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Abstract

We are concerned three different themes strongly related to quantum mechanics by
employing harmonic analytic approaches. The first chapter pertains to the pointwise
convergence problem for the Schrödinger type operator, the so called Carleson’s prob-
lem, initiated by the mathematical giant Lennart Carleson in 1980. He showed that
some smoothness condition on the initial data is required for the solutions to the stan-
dard Schrödinger equation to converge to the initial data almost everywhere in R. While
the one spatial dimensional case was completely understood in a very early stage, the
higher dimensional case turns out to be extremely difficult. In 2016, Jean Bourgain fi-
nally provided a plausible necessary condition, then soon later, Xiumin Du, Larry Guth,
Xiaochun Li and Ruixian Zhang proved that Bourgain’s regularity threshold is essen-
tially sufficient as well. Their proof contains state-of-the-art technologies in harmonic
analysis, which also reflects the well-known connections among Carleson’s problem and
other major open problems in harmonic analysis, such as Stein’s restriction conjecture
and the Kakeya conjecture. Many variations of Carleson’s problem are also concerned,
for instance, convergence along generalized paths and refinements by measuring the cor-
responding divergence sets in a more precise sense than Lebesgue measure. Chu-hee
Cho, Sanghyuk Lee and Ana Vargas considered the following two distinct generalized
paths in one spatial dimensional case; (1) paths along lines generated by a given fractal
set, and (2) path along a tangential line onto the hyperplane Rd×{0}. We extend their
results from the standard Schrödinger equation to the fractional Schrödinger equation,
which has been also studied actively because of its useful applications. By our novel
approach, we prove that the Minkowski dimension of the given fractal set influences to
the smoothness condition on the initial data for pointwise convergence in the situation
of (1), and for (2), the Hölder exponent of the curve and the order of the fractional
Schrödinger operator influences the smoothness condition of the initial data. We also
consider the refined problem of estimating the size of the associated divergence sets in
case (2).

In the second part of the thesis, we consider the Strichartz estimate for the Klein–
Gordon operator which can somehow be considered to be the hybrid of Schrödinger and
wave operators. Strichartz estimates are one of the most important results in harmonic
analysis since they have very useful applications in non-linear PDE theory and have
connection with Stein’s restriction conjecture. In 2007, Damiano Foschi obtained the
sharp Strichartz estimate for wave equation in some special cases and a complete char-
acterization of extremisers. Here, sharp estimate means the estimate with the optimal
constant. The latest extension of this result is due to Neal Bez, Chirs Jeavons and
Tohru Ozawa who further discussed this subject in the context of the so-called null-form
estimates. René Quilodrán and soon later Jeavons, simultaneously, naturally extended

i



Foschi’s argument from wave to the Klein–Gordon equation and obtained analogous re-
sults. Jeavons further proved an improved Strichartz estimate in five spatial dimensions.
In this chapter, we take the philosophy of Bez–Jeavons–Ozawa and extend results due
to Quilodrán and Jeavons to two different directions, which we call the wave regime and
the non-wave regime. In the non-wave regime, we also obtained an improved Strichartz
estimate in four spatial dimensions.

In the last chapter, Nelson’s celebrated hypercontractivity inequality is concerned
and a new perspective of supersolutions is provided. Jonathan Bennett and Bez have
pursued a remarkable study of algebraic closure properties of supersolutions in their
series of papers. For example, in 2009 they presented a new significantly simple proof
of the sharp n-fold Young’s convolution inequality and its inverse by combining the
closure property and heat-flow monotonicity argument. The purpose of this chapter
is to reprove the hypercontractivity inequality for the Ornstein–Uhlenbeck semigroup,
another key object in quantum mechanics, by this technique and formally extend this
result for far more abstract Markov semigroups which enjoy the diffusion property.
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Notation

Here, we note some notation used throughout the thesis. We denote I = [−1, 1], A & B
if A ≥ CB, A . B if A ≤ CB and A ∼ B if C−1B ≤ A ≤ CB for some constant C > 0.
For r > 0 and s > 0, let φs(r) =

√
s2 + r2 so that the Japanese brackets is denoted by

〈r〉 = φ1(r). The spatial Fourier transform ·̂ is defined by

f̂(ξ) =

∫
Rd
e−ix·ξf(x) dx,

while ·̃ is specifically used for the space-time Fourier transform, i.e.

f̃(τ, ξ) =

∫
Rd+1

e−i(x·ξ+tτ)f(t, x) dtdx.

The operator
√
−∆x is sometimes written as D that is

D̂f(ξ) = |ξ|f̂(ξ)

for appropriate functions f on Rd. Additionally, we define D± by

D̃±f(τ, ξ) = ||τ | ± |ξ||f̃(τ, ξ)

for appropriate functions f on R × Rd. The d’Alembertian operator ∂2
t − ∆x will be

denoted by �, so that |�| = D−D+.
For functional spaces, we may consider the homogeneous and inhomogeneous Sobolev

spaces defined by

Ḣs(Rd) = {f : Rd → C satisfies ‖f‖Ḣs = ‖(−∆)
s
2 f‖L2(Rd) <∞}

and
Hs(Rd) = {f : Rd → C satisfies ‖f‖Hs = ‖(1−∆)

s
2 f‖L2(Rd) <∞},

respectively. We denote the identity operator by id and the constant function equal to
1 by 1. Furthermore, Bd(x, r) denotes the ball of radius r > 0 the center of x, and it
is abbreviated as Bd if (x, r) = (0, 1). The real number q′ = q

q−1 is given as Hölder

conjugate of q ∈ [1,∞], and

‖F‖LpxLqtLrθ =

∫ (∫ (∫ |F (x, t, θ)|r dθ
) q
r

dt

) p
q

dx

 1
p

,

where the domains of integration will be clear from the context (also, ‖F‖LpxLqt is similarly
given).

For notation that has been used for more abstract setting in Chapter 3, the reader
may refer to Section 3.2.1.
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Chapter 1

A variety of pointwise
convergence problems for
Schrödinger-type equations

1.1 Introduction

Let d ≥ 1. The Schrödinger equation is the “Newton’s law” in quantum physics and
is considered to be one of the greatest achievements in the modern science and named
after its founder and Nobel laureate in physics in 1933, Erwin Schrödinger, and we state
it as {

∂tu(x, t) = −i∆xu(x, t) (x, t) ∈ Rd × R,
u(x, 0) = f(x) x ∈ Rd.

Since it was established, Schrödinger equations have attracted attention from an enor-
mous number of researchers in a variety of fields in science, even today. As expressing
its connection to wave, the solution can be formally written by using Fourier transform
as

u(t, x) = e−it∆f(x) := (2π)−d
∫
Rd
ei(x·ξ+t|ξ|

2)f̂(ξ) dξ.

In harmonic analysis, Lennart Carleson, a mathematical giant who is famous for the
result in 1966 that the Fourier series of any L2 periodic functions in one spatial dimen-
sion converges almost everywhere in 1966, raised a problem on the topic of statistical
mechanics in 1980, and two years later Björn Dahlberg and Carlos Kenig rearranged the
problem in the context of the Schrödinger equation.

Question 1.1.1. Take the initial data from inhomogeneous Sobolev space Hs. Then,
for which s > 0 are the solutions to the Schrödinger equation guaranteed to converge to
the initial data almost everywhere in R?

By the fact that the parameter s of Sobolev space intuitively represents the smooth-
ness of its members and the embedding property (i.e. Hs2 ⊂ Hs1 if s1 ≤ s2), Question
1.1.1 can be also understood as; what is the smallest s > 0 such that

lim
t→0

e−it∆f(x) = f(x) (1.1)
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for almost all x ∈ R?

Theorem (Carleson [43], Dahlberg–Kenig [52]). The solution to the Schrödinger equa-
tion converges almost every x ∈ R to the initial data from Hs(R) if and only if s ≥ 1

4 .

The sufficiency was proved by Carleson while Dahlberg and Kenig proved the ne-
cessity, and so nowadays Question 1.1.1 is often called Carleson’s problem. The most
natural generalization may then be identifying the required minimum s for (1.1) in
higher spatial dimensions. It turns out that Question 1.1.1 in Rd instead of R is sig-
nificantly more difficult and has some close connections with other problems, such as
Stein’s restriction conjecture. Per Sjölin in 1987 [134] and Luis Vega in 1988 [143], inde-
pendently, showed that s > 1

2 is sufficient for (1.1) in all spatial dimensions. Then, the
first significant improvement in R2 was provided by Jean Bourgain in 1992 [33], which
was later carefully studied and polished by Adela Moyua, Ana Vargas and Luis Vega
[114, 115]. As a direct application of the improvement of bilinear restriction problem for
the paraboloid in R3, Terence Tao and Vargas [140] (reader may also refer to their first
part [139] as well as [141] by them with Vega, and [137] by Tao, where he also consid-
ered higher dimensions than two) showed (1.1) holds in R2 if s > 15

32 (they also concerns
in the same paper [140] the connection between their result of the bilinear restriction
problem for the cone and the null form, the related problem to which will be discussed
in Chapter 2). The result due to Sanghyuk Lee in 2006 [97] for (1.1) in R2 had been
the best result for a long time. Here, he introduced a powerful trick so-called the time
localization lemma which is widely and regularly used in harmonic analysis today.

The condition s ≥ 1
4 had often been targeted as the necessary and sufficient condition

for (1.1) even in every spatial dimension Rd until 2012 when Jean Bourgain in [35]
constructed a counterexample showing that s ≥ 1

2 −
1
d if d ≥ 4 is necessary for (1.1).

This result was slightly improved by Renato Lucà and Keith Rogers [105, 106] and
Ciprian Demeter and Shaoming Guo [54]. In the same paper, he also gave an improved
sufficient condition s > 1

2 −
1
4d in higher dimensions, which coincides with Carleson’s

result for d = 1 and Lee’s result for d = 2. The proof is based on his earlier result
with Larry Guth [37] and the techniques developed by Jonathan Bennett, Anthony
Carbery and Terence Tao [23], the landmark paper which essentially completely solved
the multilinear restriction problem (see also its remarkably shortened proof due to Guth
[75]), whose endpoint case was later proved by Guth [74]. Finally, in 2016, Bourgain
found the necessary condition

s ≥ 1

2
− 1

2(d+ 1)

for (1.1) in general Rd in his very short paper [36]. Lucà and Rogers also found a slightly
simpler way; employing an ergodic argument instead of Gauss sums in [36], to reprove
the Bourgain’s necessary condition. Then, in the following year, Xiumin Du, Larry
Guth and Xiaochun Li in [56] filled in the gap up to the critical point with the sufficient
condition s > 1

3 (which is 1
2 −

1
2(d+1) when d = 2) in R2 by combining sophisticated

modern techniques, such as the wave packet decomposition, the polynomial partition-
ing method, induction on scale, the Bourgain–Demeter `2-decoupling theorem, and the
refined Strichartz estimate. In 2018, Du and Ruixiang Zhang [57] proved Bourgain’s nec-
essary condition is essentially sufficient (except from the critical point, s > 1

2 −
1

2(d+1) )

for the remaining all the dimensional cases d ≥ 3. Their proof is different to the earlier
result for d = 2 by Du, Guth and Li, in particular, without use of the polynomial par-
titioning method and with critical use of the multilinear restriction estimates (see also
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the slightly earlier result by Du, Guth, Li and Zhang [58]). For more detailed history
on classical Calreson’s problem the reader may refer to the comprehensive introduction
in the doctoral thesis of Andrew David Bailey [3].

