H

d
2
−2(Rd) (d ≥ 4) and (u0, v0) ∈ FH

1
2 (R3) × FH

1
2 (R3)

with ‖f‖
FH

1
2
:= ‖f‖L2 + ‖f‖

FḢ
1
2
. Hayashi–Ozawa–Tanaka [64] proved also the existence of the

ground sate to the elliptic equation (SPω) for 1 ≤ d ≤ 5. We recall the ground state to (SPω).
A set of the all ground state Gω is defined as

Gω := {(φ, ψ) ∈ Aω : Sω(φ, ψ) ≤ Sω(Φ,Ψ) for any (Φ,Ψ) ∈ Aω},

(Action) Sω(φ, ψ) :=
ω

2
M(φ, ψ) +

1

2
E(φ, ψ),

Aω := {(φ, ψ) ∈ H1(Rd)×H1(Rd) \ {(0, 0)} : S′
ω(φ, ψ) = 0}.
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Dinh [23, 24] observed solutions to (NLS) with data (u0, v0), which is near the ground state
to (SPω) and showed a stability result with d = 3 and an instability result with d = 4, 5. The
existence of blow-up solutions is known in [64, 101]. Hayashi–Ozawa–Tanaka [64] proved a blow-
up result under the finite variance condition and Ogawa–Uriya [101] gave a blow-up result under
the radial condition. In [53] (or a masters’s thesis), the author showed the following result under
the mass-resonance condition κ = 1

2 .

Theorem 1.31 (H. [53]). Let d = 5 and κ = 1
2 . Let (u0, v0) ∈ H1(R5)×H1(R5) and (φω, ψω) be

the ground state to (SPω). We assume that there exists ω > 0 such that Sω(u0, v0) < Sω(φω, ψω).

(1) If K(u0, v0) ≥ 0, then the solution (u, v) to (NLS) with (IC) scatters.
(2) If K(u0, v0) < 0, then the solution (u, v) to (NLS) with (IC) blows up or grows up.

Moreover, if (xu0, xv0) ∈ L2(R5) × L2(R5) or (u0, v0) is radially symmetric, then the
solution (u, v) to (NLS) with (IC) blows up,

where a functional K is called the virial functional and is defined as

K(f, g) := D20,8Sω(f, g) = 8‖∇f‖2L2 + 8κ‖∇g‖2L2 − 20Re〈g, f2〉L2 .

The Galilean invariance plays an important role in the argument of scattering part in Theo-
rem 1.31. Roughly speaking, (NLS) with the mass-resonance condition is similar to the single
nonlinear Schrödinger equation (NLS0). On the other hand, it is not clear whether (NLS) is
similar to the single one in general. There are few works related to the global dynamics of the
(NLS) without mass resonance condition. Inui–Kishimoto–Nishimura [72] obtained a scattering
result below the ground state in the L2-critical case (d = 4) under the assumption of radial
symmetry. Moreover, they also showed a blow-up result below in the case d = 5, 6 and a blow-
up or grow-up result in the case d = 4 under the assumption of radial symmetry in [73]. The
author–Inui–Nishimura [58] showed a scattering result below the ground state for (NLS) without
the mass resonance condition.

Theorem 1.32 (H.–Inui–Nishimura, [58]). Let d = 5 and κ 6= 1
2 . Let (u0, v0) ∈ H1

rad(R5) ×
H1

rad(R5) and (φω, ψω) be the ground state to (SPω). We assume that there exists ω > 0 such
that Sω(u0, v0) < Sω(φω, ψω) and K(u0, v0) ≥ 0. Then, the solution (u, v) to (NLS) with (IC)
scatters.

Remark 1.33.

(1) If (u0, v0) ∈ H1
rad(R5)×H1

rad(R5), then the solution (u(t), v(t)) is also radially symmetric
for all time and its momentum M(u(t), v(t)) is identically zero.

(2) In the opposite case K(u0, v0) < 0, Inui–Kishimoto–Nishimura [73] showed that the
solution blows up in both time directions. And so, the behavior of the radially symmetric
solution to (NLS) below the ground state completely determined by the sign of the
functional K at initial time.

Remark 1.34. After Main theorem 1.32 was announced on arXiv, Wang–Yang [120] gave the
same result independently by using the argument in [32]. Moreover, they also proved a scattering
result for non-radial solutions under |κ− 1

2 | < ε by using the argument in [33].

In the four (mass critical case) and five (inter critical case) dimensions, the ground state
(φω, ψω) to (SPω) expresses a sharp threshold between scattering solutions and other solutions
(see [72], Theorem 1.31, and Theorem 1.32). However, three dimensional case seems to be
different from those cases as the single equation in the point of stability of the ground state
(φω, ψω) (see [23, 24]). In three dimensions, we study (NLS) with mass resonance condition

(κ = 1
2) in a homogeneous weighted space FḢ

1
2 (R3), not in the homogeneous Sobolev space

Ḣ− 1
2 (R3) since we want to work with the scaling critical space without radial symmetry. Let us

make the notion of the solution clear. We need a slight modification of the notion compared with
L2 or H1 solutions because the Schrödinger flow is not unitary in the homogeneous weighted

space FḢ
1
2 .
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Definition 1.35 (Solution). Let I ⊂ R be a nonempty time interval. We say that a pair

of functions (u, v) : I × R3 → C2 is a solution to (NLS) on I if (e−it∆u(t), e−
1
2
it∆v(t)) ∈

Ct(I;FḢ
1
2 )× Ct(I;FḢ

1
2 ) and the Duhamel formula
e−it∆u(t) = e−iτ∆u(τ) + 2i

∫ t

τ
e−is∆(vu)(s)ds,

e−
1
2
it∆v(t) = e−

1
2
iτ∆v(τ) + i

∫ t

τ
e−

1
2
is∆(u2)(s)ds

holds in FḢ
1
2 for any t, τ ∈ I.

This definition of solutions is not time-translation invariant. That is, if (u, v) is a solution
to (NLS), then (u(· + τ), v(· + τ)) is not necessarily a solution for τ ∈ R. To state the local

well-posedness for (NLS), we introduce the function spaces Ẋs,r
m (t), W1, and W2 defined by

norms

‖f‖Ẋs,r
m (t) :=

∥∥∥(− t2

m2
∆
) s

2
e−

im|x|2
2t f

∥∥∥
Lr
x

, ‖f‖Wj := ‖f‖
L6,2
t Ẋ

1
2 , 187

2
j−2

. (1.15)

For a space Ẋs,r
m (t), we omit the second exponent when r = 2, that is, Ẋs

m(t) = Ẋs,2
m (t).

We discuss these function spaces in more detail in subsubsection 3.1.2 and 3.1.3, below. The
following is our result on the local well-posedness. A more detailed version is given later as
Theorem 3.18.

Theorem 1.36 (Local well-posedness in FḢ
1
2 × FḢ

1
2 ). Let d = 3 and κ = 1

2 . For any initial

time t0 ∈ R and data (u0, v0) ∈ Ẋ
1/2
1/2 (t0) × Ẋ

1/2
1 (t0), there exist an open interval I 3 t0 and a

unique solution (u, v) ∈ (Ct(I; Ẋ
1/2
1/2 ) ∩W1(I))×(Ct(I; Ẋ

1/2
1 ) ∩W2(I)) to (NLS) with the initial

condition (u(t0), v(t0)) = (u0, v0). Moreover, the solution depends continuously on the initial
data.

Now, we turn to the large time behavior of solutions to (NLS). It can be said that the main
purpose is to investigate threshold phenomena between scattering solutions near a prescribed
“trivial scattering set” and non-scattering solutions, taking a system nature into account. We

define S+ as the set of initial data (u0, v0) ∈ FḢ
1
2 (R3)×FḢ

1
2 (R3) for which the corresponding

solution scatters. A straightforward generalization of the quantity (1.9) is

inf
{
(‖u0‖2

FḢ
1
2
+ α‖v0‖2

FḢ
1
2
)1/2 : (u0, v0) 6∈ S+

}
(1.16)

with some constant α > 0. However, there may not be a strong motivation to study the distance
from the trivial solution (0, 0) other than the similarity to that in the single equation case, (1.9).
We want to find a different way of sizing which is connected with a system nature. To this
end, we look at the fact that not only the zero solution (0, 0) but also all solutions of the form

(0, e
1
2
it∆v0) can be also regarded as a trivial scattering solution for arbitrary v0 ∈ FḢ

1
2 (R3).

Taking this fact into account, one natural choice of the scattering threshold would be with

respect to the distance of a data from the set {0} × FḢ
1
2 (R3). This choice leads us to consider

the following optimization problem:

`v0 := inf{‖u0‖FḢ 1
2
: (u0, v0) 6∈ S+} ∈ (0,∞]. (1.17)

By using a stability type argument, we will show that `v0 > 0 for any v0 ∈ FḢ
1
2 (R3) (see,

Proposition 3.20). The following criterion is obvious by the definition of `v0 .

Proposition 1.37 (Sharp small data scattering). Let d = 3 and κ = 1
2 . Let (u0, v0) ∈ FḢ

1
2 (R3)

×FḢ
1
2 (R3) and (u, v) be the solution to (NLS) with (IC). If ‖u0‖FḢ 1

2
< `v0, then (u, v) scatters.
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The above criterion “‖u0‖FḢ 1
2
< `v0” is sharp in such a sense that the number `v0 may not be

replaced with any larger number. The following two questions arise: (a) to obtain a condition
which implies `v0 is finite; (b) to show the existence of a minimizer to `v0 (when `v0 is finite).

It will turn out that the following quantity `†v0 plays an important role in the analysis of `v0 .

Definition 1.38. For v0 ∈ FḢ
1
2 (R3) and 0 ≤ ` <∞, we let

Lv0(`) := sup

{
‖(u, v)‖W1([0,Tmax))×W2([0,Tmax))

∣∣∣∣∣ (u, v) is a solution to (NLS) on [0, Tmax),

v(0) = v0, ‖u(0)‖FḢ 1
2
≤ `, u(0) ∈ FḢ

1
2 (R3)

}
,

where Wj([0, Tmax)) (j = 1, 2) is a Strichartz-like function space defined in subsubsection 3.1.3,
below. Further, define

`†v0 := sup{` : Lv0(`) <∞} ∈ (0,∞].

We have `†v0 ≤ `v0 by their definitions (see Lemma 3.27 for more detail). Intuitively, this can

be seen by noticing that if ‖u0‖FḢ 1
2
< `†v0 then not only (u, v) scatters but also we have a priori

bound ‖(u, v)‖W1([0,∞))×W2([0,∞)) ≤ Lv0(‖u0‖FḢ 1
2
) < ∞. As for the single-equation (NLS0), it

is known that these two kinds of quantities coincide each other (see [90]). Our first result is as
follows.

Main theorem 1.39 (H.–Masaki, [59]). Let d = 3 and κ = 1
2 . `

†
v0 = min{`0, `v0} holds for any

v0 ∈ FḢ
1
2 (R3), including the case where the both sides are infinite. In particular, `†0 = `0 holds.

It is worth noting that `†v0 = ∞ guarantees `v0 = ∞ but the inverse is not necessarily true.

Our interest in the sequel is to see what happens when `†v0 < ∞. In the case v0 = 0, we have

`†0 = `0, including the case of the both are infinite, as seen in Main theorem 1.39.

Main theorem 1.40 (H.–Masaki, [59]). Let d = 3 and κ = 1
2 . If `†0 < ∞, then there exists a

minimizer (u(0), v(0)) to `0(= `†0) such that

(1) v(0)(0) = 0 and ‖u(0)(0)‖
FḢ

1
2
= `0,

(2) (u(0), v(0)) does not scatter.

So far, we do not know whether `†0 <∞ or not. It will turn out that this question is important

to understand the attainability of `v0 for all non-zero v0. One quick consequence of `†0 = ∞ is

`v0 = `†v0 for all v0, which follows from Main theorem 1.39. We will resume this subject later.

Let us move on to the case v0 6= 0. Suppose `†v0 <∞. Then, we have either

`†v0 = `v0 or `†v0 < `v0 . (1.18)

The following Main theorem 1.41 is about the first case and Main theorem 1.42 is about the
second case.

Main theorem 1.41 (H.–Masaki, [59]). Let d = 3 and κ = 1
2 . Fix v0 ∈ FḢ

1
2 (R3) \ {0}.

Suppose that `†v0 = `v0 < `0. Then, there exists a minimizer (u(v0), v(v0)) to `v0, that is,

(1) v(v0)(0) = v0 and ‖uv0(0)‖
FḢ

1
2
= `v0,

(2) (u(v0), v(v0)) does not scatter.

The case `†v0 = `v0 = `0 <∞ is excluded in the above theorem. We consider this exceptional
case in Remark 1.43, below.

Let us consider the second case of (1.18). In this case, the following strange thing occurs:

Take u0 ∈ FḢ
1
2 (R3) with ‖u0‖FḢ 1

2
= `†v0 and consider the corresponding solution (u, v) with

the data (u0, v0). Then, on one hand, the solution (u, v) scatters for any choice of such u0 since
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‖u0‖FḢ 1
2
< `v0 . However, on the other hand, for arbitrarily large number N > 0, one can choose

u0 ∈ FḢ
1
2 (R3) so that the corresponding solution (u, v) satisfies

‖(u, v)‖W1([0,∞))×W2([0,∞)) ≥ N.

The next theorem tells us how this is “attained”. Notice that the second case of (1.18) occurs

only when `0 = `†v0 < ∞, thanks to Main theorem 1.39. Consequently, there is a minimizer to
`0 in this case, by means of Main theorem 1.40.

Main theorem 1.42 (H.–Masaki, [59]). Let d = 3 and κ = 1
2 . Fix v0 ∈ FḢ

1
2 (R3) \ {0}.

Suppose that `†v0 < `v0. Pick a sequence {u0,n}n ⊂ FḢ
1
2 (R3) satisfying ‖u0,n‖FḢ 1

2
< `†v0 for all

n ≥ 1,

lim
n→∞

‖u0,n‖FḢ 1
2
= `†v0 ,

and

lim
n→∞

‖(un, vn)‖W1([0,∞))×W2([0,∞)) = ∞,

where (un, vn) is a solution with the initial data (un(0), vn(0)) = (u0,n, v0). Then, there exist a

subsequence of n, a minimizer (u(0), v(0)) to `0, and two sequences {ξn}n ⊂ R3 and {hn}n ⊂ 2Z

such that

| log hn|+ |ξn| −→ ∞
and

e−ix·hnξn(u0,n){hn} −→ u(0)(0) in FḢ
1
2 (R3)

hold along the subsequence. In particular, along the same subsequence, it holds for any τ ∈
(0, Tmax(u

(0), v(0))) that

(un(t), vn(t)) =
(
e−it|ξn|

2+ix·ξnu
(0)

[h−1
n ]

(t, x− 2ξnt) , e
−2it|ξn|2+2ix·ξnv

(0)

[h−1
n ]

(t, x− 2ξnt)
)

+ (0, e
1
2
it∆v0) + o

Ẋ
1/2
1/2

(t)×Ẋ1/2
1 (t)

(1)

for 0 ≤ t ≤ τh2n, where Tmax(u
(0), v(0)) is the maximal existence time of (u(0), v(0)).

Remark 1.43. The special case `†v0 = `0 = `v0 < ∞ (v0 6= 0) is not included in the above two
theorems. In this exceptional case, the conclusion of Main theorem 1.41 or Main theorem 1.42
holds. Namely, if there does not exist a minimizer to `v0 as in Main theorem 1.41, then the
conclusion of Main theorem 1.42 holds.

Let us summarize the above results. Let v0 ∈ FḢ
1
2 (R3) be a given function. If `†v0 = ∞,

then we have `v0 = ∞ (Main theorem 1.39) and hence any solution satisfying v(0) = v0 scatters

(Proposition 1.37). On the other hand, if `†v0 <∞ and v0 6= 0, then we have either Main theorem
1.41 or Main theorem 1.42 according to the dichotomy (1.18). Remark that the first case in
(1.18) contains an exceptional case discussed in Remark 1.43. When v0 = 0, we do not have the

dichotomy, we have `0 = `†0 (Main theorem 1.39). If `0 is finite then there exists a minimizer
(Main theorem 1.40).

The question whether `0 = ∞ or not would be an interesting question to the system (NLS).
We do not have the answer yet. Let us formulate the problem without using our terminology:

Question. In (NLS), does v0 = 0 implies scattering of the corresponding solution for any u0?

If it were true, that is, if `0 = `†0 = ∞, then Main theorem 1.39 tells us that `†v0 = `v0 is true
for any v0, as mentioned above.

Although we do not know the exact value of `v0 , we are able to have a condition which implies
the finiteness of `v0 and to give an upper bound for `v0 . A simple one is a condition in terms of
the energy.
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Theorem 1.44 (H.–Masaki, [59]). Let d = 3 and κ = 1
2 . Fix nontrivial u0, v0 ∈ FḢ

1
2 (R3) ∩

H1(R3). If E(u0, v0) ≤ 0, then the corresponding solution (u, v) does not scatter. In particular,
`v0 ≤ ‖u0‖FḢ 1

2
.

As a consequence, one sees that a standing wave solution, not only the ground state but
also all excited states, is not a minimizer of the optimizing problem (1.17). Let (φω, ψω) be a
solution to the elliptic equation (SPω). We have E(φω, ψω) < 0 (see [64, Theorem 4.1]). As
a result of Theorem 1.44, there exists an open neighborhood N ⊂ R2 of (1, 1) ∈ R2 such that
(c1φω, c2ψω) /∈ S+ for all (c1, c2) ∈ N . Hence, any solution to (SPω) is not an optimizer to
(1.17). In particular, `ψω is strictly smaller than ‖φω‖FḢ 1

2
. Similarly, (φω, ψω) is not a solution

to (1.16) for any α > 0. We can also find intuitively the fact from the orbital stability of a
standing wave (eiωtφω, e

2iωtψω) in H
1(R3)×H1(R3) (see [23] for more detail).

In our context, we want to find a condition which is stated in terms of v0 only. We give two
criteria in this direction. The first one is for large data case:

Corollary 1.45 (H.–Masaki, [59]). Let d = 3 and κ = 1
2 . For any v0 ∈ FḢ

1
2 (R3) ∩ H1(R3)

with v0 6= 0, there exists c0 > 0 such that the estimate `cv0 ≲v0 c
1
2 holds for any c ≥ c0.

The second one is criterion for a specific v0:

Corollary 1.46 (H.–Masaki, [59]). Let d = 3 and κ = 1
2 . Let v0 ∈ FḢ

1
2 (R3)∩H1(R3). If there

exists θ ∈ R such that a Schrödinger operator −∆ − 2Re(eiθv0) has a negative eigenvalue then

`v0 < ∞. Moreover, if ϕ ∈ FḢ
1
2 (R3) ∩H1(R3) is a real-valued eigenfunction associated with a

negative eigenvalue ẽ < 0 of −∆− 2Re(eiθv0) then the estimate

`v0 ≤
‖ϕ‖

FḢ
1
2√

2|ẽ|‖ϕ‖L2

‖∇v0‖L2

holds.

Remark 1.47. The estimate given in Corollary 1.46 is scaling invariant. Indeed, if ϕ(x) is
an eigenfunction of −∆ − 2Re(eiθv0) associated with a negative eigenvalue ẽ then ϕ{λ}(x) is

an eigenfunction of −∆ − 2Re(eiθ(v0){λ}) and the corresponding eigenvalue is λ2ẽ, where f{λ}
denotes the scaling (1.12).

Remark 1.48. It is possible to study the optimizing problem (1.16). Let us introduce a slightly
different formulation: For ρ ≥ 0, we let

B(ρ) := inf
{
‖u0‖FḢ 1

2
: (u0, v0) 6∈ S+, ‖v0‖FḢ 1

2
≤ ρ
}
. (1.19)

Then, for any ρ ≥ 0 such that B(ρ) is finite, there exists a minimizer, say (uρ, vρ), to B(ρ). The
minimizer satisfies `†vρ = `vρ and uρ is a minimizer to `vρ , that is, `vρ = ‖uρ‖FḢ 1

2
(Theorem

3.44). Further, it turns out that the analysis of B(ρ) is applicable to that of (1.16) (Theorem
3.45). Remark that B(0) = `0 holds and that B(ρ) is non-increasing in ρ. Hence, `0 <∞, which
is our question, can be also phrased as “B(ρ) <∞ for any ρ ≥ 0.”

Remark 1.49. One can deduce similar results in the frame work of FH1(R3) × FH1(R3) or
(FH1(R3)∩H1(R3))× (FH1(R3)∩H1(R3)). The main difference of the results in these settings
is that one can show that the minimizers belong to the corresponding space, and hence they
are global-in-time solutions due to the mass conservation. We would remark that it is not clear
our minimizers given in the paper coincide those obtained in the above setting. Since we are
working with minimization at fixed time t = 0 and there is no time translation invariance, we
do not know whether the minimizers have compact orbit nor enjoy additional regularity.
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1.3. Nonlinear Schrödinger equation with a potential. (NLSV ) has physical background
as follows: (NLSV ) with V ∈ L∞(Rd) is a model proposed to describe the local dynamics at
a nucleation site (see [104]) and (NLSV ) with a harmonic potential V (x) = |x|2 is a model
proopsed to describe the Bose-Einstein condensate with attractive inter-particle interactions
under a magnetic trap (see [6, 49, 119]).

We introduce local well-posedness results of (NLSV ) before we consider time behavior of
solutions to (NLSV ). Cazenave [13, Theorem 4.3.1] showed the following:

Theorem 1.50 (Local well-posedness of (NLSV ) I, [13]). Let d ≥ 1, 1 < p <∞ if d = 1, 2, and
1 < p < 1 + 4

d−2 if d ≥ 3. Let V be a real-valued function and V ∈ Lη(Rd) + L∞(Rd) for η ≥ 1

if d = 1 and η > d
2 if d ≥ 2. Then, for any u0 ∈ H1

x(Rd), (NLSV ) is locally well-posed, that is,
the followings hold:

• (Existence and Uniqueness) (NLSV ) with (IC) has the unique solution

u ∈ Ct((Tmin, Tmax);H
1
x) ∩ C1

t ((Tmin, Tmax);H
−1
x ).

• (Blow-up alternative) If Tmax <∞ (resp. Tmin > −∞), then

lim
t↗Tmax

‖u(t)‖H1
x
= ∞,

(
resp. lim

t↘Tmin

‖u(t)‖H1
x
= ∞

)
.

• (Continuous dependence on the initial data) If u0,n −→ u0 in H1
x(Rd), then for any

compact time interval I ⊂ (Tmin, Tmax), there exists n0 ∈ N such that the solution un to
(NLSV ) with initial data u0,n is defined on I for any n ≥ n0 and satisfies un −→ u in
Ct(I;H

1
x) as n→ ∞.

To state a local well-posedness result in Hong [68] and the author–Ikeda [54], we define a
potential class K0(R3) as the norm closure of bounded and compactly supported functions with
respect to the global Kato norm

‖f‖K := sup
x∈R3

∫
R3

|f(y)|
|x− y|

dy,

that is,

K0(R3) := {f ∈ L∞(R3) : supp f is compact.}∥ · ∥K .
If V satisfies ‖V−‖K < 4π for V−(x) := min{V (x), 0}, then −∆V and 1−∆V are non-negative.
More precisely, Hong [68] proved

〈(−∆V )f, f〉L2 = ‖∇f‖2L2 +

∫
R3

V (x)|f(x)|2dx ≥
(
1− ‖V−‖K

4π

)
‖∇f‖2L2 > 0,

〈(1−∆V )f, f〉L2 = ‖f‖2L2 + 〈(−∆V )f, f〉L2 > 0

for any f ∈ H1(R3) \ {0}. Therefore, the fractional operators (−∆V )
1
2 and (1 − ∆V )

1
2 are

well-defined on the domain H1
V (R3), whose norm is defined as ‖f‖2

H1
V
:= ‖(1 −∆V )

1
2 f‖2L2 . We

also define Sobolev spaces with a potential Ẇ s,p
V (R3) := (−∆V )

− s
2Lp(R3) and W s,p

V (R3) :=

(1 −∆V )
− s

2Lp(R3). If V ∈ L
3
2 (R3) ∩ K0(R3) satisfies ‖V−‖K < 4π for V−(x) := min{V (x), 0},

then −∆V has no eigenvalues, −∆V is self-adjoint into L2(R3) (see [68]), so the Schrödinger
evolution group {eit∆V }t∈R is generated on L2(R) by the Stone’s theorem. The following local
well-posedness is proved by the fixed point argument with the Strichartz estimate for {eit∆V }t∈R
(Proposition 4.4).

Theorem 1.51 (Local well-posedness of (NLSV ) II, [54, 68]). Let d = 3 and 1 < p < 5. Let

V ∈ L
3
2 (R3) ∩ K0(R3) satisfy ‖V−‖K < 4π for V−(x) := min{V (x), 0}. Then, for any ρ > 0,

there exists T (ρ) > 0 such that for any u0 ∈ H1
x(R3) with ‖u0‖H1

x
≤ ρ, (NLSV ) with (IC) has

the unique solution

u ∈ Ct(I;H
1
x) ∩ L2

t (I;W
1,6
V )
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with I = [−T (ρ), T (ρ)].

The solution u given Theorem 1.50 or 1.51 has conservation laws.

Theorem 1.52 (Conservation laws). Let u be a solution given Theorem 1.50 or 1.51. Then,
the solution u conserves its mass and energy

(Mass) M(u) := ‖u‖2L2
x
,

(Energy) EV (u) :=
1

2
‖(−∆V )

1
2u‖2L2

x
− 1

p+ 1
‖u‖p+1

Lp+1
x

with respect to time t.

We turn to time behavior of solutions to (NLSV ), which is defined as a similar manner to
(NLS0). We define time behaviors of solutions to (NLSV ) precisely.

Definition 1.53 (Time behaviors of solutions to (NLSV )). Let u0 ∈ H1
x(Rd). Let u be a

solution to (NLSV ) on (Tmin, Tmax), where (Tmin, Tmax) denotes the maximal existence time of
the solution u.

• (Scattering) We say that u scatters in positive time (resp. negative time) if Tmax = ∞
(resp. Tmin = −∞) and there exists ψ+ ∈ H1

x(Rd) (resp. ψ− ∈ H1
x(Rd)) such that

lim
t→+∞

‖u(t)− eit∆V ψ+‖H1
x
= 0,

(
resp. lim

t→−∞
‖u(t)− eit∆V ψ−‖H1

x
= 0

)
.

• (Blow-up) We say that u blows up in positive time (resp. negative time) if Tmax < ∞
(resp. Tmin > −∞).

• (Grow-up) We say that u grows up in positive time (resp. negative time) if Tmax = ∞
(resp. Tmin = −∞) and

lim sup
t→+∞

‖u(t)‖H1
x
= ∞,

(
resp. lim sup

t→−∞
‖u(t)‖H1

x
= ∞

)
.

• (Standing wave) We say that u is standing wave if u = eiωtQω,V for ω ∈ R, where Qω,V
satisfies

−ωQω,V +∆VQω,V = −|Qω,V |p−1Qω,V . (SPω,V )

We introduce known results for time behavior of the solutions to (NLSV ). Killip–Murphy–
Visan–Zheng [83] showed a scattering result and a blow-up result under d = 3, p = 3, u0 ∈
H1
x(R3), and V (x) = γ

|x|2 for γ > −1
4 . Lu–Miao–Murphy [88] showed a scattering result and a

blow-up result under 3 ≤ d ≤ 6, 1 + 4
d < p < 1 + 4

d−2 , u0 ∈ H1(Rd), and V (x) = γ
|x|2 for

γ >

 −1
4 ,

(
d = 3, 7

3 < p ≤ 3
)
,

−
(
d−2
2

)2
+
(
d−2
2 − 1

p−1

)2
, (d = 3, 3 < p < 5 or 4 ≤ d ≤ 6).

Zheng [124] showed a scattering result under d ≥ 3, 1 + 4
d < p < 1 + 4

d−2 , u0 ∈ H1
rad(Rd),

V (x) = γ
|x|2 , a > −1

4 if d = 3, 7
3 < p ≤ 3, and γ > −(d−2

2 )2 + (d−2
2 − 1

p−1)
2 if d = 3, 3 < p < 5 or

d ≥ 4. Ikeda–Inui [71] showed a scattering result and a blow-up or grow-up result under d = 1,
p > 5, u0 ∈ H1(R), V = mδ0 (delta function) for m > 0. Ikeda [70] showed a scattering result
under p > 5, V , V ′ ∈ L1

1(R) := {f ∈ L1(R) : (1 + | · |)f ∈ L1(R)}, xV ′ ∈ L1(R) + L∞(R),
xV ′ ≤ 0 and a blow-up or grow-up result under p > 5, xV ′ ∈ L1(R) + L∞(R), xV ′ + 2V ≥ 0.

Hong [68] got Theorem 1.55 for time behavior of solutions u to (NLSV ) by using the following
characterization (Proposition 1.54) with d = p = 3 of the ground state Q1,0 to (SPω,0) with
ω = 1.
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Proposition 1.54 (Gagliardo-Nirenberg inequality with a potential). Let d ≥ 3, 1 < p <

1 + 4
d−2 , V ∈ L

d
2 (Rd), V ≥ 0, and V 6= 0. Then, the following inequality holds:

‖f‖p+1
Lp+1 < CGN‖f‖

p+1− d(p−1)
2

L2 ‖(−∆V )
1
2 f‖

d(p−1)
2

L2

for any f ∈ H1(Rd) \ {0}, where CGN is the best constant and is defined in Proposition 1.16.

Theorem 1.55 (Hong, [68]). Let d = 3, p = 3, and u0 ∈ H1(R3). Let Q1,0 be the ground state

to (SPω,0) with ω = 1. Assume that V ∈ L
3
2 (R3) ∩ K0(R3) satisfy V ≥ 0, x · ∇V ≤ 0 , and

xa∂aV ∈ L
3
2 (R3) for any a ∈ (N ∪ {0})3 with |a| = 1. We also suppose that

M(u0)
1−sc
sc EV (u0) < M(Q1,0)

1−sc
sc E0(Q1,0) (1.20)

and

‖u0‖
1−sc
sc

L2
x

‖(−∆V )
1
2u0‖L2

x
< ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x
. (1.21)

Then, the solution u to (NLSV ) with (IC) scatters and satisfies

‖u(t)‖L2
x
‖(−∆V )

1
2u(t)‖L2

x
< ‖Q1,0‖L2

x
‖∇Q1,0‖L2

x

for any t ∈ R.

Natural questions arise from this theorem. It is whether a range of the exponent p for
nonlinearity can be extend or not. In addition, it is whether we can determine behaviors of a

solution to (NLSV ) with initial data u0 satisfying ‖u0‖L2
x
‖(−∆V )

1
2u0‖L2

x
> ‖Q1,0‖L2

x
‖∇Q1,0‖L2

x

or not. Then, the author and Ikeda got the following result.

Main theorem 1.56 (H.–Ikeda, [54]). Let d = 3, 7
3 < p < 5, and u0 ∈ H1

x(R3). Let Q1,0

be the ground state to (SPω,0) with ω = 1. Suppose that V satisfies xa∂aV ∈ L
3
2 (R3) for any

a ∈ (N ∪ {0})3 with |a| = 1 and V ≥ 0. We also suppose that u0 satisfies (1.20).

(1) (Scattering) If V ∈ L
3
2 (R3)∩K0(R3), x ·∇V ≤ 0, and u0 satisfies (1.4), then the solution

u to (NLSV ) with (IC) exists globally in time and

‖u(t)‖
1−sc
sc

L2
x

‖∇u(t)‖L2
x
< ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

for any t ∈ R. Moreover, if u0 and V are radially symmetric, then the solution u to
(NLSV ) with (IC) scatters.

(2) (Blow-up or grow-up) If “V ∈ L
3
2 (R3) ∩ K0(R3) or V ∈ Lσ(R3) for some 3

2 < σ ≤ ∞”,
2V + x · ∇V ≥ 0, and

‖u0‖
1−sc
sc

L2 ‖(−∆V )
1
2u0‖L2

x
> ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x
, (1.22)

then the solution u to (NLSV ) with (IC) satisfies

‖u(t)‖
1−sc
sc

L2
x

‖(−∆V )
1
2u(t)‖L2

x
> ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

for any t ∈ (Tmin, Tmax) and blows up or grows up. Furthermore, if either the following
(i) or (ii) holds:
(i) “u0 and V are radially symmetric”, x · ∇V ≥ 0, and V ∈ L∞(R3),

(ii) xu0 ∈ L2(R3) and “V ∈ L
3
2 (R3) ∩ K0(R3) or V ∈ Lσ(R3) for some 3

2 < σ ≤ ∞”,
then u blows up.

As a corollary of Main theorem 1.56, we can get the following result.

Corollary 1.57. The similar blow-up or grow-up result and blow-up result (ii) in the mass-
critical case p = 7

3 to Main theorem 1.56 holds. We assume that the potential V satisfies

the same assumptions as in Main theorem 1.56 (2). The initial data u0 ∈ H1(R3) satisfies
EV (u0) < 0 instead of (1.22). Then, the same conclusion as Main theorem 1.56 (2) holds.
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Remark 1.58. Mizutani in [93, Theorem 2.2 and Example 3.3] proved that if V ∈ L
3
2 (R3) and

V ≥ 0, then there exist ψ± ∈ H1
x(R3) such that

lim
t→±∞

‖eit∆V ψ − eit∆ψ±‖H1
x
= 0,

where the double sign corresponds. This implies that the scattering solution u in Main theorem
1.56 (or Theorem 1.55) approaches not only a linear solution (with a potential) but also a free
solution (linear solution without a potential) as t→ ±∞.

We compare Main theorem 1.56 with Theorem 1.55.

Remark 1.59. Main theorem 1.56 extends a range of the nonlinear power p. In Main theorem
1.56, it is assumed that u0 and V are radially symmetric in scattering part to use the argument
in [32]. The author think that we can remove the radial assumption of scattering result in Main
theorem 1.56 by using the argument in [77]. We characterize sufficient condition of scattering

by ‖∇u0‖L2
x
not ‖(−∆V )

1
2u0‖L2

x
. Since ‖∇u0‖L2

x
≤ ‖(−∆V )

1
2u0‖L2

x
holds by V ≥ 0, our result

utilized weaker expression in this point. Main theorem 1.56 also contains a blow-up or grow-up
result and a blow-up result.

We notice that Main theorem 1.56 does not separate

{u0 ∈ H1
rad(R3) :M(u0)

1−sc
sc EV (u0) < M(Q1,0)

1−sc
sc E0(Q1,0)} (1.23)

since there exists no V ∈ L
3
2 (R3) satisfying x · ∇V ≤ 0 and 2V + x · ∇V ≥ 0. The conditions

x ·∇V ≤ 0 and 2V +x ·∇V ≥ 0 are used to control the virial functional KV , which is defined as

KV (f) :=
d

dλ

∣∣∣∣
λ=0

Sω,V (e
dλf(e2λ · )) = 2‖∇f‖2L2

x
−
∫
Rd

(x · ∇V )|f(x)|2dx− d(p− 1)

p+ 1
‖f‖p+1

Lp+1
x
,

Sω,V (f) :=
ω

2
M(f) + EV (f).

To separate (1.23), we consider an expression corresponding to (1.2). We define a set of “radial”
ground state solutions to (NLSV ) as

Gω,V, rad := {φ ∈ Aω,V, rad : Sω,V (φ) ≤ Sω,V (ψ) for any ψ ∈ Aω,V, rad}, (1.24)

where

Aω,V, rad := {ψ ∈ H1
rad(Rd) \ {0} : S′

ω,V (ψ) = 0}.

We characterize a “radial” ground state to (NLSV ) by the minimization problem

rα,βω,V := inf{Sω,V (f) : f ∈ H1
rad(Rd) \ {0}, K

α,β
ω,V (f) = 0}, (1.25)

Kα,β
ω,V (f) := Dα,βSω,V (f) =

d

dλ

∣∣∣∣
λ=0

Sω,V (e
αλf(eβλ · ))

for (α, β) ∈ R2 satisfying

α > 0, β ≥ 0, µ := 2α− dβ ≥ 0. (1.26)

We want to deal with (1.25) with (α, β) = (d, 2) as the case (NLS0). However, Sω,V does not
include x ·∇V , so we treat (1.25) with (α, β) = (1, 0) to prove the existence of a “radial” ground

state first. We note that K1,0
ω,V ((α, β) = (1, 0)) is called the Nehari functional and can be written

as

Nω,V (f) := K1,0
ω,V (f) = ω‖f‖2L2

x
+ ‖(−∆V )

1
2 f‖2L2

x
− ‖f‖p+1

Lp+1
x
.

To compare, we also consider a minimization problem, which removes the constraint of spherical
symmetry from (1.25):

nα,βω,V := inf{Sω,V (f) : f ∈ H1(Rd) \ {0}, Kα,β
ω,V (f) = 0}.
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It is known that nα,βω,0 and rα,βω,0 are attained by the ground state Qω,0 to (SPω,0) (e.g. see [10]).

Therefore, nα,βω,0 and rα,βω,0 are independent of (α, β) and the identity nα,βω,0 = rα,βω,0 holds. For

simplicity, we use notations nω,0 := nα,βω,0 and rω,0 := rα,βω,0 .

For n1,0ω,V and r1,0ω,V , the author and Ikeda proved the following theorem.

Main theorem 1.60 (H.–Ikeda, [55]). Let d = 3, ω > 0, V ≥ 0, and V 6= 0.

• (non-radial case) Let 1 < p ≤ 5 and V ∈ L
3
2 (R3) + Lσ(R3) for some 3

2 < σ <∞. Then,

n1,0ω,V = nω,0. Moreover, if V ∈ K0(R3) or V > 0 holds, then n1,0ω,V is not attained.

• (radial case) Let 1 < p < 5 and V ∈ L
3
2
rad(R

3). Then, r1,0ω,V is attained. Moreover, a set

of elements attaining r1,0ω,V coincides with a whole of “radial” ground states of (SPω,V ),

that is, it follows that M1,0
ω,V, rad = Gω,V, rad, where

Mα,β
ω,V, rad := {φ ∈ H1

rad(Rd) \ {0} : Sω,V (φ) = rα,βω,V , K
α,β
ω,V (φ) = 0}. (1.27)

As a corollary of Main theorem 1.60, the following result holds by the fact that n1,0ω,V is not

attained and r1,0ω,V is attained.

Corollary 1.61. Let d = 3, 1 < p < 5, and ω > 0. Let V ∈ L
3
2
rad(R

3), V ≥ 0, V 6= 0, and

“V ∈ K0(R3) or V > 0”. Then, n1,0ω,V < r1,0ω,V holds.

Then, we investigate radial solutions to (NLSV ) with initial data u0, whose action Sω,V (u0)
is less than that of the radial ground state to (SPω,V ).

Theorem 1.62. Let d = 3, 1 < p < 5, V ∈ L
3
2
rad(R

3)∩K0(R3), ‖V−‖K < 4π, and u0 ∈ H1
rad(R3).

Let Qω,V be a “radial” ground state to (SPω,V ). Assume that there exists ω > 0 such that

Sω,V (u0) < Sω,V (Qω,V ) (= r1,0ω,V ) and Nω,V (u0) ≥ 0.

Then, the solution u to (NLSV ) with (IC) exists globally in time and satisfies Nω,V (u(t)) ≥ 0
for any t ∈ R.

We compare the condition in Theorem 1.62 with that in Main theorem 1.56 (1).

Proposition 1.63. Let d = 3, V ∈ L
3
2
rad(R

3), and V ≥ 0.

(1) Let 7
3 < p < 5. The condition (1.20) in Main theorem 1.56 is equivalent to “there exists

ω > 0 such that Sω,V (u0) < n1,0ω,V ”.

(2) Let 1 < p < 5, V 6= 0, and “V ∈ K0(R3) or V > 0”. Let Qω,V be a “radial” ground state
to (SPω,V ). For each ω > 0, there exists u0 ∈ H1

rad(R3) such that u0 satisfies

n1,0ω,V ≤ Sω,V (u0) < r1,0ω,V and Nω,V (u0) ≥ 0.

Proposition 1.63 implies that Theorem 1.62 can deal with initial data, which does not satisfy
the assumptions of Main theorem 1.56. However, we can not see that the solutions in Theorem
1.62 scatters or not.

We recall that it is proved that the existence of a “radial” ground state Qω,V to (SPω,V ) and

Qω,V is characterized by r1,0ω,V in Main theorem 1.60. However, it is not expected that one can
prove scattering result by using the above characterization of the ground state Qω,V . In fact,
it is unclear whether that we can control the virial functional KV or not. Then, we study the

minimization problem rα,βω,V with (α, β) satisfying (1.26), which contains not only r1,0ω,V but also

rd,2ω,V .
To state next main result, we define the following quantity:

ω0 := −1

2
ess inf
x∈Rd

(2V + x · ∇V ).
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Main theorem 1.64 (H.–Ikeda, [56]). Let d ≥ 3 and 1 + 4
d < p < 1 + 4

d−2 .

• (Non-radial case) Let xa∂aV ∈ L
d
2 (Rd) + Lσ(Rd) for some d

2 ≤ σ < ∞ and any a ∈
(N∪ {0})d with |a| ≤ 1, V ≥ 0, x · ∇V ≤ 0, and 2V + x · ∇V ≥ 0. Then, for each (α, β)

satisfy (1.26) and each ω > 0, nα,βω,V = nω,0 (= Sω,0(Qω,0)) holds. Moreover, if we assume

x · ∇V < 0, then nα,βω,V is not attained.

• (Radial case) Let xa∂aV ∈ L
d
2 (Rd) + L∞(Rd) for any a ∈ (N ∪ {0})d with |a| ≤ 1,

V ≥ 0, x · ∇V ≤ 0, and ω0 < ∞. Let V be radially symmetric. Then, rα,βω,V is attained

for each (α, β) with (1.26) and each ω > 0 satisfying ω ≥ ω0. Moreover, if xa∂aV ∈
L

d
2 (Rd) +L∞(Rd) for any a ∈ (N∪ {0})d with |a| ≤ 2 and 3x · ∇V + x∇2V xT ≤ 0, then

Mα,β
ω,V,rad = Gω,V,rad holds, where ∇2V denotes Hessian matrix of V and Mα,β

ω,V,rad and

Gω,V,rad are defined as (1.24) and (1.27) respectively.

We note that the following results hold from the same argument as Main theorem 1.64.

Remark 1.65. The followings hold:

• (Non-radial case) If we replace xa∂aV ∈ L
d
2 (Rd) + Lσ(Rd) for some d

2 ≤ σ < ∞ with

xa∂aV ∈ Lη(Rd) + Lσ(Rd) for some d
2 < η ≤ σ < ∞, then Main theorem 1.64 also

holds in d = 2. If we replace xa∂aV ∈ L
d
2 (Rd) + Lσ(Rd) for some d

2 ≤ σ < ∞ with

xa∂aV ∈ L1(Rd) + Lσ(Rd) for some 1 ≤ σ < ∞, then Main theorem 1.64 also holds in
d = 1.

• (Radial case) If we replace xa∂aV ∈ L
d
2 (Rd) + L∞(Rd) with xa∂aV ∈ Lη(Rd) + L∞(Rd)

for some d
2 < η <∞, then Main theorem 1.64 also holds in d = 2.

As a corollary of Main theorem 1.64, the following result holds by the fact that nα,βω,V is not

attained and rα,βω,V is attained.