As Carleson’s problem grew in importance, many approaches to understand the
problem and many variations of the problem have been considered. The following are
the four major variations explored in this chapter.

1.1.1 To the fractional Schrödinger equation

It may not be so surprising that a simple generalization of Schrödinger equation turns
out to be a fundamental equation in wider concept of quantum physics, more precisely,
fractional quantum mechanics (fQM), for which one may be able to trace back to work
of Nick Laskin [95, 96]. The interested reader may also refer to [45, 47, 50, 71, 72, 73, 83,
79, 86, 88, 120] among others. The fractional Schrödinger equation is stated as follows:
Let d ≥ 1 and m > 0, then{

∂tu(x, t) = i(−∆x)
m
2 u(x, t) (x, t) ∈ Rd × R,

u(x, 0) = f(x) x ∈ Rd.

As we have seen for the solution to the Schrödinger equation in the beginning of this
introduction, the solution to the fractional Schrödinger equation has the naturally ex-
tended form as

u(x, t) = eit(−∆)
m
2 f(x) := (2π)−d

∫
Rd
ei(x·ξ+t|ξ|

m)f̂(ξ) dξ.

Sjölin also considered the pointwise convergence problem for the fractional Schrödinger
equation with m > 1 for one spatial dimension case in aforementioned work of him [134]
and obtained the following.

Theorem (Sjölin [134]). Let d = 1 and m > 1. The solution to the Schrödinger equation
converges to the initial data, namely,

lim
t→0

eit(−∆)
m
2 f(x) = f(x) (1.2)

almost everywhere for all f ∈ Hs(R) if and only if s ≥ 1
4 .

The cases when m = 1 has also been considered yet there are relatively less paper
about the problem since the nature is very different from the case when m > 1. The
case when m = 1 is related to the wave equation and for d = 1 see the results by Michael
Cowling [51] and Björn Walther [145] and for higher spatial dimensions, for instance, see
work by Rogers and Paco Villarroya [121]. Walther has also worked on the case when
0 < m < 1 [144].

In 2018, shortly after the incredible work of [56, 57] appeared in public, Chu-hee Cho
and Hyerim Ko observed the methods in [56, 57] work well for the fractional Schrödinger
equation since the hypersurface {(ξ, |ξ|m) : ξ ∈ Bd} ⊂ Rd+1 has non-vanishing Gaussian
curvature everywhere and concluded that s > 1

2 −
1

2(d+1) is sufficient for (1.2), thus ex-

tending Sjölin’s result to d ≥ 2. Unlike the case for the standard Schrödinger equation,
the necessary part still remains open.
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The key observation here is that the parameter m > 1 seems not to affect to the
smooth regularity s in the context of the classical Carleson’s problem. We will see that
in some variations’ of Carleson’s problem, the sharp threshold depends on m.

1.1.2 Carleson’s problem and the divergence sets

In 2011, Juan Barceló, Bennett, Carbery and Rogers proposed an interesting refinement
of Carleson’s problem [9]: Measuring more precisely the size of the sets on which con-
vergence such as (1.1). Before [133], Peter Sjögren and Per Sjölin had also considered a
similar problem in the context of the so-called Cs-capacity.

Definition. For s > 0, define the divergence set

D(f) = {x ∈ Rd : eit(−∆)m/2f(x) 6→ f(x) as t→ 0},

and
αd(s) := sup

f∈Hs(Rd)

dimHD(f),

where dimH denotes the Hausdorff dimension.

For instance, one of the results by Barceló, Bennett, Carbery and Rogers combined
with result by Darko Žubrinić [147] completely refine classical results by Carleson [43],
Dahlberg and Kenig [52] and Sjölin [134] in one spatial dimension as

α1(s) = 1− 2s

for m > 1. As seen in Figure 1.1, there is the unexpected gap at the critical point s = 1
4 .

O 1
2

1
4

1
2

1

s

α(s)

Figure 1.1: The result of the refined Carleson’s problem in one spatial dimension

In higher spatial dimensional case, we describe the current known results. The broken
lines in Figure 1.2 represent the previous results due to Lucà and Rogers [108] (before
[56] was appeared) and Du, Guth, Li and Zhang [58] (before [57] was appeared).

αd(s) ≤

{
d+ 1− 2(d+1)s

d , d
2(d+1) < s < d

4 (Du–Guth–Li [56], Du–Zhang [57])

d− 2s, d
4 ≤ s ≤

d
2 (Barceló–Bennett–Carbery–Rogers [9])

αd(s) ≥


d, s < d

2(d+1) (Bourgain [36])

d+ d
d−1 −

2(d+1)s
d−1 , d

2(d+1) ≤ s <
d+1

8 (Lucà–Rogers [108])

d+ 1− 2(d+2)s
d , d+1

8 ≤ s < d
4 (Lucà–Rogers [108])

d− 2s, d
4 ≤ s ≤

d
2 (Žubrinić [147])
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O d
4

d
2

1
2 −

1
2(d+1)

d
2

d

Figure 1.2: The results of the refined Carleson’s problem in higher spatial dimension

1.1.3 Path along lines generated by a fractal set

Sjögren and Sjölin also considered the following generalized Carleson’s problem in the
sense of the manner of its convergence in [133]. Define for a compact set Θ ⊂ Rd,

Γx(Θ) = {(t, x+ tθ) : t ∈ [−1, 1] and θ ∈ Θ.}

While the usual limit for the classical Carleson’s problem can be illustrated as the limit
(y, t)→ (x, 0), where (y, t) ∈ Γx({0}) (see Figure 1.3), setting Θ = B(0, 1), the unit ball
of the center at the origin, they take the limit (y, t) → (x, t) where (y, t) ∈ Γx([−1, 1])
(see Figure 1.4).

As we have seen in the previous section, one of the early seminal generalizations of
Carleson’s problem is due to Sjögren and Sjölin in 1989 [133]. In the same paper they
noted that the convergence limt→0 in (1.1) can be considered as reaching (t, y)→ (0, x)
along the vertical line onto (0, x); for each x

Γx({0}) = {(t, x+ tθ) : t ∈ [−1, 1] and θ ∈ {0}}

and widened the region for the path of convergence from such standard vertical line to
the conical region and obtain the following.

x y

t

(t, x+ t{0})

Figure 1.3: Convergence along the vertical line
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(t, x+ t[−1, 1])

x y

t

Figure 1.4: Convergence along the conical region

The conical region admits a larger variety of paths that converge to (x, 0) ∈ Rd×R, so
one may expect somewhat stronger smoothness condition on s than the classical setting
(with convergence along the vertical line); Sjögren and Sjölin proved that the guess is
actually true.

Theorem (Sjögren–Sjölin [133]). Let d ≥ 1. Then,

lim
(t,y)→(0,x)

(t,y)∈Γx([−1,1])

e−it∆f(y) = f(x)

for almost everywhere in Rd for any f ∈ Hs(Rd) if and only if s ≥ d
2 .

Their credit is rather constructing the counterexample which shows its necessity since
its sufficiency can be trivially proved by Hölder’s inequality and the fact that∫ ∞

0

(1 + r2)−srd−1 dr <∞

if s > d
2 . When d = 1, the classical Carleson’s problem (considering (1.1)) and the result

of Sjögren–Sjölin has been unified by Chu-hee Cho, Sanghyuk Lee and Ana Vargas [48].
Let Θ be a compact set in R. Now Θ could be other than {0} or B1 = [−1, 1], for
instance, a fractal set such as the middle third Cantor set. To measure the size of Θ
more precisely than Lebesgue sense, we introduce the following Minkowski dimension.

Definition (Minkowski dimension). For a compact set Θ ⊂ Rd, denote by β(Θ) the
Minkowski dimension of Θ given by

β(Θ) := inf{ς ∈ [0, d] : lim sup
δ→0

N(Θ : δ)δς <∞},

where N(Θ : δ) = min{k ∈ N : Θ ⊂
⋃k
j=1 Ωj , |Ωj | < δ}.

Then, Cho, Lee and Vargas considered paths within Γx(Θ) (see Figure 1.5) to unify
the above results in the sense of Minkowski dimension. Their interesting result is the
following.

Theorem (Cho–Lee–Vargas [48]). Let d = 1 and Θ be a compact subset of R. Then,

lim
(t,y)→(0,x)
(t,y)∈Γx(Θ)

e−it∆f(y) = f(x)

for almost everywhere in R for any f ∈ Hs(R) if s > 1
2 −

1−β(Θ)
4 . Here, for each x ∈ R

Γx(Θ) = {(t, x+ tθ) : t ∈ [−1, 1] and θ ∈ Θ}.
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(t, x+ tΘ)

x y

t

Figure 1.5: Convergence along a fractal set Θ

The necessity of s > 1
2 −

1−β(Θ)
4 is still open.

0 1
β(Θ)

1
4

1
2

s

Figure 1.6: The illustration of the result due to Cho–Lee–Vargas

1.1.4 Path along a tangential curve

In the study of pointwise convergence problem for the Schrödinger equation with har-
monic oscillator potential, Lee and Rogers [100] showed that any γ ∈ C1(Rd× [−1, 1]→
Rd), such as γ(x, t) = x − (tκ, 0, · · · , 0) with κ ≥ 1, is essentially equivalent to the
vertical line in the context of pointwise convergence problem of (1.15).