Corollary 1.66. Let d ≥ 2, 1 + 4
d < p < 1 + 4

d−2 if d ≥ 3, and 1 + 4
d < p < ∞ if d = 2. Let

xa∂aV ∈ Lη(Rd) + Lσ(Rd) for some η > 1 if d = 2, η = d
2 if d ≥ 3, some η ≤ σ < ∞, any

a ∈ (N ∪ {0})d with |a| ≤ 1, V ≥ 0, x · ∇V < 0, and 2V + x · ∇V ≥ 0. Then, nα,βω,V < rα,βω,V holds

for each (α, β) with (1.26) and ω > 0.

Then, we investigate solutions to (NLSV ) with initial data u0, whose action Sω,V (u0) is less

than nα,βω,V or rα,βω,V .

Theorem 1.67. Let d ≥ 3 and 1 + 4
d < p < 1 + 4

d−2 .

• (Non-radial case) Let u0 ∈ H1(Rd), V ∈ Lη(Rd) + Lσ(Rd), xa∂aV ∈ L
d
2 (Rd) + Lσ(Rd)

for some d
2 < η ≤ σ < ∞ and any a ∈ (N ∪ {0})d with |a| = 1, V ≥ 0, x · ∇V ≤ 0, and

2V + x · ∇V ≥ 0. We also assume that there exist (α, β) satisfying (1.26) and ω > 0
such that

Sω,V (u0) < nα,βω,V = nω,0 (= Sω,0(Qω,0)) and Kα,β
ω,V (u0) ≥ 0.

Then, the solution u to (NLSV ) with (IC) exists globally in time and satisfies Kα,β
ω,V (u(t)) ≥

0 for any t ∈ R.
• (Radial case) Let u0 ∈ H1

rad(Rd), xa∂aV ∈ L
d
2 (Rd)+L∞(Rd) for any a ∈ (N∪{0})d with

|a| = 1, V ≥ 0, x · ∇V ≤ 0, and ω0 < ∞. Let a radial function V satisfy the following
(i) or (ii):

(i) d = 3, V ∈ L
3
2 (R3) ∩ K0(R3),

(ii) d ≥ 3, V ∈ Lη(Rd) + L∞(Rd) for some d
2 < η <∞.

We also assume that there exist (α, β) with (1.26) and ω > 0 satisfying ω ≥ ω0 such that

Sω,V (u0) < rα,βω,V and Kα,β
ω,V (u0) ≥ 0.
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Then, the solution u to (NLSV ) with (IC) exists globally in time and satisfies Kα,β
ω,V (u(t)) ≥

0 for any t ∈ R.

We compare the condition in Main theorem 1.64 with that in Main theorem 1.56 (1).

Proposition 1.68. Let d ≥ 3 and 1 + 4
d < p < 1 + 4

d−2 .

(1) Let u0 ∈ H1(Rd), V ∈ Lη(Rd) + Lσ(Rd), xa∂aV ∈ L
d
2 (Rd) + Lσ(Rd) for some d

2 < η ≤
σ < ∞ and any a ∈ (N ∪ {0})d with |a| = 1, V ≥ 0, x · ∇V ≤ 0, and 2V + x · ∇V ≥ 0.
The condition (1.20) in Main theorem 1.56 is equivalent to “there exist (α, β) satisfying

(1.26) and ω > 0 such that Sω,V (u0) < nα,βω,V ”.

(2) Let V , x · ∇V ∈ L
d
2 (Rd) + Lσ(Rd) for some d

2 < σ < ∞, V ≥ 0, x · ∇V < 0, and
2V + x · ∇V ≥ 0. Let Qω,V be a “radial” ground state to (SPω,V ). For each (α, β)

satisfying (1.26) and ω > 0, there exists u0 ∈ H1
rad(Rd) such that u0 satisfies

nα,βω,V ≤ Sω,V (u0) < rα,βω,V and Kα,β
ω,V (u0) ≥ 0.

Remark 1.69. When β 6= 0, the term x · ∇V appears in Kα,β
ω,V , which can be written as (4.43).

Thus, we impose the assumption xa∂aV ∈ L
d
2 (Rd)+L∞(Rd) for any a ∈ (N∪{0})d with |a| = 1 in

Main theorem 1.64, which assures that Kα,β
ω,V is well defined. The repulsive condition x ·∇V ≤ 0

is used to control the fourth term in (4.43). The condition of the frequency ω ≥ ω0 implies

2ω + 2V + x · ∇V ≥ 0

and is used to control the third term in (4.44). On the other hand, when β = 0, we do not need
the assumptions on x · ∇V and can replace ω ≥ ω0 with ω > 0.

Since we use many assumptions of a potential in Theorem 1.64, we wonder that if there is
actually a potential satisfying all the assumptions. For example, a potential

V (x) =
γ{log(1 + |x|)}θ

|x|µ
, (γ > 0, 0 ≤ θ ≤ µ < 2, µ > 0)

satisfies all assumptions in Main theorem 1.64. From now on, we consider the equation (NLSV )
with a inverse power potential V (x) = γ

|x|µ , which is the above potential with θ = 0 and has a

“good” property for the scaling argument:

i∂tu+∆γu = −|u|p−1u, (t, x) ∈ R× Rd, (NLSγ)

where ∆γ = ∆− γ
|x|µ , γ > 0, and 0 < µ < min{2, d}. The Cauchy problem of (NLSγ) is locally

well-posed in the energy space H1(Rd) by Theorem 1.50.
For simplicity, we use the notations: Sω,γ := Sω, γ

|x|µ
, Kγ := K γ

|x|µ
, Eγ := E γ

|x|µ
, nω,γ :=

nα,β
ω, γ

|x|µ
, rω,γ := rα,β

ω, γ
|x|µ

, and Qω,γ := Qω, γ
|x|µ

. We note that nω,γ and rω,γ are independent of

(α, β) from Main theorem 1.64 and Proposition 4.48.

Theorem 1.70 (Local well-posedness of (NLSγ), [13]). Let d ≥ 1, 1 < p < ∞ if d = 1, 2,

1 < p < 1 + 4
d−2 if d ≥ 3, γ > 0, and 0 < µ < min{2, d}. Then, for any u0 ∈ H1

x(Rd), (NLSγ)
is locally well-posed, that is, the followings hold:

• (Existence and Uniqueness) (NLSγ) with (IC) has the unique solution

u ∈ Ct((Tmin, Tmax);H
1
x) ∩ C1

t ((Tmin, Tmax);H
−1
x ).

• (Blow-up alternative) If Tmax <∞ (resp. Tmin > −∞), then

lim
t↗Tmax

‖u(t)‖H1
x
= ∞,

(
resp. lim

t↘Tmin

‖u(t)‖H1
x
= ∞

)
.
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• (Continuous dependence on the initial data) If u0,n −→ u0 in H1
x(Rd), then for any

compact time interval I ⊂ (Tmin, Tmax), there exists n0 ∈ N such that the solution un to
(NLSγ) with initial data u0,n is defined on I for any n ≥ n0 and satisfies un −→ u in
Ct(I;H

1
x) as n→ ∞.

Moreover, the solution to (NLSγ) preserves its mass and energy with respect to time t.

We introduce a known result for time behavior of solutions to (NLSγ). For blow-up, Dinh
[25] proved the following result.

Theorem 1.71 (Dinh, [25]). Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if

d ≥ 3, γ > 0, and 0 < µ < min{2, d}. Let Q1,0 be the ground state to (SPω,0) with ω = 1. We
assume that u0 satisfies (1.20).

• (Global well-posedness) If u0 satisfies (1.4), then the solution u to (NLSγ) with (IC)
exists globally in both time directions.

• (Blow-up) We assume |x|u0 ∈ L2(Rd) or “d ≥ 2, 1 < p ≤ 5, and u0 ∈ H1
rad(Rd)”. If

u0 satisfies Eγ(u0) < 0 or “ (1.5) and Eγ(u0) ≥ 0”, then the solution u to (NLSγ) with
(IC) blows up in both time directions.

To prove Theorem 1.71, Dinh [25] used the fact:

PW+,3 := {u0 ∈ H1(Rd) : (1.20) and (1.4)} and PW−,3 := {u0 ∈ H1(Rd) : (1.20) and (1.5)}
are invariant under the time development of (NLSγ), which follows from the characterization of
the ground state Q1,0 to (SPω,0) with ω = 1 by Proposition 1.16. We have invariant sets

PW+,4 :=
⋃
ω>0

{u0 ∈ H1(Rd) : Sω,γ(u0) < Sω,0(Qω,0) and Kγ(u0) ≥ 0}

and

PW−,4 :=
⋃
ω>0

{u0 ∈ H1(Rd) : Sω,γ(u0) < Sω,0(Qω,0) and Kγ(u0) < 0}

with respect to the time development of (NLSγ) from Proposition 1.68. Moreover, the Gagliardo–
Nirenberg inequality with the inverse power potential:

Proposition 1.72 (Gagliardo-Nirenberg inequality with the inverse power potential). Let d ≥ 1,
1 < p < ∞ if d = 1, 2, 1 < p ≤ 1 + 4

d−2 if d ≥ 3, γ > 0, and 0 < µ < min{2, d}. Then, the
following inequality holds:

‖f‖p+1
Lp+1 < CGN‖f‖

p+1− d(p−1)
2

L2 ‖(−∆γ)
1
2 f‖

d(p−1)
2

L2

for any f ∈ H1(Rd) \ {0}, where CGN is the best constant and is defined in Proposition 1.16.

generates the invariant sets

PW+,5 := {u0 ∈ H1(Rd) : (1.20) and (1.21)} and PW−,5 := {u0 ∈ H1(Rd) : (1.20) and (1.22)}.
The Proposition 1.68 unifies the sense of “below the ground state without potential”. Namely,
the identities

PW+,3 ∪ PW−,3 = PW+,4 ∪ PW−,4 = PW+,5 ∪ PW−,5

hold. We note that

‖u0‖
1−sc
sc

L2 ‖∇u0‖L2 = ‖Q1,0‖
1−sc
sc

L2 ‖∇Q1,0‖L2 and ‖u0‖
1−sc
sc

L2 ‖(−∆γ)
1
2u0‖L2 = ‖Q1,0‖

1−sc
sc

L2 ‖∇Q1,0‖L2

never hold under the assumption (1.20) (see Lemma 4.49). It is a natural question that the
relation of the conditions on the initial data below the ground state without the potential: (1.4),
(1.5), (1.21), (1.22), Kγ(u0) ≥ 0, and Kγ(u0) < 0. First, we state the following result for the
time behavior of solutions to (NLSγ).

Theorem 1.73 (Boundedness versus unboundedness I). Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2,

1 + 4
d < p < 1 + 4

d−2 if d ≥ 3, γ > 0, and 0 < µ < min{2, d}. Let j = 4, 5.
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• (Global well-posedness) If u0 ∈ PW+, j, then the solution u to (NLSγ) with (IC) satisfies
u(t) ∈ PW+, j for each t ∈ (Tmin, Tmax) and exists globally in time. In particular, H1-
norm of the solution u is uniformly bounded in maximal lifespan.

• (Brow-up or grow-up) If u0 ∈ PW−, j, then the solution u to (NLSγ) with (IC) satisfies
u(t) ∈ PW−, j for each t ∈ (Tmin, Tmax) and blows up or grows up. Moreover, if u0
satisfies u0 ∈ |x|−1L2(Rd) or “d ≥ 2, 1 < p ≤ 5, and u0 ∈ H1

rad(Rd)”, then u blows up.

Combining Theorem 1.71 and 1.73, we obtain the following equivalence of conditions on the
initial data below the ground state.

Main theorem 1.74 (Equivalence of conditions on the initial data below the ground state). 　
Let d ≥ 1, 1+ 4

d < p <∞ if d = 1, 2, 1+ 4
d < p < 1+ 4

d−2 if d ≥ 3, γ > 0, and 0 < µ < min{2, d}.
We assume that u0 satisfies (1.20). The three conditions (1.4), (1.21), Kγ(u0) ≥ 0 are equivalent.
On the other hand, the three conditions (1.5), (1.22), Kγ(u0) < 0 are equivalent. In other words,
PW+,3 = PW+,4 = PW+,5 and PW−,3 = PW−,4 = PW−,5 hold.

As a corollary of Main theorem 1.74, the following result holds.

Corollary 1.75. Let d ≥ 1, 1+ 4
d < p <∞ if d = 1, 2, 1+ 4

d < p < 1+ 4
d−2 if d ≥ 3, γ > 0, and

0 < µ < min{2, d}. If u0 ∈ H1(Rd) \ {0} satisfies Eγ(u0) ≤ 0, then u0 ∈ PW−, j (j = 3, 4, 5).

We also investigate time behavior of solutions to (NLSγ) with the radial initial data below
the “radial” ground state Qω,γ to (SPω,V ) with V = γ

|x|µ .

Theorem 1.76 (Boundedness versus unboundedness II). Let d ≥ 1, 1 + 4
d < p <∞ if d = 1, 2,

1 + 4
d < p < 1 + 4

d−2 if d ≥ 3, γ > 0, and 0 < µ < min{2, d}.
• (Global well-posedness) If u0 ∈ PW+,6, then a solution u to (NLSγ) with (IC) satisfies
u(t) ∈ PW+,6 for each t ∈ (Tmin, Tmax) and exists globally in time, where

PW+,6 :=
⋃
ω>0

{u0 ∈ H1
rad(Rd) : Sω,γ(u0) < rω,γ and Kγ(u0) ≥ 0}.

In particular, H1-norm of the solution u is uniformly bounded in maximal lifespan.
• (Blow-up or grow-up) If u0 ∈ PW−,6, then a solution u to (NLSγ) with (IC) satisfies
u(t) ∈ PW−,6 for each t ∈ (Tmin, Tmax) and blows up or grows up, where

PW−,6 :=
⋃
ω>0

{u0 ∈ H1
rad(Rd) : Sω,γ(u0) < rω,γ and Kγ(u0) < 0}.

Moreover, if d ≥ 2 and p ≤ 5, then u blows up.

1.4. Organization of the paper. The organization of the rest of the paper is as follows.
In Section 2, we define some notations and collect some tool, which are used throughout this

paper.
In Section 3, we prove theorems for nonlinear Schrödinger system (NLS). In Subsection 3.1,

we define spaces, which are used to prove theorems for (NLS). In Subsection 3.2, we collect some
tools for Section 3. In Subsection 3.3, we give local well-posedness of (NLS) and equivalence
conditions to scattering. In Subsection 3.4, we prove that solutions to (NLS) with nonpositive

energy does not scatter. In Subsection 3.6, we investigate properties of Lv0 and `
†
v0 . In Subsection

3.7 and 3.8, we show linear profile decomposition. In Subsection 3.9, we prove Main theorem
1.39, 1.41, and 1.42. In Subsection 3.10, we deal with the other optimization problems. In
Subsection 3.11, we show corollaries of Theorem 1.44.

In Section 4, we prove main theorems for nonlinear Schrödinger equation with a potential
(NLSV ) and (NLSγ). In Subsection 4.1, we collect some tools for Section 4. In Subsection 4.2
∼ 4.6, we prove theorems for (NLSV ). In Subsection 4.7, we prove theorems for (NLSγ).

2. Preliminaries

In this section, we define some notations and collect some tools, which are used throughout
this paper.
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2.1. Notations. For non-negative X and Y , X ≲ Y denotes X ≤ CY for some C > 0. If
X ≲ Y ≲ X holds, we write X ∼ Y . We use subscripts to indicate the dependence of implicit
constants, e.g. X ≲u Y denotes X ≤ CY for some C = C(u). We write a′ ∈ [1,∞] to denote
the Hölder dual exponent to a ∈ [1,∞], that is, a and a′ satisfy 1

a +
1
a′ = 1.

C∞(Rd) is a space of smooth functions and C∞
c (Rd) is a space of smooth functions with a

compact support. Lp(Rd) denotes a usual Lebesgue space for 1 ≤ p ≤ ∞, that is,

Lp(Rd) := {f : Rd −→ C is a Lebesgue measurable function : ‖f‖Lp <∞},
where

‖f‖Lp :=


(∫

Rd

|f(x)|pdx
) 1

p

, (1 ≤ p <∞),

ess sup
x∈Rd

|f(x)|, (p = ∞).

For 1 ≤ p ≤ ∞, a space `p is defined as `p := {{an}n∈X ⊂ C : ‖an‖ℓp <∞}, where

‖an‖ℓp :=


(∑
n∈X

|an|p
) 1

p
, (1 ≤ p <∞),

sup
n∈X

|an|, (p = ∞).

S(R) is the Schwartz space and defined as

S(Rd) := {f ∈ C∞(Rd) : ‖xa∂bf‖L∞ <∞ for any a, b ∈ (N ∪ {0})d}.

S ′(Rd) is a set of a whole of the tempered distribution, that is,

S ′(Rd) := {F : S(Rd) −→ C : F is linear and continuous.}.

〈 · , · 〉X denotes the X-inner product for a Hilbert space X. For a Banach space X, Lqt (I;X) de-
notes the Banach space of functions f : I×Rd −→ C, whose norm is ‖f‖Lq

t (I;X) :=
∥∥‖f‖X∥∥Lq

t (I)
<

∞. If a time interval is not specified, that is, if we write ‖ · ‖Lq
tX

, then the t-norm is taken

over R. The norm of X × Y and X ∩ Y are defined as ‖(f, g)‖X×Y = ‖f‖X + ‖g‖Y and
‖f‖X∩Y = ‖f‖X + ‖f‖Y , respectively for Banach spaces X and Y .

We define the Fourier transform and the inverse Fourier transform on Rd respectively as

Ff(ξ) = f̂(ξ) := (2π)−
d
2

∫
Rd

e−ix·ξf(x)dx, F−1f(x) = f̌(x) := (2π)−
d
2

∫
Rd

eix·ξf(ξ)dξ,

where x ·ξ := x1 ·ξ1+ · · ·+xd ·ξd. W s,p(Rd) = (1−∆)−
s
2Lp(Rd) and Ẇ s,p(Rd) = (−∆)−

s
2Lp(Rd)

are inhomogeneous Sobolev space and homogeneous Sobolev space, respectively for s ∈ R and
p ∈ [1,∞], where (1−∆)

s
2 = F−1(1 + |ξ|2)

s
2F and (−∆)

s
2 = |∇|s = F−1|ξ|sF . When p = 2, we

express W s,2(Rd) = Hs(Rd) and Ẇ s,2(Rd) = Ḣs(Rd).
Let (Tmin, Tmax) be the maximal lifespan of the solution to (NLS), (NLSV ), or (NLSγ). Let

[0, Tmax) be the maximal positive lifespan of the solution to (NLS), (NLSV ), or (NLSγ). We
convert (NLS) and (NLSV ) respectively into the following integral system by Duhamel’s princi-
ple: 

u(t) = eit∆u0 + 2i

∫ t

0
ei(t−s)∆(vu)(s)ds,

v(t) = eκit∆v0 + i

∫ t

0
eκi(t−s)∆(u2)(s)ds

and

u(t) = eit∆V u0 + i

∫ t

0
ei(t−s)∆V (|u|p−1u)(s)ds,

where the Schrödinger group eit∆ is defined as eit∆f(x) = (e−it|ξ|
2
f̂)∨(x) and {eit∆V }t∈R is the

Schrödinger evolution group generated on L2(Rd) by Stone’s theorem.
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We define the following functions for R > 0 and r = |x|. A cut-off function XR ∈ C∞
c (Rd) is

radially symmetric and satisfies

XR(r) := R2X
( r
R

)
, where X (r) :=


r2 (0 ≤ r ≤ 1),

smooth (1 ≤ r ≤ 3),

0 (3 ≤ r),

(2.1)

X ′′(r) ≤ 2 for any r ≥ 0. A cut-off function YR ∈ C∞
c (Rd) is radially symmetric and satisfies

YR(r) := Y
( r
R

)
, where Y (r) :=


1 (0 ≤ r ≤ 1),

smooth (1 ≤ r ≤ 2),

0 (2 ≤ r),

(2.2)

and −2 ≤ Y ′(r) ≤ 0 for any r ≥ 0. A function ZR ∈ C∞(Rd) is defined as

ZR(r) := Z
( r
R

)
, where Z (r) := 1− Y (r). (2.3)

We also define the characteristic function of A as 1A(x) for a set A ⊂ Rd, that is, 1A(x) = 1 if
x ∈ A and 1A(x) = 0 if x /∈ A.

2.2. Some tools. In this subsection, we introduce some standard tools, which are used through-
out this paper.

Lemma 2.1 (Young’s inequality). The following inequality holds:

ab ≤ 1

p
ap +

1

q
bq

for any a, b ≥ 0 and any p, q ≥ 1 with 1
p +

1
q = 1.

Lemma 2.2 (Hölder’s inequality). Let d ≥ 1. For any q, q′ ≥ 1 with 1
q +

1
q′ = 1, f ∈ Lq(Rd),

and g ∈ Lq
′
(Rd), we have

‖fg‖L1 ≤ ‖f‖Lq‖g‖Lq′ .

Lemma 2.3 (Sobolev’s embedding). Let d ≥ 1. For any q, r ≥ 1, s ≥ 0 with 1
q = 1

r −
s
d ,

‖f‖Lq ≲ ‖f‖Ẇ s,r ,

that is, Ẇ s,r(Rd) ⊂ Lq(Rd) holds. For any q, r ≥ 1, s ≥ 0 with 1
q ≥ 1

r −
s
d ,

‖f‖Lq ≲ ‖f‖W s,r ,

that is, W s,r(Rd) ⊂ Lq(Rd) holds.

Lemma 2.4 (Radial Sobolev inequality, [100]). Let d ≥ 2 and p ≥ 1. There exists C0 > 0 such
that for any R > 0 and any f ∈ H1

rad(Rd), the following inequality holds:

‖f‖p+1

Lp+1
x (R≤|x|)

≤ C0R
− (d−1)(p−1)

2 ‖f‖
p+3
2

L2
x(R≤|x|)‖∇f‖

p−1
2

L2
x(R≤|x|).

Lemma 2.5 (Compact embedding). Let d ≥ 2 and 2 < q < 1 + 4
d−2 . Then, the embedding

H1
rad(Rd) ⊂⊂ Lq(Rd) is compact.

The following proposition is cited in [13, Lemma 8.1.2]

Proposition 2.6 (Pohozaev identities). Let d ≥ 1 and 2 < p + 1 < 2∗. A solution Qω,0 to
(SPω,0) satisfies the following Pohozaev identities.

‖Qω,0‖p+1

Lp+1
x

=
2(p+ 1)ω

d+ 2− (d− 2)p
‖Qω,0‖2L2

x
, ‖Qω,0‖p+1

Lp+1
x

=
2(p+ 1)

d(p− 1)
‖∇Qω,0‖2L2

x
.
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This proposition deduces the following relations:

E0(Qω,0) =
d(p− 1)− 4

2d(p− 1)
‖∇Qω,0‖2L2

x
, (2.4)

CGN =
2(p+ 1)

d(p− 1)
· 1

‖Q1,0‖
d+2−(d−2)p

2

L2
x

‖∇Q1,0‖
(p−1)d−4

2

L2
x

. (2.5)

3. Proof of theorems for NLS system

3.1. Notations for Section 3. We define some notations and spaces, which are used in this
section.

We recall the standard Littlewood-Paley projection operators. Let φ be a radial cut-off
function satisfies 1{|ξ|≤4/3} ≤ φ ≤ 1{|ξ|≤5/3}. For N ∈ 2Z, the operators PN is defined as

P̂Nf(ξ) := f̂N (ξ) := ψN (ξ)f̂(ξ),

where φN (x) = φ(x/N) and

ψN (x) = φN (x)− φN/2(x). (3.1)

3.1.1. The Galilean transform and the Galilean operator. The Galilean operator

Jm(t) := x+ i
t

m
∇,

which is a multiple of the infinitesimal operator for transforms appearing in (1.14), plays an
important role in the scattering theory for mass-subcritical nonlinear Schrödinger equation. We
define the multiplication operator

[Mm(t)f ](x) := e
im|x|2

2t f(x) (t 6= 0)

and the dilation operator

[D(t)f ](x) := (2it)−
3
2 f
( x
2t

)
(t 6= 0).

It is known that the Schrödinger group is factorized as eit∆ = M 1
2
(t)D(t)FM 1

2
(t) by using

these operators. This factorization deduces the identity

eit∆Φ(x)e−it∆ = M 1
2
(t)Φ(2it∇)M 1

2
(−t) (3.2)

for suitable multiplier Φ, where Φ(i∇) denotes the Fourier multiplier operator with multiplier
Φ(ξ), that is, Φ(i∇) := F−1Φ(ξ)F . The Galilean operator is written as follows:

Jm(t) = e
1

2m
it∆xe−

1
2m

it∆ = Mm(t)i
t

m
∇Mm(−t),

where the second equality holds for t 6= 0. We define a fractional power of Jm by

Jsm(t) := e
1

2m
it∆|x|se−

1
2m

it∆ = Mm(t)

(
− t2

m2
∆

) s
2

Mm(−t) for s ∈ R.

Remark that the second formula is valid for t 6= 0.

3.1.2. Function spaces. We define a time-dependent spaces Ẋs,r
m = Ẋs,r

m (t) by using the norm

‖f‖Ẋs,r
m

:= ‖Jsm(t)f‖Lr
x(R3) ∼ ‖|t|s|∇|sMm(−t)f‖Lr

x(R3). (3.3)

When r = 2, we omit the exponent r, that is, Ẋs
m = Ẋs,2

m . We can see immediately by the
definition of Jsm that the equivalence of norms in (3.3) for t 6= 0. It is natural to write

f ∈ e
1

2m
it∆FḢs ⇐⇒ e−

1
2m

it∆f ∈ FḢs.
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Then, we have e
1

2m
it∆FḢs = Ẋs

m(t). We use Lorentz-modified space-time norms. For an interval
I, 1 ≤ q <∞, and 1 ≤ α ≤ ∞, the Lorentz space Lq,αt (I) is defined by using the quasi-norm

‖f‖Lq,α
t (I) := ‖λ|{t ∈ I : |f(t)| > λ}|

1
q ‖Lα((0,∞), dλ

λ
).

For a Banach space X, Lq,αt (I;X) is defined as the whole of functions u : I×R3 −→ C satisfying

‖u‖Lq,α
t (I;X) := ‖‖u(t)‖X‖Lq,α

t (I) <∞.

The following equivalence is useful:

‖f‖Lq,α
t (I) ∼ ‖‖f · 1{2k−1≤|f |≤2k}‖Lq

t (I)
‖ℓα(k∈Z).

We also define Besov space as follows:

Ḃs
p,q(Rd) := {f ∈ S ′(Rd) : ‖f‖Ḃs

p,q
<∞},

where ‖f‖Ḃs
p,q

:= ‖2Ns‖ψN ∗ f‖Lp
x
‖ℓqN and ψN is defined as (3.1).

3.1.3. Specific function spaces. We define an admissible pair.

Definition 3.1. If a pair (q, r) satisfies

2 < q <∞, 2 < r < 6, and
2

q
+

3

r
=

3

2
,

then (q, r) is an admissible pair.

Remark that we do not include two end points (∞, 2) and (2, 6) to admissible pairs. It is
because they require exceptional treatments sometimes.

We use the following concrete choice of function spaces. The same exponents were used in
[81, 89]. We define (

1

q1
,
1

r1

)
:=

(
1

6
,
7

18

)
and

(
1

q̃
,
1

r̃

)
:=

(
2

3
,
2

9

)
.

The pair (q1, r1) is admissible. The pair (q̃, r̃) satisfies the critical scaling relation 2
q̃ +

3
r̃ = 2,

and is not a admissible pair. These exponents satisfy the following relations:

1

q′1
=

1

q̃
+

1

q1
,

1

r′1
=

1

r̃
+

1

r1
, and

1

q̃
− 1

q1
=

3

r1
− 3

r̃
=

1

2
.

We define the spaces

Sweak := Lq̃,∞t Lr̃x = L
3
2
,∞

t L
9
2
x , S := Lq̃,2t Lr̃x = L

3
2
,2

t L
9
2
x , and Wj := Lq1,2t Ẋ

1
2
,r1

2
j−2 = L6,2

t Ẋ
1
2
, 18
7

2
j−2

for the solutions and the spaces

Nj := L
q′1,2
t Ẋ

1
2
,r′1

2
j−2 = L

6
5
,2

t Ẋ
1
2
, 18
11

2
j−2

for the nonlinear terms. We use a notation Sweak(I) to indicate that the norm is taken over the
space-time slab I × R3, and similarly for the other spaces.

3.2. Some tools for Section 3. In this subsection, we introduce some standard tools in this
section.

Lemma 3.2 (Riemann–Lebesgue lemma). Let d ≥ 1 and f ∈ L1(Rd). Then, we have∫
Rd

e−ix·ξf(x)dx −→ 0 as |ξ| → ∞.

Proposition 3.3 (Dispersive estimate). Let d ≥ 1, t 6= 0, and p ∈ [2,∞]. Then, it follows that

eit∆ : Lp
′
(Rd) −→ Lp(Rd) is continuous and

‖eit∆f‖Lp
x
≤ (4π|t|)−

d
2
( 1
p′−

1
p
)‖f‖

Lp′
x

for any f ∈ Lp
′
x (Rd).
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Proposition 3.4 (Strichartz estimate, [39, 46, 76, 86, 107]). Let d ≥ 1, t0 ∈ R, and I(3 t0)
be a time interval. If (q1, r1) and (q2, r2) satisfy 2

q1
+ d

r1
= 2

q2
+ d

r2
= d

2 , 2 ≤ q1, q2 ≤ ∞,

(q1, r1, d) 6= (2,∞, 2), and (q2, r2, d) 6= (2,∞, 2), then

‖eit∆f‖Lq1
t L

r1
x

≲ ‖f‖L2
x
,

∥∥∥∥∫ t

t0

ei(t−s)∆F ( · , s)ds
∥∥∥∥
L
q1
t (I;L

r1
x )

≲ ‖F‖
L
q′2
t (I;L

r′2
x )
.

We also need Strichartz estimates for the spaces Lq,αt Ẋs,r
m , which were proved in [90, 97].

Proposition 3.5 (Strichartz estimates, [97]). Let d = 3, s ≥ 0, and t0 ∈ I ⊂ R.
(1) For any admissible pair (q1, r1), we have

‖e
1

2m
it∆f‖

L∞
t Ẋs

m∩Lq1,2
t Ẋ

s,r1
m

≲ ‖f‖FḢs .

(ii) For any admissible pairs (q1, r1) and (q2, r2), we have∥∥∥∥∫ t

t0

e
1

2m
i(t−s)∆F (s)ds

∥∥∥∥
L∞
t (I;Ẋs

m)∩Lq1,2
t (I;Ẋ

s,r1
m )

≲ ‖F‖
L
q′2,2
t (I;Ẋ

s,r′2
m )

.

Lemma 3.6 (Embeddings, [81]). Let d = 3. The following inequalities hold:

‖u‖Sweak ≲ ‖u‖S ≲j ‖u‖Wj ,

where j = 1, 2.

Lemma 3.7 (Square function estimate). For 0 ≤ s ≤ 2 and 1 < p <∞, we have

‖|∇|sf‖Lp
x
∼
∥∥∥(∑

N∈2Z
|PN |∇|sf |2

) 1
2
∥∥∥
Lp
x

.

Lemma 3.8 (Hölder’s inequality in Lorentz spaces, [69, 102]). Let d ≥ 1. Let 1 ≤ q, q1, q2 <∞
and 1 ≤ α, α1, α2 ≤ ∞ satisfy

1

q
=

1

q1
+

1

q2
and

1

α
=

1

α1
+

1

α2
.

Then, the following estimate holds:

‖fg‖Lq,α
t

≲ ‖f‖Lq1,α1
t

‖g‖Lq2,α2
t

.

Lemma 3.9 ([79]). For any 1 < p, q, r < ∞ with 1
p = 1

q + 1
r and 0 < α,α1, α2 < 1 with

α = α1 + α2, we have

‖|∇|α(fg)− f |∇|αg − g|∇|αf‖Lp
x
≲ ‖|∇|α1f‖Lq

x
‖|∇|α2g‖Lr

x
.

Lemma 3.10 ([89]). Let d = 3 and B be a bounded subset of R × R3. Let f ∈ FḢ
1
2 (R3) and

1 ≤ p, q ≤ ∞. Then, it follows that for any ε > 0, there exists a constant Cε > 0 such that

‖eit∆|x|
1
2 f‖L2(B) ≤ ε‖f‖

FḢ
1
2
+ Cε‖eit∆f‖Lp,∞

t Lq
x
.

Lemma 3.11. Let d = 3. Let 1 ≤ r <∞, 0 < s < 3
r and let χ ∈ S(R3). Then, a multiplication

operator χ× is bounded on Ẋs,r
m .

Proof. We take (r1, r2) satisfying
1
r1

= 1
r −

s
3 and 1

r = 1
r1

+ 1
r2
. Using Lemma 2.3, we have

‖χu‖Ẋs,r
m

∼ ‖|t|s|∇|sMm(−t)χu‖Lr
x

≲ ‖|t|s|∇|sMm(−t)u‖Lr
x
‖χ‖L∞

x
+ ‖|t|sMm(−t)u‖Lr1

x
‖|∇|sχ‖Lr2

x

≲ ‖|t|s|∇|sMm(−t)u‖Lr
x
‖χ‖L∞

x
+ ‖|t|s|∇|sMm(−t)u‖Lr

x
‖|∇|sχ‖Lr2

x

≲ ‖u‖Ẋs,r
m
.

□
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Lemma 3.12 (Nonlinear estimates). Let I ⊂ R. We also assume τ ∈ I in (5) and (6). The
following inequalities hold:

(1) ‖vu‖N1(I) ≲ ‖u‖Sweak(I)‖v‖W2(I) + ‖u‖W1(I)‖v‖Sweak(I) ≲ ‖u‖W1(I)‖v‖W2(I),

(2) ‖u1u2‖N2(I) ≲ ‖u1‖W1(I)‖u2‖Sweak(I) + ‖u1‖Sweak(I)‖u2‖W1(I) ≲ ‖u1‖W1(I)‖u2‖W1(I),

(3) ‖vu‖
L

3
2 ,2

t (I;Ẋ
1
2 , 1813
1/2

)
≲ ‖v‖

L∞
t (I;Ẋ

1
2
1 )

‖u‖S(I) + ‖v‖S(I)‖u‖
L∞
t (I;Ẋ

1
2
1/2

)
,

(4) ‖u1u2‖
L

3
2 ,2

t (I;Ẋ
1
2 , 1813
1 )

≲ ‖u1‖
L∞
t (I;Ẋ

1
2
1/2

)
‖u2‖S(I) + ‖u1‖S(I)‖u2‖

L∞
t (I;Ẋ

1
2
1/2

)
,

(5)

∥∥∥∥∫ t

τ
ei(t−s)∆(vu)(s)ds

∥∥∥∥
S(I)

≲ ‖u‖S(I)‖v‖S(I),

(6)

∥∥∥∥∫ t

τ
e

1
2
i(t−s)∆(u1u2)(s)ds

∥∥∥∥
S(I)

≲ ‖u1‖S(I)‖u2‖S(I).

Proof. We prove the inequality (1). Using (3.3) and Lemma 2.2, 3.8, and 3.6,

‖vu‖N1(I) = ‖(−4t2∆)
1
4 (M1(−t)v · M 1

2
(−t)u)‖

L
6
5 ,2

t (I;L
18
11
x )

≲ ‖(−4t2∆)
1
4M1(−t)v‖

L6,2
t (I;L

18
7

x )
‖M 1

2
(−t)u‖

L
3
2 ,∞
t (I;L

9
2
x )

+ ‖M1(−t)v‖
L

3
2 ,∞
t (I;L

9
2
x )
‖(−4t2∆)

1
4M 1

2
(−t)u‖

L6,2
t (I;L

18
7

x )

∼ ‖J
1
2
1 v‖

L6,2
t (I;L

18
7

x )
‖u‖

L
3
2 ,∞
t (I;L

9
2
x )

+ ‖v‖
L

3
2 ,∞
t (I;L

9
2
x )
‖J

1
2
1
2

u‖
L6,2
t (I;L

18
7

x )

= ‖v‖W2(I)‖u‖Sweak(I) + ‖v‖Sweak(I)‖u‖W1(I)

≲ ‖v‖W2(I)‖u‖W1(I).

The inequality (2) holds by the same argument with (1). We prove the inequality (3). Applying
(3.3), Lemma 2.2, and 3.8,

‖vu‖
L

3
2 ,2

t (I;Ẋ
1
2 , 1813
1/2

)
= ‖(−4t2∆)

1
4 (M1(−t)vM 1

2
(−t)u)‖

L
3
2 ,2

t (I;L
18
13
x )

≲ ‖(−4t2∆)
1
4M1(−t)v‖L∞,∞

t (I;L2
x)
‖M 1

2
(−t)u‖

L
3
2 ,2

t (I;L
9
2
x )

+ ‖M1(−t)v‖
L

3
2 ,2

t (I;L
9
2
x )
‖(−4t2∆)

1
4M 1

2
(−t)u‖L∞,∞

t (I;L2
x)

≲ ‖v‖
L∞
t (I;Ẋ

1
2
1 )

‖u‖S(I) + ‖v‖S(I)‖u‖
L∞
t (I;Ẋ

1
2
1/2

)
.

The inequality (4) holds by the same argument with (3). The last two inequalities are conse-
quences of inhomogeneous Strichartz estimate for non-admissible pairs by Kato [75]. □

Lemma 3.13 (Interpolation in Ẋs,r
m ). Let I ⊂ R. The following inequality holds.

‖u‖Lρ,γ
t (I;Ẋs,r

m ) ≲ ‖u‖1−θ
Lρ1,γ1 (I;Ẋ

s1,r1
m )

‖u‖θ
Lρ2,γ2 (I;Ẋ

s2,r2
m )

for 1 ≤ ρ, ρ1, ρ2 < ∞, 1 ≤ γ, γ1, γ2 ≤ ∞, 1 < r, r1, r2 < ∞, 0 < θ < 1 with 1
ρ = 1−θ

ρ1
+ θ

ρ2
,

1
γ = 1−θ

γ1
+ θ

γ2
, s = (1− θ)s1 + θs2, s1 6= s2, and

1
r = 1−θ

r1
+ θ

r2
.

Proof. Since ‖u‖Ẇ s,r
x

≲ ‖u‖1−θ
Ẇ

s1,r1
x

‖u‖θ
Ẇ

s2,r2
x

holds (see [9, Theorem 6.4.5]), we have

‖u‖Ẋs,r
m

∼ |t|s‖Mm(−t)u‖Ẇ s,r
x

≲ (|t|s1‖Mm(−t)u‖Ẇ s1,r1
x

)1−θ(|t|s2‖Mm(−t)u‖Ẇ s2,r2
x

)θ

∼ ‖u‖1−θ
Ẋ

s1,r1
m

‖u‖θ
Ẋ

s2,r2
m

.

Therefore, Lemma 3.8 deduces

‖u‖Lρ,γ
t (I;Ẋs,r

m ) ≲
∥∥‖u‖1−θ

Ẋ
s1,r1
m

‖u‖θ
Ẋ

s2,r2
m

∥∥
Lρ,γ
t (I)

≲ ‖u‖1−θ
L
ρ1,γ1
t (I;Ẋ

s1,r1
m )

‖u‖θ
L
ρ2,γ2
t (I;Ẋ

s2,r2
m )

.
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□
The following embedding is a general case of Wj(I) ⊂ S(I) (see Lemma 3.6).

Lemma 3.14 (Sobolev type embedding). Let d = 3 and I ⊂ R be a time interval. Let 1 ≤
ρ1, ρ2, r1, r2 < ∞, 1 ≤ γ1 ≤ ∞, and 0 < s ≤ 1 satisfy 1

ρ1
= s + 1

ρ2
and 1

r1
= 1

r2
− s

3 . Then, the

embedding Lρ2,γ1t (I; Ẋs,r2
m ) ⊂ Lρ1,γ1t (I;Lr1x ) holds. In particular, the following inequality holds

for any u ∈ Lρ2,γ1t (I; Ẋs,r2
m ):

‖u‖Lρ1,γ1
t (I;L

r1
x ) ≲ ‖u‖Lρ2,γ1

t (I;Ẋ
s,r2
m ).

Proof. By Lemma 2.3 and 3.8, we have

‖u‖Lρ1,γ1
t (I;L

r1
x ) = ‖Mm(−t)u‖Lρ1,γ1

t (I;L
r1
x ) ≲ ‖|∇|sMm(−t)u‖Lρ1,γ1

t (I;L
r2
x )

≲ ‖|t|−s‖
L

1
s ,∞
t (I)

‖|t|s|∇|sMm(−t)u‖Lρ2,γ1
t (I;L

r2
x ) ≲ ‖u‖Lρ2,γ1

t (I;Ẋ
s,r2
m ).

□
The following lemma is cited in [89, Proposition 2.5].

Proposition 3.15. Let 1 < ρj < ∞, sj ∈ R, and 1 ≤ qj , rj < ∞ for j = 1, 2. Let v ∈
Lρ1,2t (R; Ṁ s1

q1,r1) ∩ Lρ2,2t (R; Ṁ s2
q2,r2). For any ε > 0, there exist a function ṽ(t, x) defined on

R× R3 and δ,M,R > 0 such that supp ṽ ⊂ {(t, x) ∈ R× R3 : δ ≤ |t| ≤M, |x| ≤ R} and∑
j=1,2

‖v − ṽ‖
L
ρj,2

t (R;Ṁ
sj
qj ,rj

)
≤ ε,

where the norm ‖ · ‖Ṁs
q,r(t)

is defined as

‖f‖Ṁs
q,r(t)

:= ‖2jseit∆ψNe−it∆f‖ℓrN (2Z;Lq
x)

∼ ‖|t|sM 1
2
(−t)f‖Ḃs

q,r
.

Proposition 3.16. Let d = 3. Let 1 < ρj < ∞, sj ,m ∈ R, and 2 < rj < ∞ for j = 1, 2. Let

v ∈ Lρ1,2t (R; Ẋs1,r1
m ) ∩ Lρ2,2t (R; Ẋs2,r2

m ). For any ε > 0, there exist a function ṽ = ṽ(t, x) defined
on R× R3 and δ,M,R > 0 such that supp ṽ ⊂ {(t, x) ∈ R× R3 : δ ≤ |t| ≤M, |x| ≤ R}∑

j=1,2

‖v − ṽ‖
L
ρj,2

t (R;Ẋ
sj ,rj
m )

≤ ε.

Proof. Since it follows from [9, Theorem 6.4.4] that Ḃ
sj
rj ,2

(R3) ⊂ Ẇ
sj ,rj
x (R3), that is, ‖f‖

Ẇ
sj ,rj
x

≲
‖f‖

Ḃ
sj
rj ,2

holds, we can get the desired result by using Proposition 3.15. Indeed, we have∑
j=1,2

‖v − ṽ‖
L
ρj,2

t (R;Ẋ
sj ,rj
m )

∼
∑
j=1,2

‖|t|sjMm(−t)(v − ṽ)‖
L
ρj,2

t (R;Ẇ
sj ,rj
x )

≲
∑
j=1,2

‖|t|sjMm(−t)(v − ṽ)‖
L
ρj,2

t (R;Ḃ
sj
rj ,2

)
≤ ε.

□

3.3. Local well-posedness. In this subsection, we establish a local theory in (CtẊ
1/2
1/2 ∩W1)×

(CtẊ
1/2
1 ∩W2) for (NLS). The result is given as a consequence of Strichartz estimate (Proposition

3.5) and the estimates of the previous subsection (Lemma 3.6 and 3.12). Also, we derive a
necessary and sufficient condition for scattering (Proposition 3.19) and give a scattering result
for small data (Proposition 3.20).

Let us first establish a weak version of the local well-posedness.