Theorem (Lee–Rogers [100]). Suppose that

lim
t→0

e−it∆f(x) = f(x)

for all f ∈ Hs(Rd) whenever s > s0, then

lim
(y,t)→(0,x)

(y,t)∈Γx(γ,C1)

e−it∆f(y) = f(x)

7



for all f ∈ Hs(Rd) whenever s > s0. Here, for each x ∈ Rd

Γx(γ,C1) :=
{

(t, γ(t, x)) :
t∈[−1,1],

γ(t, y) ∈ C1(Rd,Rd × [0, 1]) satisfies γ(0, x) = x

}
.

x y

t

Figure 1.7: Convergence along a non-tangential curve

The typical curve γ(t, x) satisfying the conditions of the above theorem is, for in-
stance, γ(t, x) = x + (tκ, 0, . . . , 0) with κ ≥ 1 and, as the theorem above states, fits
in the frame work of “non-tangential case” which has been discussed in the previous
section. Then, the natural question is; what happens to s if we take the convergence
path that approaches to (0, x) tangentially against the hyperplane Rd × {0}, such as
along the curve given by γ(t, x) = x + (tκ, 0, . . . , 0) with 0 < κ ≤ 1? In the paper [48]
where Cho, Lee and Vargas considered the path of lines generated by a fractal set, they
also study this problem associated with a tangential curve and gave an answer to the
question in one dimensional case. The nature turns to be remarkably different from the
non-tangential case. To state their result, let us introduce some classes of curves.

Definition. We say the curve γ satisfy Hölder condition of order κ ∈ (0, 1] in t if

|γ(x, t)− γ(x, t′)| ≤ C1|t− t′|κ, x ∈ Rd, t, t′ ∈ [−1, 1] (1.3)

and is bilipschitz in x if

1

C2
|x− x′| ≤ |γ(x, t)− γ(x′, t)| ≤ C2|x− x′|, t ∈ [−1, 1], x, x′ ∈ Rd (1.4)

for some C1, C2 > 0.

Theorem (Cho–Lee–Vargas [48]). Let d = 1. Then,

lim
(t,y)→(0,x)

(t,y)∈Γx(γ,κ)

e−it∆f(y) = f(x)

for almost everywhere in R for any f ∈ Hs(R) if s > 1
2 −min{ 1

4 , κ}. Here,

Γx(γ, κ) = {(t, γ(x, t)) : t ∈ [−1, 1], γ satisfies γ(x, 0) = x, (1.3) and (1.4)}.

Note that Γx(γ, κ) contains γ(x, t) = x − (tκ, 0, · · · , 0) with 0 ≤ κ ≤ 1. The result
above has been refined in the context of measuring its divergence set in Section 1.1.2.
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x y

t

Figure 1.8: Convergence along a tangential curve

Definition. Suppose γ satisfies γ(x, 0) = x, (1.3) and (1.4). For s > 0 define the
divergence set

D(f, γ) = {x ∈ Rd : eit(−∆)m/2f(γ(x, t)) 6→ f(x) as t→ 0},

and
αγd(s) := sup

f∈Hs(Rd)

dimHD(f, γ).

Theorem (Cho–Lee [46]). Let d = 1, 0 < κ ≤ 1, and γ on R× [−1, 1] satisfies γ(x, 0) =
x, (1.3) and (1.4). Then, for s > 1

4 ,

αγ2 (s) ≤ max

{
1− 2s,

1− 2s

2κ

}
.

1.1.5 Reduction

In the study of Carleson’s problem, or pointwise convergence problem in general, it
is usually considered as the problem asking whether or not the associated maximal
inequality via the reduction argument below hold. The fundamental idea can be seen in
most text books which discuss the Lebesgue differentiation theorem as a corollary of the
weak-type boundedness of the Hardy–Littlewood maximal operator. To describe such a
reduction in a wide sense as required in the present thesis, first let us define a family of
measures.

Definition (α-dimensional measure). Let 0 < α ≤ d. A positive Borel measure µ is
said to be α-dimensional if there exists a constant c such that

µ(Bd(x, r)) ≤ crα, (1.5)

where Bd(x, r) is the ball centered at x ∈ Rd with radius r > 0.

For simplicity, we shall denote St = St,m = eit(−∆)
m
2 .

Proposition 1.1.2. Let d ≥ 1, m > 1, q ∈ [1,∞), γ be a function on Rd × [−1, 1], and
µ be an α-dimensional measure. Suppose that there exists some constant C > 0 such
that ∥∥∥∥∥ sup

t∈[−1,1]

|Stf(γ(·, t))|

∥∥∥∥∥
Lq(Bd)

≤ C‖f‖Hs
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for all f ∈ Hs whenever s > s0, then

lim
t→0

Stf(γ(x, t)) = f(x)

for µ-almost everywhere for all f ∈ Hs whenever s > s0.

Proof of Proposition 1.1.2. Fix an arbitrary f ∈ Hs(R). Then, it is enough to show
that µ(D(γ, f)) = 0. Now, choose a sequence {fn}n∈N ⊂ C∞0 (R) which converges in
Hs-norm to f ∈ Hs(R). Then, we divide the divergence set into localized pieces as
follows and show that all terms turn out to be 0.

µ(D(γ, f)) ≤
∑
j∈Z

∞∑
`=1

µ({x ∈ I + j : lim
t→0
|Stf(γ(x, t))− f(x)| > `−1}).

Now, for each n ≥ 1, j = 0 and λ ≥ 1 observe that

µ({x ∈ I : lim
t→0
|Stf(γ(x, t))− f(x)| > λ−1})

≤ µ({x ∈ I : lim sup
t→0

|Stf(γ(x, t))− Stfn(γ(x, t))| > (3λ)−1})

+ µ({x ∈ I : lim sup
t→0

|Stfn(γ(x, t))− fn(x)| > (3λ)−1})

+ µ({x ∈ I : |fn(x)− f(x)| > (3λ)−1})
≤ µ({x ∈ I : sup

t∈I
|St
(
f(γ(x, t))− fn(γ(x, t))

)
| > (3λ)−1})

+ 0 + µ({x ∈ I : |fn(x)− f(x)| > (3λ)−1}).

By invoking Chebyshev’s inequality and Theorem 1.3.3 we obtain

µ({x ∈ I : lim
t→0
|Stf(γ(x, t))− f(x)| > λ−1}) . λ2‖f − fn‖2Hs(R), (1.6)

which tends to 0 as n → ∞. For other j, make translation x 7→ x + j and we define a
measure µj by µj(x) = µ(x+ j) and a curve γj by γj(x, t) = γ(x+ j, t), both of which
satisfy the required conditions for Theorem 1.3.3 so that (1.6) holds with I replaced by
I + j. Therefore, for all j ∈ Z and ` ≥ 1,

µ({x ∈ I + j : lim
t→0
|Stf(γ(x, t))− f(x)| > `−1}) = 0

holds as desired.

1.2 First new result

The first result is associated to the path along lines generated by a fractal set. This
result has been published in the paper [132] by the author.

Theorem 1.2.1 (S.). Let d = 1, a > 1 and Θ be a compact subset of R. Then,

lim
(t,y)→(0,x)
(t,y)∈Γx(Θ)

eit(−∆)af(y) = f(x)

for almost everywhere in R for any f ∈ Hs(R) if s > 1
2 −

1−β(Θ)
4 .
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We will consider a generalized setting. Throughout the Section 1.2, let the evolution
operator St on appropriate input functions by

Stf(x) = SΦ
t f(x) =

1

2π

∫
R
ei(xξ+tΦ(ξ))f̂(ξ) dξ.

Here, Φ : R→ R is a C2 function which satisfies for some C1 > 0,

|ξ|
∣∣∣∣ d2

dξ2
Φ(ξ)

∣∣∣∣ ≥ C1 (1.7)

for all |ξ| ≥ 1. Moreover, for some C2 > 0,

|ξ|
∣∣∣∣ d2

dξ2
Φ(ξ)

∣∣∣∣ ≥ C2

∣∣∣∣ d

dξ
Φ(ξ)

∣∣∣∣ (1.8)

for all |ξ| ≥ 1. It is trivial to verify that Φ(ξ) = |ξ|a satisfies these conditions when
a > 1. By the reduction argument in Section 1.1.5, Theorem 1.2.1 follows from the
subsequent maximal estimate.

Theorem 1.2.2. Let Θ ⊂ R be compact and suppose Φ ∈ C2(R) satisfies (1.7) and

(1.8). For any q ∈ [1, 4] and s > 1
4 + β(Θ)

4 , there exists a constant Cq,s such that∥∥∥∥∥ sup
(t,θ)∈[−1,1]×Θ

|Stf(·+ tθ)|

∥∥∥∥∥
Lq(−1,1)

≤ Cq,s‖f‖Hs(R)

whenever f ∈ Hs(R).

Theorem 1.2.2 improves the result in [48] in two respects; the class of evolution
operators has been widened from the case Φ(ξ) = |ξ|2 to those satisfying (1.7) and (1.8),
and our maximal estimates are valid for q ∈ [1, 4] (the estimate in [48] was proved in
only the cases q ∈ [1, 2]). While the proof in [48] may be modified in a straightforward
way to go beyond the classical case Φ(ξ) = |ξ|2 to a certain extent, it seems to us to
be difficult to handle case Φ(ξ) = |ξ|a with a close to 1. Indeed, the argument in [48]
rests on a certain widely used time localization argument which becomes increasingly
weak as a approaches 1. To overcome this significant obstacle, we remove the use of the
time localization lemma; this simplification to the proof has allowed us to handle the
case Φ(ξ) = |ξ|a for any a > 1. Further explanation of this point will follow our proof
of Theorem 1.2.2.

1.2.1 Lemmas

The following lemmas will be crucial for the oscillatory integral estimates in the proof
of Theorem 1.2.1. Applying these lemmas appropriately essentially allows us to avoid
the time localization lemma, which is used in [48].

Lemma 1.2.3 (van der Corput’s lemma). Let −∞ < a < b < ∞, φ be a sufficiently
smooth real-valued function and ψ be a bounded smooth complex-valued function. Sup-
pose we have |φ(k)(x)| ≥ 1 for all x ∈ [a, b]. If k = 1 and φ′ is monotonic on (a, b), or
simply k ≥ 2, then there exists a constant Ck such that∣∣∣∣∣

∫ b

a

eiλφ(x)ψ(x) dx

∣∣∣∣∣ ≤ Ckλ− 1
k

(∫ b

a

∣∣∣∣ d

dξ
ψ(x)

∣∣∣∣ dx+ ‖ψ‖L∞
)

for all λ > 0.
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For a proof of van der Corput’s lemma, we refer the reader to [135].

Lemma 1.2.4. Let 1 ≤ q ≤ 4. There exists a constant Cq such that∣∣∣∣∫∫∫∫ g(x, t)h(x′, t′)|x− x′|− 1
2 dxdtdx′dt′

∣∣∣∣ ≤ Cq‖g‖Lq′x L1
t
‖h‖

Lq
′
x L

1
t
,

where the integrals are taken over (x, t), (x′, t′) ∈ I × I.

Proof. Denoting G(x) = ‖g(x, ·)‖L1 and H(x′) = ‖h(x′, ·)‖L1 ,∣∣∣∣∫∫∫∫ g(x, t)h(x′, t′)|x− x′|− 1
2 dxdx′dtdt′

∣∣∣∣ ≤ ∫ 1

−1

∫ 1

−1

G(x)H(x′)|x− x′|− 1
2 dxdx′.

By the Hardy–Littlewood–Sobolev inequality,∫ 1

−1

∫ 1

−1

G(x)H(x′)|x− x′|− 1
2 dxdx′ . ‖G‖

L
4
3 (I)
‖H‖

L
4
3 (I)

. ‖g‖
Lq
′
x L

1
t
‖h‖

Lq
′
x L

1
t
,

where the last inequality is obtained by Hölder’s inequality since 4
3 ≤ q′ from our as-

sumption.

1.2.2 Proof of Theorem 1.2.1

We fix q ∈ [2, 4]. The case q ∈ [1, 2) follows immediately by Hölder’s inequality.
The proof begins with a reduction to the case where f is frequency-localised to a large

annulus and θ belongs to an interval of an appropriately small length. This reduction
to the forthcoming Proposition 1.2.5 essentially follows the argument in [48]; our main
novelty is the proof of Propositon 1.2.5.

Suppose ψ0 ∈ C∞0 (I) and ψ ∈ C∞0 ((−2,− 1
2 ) ∪ ( 1

2 , 2)) give rise to a standard dyadic
partition of unity

ψ0(ξ) +
∑
k≥1

ψk ≡ 1,

where ψk = ψ( ·
2k−1 ). For each 0 ≤ k ∈ Z, the frequency localization operator Pk is

defined by

P̂kf(ξ) = ψk(ξ)f̂(ξ).

Then, by letting MΘf = sup{|Stf(·+ tθ)| : 0 < t < 1, θ ∈ Θ}

‖MΘf‖Lq(I) . ‖MΘP0f‖Lq(I) +
∑
k≥1

‖MΘPkf‖Lq(I) . (1.9)

The first term is relatively easy to estimate. In fact,

‖MΘP0f‖Lq(I) .
∫
R
ψ0(ξ)|f̂(ξ)| dξ

. ‖f‖L2

. ‖f‖Hs

for s ≥ 0, and thereby this term can be easily handled.
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For the remaining terms, first note that for each k ≥ 1, there exists a finite collection
of intervals {Ωk,j}Nkj=1 which satisfies

Θ ⊂
Nk⋃
j=1

Ωk,j ,

where |Ωk,j | ≤ 2−
qk
4 for each j and Nk = N(Θ, 2−

qk
4 ) is the smallest number of 2−

qk
4 -

intervals which cover Θ. (The reason for the choice of scale 2−
qk
4 will become clear as

we proceed.) For x ∈ I,

MΘPkf(x)q ≤
Nk∑
j=1

sup
t∈I

θ∈Ωk,j

|StPkf(x+ tθ)|q,

therefore

∑
k≥1

‖MΘPkf‖Lq(I) ≤
∑
k≥1

Nk∑
j=1

∥∥MΩk,jPkf
∥∥q
Lq(I)

 1
q

.

Now, we shall introduce the following crucial proposition.

Proposition 1.2.5. Let 2 ≤ q ≤ 4, k ≥ 1 and Ω be an interval with |Ω| ≤ 2−
qk
4 . Then,

there exists a constant Cq such that

‖MΩPkf‖Lq(I) ≤ Cq2
k
4 ‖f‖L2 (1.10)

holds for all f ∈ L2(R).

Proof of Proposition 1.2.5. Set λ = 2k and

Tf(x, t, θ) := χ(x, t, θ)

∫
R
ei((x+tθ)ξ+tΦ(ξ))f(ξ)ψ( ξλ ) dξ,

where χ = χI×I×Ω. Then (1.10) follows from

‖Tf‖LqxL∞t L∞θ . λ
1
4 ‖f‖L2 (λ & 1) (1.11)

since

‖MΩPkf‖Lq(I) ∼ ‖T f̂‖LqxL∞t L∞θ
. λ

1
4 ‖f̂‖L2

. λ
1
4 ‖f‖L2

by Plancherel’s theorem. Let us consider the dual form of (1.11), which is

‖T ∗F‖L2 . λ
1
4 ‖F‖

Lq
′
x L

1
tL

1
θ

(1.12)

where

T ∗F (ξ) = ψ( ξλ )

∫∫∫
χ(x′, t′, θ′)e−i((x

′+t′θ′)ξ+t′Φ(ξ))F (x′, t′, θ′) dx′dt′dθ′.
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Then,

‖T ∗F‖2L2

= λ

∫
ψ2(ξ)

∫∫∫ ∫∫∫
χ(x, t, θ)χ(x′, t′, θ′)

× ei(λ(x−x′+tθ−t′θ′)ξ+(t−t′)Φ(λξ))F̄ (x, t, θ)F (x′, t′, θ′) dxdtdθdx′dt′dθ′dξ

=

∫
W

∫
W ′

χ(w)χ(w′)F̄ (w)F (w′)Kλ(w,w′) dwdw′

=

3∑
`=1

∫∫
V`

χ(w)χ(w′)F̄ (w)F (w′)Kλ(w,w′) dwdw′

=: I1 + I3 + I1.

Here, we denote w = (x, t, θ) ∈ W and w′ = (x′, t′, θ′) ∈ W , where W := I × I × Ω.
Also,

Kλ(w,w′) =

∫
R
eiφ(ξ,w,w′)ψ2( ξλ ) dξ

= λ

∫
R
eiφ(λξ,w,w′)ψ2(ξ) dξ,

φ(ξ, w,w′) = (x− x′ + tθ − t′θ′)ξ + (t− t′)Φ(ξ),

and 
V1 = {(w,w′) ∈W ×W : |x− x′| < 4λ−

q
4 },

V2 = {(w,w′) ∈W ×W : |x− x′| ≥ 4λ−
q
4 and |x− x′| < 4|t− t′| },

V3 = {(w,w′) ∈W ×W : |x− x′| ≥ 4λ−
q
4 and |x− x′| ≥ 4|t− t′| }.

Thus, (1.12) follows from

I` . λ
1
2 ‖F‖2

Lq
′
x L

1
tL

1
θ

for each ` = 1, 2, 3.

The term I1

Let us start with an estimate of I1.

I1 . λ
1
2 ‖F‖2

Lq
′
x L

1
tL

1
θ

.

Trivially,
|Kλ(w,w′)| . λ

so by the dual form of Young’s convolution inequality

λ

∫ 1

−1

∫ 1

−1

‖F (x, ·, ·)‖L1
tL

1
θ
‖F (x′, ·, ·)‖L1

tL
1
θ
χ

[−4λ−
q
4 ,4λ−

q
4 ]

(x− x′) dxdx′

. λ‖F‖2
Lq
′
x L

1
tL

1
θ

‖χ
[−4λ−

q
4 ,4λ−

q
4 ]
‖
L
q
2

∼ λ 1
2 ‖F‖2

Lq
′
x L

1
tL

1
θ

.
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The term I2

Since ∣∣∣∣ d2

dξ2
φ(λξ)

∣∣∣∣ = λ2|t− t′|
∣∣∣∣ d2

dξ2
Φ(λξ)

∣∣∣∣ & λ|x− x′|
holds from (1.7), we are allowed to apply Lemma 1.2.3 to get

|Kλ(w,w′)| . λ(λ|x− x′|)− 1
2 .

By using Lemma 1.2.4, it follows that

I2 ≤ λ
1
2

∫∫
V1

χ(w′)|F (w′)|χ(w)|F̄ (w)||x− x′|− 1
2 dwdw′

. λ
1
2 ‖F‖2

Lq
′
x L

1
tL

1
θ

.

The term I3

It remains to show I3. In this case, we firstly observe the following key relationship:

|x− x′ + tθ − t′θ′| ∼ |x− x′|. (1.13)

Indeed,

|x− x′ + tθ − t′θ′| ≥ |x− x′| − |t− t′| − |θ − θ′|

≥ 3

4
|x− x′| − λ−

q
4

≥ 1

2
|x− x′|.

Similarly, the other way holds, too.
Now, let us observe that for all (w,w′) ∈ V2, we have

|Kλ(w,w′)| . λ(λ|x− x′|)− 1
2 . (1.14)

Before proving (1.14), we note that

I3 . λ
1
2 ‖F‖2

Lq
′
x L

1
tL

1
θ

immediately follows by using Lemma 1.2.4 as before.
To see (1.14), let us split Kλ into K1 and K2 as follows

Kλ(w,w′) = λ

∫
U1

eiφ(λξ,w,w′)ψ2(ξ) dξ + λ

∫
U2

eiφ(λξ,w,w′)ψ2(ξ) dξ

=: K1 +K2,

where
U1 = {ξ ∈ suppψ : |x− x′ + tθ − t′θ′| ≥ 2|t− t′||Φ′(λξ)|}

and
U2 = {ξ ∈ suppψ : |x− x′ + tθ − t′θ′| < 2|t− t′||Φ′(λξ)|}.
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For K1, we have ∣∣∣∣ d

dξ
φ(λξ)

∣∣∣∣ ≥ λ|x− x′ + tθ − t′θ′| − λ|t− t′|
∣∣∣∣ d

dξ
Φ(λξ)

∣∣∣∣
≥ λ

2
|x− x′ + tθ − t′θ′|

≥ λ

4
|x− x′|

> λ1− q4

≥ 1,

where we have used the fact that q ≤ 4. From (1.7) and the intermediate value theorem,
Φ′′(ξ) is single-signed on (−∞,−1] and [1,∞), which guarantees that Φ′(ξ) is monotone
on these intervals. Hence, U1 consists of at most two intervals. Invoking Lemma 1.2.3,

K1 . λ(λ|x− x′|)−1 . λ(λ|x− x′|)− 1
2 .

On the other hand, for K2, it follows from (1.8) that∣∣∣∣ d2

dξ2
φ(λξ)

∣∣∣∣ = λ2|t− t′|
∣∣∣∣ d2

dξ2
Φ(λξ)

∣∣∣∣
& λ|t− t′|

∣∣∣∣ d

dξ
Φ(λξ)

∣∣∣∣
& λ|x− x′ + tθ − tθ′|
& λ|x− x′|.

Then, by using Lemma 1.2.3, we obtain

K2 . λ(λ|x− x′|)− 1
2 .