Proposition 3.17. Let d = 3, κ = 1
2 , and τ ∈ R. There exists a universal constant δ > 0 such

that if (uτ , vτ ) ∈ S ′(R3)× S ′(R3) satisfies

‖(ei(t−τ)∆uτ , e
1
2
i(t−τ)∆vτ )‖S(I)×S(I) ≤ δ
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for some interval I 3 τ , then the integral equation
u(t) = ei(t−τ)∆uτ + 2i

∫ t

τ
ei(t−s)∆(vu)(s)ds,

v(t) = e
1
2
i(t−τ)∆vτ + i

∫ t

τ
e

1
2
i(t−s)∆(u2)(s)ds

has a unique solution (u, v) ∈ S(I)× S(I) in S(I)× S(I) sense and (u, v) satisfies

‖(u, v)‖S(I)×S(I) ≤ 2‖(ei(t−τ)∆uτ , e
1
2
i(t−τ)∆vτ )‖S(I)×S(I).

Proof. We define a map (Φ,Ψ), a set E, and a distance d on E as
Φ(u(t), v(t)) = ei(t−τ)∆uτ + 2i

∫ t

τ
ei(t−s)∆(vu)(s)ds,

Ψ(u(t), v(t)) = e
1
2
i(t−τ)∆vτ + i

∫ t

τ
e

1
2
i(t−s)∆(u2)(s)ds,

E :=
{
(u, v) ∈ S(I)× S(I) : ‖(u, v)‖S(I)×S(I) ≤ 2‖(ei(t−τ)∆uτ , e

1
2
i(t−τ)∆vτ )‖S(I)×S(I)

}
,

d((u1, v1), (u2, v2)) := ‖(u1, v1)− (u2, v2)‖S(I)×S(I).
From the last two estimates of Lemma 3.12, we have

‖(Φ(u, v),Ψ(u, v))‖S(I)×S(I) ≤ ‖(ei(t−τ)∆uτ , e
1
2
i(t−τ)∆vτ )‖S(I)×S(I) + c ‖u‖S(I)‖(u, v)‖S(I)×S(I)

≤ (1 + 4cδ)‖(ei(t−τ)∆uτ , e
1
2
i(t−τ)∆vτ )‖S(I)×S(I)

and

d((Φ(u1, v1),Ψ(u1, v1)), (Φ(u2, v2),Ψ(u2, v2)))

≤ c ‖v1‖S(I)‖u1 − u2‖S(I) + c ‖v1 − v2‖S(I)‖u2‖S(I) + c ‖u1 + u2‖S(I)‖u1 − u2‖S(I)
≤ c

{
‖(u1, v1)‖S(I)×S(I) + ‖(u2, v2)‖S(I)×S(I)

}
d((u1, v1), (u2, v2))

≤ 4cδ d((u1, v1), (u2, v2)).

Therefore, if we take a positive constant δ > 0 satisfying 4cδ < 1
2 , then (Φ,Ψ) is a contraction

map on E. □
Theorem 3.18 (Local well-posedness). Let d = 3 and κ = 1

2 . For any initial time t0 ∈ R
and any data (u0, v0) ∈ Ẋ

1/2
1/2 (t0)× Ẋ

1/2
1 (t0), there exist an open interval I 3 t0 and the unique

solution (u, v) ∈ (Ct(I; Ẋ
1/2
1/2 )∩W1(I))×(Ct(I; Ẋ

1/2
1 )∩W2(I)) to (NLS) with the initial condition

(u(t0), v(t0)) = (u0, v0). Moreover, there exists a universal constant δ > 0 such that if the data
satisfies

‖(ei(t−t0)∆u0, e
1
2
i(t−t0)∆v0)‖W1(I)×W2(I) ≤ δ,

then the solution satisfies

‖(u, v)‖W1(I)×W2(I) ≲ ‖(ei(t−t0)∆u0, e
1
2
i(t−t0)∆v0)‖W1(I)×W2(I).

Furthermore, the solution depends continuously on the initial data, that is, for any {(u0,n, v0,n)}
satisfying (u0,n, v0,n) −→ (u0, v0) in Ẋ

1/2
1/2 (t0)×Ẋ

1/2
1 (t0) as n→ ∞ and any compact time interval

Ĩ ⊂ I, there exists n0 ∈ N such that (NLS) with initial data (u0,n, v0,n) has a unique solution

(un, vn) ∈ (Ct(Ĩ; Ẋ
1/2
1/2 ) ∩W1(Ĩ))×(Ct(Ĩ; Ẋ

1/2
1 ) ∩W2(Ĩ)) for any n ≥ n0 and (un, vn) −→ (u, v)

in (Ct(Ĩ; Ẋ
1/2
1/2 ) ∩W1(Ĩ))×(Ct(Ĩ; Ẋ

1/2
1 ) ∩W2(Ĩ)) as n→ ∞.

Proof. The strategy of the proof is as follows: We first obtain a S-solution. Then, we show it is
a solution in the sense of Definition 1.35 by a persistence-of-regularity type argument.

By Lemma 3.6 and Proposition 3.5, we have

‖(ei(t−t0)∆u0, e
1
2
i(t−t0)∆v0)‖S(R)×S(R) ≲ ‖(ei(t−t0)∆u0, e

1
2
i(t−t0)∆v0)‖W1(R)×W2(R)
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≲ ‖(e−it0∆u0, e−
1
2
it0∆v0)‖FḢ 1

2×FḢ
1
2
<∞.

Hence, we can chose an open interval I 3 t0 so that

‖(ei(t−t0)∆u0, e
1
2
i(t−t0)∆v0)‖S(I)×S(I) ≤ δ.

For this interval, we have a unique S-solution (u, v) ∈ S(I)×S(I) by Proposition 3.17. We shall
show this is a solution in the sense of Definition 1.35. By Proposition 3.5 and Lemma 3.12, one
has

‖(u, v)‖W1(I)×W2(I)

≤ ‖(ei(t−t0)∆u0, e
1
2
i(t−t0)∆v0)‖W1(I)×W2(I) + c ‖vu‖N1(I) + c ‖u2‖N2(I)

≤ ‖(ei(t−t0)∆u0, e
1
2
i(t−t0)∆v0)‖W1(I)×W2(I) + c ‖(u, v)‖W1(I)×W2(I)‖(u, v)‖S(I)×S(I)

and

‖(u, v)‖
L∞
t (I;Ẋ

1/2
1/2

)×L∞
t (I;Ẋ

1/2
1 )

≤ c ‖(u0, v0)‖Ẋ1/2
1/2

(t0)×Ẋ1/2
1 (t0)

+ c ‖vu‖
L

3
2 ,2

t (I;Ẋ
1
2 , 1813
1/2

)
+ c ‖u2‖

L
3
2 ,2

t (I;Ẋ
1
2 , 1813
1 )

≤ c ‖(u0, v0)‖Ẋ1/2
1/2

(t0)×Ẋ1/2
1 (t0)

+ c ‖(u, v)‖S(I)×S(I)‖(u, v)‖L∞
t (I;Ẋ

1/2
1/2

)×L∞
t (I;Ẋ

1/2
1 )

We subdivide the interval I into ∪Jj=0Ij so that we have c ‖(u, v)‖S(Ij)×S(Ij) ≤
1
2 in each interval.

Suppose t0 ∈ I0. We have

‖(u, v)‖W1(I0)×W2(I0) ≤ 2‖(ei(t−t0)∆u0, e
1
2
i(t−t0)∆v0)‖W1(I0)×W2(I0)

and

‖(u, v)‖
L∞
t (I0;Ẋ

1/2
1/2

)×L∞
t (I0;Ẋ

1/2
1 )

≲ ‖(u0, v0)‖Ẋ1/2
1/2

(t0)×Ẋ1/2
1 (t0)

.

Repeat the argument to obtain (u, v) ∈ (L∞
t (I; Ẋ

1/2
1/2 ) ∩W1(I)) × (L∞

t (I; Ẋ
1/2
1 ) ∩W2(I)). The

continuous dependence on initial data is a special case of Proposition 3.23. We omit the details.
□

Proposition 3.19 (Scattering criterion). Let d = 3 and κ = 1
2 . Let (u, v) be a unique solution

to (NLS) given in Theorem 3.18. Then, the following seven statements are equivalent.

(1) (u, v) scatters in positive time;
(2) There exists τ ∈ Imax such that ‖(u, v)‖W1([τ,Tmax))×W2([τ,Tmax)) <∞;
(3) There exists τ ∈ Imax such that ‖(u, v)‖S([τ,Tmax))×S([τ,Tmax)) <∞;
(4) There exists τ ∈ Imax such that ‖u‖W1([τ,Tmax)) <∞;
(5) There exists τ ∈ Imax such that ‖v‖W2([τ,Tmax)) <∞;
(6) There exists τ ∈ Imax such that ‖u‖S([τ,Tmax)) <∞;
(7) There exists τ ∈ Imax such that ‖v‖S([τ,Tmax)) <∞.

Proof. We prove (1) =⇒ (2). By the definition of scattering in positive time, we have Tmax = ∞.

We set that (u+, v+) ∈ FḢ
1
2 (R3)×FḢ

1
2 (R3) satisfies

lim
t→∞

‖(e−it∆u(t), e−
1
2
it∆v(t))− (u+, v+)‖FḢ 1

2×FḢ
1
2
= 0. (3.4)

Applying Proposition 3.5, we have

‖(eit∆u+, e
1
2
it∆v+)‖W1([0,∞))×W2([0,∞)) ≲ ‖(u+, v+)‖FḢ 1

2×FḢ
1
2
<∞.

Thus, there exists τ > 0 such that

‖(eit∆u+, e
1
2
it∆v+)‖W1([τ,∞))×W2([τ,∞)) <

δ

2
,
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where δ > 0 is given in Theorem 3.18. Furthermore, we have

‖(eit∆u+, e
1
2
it∆v+)− (ei(t−t0)∆u(t0), e

1
2
i(t−t0)∆v(t0))‖W1([0,∞))×W2([0,∞))

≲ ‖(u+, v+)− (e−it0∆u(t0), e
− 1

2
it0∆v(t0))‖FḢ 1

2×FḢ
1
2
≤ δ

2

for sufficiently large t0 ≥ τ by Proposition 3.5 and (3.4). Then,

‖(ei(t−t0∆)u(t0), e
1
2
i(t−t0)∆v(t0))‖W1([τ,∞))×W2([τ,∞))

≤ ‖(eit∆u+, e
1
2
it∆v+)‖W1([τ,∞))×W2([τ,∞))

+ ‖(eit∆u+, e
1
2
it∆v+)− (ei(t−t0)∆u(t0), e

1
2
i(t−t0)∆v(t0))‖W1([τ,∞))×W2([τ,∞))

≤ δ.

By theorem 3.18, there exists a solution (ũ, ṽ) to (NLS) such that (ũ(t0), ṽ(t0)) = (u(t0), v(t0))
and ‖(ũ, ṽ)‖W1([τ,∞))×W2([τ,∞)) ≤ cδ. By the uniqueness of solution to (NLS), we have (ũ, ṽ) =
(u, v). Therefore, we have ‖(u, v)‖W1([τ,∞))×W2([τ,∞)) ≤ cδ.
We prove (2) =⇒ (1). Let t1 > t2 > 0. Using Proposition 3.5 and Lemma 3.12, we have

‖e−it1∆u(t1)− e−it2∆u(t2)‖FḢ 1
2
= 2

∥∥∥∥∫ t1

t2

e−is∆(vu)(s)ds

∥∥∥∥
FḢ

1
2

= 2

∥∥∥∥∫ t1

t2

ei(t1−s)∆(vu)(s)ds

∥∥∥∥
Ẋ

1
2
1/2

(t1)

≤ 2

∥∥∥∥∫ t

t2

ei(t−s)∆(vu)(s)ds

∥∥∥∥
L∞
t ([t2,t1];Ẋ

1
2
1/2

)

≤ c ‖vu‖N1([t2,t2])

≤ c ‖u‖W1([t2,t1])‖v‖W2([t2,t1]) −→ 0 as t1 > t2 → ∞

and

‖e−
1
2
it1∆v(t1)− e−

1
2
it2∆v(t2)‖FḢ 1

2
≤ c ‖u‖2W1([t2,t1])

−→ 0 as t1 > t2 → ∞.

Therefore, (u, v) scatters in positive time.
From Lemma 3.6, (2) =⇒ (3) holds.
We prove (3) =⇒ (2). For any ε > 0, there exists τ < τ0 < Tmax such that

‖(u, v)‖S([τ0,Tmax))×S([τ0,Tmax)) < ε.

Using Proposition 3.5, we have

‖(u, v)‖W1([τ0,T ])×W2([τ0,T ]) ≤ c ‖(u(τ0), v(τ0))‖
Ẋ

1
2
1/2

(τ0)×Ẋ
1
2
1 (τ0)

+ c ‖(u, v)‖S([τ0,T ])×S([τ0,T ])‖(u, v)‖W1([τ0,T ])×W2([τ0,T ])

≤ c ‖(u(τ0), v(τ0))‖
Ẋ

1
2
1/2

(τ0)×Ẋ
1
2
1 (τ0)

+ cε‖(u, v)‖W1([τ0,T ])×W2([τ0,T ])

for any T ≥ τ0. Taking cε ≤ 1
2 , we obtain

‖(u, v)‖W1([τ0,T ])×W2([τ0,T ]) ≤ 2c ‖(u(τ0), v(τ0))‖
Ẋ

1
2
1/2

(τ0)×Ẋ
1
2
1 (τ0)

.

Letting T −→ Tmax, we get (2).
We prove (4) ⇐⇒ (5), which implies (2) ⇐⇒ (4) ⇐⇒ (5). Suppose (4). Take τ0 ∈ (τ, Tmax) to
be chosen later. For any T ∈ (τ0, Tmax), we have

‖v‖W2([τ0,T )) ≤ c ‖v(τ0)‖
Ẋ

1
2
1 (τ0)

+ c ‖u‖W1([τ0,T ))‖v‖W2([τ0,T )).
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Here, we choose τ0 satisfying c ‖u‖W1([τ0,T )) ≤
1
2 . Then, we see

‖v‖W2([τ0,T )) ≤ 2c ‖v(τ0)‖
Ẋ

1
2
1 (τ0)

.

Since T ∈ (τ0, Tmax) is arbitrary, we obtain (5). By the same argument, we have (5) =⇒ (4).
We prove (6) ⇐⇒ (7), which implies (3) ⇐⇒ (6) ⇐⇒ (7). Suppose (6). One deduces from
Proposition 3.5 and Lemma 3.12 that

‖v‖S([τ,τ0)) ≤ c ‖v(τ)‖
Ẋ

1
2
1 (τ)

+ c ‖u‖2S([τ,τ0))

for any τ0 ∈ (τ, Tmax). Here, we note that the implicit constant is independent of T . Hence, we
obtain (7) by letting τ ↑ Tmax. Suppose (7). Take τ0 ∈ (τ, Tmax) to be chosen later. For any
T ∈ (τ0, Tmax), we see

‖u‖S((τ0,T )) ≤ c ‖u(τ0)‖
Ẋ

1
2
1/2

(τ0)
+ c ‖u‖S((τ0,T ))‖v‖S((τ0,T )),

where the constant c is independent of τ0 and T . We now choose τ0 so that c ‖v‖S((τ0,Tmax)) ≤
1
2 .

This is possible by the property (7). Then, the above inequality implies that

‖u‖S((τ0,T )) ≤ 2c ‖u(τ0)‖
Ẋ

1
2
1/2

(τ0)
.

Since T ∈ (τ0, Tmax) is arbitrary, we obtain the result. □

We turn to a sufficient condition for scattering. One of the simplest conditions is due to
smallness of the data.

Proposition 3.20 (Small data scattering). Let d = 3 and κ = 1
2 . Let (u0, v0) ∈ FḢ

1
2 (R3) ×

FḢ
1
2 (R3) and let (u, v) be a corresponding unique solution given in Theorem 3.18. Then, we

have the followings.

(1) There exists η1 > 0 such that if ‖(eit∆u0, e
1
2
it∆v0)‖S×S ≤ η1, then (u, v) scatters.

(2) There exists η2 > 0 such that if ‖(eit∆u0, e
1
2
it∆v0)‖W1×W2 ≤ η2, then (u, v) scatters.

(3) There exists η3 > 0 such that if ‖(u0, v0)‖FḢ 1
2×FḢ

1
2
≤ η3, then (u, v) scatters.

These follow from Proposition 3.17, 3.19, and 3.5.

3.4. Nonpositive energy implies failure of scattering. In this subsection, we give a proof
of Theorem 1.44. To begin with, we will prove that if a data belongs H1 × H1, in addition,
then the corresponding solution given in Theorem 3.18 stays in H1 × H1 and the mass and
the energy make sense and are conserved. Furthermore, as is well-known, since our equation is
mass-subcritical, the conservation of mass implies the solution is global.

Proposition 3.21. Let d = 3 and κ = 1
2 . For any t0 ∈ R and any (u0, v0) ∈ (Ẋ

1/2
1/2 (t0) ∩H

1)×

(Ẋ
1/2
1 (t0)∩H1), there exists a unique time global solution (u, v) ∈ (Ct(R; Ẋ

1/2
1/2∩H

1)∩W1,loc(R))×

(Ct(R; Ẋ
1/2
1 ∩H1) ∩W2,loc(R)) to (NLS) with the initial condition (u(t0), v(t0)) = (u0, v0). The

solution has conserved its mass and energy. Furthermore, if the solution scatters in FḢ
1
2 ×FḢ

1
2

sense then, the solution also scatters in H1 ×H1 sense.

This is done by a persistence-of-regularity argument. We omit the details of the proof. Now,
we prove Theorem 1.44.

Proof of Theorem 1.44. Suppose that a solution (u, v) given in Proposition 3.21 scatters in

FḢ
1
2 × FḢ

1
2 . Then, the solution scatters also in H1 ×H1, that is, there exists (u±, v±) such

that

‖(u, v)− (eit∆u±, e
1
2
it∆v±)‖L3

x×L3
x
≲ ‖(u, v)− (eit∆u±, e

1
2
it∆v±)‖H1

x×H1
x

−→ 0 as t→ ±∞
(3.5)
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By the density argument, we assume (u±, v±) ∈ C∞
c (R3) × C∞

c (R3). Combining this limit and
Lemma 3.3, we have

‖(u(t), v(t))‖L3
x×L3

x
−→ 0

as t→ ±∞. Hence, ∣∣∣∣2Re∫
R3

v(t, x)u(t, x)
2
dx

∣∣∣∣ ≤ 2‖v(t)‖L3
x
‖u(t)‖2L3

x
−→ 0

as t→ ∞. We deduce that

E(u0, v0) = lim
t→±∞

E(u(t), v(t)) = ‖∇u±‖2L2
x
+

1

2
‖∇v±‖2L2

x
≥ 0.

Further, E(u0, v0) = 0 implies (u±, v±) = (0, 0). By (3.5) and the mass conservation implies
(u0, v0) = (0, 0). □
3.5. Stability. In this subsection, we establish a stability result. Roughly speaking, the propo-
sition implies that two solutions are also close each other if their initial data are close and the
equations for them are close.

Proposition 3.22 (Short time perturbation). Let d = 3 and κ = 1
2 . Let I be a time interval

and t0 ∈ I. Let (ũ, ṽ) : I × R3 −→ C2 satisfyi∂tũ+∆ũ = −2ṽũ+ e1,

i∂tṽ +
1

2
∆ṽ = −ũ2 + e2

(3.6)

for some function (e1, e2) ∈ FḢ
1
2 (R3)×FḢ

1
2 (R3). There exists a constant ε0 > 0 such that for

any 0 < ε ≤ ε0, if (u0, v0) ∈ FḢ
1
2 (R3)×FḢ

1
2 (R3) satisfies

‖(ũ, ṽ)‖W1(I)×W2(I) ≤ ε0, ‖(e1, e2)‖N1(I)×N2(I) ≤ ε,

and ∥∥(ei(t−t0)∆(u0 − ũ(t0)), e
1
2
i(t−t0)∆(v0 − ṽ(t0))

)∥∥
W1(I)×W2(I)

≤ ε,

then a solution (u, v) to (NLS) with initial data (u(t0), v(t0)) = (u0, v0) obeys

‖(u, v)− (ũ, ṽ)‖W1(I)×W2(I) ≲ ε and ‖(vu− ṽũ, u2 − ũ2)‖N1(I)×N2(I) ≲ ε.

Proof. We define (w, z) = (u, v)− (ũ, ṽ). Then, (w, z) satisfies
w(t) = ei(t−t0)∆w(t0) + i

∫ t

t0

ei(t−s)∆(2vu− 2ṽũ+ e1)(s)ds,

z(t) = e
1
2
i(t−t0)∆z(t0) + i

∫ t

t0

e
1
2
i(t−s)∆(u2 − ũ2 + e2)(s)ds.

Using the following identities

vu− ṽũ = (u− ũ)(v − ṽ) + (u− ũ)ṽ + (v − ṽ)ũ = wz + wṽ + zũ,

u2 − ũ2 = (u− ũ)2 + 2(u− ũ)ũ = w2 + 2wũ,
(3.7)

we can rewrite the integral equation as follows:
w(t) = ei(t−t0)∆w(t0) + 2i

∫ t

t0

ei(t−s)∆(2wz + 2wṽ + 2zũ+ e1)(s)ds,

z(t) = e
1
2
i(t−t0)∆z(t0) + i

∫ t

t0

e
1
2
i(t−s)∆(w2 + 2wũ+ e2)(s)ds.

Proposition 3.5 and Lemma 3.12 deduce

‖w‖W1(I) ≤ ε+ c ‖wz + wṽ + zũ+ e1‖N1(I)

≤ ε+ c ‖w‖W1(I)‖z‖W2(I) + c ‖w‖W1(I)‖ṽ‖W2(I) + c ‖z‖W2(I)‖ũ‖W1(I) + c ‖e1‖N1(I)

≤ cε+ c ‖w‖W1(I)‖z‖W2(I) + cε0‖w‖W1(I) + cε0‖z‖W2(I)
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≤ cε+ c ‖(w, z)‖2W1(I)×W2(I)
+ cε0‖(w, z)‖W1(I)×W2(I) (3.8)

and

‖z‖W2(I) ≤ cε+ c ‖(w, z)‖2W1(I)×W2(I)
+ cε0‖(w, z)‖W1(I)×W2(I). (3.9)

Combining these inequalities, we have

‖(w, z)‖W1(I)×W2(I) ≤ cε+ c ‖(w, z)‖2W1(I)×W2(I)
+ cε0‖(w, z)‖W1(I)×W2(I).

If ε0 is small, we obtain

‖(w, z)‖W1(I)×W2(I) ≤ cε+ c ‖(w, z)‖2W1(I)×W2(I)
,

which implies

‖(w, z)‖W1(I)×W2(I) ≤ cε (3.10)

for ε ≤ ε0 if ε0 is small. Combining (3.7), (3.8), (3.9), and (3.10), we have

‖(vu− ṽũ, u2 − ũ2)‖W1(I)×W2(I) ≤ cε.

□

Proposition 3.23 (Long time perturbation). Let d = 3 and κ = 1
2 . Let I be a time interval

with t0 ∈ I and M > 0. Let (ũ, ṽ) : I × R3 −→ C2 satisfy (3.6) for some functions (e1, e2) and

‖(ũ, ṽ)‖W1(I)×W2(I) ≤ M . Let (u0, v0) ∈ Ẋ
1/2
1/2 (t0) × Ẋ

1/2
1 (t0) and let (u, v) be a corresponding

solution to (NLS) with (u(t0), v(t0)) = (u0, v0) given in Theorem 3.18. There exist ε1 = ε1(M) >
0 and c = c(M) > 0 such that for any 0 ≤ ε < ε1, if

‖(ũ(t0), ṽ(t0))− (u0, v0)‖Ẋ1/2
1/2

(t0)×Ẋ1/2
1 (t0)

+ ‖(e1, e2)‖N1(I)×N2(I) ≤ ε

then the maximal existence interval of (u, v) contains I and the solution satisfies

‖(u, v)− (ũ, ṽ)‖
(L∞

t (I;Ẋ
1/2
1/2

)∩W1(I))×(L∞
t (I;Ẋ

1/2
1 )∩W2(I))

≤ cε.

Proof. By the time symmetry, we may assume t0 = inf I without loss of generality. Take the
constant ε0 given in Proposition 3.22. Since ‖(ũ, ṽ)‖W1(I)×W2(I) ≤ M , there exists J ∈ N such

that I =
⋃J
j=1 Ij =

⋃J
j=1[tj−1, tj) with ‖(ũ, ṽ)‖W1(Ij)×W2(Ij) ≤ ε0. We set (w, z) = (u, v)− (ũ, ṽ).

Put

κj = ‖(vu− ṽũ, u2 − ũ2)‖N1(Ij)×N2(Ij).

From Proposition 3.22, we see that there exists a constant C0 > 0 such that if a constant ηj > 0
satisfies ηj ≤ ε0 and

‖(ei(t−tj−1)∆w(tj−1), e
1
2
i(t−tj−1)∆z(tj−1))‖W1(Ij)×W2(Ij) ≤ ηj (3.11)

holds, then

‖(w, z)‖W1(Ij)×W2(Ij) + κj ≤ C0ηj . (3.12)

By the integral equation, we have
ei(t−tj−1)∆w(tj−1) = ei(t−t0)∆w(t0) + i

∫ tj−1

t0

ei(t−s)∆(2vu− 2ṽũ+ e1)(s)ds,

e
1
2
i(t−tj−1)∆z(tj−1) = e

1
2
i(t−t0)∆z(t0) + i

∫ tj−1

t0

e
1
2
i(t−s)∆(u2 − ũ2 + e2)(s)ds.

Using Proposition 3.5,

‖ei(t−tj−1)∆w(tj−1)‖W1(Ij)

≤ c ‖e−it0∆w(t0)‖FḢ 1
2
+ c

∥∥∥∥∫ tj−1

t0

e−is∆(2vu− 2ṽṽ + e1)(s)ds

∥∥∥∥
FḢ

1
2
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= c ‖w(t0)‖
Ẋ

1
2
1/2

(t0)
+ c

∥∥∥∥∫ tj−1

t0

ei(tj−1−s)∆(2vu− 2ṽṽ + e1)(s)ds

∥∥∥∥
Ẋ

1
2
1/2

(tj−1)

≤ c ‖w(t0)‖
Ẋ

1
2
1/2

(t0)
+ c

∥∥∥∥∫ t

t0

ei(t−s)∆(2vu− 2ṽṽ + e1)(s)ds

∥∥∥∥
L∞(t0,tj−1;Ẋ

1
2
1/2

)

≤ c ‖w(t0)‖
Ẋ

1
2
1/2

(t0)
+ c ‖vu− ṽũ‖N1(t0,tj−1) + c ‖e1‖N1(t0,tj−1)

and

‖e
1
2
i(t−tj−1)∆z(tj−1)‖W2(Ij) ≤ c ‖z(t0)‖

Ẋ
1
2
1 (t0)

+ c ‖u2 − ũ2‖N2(t0,tj−1) + c ‖e2‖N2(t0,tj−1),

which deduce∥∥(ei(t−tj−1)∆w(tj−1), e
1
2
i(t−tj−1)∆z(tj−1)

)∥∥
W1(Ij)×W2(Ij)

≤ c ‖(w(t0), z(t0))‖
Ẋ

1
2
1/2

(t0)×Ẋ
1
2
1 (t0)

+ c ‖(e1, e2)‖N1(t0,tj−1)×N2(t0,tj−1)

+ c ‖(vu− ṽũ, u2 − ũ2)‖N1(t0,tj−1)×N2(t0,tj−1)

≤ c ‖(w(t0), z(t0))‖
Ẋ

1
2
1/2

(t0)×Ẋ
1
2
1 (t0)

+ c ‖(e1, e2)‖N1(I)×N2(I)

+ c

j−1∑
ℓ=1

‖(vu− ṽũ, u2 − ũ2)‖N1(Iℓ)×N2(Iℓ)

< C1ε+ C1

j−1∑
ℓ=1

κℓ (3.13)

for some constant C1 > 1. Let us take a constant α ≥ max{2, 2C0C1}. For ε′ ≤ ε0, we set

ηj = ηj(ε
′) := αj−J−1ε′ (3.14)

for each j ∈ [1, J + 1]. Then, we have

η1 < η2 < · · · < ηJ < ηJ+1 = ε′ ≤ ε0.

We also remark that ηj is increasing in ε′. We now show by induction that (3.12) holds for
j ∈ [1, J ] as long as ε′ ≤ ε0 and ε ≤ 1

C1
η1(ε

′). To do so, it suffices to show that (3.11) is satisfied

for j ∈ [1, J ] under this condition. When j = 1, (3.11) is fulfilled by the assumption. Assume
for induction that (3.11) is true for 1 ≤ j ≤ k, where k ∈ [1, J − 1]. Since (3.12) is also true for
j ∈ [1, k], we deduce from (3.13) that

∥∥(ei(t−tk)∆w(tk), e 1
2
i(t−tk)∆z(tk)

)∥∥
W1(Ik+1)×W2(Ik+1)

≤ C1ε+ C1

k∑
ℓ=1

κℓ (3.15)

By the assumptions of ε, α, and (3.14), we have

C1ε ≤ η1 = α−kηk+1

and

C1κℓ ≤ C1C0ηℓ ≤
1

2
αηℓ =

1

2
αℓ−kηk+1

for ` ∈ [1, k]. Combining these estimates, we have

C1ε+ C1

k∑
ℓ=1

κℓ ≤ α−k

(
1 +

1

2

k∑
ℓ=1

αℓ

)
ηk+1 ≤ ηk+1, (3.16)

where we have used the assumption α ≥ 2 in the last inequality. Hence, (3.11) for j = k + 1
follows from (3.15) and (3.16), and so we see that (3.12) holds for 1 ≤ j ≤ J . Then, (3.16) is
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also true for k ∈ [1, J ]. Set ε1 := 1
C1
η1(ε0) and assume ε ≤ ε1. We define ε′ by the relation

ε = 1
C1
η1(ε

′). Notice that ε′ ≤ ε0 and ε′ = C1α
Jε. By (3.12), α ≥ 2C1C0, and (3.14),

‖(w, z)‖W1(I)×W2(I) ≤
J∑
j=1

‖(w, z)‖W1(Ij)×W2(Ij) ≤
J∑
j=1

C0ηj =
1

C1

J∑
j=1

C1C0ηj

≤ 1

C1

J∑
j=1

1

2
α · αj−J−1ε′ =

ε′

2C1
· α

1−J(αJ − 1)

α− 1
≤ 1

C1
ε′ = αJε,

where we have used the assumption α ≥ 2 in the last inequality. Further, we apply (3.16) for
k = J . Then,

‖(w, z)‖
L∞
t (I;Ẋ

1
2
1
2

)×L∞
t (I;Ẋ

1
2
1 )

≤ c ‖(w(t0), z(t0))‖
Ẋ

1
2
1/2

(t0)×Ẋ
1
2
1 (t0)

+ c ‖(vu− ṽũ, u2 − ũ2)‖N1(I)×N2(I) + c ‖(e1, e2)‖N1(I)×N2(I)

≤ C1ε+ C1

J∑
j=1

κj ≤ ηJ+1 = ε′ = C1α
Jε.

□

3.6. Properties of Lv0 and `†v0. In this subsection, we investigate properties of Lv0 and `†v0 .

Proposition 3.24. Let d = 3 and κ = 1
2 . For any v0 ∈ FḢ

1
2 (R3), there exist ε1 > 0 and δ > 0

such that

Lv0(ε) ≤ ‖e
1
2
it∆v0‖W2([0,∞)) + δε

holds for 0 ≤ ε < ε1. Here, the constants ε1 > 0 and δ > 0 depend only on ‖e
1
2
it∆v0‖W2([0,∞)).

In particular, `†v0 > 0 for any v0 ∈ FḢ
1
2 (R3).

Proof. Apply Proposition 3.23 with (ũ, ṽ) = (0, e
1
2
it∆v0) and (e1, e2) = (0, 0), the desired result

holds. □
Proposition 3.25 (Properties of Lv0). Let d = 3 and κ = 1

2 . For each fixed v0 ∈ FḢ
1
2 (R3),

the function Lv0 is a non-decreasing continuous function defined on [0,∞).

Proof. It is clear that Lv0 is a non-decreasing function defined on [0,∞). We prove the continuity.
It is obvious that

Lv0(0) = ‖e
1
2
it∆v0‖W2([0,∞)) <∞.

The continuity of Lv0 at ` = 0 holds by Proposition 3.24. Fix `0 ∈ (0,∞) such that Lv0(`0) <∞.
Let us prove right continuity of Lv0(`) at ` = `0. Pick ε > 0. Take δ > 0 so that δ < ε1 and
cδ < ε, where ε1 = ε1(Lv0(`0)) and c = c(Lv0(`0)) are the constants given in Proposition 3.23

with the choice M = Lv0(`0). Fix ` ∈ (`0, `0 + δ). Then, for any u0,1 ∈ FḢ
1
2 (R3) satisfying

‖u0,1‖FḢ 1
2
(R3) ≤ `, the function

u0,2 =
`0

`0 + δ
u0,1

satisfies ‖u0,2‖FḢ 1
2
≤ `0 and ‖u0,1 − u0,2‖FḢ 1

2
≤ δ. Let (u1, v1) and (u2, v2) be two solutions to

(NLS) with initial data (u0,1, v0) and (u0,2, v0), respectively. Note that

‖(u2, v2)‖W1([0,∞))×W2([0,∞)) ≤ Lv0(`0)

since ‖u0,2‖FḢ 1
2
≤ `0. Hence, we have

‖(u1, v1)− (u2, v2)‖W1([0,∞))×W2([0,∞)) ≤ cδ < ε
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by Proposition 3.23. Thus, it follows that

‖(u1, v1)‖W1([0,∞))×W2([0,∞)) < ‖(u2, v2)‖W1([0,∞))×W2([0,∞)) + ε ≤ Lv0(`0) + ε.

Taking the supremum over such u0,1 ∈ FḢ
1
2 (R3), we obtain

Lv0(`) ≤ Lv0(`0) + ε

for ` ∈ (`0, `0+δ). This shows the right continuity of Lv0 at ` = `0 together with non-decreasing
property. The left continuity is a consequence of the continuous dependence on initial data in
Theorem 3.18. We omit the details.

Let us move on to the case Lv0(`0) = ∞. We may suppose that `0 := inf{` : Lv0(`) = ∞}
otherwise continuity is trivial by definition. Under this assumption, we prove that Lv0(`) goes
to infinity as ` ↑ `0. Assume that

C0 := sup
ℓ<ℓ0

Lv0(`) <∞

for contradiction. Let ε1 = ε1(C0) be the constant given in Proposition 3.23. Fix 0 < ε < 1 so

that ε`0 < ε1. Then, for any fixed u0,1 ∈ FḢ
1
2 (R3) with ‖u0,1‖FḢ 1

2
≤ `0, the function

u0,2 := (1− ε)u0,1

satisfies ‖u0,2‖FḢ 1
2
≤ (1− ε)`0. Let (u1, v1) and (u2, v2) be two solutions to (NLS) with initial

data (u0,1, v0) and (u0,2, v0), respectively. One sees that

‖(u2, v2)‖W1([0,∞))×W2([0,∞)) ≤ Lv0 ((1− ε)`0) ≤ C0 <∞.

In addition, we have

‖u0,1 − u0,2‖FḢ 1
2
= ε‖u0,1‖FḢ 1

2
≤ ε`0.

Applying Proposition 3.23, we obtain

‖(u1, v1)‖W1([0,∞))×W2([0,∞)) ≤ ‖(u2, v2)‖W1([0,∞))×W2([0,∞)) + cε`0

≤ Lv0 ((1− ε)`0) + cε`0 <∞,

where c = c(C0) is a constant. Taking supremum over u0,1, it follows that

Lv0(`0) ≤ Lv0 ((1− ε)`0) + cε`0 <∞.

This is a contradiction. □

By using the non-decreasing property of Lv0 , we have the following:

Proposition 3.26 (Another characterization of `†v0). Let d = 3 and κ = 1
2 . The following

identity holds:

`†v0 = inf{` : Lv0(`) = ∞}

for any v0 ∈ FḢ
1
2 (R3).

Proof. When Lv0(`) is finite for any ` > 0, we see that the both sides are infinite. Otherwise,
the two sets {` : Lv0(`) <∞} and {` : Lv0(`) = ∞} give us a Dedekind cut of a totally ordered
set [0,∞), by means of Propositions 3.24 and Proposition 3.25. □

A consequence of the alternative characterization is that

Lv0(`
†
v0) = ∞

holds for any v0 ∈ FḢ
1
2 (R3). This follows from the continuity of Lv0 . We also have the following:

Lemma 3.27. Let d = 3 and κ = 1
2 . `v0 ≥ `†v0 for any v0 ∈ FḢ

1
2 (R3).
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Proof. If `v0 = ∞, then Lemma 3.27 holds. Let `v0 < ∞. By the definition of `v0 , for

any ε > 0, there exists u0 ∈ FḢ
1
2 (R3) such that ‖u0‖FḢ 1

2
< `v0 + ε holds and the corre-

sponding solution (u, v) to (NLS) with (IC) does not scatter. Since Proposition 3.19 deduces
‖(u, v)‖W1([0,Tmax))×W2([0,Tmax)) = ∞ from the failure of scattering, we obtain Lv0(`v0 + ε) = ∞.

This implies the relation `†v0 ≤ `v0 + ε, thanks to Proposition 3.26. Since ε > 0 is arbitrary, we
have the desired conclusion. □

The following is one of the key property to prove Theorem 1.39.

Proposition 3.28. Let d = 3 and κ = 1
2 . `

†
0 ≥ `†v0 holds for any v0 ∈ FḢ

1
2 (R3).

Proof. Fix v0 ∈ FḢ
1
2 (R3). We assume that `†0 < `†v0 for contradiction. Then, we have

L0

(`†0 + `†v0
2

)
= ∞ and Lv0

(`†0 + `†v0
2

)
<∞.

Using the fact that L0(
ℓ†0+ℓ

†
v0

2 ) = ∞ and the scaling argument, one can take data {(U0,n, 0)} so
that the corresponding solution (Un, Vn) to (NLS) satisfies

‖U0,n‖FḢ 1
2
≤ `†0 + `†v0

2
(3.17)

and

‖(Un, Vn)‖W1([0,n−1])×W2([0,n−1]) ≥ n (3.18)

for all n ≥ 1. Let (un, vn) be another solution to (NLS) with the initial data (U0,n, v0). Since

Lv0(
ℓ†0+ℓ

†
v0

2 ) <∞, one sees from (3.17) that (un, vn) is global in time and

‖(un, vn)‖W1([0,∞))×W2([0,∞)) ≤ Lv0

(`†0 + `†v0
2

)
<∞.

We now set (ũn, ṽn) = (un, vn)− (0, e
1
2
it∆v0). Then, (ũn, ṽn) solves

i∂tũn +∆ũn + 2ṽnũn = −2(e
1
2
it∆v0)un,

i∂tṽn +
1

2
∆ṽn + ũ2n = 0,

(ũn(0), ṽn(0)) = (U0,n, 0)

and so it is an approximate solution to (NLS) with an error

e1 = −2(e
1
2
it∆v0)un, e2 = 0.

Take τ > 0 and set I = [0, τ ]. We have

‖(e1, e2)‖N1(I)×N2(I) ≲ ‖e
1
2
it∆v0‖W2(I)‖un‖W1(I) ≤ ‖e

1
2
it∆v0‖W2(I)Lv0

(`†0 + `†v0
2

)
.

The right hand side is independent of n, and tends to zero as τ ↓ 0. Now, we apply the

Proposition 3.23 with M = Lv0(
ℓ†0+ℓ

†
v0

2 )+ ‖e
1
2
it∆v0‖W2([0,∞)). Choose τ sufficiently small so that

the above upper bound of the error becomes smaller than the corresponding ε1. Since (Un, Vn)
is a solution with the same initial data as (ũn, ṽn), we see from Proposition 3.23 that (Un, Vn)
extends up to time τ and obeys the bound

‖(Un, Vn)‖W1(I)×W2(I) ≤ ‖(ũn, ṽn)‖W1(I)×W2(I) + Cε1

≤ Lv0

(`†0 + `†v0
2

)
+ ‖e

1
2
it∆v0‖W2([0,∞)) + Cε1.

However, this contradicts (3.18) for large n. □
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3.7. Linear profile decomposition. In this subsection, we obtain a linear profile decomposi-
tion (Theorem 3.38). Let us first introduce several operators and give a notion of deformation,
which is a specific class of bounded operator.

Definition 3.29 (Operators). We define the following operators.

(1) (Dilation)

(D(h)(f, g))(x) = (f{h}, g{h}) = (h2f(hx), h2g(hx)) for h ∈ 2Z,

(2) (Translation in Fourier space)

(T (ξ)(f, g))(x) = (eix·ξf(x), e2ix·ξg(x)) for ξ ∈ R3.

Definition 3.30. We say that a bounded operator

G = (G1,G2) = T (ξ)D(h) for (ξ, h) ∈ R3 × 2Z

on FḢ
1
2 (R3)×FḢ

1
2 (R3) is called a deformation in FḢ

1
2 ×FḢ

1
2 . Let a set G ⊂ L(FḢ

1
2 ×FḢ

1
2 )

be composed of all deformations, where L(FḢ
1
2 × FḢ

1
2 ) denotes a whole of bounded linear

operator on FḢ
1
2 ×FḢ

1
2 .

Remark 3.31. G is a group with the functional composition as a binary operation. The identity
element Id is T (0)D(1) ∈ G. For any G = T (ξ)D(h), the inverse element is G−1 = T (− ξ

h)D( 1h) ∈
G. We check that G forms a group.

Next, we introduce a class of families of deformations.

Definition 3.32 (A vanishing family). Let d = 3. We say that a family of deformations
{Gn = T (ξn)D(hn)}n ⊂ G is vanishing if |ξn|+ | log hn| −→ ∞ as n→ ∞ holds.

Lemma 3.33. Let d = 3. A family {Gn}n ⊂ G is vanishing if and only if a family of inverse
elements {G−1

n }n is vanishing.

Proof. We set Gn = T (ξn)D(hn). Let Gn be vanishing. If | log hn| −→ ∞ as n→ ∞, then∣∣∣∣ ξnhn
∣∣∣∣+ ∣∣∣∣log 1

hn

∣∣∣∣ ≥ | log hn| −→ ∞

as n→ ∞. Let |ξn| −→ ∞ as n→ ∞. If∣∣∣∣ ξnhn
∣∣∣∣+ ∣∣∣∣log 1

hn

∣∣∣∣ 6−→ ∞,

then there exists M > 0 such that, for any k ∈ N, there exists nk ≥ k such that∣∣∣∣ ξnk

hnk

∣∣∣∣+ ∣∣∣∣log 1

hnk

∣∣∣∣ ≤M. (3.19)

This inequality implies

|ξnk
|+ | log hnk

| ≤M(|hnk
|+ 1).

Combining this inequality and |ξn|+ | log hn| −→ ∞ as n→ ∞, we have |hnk
| −→ ∞ as k → ∞.

However, this contradicts (3.19). Therefore, G−1
n is vanishing. The other direction follows from

the same argument by the relation (G−1
n )−1 = Gn. □

The following characterization of the vanishing family is useful.

Proposition 3.34. Let d = 3. For a family {Gn}n ⊂ G of deformations, the following three
statements are equivalent.

(1) {Gn}n is vanishing.