Therefore, (1.14) holds.
Here, we have used the fact that q ≥ 2. Therefore, we conclude that

I1 . λ
1
2 ‖F‖2

Lq
′
x L

1
tL

1
θ

as claimed.

By the definition of the upper Minkowski dimension, for small ε > 0 there is a
constant Cε > 0 depending on ε such that

N(Θ, 2−
qk
4 ) ≤ Cε2

qk
4 (β(Θ)+ε).

Thus, if we also let ̂̃Pkf = ψ̃kf̂ , where ψ̃ ∈ C∞0 ((−4,− 1
4 ) ∪ ( 1

4 , 4)) with ψ̃ ≡ 1 on
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(−2,− 1
2 ) ∪ ( 1

2 , 2), then

∑
k≥1

Nk∑
j=1

‖MΩk,jPkf‖
q
Lq(I)

 1
q

=
∑
k≥1

Nk∑
j=1

‖MΩk,jPkP̃kf‖
q
Lq(I)

 1
q

.
∑
k≥1

Nk∑
j=1

2
qk
4 ‖P̃kf‖qL2

 1
q

.
∑
k≥1

2k( 1
4 +

β(Θ)
4 + ε

4 )‖P̃kf‖L2

∼
∑
k≥1

2−
3
4kε

(∫
supp ψ̃k

22k( 1
4 +

β(Θ)
4 +ε)|f̂(ξ)|2 dξ

) 1
2

. ‖f‖
H

1
4

+
β(Θ)

4
+ε
.

Therefore, for arbitrary ε > 0,

‖MΘf‖Lq(I) . ‖f‖
H

1
4

+
β(Θ)

4
+ε

holds, which ends the proof.

Remarks. The crucial component in the above proof of Theorem 1.2.1 is Proposition
1.2.5. The corresponding result in [48] (Lemma 3.1), stated for q = 2 and Φ(ξ) = |ξ|2,
is established through the following steps: TT ∗ argument, the time localization lemma,
Schur’s lemma and then an oscillatory integral argument. Following this approach in the
case Φ(ξ) = |ξ|a, one may extend by simple modification to the range a ≥ 3

2 . However,
the time localization lemma reduces to the case of time intervals of length λ1−a, and for
a close to 1 this causes certain technical difficulties in the estimation of the oscillatory
integrals which arise; in particular, the relationship (1.13) breaks down if we follow
their argument as it stands. In order to overcome the significant technical difficulty,
we removed the use of the time localization lemma and replaced this with appropriate
decompositions of the domain W ×W .

1.3 Second new result

The second result is associated to the path along a tangential curve. This result has
shown in the paper [49] by author collaborated with Chu-hee Cho.

Theorem 1.3.1 (Cho–S.). Let d = 1 and m > 1. Then,

lim
(t,y)→(0,x)

(t,y)∈Γx(γ,κ)

eit(−∆)
m
2 f(y) = f(x) (1.15)

for almost everywhere in R for any f ∈ Hs(R) if s > 1
2 −min{ 1

4 ,
mκ
2 }.

Theorem 1.3.1 can be obtained as a corollary of the following Theorem 1.3.2 in the
case when α = 1.
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Theorem 1.3.2. Let m > 1, 0 < κ ≤ 1, µ be an α-dimensional measure and γ ∈ Γ(κ).
If s > max

{
1
4 ,

1−α
2 , 1−mακ

2

}
, then

lim
t→0

St(f(γ(x, t))) = f(x), µ-a.e. x

for all f ∈ Hs(R).

By a standard argument, this is reduced to the following local maximal estimate.

Theorem 1.3.3. Let m > 1, 0 < κ ≤ 1, µ be an α-dimensional measure and γ ∈ Γ(κ).
If s > 1

2 −min
{

1
4 ,

α
2 ,

mακ
2

}
, then there exists a constant C such that(∫ 1

−1

sup
t∈[−1,1]

|Stf(γ(·, t))|2 dµ(x)

) 1
2

≤ C‖f‖Hs (1.16)

for all f ∈ Hs(R).

It is straightforward to obtain some results of the above type for m 6= 2 (more
specifically m ≥ 2) by appropriately modifying the argument in [48] or [55], however, as
the second author observed in his study of a related problem in a different setting [132],
there are some barriers with such an approach to treat m near 1. In particular, building
on the ideas in [132] in which we completely avoid time localization techniques, we are
able to handle the full range of m > 1 and give us the sharp sufficient conditions. Here,
saying sharp is meant by that: Suppose s < max

{
1
4 ,

1−α
2 , 1−mακ

2

}
, then there exists γ ∈

Γ(κ), α-dimensional µ and f ∈ Hs(R) such that (1.3.2) fails. Since the counterexamples
can be provided by adjusting the corresponding well-known constructions (for instance,
[48] and [134]) without any major difficulty, we rather focus on the sufficient conditions.
As corollaries of Theorem 1.3.2, we have the following.

Corollary 1.3.4. Let m > 1, 0 < κ ≤ 1, γ ∈ Γ(κ). If s > 1
4 , then

dimc(D(γ, f)) ≤ max

{
1− 2s,

1− 2s

mκ

}
.

The special case when µ is the (1-dimensional) Lebesgue measure extends the result
in [48] from m = 2 to m > 1 as follows. Here, note that the required regularity on s for
(1.15) depends not only on κ but m as well.

Corollary 1.3.5. Let m > 1, 0 < κ ≤ 1 and γ ∈ Γ(κ). If s > 1
2 −min{ 1

4 ,
mκ
2 }, then(∫ 1

−1

sup
t∈[−1,1]

|Stf(γ(·, t))|2 dx

) 1
2

≤ C‖f‖Hs (1.17)

holds for all f ∈ Hs(R).

Combining Corollary 1.3.5 with the result from [132], the results in [48] have been
completely extended from the standard Schrödinger equation to the fractional Schrödinger
equation withm > 1.

Remark. Although Theorem 1.3.3 is stated for the fractional Schrödinger evolution op-
erator, by simply following our proof in the same conclusion is valid for a wider class of
evolution operators such as

SΦ
t f(x) =

1

2π

∫
R
ei(xξ+tΦ(ξ))f̂(ξ) dξ,
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where Φ : R→ R is a C2-function for which there exist constants C3, C4 > 0 such that

|ξ|2−m
∣∣∣∣ d2

dξ2
Φ(ξ)

∣∣∣∣ ≥ C3 and |ξ|
∣∣∣∣ d2

dξ2
Φ(ξ)

∣∣∣∣ ≥ C4

∣∣∣∣ d

dξ
Φ(ξ)

∣∣∣∣
for all |ξ| ≥ 1. This class trivially contains |ξ|m whenever m > 1.

1.3.1 Lemmas

In this section, as we have informed, we introduce useful lemmas which we use multiple
times in the rest of the paper.

Lemma 1.3.6 (Frostman’s lemma). Let d ≥ 1 and X be a Borel set in Rd. Then, the
Hausdorff measure of order α of X is positive if and only if there exists α-dimensional
measure such that suppµ ⊂ X and 0 < µ(Rd) <∞. Further, µ(X) > 0.

For a proof of Lemma 1.3.6, we refer the reader to [110].

Lemma 1.3.7. Let 0 < α ≤ 1 and µ be an α-dimensional measure. There exists a
constant C such that for any interval [a, b] (−∞ < a, b <∞)∣∣∣∣∫∫ ∫∫ g(x, t)h(x′, t′)χ[a,b](x− x′) dµ(x)dtdµ(x′)dt′

∣∣∣∣ (1.18)

≤ C(b− a)α‖g‖L2
x(dµ)L1

t
‖h‖L2

x(dµ)L1
t
.

Moreover, for 0 < ρ < α there exists a constant C such that∣∣∣∣∫∫ ∫∫ g(x, t)h(x′, t′)|x− x′|−ρ dµ(x)dtdµ(x′)dt′
∣∣∣∣ (1.19)

≤ C‖g‖L2
x(dµ)L1

t
‖h‖L2

x(dµ)L1
t
.

Here, the both integrals are taken over (x, t), (x′, t′) ∈ I × I.

Proof of Lemma 1.3.7. Denoting G(x) = ‖g(x, ·)‖L1 and H(x′) = ‖h(x′, ·)‖L1 ,∣∣∣∣∫∫ ∫∫ g(x, t)h(x′, t′)χ[a,b](x− x′) dµ(x)dtdµ(x′)dt′
∣∣∣∣

≤
∫ 1

−1

∫ 1

−1

G(x)H(x′)χ[a,b](x− x′)dµ(x)dµ(x′).

By invoking the Cauchy–Schwarz inequality on L2(I × I, dµdµ) and (1.5),∫ 1

−1

∫ 1

−1

G(x)H(x′)χ[a,b](x− x′)dµ(x)dµ(x′)

.

(∫∫
G(x)2χ[a,b](x− x′) dµ(x)dµ(x′)

) 1
2
(∫∫

H(x′)2χ[a,b](x− x′) dµ(x)dµ(x′)

) 1
2

. (b− a)α‖G‖L2
x(dµ)‖H‖L2

x(dµ).
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Now, (1.19) follows from (1.18), immediately. In fact, by applying a dyadic decom-
position, ∣∣∣∣∫∫ ∫∫ g(x, t)h(x′, t′)|x− x′|−ρ dµ(x)dtdµ(x′)dt′

∣∣∣∣
.
∞∑
j=0

2ρj
∫∫

G(x)H(x′)χ[2−j ,2−j+1](x− x′) dµ(x)dµ(x′)

.
∞∑
j=0

2(ρ−α)j‖G‖L2
x(dµ)‖H‖L2

x(dµ)

. ‖G‖L2
x(dµ)‖H‖L2

x(dµ)

whenever ρ− α < 0.

1.3.2 Proof of (Theorem 1.3.2 =⇒ Corollary 1.3.4)

Let s > 1
4 and f ∈ Hs(R). If we suppose dimc(D(f, γ)) > max{1 − 2s, 1−2s

mκ } ≥ 0,
then one would find 0 < α < 1 satisfying dimc(D(f, γ)) > α > max{1 − 2s, 1−2s

mκ } ≥ 0.
Here, note that the second inequality is equivalent to s > max{ 1−α

2 , 1−mακ
2 }. Hence, by

Lemma 1.3.6 there would exist an α-dimensional measure µ such that µ(D(f, γ)) > 0,
which contradicts Theorem 1.3.2, and we must have dimc(D(f, γ)) ≤ max{1−2s, 1−2s

mκ }.

1.3.3 Proof of Theorem 1.3.1

Let

s∗ = min

{
1

4
,
α

2
,
mακ

2

}
.