(2) For any (φ, ψ) ∈ FḢ
1
2 (R3)×FḢ

1
2 (R3), Gn(φ, ψ) −−⇀ (0, 0) in FḢ

1
2 (R3)×FḢ

1
2 (R3) as

n→ ∞.
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(3) For any subsequence {Gnk
}k, there exist a subsequence {Gnkl

}l and a bounded sequence

{(fl, gl)}l ⊂ FḢ
1
2 (R3) × FḢ

1
2 (R3) such that (fl, gl) −−⇀ (0, 0) and G−1

nkl
(fl, gl) −−⇀

(φ, ψ) 6= (0, 0) in FḢ
1
2 (R3)×FḢ

1
2 (R3) as l → ∞.

Proof. We mimic the argument in [90, 92]. (2) =⇒ (3) holds by taking kl = k and (fk, gk) =
Gnk

(φ, ψ) for some (φ, ψ) 6= (0, 0).
Next, we prove the contraposition of (3) =⇒ (1). If Gn is not vanishing, then the corresponding

sequence of parameters is bounded. Hence, there exists a subsequence {Gnk
}k and G ∈ G such

that Gnk
−→ G in L(FḢ

1
2 × FḢ

1
2 ) as k → ∞. Then, for any subsequence {Gnkl

}l and for any

bounded sequence {(fl, gl)}l such that (fl, gl) −−⇀ (0, 0) in FḢ
1
2 (R3)×FḢ

1
2 (R3) as l → ∞, one

has ∣∣〈G−1
nkl

,1fl, φ〉FḢ 1
2

∣∣ = ∣∣〈fl,Gnkl
,1φ〉FḢ 1

2

∣∣
≤
∣∣〈fl,G1φ〉FḢ 1

2

∣∣+ ∣∣〈fl,Gnkl
,1φ− G1φ〉FḢ 1

2

∣∣
≤
∣∣〈fl,G1φ〉FḢ 1

2

∣∣+ ‖fl‖FḢ 1
2
‖Gnkl

,1φ− G1φ‖FḢ 1
2

−→ 0 as l → ∞

for any φ ∈ FḢ
1
2 (R3). Similarly,

∣∣〈Gnk,2gkl , ψ〉FḢ 1
2

∣∣ −→ 0 as k → ∞ for any ψ ∈ FḢ
1
2 (R3),

that is, (Gnk
)−1(fkl , gkl) −−⇀ (0, 0) in FḢ

1
2 (R3)×FḢ

1
2 (R3) as k → ∞. Hence, (3) fails.

Finally, we prove (1) =⇒ (2). We take any (f, g) ∈ FḢ
1
2 (R3) × FḢ

1
2 (R3) and any (φ, ψ) ∈

FḢ
1
2 (R3) × FḢ

1
2 (R3). By the density argument, we assume (f, g) ∈ C∞

c (R3) × C∞
c (R3) and

(φ, ψ) ∈ C∞
c (R3) × C∞

c (R3). If | log hn| −→ ∞, then for any subsequence {hnk
}, there exists a

subsequence {hnkl
} such that hnkl

−→ 0 as l → ∞ or hnkl
−→ ∞ as l → ∞. The inequality∣∣〈Gnkl

(f, g), (φ, ψ)〉
FḢ

1
2×FḢ

1
2

∣∣ ≤ ‖Gnkl
(f, g)‖Lr

x×Lr
x
‖(| · |φ, | · |ψ)‖Lr′

x ×Lr′
x
∼ (hnkl

)2−
3
r .

deduces the desired result by taking r > 3
2 if hnkl

−→ 0 and r < 3
2 if hnkl

−→ ∞. Next, we

consider the case: | log hn| is bounded and |ξn| −→ ∞ as n → ∞. If we take a subsequence
{hnkl

} ⊂ {hnk
} for any subsequence {hnk

} ⊂ {hn} satisfying hnkl
−→ h0 ∈ 2Z as l → ∞, then∣∣〈Gnkl

,1f, φ〉FḢ 1
2

∣∣ ≤ ∥∥h2nkl
f(hnkl

·)− h20f(h0·)
∥∥
FḢ

1
2
‖φ‖

FḢ
1
2
+
∣∣〈eix·ξnkl h20f(h0·), φ〉FḢ 1

2

∣∣
−→ 0 as l → ∞,

where the second term converge to 0 as l → ∞ by Lemma 3.2. □
We now introduce a notion of orthogonality.

Definition 3.35 (Orthogonality). We say two families of deformations {Gn}, {G̃n} ⊂ G are

orthogonal if {G−1
n G̃n} is vanishing.

Remark 3.36. Let {Gjn = T (ξjn)D(hjn)} ⊂ G (j = 1, 2) be two families of deformations. {G1
n}

and {G2
n} are orthogonal if and only if

h1n
h2n

+
h2n
h1n

+
|ξ1n − ξ2n|
h1n

−→ ∞

as n→ ∞. This equivalence holds from the identity (G1
n)

−1G2
n = T ( ξ

2
n−ξ1n
h1n

)D(h
2
n
h1n

).

Proposition 3.37. Let d = 3 and {Gn}, {G̃n} ⊂ G. Define the relation ∼ as follows: If {Gn}
and {G̃n} are not orthogonal then {Gn} ∼ {G̃n}. Then, ∼ is an equivalent relation.

Proof. The reflexivity of ∼ follows from a sequence of the identity {Gn = Id} is not vanishing.
The symmetry of ∼ follows from Lemma 3.33. The transitivity of ∼ holds by Proposition 3.34.
If {G1

n} ∼ {G2
n} and {G2

n} ∼ {G3
n}, then there exists a subsequence nk such that

(G1
nk
)−1G2

nk
−→ G ∈ G, (G2

nk
)−1G3

nk
−→ G̃ ∈ G
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in L(FḢ
1
2 ×FḢ

1
2 ) as k → ∞. Then, we have

(G1
nk
)−1G3

nk
= [(G1

nk
)−1G2

nk
][(G2

nk
)−1G3

nk
] −→ GG̃ ∈ G,

in L(FḢ
1
2 × FḢ

1
2 ) as k → ∞. This implies that the sequence {((G1

n)
−1G3

n)
−1} = {(G3

n)
−1G1

n}
does not satisfy the third assertion of Proposition 3.34, that is, it follows that

(fkl , gkl) 6−−⇀ (0, 0) or (G3
nk
)−1G1

nk
(fkl , gkl) 6−−⇀ (φ, ψ) 6= (0, 0)

for any {(fnk
, gnk

)}k and {nkl} ⊂ {nk}. Indeed, if (fkl , gkl) −−⇀ (0, 0), then∣∣〈(G3
nk,1

)−1G1
nk,1

fkl , φ〉FḢ 1
2

∣∣ ≤ ∣∣〈fkl ,G1G̃1φ〉FḢ 1
2

∣∣+ ‖fkl‖FḢ 1
2

∥∥(G1
nk,1

)−1G3
nk,1

φ− G1G̃1φ
∥∥
FḢ

1
2

−→ 0 as k → ∞

for any φ ∈ FḢ
1
2 (R3) and∣∣〈(G3

nk,2
)−1G1

nk,2
gkl , ψ〉FḢ 1

2

∣∣ −→ 0 as k → ∞

for any ψ ∈ FḢ
1
2 (R3). Thus, we have (G3

nk
)−1G1

nk
(fkl , gkl) −−⇀ (0, 0) in FḢ

1
2 (R3) × FḢ

1
2 (R3)

as k → ∞. Therefore, we obtain {G1
n} ∼ {G3

n}. □

Let us now state the linear profile decomposition result.

Theorem 3.38 (Linear profile decomposition). Let d = 3 and {(fn, gn)} ⊂ FḢ
1
2 (R3) ×

FḢ
1
2 (R3) be a bounded sequence. Passing to a sequence if necessary, there exist profile {(f j , gj)} ⊂

FḢ
1
2 (R3) × FḢ

1
2 (R3), {(RJn, LJn)} ⊂ FḢ

1
2 (R3) × FḢ

1
2 (R3), and pairwise orthogonal families

of deformations {Gjn = T (ξjn)D(hjn)}n ⊂ G (j = 1, 2, . . .) such that for each J ≥ 1,

(fn, gn) =
J∑
j=1

Gjn(f j , gj) + (RJn, L
J
n)

for any n ≥ 1. Moreover, {(RJn, LJn)} satisfies

(Gjn)−1(RJn, L
J
n) −−⇀

{
(f j , gj) (J < j),

(0, 0) (J ≥ j)

in FḢ
1
2 (R3) × FḢ

1
2 (R3) as n → ∞ for any j ≥ 0, where we use the convention (R0

n, L
0
n) =

(fn, gn), and

lim sup
n→∞

‖(eit∆RJn, e
1
2
it∆LJn)‖Lq,∞

t Lr
x×L

q,∞
t Lr

x
−→ 0 (3.20)

as J → ∞ for any 1 < q, r < ∞ satisfying 1
q ∈ (12 , 1) and 2

q + 3
r = 2. Furthermore, we have

Pythagorean decomposition:

‖fn‖2
FḢ

1
2
=

J∑
j=1

‖f j‖2
FḢ

1
2
+ ‖RJn‖2FḢ 1

2
+ on(1),

‖gn‖2
FḢ

1
2
=

J∑
j=1

‖gj‖2
FḢ

1
2
+ ‖LJn‖2FḢ 1

2
+ on(1),

(3.21)

where on(1) goes to 0 as n→ ∞.

Proof. We define

ν({(fn, gn)}) :=

(f, g) ∈ FḢ
1
2 ×FḢ

1
2

∣∣∣∣∣∣
There exist ξn ∈ R3 and hn ∈ 2Z such that

(Gjn)−1(fn, gn) −−⇀ (f, g) in FḢ
1
2 ×FḢ

1
2

as n→ ∞, up to subsequence.

 .
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and

η({(fn, gn)}) := sup
(f,g)∈ν({(fn,gn)})

‖(f, g)‖
FḢ

1
2×FḢ

1
2
.

It is obvious by definition that

η({(fn, gn)}) ≤ lim sup
n→∞

‖(fn, gn)‖FḢ 1
2×FḢ

1
2
.

Let J = 1.
If η({(fn, gn)}) = 0, then this theorem holds by taking (f j , gj) = (0, 0) for any 1 ≤ j ≤ J .
Hence, we assume η({(fn, gn)}) > 0. Then, we can take {ξ1n} ⊂ R3, {h1n} ⊂ 2Z, and (f1, g1) ∈
FḢ

1
2 (R3)×FḢ

1
2 (R3) satisfying

1

2
η({(fn, gn)}) ≤ ‖(f1, g1)‖

FḢ
1
2×FḢ

1
2

and

(G1
n)

−1(fn, gn) −−⇀ (f1, g1)

in FḢ
1
2 (R3)×FḢ

1
2 (R3). Here, we define

(R1
n, L

1
n) := (fn, gn)− G1

n(f
1, g1). (3.22)

We remark that

(fn, gn) = G1
n(f

1, g1) + (R1
n, L

1
n)

and

(G1
n)

−1(R1
n, L

1
n) −−⇀ (f1, g1)− (f1, g1) = (0, 0) (3.23)

in FḢ
1
2 (R3)×FḢ

1
2 (R3) holds. By the decomposition (3.22) and (3.23), we have

‖fn‖2
FḢ

1
2
= ‖f1‖2

FḢ
1
2
+ ‖R1

n‖2FḢ 1
2
+ 2Re〈f1, (G1

1,n)
−1R1

n〉FḢ 1
2
−→ ‖f1‖2

FḢ
1
2
+ ‖R1

n‖2FḢ 1
2

as n→ ∞. Therefore, we obtain (3.21) with J = 1.
Let J = 2.
If η({(R1

n, L
1
n)}) = 0, then this theorem holds by taking (f j , gj) = (0, 0) for any 2 ≤ j ≤ J .

Hence, we assume η({(R1
n, L

1
n)}) > 0. Then, we can take {ξ2n} ⊂ R3, {h2n} ⊂ 2Z, and (f2, g2) ∈

FḢ
1
2 (R3)×FḢ

1
2 (R3) satisfying

1

2
η({(R1

n, L
1
n)}) ≤ ‖(f2, g2)‖

FḢ
1
2×FḢ

1
2

and

(G2
n)

−1(R1
n, L

1
n) −−⇀ (f2, g2)

in FḢ
1
2 (R3)×FḢ

1
2 (R3). Here, we define

(R2
n, L

2
n) := (R1

n, L
1
n)− G2

n(f
2, g2).

We remark that

(fn, gn) =
2∑
j=1

Gjn(f j , gj) + (Φ2
n,Ψ

2
n)

and

(G2
n)

−1(R2
n, L

2
n) −−⇀ (f2, g2)− (f2, g2) = (0, 0)

in FḢ
1
2 (R3)×FḢ

1
2 (R3) holds. By the same argument with J = 1, we obtain

‖R1
n‖2FḢ 1

2
= ‖f2‖2

FḢ
1
2
+ ‖R2

n‖2FḢ 1
2
+ on(1) (3.24)
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and

‖L1
n‖2FḢ 1

2
= ‖g2‖2

FḢ
1
2
+ ‖L2

n‖2FḢ 1
2
+ on(1). (3.25)

Combining (3.21) with J = 1, (3.24), and (3.25), we have (3.21) with J = 2. Here, we prove
that {G1

n}n, {G2
n}n ⊂ G are orthogonal by using Lemma 3.34. For any subsequence (G1

nk
)−1G2

nk

of (G1
n)

−1G2
n, we have (G1

nk
)−1(R1

nk
, L1

nk
) −−⇀ (0, 0) and(

(G1
nk
)−1G2

nk

)−1
(G1
nk
)−1(R1

nk
, L1

nk
) = (G2

nk
)−1(R1

nk
, L1

nk
) −−⇀ (f2, g2) 6= (0, 0).

Therefore, {G1
n}n, {G2

n}n ⊂ G are orthogonal.
Let J ≥ 3.

We can construct {ξjn} ⊂ R3, {hjn} ⊂ R, (f j , gj), (Rjn, Ljn) ∈ FḢ
1
2 (R3) × FḢ

1
2 (R3) for any

1 ≤ j ≤ J inductively. When there exists 1 ≤ j ≤ J such that η({(Rjn, Ljn)}) = 0, then this

theorem holds. Thus, we assume that η({(Rjn, Ljn)}) > 0 for any 1 ≤ j ≤ J . We remark that

{ξjn} ⊂ R3, {hjn} ⊂ R, (f j , gj), (Rjn, Ljn) ∈ FḢ
1
2 (R3)×FḢ

1
2 (R3) satisfy

1

2
η({(Rj−1

n , Rj−1
n )}) ≤ ‖(f j , gj)‖

FḢ
1
2×FḢ

1
2
, (3.26)

(Gjn)−1(Rj−1
n , Lj−1

n ) −−⇀ (f j , gj), (3.27)

(Rjn, L
j
n) = (Rj−1

n , Lj−1
n )− (Gjn)(f j , gj), (3.28)

and

(Gjn)−1(Rjn, L
j
n) −−⇀ (0, 0) (3.29)

for any 1 ≤ j ≤ J . We also remark

(fn, gn) =
J∑
j=1

Gjn(f j , gj) + (RJn, L
J
n). (3.30)

We prove (3.21) by induction. We assume

‖fn‖2
FḢ

1
2
=

J−1∑
j=1

‖f j‖2
FḢ

1
2
+ ‖RJ−1

n ‖2
FḢ

1
2
+ on(1). (3.31)

Combining (3.28) and (3.29), we have

‖RJ−1
n ‖2

FḢ
1
2
= ‖fJ‖2

FḢ
1
2
+ ‖RJn‖2FḢ 1

2
+ on(1). (3.32)

From (3.31) and (3.32), we obtain (3.21). By the same argument as J = 2, {Gjn}n, {Gj+1
n }n ⊂ G

are orthogonal for any 1 ≤ j ≤ J − 1. For any i, k ∈ N with 1 ≤ i < k ≤ J , we prove that
{Gin}n, {Gkn}n ⊂ G are orthogonal by induction, that is, if {Gin}n, {Gkn}n ⊂ G are orthogonal for
any 1 ≤ k− i ≤ K (1 ≤ K ≤ J−2), then the same result satisfies for k− i = K+1. Subtracting
(3.30) with J = i from (3.30) with J = k − 1, we have

(Rin, L
i
n) =

k−1∑
j=i+1

Gjn(f j , gj) + (Rk−1
n , Lk−1

n ). (3.33)

Operating (Gkn)−1 to (3.33) and taking n→ ∞,(
(Gin)−1Gkn

)−1
(Gin)−1(Rin, L

i
n) = (Gkn)−1(Rin, L

i
n)

=
k−1∑
j=i+1

(Gkn)−1Gjn(f j , gj) + (Gkn)−1(Rk−1
n , Lk−1

n )

−−⇀ (0, 0) + (fk, gk) 6= (0, 0)
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in FḢ
1
2 (R3)×FḢ

1
2 (R3) by the assumption of induction and (3.27). On the other hand,

(Gin)−1(Rin, L
i
n) −−⇀ (0, 0)

in FḢ
1
2 (R3) × FḢ

1
2 (R3) as n → ∞. Therefore, {Gin}n, {Gkn}n ⊂ G are orthogonal by Lemma

3.34. We prove (3.20). By (3.21), we get the following estimate:

J∑
j=1

{
‖f j‖2

FḢ
1
2
+ ‖gj‖2

FḢ
1
2

}
≤ lim sup

n→∞

{
‖fn‖2

FḢ
1
2
+ ‖gn‖2

FḢ
1
2

}
<∞.

Taking supremum in J for this estimate, we obtain

∞∑
j=1

{
‖f j‖2

FḢ
1
2
+ ‖gj‖2

FḢ
1
2

}
≤ lim sup

n→∞

{
‖fn‖2

FḢ
1
2
+ ‖gn‖2

FḢ
1
2

}
<∞.

Thus, we get limj→∞ ‖(f j , gj)‖
FḢ

1
2×FḢ

1
2
= 0. Using (3.26), we have

lim
J→∞

η({(RJn, LJn)}) = 0. (3.34)

The proof is completed if we show that limJ→∞ η({(RJn, LJn)}) = 0 implies the desired smallness
property (3.20). This part is established by the forthcoming Proposition 3.39. We assume that

lim
J→∞

lim sup
n→∞

‖(eit∆RJn, e
1
2
it∆LJn)‖Lq,∞

t Lr
x×L

q,∞
t Lr

x
> 0

for contradiction. Then, there exist ε0 > 0, subsequences {Jk} ⊂ {J} and {nl} ⊂ {n} such that

‖(eit∆RJknl
, e

1
2
it∆LJknl

)‖Lq,∞
t Lr

x×L
q,∞
t Lr

x
> ε0

for any Jk and nl. The definition of η and Proposition 3.39 deduces

η({(RJkn , LJkn )}) ≥ η({(RJknl
, LJknl

)}) ≳M,ε0,q,r 1 > 0,

where a positive constant M > 0 satisfying ‖(RJn, LJn)‖FḢ 1
2×FḢ

1
2
≤ ‖(fn, gn)‖FḢ 1

2×FḢ
1
2
≤ M .

This contradicts (3.34). □

3.8. Control of vanishing. To complete the proof of Theorem 3.38, we show the following in
this subsection.

Proposition 3.39 (Control of vanishing). Let d = 3. If a sequence {(Rn, Ln)}n ⊂ FḢ
1
2 (R3)×

FḢ
1
2 (R3) satisfies

‖(Rn, Ln)‖FḢ 1
2×FḢ

1
2
≤M

and

‖(eit∆Rn, e
1
2
it∆Ln)‖Lq,∞

t Lr
x×L

q,∞
t Lr

x
≥ ε0

for some M > 0, ε0 > 0, and 1 < q, r <∞ with 1
q ∈ (12 , 1) and

2
q +

3
r = 2, then

η({(Rn, Ln)}) ≳M,ε0,q,r 1.

To prove the proposition, we need the following lemma.

Lemma 3.40 (Improved Strichartz estimate). Let d = 3 and I ⊂ R be a time interval. It holds
that

‖eit∆f‖L3
t (I;L

3
x)

≲ ‖f‖
2
3

FḢ
1
6
sup
N∈2Z

‖eit∆ψNf‖
1
3

L3
t (I;L

3
x)
,

where ψN is defined as (3.1).
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Proof. By Lemma 3.7, we have

‖eit∆f‖L3
x
= ‖M 1

2
(−t)eit∆f‖L3

x
∼
∥∥∥(∑

N∈2Z

∣∣PN
2t
M 1

2
(−t)eit∆f

∣∣2) 1
2
∥∥∥
L3
x

for each t > 0, where the implicit constant is independent of t by virtue of the scaling. Denote
gN = PN

2t
M 1

2
(−t)eit∆f for simplicity. By a convexity argument, one has∥∥∥(∑
N∈2Z

|gN |2
) 1

2
∥∥∥3
L3
t (I;L

3
x)

=

∫
I×R3

(∑
N∈2Z

|gN (t, x)|2
) 3

4
( ∑
M∈2Z

|gM (t, x)|2
) 3

4
dxdt

≲
∑

M,N∈2Z,N≤M

∫
I×R3

|gN (t, x)|
3
2 |gM (t, x)|

3
2dxdt,

where we have used the symmetry in the last line to reduce the matter to the case N ≤ M .
Take r1 and r2 so that 8

3 < r1 < 3 < r2 <
10
3 and 2

3 = 1
r1

+ 1
r2
. By Lemma 2.2, we have∫

I×R3

|gN (t, x)|
3
2 |gM (t, x)|

3
2dxdt ≤ ‖gN‖Lr1

t (I;L
r1
x )‖gN‖

1
2

L3
t (I;L

3
x)
‖gM‖

1
2

L3
t (I;L

3
x)
‖gM‖Lr2

t (I;L
r2
x ).

Hence,

‖eit∆f‖3L3
t (I;L

3
x)

≲ sup
N∈2Z

‖gN‖L3
t (I;L

3
x)
·

∑
M,N∈2Z,N≤M

‖gN‖Lr1
t (I;L

r1
x )‖gM‖Lr2

t (I;L
r2
x )

Remark that

gN = FψN
2t
F−1D(t)FM 1

2
(t)f = D(t)FM 1

2
(t)ψNf = M 1

2
(t)−1eit∆ψNf.

By Lemma 3.14 and 3.5, we have

‖gN‖Lr
t (I;L

r
x)

= ‖eit∆ψNf‖Lr
t (I;L

r
x)

≲ ‖eit∆ψNf‖
L

2r
3r−8 ,r

t (I;Ẋ
10−3r

2r , 6r
16−3r

1/2
)

≲ ‖ψNf‖FḢ 10−3r
2r

= ‖|x|
5
r
− 5

3ψN |x|
1
6 f‖L2

x
≲ N

5
r
− 5

3 ‖ψN |x|
1
6 f‖L2

x

for 8
3 < r < 10

3 . Thus, we obtain∑
M,N∈2Z,N≤M

‖gN‖Lr1
t (I;L

r1
x )‖gM‖Lr2

t (I;L
r2
x )

≤
∑
R≥1

∑
N∈2Z

‖gN‖Lr1
t (I;L

r1
x )‖gNR‖Lr2

t (I;L
r2
x )

≲
∑
R≥1

R
− 5

r1
+ 5

3
∑
N∈2Z

‖ψN |x|
1
6 f‖L2

x
‖ψNR|x|

1
6 f‖L2

x

≤
∑
R≥1

R
− 5

r1
+ 5

3

(∑
N∈2Z

‖ψN |x|
1
6 f‖2L2

x

) 1
2
(∑
N∈2Z

‖ψNR|x|
1
6 f‖2L2

x

) 1
2

=
∑
R≥1

R
− 5

r1
+ 5

3

(∫
R3

∑
N∈2Z

|ψN (x)|x|
1
6 f(x)|2dx

) 1
2
(∫

R3

∑
N∈2Z

|ψNR(x)|x|
1
6 f(x)|2dx

) 1
2

≲ ‖f‖2
FḢ

1
6

∑
R≥1

R
− 5

r1
+ 5

3 ≲ ‖f‖2
FḢ

1
6

from Lemma 3.7. This completes the proof. □

Proof of Proposition 3.39. In what follows, we denote various subsequences of n again by n. By
the pigeon hole principle,

‖eit∆Rn‖Lq,∞
t (I±;Lr

x)
≥ ε0

4
or ‖e

1
2
it∆Ln‖Lq,∞

t (I±;Lr
x)

≥ ε0
4
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holds for infinitely many n, where I+ := [0,∞) and I− := (−∞, 0]. We only consider the case

‖eit∆Rn‖Lq,∞
t ([0,∞);Lr

x)
≥ ε0

4
(3.35)

holds for infinitely many n. The proof for the other case is similar. By the interpolation and
boundedness lemma, there exists θ = θ(q, r) > 0 such that

‖eit∆Rn‖Lq,∞
t ([0,∞);Lr

x)
≲ ‖eit∆Rn‖θ

L3
t ([0,∞);X

1
3 ,3

1/2
)
‖Rn‖1−θ

FḢ
1
2
.

Indeed, if we take q1, q2, q3, r1, r2, r3, θ satisfying
1
q = 1

q1
+ 1
q2
, 1
r = 1

r1
+ 1
r2
, 1
r1θ

= 1
3−

1
9 ,

1
q1θ

= 1
3+

1
3 ,

1
r2(1−θ) =

1
r3

− 1
6 , and

1
q2(1−θ) =

1
2 + 1

q3
, then it follows from Lemma 3.14 that

‖eit∆Rn‖Lq,∞
t ([0,∞);Lr

x)
= ‖M 1

2
(−t)eit∆Rn‖Lq,∞

t ([0,∞);Lr
x)

≲ ‖M 1
2
(−t)eit∆Rn‖θ

L
q1θ,∞
t ([0,∞);L

r1θ
x )

‖M 1
2
(−t)eit∆Rn‖1−θ

L
q2(1−θ),∞
t ([0,∞);L

r2(1−θ)
x )

≲ ‖eit∆Rn‖θ
L3,∞
t ([0,∞);Ẋ

1
3 ,3

1/2
)
‖eit∆Rn‖1−θ

L
q3
t ([0,∞);Ẋ

1
2 ,r3
1/2

)

≲ ‖eit∆Rn‖θ
L3
t ([0,∞);Ẋ

1
3 ,3

1/2
)
‖eit∆Rn‖1−θ

L
q3,2
t ([0,∞);Ẋ

1
2 ,r3
1/2

)

≲ ‖eit∆Rn‖θ
L3
t ([0,∞);Ẋ

1
3 ,3

1/2
)
‖Rn‖1−θ

FḢ
1
2
, (3.36)

where the last inequality is used Lemma 3.5 ( 2
q3

+ 3
r3

= 3
2). By the definition of J

1/3
1/2 , we have

(−4t2∆)
1
6M 1

2
(−t)eit∆ = M 1

2
(−t)eit∆|x|

1
3 . Therefore, it follows that

‖eit∆Rn‖
L3
t ([0,∞);Ẋ

1
3 ,3

1/2
)
= ‖(−4t2∆)

1
6M 1

2
(−t)eit∆Rn‖L3

t ([0,∞);L3
x)

= ‖M 1
2
(−t)eit∆|x|

1
3Rn‖L3

t ([0,∞);L3
x)

= ‖eit∆|x|
1
3Rn‖L3

t ([0,∞);L3
x)
.

Applying (3.35), (3.36), this identity, an assumption in this proposition, and Lemma 3.40, we
obtain (ε0

4

) 3
θ ≤ ‖eit∆Rn‖

3
θ

Lq,∞
t Lr

x
≲ ‖eit∆Rn‖3

L3
t ([0,∞);Ẋ

1
3 ,3

1/2
)
‖Rn‖

3(1−θ)
θ

FḢ
1
2

≤M
3(1−θ)

θ ‖eit∆|x|
1
3Rn‖3L3

t ([0,∞);L3
x)

≲M
3(1−θ)

θ ‖|x|
1
3Rn‖2

FḢ
1
6
sup
N∈2Z

‖eit∆ψN |x|
1
3Rn‖L3

t ([0,∞);L3
x)

=M
3(1−θ)

θ ‖Rn‖2
FḢ

1
2
sup
N∈2Z

‖eit∆ψN |x|
1
3Rn‖L3

t ([0,∞);L3
x)

≤M
3(1−θ)

θ
+2 sup

N∈2Z
‖eit∆ψN |x|

1
3Rn‖L3

t ([0,∞);L3
x)
,

that is,

sup
N∈2Z

‖eit∆|x|
1
3ψNRn‖L3

t ([0,∞);L3
x)

≳M,ε0,q,r 1.

One can choose a sequence Nn so that

‖eit∆|x|
1
3ψNnRn‖L3

t ([0,∞);L3
x)

≳ 1. (3.37)

Since the scaling property and Lemma 3.4 give us

‖eit∆|x|
1
3ψNnRn‖L3

t ([0,τN
2
n];L

3
x)

= N
5
3
n ‖eit∆(Nn|x|)

1
3ψRn(Nn·)‖L3

t ([0,τ ];L
3
x)

≤ N
5
3
n ‖1‖L12

t ([0,τ ])‖eit∆(Nn|x|)
1
3ψRn(Nn·)‖L4

t ([0,τ ];L
3
x)
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≲ N
5
3
n τ

1
12 ‖(Nn|x|)

1
3ψRn(Nn·)‖L2

x

≲ τ
1
12 ‖Rn‖FḢ 1

2
≲ τ

1
12 ,

one can choose τ0 = τ0(M, ε0, q, r) > 0 small so that (3.37) is improved as

‖eit∆|x|
1
3ψNnRn‖L3

t ([τ0N
2
n,∞);L3

x)
≳ 1

for all n ≥ 1. Lemma 2.2 gives us

‖eit∆|x|
1
3ψNnRn‖L3

t ([τ0N
2
n,∞);L3

x)

≤ ‖|t|
3
2 eit∆|x|

1
3ψNnRn‖

1
18

L∞
t ([τ0N2

n,∞);L∞
x )

‖|t|−
3
34 eit∆|x|

1
3ψNnRn‖

17
18

L
17
6

t ([τ0N2
n,∞);L

17
6

x )
.

Using Lemma 3.8, 3.14, and Proposition 3.5,

‖|t|−
3
34 eit∆|x|

1
3ψNnRn‖

L
17
6

t L
17
6

x

≲ ‖|t|−
3
34 ‖

L
34
3 ,∞‖eit∆|x|

1
3ψNnRn‖

L
34
9 , 176

t L
17
6

x

≲ ‖eit∆|x|
1
3ψNnRn‖

L
17
3 , 176

t Ẋ
3
34 , 3413
1/2

≲ ‖eit∆|x|
1
3ψNnRn‖

L
17
3 ,2

t Ẋ
3
34 , 3413
1/2

≲ ‖|x|
1
3
+ 3

34ψNnRn‖L2
x

≲ N
− 4

51
n ,

we reach to the estimate

N
− 4

3
n ‖|t|

3
2 eit∆|x|

1
3ψNnRn‖L∞

t ([τ0N2
n,∞);L∞

x ) ≳ 1

for all n ≥ 1. There exist tn ≥ τ0N
2
n and yn ∈ R3 such that

N
− 4

3
n |t

3
2
ne

itn∆(|x|
1
3ψNnRn)(yn)| ≳ 1. (3.38)

By the integral representation of the Schrödinger group, we obtain

N
− 4

3
n |t

3
2
ne

itn∆(|x|
1
3ψNnRn)(yn)|

= N
− 4

3
n

∣∣∣∣t 32n (4πitn)− 3
2

∫
R3

e
i|x−yn|2

4tn |x|
1
3ψNn(x)Rn(x)dx

∣∣∣∣
≲ N

− 3
2

n

∣∣∣∣∫
R3

e−i
yn
2tn

·xei
|x|2
4tn (N

1
6
n |x|−

1
6ψNn(x))|x|

1
2Rn(x)dx

∣∣∣∣
=

∣∣∣∣∫
R3

ei
N2
n|x|2
4tn (|x|−

1
6ψ(x))|x|

1
2 (e−i

Nnyn
2tn

·xN2
nRn(Nnx))dx

∣∣∣∣ . (3.39)

Let

ξn := −Nnyn
2tn

∈ R3, hn := Nn ∈ 2Z.

Define a deformation Gn ∈ G so that G−1
n = T (ξn)D(hn). Since {Gn(Rn, Ln)}n is a bounded

sequence in FḢ
1
2 (R3)×FḢ

1
2 (R3), it weakly converges to a pair (R̃, L̃) ∈ FḢ

1
2 (R3)×FḢ

1
2 (R3)

along a subsequence. It is obvious that (R̃, L̃) ∈ ν({(Rn, Ln)}). Notice that 0 < N2
n

4tn
≤ 1

4τ0
.

Hence, by extracting a subsequence if necessary, one has∫
R3

ei
N2
n|x|2
4tn (|x|−

1
6ψ(x))|x|

1
2 (e−i

Nnyn
2tn

·xN2
nRn(Nnx))dx −→

∫
R3

ei
N2
∞|x|2
4t∞ (|x|−

1
6ψ(x))|x|

1
2 R̃(x)dx
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as n→ ∞, where N2
∞

4t∞
∈ R is the limit of N

2
n

4tn
along the (sub)sequence. Plugging this with (3.38)

and (3.39), we conclude that

1 ≲
∣∣∣∣∫

R3

ei
N2
∞|x|2
4t∞ (|x|−

1
6ψ(x))|x|

1
2 R̃(x)dx

∣∣∣∣ ≲ψ ‖(R̃, L̃)‖
FḢ

1
2×FḢ

1
2
≤ η({(Rn, Ln)}).

This is the desired estimate. □

3.9. Proof of Main theorems 1.39, 1.41, and 1.42. In this subsection, we prove Main
theorem 1.39, 1.41, and 1.42. The following proof shows all these theorems.

Proof of Main theorem 1.39, 1.41, and 1.42. Fix v0 ∈ FḢ
1
2 (R3). First, we consider the case

`†v0 = ∞. In this case, we can obtain `†v0 = `v0 = `0 = ∞. Indeed, we have ∞ = `†v0 ≤ `v0 by

Lemma 3.27. On the other hand, we have ∞ = `†v0 ≤ `†0 ≤ `0 by Proposition 3.28 and Lemma
3.27.

From now on, we assume `†v0 < ∞. By the definition of `†v0 , we have Lv0(`
†
v0 − 1

n) < ∞ for
each n ∈ N, that is,

sup

{
‖(u, v)‖W1([0,∞))×W2([0,∞))

∣∣∣∣∣ (u, v) is the solution to (NLS) on [0,∞),

v(0) = v0, ‖u(0)‖FḢ 1
2
≤ `†v0 − 1

n

}
<∞.

We note that Tmax = ∞ because of Proposition 3.19. Since Lv0(`) < ∞ for any 0 ≤ ` < `†v0 ,

Lv0(`
†
v0) = ∞, and Lv0 is non-decreasing, we can take a sequence {mn} of N such that

Lv0

(
`†v0 −

1

mn

)
< Lv0

(
`†v0 −

1

mn+1

)
for each n ∈ N. We take a sequence {u0,n} ⊂ FḢ

1
2 (R3) satisfying

`†v0 −
1

mn
< ‖u0,n‖FḢ 1

2
≤ `†v0 −

1

mn+1
(3.40)

and

Lv0

(
`†v0 −

1

mn

)
< ‖(un, vn)‖W1([0,∞))×W2([0,∞)) ≤ Lv0

(
`†v0 −

1

mn+1

)
,

where (un, vn) is the solution to (NLS) with initial data (u0,n, v0). We notice that

lim
n→∞

‖u0,n‖FḢ 1
2
= `†v0 and lim

n→∞
= ‖(un, vn)‖W1([0,∞))×W2([0,∞)) = ∞ (3.41)

from mn −→ ∞ as n→ ∞, (3.40), and the continuity of Lv0 (Lemma 3.25). Since {(u0,n, v0)} ⊂
FḢ

1
2 (R3) × FḢ

1
2 (R3) is a bounded sequence, we apply Theorem 3.38 to this sequence. Then,

there exist profile {(φj , ψj)} ⊂ FḢ
1
2 (R3) × FḢ

1
2 (R3), remainder {(RJn, LJn)} ⊂ FḢ

1
2 (R3) ×

FḢ
1
2 (R3), and pairwise orthogonal families of deformations {Gjn = T (ξjn)D(hjn)}n ⊂ G (j =

1, 2, . . .) such that

(u0,n, v0) =
J∑
j=1

Gjn(φj , ψj) + (RJn, L
J
n) (3.42)

for any J ≥ 1. Since v0 is independent of n, there exists unique j0 such that ψj0 = v0 and

Gj0n = Id. Furthermore, the remainder for v-component is zero: LJn = 0. Rearranging the profile
(φj , ψj), we may let j0 = 1. Then, the above decomposition reads as

(u0,n, v0) = (φ1, v0) +

J∑
j=2

Gjn(φj , 0) + (RJn, 0).
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From Theorem 3.38, we have Pythagorean decomposition:

‖u0,n‖2
FḢ

1
2
=

J∑
j=1

‖φj‖2
FḢ

1
2
+ ‖RJn‖2FḢ 1

2
+ on(1) (3.43)

for each J ≥ 1. The parameters are asymptotically orthogonal: if j 6= k, then

hjn
hkn

+
hkn

hjn
+

|ξjn − ξkn|
hjn

−→ ∞ as n→ ∞. (3.44)

The remainders satisfy

(Gjn)−1RJn −−⇀ 0 in FḢ
1
2 (R3) as n→ ∞

for any 1 ≤ j ≤ J .
lim
J→∞

lim sup
n→∞

‖eit∆RJn‖Lq,∞
t Lr

x
= 0 (3.45)

for any 1 < q, r <∞ with 1
q ∈ (12 , 1) and

2
q +

3
r = 2.

We will prove that there exists only one j1 satisfying φj1 6= 0 and it satisfies ‖φj1‖
FḢ

1
2
= `†v0 .

From (3.43), we have

lim sup
n→∞

‖RJn‖2FḢ 1
2
+

J∑
j=1

‖φj‖2
FḢ

1
2
= (`†v0)

2, (3.46)

and hence,

lim sup
n→∞

‖RJn‖FḢ 1
2
≤ `†v0 and ‖φj‖

FḢ
1
2
≤ `†v0 (3.47)

holds for any j ≥ 1. Let (Φj ,Ψj) be the solution to (NLS) with initial data (φj , ψj). We assume
for contradiction that all (Φj ,Ψj) scatter, that is,

‖(Φj ,Ψj)‖W1([0,∞))×W2([0,∞)) <∞
is true for any j ≥ 1. We set

(w̃Jn , z̃
J
n) :=

J∑
j=1

(
(Φj)[hjn,ξjn](t, x), (Ψj)[hjn,ξjn](t, x)

)
and

(ũJn, ṽ
J
n) := (w̃Jn , z̃

J
n) + (eit∆RJn, 0),

where

(Φj)[hjn,ξjn](t, x) := hjn
2
eix·ξ

j
ne−it|ξ

j
n|2Φj(h

j
n
2
t, hjn(x− 2tξjn)),

(Ψj)[hjn,ξjn](t, x) := hjn
2
e2ix·ξ

j
ne−2it|ξjn|2Ψj(h

j
n
2
t, hjn(x− 2tξjn)).

We note that
(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)
is a solution to (NLS) with initial data Gjn(φj , ψj) from

(1.11) and (1.14). Then, (ũJn, ṽ
J
n) solves

i∂tũ
J
n +∆ũJn =

J∑
j=1

(
i∂t(Φj)[hjn,ξjn] +∆(Φj)[hjn,ξjn]

)
= −2

J∑
j=1

(Ψj)[hjn,ξjn](Φj)[hjn,ξjn],

i∂tṽ
J
n +

1

2
∆ṽJn =

J∑
j=1

(
i∂t(Ψj)[hjn,ξjn] +

1

2
∆(Ψj)[hjn,ξjn]

)
= −

J∑
j=1

(Φj)
2
[hjn,ξ

j
n]
.

We also set

ẽJ1,n := i∂tũ
J
n +∆ũJn + 2ṽJn ũ

J
n and ẽJ2,n := i∂tṽ

J
n +

1

2
∆ṽJn + (ũJn)

2.

Here, we introduce the following two lemmas, which are proved later.
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Lemma 3.41. For any ε > 0, there exists J1 = J1(ε) such that

lim sup
n→∞

‖(w̃Jn , z̃Jn)− (w̃J1n , z̃
J1
n )‖W1([0,∞))×W2([0,∞)) ≤ ε

for any J ≥ J1.

Lemma 3.42. It follows that

lim
J→∞

lim sup
n→∞

‖(ẽJ1,n, ẽJ2,n)‖N1([0,∞))×N2([0,∞)) = 0.

Using Lemma 3.41 with ε = 1
2 and (3.47), it follows that there exists J1 such that for any

J ≥ J1, there exists n1 = n1(J) such that

‖(ũJn, ṽJn)‖W1([0,∞))×W2([0,∞))

≤ ‖(w̃J1n , z̃J1n )‖W1([0,∞))×W2([0,∞))

+ ‖(w̃Jn , z̃Jn)− (w̃J1n , z̃
J1
n )‖W1([0,∞))×W2([0,∞)) + ‖eit∆RJn‖W1([0,∞))

≤
J1∑
j=1

‖(Φj ,Ψj)‖W1([0,∞))×W2([0,∞)) + c ‖RJn‖FḢ 1
2
+ 1

≤
J1∑
j=1

‖(Φj ,Ψj)‖W1([0,∞))×W2([0,∞)) + c`†v0 + 1 =:M (3.48)

for any n ≥ n1. Let ε1 = ε1(M) be given in Proposition 3.23. Then,

‖(u0,n − ũJn(0), v0 − ṽJn(0))‖FḢ 1
2×FḢ

1
2
= 0. (3.49)

Lemma 3.42 implies that there exists J2 such that for any J ≥ J2, there exists n2 = n2(J) such
that

‖(ẽJ1,n, ẽJ2,n)‖N1([0,∞))×N2([0,∞)) ≤
ε1
2
. (3.50)

for any n ≥ n2. We set J0 := max{J1, J2} and n0 := max{n1, n2}. By (3.48), (3.49), (3.50), and
Proposition 3.23, we deduce that (un, vn) satisfies

‖(un, vn)‖W1([0,∞))×W2([0,∞)) ≲M ε1 <∞

for any n ≥ n0. However, this contradicts (3.41). Therefore, there exists j1 ≥ 1 such that

‖(Φj1 ,Ψj1)‖W1([0,Tmax))×W2([0,Tmax)) = ∞.

By (3.46), (3.47), Proposition 3.26, and 3.28, we have ‖φj1‖
FḢ

1
2
= `†v0 and φj = 0 for all j 6= j1.

Indeed, if j1 = 1, then `†v0 ≤ ‖φ1‖
FḢ

1
2
≤ `†v0 and if j1 6= 1, then `†v0 ≤ `†0 ≤ ‖φj1‖

FḢ
1
2
≤ `†v0 . We

encounter a dichotomy, j1 = 1 or j1 = 2.
Now, we suppose that j1 = 1 (, which corresponds to Theorem 1.41). Since a solution (Φ1,Ψ1)

to (NLS) with initial data (φ1, v0) does not scatter, we have `v0 ≤ ‖φ1‖
FḢ

1
2

= `†v0 by the

definition of `v0 . Combining this inequality and Lemma 3.27, we obtain `v0 = `†v0 = ‖φ1‖
FḢ

1
2
.

This shows that φ1 is a minimizer to `v0 . Moreover, it follows from Proposition 3.28 and Lemma

3.27 that `v0 = `†v0 ≤ `†0 ≤ `0. Therefore, we have the identity `†v0 = min{`0, `v0}.
Let us move on to the case j1 = 2 (, which corresponds to Theorem 1.42). In this case, it

follows that (φ1, ψ1) = (0, v0) and (φ2, ψ2) = (φ2, 0). Since (Φ2,Ψ2) does not scatter, we have

`0 ≤ ‖φ2‖
FḢ

1
2
= `†v0 by the definition of `0. Using Proposition 3.28 and Lemma 3.27, we obtain

`0 ≤ ‖φ2‖
FḢ

1
2
= `†v0 ≤ `†0 ≤ `0. In particular, we have `†v0 = `0 = ‖φ2‖

FḢ
1
2
. This shows that φ2

is a minimizer to `0. In addition, we have

(u0,n, v0) =
∑
j=1,2

Gjn(φj , ψj) + (R2
n, 0) = (0, v0) + G2

n(φ
2, 0) + (R2

n, 0),
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lim
n→∞

‖u0,n‖FḢ 1
2
= `†v0 , and lim

n→∞
‖R2

n‖FḢ 1
2
= 0

by (3.41), (3.42), (3.43), and ‖φ2‖
FḢ

1
2
= `†v0 . Remark that we have also the identity `†v0 =

min{`0, `v0} in this case. Let Tmax denote the maximal existence time of a solution to (NLS)
with initial data (φ2, 0). Fix 0 ≤ τ < Tmax. Recall that (Φj ,Ψj) denotes the solution to (NLS)
with initial data (φj , ψj) and

(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)
denotes the solution to (NLS) with initial

data Gjn(φj , ψj). We set

(ũn, ṽn) :=
∑
j=1,2

(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)
= (0, e

1
2
it∆v0) +

(
(Φ2)[h2n,ξ2n], (Ψ2)[h2n,ξ2n]

)
.

Then, (ũn, ṽn) solves

i∂tũn +∆ũn =
∑
j=1,2

(
i∂t(Φj)[hjn,ξjn] +∆(Φj)[hjn,ξjn]

)
= −2(Ψ2)[h2n,ξ2n](Φ2)[h2n,ξ2n],

i∂tṽn +
1

2
∆ṽn =

∑
j=1,2

(
i∂t(Ψj)[hjn,ξjn] +

1

2
∆(Ψj)[hjn,ξjn]

)
= −(Φ2)

2
[h2n,ξ

2
n]
.

We also set

ẽ1,n := i∂tũn +∆ũn + 2ṽnũn = 2(Ψ1)[h1n,ξ1n](Φ2)[h2n,ξ2n],

ẽ2,n := i∂tṽn +
1

2
∆ṽn + (ũn)

2 = 0.

We check the assumptions of Proposition 3.23. One has

‖(ũn, ṽn)‖W1([0,τ/(h2n)
2))×W2([0,τ/(h2n)

2))

≤ ‖(0, e
1
2
it∆v0)‖W1([0,∞))×W2([0,∞)) + ‖(Φ2,Ψ2)‖W1([0,τ))×W2([0,τ)) =:M <∞,

‖(u0,n, v0)− (ũn(0), ṽn(0))‖FḢ 1
2×FḢ

1
2
= ‖(R2

n, 0)‖FḢ 1
2×FḢ

1
2
−→ 0 as n→ ∞,

and

‖(ẽ1,n, ẽ2,n)‖N1([0,τ/(h2n)
2))×N2([0,τ/(h2n)

2)) = ‖ẽ1,n‖N1([0,τ/(h2n)
2)) −→ 0 as n→ ∞,

where the last limit is shown as in the same spirit of Lemma 3.42 with a help of the first estimate.
Therefore, we obtain

(un, vn)− (0, e
1
2
it∆v0)−

(
(Φ2)[h2n,ξ2n], (Ψ2)[h2n,ξ2n]

)
−→ 0

in L∞
t ([0, τ/(h2n)

2); Ẋ
1/2
1/2 )× L∞

t ([0, τ/(h2n)
2); Ẋ

1/2
1 ) as n→ ∞.

In both cases, we have the identity `†v0 = min{`0, `v0}, hence we have Theorem 1.39. If we

assume that `0 > `†v0 then the second case is precluded. This is nothing but Theorem 1.41.

Similarly, the assumption `v0 > `†v0 precludes the case j1 = 1. This shows Theorem 1.42.
Indeed, the above argument applies to the minimizing sequence satisfying the assumption of
Theorem 1.42 and leads us to the same conclusion in the case j1 = 2. □

To prove Lemma 3.41 and 3.42, we first prepare the following claims.

Lemma 3.43. Let d = 3. Let {(hjn, ξjn)}(j,n)∈[1,J ]×N ⊂ 2Z × R3 satisfy (3.44) and let (Φj ,Ψj) ∈
W1([0,∞))×W2([0,∞)). We consider eJ1,n and eJ2,n defined by

eJ1,n := F1

( J∑
j=1

(Φj)[hjn,ξjn],

J∑
j=1

(Ψj)[hjn,ξjn]

)
−

J∑
j=1

F1

(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)
,

and

eJ2,n := F2

( J∑
j=1

(Φj)[hjn,ξjn]

)
−

J∑
j=1

F2

(
(Φj)[hjn,ξjn]

)
,



58

where F1(w, z) := 2zw and F2(w) = w2. Then,

‖(eJ1,n, eJ2,n)‖N1([0,∞))×N2([0,∞)) −→ 0 as n→ ∞.

Proof. Thanks to Proposition 3.16, we only have to consider the case: supp (Φj ,Ψj) ⊂ [m,M ]×
BR(0) holds for some m,M,R > 0 and for any j ∈ [1, J ], where Br(y) denotes a ball in R3 with
radius r > 0 and center y ∈ R3. By the definition of (eJ1,n, e

J
2,n), we have

‖eJ1,n‖N1([0,∞)) =
∥∥∥(−4t2∆)

1
4

(
2
∑

1≤j,k≤J
j ̸=k

M1(−t)(Ψj)[hjn,ξjn]M 1
2
(−t)(Φk)[hkn,ξkn]

)∥∥∥
L

6
5 ,2

t ([0,∞);L
18
11
x )

≤ c
∑

1≤j,k≤J
j ̸=k

∥∥∥(−4t2∆)
1
4M1(−t)(Ψj)[hjn,ξjn]M 1

2
(−t)(Φk)[hkn,ξkn]

∥∥∥
L

6
5 ,2

t ([0,∞);L
18
11
x )

and

‖eJ2,n‖N2([0,∞)) =
∥∥∥(−t2∆)

1
4

( ∑
1≤j,k≤J
j ̸=k

M 1
2
(−t)(Φj)[hjn,ξjn]M 1

2
(−t)(Φk)[hkn,ξkn]

)∥∥∥
L

6
5 ,2

t ([0,∞);L
18
11
x )

≤ c
∑

1≤j,k≤J
j ̸=k

∥∥∥(−t2∆)
1
4M 1

2
(−t)(Φj)[hjn,ξjn]M 1

2
(−t)(Φk)[hkn,ξkn]

∥∥∥
L

6
5 ,2

t ([0,∞);L
18
11
x )

,

When hjn
hkn

+ hkn
hjn

≥
√
2 + 2Mm , time supports of (Φj)[hjn,ξjn] and (Ψj)[hjn,ξjn] with different index do

not intersect and hence,∥∥∥(−4t2∆)
1
4M1(−t)(Ψj)[hjn,ξjn]M 1

2
(−t)(Φk)[hkn,ξkn]

∥∥∥
L

6
5 ,2

t ([0,∞);L
18
11
x )

= 0

and ∥∥∥(−t2∆)
1
4M 1

2
(−t)(Φj)[hjn,ξjn]M 1

2
(−t)(Φk)[hkn,ξkn]

∥∥∥
L

6
5 ,2

t ([0,∞);L
18
11
x )

= 0

hold for such n and (j, k). Therefore, it suffices to prove under an additional assumption

supn∈N(
hjn
hkn

+ hkn
hjn

) ≤
√

2 + 2Mm for any 1 ≤ j, k ≤ J . Changing notations if necessary, hjn ≡ hn

and supp
(
(Φj)[hn,ξjn], (Ψj)[hn,ξjn]

)
⊂
[
m2

2M
1
h2n
, 2M

2

m
1
h2n

]
×B 2MR

mhn

(2tξjn). If t(hn)
2 ∈ [m

2

2M ,
2M2

m ], then

(3.44) deduces

|hn(x− 2tξjn)− hn(x− 2tξkn)| = 2thn|ξjn − ξkn| ≥
m2

M

∣∣∣∣∣ξjn − ξkn
hn

∣∣∣∣∣ −→ ∞ as n→ ∞.

Since the spatial support of Φj and Ψj are contained in BR(0), there exists n0 ∈ N such that∣∣∣(−4t2∆)
1
4M1(−t)(Ψj)[hn,ξjn]M 1

2
(−t)(Φk)[hn,ξkn]

∣∣∣ = 0

and ∣∣∣(−t2∆)
1
4M 1

2
(−t)(Φj)[hn,ξjn]M 1

2
(−t)(Φk)[hn,ξkn]

∣∣∣ = 0

for any (t, x) ∈ [0,∞)× R3 and any n ≥ n0. □
Proof of Lemma 3.41. Set

(ũJ,J1n , ṽJ,J1n ) := (w̃Jn , z̃
J
n)− (w̃J1n , z̃

J1
n ) =

( J∑
j=J1+1

(Φj)[hjn,ξjn],
J∑

j=J1+1

(Ψj)[hjn,ξjn]

)
.

Then, we have

(ũJ,J1n (0), ṽJ,J1n (0)) =

J∑
j=J1+1

Gjn(φj , ψj).
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It follows from (3.44) that

lim
n→∞

‖ũJ,J1n (0)‖2
FḢ

1
2
=

J∑
j=J1+1

‖φj‖2
FḢ

1
2
, lim

n→∞
‖ṽJ,J1n (0)‖2

FḢ
1
2
=

J∑
j=J1+1

‖ψj‖2
FḢ

1
2
= 0

for any J > J1 ≥ 1. Here, we have

J∑
j=J1+1

‖φj‖2
FḢ

1
2
<∞

by (3.43). Hence, for any ε > 0, there exists J1 such that

lim
n→∞

‖(ũJ,J1n (0), ṽJ,J1n (0))‖
FḢ

1
2×FḢ

1
2
≤ ε (3.51)

for any J > J1. (ũ
J,J1
n , ṽJ,J1n ) satisfies the following equation:
i∂tũ

J,J1
n +∆ũJ,J1n = −

J∑
j=J1+1

F1

(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)
,

i∂tṽ
J,J1
n +

1

2
∆ṽJ,J1n = −

J∑
j=J1+1

F2

(
(Φj)[hjn,ξjn]

)
,

where F1 and F2 are defined in Lemma 3.43. We define functions ẽJ,J11,n and ẽJ,J12,n as
ẽJ,J11,n := F1

( J∑
j=J1+1

(Φj)[hjn,ξjn],
J∑

j=J1+1

(Ψj)[hjn,ξjn]

)
−

J∑
j=J1+1

F1

(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)
,

ẽJ,J12,n := F2

( J∑
j=J1+1

(Φj)[hjn,ξjn]

)
−

J∑
j=J1+1

F2

(
(Φj)[hjn,ξjn]

)
.

The above equation satisfied by (ũJ,J1n , ṽJ,J1n ) can be rewritten asi∂tũ
J,J1
n +∆ũJ,J1n + F1(ũ

J,J1
n , ṽJ,J1n ) = ẽJ,J11,n ,

i∂tṽ
J,J1
n +

1

2
∆ṽJ,J1n + F2(ũ

J,J1
n ) = ẽJ,J12,n .

We also rewrite the differential equation to a integral equation.
ũJ,J1n (t) = eit∆ũJ,J1n (0) + i

∫ t

0
ei(t−s)∆

{
F1(ũ

J,J1
n (s), ṽJ,J1n (s))− ẽJ,J11,n (s)

}
ds,

ṽJ,J1n (t) = e
1
2
it∆ṽJ,J1n (0) + i

∫ t

0
e

1
2
i(t−s)∆{F2(ũ

J,J1
n (s))− ẽJ,J12,n (s)

}
ds.

Using Proposition 3.5 and 3.12,

‖ũJ,J1n ‖W1([0,∞)) ≤ c ‖ũJ,J1n (0)‖
FḢ

1
2
+ c ‖ũJ,J1n ‖W1([0,∞))‖ṽJ,J1n ‖W2([0,∞)) + c ‖ẽJ,J11,n ‖N1([0,∞)),

‖ṽJ,J1n ‖W2([0,∞)) ≤ c ‖ṽJ,J1n (0)‖
FḢ

1
2
+ c ‖ũJ,J1n ‖2W1([0,∞)) + c ‖ẽJ,J12,n ‖N2([0,∞)).

Combining these inequalities,

‖(ũJ,J1n , ṽJ,J1n )‖W1([0,∞))×W2([0,∞)) ≤ c ‖(ũJ,J1n (0), ṽJ,J1n (0))‖
FḢ

1
2×FḢ

1
2

+ c ‖(ũJ,J1n , ṽJ,J1n )‖2W1([0,∞))×W2([0,∞)) + c ‖(ẽJ,J11,n , ẽ
J,J1
2,n )‖N1([0,∞))×N2([0,∞)).

(3.52)

Lemma 3.43 deduces

lim
n→∞

‖(ẽJ,J11,n , ẽ
J,J1
2,n )‖N1([0,∞))×N2([0,∞)) = 0 (3.53)

for any J ≥ J1. Combining (3.51), (3.52), and (3.53),

‖(ũJ,J1n , ṽJ,J1n )‖W1([0,∞))×W2([0,∞)) ≤ cε+ c ‖(ũJ,J1n , ṽJ,J1n )‖2W1([0,∞))×W2([0,∞)) (3.54)
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for any J > J1 and n ≥ n0(J, J1, ε). It follows that there exists ε0 > 0 such that if 0 < ε ≤ ε0
then the inequality (3.54) implies

‖(ũJ,J1n , ṽJ,J1n )‖W1([0,∞))×W2([0,∞)) ≤ 2cε,

which completes the proof. □
Proof of Lemma 3.42. By the definitions of ẽJ1,n and ẽJ2,n,

‖ẽJ1,n‖N1([0,∞)) =
∥∥∥F1(w̃

J
n + eit∆RJn, z̃

J
n)−

J∑
j=1

F1

(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)∥∥∥
N1([0,∞))

≤ ‖F1(w̃
J0
n + eit∆RJn, z̃

J0
n )− F1(w̃

J0
n , z̃

J0
n )‖N1([0,∞))

+ ‖F1(w̃
J
n + eit∆RJn, z̃

J
n)− F1(w̃

J0
n + eit∆RJn, z̃

J0
n )‖N1([0,∞))

+ ‖F1(w̃
J
n , z̃

J
n)− F1(w̃

J0
n , z̃

J0
n )‖N1([0,∞))

+
∥∥∥F1(w̃

J
n , z̃

J
n)−

J∑
j=1

F1

(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)∥∥∥
N1([0,∞))

,

‖ẽJ2,n‖N2([0,∞)) ≤ ‖F2(w̃
J0
n + eit∆RJn)− F2(w̃

J0)‖N2([0,∞))

+ ‖F2(w̃
J
n + eit∆RJn)− F2(w̃

J0
n + eit∆RJn)‖N2([0,∞))

+ ‖F2(w̃
J
n)− F2(w̃

J0
n )‖N2([0,∞))

+
∥∥∥F2(w̃

J
n)−

J∑
j=1

F2

(
(Φj)[hjn,ξjn]

)∥∥∥
N2([0,∞))

.

The last term of the right hand side goes to zero as n→ ∞ for all J by Lemma 3.43. Moreover,
the second and the third terms become small if we take J0 sufficiently large by Lemma 3.41 and
3.12. Indeed, we have

‖F1(w̃
J
n + eit∆RJn, z̃

J
n)− F1(w̃

J0
n + eit∆RJn, z̃

J0
n )‖N1([0,∞))

≤ 2‖z̃Jn(w̃Jn − w̃J0n )‖N1([0,∞)) + 2‖w̃J0n (z̃Jn − z̃J0n )‖N1([0,∞)) + 2‖(z̃Jn − z̃J0n )eit∆RJn‖N1([0,∞))

≲ ‖z̃Jn‖W2([0,∞))‖w̃Jn − w̃J0n ‖W1([0,∞)) +
{
‖w̃J0n ‖W1([0,∞)) + ‖eit∆RJn‖W1([0,∞))

}
‖z̃Jn − z̃J0n ‖W2([0,∞)),

‖F1(w̃
J
n , z̃

J
n)− F1(w̃

J0
n , z̃

J0
n )‖N1([0,∞))

≲ ‖z̃Jn‖W2([0,∞))‖w̃Jn − w̃J0n ‖W1([0,∞)) + ‖w̃J0n ‖W1([0,∞))‖z̃Jn − z̃J0n ‖W2([0,∞)),

‖F2(w̃
J
n + eit∆RJn)− F2(w̃

J0
n + eit∆RJn)‖N2([0,∞))

= ‖(w̃Jn + w̃J0n + 2eit∆RJn)(w̃
J
n − w̃J0n )‖N2([0,∞))

≲ ‖w̃Jn + w̃J0n + 2eit∆RJn‖W1([0,∞))‖w̃Jn − w̃J0n ‖W1([0,∞))

≲
{
‖w̃Jn‖W1([0,∞)) + ‖w̃J0n ‖W1([0,∞)) + ‖eit∆RJn‖W1([0,∞))

}
‖w̃Jn − w̃J0n ‖W1([0,∞)),

and

‖F2(w̃
J
n)− F2(w̃

J0
n )‖N2([0,∞)) ≲

{
‖w̃Jn‖W1([0,∞)) + ‖w̃J0n ‖W1([0,∞))

}
‖w̃Jn − w̃J0n ‖W1([0,∞)).

Thus, we have to estimate the first term. We may assume by Proposition 3.16 that supp (Φj ,Ψj) ⊂
[m,M ]×B0(R) holds for some m,M,R > 0 and for all j ∈ [1, J0]. We set

Ijn := [(hjn)
−2m, (hjn)

−2M ].

If t /∈ Ijn then
(
(Φj)[hjn,ξjn], (Ψj)[hjn,ξjn]

)
= (0, 0) by the assumption for time support of (Φj ,Ψj).

Thus, we have

‖F1(w̃
J0
n + eit∆RJn, z̃

J0
n )− F1(w̃

J0
n , z̃

J0
n )‖

N1([0,∞)\∪J0
j=1I

j
n)

= 0
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and

‖F2(w̃
J0
n + eit∆RJn)− F2(w̃

J0)‖
N2([0,∞)\(∪J0

j=1I
j
n))

= ‖F2(e
it∆RJn)‖N2([0,∞)\∪J0

j=1I
j
n)
.

By Lemma 3.12 and (3.45),

lim sup
n→∞

‖F2(e
it∆RJn)‖N2([0,∞)\∪J0

j=1)
≤ lim sup

n→∞
‖F2(e

it∆RJn)‖N2([0,∞))

≲ lim sup
n→∞

‖eit∆RJn‖W1([0,∞))‖eit∆RJn‖Sweak([0,∞))

−→ 0 as J → ∞.

We shall consider

‖F1(w̃
J0
n + eit∆RJn, z̃

J0
n )− F1(w̃

J0
n , z̃

J0
n )‖

N1(∪
J0
j=1I

j
n)

and

‖F2(w̃
J0
n + eit∆RJn)− F2(w̃

J0)‖
N2(∪

J0
j=1I

j
n)
.

We only have to treat the case: hjn
hkn

+ hkn
hjn

is bounded for any n and 1 ≤ j, k ≤ J0 since hjn
hkn

+ hkn
hjn

≥
m
M + M

m implies Ijn ∩ Ikn = ∅. Changing scales and notations if necessary, we may assume hjn ≡ 1.

Then, orthogonality (3.44) becomes |ξjn − ξkn| −→ ∞ as n → ∞ for any j 6= k. We want to
estimate

‖F1(w̃
J0
n + eit∆RJn, z̃

J0
n )− F1(w̃

J0
n , z̃

J0
n )‖N1([m′,M ′])

and

‖F2(w̃
J0
n + eit∆RJn)− F2(w̃

J0)‖N2([m′,M ′]),

where m′ := m2

M < m and M ′ := M2

m > M . We set χjn(t, x) = 1[m′,M ′](t)YR(x− 2tξjn), where YR
is defined as (2.2). We recall

(Φj)[1,ξjn](t, x) = eix·ξ
j
ne−it|ξ

j
n|2Φj(t, x− 2tξjn)

and

(Ψj)[1,ξjn](t, x) = e2ix·ξ
j
ne−2it|ξjn|2Ψj(t, x− 2tξjn).

Hence,

supp
(
(Φj)[1,ξjn], (Ψj)[1,ξjn]

)
⊂ suppχjn ⊂

⋃
m′≤t≤M ′

({t} ×B2R(2tξ
j
n)) =: Σjn.

By the orthogonality (3.44), Σjn (1 ≤ j ≤ J0) are pairwise disjoint for large n. For such n, we
have

χkn(Φj)[1,ξjn] =

{
(Φj)[1,ξjn], (k = j),

0, (k 6= j),
and χkn(Ψj)[1,ξjn] =

{
(Ψj)[1,ξjn], (k = j),

0, (k 6= j).

Let χ̃jn = (χjn)2. Then,

χ̃jnF1(w̃
J0
n + eit∆RJn, z̃

J0
n ) = F1(χ

j
nw̃

J0
n + χjne

it∆RJn, χ
j
nz̃

J0
n ) = F1

(
(Φj)[1,ξjn] + χjne

it∆RJn, (Ψj)[1,ξjn]
)

and

χ̃jnF2(w̃
J0
n + eit∆RJn) = F2(χ

j
nw̃

J0
n + χjne

it∆RJn) = F2

(
(Φj)[1,ξjn] + χjne

it∆RJn
)

for each 1 ≤ j ≤ J0 and provided sufficiently large n. Similarly, we have

χ̃jnF1(w̃
J0
n , z̃

J0
n ) = F1(χ

j
nw̃

J0
n , χ

j
nz̃

J0
n ) = F1

(
(Φj)[1,ξjn], (Ψj)[1,ξjn]

)
and

χ̃jnF2(w̃
J0
n ) = F2(χ

j
nw̃

J0
n ) = F2

(
(Φj)[1,ξjn]

)
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for large n. Further, we may see that 1−
∑J

j=1 χ̃
j
n ≡ 0 on ∪J0j=1supp (Φj)[1,ξjn](t, x). Therefore,(

1−
J∑
j=1

χ̃jn

)
F1(w̃

J0
n + eit∆RJn, z̃

J0
n ) = 0,

(
1−

J∑
j=1

χ̃jn

)
F2(w̃

J0
n + eit∆RJn) =

(
1−

J∑
j=1

χ̃jn

)
F2(e

it∆RJn),

(
1−

J∑
j=1

χ̃jn

)
F1(w̃

J0
n , z̃

J0
n ) ≡ 0, and

(
1−

J∑
j=1

χ̃jn

)
F2(w̃

J0
n ) ≡ 0.

Thus, it follows for large n that

‖F1(w̃
J0
n + eit∆RJn, z̃

J0
n )− F1(w̃

J0
n , z̃

J0
n )‖N1([m′,M ′])

=
∥∥∥ J0∑
j=1

F1

(
(Φj)[1,ξjn] + χjne

it∆RJn, (Ψj)[1,ξjn]
)
−

J0∑
j=1

F1

(
(Φj)[1,ξjn], (Ψj)[1,ξjn]

)∥∥∥
N1([m′,M ′])

≤
J0∑
j=1

∥∥F1

(
(Φj)[1,ξjn] + χjne

it∆RJn, (Ψj)[1,ξjn]
)
− F1

(
(Φj)[1,ξjn], (Ψj)[1,ξjn]

)∥∥
N1([m′,M ′])

=

J0∑
j=1

∥∥F1

(
χjne

it∆RJn, (Ψj)[1,ξjn]
)∥∥
N1([m′,M ′])

=: I

and

‖F2(w̃
J0
n + eit∆RJn)− F2(w̃

J0)‖N2([m′,M ′])

=
∥∥∥(1− J0∑

j=1

χ̃jn

)
F2(e

it∆RJn) +

J0∑
j=1

F2

(
(Φj)[1,ξjn] + χjne

it∆RJn
)
−

J0∑
j=1

F2

(
(Φj)[1,ξjn]

)∥∥∥
N2([m′,M ′])

≤
J0∑
j=1

∥∥F2

(
(Φj)[1,ξjn] + χjne

it∆RJn
)
− F2

(
(Φj)[1,ξjn]

)∥∥
N2([m′,M ′])

+ ‖F2(e
it∆RJn)‖N2([m′,M ′]) +

J0∑
j=1

‖F2(χ
j
ne
it∆RJn)‖N2([m′,M ′])

=: II + III + IV.

First, we estimate III. By Lemma 3.12, we have

III ≲ ‖eit∆RJn‖W1([m′,M ′])‖eit∆RJn‖Sweak([m′,M ′]) ≲ ‖RJn‖FḢ 1
2
‖eit∆RJn‖Sweak([m′,M ′]).

Since RJn is uniformly bounded in FḢ
1
2 (R3), Lemma 3.12 and (3.45) deduce

lim
J→∞

lim sup
n→∞

‖F2(e
it∆RJn)‖N2([m′,M ′]) = 0.

Next, we estimate IV . We change of variable x− 2tξjn = y and apply (1.13). Then, we have

‖F2(χ
j
ne
it∆RJn)‖N2([m′,M ′]) = ‖F2(YRe

it∆e−iξ
j
n·xRJn)‖N2([m′,M ′]).

Lemma 3.11 and Proposition 3.5 imply ‖YReit∆RJn‖W1([m′,M ′]) is uniformly bounded. Thus,
using (1.13) and (3.45), it follows that

‖F2(χ
j
ne
it∆RJn)‖N2([m′,M ′]) ≲ ‖YReit∆e−iξ

j
n·xRJn‖Sweak([m′,M ′])‖YReit∆e−iξ

j
n·xRJn‖W1([m′,M ′])

≲ ‖eit∆e−iξ
j
n·xRJn‖Sweak([m′,M ′])

= ‖e−it|ξ
j
n|2−ix·ξjn(eit∆RJn)(x+ 2tξjn)‖Sweak([m′,M ′])
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= ‖eit∆RJn‖Sweak([m′,M ′]) −→ 0 as n→ ∞.

Finally, we estimate I and II. We consider only the case j = 1, that is, we deal with∥∥F1

(
χ1
ne
it∆RJn, (Ψ1)[1,ξ1n]

)∥∥
N1([m′,M ′])

and ∥∥F2

(
(Φ1)[1,ξ1n] + χ1

ne
it∆RJn)− F2((Φ1)[1,ξ1n]

)∥∥
N2([m′,M ′])

.

By the same argument with the proof of Lemma 3.12, we have

‖F1(χ
1
ne
it∆RJn, (Ψ1)[1,ξ1n])‖N1([m′,M ′])

= 2‖(−4t2∆)
1
4M 1

2
(−t)χ1

ne
it∆RJnM1(−t)(Ψ1)[1,ξ1n]‖

L
6
5 ,2

t ([m′,M ′];L
18f
11

x )

≲ ‖(−4t2∆)
1
4M 1

2
(−t)χ1

ne
it∆RJn‖L4,∞

t ([m′,M ′];L2
x)
‖(Ψ1)[1,ξ1n]‖L

12
7 ,2

t ([m′,M ′];L9
x)

+ ‖χ1
ne
it∆RJn‖

L
3
2 ,∞
t ([m′,M ′];L

9
2
x )
‖(−t2∆)

1
4M1(−t)(Ψ1)[1,ξ1n]‖L6,2

t ([m′,M ′];L
18
7

x )

≲ ‖χ1
ne
it∆RJn‖

L4,∞
t ([m′,M ′];Ẋ

1
2
1/2

)
‖(Ψ1)[1,ξ1n]‖L

12
7 ,2

t ([m′,M ′];L9
x)

+ ‖χ1
ne
it∆RJn‖Sweak([m′,M ′])‖(Ψ1)[1,ξ1n]‖W1([m′,M ′]).

‖(Φ1)[1,ξ1n]‖W1([m′,M ′]) is uniformly bounded in n. From (3.45), we have

lim
J→∞

lim sup
n→∞

‖χ1
ne
it∆RJn‖Sweak([m′,M ′]) ≤ lim

J→∞
lim sup
n→∞

‖eit∆RJn‖Sweak([m′,M ′]) = 0.

By Lemma 3.8,

‖(Ψ1)[1,ξ1n]‖L
12
7 ,2

t ([m′,M ′];L9
x)

≲ ‖(Ψ1)[1,ξ1n]‖
1
2

L
6
5 ,2

t ([m′,M ′];L9
x)
‖(Ψ1)[1,ξ1n]‖

1
2

L3,2
t ([m′,M ′];L9

x)
.

Lemma 2.3 and (3.3) deduce

‖(Ψ1)[1,ξ1n]‖L9
x
= ‖M 1

2
(−t)(Ψ1)[1,ξ1n]‖L9

x
≲ ‖|∇|

1
2M 1

2
(−t)(Ψ1)[1,ξ1n]‖L

18
5

x

= |t|−
1
2 ‖|t|

1
2 |∇|

1
2M 1

2
(−t)(Ψ1)[1,ξ1n]‖L

18
5

x

≲ |t|−
1
2 ‖(Ψ1)[1,ξ1n]‖Ẋ

1
2 , 185
1/2

and hence,

‖(Ψ1)[1,ξ1n]‖L3,2
t ([m′,M ′];L9

x)
≲ ‖|t|−

1
2 ‖L∞

t ([m′,M ′])‖(Ψ1)[1,ξ1n]‖L3,2
t ([m′,M ′];Ẋ

1
2 , 185
1/2

)

= (m′)−
1
2 ‖(Ψ1)[1,ξ1n]‖L3,2

t ([m′,M ′];Ẋ
1
2 , 185
1/2

)
.

On the other hand, we have

‖(Ψ1)[1,ξ1n]‖L
6
5 ,2

t ([m′,M ′];L9
x)

≲ ‖(Ψ1)[1,ξ1n]‖L3,2
t ([m′,M ′];Ẋ

1
2 , 185
1/2

)
= ‖Ψ1‖

L3,2
t ([m′,M ′];Ẋ

1
2 , 185
1/2

)

by Lemma 3.14, where we note that (3, 185 ) is an admissible pair. Therefore, to give desired
estimate on [m′,M ′], it suffices to show that

lim sup
n→∞

‖YReit∆e−iξ
1
n·xRJn‖

L2
t ([m

′,M ′];Ẋ
1
2
1/2

)
−→ 0 as J → ∞. (3.55)

Since the multiplication by YR is a bounded operator on L∞([m′,M ′]; Ẋ
1
2

1/2) from Lemma 3.11,

if we obtain (3.55), then

‖YReit∆e−iξ
1
n·xRJn‖

L4,∞
t ([m′,M ′];Ẋ

1
2
1/2

)
≤ ‖YReit∆e−iξ

1
n·xRJn‖

L4
t ([m

′,M ′];Ẋ
1
2
1/2

)

≲ ‖YReit∆e−iξ
1
n·xRJn‖

1
2

L2
t ([m

′,M ′];Ẋ
1
2
1/2

)
‖YReit∆e−iξ

1
n·xRJn‖

1
2

L∞
t ([m′,M ′];Ẋ

1
2
1/2

)
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≲ ‖YReit∆e−iξ
1
n·xRJn‖

1
2

L2
t ([m

′,M ′];Ẋ
1
2
1/2

)
‖RJn‖

1
2

FḢ
1
2
−→ 0 as J → ∞.

Let us check (3.55). It follows that

‖YReit∆e−iξ
1
n·xRJn‖

Ẋ
1
2
1/2

∼ |t|
1
2 ‖|∇|

1
2M 1

2
(−t)YReit∆e−iξ

1
n·xRJn‖L2

x

for t 6= 0 by (3.3). We take 0 < δ < 1
3 ,

1
3 < θ < 1, 18

5 < q1 <
9
2 , and

18
5 < q2 <

9
2 satisfying

1− 2δ

2
=

2(1− θ)

3
+
θ

6
,

1

q1
=

2

9
+
θ

6
=

2(1− θ)

9
+

7θ

18
,

1

2
=

1

q1
+

1

q2
.

Using Lemma 3.9,

‖YReit∆e−iξ
1
n·xRJn‖

Ẋ
1
2
1/2

∼ |t|
1
2 ‖|∇|

1
2M 1

2
(−t)YReit∆e−iξ

1
n·xRJn‖L2

x

≲ |t|
1
2 ‖YR|∇|

1
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖L2

x
+ |t|

1
2 ‖M 1

2
(−t)eit∆e−iξ1n·xRJn|∇|

1
2 YR‖L2

x

+ |t|
1
2 ‖|∇|

θ
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖Lq1

x
‖|∇|

1
2
(1−θ)YR‖Lq2

x

≤ |t|
1
2 ‖YR|∇|

1
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖L2

x
+ |t|

1
2 ‖M 1

2
(−t)eit∆e−iξ1n·xRJn‖

L
9
2
x

‖|∇|
1
2 YR‖

L
18
5

x

+ |t|
1
2 ‖|∇|

θ
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖Lq1

x
‖|∇|

1
2
(1−θ)YR‖Lq2

x

≤ |t|
1
2 ‖YR|∇|

1
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖L2

x
+ CYR

|t|
1
2 ‖M 1

2
(−t)eit∆e−iξ1n·xRJn‖

L
9
2
x

+ CYR
|t|

1
2 ‖|∇|

θ
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖Lq1

x
.

By Lemma 2.3, we have

|t|
1
2 ‖M 1

2
(−t)eit∆e−iξ1n·xRJn‖

L
9
2
x

≲ |t|
1
2
(1−θ)‖|t|

θ
2 |∇|

θ
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖Lq1

∼ |t|
1
2
(1−θ)‖eit∆e−iξ1n·xRJn‖

Ẋ
θ
2 ,q1
1
2

≤ (M ′)
1
2
(1−θ)‖eit∆e−iξ1n·xRJn‖

Ẋ
θ
2 ,q1
1
2

for m′ ≤ t ≤M ′.

|t|
1
2 ‖|∇|

θ
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖Lq1 ∼ |t|

1
2
(1−θ)‖eit∆e−iξ1n·xRJn‖

Ẋ
θ
2 ,q1
1/2

≤ (M ′)
1
2
(1−θ)‖eit∆e−iξ1n·xRJn‖

Ẋ
θ
2 ,q1
1/2

for m′ ≤ t ≤M ′. Applying Lemma 3.8, 3.13, and Proposition 3.5,

‖eit∆e−iξ1n·xRJn‖
L2
t ([m

′,M ′];Ẋ
θ
2 ,q1
1/2

)

≲ ‖1‖
L

1
δ
,2

t ([m′,M ′])
‖eit∆e−iξ1n·xRJn‖

L
2

1−2δ
,∞

t ([m′,M ′];Ẋ
θ
2 ,q1
1/2

)

≲ (M ′)δ‖eit∆e−iξ1n·xRJn‖1−θ
L

3
2 ,∞
t ([m′,M ′];Ẋ

0, 92
1/2

)
‖eit∆e−iξ1n·xRJn‖θ

L6,∞
t ([m′,M ′];Ẋ

1
2 , 187
1/2

)

≲ (M ′)δ‖eit∆e−iξ1n·xRJn‖1−θ
L

3
2 ,∞
t ([m′,M ′];L

9
2
x )
‖eit∆e−iξ1n·xRJn‖θ

L6,2
t ([m′,M ′];Ẋ

1
2 , 187
1/2

)

≲ (M ′)δ‖eit∆e−iξ1n·xRJn‖1−θSweak([m′,M ′])
‖RJn‖θFḢ 1

2
.
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Since It follows from (3.45) that

lim sup
n→∞

‖eit∆e−iξ1n·xRJn‖Sweak([m′,M ′]) = lim sup
n→∞

‖eit∆RJn‖Sweak([m′,M ′]) −→ 0 as J → ∞,

we have

lim sup
n→∞

‖eit∆e−iξ1n·xRJn‖
L2
t ([m

′,M ′];Ẋ
θ
2 ,q1
1/2

)
−→ 0 as J → ∞,

where, we note that

‖1‖2
L

1
δ
,2

t ([m′,M ′])
=

1

2
(M ′ −m′)2δ <

1

2
(M ′)2δ.

If we also use Lemma 3.10, then we get

‖YR|t|
1
2 |∇|

1
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖L2

t ([m
′,M ′];L2

x)
∼ ‖YReit∆|x|

1
2 e−iξ

1
n·xRJn‖L2

t ([m
′,M ′];L2

x)

≲ ‖eit∆|x|
1
2 e−iξ

1
n·xRJn‖L2

t ([m
′,M ′];L2

x(B2R(0)))

≤ ε‖RJn‖FḢ 1
2
+ Cε‖eit∆e−iξ

1
n·xRJn‖

L
3
2 ,∞
t ([0,∞);L

9
2
x )
,

where the first equivalence is used (3.2). Therefore, we conclude from (3.45) that

lim sup
n→∞

‖YR|t|
1
2 |∇|

1
2M 1

2
(−t)eit∆e−iξ1n·xRJn‖L2

t ([m
′,M ′];L2

x)
−→ 0 as J → ∞.

Moreover, we can estimate∥∥F2

(
(Φ1)[1,ξ1n] + χ1

ne
it∆RJn

)
− F2

(
(Φ1)[1,ξ1n]

)∥∥
N2([m′,M ′])

=
∥∥2(Φ1)[1,ξ1n]χ

1
ne
it∆RJn + (χ1

ne
it∆RJn)

2
∥∥
N2([m′,M ′])

by the same argument. □
3.10. Study of related optimization problems. We next consider the optimizing problem
B(ρ) defined as (1.19).

Theorem 3.44. Let d = 3 and κ = 1
2 . B(ρ) is non-increasing and right continuous. Suppose

ρ ≥ 0 is such that B(ρ) < ∞ is true. Then, there exists a minimizer (uρ, vρ) to B(ρ) with the
following properties:

(1) ‖uρ‖FḢ 1
2
= B(ρ) and ‖vρ‖FḢ 1

2
≤ ρ;

(2) (uρ, vρ) /∈ S+.

Moreover, the identity

B(ρ) = inf{`v0 : ‖v0‖FḢ 1
2
≤ ρ} = inf{`†v0 : ‖v0‖FḢ 1

2
≤ ρ}

holds and the minimizer satisfies `vρ = `†vρ = ‖uρ‖FḢ 1
2
. Furthermore,

sup{Lv0(`) : ‖v0‖FḢ 1
2
≤ ρ} ≲ρ,ℓ 1.

for any ` ∈ [0,B(ρ)).

Proof. Non-increasing property of B(ρ) follows from its definition. The identity

B(ρ) = inf{`v0 : ‖v0‖FḢ 1
2
≤ ρ} (3.56)

is also immediate by its definition.
Introduce B†(ρ) as follows:

L(`, ρ) := sup{Lv0(`) : ‖v0‖FḢ 1
2
≤ ρ},

and
B†(ρ) := sup{` : L(`, ρ) <∞} = inf{` : L(`, ρ) = ∞} ∈ (0,∞].

By Proposition 3.24 and 3.5, one has L(`, ρ) ≲ρ 1 for ` ≲ρ 1. Hence, B†(ρ) > 0 for any ρ > 0.
Mimicking the argument in Proposition 3.25, we see that, for each fixed ρ ≥ 0, L(`, ρ) is a
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non-decreasing continuous function of ` defined on [0,∞). Further, we see that B†(ρ) is right
continuous by a standard argument.

We now claim that

B†(ρ) ≤ B(ρ). (3.57)

Indeed, we have

B†(ρ) = inf{` : L(`, ρ) = ∞}

≤ inf{` : There exists v0 ∈ FḢ
1
2 (R3) such that Lv0(`) = ∞ and ‖v0‖FḢ 1

2
≤ ρ}

= inf{`†v0 : ‖v0‖FḢ 1
2
≤ ρ}

≤ inf{`v0 : ‖v0‖FḢ 1
2
≤ ρ} = B(ρ),

where the first inequality follows from fact that the existence of v0 ∈ FḢ
1
2 (R3) such that

Lv0(`) = ∞ and ‖v0‖FḢ 1
2
≤ ρ implies L(`, ρ) = ∞.

Fix ρ > 0 satisfying B(ρ) <∞. Take an optimizing sequence (un(t), vn(t)) to B†(ρ) satisfying

B†(ρ)− 1

n
≤ ‖u0,n‖FḢ 1

2
≤ B†(ρ), ‖v0,n‖FḢ 1

2
≤ ρ

and

n ≤ ‖(un, vn)‖W1([0,∞))×W2([0,∞)) <∞,

where (u0,n, v0,n) = (un(0), vn(0)). Then, by a similar argument to the proof of Theorem 1.39, we

obtain a minimizer (uρ(t), vρ(t)) to B†(ρ), which completes the proof of B†(ρ) = B(ρ). We omit
the details of the proof but point out different respects compared with an optimizing sequence

for `†v0 . The biggest difference is that the second component v0,n of the optimizing sequence may
vary in n. As a result, we do not have a priori information about the second component in the
profile decompositions, hence the decomposition takes the form

(u0,n, v0,n) =

J∑
j=1

Gjn(φj , ψj) + (RJn, L
J
n).

A contradiction argument shows there exists at least one j such that (φj , ψj) /∈ S+. We may
let j = 1. One has

‖φ1‖
FḢ

1
2
≤ lim sup

n→∞
‖u0,n‖FḢ 1

2
= B†(ρ) (3.58)

and

‖ψ1‖
FḢ

1
2
≤ lim sup

n→∞
‖v0,n‖FḢ 1

2
≤ ρ

by the Pythagorean decomposition. Since (φ1, ψ1) /∈ S+ and ‖ψ1‖
FḢ

1
2
≤ ρ, one has

‖φ1‖
FḢ

1
2
≥ B(ρ)

by the definition of B(ρ). Together with (3.57) and (3.58), we see that B(ρ) = B†(ρ) = ‖φ1‖
FḢ

1
2

holds and that the solution corresponds to the data (φ1, ψ1) is a minimizer to both of them. By
(3.56) and (φ1, ψ1) /∈ S+,

B(ρ) = inf{`v0 : ‖v0‖FḢ 1
2
≤ ρ} ≤ `ψ1 ≤ ‖φ1‖

FḢ
1
2
= B(ρ).

Hence, ‖φ1‖
FḢ

1
2
= `ψ1 = B(ρ). Similarly, we have ‖φ1‖

FḢ
1
2
= `†

ψ1 . □

We now turn to the study of optimizing problem (1.16). Let us formulate the problem in
an abstract setting. Let f(x, y) be a function on [0,∞) × [0,∞) satisfying the following three
conditions:
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• Non-decreasing with respect to the both variables, that is,

0 ≤ x1 ≤ x2, 0 ≤ y1 ≤ y2 =⇒ f(x1, y1) ≤ f(x2, y2).

• Continuous, that is, for any (x0, y0) ∈ [0,∞)× [0,∞),

lim
[0,∞)×[0,∞)∋(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

• f(0, 0) = 0.
• No leaking to the infinity, that is,

inf
{
f(‖u0‖FḢ 1

2
, ‖v0‖FḢ 1

2
) : (u0, v0) /∈ S+

}
< min

{
lim
x→∞

f(x, 0), lim
y→∞

f(0, y)

}
. (3.59)

Let

`f := inf{f(‖u0‖FḢ 1
2
, ‖v0‖FḢ 1

2
) : (u0, v0) /∈ S+}.

Theorem 3.45. Let d = 3 and κ = 1
2 . Let f satisfy the condition above. Then, it follows that

`f = inf
v0∈FḢ

1
2

f(`v0 , ‖v0‖FḢ 1
2
) = inf

v0∈FḢ
1
2

f(`†v0 , ‖v0‖FḢ 1
2
).