By following the standard steps via Littlewood–Paley decomposition, it is enough to
show the following proposition. (For the details, for instance, see [132].)

Proposition 1.3.8. Let ε > 0. Then, there exists a constant Cε such that∥∥∥∥sup
t∈I
|Stf(γ(·, t))|

∥∥∥∥
L2(I,dµ)

≤ Cελ
1
2−s∗+ε‖f‖L2 (1.20)

holds for all λ ≥ 1 and f ∈ L2(R) whose Fourier support is contained in {ξ ∈ R : λ2 ≤
|ξ| ≤ 2λ}.

Proof of Proposition 1.3.8. Let

Tf(x, t) = χ(x, t)

∫
R
ei(γ(x,t)ξ+t|ξ|m)f(ξ)ψ( ξλ ) dξ,

where χ = χI×I and ψ ∈ C∞0 ((−2,− 1
2 ) ∪ ( 1

2 , 2)). Then, by Plancherel’s theorem, (1.20)
follows from

‖Tf‖2L2
x(dµ)L∞t

. λ1−2s∗+ε‖f‖2L2 . (1.21)

By duality, (1.21) is equivalent to

‖T ∗F‖2L2 . λ1−2s∗+ε‖F‖2L2
x(dµ)L1

t
, (1.22)
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where

T ∗F (ξ) = ψ( ξλ )

∫∫
χ(x′, t′)e−i(γ(x′,t′)ξ+t′|ξ|m)F (x′, t′) dµ(x′)dt′.

Then,

‖T ∗F‖2L2 =

∫
ψ( ξλ )2

∫∫ ∫∫
χ(x, t)χ(x′, t′)

× ei((γ(x,t)−γ(x′,t′))ξ+(t−t′)|ξ|m)F (x, t)F (x′, t′) dµ(x)dtdµ(x′)dt′dξ

=

∫
W

∫
W ′

χ(w)χ(w′)F (w)F (w′)Kλ(w,w′) dµwdµw
′

=

3∑
`=1

∫∫
V`

χ(w)χ(w′)F (w)F (w′)Kλ(w,w′) dµwdµw
′

= I1 + I2 + I3.

Here, we denote W = I × I, w = (x, t) ∈ W , w′ ∈ (x′, t′) ∈ W and dµw = dµ(x)dt.
Also,

Kλ(w,w′) =

∫
R
eiφ(ξ,w,w′)ψ( ξλ )2 dξ

= λ

∫
R
eiφ(λξ,w,w′)ψ(ξ)2 dξ,

φ(ξ, w,w′) = (γ(x, t)− γ(x′, t′))ξ + (t− t′)|ξ|m

and
V1 = {(w,w′) ∈W ×W : |x− x′| ≤ 2λ−

2s∗
α },

V2 = {(w,w′) ∈W ×W : |x− x′| > 2λ−
2s∗
α and 1

C2
|x− x′| ≤ 2C1|t− t′|κ},

V3 = {(w,w′) ∈W ×W : |x− x′| > 2λ−
2s∗
α and 1

C2
|x− x′| > 2C1|t− t′|κ}.

Then, (1.22) follows from
I` . λ1−2s∗+ε‖F‖2L2

x(dµ)L1
t

for each ` = 1, 2, 3.

The term I1

By using the trivial estimate
|Kλ(w,w′)| . λ (1.23)

and Lemma 1.3.7, we obtain

I1 . λ
1−2s∗‖F‖2L2

x(dµ)L1
t
.

The term I2

In this case, observe that ∣∣∣∣ d2

dξ2
φ(λξ, w,w′)

∣∣∣∣ & λm|t− t′||ξ|m−2

& λm|x− x′| 1κ

& λmλ−
2s∗
ακ

≥ 1
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since 2s∗
ακ = min{ 1

2ακ ,
1
κ ,m} ≤ m. Then, by Lemma 1.2.3 for arbitrary small ε > 0

|Kλ(w,w′)| . λ(λm|x− x′| 1κ )−
1
2

. λ(λm|x− x′| 1κ )−
2s∗
m

∼ λ1−2s∗ |x− x′|−
2s∗
mκ

. λ1−2s∗+ε|x− x′|−
2s∗
mκ+ε

since 2s∗
m = min{ 1

2m ,
α
m , ακ} <

1
2 and our separation assumption again. Therefore,

applying Lemma 1.3.7 with ρ = 2s∗
mκ − ε = min{ 1

2mκ ,
α
mκ , α} − ε < α, it follows that

I2 . λ
1−2s∗+ε‖F‖2L2

x(dµ)L1
t
.

The term I3

It remains to consider I3. First note that we have

|γ(w)− γ(w′)| ≥ 1

2C2
|x− x′| (1.24)

for (w,w′) ∈ V2 by using (1.3) and (1.4). Next, we split Kλ into K1 and K2 as follows.

Kλ(w,w′) = λ

∫
U1

eiφ(λξ,w,w′)ψ(ξ)2 dξ + λ

∫
U2

eiφ(λξ,w,w′)ψ(ξ)2 dξ

=: K1 +K2,

where {
U1 = {ξ ∈ suppψ : 1

C2
|x− x′| > 4mλm−1|t− t′||ξ|m−1},

U2 = {ξ ∈ suppψ : 1
C2
|x− x′| ≤ 4mλm−1|t− t′||ξ|m−1}.

For K1, we use (1.24) in order to estimate the phase∣∣∣∣ d

dξ
φ(λξ, w,w′)

∣∣∣∣ ≥ λ|γ(w)− γ(w′)| −mλm|t− t′||ξ|m−1

≥ 1

2C2
λ|x− x′| −mλm|t− t′||ξ|m−1

>
1

4C2
λ|x− x′|

& λ1− 2s∗
α

≥ 1

since 2s∗
α = min{ 1

2α , 1,mκ} ≤ 1. Here, note that the interval U1 consists of at most two

intervals since d
dξφ(λξ, w,w′) is monotone on each interval (−∞,−1] and [1,∞). Thus,

Lemma 1.2.3 gives that

K1 . λ(λ|x− x′|)−1 . λ(λ|x− x′|)−min{ 1
2 ,α}.

On the other hand, for K2,∣∣∣∣ d2

dξ2
φ(λξ, w,w′)

∣∣∣∣ & λm|t− t′||ξ|m−2

& λ|x− x′|
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so that we are allowed to apply Lemma 1.2.3 to obtain

K2 . λ(λ|x− x′|)− 1
2

. λ(λ|x− x′|)−min{ 1
2 ,α}.

Hence, for (w,w′) ∈ V2 we have the following kernel estimate

|Kλ(w,w′)| . λ1−min{ 1
2 ,α}|x− x′|−min{ 1

2 ,α}

. λ1−min{ 1
2 ,α}+ε|x− x′|−min{ 1

2 ,α}+ε.

Here, we used the separation assumption, |x − x′| & λ−
2s∗
α . By Lemma 1.3.7 with

ρ = min{ 1
2 , α} − ε < α we conclude that

I3 . λ
1−min{ 1

2 ,α}+ε‖F‖2L2
x(dµ)L1

t

. λ1−2s∗+ε‖F‖2L2
x(dµ)L1

t
.

1.3.4 The necessary conditions regarding Theorem 1.3.3

In this section, we present s ≥ max
{

1
4 ,

1−α
2 , 1−mακ

2

}
is necessary for Theorem 1.3.3,

otherwise there exist γ ∈ Γ(κ) and α-dimensional measure µ such that (1.16) fails.
Throughout the section, we shall let λ ≥ 1, γ(x, t) = x − tκ, µ(x) = |x|−1+α dx and
ψ0 be a smooth radial bump function whose support is in a small neighborhood of the
origin. Also, we fix m > 1 and 0 < κ ≤ 1, and we assume that the maximal estimate
(1.16) holds.

The necessity of s ≥ 1−α
2

In this case, we will follow the idea in [48]. Let

f̂1(ξ) = ψ0(λ−
1
m ξ).

With this initial data,

|Stf1(γ(x, t))| ∼
∣∣∣∣∫ ei((x−t

κ)ξ+t|ξ|m)f̂1(ξ) dξ

∣∣∣∣
= λ

1
m

∣∣∣∣∫ eiφ1(η,x,t)ψ0(η) dη

∣∣∣∣ ,
where

φ1(η, x, t) = λ
1
m (x− tκ)η + λt|η|m.

For x ∈ (0, 1
100λ

− 1
m ) and |t| < 1

100λ
−1, we have

|φ1(η, x, t)| ≤ 1

2

so that

|Stf1(γ(x, t))| & λ 1
m

∣∣∣∣∫ (cosφ1(η, x, t))ψ0(η) dη

∣∣∣∣
& λ

1
mχ

(0, 1
100λ

− 1
m )×(0, 1

100λ
−1)

(x, t).
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Hence, ∥∥∥∥sup
t∈I
|Stf1(γ(·, t))|

∥∥∥∥
L2(I,dµ)

≥

∥∥∥∥∥ sup
t∈(0, 1

100λ
−1)

|Stf(γ(·, t))|

∥∥∥∥∥
L2((0, 1

100λ
− 1
m ),dµ)

& λ
1
mλ−

α
2m .

On the other hand,

‖f1‖Hs ∼
(∫

(1 + |ξ|2)s|ψ0(λ−
1
m ξ)|2 dξ

) 1
2

. λ
s
mλ

1
2m .

Therefore, combining the above calculations, we obtain

λ
1
mλ−

α
2m . λ

s
mλ

1
2m .

As letting λ→∞, it is necessary that

1

m
− α

2m
≤ s

m
+

1

2m
,

which is

s ≥ 1− α
2

.

The necessity of s ≥ 1−mακ
2

Here, choose the same initial data f1 as above. For x ∈ (0, 1
100λ

−κ) and t = t(x) = x
1
κ ,

one can estimate

|φ1(η, x, t)| ≤ 1

2
.

Then, following a similar argument as above, we have

λ
1
mλ−

ακ
2 . λ

s
mλ

1
2m .

As letting λ→∞, it is necessary that

1

m
− ακ

2
≤ s

m
+

1

2m
,

which clearly gives

s ≥ 1−mακ
2

.