Furthermore, there exists a minimizer (u(f)(t), v(f)(t)) to `f such that

(1) f(‖u(f)(0)‖
FḢ

1
2
, ‖v(f)(0)‖

FḢ
1
2
) = `f ;

(2) (u(f)(t), v(f)(t)) does not scatter;

(3) ‖u(f)(0)‖
FḢ

1
2
= `v(f)(0) = `†

v(f)(0)
.

The minimizer is not a ground state.

Remark 3.46. The condition (3.59) is hard to check for general f since one does not know much
about the set S+. Following two are examples of a sufficient condition for (3.59) that does not
involve S+:

• limx→∞ f(x, 0) = limy→∞ f(0, y) = +∞;
• there exists a solution (φω, ψω) to (SPω) with ω = 1 such that

f

(
3

4
‖φω‖FḢ 1

2
,
3

4
‖ψω‖FḢ 1

2

)
< min

{
lim
x→∞

f(x, 0), lim
y→∞

f(0, y)

}
.

The problem (1.16) corresponds to the choice f(x, y) = (x2+αy2)1/2. The function satisfies the
first sufficient condition.

Proof. Since S+ 6= ∅, we have `f < ∞. Take a minimizing sequence for `f , that is, take a
sequence of initial data such that (u0,n, v0,n) /∈ S+ and

`f ≤ f(‖u0,n‖FḢ 1
2
, ‖v0,n‖FḢ 1

2
) ≤ `f +

1

n
.

We claim that (‖u0,n‖FḢ 1
2
, ‖v0,n‖FḢ 1

2
) is bounded. If not then ‖u0,n‖FḢ 1

2
or ‖v0,n‖FḢ 1

2
is

not bounded. Let us consider the case ‖u0,n‖FḢ 1
2
is not bounded. Take a subsequence so that

‖u0,n‖FḢ 1
2
−→ ∞ as n→ ∞. Then, by the nondecreasing assumption,

f(‖u0,n‖FḢ 1
2
, 0) ≤ f(‖u0,n‖FḢ 1

2
, ‖v0,n‖FḢ 1

2
).

Letting n → ∞, one obtains limx→∞ f(x, 0) ≤ `f . This is contradiction. Hence, the claim is
proved.

Take a subsequence so that (‖u0,n‖FḢ 1
2
, ‖v0,n‖FḢ 1

2
) converges to a point, say (x∞, y∞). By

the continuity of f , we have

f(x∞, y∞) = `f .
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On the other hand, (u0,n, v0,n) /∈ S+ gives us B(‖v0,n‖FḢ 1
2
) ≤ ‖u0,n‖FḢ 1

2
. So, by the continuity

of B, we have B(y∞) ≤ x∞. Let (u∞, v∞) /∈ S+ be the initial data of a minimizer to B(y∞)
given in Theorem 3.44. It satisfies

‖u∞‖
FḢ

1
2
= `v∞ = `†v∞ = B(y∞) ≤ x∞ and ‖v∞‖

FḢ
1
2
≤ y∞.

The minimizer is what we desired because

`f ≤ f(‖u∞‖
FḢ

1
2
, ‖v∞‖

FḢ
1
2
) ≤ f(x∞, y∞) = `f ,

which implies that f(‖u∞‖
FḢ

1
2
, ‖v∞‖

FḢ
1
2
) = `f . □

3.11. Proof of corollaries of Theorem 1.44. We have proven Theorem 1.44 in Subsection
3.4. Let us show its corollaries.

Proof of Corollary 1.45. For given v0 ∈ FḢ
1
2 (R3) ∩H1(R3) with v0 6= 0, we take

u0 = v0(x)
1
2 |v0(x)|

1
2 ∈ FḢ

1
2 (R3) ∩H1(R3).

Then, we have

E(c
1
2du0, cv0) ≤ cd2‖∇v0‖2L2 +

c2

2
‖∇v0‖2L2 − 2c2d2‖v0‖3L3

for c > 0 and d = ‖∇v0‖L2‖v0‖−3/2
L3 . There exists c0 = c0(v0) > 0 such that the right side is

negative for any c ≥ c0. For such c, the corresponding solution does not scatter by virtue of
Theorem 1.44. This also shows the bound

`cv0 ≤ ‖c
1
2du0‖FḢ 1

2
= c

1
2 ‖v0‖FḢ 1

2
‖∇v0‖L2‖v0‖−3/2

L3 .

We have the desired result. □

Proof of Corollary 1.46. We have

−∆ϕ− 2Re(eiθv0)ϕ = ẽϕ.

Remark that ϕ is real-valued. Multiplying this identity by ϕ, and integrating, we have

〈−∆ϕ,ϕ〉L2 − 〈2Re(eiθv0)ϕ,ϕ〉L2 = ẽ〈ϕ,ϕ〉L2 .

This can be rearranged as

‖∇ϕ‖2L2 − 2Re

∫
R3

v0(x){eiθϕ(x)2}dx = ẽ‖ϕ‖2L2 .

Here, we take u0 = e−iθ/2ϕ. Then,

E(cu0, v0) = c2‖∇ϕ‖2L2 +
1

2
‖∇v0‖2L2 − 2Re

∫
R3

v0(x){c2eiθϕ(x)2}dx

= c2ẽ‖ϕ‖2L2 +
1

2
‖∇v0‖2L2 .

From ẽ < 0, the choice c2 =
∥∇v0∥2

L2

2|ẽ|∥φ∥2
L2

gives us E(u0, v0) = 0. Therefore, (cu0, v0) /∈ S+ by

Theorem 1.44. This also implies the bound

`v0 ≤ ‖cu0‖FḢ 1
2
=

‖ϕ‖
FḢ

1
2√

2|ẽ|‖ϕ‖L2

‖∇v0‖L2 .

We complete the proof. □
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4. Proof of theorems for NLS with a potential

4.1. Some tools for Section 4. We collect some standard tools, which are used in this paper.

Lemma 4.1 (Norm equivalence, [68]). If d = 3, V ∈ L
3
2 (R3) ∩ K0(R3), and ‖V−‖K < 4π, then

‖f‖Ẇ s,r
V

∼ ‖f‖Ẇ s,r , ‖f‖W s,r
V

∼ ‖f‖W s,r ,

where 1 < r < 3
s and 0 ≤ s ≤ 2.

Theorem 4.2 (Dispersive estimate, [68]). If d = 3, V ∈ L
3
2 (R3) ∩ K0(R3), and ‖V−‖K < 4π,

then

‖eit∆V f‖Lp
x
≲ |t|−

3
2
( 1
p′−

1
p
)‖f‖

Lp′
x
.

Definition 4.3 (Ḣs-admissible and Strichartz norm). We say that a pair of exponents (q, r) is

called Ḣs-admissible in three dimensions if 2 ≤ q, r ≤ ∞ and

2

q
+

3

r
=

3

2
− s.

We define Strichartz norm by

‖u‖S(L2) := sup
(q,r):L2-admissible
2≤q≤∞,2≤r≤6

‖u‖Lq
tL

r
x

and its dual norm by

‖u‖S′(L2) := inf
(q,r):L2-admissible
2≤q≤∞,2≤r≤6

‖u‖
Lq′
t L

r′
x
.

Proposition 4.4 (Strichartz estimates, [39, 76]). If d = 3, V ∈ L
3
2 (R3)∩K0(R3), and ‖V−‖K <

4π, then the following estimates hold.

• (Homogeneous estimates)

‖eit∆V f‖S(L2) ≲ ‖f‖L2
x
.

If (q, r) is Ḣsc-admissible and is in a set Λsc defined as

Λsc :=


{
(q, r) : 2 ≤ q ≤ ∞,

6

3− 2sc
≤ r ≤ 6

1− 2sc

} (
0 < sc <

1

2

)
,{

(q, r) :
4

3− 2sc
< q ≤ ∞,

6

3− 2sc
≤ r <∞

} (
1

2
≤ sc < 1

)
,

then

‖eit∆V f‖Lq
tL

r
x
≲ ‖f‖Ḣsc

x
.

• (Inhomogeneous estimates) Let t0 ⊂ I.∥∥∥∥∫ t

t0

ei(t−s)∆V F (·, s)ds
∥∥∥∥
S(L2;I)

≲ ‖F‖S′(L2;I).

If (q, r) is Ḣsc-admissible and is in a set Λsc, then∥∥∥∥∫ t

0
ei(t−s)∆V F (·, s)ds

∥∥∥∥
Lq
t (I;L

r
x)

≲ ‖|∇|scF‖S′(L2;I),

where implicit constants are independent of f and F .

Lemma 4.5 (Fractional calculus, [18]). Suppose G ∈ C1(C) and s ∈ (0, 1]. Let 1 < r, r2 < ∞
and 1 < r1 ≤ ∞ satisfying 1

r = 1
r1

+ 1
r2
. Then, we have

‖|∇|sG(f)‖Lr ≲ ‖G′(f)‖Lr1‖|∇|sf‖Lr2 .
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Lemma 4.6 (Hardy’s inequality, [123]). Let d ≥ 1, 1 < q <∞, and 0 < µ < d. Then, we have∫
Rd

1

|x|µ
|f(x)|qdx ≤q,µ ‖|∇|

µ
q f‖Lq

x
.

Lemma 4.7 (Radial Sobolev embedding, [112, 124]). Let d ≥ 3. For f ∈ H1
rad(Rd) and d−2

2 ≤
s ≤ d−1

2 , it follows that

‖| · |sf‖L∞
x

≲ ‖f‖H1
x
.

Proposition 4.8 (Virial identity, [13, 68]). Let u be a solution given in Theorem 1.50 or Theo-
rem 1.51. We assume that xa∂aV ∈ Lη(Rd)+L∞(Rd) for any a ∈ (N∪{0})d with |a| = 1, some
η ≥ 1 if d = 1, some η > 1 if d = 2, and η = d

2 if d ≥ 3. We define a function

I(t) :=

∫
Rd

|x|2|u(t, x)|2dx.

Then, the following identities hold:

I ′(t) = 4Im

∫
Rd

u(t, x)x · ∇u(t, x)dx,

I ′′(t) = 8‖∇u(t)‖2L2
x
− 4

∫
Rd

(x · ∇V )|u(t, x)|2dx− 4d(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1
x

(= 4KV (u(t))).

Proposition 4.9 (Localized virial identity, [25, 68, 113]). Let u be a solution given in Theorem
1.50 or Theorem 1.51. For a given suitable real-valued weight function w, we define a function

I(t) :=

∫
Rd

w(x)|u(t, x)|2dx.

Then, the following identities hold:

I ′(t) = 2Im

∫
Rd

u(t, x)∇w(x) · ∇u(t, x)dx.

If w is radial, then we can write

I ′(t) = 2Im

∫
Rd

w′(r)

r
u(t, x)x · ∇u(t, x)dx,

I ′′(t) =

∫
Rd

F1(w, r)|x · ∇u(t, x)|2dx+ 4

∫
Rd

w′(r)

r
|∇u(t, x)|2dx−

∫
Rd

F2(w, r)|u(t, x)|p+1dx

−
∫
Rd

F3(w, r)|u(t, x)|2dx− 2

∫
Rd

w′(r)

r
(x · ∇V )|u(t, x)|2dx.

where r = |x| and

F1(w, r) := 4

{
w′′(r)

r2
− w′(r)

r3

}
, F2(w, r) :=

2(p− 1)

p+ 1

{
w′′(r) +

d− 1

r
w′(r)

}
F3(w, r) := w(4)(r) +

2(d− 1)

r
w(3)(r) +

(d− 1)(d− 3)

r2
w′′(r) +

(d− 1)(3− d)

r3
w′(r).

4.2. Proof of Main theorem 1.56. In this subsection, we prove Main theorem 1.56.

4.2.1. Local well-posedness of (NLSV ). In this subsubsection, we investigate local well-posedness
of (NLSV ).

Proof of Theorem 1.51. We define a function space E, a metric d on E, and a map Φu0 respec-
tively as follows

E := {u ∈ Ct(I;H
1
x(R3)) : ‖(1−∆V )

1
2u‖S(L2;I) ≤ 2c ‖u0‖H1

x
},

d(u, v) := ‖u− v‖S(L2;I),

Φu0(u) := eit∆V u0 + i

∫ t

0
ei(t−s)∆V (|u|p−1u)(s)ds.
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We take a constant β satisfying

max

{
2,

4

5− p

}
< β <


4

3− p
(1 < p < 3),

∞ (3 ≤ p < 5).

Using Proposition 4.4, Lemma 4.1, 4.5, and 2.3, we have

‖(1−∆V )
1
2Φu0(u)‖S(L2;I) ≤ c ‖(1−∆V )

1
2u0‖L2

x
+ c ‖(1−∆V )

1
2 (|u|p−1u)‖

L2
t (I;L

6
5
x )

≤ c ‖u0‖H1
x
+ c ‖|u|p−1u‖

L2
t (I;W

1, 65
x )

≤ c ‖u0‖H1
x
+ c T

1
β ‖u‖p−1

L

2β(p−1)
β−2

t (I;L
3(p−1)
x )

‖(1−∆V )
1
2u‖L∞

t (I;L2
x)

≤ c ‖u0‖H1
x
+ c T

1
β ‖u‖p−1

L

2β(p−1)
β−2

t (I;W
1,

6(p−1)β
β(3p−5)+4

x )

‖(1−∆V )
1
2u‖L∞

t (I;L2
x)

≤ c ‖u0‖H1
x
+ c T

1
β ‖(1−∆V )

1
2u‖p−1

L

2β(p−1)
β−2

t (I;L

6(p−1)β
β(3p−5)+4
x )

‖(1−∆V )
1
2u‖L∞

t (I;L2
x)

≤ c ‖u0‖H1
x
+ c T

1
β ‖(1−∆V )

1
2u‖p

S(L2;I)

≤
{
1 + (2c)pT

1
β ‖u0‖p−1

H1
x

}
c ‖u0‖H1

x

and

‖Φu0(u)− Φu0(v)‖S(L2;I) ≤ (2c)pT
1
β ‖u0‖p−1

H1
x
‖u− v‖S(L2;I).

If we take T > 0 sufficiently small satisfying (2c)pT
1
β ‖u0‖p−1

H1
x
< 1, then Φu0 is a contraction map

on E and hence, there exists a unique solution to (NLSV ) on E. □

Theorem 4.10 (Local well-posedness in H1 ∩ |x|−1L2). Let d = 3, 1 ≤ p < 5, V ∈ L
3
2 (R3) ∩

K0(R3), and ‖V−‖K < 4π. Let u be a solution to (NLSV ) given in Theorem 1.51. If | · |u0 ∈
L2(R3), then a map t 7→ | · |u(t, ·) belongs to Ct(I;L

2
x).

The proof of this theorem is based on the argument in [13, Lemma 6.5.2].

Proof. We set I = [0, T ) with 0 < T ≤ ∞. Let ε > 0. We define a function

fε(t) := ‖e−ε| · |2 | · |u(t)‖2L2
x
.

Then, we have

f ′ε(t) =
d

dt

∫
R3

e−2ε|x|2 |x|2|u(t, x)|2dt = 2Re

∫
R3

e−2ε|x|2 |x|2∂tu(t, x)u(t, x)dx

= 2Re

∫
R3

e−2ε|x|2 |x|2{i∆u(t, x)− iV (x)u(t, x) + i|u(t, x)|p−1u(t, x)}u(t, x)dx

= 2Im

∫
R3

∇(e−2ε|x|2 |x|2) · ∇u(t, x)u(t, x)dx

= 4Im

∫
R3

(1− 2ε|x|2)e−2ε|x|2x · ∇u(t, x)u(t, x)dx.

Integrating this identity on [0, t],

fε(t) = fε(0) + 4

∫ t

0
Im

∫
R3

{e−ε|x|2(1− 2ε|x|2)}e−ε|x|2x · ∇u(t, x)u(t, x)dxdt.

Since e−ε|x|
2
(1− 2ε|x|2) is bounded for x and ε, and ‖e−ε|x|2 |x|u0‖L2

x
≤ ‖xu0‖L2

x
, it follows that

fε(t) ≤ ‖xu0‖2L2
x
+ C

∫ t

0
‖∇u(s)‖L2

x

√
fε(s)ds.
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This inequality deduces √
fε(t) ≤ ‖xu0‖L2

x
+
C

2

∫ t

0
‖∇u(s)‖L2

x
ds

for any t ∈ I. Taking a limit as ε↘ 0 and using Fatou’s lemma, we see that xu(t) ∈ L2
x for any

t ∈ I. □

4.2.2. Scattering part. In this subsubsection, we prove the scattering part in Main theorem 1.56.

Proposition 4.11 (Coercivity I). Let d = 3 and 7
3 < p < 5, V ≥ 0, and V ∈ L

3
2 (R3)∩K0(R3).

Let Q1,0 be the ground state to (SPω,0) with ω = 1. Assume that u0 ∈ H1(R3) satisfies

M(u0)
1−sc
sc EV (u0) < (1− δ)

1
scM(Q1,0)

1−sc
sc E0(Q1,0) (4.1)

for some δ > 0 and (1.4). Then, there exist δ′ = δ′(δ) > 0, c = c(δ, ‖u0‖L2
x
) > 0, and

R = R(δ, ‖u0‖L2
x
) > 0 such that the solution u to (NLSV ) with (IC) satisfies

(1) ‖u(t)‖
1−sc
sc

L2
x

‖∇u(t)‖L2
x
< (1− 2δ′)

1
sc(p−1) ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x
,

(2) ‖∇u(t)‖2L2
x
− 3(p−1)

2(p+1)‖u(t)‖
p+1

Lp+1
x

≥ c ‖u(t)‖p+1

Lp+1
x

,

(3) ‖YR
2
u(t)‖

1−sc
sc

L2
x

‖∇(YR
2
u(t))‖L2

x
< (1− δ′)

1
sc(p−1) ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

hold, where YR is defined as (2.2). In particular, we can see global well-posedness in Main
theorem 1.56 by this proposition (1).

Proof. We prove (1). By V ≥ 0, Proposition 1.16, and (2.5), we have

(1− δ)
1
scM(Q1,0)

1−sc
sc E0(Q1,0) > M(u0)

1−sc
sc EV (u0)

≥ ‖u(t)‖
2(1−sc)

sc

L2
x

(
1

2
‖∇u(t)‖2L2

x
− 1

p+ 1
CGN‖u(t)‖(p−1)(1−sc)

L2
x

‖∇u(t)‖(p−1)sc+2
L2
x

)

=
1

2
‖u(t)‖

2(1−sc)
sc

L2
x

‖∇u(t)‖2L2
x
− 2

3(p− 1)
·
‖u(t)‖

1−sc
sc

{(p−1)sc+2}
L2
x

‖∇u(t)‖(p−1)sc+2
L2
x

‖Q1,0‖(p−1)(1−sc)
L2
x

‖∇Q1,0‖(p−1)sc
L2
x

and hence,

(1− δ)
1
sc ≥ g

 ‖u(t)‖
1−sc
sc

L2
x

‖∇u(t)‖L2
x

‖Q1,0‖
1−sc
sc

L2
x

‖∇Q1,0‖L2
x

 ,

where g(y) := 3(p−1)
3p−7 y

2 − 4
3p−7y

3(p−1)
2 . Then, g has a local minimum at y0 = 0 and a local

maximum at y1 = 1. Combining these facts and the assumption of Proposition 4.11 (1), there
exists δ′ = δ′(δ) > 0 such that

‖u(t)‖
1−sc
sc

L2
x

‖∇u(t)‖L2
x
< (1− 2δ′)

1
sc(p−1) ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x
,

which completes the proof of Proposition 4.11 (1).
We prove (2). Using Proposition 1.16, this proposition (1), and (2.5),

E0(u(t)) ≥
1

2
‖∇u(t)‖2L2

x
− 1

p+ 1
CGN‖u(t)‖(p−1)(1−sc)

L2
x

‖∇u(t)‖(p−1)sc+2
L2
x

> ‖∇u(t)‖2L2
x

(
1

2
− 1

p+ 1
CGN (1− 2δ′)‖Q1,0‖(p−1)(1−sc)

L2
x

‖∇Q1,0‖(p−1)sc
L2
x

)
=

{
3p− 7

6(p− 1)
+

4

3(p− 1)
δ′
}
‖∇u(t)‖2L2

x
.
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This inequality deduces

‖∇u(t)‖2L2
x
− 3(p− 1)

2(p+ 1)
‖u(t)‖p+1

Lp+1
x

=
3(p− 1)

2
E0(u(t)) +

7− 3p

4
‖∇u(t)‖2L2

x

>
3(p− 1)

2

{
3p− 7

6(p− 1)
+

4

3(p− 1)
δ′
}
‖∇u(t)‖2L2

x
+

7− 3p

4
‖∇u(t)‖2L2

x

= 2δ′‖∇u(t)‖2L2
x
>

3(p− 1)δ′

(p+ 1)(1− 2δ′)
‖u(t)‖p+1

Lp+1
x
,

which completes the proof of Proposition 4.11 (2).
Finally, we prove (3). ‖YR

2
u(t)‖L2

x
≤ ‖u(t)‖L2

x
holds clearly. Since

‖∇(YR
2
u(t))‖2L2

x
= ‖YR

2
∇u(t)‖2L2

x
− 1

R2

∫
R3

YR
2
(x)(∆Y )

(
2x

R

)
|u(t, x)|2dx (4.2)

≤ ‖∇u(t)‖2L2
x
+

c

R2
M(u0),

we have

‖YR
2
u(t)‖

1−sc
sc

L2
x

‖∇(YR
2
u(t))‖L2

x
≤ ‖u(t)‖

1−sc
sc

L2
x

{
‖∇u(t)‖2L2

x
+

c

R2
M(u0)

} 1
2

≤ ‖u(t)‖
1−sc
sc

L2
x

‖∇u(t)‖L2
x
+
c

R
M(u0)

1
2sc

< (1− 2δ′)
1

sc(p−1) ‖Q1,0‖
1−sc
sc

L2
x

‖∇Q1,0‖L2
x
+
c

R
M(u0)

1
2sc

< (1− δ′)
1

sc(p−1) ‖Q1,0‖
1−sc
sc

L2
x

‖∇Q1,0‖L2
x

for sufficiently large R = R(δ, ‖u0‖L2
x
). □

We define the exponents

q0 =
5(p− 1)

2
, r0 =

30(p− 1)

15p− 23
, ρ =

5(p− 1)

2p
, γ =

30(p− 1)

27p− 35
.

We note that (q0, q0) is Ḣ
sc-admissible, (q0, r0) is L

2-admissible, and (ρ, γ) is dual L2-admissible.
These exponents appear in [88].

Lemma 4.12 (Small data global existence). Let d = 3, 7
3 < p < 5, T > 0, V ∈ L

3
2 (R3)∩K0(R3),

and ‖uT ‖Hsc ≤ A. There exists ε0 = ε0(A) > 0 such that for any 0 < ε < ε0, if

‖ei(t−T )∆V uT ‖Lq0
t (T,∞;L

q0
x ) < ε,

then (NLSV ) with initial data u(T ) = uT has a unique solution u on [T,∞) and

‖u‖Lq0
t (T,∞;L

q0
x ) ≲ ε.

Proof. Let I := [T,∞). We define a function space E, a distance d on E, and a map Φ as follows

E :=

{
u ∈ Ct(I;H

sc) ∩ Lq0t (I;W sc,r0
x )

∣∣∣∣∣ ‖u‖L∞
t (I;Hsc

x )∩Lq0
t (I;W

sc,r0
x ) ≤ 2cA,

‖u‖Lq0
t (I;L

q0
x ) ≤ 2ε

}
,

d(u1, u2) = ‖u1 − u2‖Lq0
t (I;L

r0
x ),

Φ(u)(t) = ei(t−T )∆V uT + i

∫ t

T
ei(t−s)∆V (|u|p−1u)(s)ds.

Using Proposition 4.4, Lemma 4.1, and 4.5, we have

‖Φ(u)‖Lq0
t (I;L

q0
x ) ≤ ε+ c ‖|u|p−1u‖Lρ

t (I;W
sc,γ
x )

≤ ε+ c ‖u‖p−1

L
q0
t (I;L

q0
x )

‖u‖Lq0
t (I;W

sc,r0
x ) ≤ (1 + 2pc2Aεp−2)ε
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and

‖Φ(u)‖L∞
t (I;Hsc

x )∩Lq0
t (I;W

sc,r0
x ) ≤ c ‖uT ‖Hsc

x
+ c ‖u‖p−1

L
q0
t (I;L

q0
x )

‖u‖Lq0
t (I;W

sc,r0
x )

≤ (1 + 2pcεp−1)cA.

Thus, if ε > 0 satisfies max{2pc2Aεp−2, 2pcεp−1} ≤ 1
2 , then

‖u‖L∞
t (I;Hsc

x )∩Lq0
t (I;W

sc,r0
x ) ≤ 2cA and ‖u‖Lq0

t (I;L
q0
x ) ≤ 2ε.

Also, for u, v ∈ E,

‖Φ(u)− Φ(v)‖Lq0
t (I;L

r0
x ) ≤ c

{
‖u‖p−1

L
q0
t (I;L

q0
x )

+ ‖v‖p−1

L
q0
t (I;L

q0
x )

}
‖u− v‖Lq0

t (I;L
r0
x )

≤ 2pcεp−1‖u− v‖Lq0
t (I;L

r0
x )

≤ 1

2
‖u− v‖Lq0

t (I;L
r0
x )

Therefore, Φ is a contraction map on E, and hence, there exists a unique solution u to (NLSV )
on E. □
Lemma 4.13 (Small data scattering). Let d = 3, 7

3 < p < 5, T > 0, and V ∈ L
3
2 (R3)∩K0(R3).

u ∈ L∞
t (T,∞;H1

x) is a solution to (NLSV ) satisfying ‖u‖L∞
t (T,∞;H1

x)
≤ E. Then, there exists

ε0 > 0 such that for any 0 < ε < ε0, if

‖ei(t−T )∆V u(T )‖Lq0
t (T,∞;L

q0
x ) < ε,

then u scatters in positive time.

Proof. We take ε0 > 0 as in Lemma 4.12 with A = E. From Lemma 4.12, the unique solution
u to (NLSV ) satisfies

‖u‖Lq0
t (T,∞;W

sc,r0
x ) ≤ 2cE and ‖u‖Lq0

t (T,∞;L
q0
x ) ≤ 2ε.

Here, we take exponents q1, r1, q2, r2, and r as follows.
Case 7

3 < p ≤ 3 :
We choose

q1 := 2(p− 1)+, r1 :=
6(p− 1)

3p− 5

−
, q2 := ∞−, r2 := 2+, r := 3(p− 1)−

satisfying that (q1, r1) and (q2, r2) are L2-admissible pairs, the embedding Ẇ sc,r1 ↪→ Lr holds,

Ẇ sc,r1
V and Ẇ sc,r1 are equivalent, and Ẇ 1,r2

V and Ẇ 1,r2 are equivalent.
Case 3 < p < 5 :

q1 :=
4(p− 1)2

p+ 1
, r1 :=

6(p− 1)2

3p2 − 7p+ 2
, q2 :=

4(p− 1)

p− 3
, r2 :=

3(p− 1)

p
, r :=

6(p− 1)2

3p− 5
.

Then, (q1, r1) and (q2, r2) are L2-admissible pairs, the embedding Ẇ sc,r1 ↪→ Lr holds, Ẇ sc,r1
V

and Ẇ sc,r1 are equivalent, and Ẇ 1,r2
V and Ẇ 1,r2 are equivalent. Then,

‖u‖Lq1
t (T,∞;W

sc,r1
x ) ≤ c ‖u(T )‖Hsc

x
+ c ‖u‖p−1

L
q0
t (T,∞;L

q0
x )

‖u‖Lq0
t (T,∞;W

sc,r0
x ) <∞

and

‖u‖
L
q2
t (T,∞;W

1,r2
x )

≤ c ‖u(T )‖H1
x
+ c ‖|u|p−1u‖

L2
t (T,∞;W

1, 65
x )

≤ c ‖u(T )‖H1
x
+ c ‖u‖p−1

L
q1
t (T,∞;Lr

x)
‖u‖

L
q2
t (T,∞;W

1,r2
x )

≤ c ‖u(T )‖H1
x
+ c ‖u‖p−1

L
q1
t (T,∞;Ẇ

sc,r1
x )

‖u‖
L
q2
t (T,∞;W

1,r2
x )

<∞

hold. Thus, we have

u ∈ L∞
t (T,∞;H1

x) ∩ L
q0
t (T,∞;W sc,r0

x ) ∩ Lq1t (T,∞;W sc,r1
x ) ∩ Lq2t (T,∞;W 1,r2

x ).
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Therefore, we obtain

‖e−it∆V u(t)− e−iτ∆V u(τ)‖H1
x
=

∥∥∥∥∫ t

τ
e−is∆V (|u|p−1u)(s)ds

∥∥∥∥
H1

x

≤ c ‖|u|p−1u‖
L2
t (τ,t;W

1, 65
x )

≤ c ‖u‖p−1

L
q1
t (τ,t;W

sc,r1
x )

‖u‖
L
q2
t (τ,t;W

1,r2
x )

−→ 0 as t > τ → ∞.

Therefore, {e−it∆V u(t)} is a Cauchy sequence in H1(R3). □

Theorem 4.14 (Scattering criterion). Let d = 3, 7
3 < p < 5,, V ≥ 0, V ∈ L

3
2 (R3)∩K0(R3), and

V is radially symmetric. Suppose that u : R × R3 −→ C is radially symmetric and a solution
to (NLSV ) satisfying ‖u‖L∞

t H1
x
≤ E for some E > 0. Then, there exist ε = ε(E) > 0 and

R = R(E) > 0 such that “if

lim inf
t→∞

∫
|x|≤R

|u(t, x)|2dx ≤ ε2,

then u scatters in positive time”.

The proof of this theorem is based on the argument in [112, §4]. We have to change exponents
of function spaces.

Proof. Set 0 < ε < 1 and R > 0, which will be chosen later. Using Proposition 4.4, we have

‖eit∆V u0‖Lq0
t L

q0
x

≤ c ‖u0‖Ḣsc
x
<∞.

Thus, there exists T0 > ε−1 such that

‖eit∆V u0‖Lq0
t (T0,∞;L

q0
x ) < ε. (4.3)

By the assumption of this theorem, there exists T > T0 such that∫
|x|≤R

|u(T, x)|2dx ≤ 2ε2. (4.4)

By the integral equation, we have

ei(t−T )∆V u(T ) = eit∆V u0 + i

∫
I1

ei(t−s)∆V (|u|p−1u)(s)ds+ i

∫
I2

ei(t−s)∆V (|u|p−1u)(s)ds

=: eit∆V u0 + F1(t) + F2(t) (4.5)

where I1 := [0, T − ε−θ] and I2 := [T − ε−θ, T ]. Here, we will choose 0 < θ = θ(p) < 1 later.
First, we estimate ‖F1‖Lq0

t (T,∞;L
q0
x ). By the integral equation, we have

F1(t) = ei(t−T+ε
−θ)∆V u(T − ε−θ)− eit∆V u0.

We take a positive constant µ satisfying

3p− 7

3(p− 1)
< µ < min

{
3p− 7

p− 1
,
5p− 9

5(p− 1)

}
and set

q3 =
20(p− 1)

15(1− µ)p+ 15µ− 27
, r3 =

4(p− 1)

−3(1− µ)p− 3µ+ 7
.

Then, the following relations hold:

1

q0
=

1

q3
+

1

r3
,

2

q3(1− µ)
+

3

q0(1− µ)
=

3

2
, r3µ > 2, q3(1− µ) > 2.

Proposition 4.4 implies

‖F1‖Lq3(1−µ)
t (T,∞;L

q0(1−µ)
x )

≲ ‖u(T − ε−θ)‖L2
x
+ ‖u0‖L2

x
= 2‖u0‖L2

x
≲ 1. (4.6)
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On the other hand,

‖F1(t)‖L∞
x

≤
∫
I1

‖ei(t−s)∆V (|u|p−1u)(s)‖L∞
x
ds ≲

∫
I1

(t− s)−
3
2 ‖u(s)‖p

Lp
x
ds

≲ ‖u‖p
L∞
t H1

x

∫ T−ε−θ

0
(t− s)−

3
2ds ≲E (t− T + ε−θ)−

1
2

from Theorem 4.2 and Lemma 2.3. Thus, we have

‖F1‖Lr3µ
t (T,∞;L∞

x ) ≲ ‖(t− T + ε−θ)−
1
2 ‖Lr3µ

t (T,∞) ∼ ε
( 1
2
− 1

r3µ
)θ
. (4.7)

Combining Lemma 2.2, (4.6), and (4.7), we have

‖F1‖Lq0
t (T,∞;L

q0
x ) ≤ ‖F1‖1−µ

L
q3(1−µ)
t (T,∞;L

q0(1−µ)
x )

‖F1‖µLr3µ
t (T,∞;L∞

x )
≲ ε

(µ
2
− 1

r3
)θ
. (4.8)

Next, we estimate ‖F2‖Lq0
t (T,∞;L

q0
x ). Applying Proposition 4.9 and the assumption of this theo-

rem, we have ∣∣∣∣ ddt
∫
R3

YR
2
(x)|u(t, x)|2dx

∣∣∣∣ ≤ 2‖∇YR
2
‖L∞

x
‖u(t)‖L2

x
‖∇u(t)‖L2

x
≤ c

R
,

where YR
2
is defined as (2.2). Thus, we have

− c

R
≤ d

dt

∫
R3

YR
2
(x)|u(t, x)|2dx ≤ c

R
.

Integrating each terms in this inequality on [t, T ],

− c

R
(T − t) ≤

∫
R3

YR
2
(x)|u(T, x)|2dx−

∫
R3

YR
2
(x)|u(t, x)|dx ≤ c

R
(T − t).

The left inequality implies∫
R3

YR
2
(x)|u(t, x)|2dx ≤

∫
R3

YR
2
(x)|u(T, x)|2dx+

c

R
(T − t). (4.9)

Here, we choose R > 0 satisfying R > ε−2−θ. By taking supremum over I2 for (4.9) and using
(4.4), we have

sup
t∈I2

∫
R3

YR
2
(x)|u(t, x)|2dx ≤ 2ε2 + cε2+θε−θ ≲ cε2,

that is,

‖YR
2
u‖L∞

t (I2;L2
x)

≤ cε. (4.10)

By Lemma 2.2, (4.10), Lemma 4.7, and 2.3,

‖u‖
L

10
3

t (I2;L
10
3

x )
≤ ‖1‖

L
10
3

t (I2)
‖u‖

L∞
t (I2;L

10
3

x )
≤ ε−

3
10
θ‖u‖

L∞
t (I2;L

10
3

x )

≤ ε−
3
10
θ

{
‖YR

2
u‖

L∞
t (I2;L

10
3

x )
+ ‖(1− YR

2
)u‖

L∞
t (I2;L

10
3

x )

}
≤ ε−

3
10
θ

{
‖YR

2
u‖

2
5

L∞
t (I2;L2

x)
‖u‖

3
5

L∞
t (I2;L6

x)
+ ‖(1− YR

2
)u‖

2
5

L∞
t (I2;L∞

x )‖u‖
3
5

L∞
t (I2;L2

x)

}
≤ ε−

3
10
θ

{
c ε

2
5 ‖u‖

3
5

L∞
t (I2;Ḣ1

x)
+ ‖|x|−

1
2 |x|

1
2u‖

2
5

L∞
t (I2;L∞

x (|x|≥R/2))‖u‖
3
5

L∞
t (I2;L2

x)

}
≤ ε−

3
10
θ

{
c ε

2
5 ‖u‖

3
5

L∞
t (I2;Ḣ1

x)
+R− 1

5 ‖u‖
2
5

L∞
t (I2;H1

x)
‖u‖

3
5

L∞
t (I2;L2

x)

}
≤ ε−

3
10
θ
{
c ε

2
5 + c ε

1
5
(2+θ)

}
≲ c ε

2
5
− 3

10
θ. (4.11)
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By using Proposition 4.4 and a continuity argument, we have

‖|∇|scu‖10
L10
t (I2;L

30
13
x )

+ ‖u‖10L10
t (I2;L10

x ) ≲ 1 + |I2|. (4.12)

From Proposition 4.4, Lemma 4.5, 2.2, (4.12), and (4.11) it follows that

‖F2‖Lq0
t (T,∞;L

q0
x ) ≲ ‖|∇|sc(|u|p−1u)‖

L2
t (I2;L

6
5
x )

≤ ‖u‖p−1

L
5
2 (p−1)

t (I2;L
5
2 (p−1)
x )

‖|∇|scu‖
L10
t (I2;L

30
13
x )

≲ (1 + |I2|)
1
10

{
‖u‖1−sc

L
10
3

t (I2;L
10
3

x )
‖u‖sc

L10
t (I2;L10

x )

}p−1

≲ |I2|
1
10

(
ε(

2
5
− 3

10
θ)(1−sc)|I2|

sc
10

)p−1

= ε−
1
10
θ− 1

10
sc(p−1)θε(

2
5
− 3

10
θ)(1−sc)(p−1) = ε

5−p
5

− 1
2
θ.

Thus, if we take θ = 5−p
5 ∈ (0, 1), then

‖F2‖Lq0
t (T,∞;L

q0
x ) ≲ ε

1
2
θ. (4.13)

Combining (4.5), (4.3), (4.8), and (4.13), we obtain

‖ei(t−T )∆V u(T )‖Lq0
t (T,∞;L

q0
x ) ≲ ε+ ε

1
2
θ.

From Lemma 4.12 and 4.13, the solution u scatters in positive time. □
Proposition 4.15 (Virial/Morawetz estimate). Let d = 3, 7

3 < p < 5, T > 0, V ≥ 0, V ∈
L

3
2 (R3) ∩ K0(R3), x · ∇V ≤ 0, xa∂aV ∈ L

3
2 (R3) for any a ∈ (N ∪ {0})3 with |a| = 1, and V be

radially symmetric. We assume that u is a radial global solution to (NLSV ) satisfying (4.1) and
(1.4). Then, it follows that

1

T

∫ T

0

∫
|x|≤R

2

|u(t, x)|p+1dxdt ≲ R

T
+

1

R2
+

1

Rp−1

for sufficiently large R = R(δ,M(u0), Q1,0).

Proof. We set a radial function

w(x) =


|x|2 (|x| ≤ 1),

smooth (1 < |x| < 2),

3|x| − 4 (2 ≤ |x|),

satisfying ∂rw ≥ 0 and ∂2rw ≥ 0. We define wR as

wR(x) = R2w
( x
R

)
for R > 0. We define a function M(t) as

M(t) := 2Im

∫
R3

u(t, x)∇wR(x) · ∇u(t, x)dx.

By Lemma 2.2, we have

|M(t)| ≲ ‖u(t)‖L2
x
‖∇u(t)‖L2

x
R.

Since ‖u(t)‖H1
x
is uniformly bounded from Proposition 4.11 (1), we have

sup
t∈R

|M(t)| ≲Q1,0 R. (4.14)

Since |x||∇u| = |x · ∇u| a.e. in R3 for u ∈ H1
rad(R3) (see [100]), using Proposition 4.9,

d

dt
M(t) = 4

∫
R3

w′′
( r
R

)
|∇u(t, x)|2dx−

∫
R3

F2,R(w, r)|u(t, x)|p+1dx
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−
∫
R3

F3,R(w, r)|u(t, x)|2dx− 2

∫
R3

R

r
w′
( r
R

)
(x · ∇V )|u(t, x)|2dx

=: I|x|≤R + IR≤|x|≤2R + I2R≤|x|, (4.15)

where IA is an integral restricted d
dtM(t) to a set A, r = |x|, and

F2,R(w, r) :=
2(p− 1)

p+ 1

{
w′′
( r
R

)
+

2R

r
w′
( r
R

)}
, F3,R(w, r) :=

1

R2
w(4)

( r
R

)
+

4

Rr
w(3)

( r
R

)
.

For an integral I|x|≤R, it follows from (4.2) and Proposition 4.11 (2), (3) that

I|x|≤R = 8‖∇u(t)‖2L2
x(|x|≤R) −

12(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1
x (|x|≤R)

− 4

∫
|x|≤R

(x · ∇V )|u(t, x)|2dx

≥ 8‖YR
2
∇u(t)‖2L2

x
− 12(p− 1)

p+ 1
‖YR

2
u(t)‖p+1

Lp+1
x (|x|≤R)

+
12(p− 1)

p+ 1

{
‖YR

2
u(t)‖p+1

Lp+1
x (|x|≤R)

− ‖u(t)‖p+1

Lp+1
x (|x|≤R)

}
≥ 8‖∇(YR

2
u(t))‖2L2

x
− c

R2
M(u0)−

12(p− 1)

p+ 1
‖YR

2
u(t)‖p+1

Lp+1
x

− 12(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1
x (R

2
≤|x|≤R)

≥ c ‖YR
2
u(t)‖p+1

Lp+1
x

− c

R2
M(u0)−

12(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1
x (R

2
≤|x|≤R)

, (4.16)

where YR is defined as (2.2). For IR≤|x|≤2R, we have

IR≤|x|≤2R ≥ −
∫
R≤|x|≤2R

F2,R(w, r)|u(t, x)|p+1dx−
∫
R≤|x|≤2R

F3,R(w, r)|u(t, x)|2dx

≥ −c ‖u(t)‖p+1

Lp+1
x (R≤|x|≤2R)

− c

R2
M(u0). (4.17)

For I2R≤|x|, we have

I2R≤|x| = −12(p− 1)

p+ 1

∫
2R≤|x|

R

r
|u(t, x)|p+1dx− 6

∫
2R≤|x|

R

r
(x · ∇V )|u(t, x)|2dx

≥ −c ‖u(t)‖p+1

Lp+1
x (2R≤|x|)

. (4.18)

Combining (4.15), (4.16), (4.17), (4.18), Lemma 2.4 and Proposition 4.11 (1), we obtain

‖YR
2
u(t)‖p+1

Lp+1
x

≲δ
d

dt
M(t) +

1

R2
M(u0) + ‖u(t)‖p+1

Lp+1
x (R

2
≤|x|)

≲δ,Q1,0

d

dt
M(t) +

1

R2
M(u0) +

1

Rp−1
.

Integrating both sides of this inequality on [0, T ],∫ T

0
‖YR

2
u(t)‖p+1

Lp+1
x
dt ≲δ,Q1,0 sup

t∈[0,T ]
|M(t)|+ T

R2
M(u0) +

T

Rp−1
.

Therefore,

1

T

∫ T

0

∫
|x|≤R

2

|u(t, x)|p+1dxdt ≲δ,Q1,0

R

T
+

1

R2
+

1

Rp−1

from (4.14), which completes the proof of this proposition. □

Proposition 4.16 (Potential energy evacuation). Let u be a solution to (NLSV ) satisfying the
conditions in Main theorem 1.56 (1). Then, there exist a time sequence {tn} with tn −→ ∞ and
a radius sequence {Rn} with Rn −→ ∞ such that

lim inf
n→∞

∫
|x|≤Rn

|u(tn, x)|p+1dx = 0. (4.19)
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Proof. Applying Proposition 4.15 with T = R3 implies

1

R3

∫ R3

0

∫
|x|≤R

2

|u(t, x)|p+1dxdt ≲ 1

R2
+

1

Rp−1
−→ 0 as R→ ∞. (4.20)

By contradiction, we prove

lim inf
t→∞

∫
|x|≤ 1

2
t
1
3

|u(t, x)|p+1dx = 0. (4.21)

We assume that

lim inf
t→∞

∫
|x|≤ 1

2
t
1
3

|u(t, x)|p+1dx =: C > 0.