The necessity of s ≥ 1
4

In this case, we will refer to the idea in [134] (see page 712). Let

f̂2(ξ) = λ−1ψ0(λ−1ξ + λ).
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Then, by the change of variables −η = λ−1ξ + λ,

|Stf2(γ(x, t))| ∼
∣∣∣∣∫ ei((x−t

κ)ξ+t|ξ|m)λ−1ψ0(λ−1ξ + λ) dξ

∣∣∣∣
=

∣∣∣∣∫ eiφ2(η,x,t)ψ0(−η) dη

∣∣∣∣ ,
where

φ2(η, x, t) = −(x− tκ)λη + λmt|λ+ η|m.
By a Taylor expansion,

(λ+ η)m = λm(1 + λ−1η)m

= λm
(

1 +mλ−1η +
m(m− 1)

2
λ−2η2 +O(λ−3|η|3)

)
= λm +mλ−(1−m)η +

m(m− 1)

2
λ−(2−m)η2 +O(λ−(3−m)|η|3),

and it follows that

φ2(η, x, t) = −λxη + λtκη + λ2mt+mλ−(1−2m)tη

+
m(m− 1)

2
λ−(2−2m)tη2 +O(λ−(3−2m)t|η|3)

= λ2mt+ λ(−x+ tκ +mλ−(2−2m)t)η

+
m(m− 1)

2
λ−(2−2m)tη2 +O(λ−(3−2m)t|η|3).

For x ∈ (0, 1
100 ), we can choose t(x) such that x = t(x)κ + mλ−(2−2m)t(x). In fact, if

we consider the function τ(t) = tκ + mλ−(2−2m)t, then τ : [0,∞) → [0,∞) is a strictly
increasing bijection and

0 = τ−1(0) < τ−1(x) = t(x) < τ−1( 1
100 ) <

λ2−2m

100m
.

Therefore, for such choice of (x, t(x)), it follows that

|φ2(η, x, t(x))− λ2mt(x)| . 0 +
1

100
+O(λ−1) ≤ 1

2
,

which implies that

|Stf2(γ(x, t(x)))| ∼
∣∣∣∣∫ cos(φ2(η, x, t(x))− λ2mt(x))ψ0(−η) dη

∣∣∣∣
& χ(0, 1

100 )(x).

Hence, ∥∥∥∥sup
t∈I
|Stf2(γ(·, t))|

∥∥∥∥
L2(I,dµ)

& 1.

On the other hand,

‖f2‖Hs =

(∫
(1 + |ξ|2)s|λ−1ψ0(λ−1ξ + λ)|2 dξ

) 1
2

. λ2sλ−
1
2 .
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Therefore, combining the calculations above implies that

1 . λ2sλ−
1
2 .

As λ→∞, it is necessary that

s ≥ 1

4
.

This ends the proof that s ≥ max
{

1
4 ,

1−α
2 , 1−mακ

2

}
is necessary for (1.16) to hold.
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Chapter 2

Sharp bilinear estimates for
the Klein–Gordon equation

2.1 Introduction

This chapter is based on work with Jayson Cunanan.

In this chapter, we slightly shift our interest from the Schrödinger equation to
the Klein–Gordon equation, which is often considered to be a “hybrid object” of the
Schrödinger and the wave equations. Here, we study the null-form type estimates for
the Klein–Gordon equation with the optimal constant. The Klein–Gordon equation is
given by {

∂tt −∆xu+ u = 0,

u(0, x) = u0(x), ∂tu(0, x) = u1(x).

Formally, for functions f and g, if we let f+ and f− be given in terms of the initial
conditions by

u0 = f+ + f−, u1 = i〈D〉(f+ − f−)

then one can write u = u+ + u−, where

u±(t, x) = e±it〈D〉f±(x)

= (2π)−d
∫
Rd
ei(x·ξ+t〈ξ〉)f̂±(ξ) dξ.

(One may be able to see that the Klein–Gordon equation is connected to the wave and
Schrödinger equations at this point since 〈ξ〉 ∼ |ξ| for |ξ| � 1 and 〈ξ〉 ∼ 1 + 1

2 |ξ|
2 for

|ξ| � 1, respectively.)
Strichartz estimates are a family of the inequalities that have a crucial role in the the-

ory of nonlinear dipersive PDE. For the Klein–Gordon equation the Strichartz estimates
have the form

‖eit〈D〉u0‖Lq(Rd+1) ≤ C‖u0‖Hα(Rd)

for the valid triples (d, q, α), called KG-admissible satisfying

1

2
≤ α ≤ d

2
,

2d+ 4

d
≤ q ≤ 2d+ 2

d− 2α
.
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It is often useful to consider a generalized version

‖eitφs(D)u0‖Lq(Rd+1) ≤ C‖u0‖Hα(Rd) (2.1)

for KG-admissible triples, where we recall that φs(r) = (s2 + r2)
1
2 . This type of esti-

mates as well as those variations such as that with the mixed-norm and the null-form
has been a major subject in the study of nonlinear dispersive equations. One advantage
of the perspective of (2.1) is that its special case when s = 0 coincides with the situation
for the wave equation. Although our focus here is rather the Klein–Gordon propagator,
we shall first take a look at the wave case, s = 0, and see a bit of history.

Let s = 0 and consider

‖eitDf‖LqtLrx ≤ C‖f‖Ḣ d
2
− d
r
− 1
q

for q ≥ 2 and (d, q, r) 6= (3, 2,∞). This estimate except the endpoint case was proved by
Jean Ginibre and Giorgio Velo [64] and later the endpoint case by Markus Keel and Ter-
ence Tao [87]. The Sobolev exponent on the right-hand side is due to homogeneity. The
reader may also note that the order of the mixed norm on the left-hand side is reversed
from the maximal inequality we have considered in Chapter 1; taking the integral in
space first and then time. In certain situations, the optimal constant for (2.1) is known:
Let q = r = 4. In 2006, pioneering work of Damiano Foschi [61] established the opti-

mality of the constant C = F(0, 3)
1
4 . Here, for general d ≥ 2 and β ≥ max{ 1−d

4 , 2−d
2 }

we note,

F(β, d) := 2d−3+4βπ−
d
2

Γ(d2 )Γ(d−1
2 + 2β)

(d− 2 + 2β)Γ( 3d−5
2 + 2β)

.

Neal Bez and Keith Rogers built on Foschi’s work and proved C = F(0, 5)
1
4 is optimal

when d = 5 via the bilinear estimate

‖eitDfeitDg‖2L2(Rd+1) ≤W(0, d)

∫
(Rd+1)2

|f̂(η1)|2|ĝ(η2)|2|η1||η2|KBR
0 (η1, η2) dη1dη2,

(2.2)
where

W(β, d) := 2
−5d+1

2 +2βπ
−5d+1

2
Γ(d−1

2 + 2β)

Γ(d− 1 + 2β)
,

and
KBR
β (η1, η2) = (|η1||η2| − η1 · η2)

d−3
2 +β .

The optimality of F(0, 4)
1
4 when d = 4 in (2.1) in was proved by Bez and Chris Jeavons

by using polar coordinates and techniques from the theory of spherical harmonics in
addition to using (2.2). Recently, in 2016, Bez, Jeavons and Tohru Ozawa established
the bilinear estimates

‖|�|β(eitDfeitDg)‖2L2(Rd+1) ≤W(β, d)

∫
(Rd)2

|f̂(η1)|2|ĝ(η2)|2|η1||η2|KBR
β (η1, η2) dη1dη2,

(2.3)

from which it quickly follows (via polar coordinates) that F(β, d)
1
2 is the optimal con-

stant in the corresponding estimate

‖|�|β(eitDfeitDg)‖L2(Rd+1) ≤ F(β, d)
1
2 ‖f‖

Ḣ
d−1

4
+β(Rd)

‖g‖
Ḣ
d−1

4
+β(Rd)

(2.4)
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whenever d ≥ 2 and β > βd := max{ 1−d
4 , 2−d

2 } if we restrict to radially symmetric data
f and g. The estimate (2.4) was motivated by the null-form type estimate

‖Dβ0D
β−
− D

β+

+ (eitDfeitDg)‖L2(Rd+1) ≤ C‖f‖Ḣα1‖g‖Ḣα2 , (2.5)

in the case of (β0, β−, β+, α−, α+) = ( 2−d
2 , 0, 0, 1

4 ,
1
4 ) for the propagator eitD associated

with the wave equation. The estimate combining with the corresponding (++) case
(while (2.5) is (+−) case),

‖Dβ0D
β−
− D

β+

+ (eitDfeitDg)‖L2(Rd+1) ≤ C‖f‖Ḣα1 ‖g‖Ḣα2 (2.6)

has found important applications in study of nonlinear wave equations. This type of
estimate has been studied back in work of Michael Beals [11] and work by Sergiu Klain-
erman and Matei Machedon [89, 90, 91]. A complete characterization of the admissible
exponents (β0, β−, β+, α−, α+) for (2.5) and (2.6) were eventually obtained by Foschi
and Klainerman [62]. Such a characterization when the L2

t,x norm on the left-hand side
of (2.5) is replaced by LqtL

r
x has also drawn great attention. Using bilinear Fourier re-

striction techniques, Jean Bourgain [34] made a breakthrough contribution, then Tom
Wolff [146] and Tao [136] (in the endpoint case; see also Sanghyuk Lee [97] and Daniel
Tataru [142]) completed the diagonal case q = r. For the non-diagonal case we refer
readers to [101] due to Lee and Ana Vargas for a complete characterization when d ≥ 4
and partial results when d = 2, 3. Soon later Lee, Rogers and Vargas [99] completed
d = 3, but a gap between necessary and sufficient conditions still remains when d = 2.

Before moving onto the Klein–Gordon case and introducing our main results, we
shall make small remarks on the analogous results for the Schrödinger equation. The
study pursuing the optimal constants for the Schrödinger equation can be traced back
to the work of Ozawa and Yoshio Tsutsumi in 1998 [124]. This result has been extended
in a natural ways by Emanuel Carneiro [38] and Fabrice Planchon and Luis Vega [125].
The unification of those results can be found in a recent paper by the aforementioned
authors Bez, Jeavons in collaboration with Jonathan Bennett and Nikolaos Pattakos
[20].

In addition to the above, the related literature on sharp Strichartz estimates is large;
the author would like the interested reader to consult with the survey article by Foschi
and Diogo Oliveira e Silva [63]. From a methodological view point, specifically for this
thesis, work of Bennett, Bez in collaboration with Anthony Carbery and Dirk Hundert-
mark [18] and [20] applied the heat-flow monotonicity method which we will employ in
a different study in Chapter 3.