Then, there exists t0 > 0 such that

inf
s>t

∫
|x|≤ 1

2
s
1
3

|u(s, x)|p+1dx >
C

2
> 0

for any t > t0. Therefore, we have

1

R3

∫ R3

0

∫
|x|≤ 1

2
R
|u(t, x)|p+1dxdt ≥ 1

R3

∫ R3

0

∫
|x|≤ 1

2
t
1
3

|u(t, x)|p+1dxdt

≥ 1

R3

∫ R3

t0

∫
|x|≤ 1

2
t
1
3

|u(t, x)|p+1dxdt

>
1

R3

∫ R3

t0

C

2
dt =

R3 − t0
R3

· C
2

−→ C

2
> 0 as R→ ∞.

This contradiction (4.20). Consequently, we can take sequences {tn} : tn −→ ∞ and {Rn} :

Rn = 1
2 t

1
3
n −→ ∞ such that (4.19) holds from (4.21). □

Finally, we prove the scattering part in Main theorem (1).

Proof of Main theorem 1.56 (1). We recall that global well-posedness has been already shown
in Proposition 4.11 (1). Fix ε and R as in Theorem 4.14. Then, take sequences {tn} and {Rn}
satisfying tn → ∞ and Rn → ∞ as in Proposition 4.16. From Lemma 2.2 and Proposition 4.16,
we obtain∫

|x|≤R
|u(tn, x)|2dx ≤

(∫
|x|≤R

dx

) p−1
p+1
(∫

|x|≤Rn

|u(tn, x)|p+1dx

) 2
p+1

≲ R
3(p−1)
p+1

(∫
|x|≤Rn

|u(tn, x)|p+1dx

) 2
p+1

−→ 0 as n→ ∞.

Applying Theorem 4.14, the solution u to (NLSV ) scatters in positive time. □

4.2.3. Blow-up or grow-up part. In this subsubsection, we prove the blow-up or grow-up part in
Main theorem 1.56 (2).

Proof of Proposition 1.54. The inequality holds by Proposition 1.16 and V ≥ 0. We set the best

constant C†
GN and prove C†

GN = CGN. We define a functional

LV (f) :=
‖f‖p+1

Lp+1

‖f‖p+1− d(p−1)
2

L2 ‖(−∆V )
1
2 f‖

d(p−1)
2

L2

for f ∈ H1(Rd). Proposition 1.16 and V ≥ 0 imply CGN = L0(Q1,0) ≥ L0(f) ≥ LV (f) for

any f ∈ H1(Rd) \ {0}, where Q1,0 is the ground state to (SPω,0) with ω = 1. This inequality
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deduces CGN ≥ C†
GN. On the other hand, we consider a sequence {Q1,0(n · )}. Then, we have

LV (Q1,0(n · )) ≤ C†
GN for each n ∈ N. Thus, it follows that

C†
GN ≥ lim

n→∞
LV (Q1,0(n · )) = L0(Q1,0) = CGN.

Therefore, we obtain C†
GN = CGN. To finish the proof, we see that the inequality is not attained.

If L0(f) = CGN, then f(x) = λ0Q1,0(x + x0) for some λ0 ∈ C and x0 ∈ Rd. Since Q1,0 > 0

for any x ∈ Rd, V ≥ 0, and V 6= 0, we have CGN = L0(λ0Q1,0( · + x0)) > LV (λ0Q1,0( · + x0)),
which implies the desired result. □

Lemma 4.17 (Coercivity II). Let d = 3, 7
3 < p < 5, V ≥ 0, and “V ∈ L

3
2 (R3) ∩ K0(R3) or

V ∈ Lσ(R3) for some 3
2 < σ ≤ ∞”. Let Q1,0 be the ground state to (SPω,0) with ω = 1. Assume

that u0 satisfies (4.1) and (1.5). Then, there exists δ′ = δ′(δ) > 0 such that the solution u to
(NLSV ) with (IC) satisfies

‖u(t)‖
1−sc
sc

L2
x

‖(−∆V )
1
2u(t)‖sc

L2
x
> (1 + δ′)

1
sc ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

for any t ∈ (Tmin, Tmax).

Proof. By the similar argument in Proposition 4.11 (1) with Proposition 1.54, we have

(1− δ)
1
scM(Q1,0)

1−sc
sc E0(Q1,0)

>
1

2
‖u(t)‖

2(1−sc)
sc

L2
x

‖(−∆V )
1
2u(t)‖2L2

x
− 2

3(p− 1)
·
‖u(t)‖

1−sc
sc

{(p−1)sc+2}
L2
x

‖(−∆V )
1
2u(t)‖(p−1)sc+2

L2
x

‖Q1,0‖(p−1)(1−sc)
L2
x

‖∇Q1,0‖(p−1)sc
L2
x

and hence,

(1− δ)
1
sc ≥ g

‖u(t)‖
1−sc
sc

L2
x

‖(−∆V )
1
2u(t)‖L2

x

‖Q1,0‖
1−sc
sc

L2
x

‖∇Q1,0‖L2
x

 ,

where g(y) := 3(p−1)
3p−7 y

2− 4
3p−7y

3(p−1)
2 . The rest of the proof is the same argument as Proposition

4.11 (1). □

Lemma 4.18. Let d ≥ 1 and 2 < p+ 1 < 2∗. Let u be a solution to (NLSV ) given in Theorem
1.50 or Theorem 1.51. We assume that u ∈ Ct([0,∞);H1

x(Rd)) and

C0 := sup
t∈[0,∞)

‖∇u(t)‖L2
x
<∞.

Then, we have

‖u(t)‖2L2(R≤|x|) ≤ oR(1) + η (4.22)

for any η > 0, R > 0, and t ∈
[
0, ηR

4C0M(u)1/2

]
Proof. Let ZR

2
be defined as (2.3). We note that ‖∇ZR

2
‖L∞

x
≤ 4

R . We define a function

I(t) :=

∫
Rd

ZR
2
(x)|u(t, x)|2dx.

Using Proposition 4.9, we have

I(t) = I(0) +

∫ t

0

d

ds
I(s)ds ≤ I(0) +

∫ t

0
|I ′(s)|ds

≤ I(0) + t‖∇ZR
2
‖L∞

x
sup

t∈[0,∞)
‖∇u(t)‖L2

x
‖u(t)‖L2

x
≤ I(0) +

4C0M(u)1/2t

R
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for any t ∈ [0,∞). Since u0 ∈ H1
x(Rd),

I(0) =

∫
Rd

ZR
2
(x)|u0(x)|2dx ≤ ‖u0‖2L2

x(
R
2
≤|x|) = oR(1).

The inequality ‖u(t)‖2L2
x(R≤|x|) ≤ I(t) deduces (4.22) for any t ∈

[
0, ηR

4C0M(u)1/2

]
. □

Lemma 4.19. Let d = 3, 1 < p < 5, “V ∈ L
3
2 (R3) ∩ K0(R3) or V ∈ Lσ(R3) for some

3
2 < σ ≤ ∞”, xa∂aV ∈ L

3
2 (R3) for any a ∈ (N∪{0})d with |a| = 1, V ≥ 0, and x ·∇V +2V ≥ 0.

Let u ∈ C([0,∞);H1) be a solution to (NLSV ). We define a function

I(t) :=

∫
R3

XR(x)|u(t, x)|2dx,

where XR is defined as (2.1). Then, for any p + 1 < q < 6, there exist constants C =
C(q,M(u), C0) > 0 and θq > 0 such that for any R > 0 and t ∈ [0,∞), the estimate

I ′′(t) ≤ 8

{
‖∇u(t)‖2L2

x
− 3(p− 1)

2(p+ 1)
‖u(t)‖p+1

Lp+1
x

+

∫
R3

V (x)|u(t, x)|2dx
}

+ C ‖u(t)‖(p+1)θq
L2
x(R≤|x|) +

C

R2
‖u(t)‖2L2

x(R≤|x|) + C‖x · ∇V ‖
L

3
2
x (R≤|x|≤3R)

holds, where θq :=
2{q−(p+1)}
(p+1)(q−2) ∈ (0, 2

p+1 ] and C0 is given in Lemma 4.18.

Proof. Using Proposition 4.9, we have

I ′′(t) = 8‖∇u(t)‖2L2
x
− 12(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1
x

+ 8

∫
R3

V (x)|u(t, x)|2dx+R1 +R2 +R3 +R4,

where Rk = Rk(t) (k = 1, 2, 3, 4) are defined as

R1 := 4

∫
R3

{
1

r2
X ′′

( r
R

)
− R

r3
X ′

( r
R

)}
|x · ∇u|2dx+ 4

∫
R3

{
R

r
X ′

( r
R

)
− 2

}
|∇u(t, x)|2dx,

R2 := −2(p− 1)

p+ 1

∫
R3

{
X ′′

( r
R

)
+

2R

r
X ′

( r
R

)
− 6

}
|u(t, x)|p+1dx,

R3 := −
∫
R3

{
1

R2
X (4)

( r
R

)
+

4

Rr
X (3)

( r
R

)}
|u(t, x)|2dx,

R4 := −8

∫
R3

V (x)|u(t, x)|2dx− 2

∫
R3

R

r
X ′

( r
R

)
(x · ∇V )|u(t, x)|2dx.

We set

Ω :=

{
x ∈ R3 :

1

r2
X ′′

( r
R

)
− R

r3
X ′

( r
R

)
≥ 0

}
.

By X ′( rR) ≤
2r
R , we have

R1 ≤ 4

∫
Ω

{
X ′′

( r
R

)
− R

r
X ′

( r
R

)}
|∇u(t, x)|2dx+ 4

∫
Ω

{
R

r
X ′

( r
R

)
− 2

}
|∇u(t, x)|2dx

= 4

∫
Ω

{
X ′′

( r
R

)
− 2
}
|∇u(t, x)|2dx ≤ 0.

We estimate R2. Lemma 2.2 and 2.3 deduce

R2 ≲ ‖u(t)‖p+1

Lp+1
x (R≤|x|)

≤ ‖u(t)‖(p+1)(1−θq)
Lq
x(R≤|x|) ‖u(t)‖(p+1)θq

L2
x(R≤|x|)

≲ ‖u(t)‖(p+1)(1−θq)
H1

x
‖u(t)‖(p+1)θq

L2
x(R≤|x|) ≲q,M(u),C0

‖u(t)‖(p+1)θq
L2
x(R≤|x|).

We estimate R3.

R3 = −
∫
R≤|x|≤3R

{
1

R2
X (4)

( r
R

)
+

4

Rr
X (3)

( r
R

)}
|u(t, x)|2dx ≲ 1

R2
‖u(t)‖2L2

x(R≤|x|).
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We estimate R4. By V ≥ 0, x · ∇V + 2V ≥ 0, Lemma 2.2, and 2.3, we have

R4 = −4

∫
|x|≤R

(x · ∇V + 2V )|u(t, x)|2dx− 8

∫
R≤|x|

V (x)|u(t, x)|2dx

− 2

∫
R≤|x|≤3R

R

r
X ′

( r
R

)
(x · ∇V )|u(t, x)|2dx

≤ −2

∫
R≤|x|≤3R

R

r
X ′

( r
R

)
(x · ∇V )|u(t, x)|2dx

≲ ‖x · ∇V ‖
L

3
2
x (R≤|x|≤3R)

‖u(t)‖L6
x(R≤|x|≤3R)

≲ ‖x · ∇V ‖
L

3
2
x (R≤|x|≤3R)

‖∇u(t)‖L2
x

≲ ‖x · ∇V ‖
L

3
2
x (R≤|x|≤3R)

,

which completes the proof of this lemma. □
Lemma 4.20. Let d ≥ 1, 1+ 4

d < p <∞ if d = 1, 2, and 1+ 4
d < p < 1+ 4

d−2 if d ≥ 3. Assume

that u0 ∈ H1(Rd) satisfies (1.20) and (1.22). Let u be a solution to (NLSV ) with (IC) given in

Theorem 1.50 or Theorem 1.51. Let xa∂aV ∈ L
d
2 (Rd) + L∞(Rd) for any a ∈ (N ∪ {0})d with

|a| = 1 and x · ∇V + 2V ≥ 0. Then, there exists δ > 0 such that

KV (u(t)) ≤ 2‖∇u(t)‖2L2
x
− d(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1
x

+ 2

∫
R3

V (x)|u(t, x)|2dx < −δ.

for any t ∈ (Tmin, Tmax).

Proof. The left inequality follows from

−
∫
R3

(x · ∇V )|u(t, x)|2dx = −
∫
R3

(x · ∇V + 2V )|u(t, x)|2dx+ 2

∫
R3

V (x)|u(t, x)|2dx

≤ 2

∫
R3

V (x)|u(t, x)|2dx.

We prove the second inequality. By the assumption (1.20),

ε1 :=
1

2

[{
M(Q1,0)

M(u0)

} 1−sc
sc

E0(Q1,0)− EV (u0)

]
> 0

and

EV (u0) <
1

2
EV (u0) +

1

2

{
M(Q1,0)

M(u0)

} 1−sc
sc

E0(Q1,0) =

{
M(Q1,0)

M(u0)

} 1−sc
sc

E0(Q1,0)− ε1. (4.23)

Using the estimate (1.22), we have

‖(−∆V )
1
2u(t)‖2L2

x
>

{
M(Q1,0)

M(u0)

} 1−sc
sc

‖∇Q1,0‖2L2
x

(4.24)

for any t ∈ (Tmin, Tmax). (4.23), (4.24), and (2.4) give

‖∇u(t)‖2L2
x
− d(p− 1)

2(p+ 1)
‖u(t)‖p+1

Lp+1
x

+

∫
R3

V (x)|u(t, x)|2dx

=
d(p− 1)

2
EV (u)−

d(p− 1)− 4

4
‖(−∆V )

1
2u‖2L2

x

<
d(p− 1)

2

[{
M(Q1,0)

M(u0)

} 1−sc
sc

E0(Q1,0)− ε1

]
− d(p− 1)− 4

4

{
M(Q1,0)

M(u0)

} 1−sc
sc

‖∇Q1,0‖2L2

= −d(p− 1)

2
ε1 =: −1

2
δ.

□
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Proof of blow-up or grow-up result in Main theorem 1.56 (2). We assume that

Tmax = ∞ and C0 := sup
t∈[0,∞)

‖∇u(t)‖L2
x
<∞

for contradiction. By Lemma 4.20, there exists δ > 0 such that

‖∇u(t)‖2L2
x
− 3(p− 1)

2(p+ 1)
‖u(t)‖p+1

Lp+1
x

+

∫
R3

V (x)|u(t, x)|2dx < −δ

for any t ∈ [0,∞). We consider the function I(t) as in Lemma 4.19. From Lemma 4.19 and
4.18, we have

I ′′(s) ≤ −8δ + C‖u(s)‖(p+1)θq
L2
x(R≤|x|) +

C

R2
‖u(s)‖2L2

x(R≤|x|) + C‖x · V ‖
L

3
2
x (R≤|x|≤3R)

= −8δ + Cη
(p+1)θq

2 + oR(1) (4.25)

for any η > 0, R > 0, and s ∈
[
0, ηR

4C0M(u0)1/2

]
. We take η = η0 > 0 sufficiently small such as

Cη
(p+1)θq

2
0 ≤ 2δ. Then, (4.25) implies

I ′′(s) ≤ −6δ + oR(1) (4.26)

for any R > 0 and s ∈
[
0, η0R

4C0M(u0)1/2

]
. We set

T = T (R) := α0R :=
η0R

4C0M(u0)1/2
.

Integrating (4.26) on s ∈ [0, t] and integrating on t ∈ [0, T ], we have

I(T ) ≤ I(0) + I ′(0)T +
1

2
(−6δ + oR(1))T

2 = I(0) + I ′(0)α0R+
1

2
(−6δ + oR(1))α

2
0R

2. (4.27)

Here, we can prove

I(0) = oR(1)R
2 and I ′(0) = oR(1)R. (4.28)

Indeed,

I(0) =

∫
|x|≤

√
R
|x|2|u0(x)|2dx+

∫
√
R≤|x|≤3R

R2X
( r
R

)
|u0(x)|2dx

≤ RM(u0) + cR2‖u0‖L2
x(
√
R≤|x|) = oR(1)R

2,

and

I ′(0) = 4Im

∫
|x|≤

√
R
u0(x)x · ∇u0(x)dx+ 2Im

∫
√
R≤|x|≤3R

R

r
X ′

( r
R

)
u0(x)x · ∇u0(x)dx

≤ 4
√
R ‖u0‖L2

x
‖∇u0‖L2

x
+ cR‖u0‖L2

x(
√
R≤|x|)‖∇u0‖L2

x
= oR(1)R.

Combining (4.27) and (4.28), we get

I(T ) ≤ (oR(1)− 3δα2
0)R

2.

We take R > 0 sufficiently large such as oR(1)−3δα2
0 < 0. However, this contradict I(T ) ≥ 0. □

4.2.4. Blow-up part. In this subsubsection, we prove the blow-up part in Main theorem 1.56 (2).

Proof. We assume that Tmax = ∞.
Let xu0 ∈ L2(R3).
Then, it follows from Proposition 4.8 and Lemma 4.20 that

d2

dt2
‖xu(t)‖2L2

x
= 4KV (u(t)) < −4δ < 0.
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This is contradiction. Therefore, the solution u to (NLSV ) blows up.
Let V and u0 be radially symmetric.
We define radial functions

F (r) =


1
2r

2 (r ≤ 1),

smooth (1 < r < 2),
3
2r (2 ≤ r).

satisfying 1− F ′′ ≥ 0 and FR(r) = R2F
(
r
R

)
. We note that∣∣∣∣−2(p− 1)

p+ 1

{
−3 + F ′′

( r
R

)
+

2R

r
F ′
( r
R

)}∣∣∣∣ ≲ 4
{
1− F ′′

( r
R

)}
(4.29)

for any r ≥ 0. Using Proposition 4.9,

2Im
d

dt

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx

= 4

∫
R3

F ′′
( r
R

)
|∇u|2dx− 2(p− 1)

p+ 1

∫
R3

{
F ′′
( r
R

)
+

2R

r
F ′
( r
R

)}
|u|p+1dx

−
∫
R3

{
1

R2
F (4)

( r
R

)
+

4

Rr
F (3)

( r
R

)}
|u|2dx− 2

∫
R3

R

r
F ′
( r
R

)
(x · ∇V )|u|2dx

= 2KV (u(t))−
∫
R3

[
4
{
1− F ′′

( r
R

)}
|u′|2 + 2(p− 1)

p+ 1

{
−3 + F ′′

( r
R

)
+

2R

r
F ′
( r
R

)}
|u|p+1

+

{
1

R2
F (4)

( r
R

)
+

4

Rr
F (3)

( r
R

)}
|u|2
]
dx+ 2

∫
R3

{
1− R

r
F ′
( r
R

)}
(x · ∇V )|u|2dx

= 2KV (u(t)) + 2

∫
R≤|x|

{
1− R

r
F ′
( r
R

)}
(x · ∇V )|u|2dx

−
∫
R≤|x|

[
4
{
1− F ′′

( r
R

)}
|u′|2 + 2(p− 1)

p+ 1

{
−3 + F ′′

( r
R

)
+

2R

r
F ′
( r
R

)}
|u|p+1

]
dx

−
∫
R≤|x|≤2R

{
1

R2
F (4)

( r
R

)
+

4

Rr
F (3)

( r
R

)}
|u|2dx

=: 2KV (u(t)) + I1 − 4

∫
R≤|x|

{
1− F ′′

( r
R

)}
|u′|2dx+ I2 + I3. (4.30)

From Lemma 4.20, there exists δ > 0 such that

KV (u(t)) < −δ. (4.31)

We can see that

I3 ≲
1

R2
M(u0). (4.32)

We estimate I2. Applying (4.29), Lemma 2.4, and 2.1, we get

I2 ≲
∫
R≤|x|

{
1− F ′′

( r
R

)}
|u|p+1dx ≲

∫ ∞

R

{
1− F ′′

( r
R

)}
|u(r)|p+1r2dr

=

∫ ∞

R

∫ r

R

d

ds

{
1− F ′′

( s
R

)}
ds|u(r)|p+1r2dr

=

∫ ∞

R

∫ ∞

s
|u(r)|p+1r2dr

d

ds

{
1− F ′′

( s
R

)}
ds

≲
∫ ∞

R

∫
s≤|x|

|u(x)|p+1dx
d

ds

{
1− F ′′

( s
R

)}
ds

≲
∫ ∞

R

1

s2
‖u(t)‖

p+3
2

L2
x(s≤|x|)‖∇u(t)‖

p−1
2

L2
x(s≤|x|)

d

ds

{
1− F ′′

( s
R

)}
ds
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=

∫ ∞

R

{
ε−

p−1
4 s−2‖u(t)‖

p+3
2

L2
x(s≤|x|)

}{
ε

p−1
4 ‖∇u(t)‖

p−1
2

L2
x(s≤|x|)

}
d

ds

{
1− F ′′

( s
R

)}
ds

≲
∫ ∞

R

{
ε
− p−1

5−p s
− 8

5−p ‖u(t)‖
2(p+3)
5−p

L2
x(s≤|x|) + ε‖∇u(t)‖2L2

x(s≤|x|)

}
d

ds

{
1− F ′′

( s
R

)}
ds

≲ ε
− p−1

5−pR
− 8

5−p ‖u(t)‖
2(p+3)
5−p

L2
x(R≤|x|) + ε

∫ ∞

R

∫ ∞

s
|u′(r)|2r2dr d

ds

{
1− F ′′

( s
R

)}
ds

= ε
− p−1

5−pR
− 8

5−p ‖u(t)‖
2(p+3)
5−p

L2
x(R≤|x|) + ε

∫ ∞

R

∫ r

R

d

ds

{
1− F ′′

( s
R

)}
ds|u′(r)|2r2dr

= ε
− p−1

5−pR
− 8

5−p ‖u(t)‖
2(p+3)
5−p

L2
x(R≤|x|) + ε

∫ ∞

R

{
1− F ′′

( r
R

)}
|u′(r)|2r2dr. (4.33)

By the same estimate as I2, we have

I1 ≲ ‖x · ∇V ‖
L

3
2
x (R≤|x|)

∫
R≤|x|

{
1− F ′′

( r
R

)}
|u′(t, r)|2dx. (4.34)

Combining (4.30), (4.31), (4.32), (4.33), and (4.34),

2Im
d

dt

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx ≤ −2δ +
c

R2
M(u0) + cε

− p−1
5−pR

− 8
5−pM(u0)

(p+3)
5−p

+

(
cε+ c ‖x · ∇V ‖

L
3
2
x (R≤|x|)

− 4

)∫
R≤|x|

{
1− F ′′

( r
R

)}
|u′(t, r)|2dx.

Thus, if we take ε > 0 sufficiently small such as cε < 2 and take R > 0 sufficiently large such as

c ‖x · ∇V ‖
L

3
2
x (R≤|x|)

<
3p− 7

4
< 2 and

c

R2
M(u0) + cε

− p−1
5−pR

− 8
5−pM(u0)

(p+3)
5−p < δ, (4.35)

then it follows that

2Im
d

dt

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx < −δ < 0.

Integrating this inequality on [0, t),

2Im

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx ≤ −δt+ 2Im

∫
R3

u0(x)∇FR(x) · ∇u0(x)dx. (4.36)

If we take T0 > 0 satisfying

−δt+ 2Im

∫
R3

u0(x)∇FR(x) · ∇u0(x)dx < −1

2
δt (4.37)

for any t > T0, then it follows from these inequalities that

1

2
δt ≤

∣∣∣∣2Im d

dt

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx
∣∣∣∣ ≤ cRM(u0)

1
2 ‖∇u(t)‖L2

x
. (4.38)

Therefore, we have ct2 ≤ ‖∇u(t)‖2L2
x
for any t ≥ T0. From (4.30), Lemma 4.20, (4.34), Lemma

2.4, (4.32), (4.35), and Lemma 2.1,

2Im
d

dt

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx

≤ 4

∫
R3

{
|∇u(t, x)|2 + V (x)|u(t, x)|2 − 3(p− 1)

2(p+ 1)
|u(t, x)|p+1

}
dx

+ c ‖x · ∇V ‖
L

3
2
x (R≤|x|)

‖∇u(t)‖2L2
x
+

c

R2
M(u0) +

c

Rp−1
M(u0)

p+3
4 ‖∇u(t)‖

p−1
2

L2
x

= 6(p− 1)EV (u0)− (3p− 7)‖∇u(t)‖2L2
x
− (3p− 7)

∫
R3

V (x)|u(t, x)|2dx

+ c ‖x · ∇V ‖
L

3
2
x (R≤|x|)

‖∇u(t)‖2L2
x
+

c

R2
M(u0) +

c

Rp−1
M(u0)

p+3
4 ‖∇u(t)‖

p−1
2

L2
x
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≤ 6(p− 1)EV (u0)−
3p− 7

2
‖∇u(t)‖2L2

x
+

c

R2
M(u0) +

c

R
4(p−1)
5−p

M(u0)
p+3
5−p .

Since ‖∇u(t)‖2L2
x
≥ Ct2 and EV , M are independent of t, there exists T1 ≥ T0 such that

2Im
d

dt

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx ≤ −3p− 7

4
‖∇u(t)‖2L2

x
.

Integrating this inequality on [T1, t],

Im

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx− Im

∫
R3

u(T1, x)∇FR(x) · ∇u(T1, x)dx

≤ −3p− 7

8

∫ t

T1

‖∇u(s)‖2L2ds.

From (4.36), (4.37), and (4.38), we get

3p− 7

8

∫ t

T1

‖∇u(s)‖2L2ds ≤ −Im

∫
R3

u(t, x)∇FR(x) · ∇u(t, x)dx ≤ cRM(u0)
1
2 ‖∇u(t)‖L2

x
.

We set

S(t) :=

∫ t

T1

‖∇u(s)‖2L2
x
ds and A :=

1

M(u0)

(
3p− 7

8cR

)2

.

Then,

A ≤ S′(t)

S(t)2
.

Integrating this inequality on [T1 + 1, t),

A(t− T1 − 1) ≤ 1

S(T1 + 1)
− 1

S(t)
≤ 1

S(T1 + 1)
<∞.

However, this inequality is contradiction if we take a limit t→ ∞. □

4.2.5. Corollary of Main theorem 1.56. In this subsubsection, we prove Corollary 1.57 by using
Lemma 4.18 and Lemma 4.19 with p = 7

3 . We also use the following lemma, which is a slight
modification of Lemma 4.20.

Lemma 4.21. Let d = 3 and p = 7
3 . Let V satisfy “V ∈ L

3
2 (R3)∩K0(R3) and ‖V−‖K < 4π” or

V ∈ Lσ(R3) for some 3
2 < σ ≤ ∞. Let xa∂aV ∈ L

3
2 (R3) for any a ∈ (N∪ {0})3 with |a| = 1 and

x · ∇V + 2V ≥ 0. Assume that u0 ∈ H1(R3) satisfies EV (u0) < 0. Then, we have

KV (u(t)) ≤ 2‖∇u(t)‖2L2
x
− 6

5
‖u(t)‖

10
3

L
10
3

x

+ 2

∫
R3

V (x)|u(t, x)|2dx = 4EV (u0).

for any t ∈ (Tmin, Tmax), where u is the solution to (NLSV ) on (Tmin, Tmax).

Proof. The first inequality is proved by the same argument as the proof of Lemma 4.20. The
second identity is proved by the definition of the energy EV . □

Proof of Corollary 1.57. Corollary 1.57 is deduced by the same argument as the proof of Theo-
rem 1.56 (2). In the argument, Lemma 4.18, 4.19, and 4.21 are used. □

4.3. Proof of Main theorem 1.60. In this subsection, we prove Main theorem 1.60.
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4.3.1. Non-radial case. In this subsubsection, we prove the non-radial case in Main theorem
1.60.

Lemma 4.22. Let d = 3, 1 < p ≤ 5, and ω > 0. Let V ∈ L
3
2 (R3) + L∞(R3) and V ≥ 0. Then,

it follows that

n1,0ω,V =
p− 1

2(p+ 1)
inf{‖φ‖p+1

Lp+1
x

: φ ∈ H1
x(R3) \ {0}, Nω,V (φ) ≤ 0}

=
p− 1

2(p+ 1)
inf{‖φ‖2H1

ω,V
: φ ∈ H1(R3) \ {0}, Nω,V (φ) ≤ 0},

where

‖φ‖2H1
ω,V

:= ω‖φ‖2L2
x
+ ‖(−∆V )

1
2φ‖2L2

x
.

Proof. We only prove the first equality. The second equality holds by the same argument for
the first equality. We set

ñ1,0ω,V :=
p− 1

2(p+ 1)
inf{‖φ‖p+1

Lp+1
x

: φ ∈ H1
x(R3) \ {0}, Nω,V (φ) ≤ 0}.

When φ ∈ H1
x(R3)\{0} satisfies Nω,V (φ) = 0, we have Sω,V (φ) =

p−1
2(p+1)‖φ‖

p+1

Lp+1
x

, so n1,0ω,V ≥ ñ1,0ω,V

holds. When φ ∈ H1
x(R3) \ {0} satisfies Nω,V (f) ≤ 0, there exists 0 < λ ≤ 1 such that

Nω,V (λφ) = 0. For such 0 < λ ≤ 1, it follows that

n1,0ω,V ≤ Sω,V (λφ) =
p− 1

2(p+ 1)
‖λφ‖p+1

Lp+1
x

=
p− 1

2(p+ 1)
λp+1‖φ‖p+1

Lp+1
x

≤ p− 1

2(p+ 1)
‖φ‖p+1

Lp+1
x
. (4.39)

Therefore, we obtain n1,0ω,V ≤ ñ1,0ω,V . □

Proposition 4.23. Let d = 3, 1 < p ≤ 5, and ω > 0. Let V ∈ L
3
2 (R3) + Lσ(R3) for some

3
2 < σ <∞ and V ≥ 0. Then, n1,0ω,V = nω,0 holds.

Proof. This proof follows from the same argument with (α, β) = (1, 0) as Proposition 4.36. □
Lemma 4.24. Let d = 3, V ∈ K0(R3), and ‖V−‖K < π. Then, the integral kernel K(x, y) of
(ω −∆V )

−1 satisfies K(x, y) > 0 for any ω > 0 and any x, y ∈ R3 with x 6= y.

Proof. From the proof of [22, Proposition 5.1], it follows that

K̃(t, x, y) =
(2πt)−

3
2

1− ‖V−‖K/π
e−

|x−y|2
8t ,

where K̃(t, x, y) is the heat kernel of et∆V . Combining this expression and the following formula:

(ω −∆V )
−1 =

∫ ∞

0
et∆V e−tωdt,

we obtain the desired result. For the proof, see also [110]. □
Proposition 4.25. Besides the assumptions of Proposition 4.23, we assume that V 6= 0 and
“V ∈ K0(R3) or V > 0”. Then, n1,0ω,V is not attained for any ω > 0.

Proof. On the contrary, we assume that φ attains n1,0ω,V . From |∇|φ|| ≤ |∇φ| (see [52]) and

Lemma 4.22, |φ| also attains n1,0ω,V . We may assume φ ≥ 0. If V ∈ K0(R3), then φ > 0 holds by

Lemma 4.24. Therefore, we can take y ∈ R3 satisfying

Nω,V (φ( · − y)) < Nω,V (φ) = 0. (4.40)

Since Nω,V (λφ( · − y)) > 0 for small λ ∈ (0, 1) and Nω,V (φ( · − y)) < 0, we can take λ0 ∈ (0, 1)

such that Nω,V (λ0φ( · − y)) = 0. By the definition of n1,0ω,V and (4.40), we obtain

n1,0ω,V ≤ Sω,V (λ0φ( · − y)) <
p− 1

2(p+ 1)
‖φ( · − y)‖2H1

ω,V
<

p− 1

2(p+ 1)
‖φ‖2H1

ω,V
= n1,0ω,V .
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This is contradiction. □

The following proposition is more general case of Proposition 1.63 (1).

Proposition 4.26. Let d = 3 and 7
3 < p < 5, V ∈ L

3
2 (R3) + Lσ(R3) for some 3

2 < σ <∞, and
V ≥ 0. Let Qω,0 be the ground state to (SPω,0). The following two conditions (1) and (2) are
equivalent.

(1) M(u0)
1−sc
sc EV (u0) < M(Q1,0)

1−sc
sc E0(Q1,0).

(2) There exists ω > 0 such that Sω,V (u0) < n1,0ω,V (= nω,0 = Sω,0(Qω,0)).

Proof. This proof follows from the same argument as Proposition 1.68 (1). □

4.3.2. Radial case. In this subsubsection, we prove the radial case in Main theorem 1.60.

Lemma 4.27 (Reflexivity). Let V ≥ 0 and V ∈ L
3
2 (R3). Then, (Ḣ1

V (R3), 〈 · , · 〉Ḣ1
V
) is a real

Hilbert space with an inner product

〈f, g〉Ḣ1
V
:= 〈(−∆V )

1
2 f, (−∆V )

1
2 g〉L2 = Re

∫
R3

∇f(x) · ∇g(x) + V (x)f(x)g(x)dx.

In particular, (Ḣ1
V (R3), 〈 · , · 〉Ḣ1

V
) is a reflexive space.

Proof. By the direct calculation, we can see linearity in the first exponent and conjugate sym-
metry of 〈 · , · 〉Ḣ1

V
. If f = 0, then ‖f‖Ḣ1

V
= 0 holds clearly. Conversely, if ‖f‖Ḣ1

V
= 0, then

f = 0 from 0 ≤ ‖f‖Ḣ1 ≤ ‖f‖Ḣ1
V
= 0. We prove that (Ḣ1

V (R3), ‖ · ‖Ḣ1
V
) is a Banach space. Let

{fn} ⊂ Ḣ1
V (R3) be a Cauchy sequence. Then,

0 ≤ ‖fm − fn‖Ḣ1 ≤ ‖fm − fn‖Ḣ1
V
−→ 0 as n > m→ ∞

by V ≥ 0. Thus, {fn} is a Cauchy sequence in Ḣ1(R3). Since Ḣ1(R3) is a Banach space, there

exists a function f∞ ∈ Ḣ1(R3) such that fn −→ f∞ in Ḣ1(R3). By Sobolev’s embedding, we
have

0 ≤ ‖fn − f∞‖2
Ḣ1

V
≤ (1 + c ‖V ‖

L
3
2
)‖fn − f∞‖2

Ḣ1 −→ 0 as n→ ∞.

This implies that (Ḣ1
V (R3), ‖ · ‖Ḣ1

V
) is a Banach space. □

Lemma 4.28 (Compact embedding). Let d = 3, 1 < p < 5, V ≥ 0, and V ∈ L
3
2 (R3)+L∞(R3).

Then, the embedding H1
V, rad(R3) ⊂⊂ Lp+1(R3) is compact.

Proof. This lemma follows from ‖f‖H1 ≤ ‖f‖H1
V
and Lemma 2.5. □

Lemma 4.29. Let d = 3, 1 < p ≤ 5, and ω > 0. Let V ∈ L
3
2 (R3) + L∞(R3) and V ≥ 0. Then,

it follows that

r1,0ω,V =
p− 1

2(p+ 1)
inf{‖φ‖p+1

Lp+1 : φ ∈ H1
rad(R3) \ {0}, Nω,V (φ) ≤ 0}

=
p− 1

2(p+ 1)
inf{‖φ‖2H1

ω,V
: φ ∈ H1

rad(R3) \ {0}, Nω,V (φ) ≤ 0}.

Proof. This lemma follows from the same argument as Lemma 4.22. □

The following theorem implies attainability of r1,0ω,V in Main theorem 1.60 (radial case).

Theorem 4.30. Let d = 3, 1 < p < 5, and ω > 0. Let V ∈ L
3
2 (R3) and V ≥ 0. Then, there

exists a function Qω,V ∈ H1
rad(R3) \ {0} such that Qω,V attains r1,0ω,V and Nω,V (Qω,V ) = 0.
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Proof. We take a minimizing sequence {φn} ⊂ H1
rad \ {0} of r1,0ω,V , that is, φn satisfies

p− 1

2(p+ 1)
‖φn‖p+1

Lp+1
x

=
p− 1

2(p+ 1)
‖φn‖2H1

ω,V
= Sω,V (φn) ↘ r1,0ω,V and Nω,V (φn) = 0.

Then, {φn} is bounded in L2
x(R3) and Ḣ1

V (R3). From Lemma 4.27 and Lemma 4.28, we can
take a subsequence of {φn} (, which is denoted by the same symbol) satisfying φn −−⇀ Qω,V in

L2(R3) and Ḣ1
V (R3) and φn −→ Qω,V in Lp+1

x (R3). Therefore, we get

‖Qω,V ‖L2
x
≤ lim inf

n→∞
‖φn‖L2

x
, ‖(−∆V )

1
2Qω,V ‖L2

x
≤ lim inf

n→∞
‖(−∆V )

1
2φn‖L2

x
,

p− 1

2(p+ 1)
‖Qω,V ‖p+1

Lp+1
x

=
p− 1

2(p+ 1)
lim
n→∞

‖φn‖p+1

Lp+1
x

= r1,0ω,V ≥ n1,0ω,V = nω,0 > 0.

The last inequality implies that Qω,V 6= 0. In addition, these relations deduces that

Nω,V (Qω,V ) ≤ lim inf
n→∞

Nω,V (φn) = 0.

Therefore, there exists λ ∈ (0, 1] such that Nω,V (λQω,V ) = 0. For such λ, we have

r1,0ω,V ≤ Sω,V (λQω,V ) =
p− 1

2(p+ 1)
‖λQω,V ‖p+1

Lp+1
x

≤ p− 1

2(p+ 1)
‖Qω,V ‖p+1

Lp+1
x

= r1,0ω,V .

We can see that λ must be 1 and N (Qω,V ) = 0 holds. □
Remark 4.31. Theorem 4.30 implies that Mω,V, rad is not empty under the assumptions of the
proposition.

Proposition 4.32. Let d = 3, 1 < p ≤ 5, and V ∈ L
3
2 (R3) + L∞(R3). Let V be radially

symmetric. Then, M1,0
ω,V, rad ⊂ Gω,V, rad holds.

Proof. We take any φ ∈ M1,0
ω,V, rad. Then,

〈N ′
ω,V (φ), φ〉 = ∂λ Nω,V (e

λφ)
∣∣∣
λ=0

= −(p− 1)‖φ‖p+1

Lp+1
x

< 0. (4.41)

Take any w ∈ H1
rad(R3). We define two functions f and g as follows:

f(s, t) := Sω,V (φ+ sw + tφ), g(s, t) := Nω,V (φ+ sw + tφ), (s, t) ∈ R2.

Then, f and g satisfy f, g ∈ C1(R2),

g(0, 0) = Nω,V (φ) = 0, and gt(0, 0) = 〈N ′
ω,V (φ), φ〉 6= 0.

By the implicit function theorem, there exists a real-valued function γ ∈ C1(−δ, δ) such that
γ(0) = 0,

g(s, γ(s)) = 0, gs(s, γ(s)) + gt(s, γ(s))γ
′(s) = 0, s ∈ (−δ, δ).

Since Nω,V (φ+ sw+γ(s)φ) = 0 for s ∈ (−δ, δ), f(s, γ(s)) has a local minimum at s = 0. Hence,
we have

0 =
d

ds
f(0, γ(0)) = 〈S′

ω,V (φ), w〉 − 〈S′
ω,V (φ), φ〉

〈N ′
ω,V (φ), w〉

〈N ′
ω,V (φ), φ〉

.

Since 〈S′
ω,V (φ), z〉 = 0 and 〈N ′

ω,V (φ), z〉 = 0 hold for any z ∈ H1
rad(R3)⊥, there exists a Lagrange

multiplier η ∈ R such that

S′
ω,V (φ) = ηN ′

ω,V (φ). (4.42)

Since

0 = Nω,V (φ) = 〈S′
ω,V (φ), φ〉 = η〈N ′

ω,V (φ), φ〉
and (4.41), we have η = 0. Combining η = 0 and (4.42), we have S′

ω,V (φ) = 0. We take any

ψ ∈ Aω,V, rad. Then, Nω,V (ψ) = 〈S′
ω,V (ψ), ψ〉 = 0. Since φ is in M1,0

ω,V, rad, we get Sω,V (φ) ≤
Sω,V (ψ). Therefore, we obtain φ ∈ Gω,V, rad. □
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Proposition 4.33. Let d = 3, 1 < p ≤ 5, and V ∈ L
3
2 (R3) + L∞(R3). Let V be radially

symmetric. If M1,0
ω,V, rad is not empty, then Gω,V, rad ⊂ M1,0

ω,V, rad holds.

Proof. We take any φ ∈ Gω,V, rad and a function ψ ∈ M1,0
ω,V, rad ⊂ Gω,V, rad, where the last inclusion

is used Proposition 4.32. Let w ∈ H1
rad(R3) \ {0} satisfy Nω,V (w) = 0. Then, we have

Sω,V (φ) = Sω,V (ψ) ≤ Sω,V (w).

Moreover, it follows that Nω,V (φ) = 〈S′
ω,V (φ), φ〉 = 0. Therefore, we obtain φ ∈ M1,0

ω,V, rad. □

Corollary 4.34. Let d = 3, 1 < p < 5, and ω > 0. Let V ∈ L
3
2
rad(R

3) and V ≥ 0. Then, it

follows that Gω,V, rad = M1,0
ω,V, rad.

This corollary is deduced immediately by Theorem 4.30, Proposition 4.32, and 4.33.

4.4. Proof of Theorem 1.62. In this subsection, we prove Theorem 1.62 and Proposition 1.63
(2).

Proof of Theorem 1.62. We note that Nω,V (u0) = 0 implies that u0(x) ≡ 0 by the definition of

r1,0ω,V and the assumption Sω,V (u0) < r1,0ω,V . Then, we consider only case Nω,V (u0) > 0. First, we

prove that the solution u to (NLSV ) satisfies Nω,V (u(t)) > 0 for any t ∈ (Tmin, Tmax). If there
exists t0 ∈ (Tmin, Tmax) such that Nω,V (u(t0)) = 0, then Sω,V (u(t0)) ≥ rω,V by the definition
of rω,V . On the other hands, we have Sω,V (u(t0)) = Sω,V (u0) < rω,V by the conservation laws.
This is contradiction. Since Nω,V (u(t)) > 0 for any t ∈ (Tmin, Tmax), we have

r1,0ω,V > Sω,V (u0) ≥
p− 1

2(p+ 1)
‖u(t)‖2H1

ω,V
∼ ‖u(t)‖2H1

x

for any t ∈ (Tmin, Tmax). This inequality implies that the solution u to (NLSV ) exists globally
in time. □

Proof of Proposition 1.63 (2). We consider λQω,V for λ > 0 and the “radial” ground state Qω,V
to (SPω,V ). We define a function f as f(λ) = Sω,V (λQω,V ). Solving f ′(λ0) = 0, we get λ0 = 1

from Nω,V (Qω,V ) = 0. Thus, the function f has a maximum value f(λ0) = Sω,V (Qω,V ) = r1,0ω,V
at λ = λ0. Therefore, there exists 0 < δ < 1 such that n1,0ω,V ≤ f(λ) < r1,0ω,V for any λ ∈ [δ, 1). On

the other hand, we have Nω,V (λQω,V ) ≥ 0 for any λ ∈ (0, 1]. Therefore, if we set u0 = λQω,V
for λ ∈ [δ, 1), then we obtain the desired result. □

4.5. Proof of Main theorem 1.64. In this subsection, we prove Main theorem 1.64.

4.5.1. Non-radial case. In this subsubsection, we prove the non-radial case in Main theorem
1.64.

We note that Kα,β
ω,V can be written as follows:

Kα,β
ω,V (f) =

ω(2α− dβ)

2
‖f‖2L2

x
+

2α− (d− 2)β

2
‖∇f‖2L2

x
+

2α− dβ

2

∫
Rd

V (x)|f(x)|2dx

− β

2

∫
Rd

(x · ∇V )|f(x)|2dx− (p+ 1)α− dβ

p+ 1
‖f‖p+1

Lp+1
x

(4.43)

=
ω{2α− (d− 2)β}

2
‖f‖2L2

x
+

2α− (d− 2)β

2
‖(−∆V )

1
2 f‖2L2

x

− β

2

∫
Rd

(2ω + 2V + x · ∇V )|f(x)|2dx− (p+ 1)α− dβ

p+ 1
‖f‖p+1

Lp+1
x

(4.44)

and (1.26) deduces the following relations:

µ := 2α− (d− 2)β ≥ µ ≥ 0, µ > 0, (p+ 1)α− dβ > (p− 1)α− 2β > 0.
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We define the following functional:

Tα,βω,V (f) := Sω,V (f)−
1

2α− (d− 2)β
Kα,β
ω,V (f)

=
β

2{2α− (d− 2)β}

∫
Rd

(2ω + 2V + x · ∇V )|f(x)|2dx+
(p− 1)α− 2β

(p+ 1){2α− (d− 2)β}
‖f‖p+1

Lp+1
x
.

Lemma 4.35. Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3, and let

(α, β) satisfy (1.26). Let xa∂aV ∈ Lη(Rd) + L∞(Rd) for η = 1 if d = 1, some η > 1 if d = 2,
η = d

2 if d ≥ 3, and any a ∈ (N ∪ {0})d with |a| ≤ 1, V ≥ 0, x · ∇V ≤ 0, and ω0 <∞. If ω > 0
satisfies ω ≥ ω0, then

nα,βω,V = inf{Tα,βω,V (φ) : φ ∈ H1(Rd) \ {0}, Kα,β
ω,V (φ) ≤ 0}

holds.

In the next proposition, we prove that nα,βω,V is independent of (α, β) under the assumptions

of Main theorem 1.64 (non-radial case).

Proof. This lemma follows from the same argument as Lemma 4.22. We note that corresponding
inequality to (4.39) follows from ω ≥ ω0. □
Proposition 4.36. Let d ≥ 1, 1 + 4

d < p <∞ if d = 1, 2, 1 + 4
d < p < 1 + 4

d−2 if d ≥ 3, ω > 0,

and let (α, β) satisfy (1.26). Let xa∂aV ∈ Lη(Rd) + Lσ(Rd) for η = 1 if d = 1, some η > 1 if
d = 2, η = d

2 if d ≥ 3, some η ≤ σ <∞, and any a ∈ (N∪{0})d with |a| ≤ 1, V ≥ 0, x ·∇V ≤ 0,

and 2V + x · ∇V ≥ 0. Then, the identity nα,βω,V = nω,0 holds.

Proof. When V = 0, this proposition is trivial. We assume V 6= 0. First, we prove nα,βω,V ≥ nω,0.

We take any φ ∈ H1(Rd) \ {0} satisfying Kα,β
ω,V (φ) = 0. Since Kα,β

ω,0 (φ) ≤ Kα,β
ω,V (φ) = 0 by V ≥ 0

and x · ∇V ≤ 0, we have

nω,0 ≤ Tα,βω,0 (φ) ≤ Tα,βω,V (φ) = Sω,V (φ)

by Lemma 4.35 and 2V + x · ∇V ≥ 0, which implies nω,0 ≤ nα,βω,V . Next, we prove nω,0 ≥ nα,βω,V .

We note that the ground state Qω,0 to (SPω,0) attains nω,0. For any {yn} satisfying |yn| −→ ∞,
it follows that

Sω,V (Qω,0( · − yn)) −→ Sω,0(Qω,0) = nω,0 as n→ ∞

by V ∈ L
d
2 (Rd)+Lσ(Rd) for some d

2 ≤ σ <∞. For any {yn} satisfying |yn| −→ ∞, we also have

Kα,β
ω,V (Qω,0( · − yn)) > Kα,β

ω,0 (Qω,0( · − yn)) = Kα,β
ω,0 (Qω,0) = 0

by V ≥ 0 and x · ∇V ≤ 0. Since Kα,β
ω,V (Qω,0( · − yn)) > 0 and Kα,β

ω,V (λQω,0( · − yn)) < 0 for a

sufficiently large λ > 1, we can take λn > 1 with Kα,β
ω,V (λnQω,0( · − yn)) = 0. For this sequence

{λn}, we have λn −→ 1 as n → ∞. Indeed, Kα,β
ω,V (λnQω,0( · − yn)) = 0 and Kα,β

ω,0 (Qω,0) = 0
deduces

0 =
(p+ 1)α− dβ

p+ 1
(1− λp−1

n )‖Qω,0‖p+1

Lp+1
x

+
2α− dβ

2

∫
Rd

V (x)Qω,0(x− yn)
2dx− β

2

∫
Rd

(x · ∇V )Qω,0(x− yn)
2dx.

Thus, we have λn −→ 1 as n → ∞. Hence, Sω,V (λnQω,0( · − yn)) −→ Sω,0(Qω,0) = nω,0 as

n→ ∞ and Kα,β
ω,V (λnQω,V ( · − yn)) = 0 for each n ∈ N. This implies nω,0 ≥ nα,βω,V . □

In the next proposition, we complete the proof of non-radial case in Main theorem 1.64.

Proposition 4.37. Besides the assumptions of Proposition 4.36, we assume that x · ∇V < 0.

Then, nα,βω,V is not attained.
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Proof. We note that V ≥ 0 and x · ∇V < 0 imply V > 0. We assume for contradiction that

there exists φ ∈ H1(Rd) such that φ attains nα,βω,V . We take y ∈ Rd satisfying

Kα,β
ω,V (φ( · − y)) < Kα,β

ω,V (φ) = 0 (4.45)

and ∫
Rd

(2V + x · ∇V )|φ(x− y)|2dx ≤
∫
Rd

(2V + x · ∇V )|φ(x)|2dx. (4.46)

We note that if we take y ∈ Rd with sufficiently large |y|, then this inequality holds by xa∂aV ∈
L

d
2 (Rd) + Lσ(Rd) for some d

2 ≤ σ < ∞ and any a ∈ (N ∪ {0})d with |a| ≤ 1, V > 0, and

x · ∇V < 0. Since Kα,β
ω,V (λφ( · − y)) > 0 for some 0 < λ < 1, combining this inequality and

(4.45), there exists 0 < λ0 < 1 such that Kα,β
ω,V (λ0φ( · − y)) = 0. Therefore, the definition of

nα,βω,V and (4.46) imply

nα,βω,V ≤ Sω,V (λ0φ( · − y)) = Tα,βω,V (λ0φ( · − y)) < Tα,βω,V (φ( · − y)) ≤ Tα,βω,V (φ) = Sω,V (φ) = nα,βω,V .

This is contradiction. □

Proof of Proposition 1.68 (1). By the equation (SPω,0), we have Qω,0 = ω
1

p−1Q1,0(ω
1
2 · ). Then,

Sω,0(Qω,0) = ω
d+2−(d−2)p

2(p−1) S1,0(Q1,0)

holds. Thus, the condition Sω,V (u0) < nα,βω,V in Proposition 1.68 (1) is equivalent to

Sω,V (u0) < ω
d+2−(d−2)p

2(p−1) S1,0(Q1,0)

by using Proposition 4.36. Here, we define a function f(ω) := ω
d+2−(d−2)p

2(p−1) S1,0(Q1,0) − Sω,V (u0)
on ω ∈ (0,∞). Solving f ′(ω0) = 0, we get

ω0 =

{
p− 1

d+ 2− (d− 2)p
· M(u0)

S1,0(Q1,0)

} 2(p−1)
d+4−dp

.

The function f has a maximum value at ω = ω0 by p > 1 + 4
d . Therefore, if there exists ω > 0

such that Sω,V (u0) < Sω,0(Qω,0), then f(ω0) > 0 holds. Since

f(ω0) =

{
d+ 2− (d− 2)p

p− 1

} 2(p−1)
dp−(d+4) dp− (d+ 4)

2{d+ 2− (d− 2)p}
S1,0(Q1,0)

2(p−1)
dp−(d+4)

M(u0)
d+2−(d−2)p
dp−(d+4)

− EV (u0).

f(ω0) > 0 implies{
d+ 2− (d− 2)p

p− 1

} 1
sc dp− (d+ 4)

2{d+ 2− (d− 2)p}
S1,0(Q1,0)

1
sc > M(u0)

1−sc
sc EV (u0).

Here, calculating S1,0(Q1,0) by using Proposition 2.6, we have

S1,0(Q1,0) =
p− 1

d+ 2− (d− 2)p

[
2{d+ 2− (d− 2)p}

dp− (d+ 4)

]sc
M(Q1,0)

1−scE0(Q1,0)
sc .

Therefore, we obtain

M(Q1,0)
1−sc
sc E0(Q1,0) > M(u0)

1−sc
sc EV (u0).

□
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4.5.2. Radial case. In this subsubsection, we prove the radial case in Main theorem 1.64.

Lemma 4.38 (Positivity of Tα,βω,V ). Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2

if d ≥ 3, and let (α, β) satisfy (1.26). We assume that xa∂aV ∈ Lη(Rd) + L∞(Rd) for η = 1 if
d = 1, some η > 1 if d = 2, η = d

2 if d ≥ 3, and any a ∈ (N ∪ {0})d with |a| ≤ 1, V ≥ 0, and

ω0 < ∞. If ω > 0 satisfies ω ≥ ω0 and f ∈ H1(Rd) \ {0} satisfies Kα,β
ω,V (f) = 0, then we have

Tα,βω,V (f) > 0.

Proof. This proposition follows from (1.26) and 2ω + 2V + x · ∇V ≥ 0 a.e. x ∈ Rd. □
Lemma 4.39 (Equivalence of H1-norm and Sω,V ). Let d ≥ 1, 1 + 4

d < p < ∞ if d = 1, 2,

1 + 4
d < p < 1 + 4

d−2 if d ≥ 3, and let (α, β) satisfy (1.26). Let xa∂aV ∈ L
d
2 (Rd) + L∞(Rd) for

η = 1 if d = 1, some η > 1 if d = 2, η = d
2 if d ≥ 3, and any a ∈ (N∪{0})d with |a| ≤ 1, V ≥ 0,

and ω0 < ∞. We assume that ω > 0 satisfies ω ≥ ω0 and f ∈ H1(Rd) satisfies Kα,β
ω,V (f) ≥ 0.

Then,

{(p− 1)α− 2β}Sω,V (f) ≤
(p− 1)α− 2β

2
‖f‖2H1

ω,V
≤ {(p+ 1)α− dβ}Sω,V (f)

holds.

Proof. The first inequality holds clearly. We prove the second inequality.

(p− 1)α− 2β

2
Jω,V (f) ≤

(p− 1)α− 2β

2
Jω,V (f) +Kα,β

ω,V (f)

= {(p+ 1)α− dβ}Sω,V (f)−
β

2

∫
Rd

(2ω + 2V + x · ∇V )|f(x)|2dx

≤ {(p+ 1)α− dβ}Sω,V (f).
□

Lemma 4.40 (Positivity of Kα,β
ω,V ). Let d ≥ 1, 1+ 4

d < p <∞ if d = 1, 2, 1+ 4
d < p < 1+ 4

d−2 if

d ≥ 3, and (α, β) satisfy (1.26). Let xa∂aV ∈ Lη(Rd) + L∞(Rd) for η = 1 if d = 1, some η > 1
if d = 2, η = d

2 if d ≥ 3, and any a ∈ (N ∪ {0})d with |a| ≤ 1, V ≥ 0, and x · ∇V ≤ 0. Suppose

that {fn} is a bounded sequence in H1(Rd) \ {0} and satisfies ‖∇fn‖L2 −→ 0 as n→ ∞. Then,

there exists n0 ∈ N such that Kα,β
ω,V (fn) > 0 for any n ≥ n0.

Proof. We take a positive constant C such as sup
n∈N

‖fn‖L2
x
≤ C. Applying Proposition 1.16, we

have

Kα,β
ω,V (fn) ≥

ω(2α− dβ)

2
‖fn‖2L2

x
+

2α− (d− 2)β

2
‖∇fn‖2L2

x
+

2α− dβ

2

∫
Rd

V (x)|fn(x)|2dx

− β

2

∫
Rd

(x · ∇V )|fn(x)|2dx− (p+ 1)α− dβ

p+ 1
CGN‖∇fn‖

d(p−1)
2

L2
x

‖fn‖
d+2−(d−2)p

2

L2
x

≥
{
2α− (d− 2)β

2
− (p+ 1)α− dβ

p+ 1
CGNC

d+2−(d−2)p
2 ‖∇fn‖

dp−(d+4)
2

L2
x

}
‖∇fn‖2L2

x
.

When ‖∇fn‖L2
x
6= 0 is sufficiently small, we obtain Kα,β

ω,V (fn) > 0. □

Lemma 4.41 (Positivity of rα,βω,V ). Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2

if d ≥ 3, and let (α, β) satisfy (1.26). Let xa∂aV ∈ Lη(Rd) + L∞(Rd) for η = 1 if d = 1, some
η > 1 if d = 2, η = d

2 if d = 3, and any a ∈ (N ∪ {0})d with |a| ≤ 1, V ≥ 0, x · ∇V ≤ 0, and

ω0 <∞. If ω ≥ ω0, then we have rα,βω,V > 0.

Proof. We take any φ ∈ H1
rad(Rd) \ {0} satisfying Kα,β

ω,V (φ) = 0. Then,

2α− (d− 2)β

2
‖∇φ‖2L2

x
≤ ω(2α− dβ)

2
‖φ‖2L2

x
+

2α− (d− 2)β

2
‖∇φ‖2L2

x
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+
2α− dβ

2

∫
Rd

V (x)|φ(x)|2dx− β

2

∫
Rd

(x · ∇V )|φ(x)|2dx

=
(p+ 1)α− dβ

p+ 1
‖φ‖p+1

Lp+1
x

≤ (p+ 1)α− dβ

p+ 1
CGN‖φ‖

d+2−(d−2)p
2

L2
x

‖∇φ‖
d(p−1)

2

L2
x

by Kα,β
ω,V (φ) = 0 and Proposition 1.16. Using this inequality and Lemma 4.39, we have

1 ≲ ‖φ‖
d+2−(d−2)p

2

L2
x

‖∇φ‖
dp−(d+4)

2

L2
x

≤ ‖φ‖p−1
H1

x
∼ ‖φ‖p−1

H1
ω,V

∼ Sω,V (φ)
p−1
2 .

□
Lemma 4.42. Let d ≥ 1, 1+ 4

d < p <∞ if d = 1, 2, 1+ 4
d < p < 1+ 4

d−2 if d ≥ 3, and let (α, β)

satisfy (1.26). Let xa∂aV ∈ Lη(Rd) + L∞(Rd) for η = 1 if d = 1, some η > 1 if d = 2, η = d
2 if

d ≥ 3, and any a ∈ (N ∪ {0})d with |a| ≤ 1, V ≥ 0, x · ∇V ≤ 0, and ω0 <∞. If ω > 0 satisfies

ω ≥ ω0 and φ ∈ H1
rad(Rd) \ {0} satisfies Kα,β

ω,V (φ) ≤ 0, then there exists 0 < λ ≤ 1 such that

Kα,β
ω,V (λφ) = 0 and rα,βω,V ≤ Sω,V (λφ) = Tα,βω,V (λφ) ≤ Tα,βω,V (φ).

In particular,

rα,βω,V = inf{Tα,βω,V (φ) : φ ∈ H1
rad(Rd) \ {0}, K

α,β
ω,V (φ) ≤ 0}

holds.

Proof. This lemma follows from the same argument as Lemma 4.22. □

The following theorem is attainability of rα,βω,V in Main theorem 1.64 (radial case). The proof
is similar to the argument in Theorem 4.30. However, the argument does not need a reflexivity
of Ḣ1

V .

Theorem 4.43. Let d ≥ 2, 1 + 4
d < p < ∞ if d = 2, 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3, and let

(α, β) satisfies (1.26). Let xa∂aV ∈ Lη(Rd) + L∞(Rd) for some η > 1 if d = 2, η = d
2 if d ≥ 3,

and any a ∈ (N∪{0})d with |a| ≤ 1, V ≥ 0, x · ∇V ≤ 0, and ω0 <∞. If ω > 0 satisfies ω ≥ ω0,

then rα,βω,V is attained.

Proof. We take a minimizing sequence {φn} ⊂ H1
rad(Rd) \ {0}, that is, φn satisfies

Kα,β
ω,V (φn) = 0 for any n ∈ N (4.47)

and

Sω,V (φn) = Tα,βω,V (φn) ↘ rα,βω,V as n→ ∞.

We see that {φn} is a bounded sequence in L2
x(Rd) and Ḣ1

V (Rd) by Lemma 4.39. From V ≥ 0,

{φn} is also a bounded sequence in Ḣ1
x(Rd). From Lemma 2.5, we can take a subsequence of {φn}

(, which is denoted by the same symbol) satisfying φn −−⇀ Qω,V in H1
x(Rd) and φn −→ Qω,V in

Lp+1
x (Rd). Therefore, we get

‖Qω,V ‖L2
x
≤ lim inf

n→∞
‖φn‖L2

x
, (4.48)

‖(−∆V )
1
2Qω,V ‖L2

x
≤ lim inf

n→∞
‖(−∆V )

1
2φn‖L2

x
, (4.49)

‖Qω,V ‖Lp+1
x

= lim
n→∞

‖φn‖Lp+1
x
. (4.50)

To prove (4.49), we used the following inequality∫
Rd

V (x)|Qω,V (x)|2dx ≤ lim inf
n→∞

∫
Rd

V (x)|φn(x)|2dx, (4.51)
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which holds by the following argument. Using the Hölder’s inequality,∣∣∣∣∫
Rd

V (x)φn(x)Qω,V (x)dx

∣∣∣∣ ≤ (∫
Rd

V (x)|φn(x)|2dx
) 1

2
(∫

Rd

V (x)|Qω,V (x)|2dx
) 1

2

and taking liminf of the both sides, we get the desired inequality (4.49). The relations (4.48),
(4.49), and (4.50) deduce

Sω,V (Qω,V ) ≤ lim inf
n→∞

Sω,V (φn) = rα,βω,V .

We prove that Qω,V is not trivial. We assume Qω,V = 0 for contradiction. Then, we have

0 =
(p+ 1)α− dβ

p+ 1
lim
n→∞

‖φn‖p+1

Lp+1
x

= lim
n→∞

{
ω(2α− dβ)

2
‖φn‖2L2

x
+

2α− (d− 2)β

2
‖∇φn‖2L2

+
2α− dβ

2

∫
Rd

V (x)|φn(x)|2dx− β

2

∫
Rd

(x · ∇V )|φn(x)|2dx
}

≥ 2α− (d− 2)β

2
lim inf
n→∞

‖∇φn‖2L2
x
≥ 0

by (4.50) and (4.47), that is, lim infn→∞ ‖∇φn‖L2
x
= 0. From Lemma 4.40, we get Kα,β

ω,V (φn) > 0

for sufficiently large n. This contradict (4.47). We prove that Qω,V attains rα,βω,V . Combining

(4.48), (4.49), and (4.50), we have

Kα,β
ω,V (Qω,V ) ≤ lim inf

n→∞
Kα,β
ω,V (φn) = 0, (4.52)

Tα,βω,V (Qω,V ) ≤ lim inf
n→∞

Tα,βω,V (φn) = rα,βω,V .

We note that the inequalities

‖(−x · ∇V )
1
2Qω,V ‖L2

x
≤ lim inf

n→∞
‖(−x · ∇V )

1
2φn‖L2

x
,

‖(2ω + 2V + x · ∇V )
1
2Qω,V ‖L2

x
≤ lim inf

n→∞
‖(2ω + 2V + x · ∇V )

1
2φn‖L2

x

follows from the same argument as (4.51). From (4.52), there exists λ ∈ (0, 1] such that

Kα,β
ω,V (λQω,V ) = 0,

and hence, we have

rα,βω,V ≤ Sω,V (λQω,V ) = Tα,βω,V (λQω,V ) ≤ Tα,βω,V (Qω,V ) ≤ rα,βω,V .

Therefore, λ must be 1 and Qω,V attains rα,βω,V . □

Lemma 4.44. Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3, and let

(α, β) satisfy (1.26). Let xa∂aV ∈ Lη(Rd) + L∞(Rd) for η ≥ 1 if d = 1, some η > 1 if d = 2,
η = d

2 if d ≥ 3, and any a ∈ (N ∪ {0})d with |a| ≤ 2 and 3x · ∇V + x∇2V xT ≤ 0. Then,

(Dα,β − µ)(Dα,β − µ)Sω,V (f) ≤ −(p− 1)α{(p− 1)α− 2β}
p+ 1

‖f‖p+1

Lp+1
x

holds for any f ∈ H1(Rd). In particular, if f satisfies Kα,β
ω,V (f) = 0, then it follows that

Dα,βKα,β
ω,V (f) ≤ −µµTα,βω,V (f)−

(p− 1)α{(p− 1)α− 2β}
p+ 1

‖f‖p+1

Lp+1
x
.

Proof. By the simple calculation, we have

Dα,β‖f‖2L2
x
= µ‖f‖2L2

x
, Dα,β‖∇f‖2L2

x
= µ‖∇f‖2L2

x
, Dα,β‖f‖p+1

Lp+1
x

= {(p+ 1)α− dβ}‖f‖p+1

Lp+1
x
,
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Dα,β

∫
Rd

V (x)|f(x)|2dx = µ

∫
Rd

V (x)|f(x)|2dx− β

∫
Rd

(x · ∇V )|f(x)|2dx,

and

Dα,β

∫
Rd

(x · ∇V )|f(x)|2dx = {2α− (d+ 1)β}
∫
Rd

(x · ∇V )|f(x)|2dx− β

∫
Rd

(x∇2V xT )|f(x)|2dx.

These identities and 3x · ∇V + x∇2V xT ≤ 0 imply the desired results. □
Proposition 4.45. Besides the assumptions of Lemma 4.44, we assume that V is radially

symmetric. Then, Mα,β
ω,V,rad ⊂ Gω,V,rad holds.

Proof. We take any φ ∈ Mα,β
ω,V,rad. From Lemma 4.44, we have

〈(Kα,β
ω,V )

′(φ),Dα,βφ〉 = Dα,βKα,β
ω,V (φ)

≤ −µµTα,βω,V (φ)−
(p− 1)α{(p− 1)α− 2β}

p+ 1
‖φ‖p+1

Lp+1
x

< 0. (4.53)

Thus, there exists the Lagrange multiplier η ∈ R such that

S′
ω,V (φ) = η(Kα,β

ω,V )
′(φ). (4.54)

This identity deduces

0 = Kα,β
ω,V (φ) = Dα,βSω,V (φ) = 〈S′

ω,V (φ),Dα,βφ〉 = η〈(Kα,β
ω,V )

′(φ),Dα,βφ〉.

This implies η = 0 by (4.53). Therefore, we obtain S′
ω,V (φ) = 0 by (4.54). We take any ψ ∈

Aω,V, rad. Then, we have Kα,β
ω,V (ψ) = 〈S′

ω,V (ψ),Dα,β(ψ)〉 = 0. Therefore, we obtain Sω,V (φ) ≤
Sω,V (ψ), that is, φ ∈ Gω,V,rad. □
Proposition 4.46. We assume the same conditions as Proposition 4.45. If Mα,β

ω,V,rad is not

empty, then Gω,V,rad ⊂ Mα,β
ω,V,rad holds.

Proof. We take any φ ∈ Gω,V,rad. We take a ψ ∈ Mα,β
ω,V,rad ⊂ Gω,V,rad, where the last inclusion

holds by Proposition 4.45. Let w ∈ H1
rad(Rd) \ {0} satisfy Kα,β

ω,V (w) = 0. Then, it follows

that Sω,V (φ) = Sω,V (ψ) ≤ Sω,V (w). In addition, we have Kα,β
ω,V (φ) = 〈S′

ω,V (φ),Dα,βφ〉 = 0.

Therefore, we obtain φ ∈ Mα,β
ω,V,rad, that is, Gω,V,rad ⊂ Mα,β

ω,V,rad holds. □

Corollary 4.47. Let d ≥ 2, 1 + 4
d < p < ∞ if d = 2, 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3, and let

(α, β) satisfy (1.26). Let xa∂aV ∈ Lη(Rd) + L∞(Rd) for some η > 1 if d = 2, η = d
2 if d ≥ 3,

and any a ∈ (N ∪ {0})d with |α| ≤ 2, V ≥ 0, x · ∇V ≤ 0, 3x · ∇V + x∇2V xT ≤ 0, and ω0 <∞.

If ω > 0 satisfies ω ≥ ω0, then Mα,β
ω,V,rad = Gω,V,rad holds.

This corollary holds by Theorem 4.43, Proposition 4.45, and 4.46.

4.6. Proof of Theorem 1.67. In this subsection, we prove Theorem 1.67 and Proposition 1.68
(2). The non-radial case in Theorem 1.67 is deduced by the same argument as the radial case
in Theorem 1.67 and Proposition 1.68 (1). Hence, we only prove the radial case.

Proof of Theorem 1.67. We note that Kα,β
ω,V (u0) = 0 implies that u0(x) ≡ 0 by the definition of

rα,βω,V and the assumption Sω,V (u0) < rα,βω,V . Then, we consider only case Kα,β
ω,V (u0) > 0. First, we

prove that Kα,β
ω,V (u(t)) > 0. If the conclusion does not hold, then there exists t0 ∈ (Tmin, Tmax)

such that Kα,β
ω,V (u(t0)) = 0. For such t0, we have rα,βω,V ≤ Sω,V (u(t0)) by the definition of rα,βω,V .

On the other hand, the conservation laws implies Sω,V (u(t0)) = Sω,V (u0) < rα,βω,V . This is
contradiction. From Lemma 4.39, we have

rα,βω,V > Sω,V (u0) = Sω,V (u(t)) ∼ ‖u(t)‖2H1
x
.

Therefore, the solution u to (NLSV ) exists globally in time. □



97

Proof of Proposition 1.68 (2). The proof is the same as the argument of Proposition 1.63, so we
omit it. □
4.7. Proof of Main theorem 1.74. In this subsection, we prove Theorem 1.73, Main theorem
1.74, and Theorem 1.76.

We note that (1.26) deduces the following relations:

µ := 2α− (d− 2)β ≥ 2α− (d− µ)β ≥ µ, 2α− (d− µ)β > 0,

(p+ 1)α− dβ > (p− 1)α− 2β > 0.

Proof of Proposition 1.72. The proof follows from the same argument as Proposition 1.54. □
We prove that rα,βω,γ is independent of (α, β) for d = 1. In Main theorem 1.64, it has been

already shown that rα,βω,γ is independent of (α, β) for d ≥ 2.

Proposition 4.48. Let d = 1, 1 < p < ∞, γ > 0, and 0 < µ < 1. Let (α, β) satisfies (1.26).
Then, we have

rα,βω,γ = inf
c∈C

max
τ∈[0,1]

Sω,γ(c(τ)),

where

C := {c ∈ C([0, 1];H1
rad(R)) : c(0) = 0, Sω,γ(c(1)) < 0}.

In particular, rα,βω,γ is independent of (α, β).

The proof is based on [71, Lemma 2.3].

Proof. We set

R := inf
c∈C

max
τ∈[0,1]

Sω,γ(c(τ)).

To prove R ≤ rα,βω,γ , we prove that there exists {cn} ⊂ C such that

max
τ∈[0,1]

Sω,γ(cn(τ)) −→ rα,βω,γ

as n→ ∞. We take a minimizing sequence {φn} to rα,βω,γ , that is,

Sω,γ(φn) −→ rα,βω,γ as n→ ∞ and Kα,β
ω,γ (φn) = 0 for each n ∈ N.

We set c̃n(τ) := eατφn(e
βτ · ) for τ ∈ R. Then,

Sω,γ(c̃n(τ)) =
ω

2
e(2α−β)τ‖φn‖2L2

x
+

1

2
e(2α+β)τ‖∇φn‖2L2

x

+
1

2
e{2α−(1−µ)β}τ

∫
R

γ

|x|µ
|φn(x)|2dx− 1

p+ 1
e{(p+1)α−β}τ‖φn‖p+1

Lp+1
x
,

so Sω,γ(c̃n(τ)) < 0 for sufficiently large τ > 0. Moreover, we have maxτ∈R Sω,γ(c̃n(τ)) =

Sω,γ(c̃n(0)) = Sω,γ(φn) −→ rα,βω,γ as n → ∞ by Kα,β
ω,γ (φn) = 0. We define a function cn for

τ ∈ [0, 1], L > 0, and M > 0 as follows:

cn(τ) :=

{
c̃n(2Lτ − L), (14 ≤ τ ≤ 1),

(4τ)M c̃n(−L
2 ), (0 ≤ τ < 1

4).

If L > 0 and M =M(n) are sufficiently large, then cn ∈ C, Sω,γ(cn(1)) < 0, and

max
τ∈[0,1]

Sω,γ(cn(τ)) = Sω,γ(φn) −→ rα,βω,γ as n→ ∞.

Therefore, we obtain R ≤ rα,βω,γ . We prove R ≥ rα,βω,γ . We take any c ∈ C, that is, c(0) = 0 and

Sω,γ(c(1)) < 0. Since Kα,β
ω,γ (c(0)) = 0 and Kα,β

ω,γ ∈ C(H1(R);R), it follows from Lemma 4.40 that

Kα,β
ω,γ (c(τ)) > 0 for sufficiently small τ ∈ (0, 1). On the other hand, we have

Kα,β
ω,γ (c(1)) ≤ {(p+ 1)α− β}Sω,γ(c(1)) < 0.
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By the intermediate value theorem, there exists τc ∈ (0, 1) such that Kα,β
ω,γ (c(τc)) = 0. Therefore,

we obtain

R ≤ Sω,γ(c(τc)) ≤ max
τ∈[0,1]

Sω,γ(c(τ))

for any c ∈ C. Taking infimum of this inequality over c ∈ C, the desired result is gotten. □

4.7.1. Global well-posedness in Theorem 1.73 and 1.76. In this subsubsection, we prove global
well-posedness in Theorem 1.73 and 1.76.

Lemma 4.49 (Coercivity I). Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if

d ≥ 3, γ > 0, 0 < µ < min{2, d}, and u0 ∈ PW+,5 ∪ PW−,5. Let Q1,0 be the ground state to
(SPω,0). We assume that u0 satisfies (4.1).

• (Case PW+,5) If u0 ∈ PW+,5, then a solution u to (NLSγ) with (IC) satisfies the
following: there exists δ′ > 0 such that

‖u(t)‖
1−sc
sc

L2
x

‖(−∆γ)
1
2u(t)‖L2

x
< (1− δ′)

1
sc ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

for any t ∈ (Tmin, Tmax).
• (Case PW−,5) If u0 ∈ PW−,5, then a solution u to (NLSγ) with (IC) satisfies the
following: there exists δ′ > 0 such that

‖u(t)‖
1−sc
sc

L2
x

‖(−∆γ)
1
2u(t)‖L2

x
> (1 + δ′)

1
sc ‖Q1,0‖

1−sc
sc

L2
x

‖∇Q1,0‖L2
x

for any t ∈ (Tmin, Tmax).

Proof. This lemma follows from the same argument with Proposition 4.11 (1) and 4.17. □

The case PW+,5 result in Lemma 4.49 deduced global well-posedness in Theorem 1.73 with
j = 5.

Proof of global well-posedness in Theorem 1.73 with j = 5. The desired result follows from the
fact that H1-norm of the solutions is uniformly bounded with respect to time t. □

Lemma 4.50 (Coercivity II). Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if

d ≥ 3, γ > 0, and 0 < µ < min{2, d}.
• (PW+,4 (resp. PW+,6) case) If u0 ∈ PW+,4 (resp. PW+,6), then a solution u to (NLSγ)
with (IC) satisfies u(t) ∈ PW+,4 (resp. PW+,6) for each t ∈ (Tmin, Tmax).

• (PW−,4 (resp. PW−,6) case) If u0 ∈ PW−,4 (resp. PW−,6), then a solution u to (NLSγ)
with (IC) satisfies u(t) ∈ PW−,4 (resp. PW−,6) for each t ∈ (Tmin, Tmax) and

Kγ(u(t)) < 4(Sω,γ(u0)− nω,γ (resp. rω,γ)) < 0.

Proof. The case PW+,6 (resp. PW−,6) follows from the same argument as the case PW+,4

(resp. PW−,4), so we treat only PW+,4 and PW−,4. When Kγ(u0) = 0, we have u0 ≡ 0 by
the definition of nω,γ . Thus, Lemma 4.50 holds. Suppose that Kγ(u0) 6= 0. If there exists
t0 ∈ (Tmin, Tmax) such that Kγ(u(t0)) = 0, then

Sω,γ(u(t0)) = Sω,γ(u0) < nω,γ ≤ Sω,γ(u(t0)).

This is contradiction. Therefore, Kγ(u(t)) 6= 0 for each t ∈ (Tmin, Tmax). In particular, the sign
of Kγ(u(t)) corresponds with that of Kγ(u0) by the continuity of the solution. Let Kγ(u0) < 0.
We define a function

Jω,γ(λ) = Sω,γ(e
dλu(t, e2λ · )).

We note that

Jω,γ(0) = Sω,γ(u(t)),
d

dλ
Jω,γ(0) = Kγ(u(t)),

d2

dλ2
Jω,γ(λ) < 4

d

dλ
Jω,γ(λ).
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The equation d
dλJω,γ(λ) = 0 for λ has only one negative solution. We set that the solution

λ = λ0 < 0. Integrating d2

dλ2
Jω,γ(λ) < 4 d

dλJω,γ(λ) on [λ0, 0], we have

Kγ(u(t))− 0 < 4(Sω,γ(u(t))− Jω,γ(λ0)) ≤ 4(Sω,γ(u(t))− nω,γ) < 0.

Therefore, we obtain

Kγ(u(t)) < 4(Sω,γ(u0)− nω,γ) < 0

for any t ∈ (Tmin, Tmax). □

As a corollary, global well-posedness in Theorem 1.73 with j = 4 and Theorem 1.76 holds.

Corollary 4.51 (Global well-posedness). Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p <

1 + 4
d−2 if d ≥ 3, γ > 0, and 0 < µ < min{2, d}. If u0 ∈ PW+, j (j = 4, 6), then a solution u to

(NLSγ) with (IC) exists globally in time.

Proof. From u0 ∈ PW+,4 (resp. PW+,6) and Lemma 4.50, we have u(t) ∈ PW+,4 (resp. PW+,6)
for each t ∈ (Tmin, Tmax). Kγ(u(t)) ≥ 0 deduces

2‖(−∆γ)
1
2u(t)‖2L2

x
≥ d(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1
x
.

Therefore, we obtain

nω,γ (resp. rω,γ) > Sω,γ(u0) ≥
ω

2
‖u(t)‖2L2

x
+
d(p− 1)− 4

2d(p− 1)
‖(−∆γ)

1
2u(t)‖2L2

x
≳ ‖u(t)‖2H1

x
,

which implies the desired result. □

4.7.2. Blow-up or grow-up result in Theorem 1.73 and 1.76. In this subsubsection, we prove
blow-up or grow-up results in Theorem 1.73 and 1.76.

Lemma 4.52. Let d ≥ 1, 1 < p < ∞ if d = 1, 2, 1 < p < 1 + 4
d−2 if d ≥ 3, γ > 0, and

0 < µ < min{2, d}. Let u ∈ C([0,∞);H1(Rd)) be a time global solution to (NLSγ). We define
a function

I(t) :=

∫
Rd

XR(x)|u(t, x)|2dx,

where XR is defined as (2.1). Then, for q ∈ (p+ 1,∞) if d = 1, 2 and q ∈ (p+ 1, 2d
d−2) if d ≥ 3,

there exist constants C = C(q,M(u), C0) > 0 and θq > 0 such that the estimate

I ′′(t) ≤ 4Kγ(u(t)) + C ‖u(t)‖(p+1)θq
L2
x(R≤|x|) +

C

R2

holds for any R > 0 and t ∈ [0,∞), where θq :=
2{q−(p+1)}
(p+1)(q−2) ∈ (0, 2

p+1) and C0 is given in Lemma

4.18.

Proof. This proof follows from the similar argument to Lemma 4.19. Using Proposition 4.9, we
have

I ′′(t) = 4Kγ(u(t)) +R1 +R2 +R3 +R4,

where Rk = Rk(t) (k = 1, 2, 3, 4) are defined as

R1 := 4

∫
Rd

{
1

r2
X ′′

( r
R

)
− R

r3
X ′

( r
R

)}
|x · ∇u|2dx+ 4

∫
Rd

{
R

r
X ′

( r
R

)
− 2

}
|∇u(t, x)|2dx,

(4.55)

R2 := −2(p− 1)

p+ 1

∫
Rd

{
X ′′

( r
R

)
+

(d− 1)R

r
X ′

( r
R

)
− 2d

}
|u(t, x)|p+1dx, (4.56)

R3 := −
∫
Rd

{
1

R2
X (4)

( r
R

)
+

2(d− 1)

Rr
X (3)

( r
R

)
+

(d− 1)(d− 3)

r2
X ′′

( r
R

)
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+
(d− 1)(3− d)R

r3
X ′

( r
R

)}
|u(t, x)|2dx, (4.57)

R4 := 2µ

∫
R≤|x|

{
R

r
X ′

( r
R

)
− 2

}
γ

|x|µ
|u(t, x)|2dx. (4.58)

We estimate R1, R2, R3 by the same argument as Lemma 4.19 and can get

R1 ≤ 0, R2 ≤ C‖u(t)‖(p+1)θq
L2
x(R≤|x|), R3 ≤

C

R2
.

R4 is estimated as R4 ≤ 0, which completes the proof of the lemma. □
Proof of blow-up or grow-up in Theorem 1.73 and 1.76. This proof follows from the same argu-
ment with blow-up or grow-up in Main theorem 1.56. In the argument, we use Lemma 4.52. □

Using Theorem 1.71 and 1.73, we prove Main theorem 1.74.

Proof of Main theorem 1.74. We note that

PW+, j ∪ PW−, j = {u0 ∈ H1(Rd) : (1.20)}
for any j = 3, 4, 5. If u0 ∈ PW+, j (j = 3, 4, 5), then a solution u to (NLSγ) is uniformly

bounded in H1(Rd). On the other hand, if u0 ∈ PW−, j (j = 3, 4, 5), then a solution u to

(NLSγ) is unbounded in H1(Rd). □
To complete this subsubsection, we prove Corollary 1.75 by Main theorem 1.74.

Proof of Corollary 1.75. Let Eγ(u0) ≤ 0 and u0 6= 0. (1.20) holds clearly. Eγ(u0) ≤ 0 implies

1

2
‖(−∆γ)

1
2u0‖2L2

x
≤ 1

p+ 1
‖u0‖p+1

Lp+1
x
,

so we have

Kγ(u0) < 2‖(−∆γ)
1
2u0‖2L2

x
− d(p− 1)

p+ 1
‖u0‖p+1

Lp+1
x

≤ 4− d(p− 1)

2
‖(−∆γ)

1
2u0‖2L2

x
< 0.

□
4.7.3. Blow-up result in Theorem 1.73 and 1.76. In this subsubsection, we prove the blow-up
results in Theorem 1.73 and 1.76. This proof is based on [48] and [100] (see also [67]). First, we
prove the following lemma to get the blow-up results.

Lemma 4.53. Let d ≥ 1, 1 + 4
d < p < ∞ if d = 1, 2, 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3, γ > 0, and

0 < µ < min{2, d}. Let ω > 0. Then, we have

nω,γ = inf{Uω,γ(f) : f ∈ H1(Rd) \ {0}, Kγ(f) ≤ 0},

rω,γ = inf{Uω,γ(f) : f ∈ H1
rad(Rd) \ {0}, Kγ(f) ≤ 0},

where Uω,γ is defined as Uω,γ(f) := Sω,γ(f)− 1
d(p−1)Kγ(f).

Proof. This proof follows from the same argument with Lemma 4.22. □
Proof of blow-up in Theorem 1.73 and 1.76. 　
Case u0 ∈ |x|−1L2(Rd) :
When u0 ∈ |x|−1L2(Rd), there exists a positive constant δ > 0 such that

d2

dt2
‖xu(t)‖2L2

x
= 4Kγ(u(t)) < −δ

for any t ∈ (Tmin, Tmax) from Proposition 4.8, Lemma 4.50, and 4.20. This inequality implies
the desired result.
Case u0 ∈ H1

rad(Rd) :
Let u0 ∈ PW−, j (j = 4, 5). We consider the functional I in Lemma 4.52.

I ′′(t) = 4Kγ(u) +R1 +R2 +R3 +R4,
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where R1, R2, R3, and R4 are defined as (4.55), (4.56), (4.57), and (4.58) respectively. We have
already gotten R1 ≤ 0, R3 ≤ C

R2 , and R4 ≤ 0 in Lemma 4.52. We estimate R2.

R2 ≤ c ‖u(t)‖p+1

Lp+1
x (R≤|x|)

≤ c

R
(d−1)(p−1)

2 ε
M(u)

p+3
4 · ε‖∇u(t)‖

p−1
2

L2
x(R≤|x|)

≤


c

R2
‖∇u(t)‖2L2

x
, (d = 2, p = 5),

c

R
2(d−1)(p−1)

5−p ε
4

5−p

M(u)
p+3
5−p + 2{d(p− 1)− 4}ε‖∇u(t)‖2L2

x
, (otherwise)

by Lemma 2.4 and 2.1. Let 0 < ε < 2d(p−1)−4µ
2d(p−1)−8 . We take a positive constant δ > 0 such as

Sω,γ(u) < (1− δ)nω,γ . Since nω,γ ≤ Uω,γ(u(t)) by Lemma 4.53, we have

I ′′(t) ≤ 4Kγ(u) +
c

R
2(d−1)(p−1)

5−p ε
4

5−p

M(u)
p+3
5−p + 2{d(p− 1)− 4}ε‖∇u(t)‖2L2

x
+

C

R2

< 4d(p− 1)Sω,γ(u)− 2ωd(p− 1)M(u)− 2(1− ε){d(p− 1)− 4}‖∇u(t)‖2L2
x
+

C

R2

− {2d(p− 1)(1− ε) + 4(2ε− µ)}
∫
Rd

γ

|x|µ
|u(t, x)|2dx+

c

R
2(d−1)(p−1)

5−p ε
4

5−p

M(u)
p+3
5−p

< 4d(p− 1)Sω,γ(u)− 4d(p− 1)(1− ε)Uω,γ(u) +
C

R2
+

c

R
2(d−1)(p−1)

5−p ε
4

5−p

M(u)
p+3
5−p

< 4d(p− 1)(1− δ)nω,γ − 4d(p− 1)(1− ε)nω,γ +
C

R2
+

c

R
2(d−1)(p−1)

5−p ε
4

5−p

M(u)
p+3
5−p

= 4d(p− 1)(ε− δ)nω,γ +
C

R2
+

c

R
2(d−1)(p−1)

5−p ε
4

5−p

M(u)
p+3
5−p

for d ≥ 2 and p < 5. Taking c
R2 ≤ 2{d(p− 1)− 4}ε, we have

I ′′(t) < 4d(p− 1)(ε− δ)nω,γ +
C

R2

for d = 2 and p = 5 by the same manner. Thus, if we take sufficiently small 0 < ε <

min{δ, 2d(p−1)−4µ
2d(p−1)−8 } and sufficiently large R > 0, then we obtain I ′′(t) < 0. This implies the

solution u to (NLSγ) blows up. The proof of the case u0 ∈ PW−,6 is proved by replacing nω,γ
with rω,γ . □
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