Finally, in the context of the Klein–Gordon equation, René Quilodrán [126] appropri-
ately developed Foschi’s argument in [61] when α = 1

2 and proved the sharp Strichartz
estimate (2.1) for (d, q) = (2, 4), (2, 6), (3, 4), the endpoint cases of the KG-admissible
range when α = 1

2 ; when (d, q) = (3, 4), in particular, the optimal constant coincides

with F(0, 3)
1
4 . In [126], he also proved that there is no extremiser which attains (2.1)

with the optimal constant for (d, q) = (2, 4), (2, 6), (3, 4). Later, Carneiro, Oliveira e
Silva and Mateus Sousa [39] further revealed the nature of (2.1) for d = 1, 2 by an-
swering the questions raised in [126]; in particular, they found the best constant in (2.1)
for (d, q, α) = (1, 6, 1

2 ) and absence of the extremisers. Meanwhile, they also established
there exist extremisers in the non-endpoint cases in low dimensions d = 1, 2. A sub-
sequent study by the same authors in collaboration with Betsy Stovall [40] proved the
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analogous results in the non-endpoint cases for higher dimensions d ≥ 3 by using some
tools from bilinear restriction theory.

In [84], Jeavons obtained the following refined Strichartz estimate in five spatial
dimensions

‖eitφs(D)f‖L4(R5+1) ≤ F(0, 5)
1
4

(
‖φs(D)f‖4L2(R5) − s

2‖φs(D)
1
2 f‖4L2(R5)

) 1
4

, (2.7)

which recovers the inequality (2.4) when (β, d) = (0, 5) in the limit s → 0. Moreover,
by simply omitting the negative second term, it follows that

‖eitφ1(D)f‖L4(R5+1) ≤ F(0, 5)
1
4 ‖f‖H1(R5),

where the constant F(0, 5)
1
4 = (24π2)−

1
4 is still sharp.

As part of the study of sharp bilinear estimates for the Fourier extension operator and
inspired by work of Ozawa and Tsutsumi [124], David Beltran and Vega [14] very recently
presented the following sharp estimate associated to the Klein–Gordon propagator

‖D
2−d

2 (eitφs(D)feitφs(D)g)‖2L2(Rd×R) (2.8)

≤ (2π)1−3d

∫
(Rd)2

|f̂(η1)|2|g(η2)|2φs(|η1|)φs(|η2|)KBV(η1, η2) dη1dη2,

where

KBV(η1, η2) =

∫
Sd−1

φs(|η1|) + φs(|η2|)
(φs(|η1|) + φs(|η2|))2 − ((η1 + η2) · θ)2

dσ(θ).

The estimate (2.8) has some interesting connections to well-known results. For example,
as we shall see in more detail later, (2.8) leads null-form type estimates by appropriately
estimating the kernel. In particular, when d = 2 the Strichartz estimate

‖eitφ1(D)f‖L4(R2+1) ≤ 2−
1
4 ‖f‖

H
1
2 (R2)

(2.9)

with the optimal constant quickly follows from (2.8). We also note that the approach
taken by Beltran–Vega [14], which in turn built on work of Planchon–Vega [125] rested on
interplay with geometric operators such as the Radon transform or, more generally, the
k-plane transform. For related work in this context of interaction with geometrically-
defined operators, we also refer the reader to work of Bennett, Bez, Taryn C. Flock,
Susana Gutiérrez and Marina Iliopoulou [21] and Bennett and Shohei Nakamura [26].

In this chapter, we establish the following new bilinear estimates for the Klein–
Gordon propagator. Let

Kba(η1, η2) :=

(
φs(|η1|)φs(|η2|)− η1 · η2 − s2

)b
(φs(|η1|)φs(|η2|)− η1 · η2 + s2)

a .

Theorem 2.1.1. For d ≥ 2 and β > 1−d
4 , we have the estimate

‖|�− (2s)2|β(eitφs(D)feitφs(D)g)‖2L2(Rd+1) (2.10)

≤ KG(β, d)

∫
R2d

|f̂(η1)|2|ĝ(η2)|2φs(|η1|)φs(|η2|)K
d−2

2 +2β
1
2

(η1, η2) dη1dη2,

with the optimal constant

KG(β, d) := 2
−5d+1

2 +2βπ
−5d+1

2
Γ(d−1

2 + 2β)

Γ(d− 1 + 2β)
.
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In the case when s → 0, certain sharp bilinear estimates for solutions to the wave
equation with the operator |�|β has been deeply studied by Bez–Jeavons–Ozawa [30].
One may note that, when d = 2, a slightly larger range of β is valid in Theorem 2.1.1
than one for the corresponding result (2.3) for the wave case in [30]. In order to prove
Theorem 2.1.1, we employ their argument and adapt it into the context of Klein–Gordon
equation. As a consequence of Theorem 2.1.1, we will generate null-form type estimates
of the form

‖|�− (2s)2|β |eitφs(D)f |2‖L2(Rd+1) ≤ C‖φs(D)αf‖2L2(Rd) (2.11)

for certain pairs (α, β) with the optimal constant.

2.2 Some connections to recent results and corollaries

2.2.1 Wave regime

For d ≥ 4, the kernel KBV can be estimated1 as

KBV
d (η1, η2) ≤ |Sd−1|

φs(|η1|) + φs(|η2|)

∫ 1

−1

(
1−

∣∣∣∣ η1 + η2

φs(|η1|) + φs(|η2|)

∣∣∣∣2 λ2

)−1

(1− λ2)
d−3

2 dλ

≤ C

φs(|η1|) + φs(|η2|)

for some absolute constant C since |η1 + η2| ≤ φs(|η1|) + φs(|η2|). Then, it follows from
the arithmetic-geometric mean that

φs(|η1|)φs(|η2|)KBV
d (η1, η2) ≤ Cφs(|η1|)

1
2φs(|η2|)

1
2 ,

and hence the null-form type estimate

‖D
2−d

2 (eitφs(D)feitφs(D)g)‖L2(Rd×R) ≤ C‖φs(D)
1
4 f‖L2(Rd)‖φs(D)

1
4 g‖L2(Rd) (2.12)

holds. When s→ 0, the estimate (2.12) yields (2.5) in the case of (β0, β−, β+, α−, α+) =
( 2−d

2 , 0, 0, 1
4 ,

1
4 ) for the propagator eitD associated with the wave equation.

As a means of comparing our bilinear estimate (2.10) with (2.8), we note that using
the trivial estimate

φs(|η1|)φs(|η2|)− η1 · η2 − s2

φs(|η1|)φs(|η2|)− η1 · η2 + s2
≤ 1, (2.13)

we estimate our kernel as

K
d−2

2 +2β
1
2

(η1, η2) ≤ K
d−3

2 +2β
0 (η1, η2). (2.14)

For β ≥ 3−d
4 , it follows that

‖|�− (2s)2|β(eitφs(D)feitφs(D)g)‖L2(Rd+1)

≤ C‖φs(D)
d−1

4 +βf‖L2(Rd)‖φs(D)
d−1

4 +βg‖L2(Rd) (2.15)

1We observe that d ≥ 4 is important here. For d = 3, the estimate (2.12) actually does not hold.
The counterexample has been given by Foschi [60] for the wave equation, and the same argument
appropriately adapted works for the Klein–Gordon propagator.
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for some absolute constant C, which, as in the discussion for the Beltran–Vega bilinear
estimate, places Theorem 2.1.1 in the framework of null-form type estimates. If we
formally set β = 2−d

4 in (2.15) to get data with regularity whose order is 1
4 as in (2.12),

the order of “smoothing” from |�−(2s)2|β becomes 2β = 2−d
2 , which is compatible with

(2.12). Unfortunately, 2−d
4 is outside the range β ≥ 3−d

4 and, in fact, as we shall see in

Proposition 2.4.4, β ≥ 3−d
4 is a necessary condition for (2.15).

Corollary 2.2.1. Let d ≥ 2. For β ∈ [ 2−d
4 , 3−d

4 ] ∪ [ 5−d
4 ,∞), the optimal constant in

(2.15) for radially symmetric f and g is F(β, d)
1
2 , but there does not exist a non-trivial

pair of functions (f, g) that attains equality.

We remark that it is a result of the homogeneity of the kernel K
d−2

2 +β
1
2

when s = 0

that one can immediately deduce the optimality of F(β, d)
1
2 in (2.4) for radial data from

(2.3). In contrast, our concern is the case s > 0 and the lack of homogeneity in the
kernel causes significant difficulty in this regard, and this can be seen as responsible
for smaller range of β in Corollary 2.2.1 compared with the analogous result in [30].
We prove Corollary 2.2.1 by first making use of our bilinear estimate (2.10); somewhat
surprisingly given that (2.10) is a sharp inequality, we shall prove (Proposition 2.4.3)

that it is impossible to obtain the optimality of F(β, d)
1
2 in (2.4) for radial data and

β ∈ ( 3−d
4 , 5−d

4 ) once one makes use of (2.10) as a first step.
The special case of Theorem 2.1.1 generalizes one of the current results (2.1) in the

case of (d, q, α) = (3, 4, 1
2 ) by Quilodrán and (2.7) by Jeavons [84].

Corollary 2.2.2. Let d ≥ 2. Then, the estimate (2.11) holds with the optimal constant

C = F(β, d)
1
2 for (α, β) = ( 1

2 ,
3−d

4 ) and (α, β) = (1, 5−d
4 ), but there are no non-trivial

extremisers. Furthermore, when (α, β) = (1, 5−d
4 ), we have the refined Strichartz esti-

mate

‖|�− (2s)2|
5−d

4 |eitφs(D)f |2‖L2(Rd+1)

≤ F( 5−d
4 , d)

1
2

(
‖φs(D)f‖4L2(Rd) − s

2‖φs(D)
1
2 f‖4L2(Rd)

) 1
2

, (2.16)

where the constant is optimal and there are no non-trivial extremisers.

2.2.2 Non-wave regime

One may examine the Beltran–Vega bilinear estimate (2.8) from a somewhat different
perspective to that taken in our earlier discussion which led to (2.12). For d ≥ 2 the
kernel KBV can also be reinterpreted by

KBV(η1, η2)

= |Sd−2|
∫ π

2

−π2

φs(|η1|) + φs(|η2)

2(φs(|η1|)φs(|η2|)− η1 · η2 + s2) + |η1 + η2|2 cos θ
(cos θ)d−2 dθ,

then by applying the trivial bound cos θ ≤ 1 on [−π2 ,
π
2 ], and another key relationship

φs(|η1)φs(|η2|)− η1 · η2 ≥ s2, (2.17)

we have
KBV(η1, η2) ≤ 2−1π|Sd−2|s−1.
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Thus, the inequality (2.8) directly implies

‖D
2−d

2 |eitφs(D)f |2‖2L2(Rd+1) ≤ 2−1s−1‖φs(D)
1
2 f‖4L2(Rd). (2.18)

By comparison with (2.12), the regularity level on the initial data has increased to H
1
2

but this has allowed for a wider range of d which, in particular, includes d = 2 in which
case (2.18) coincides with the sharp H

1
2 → L4

x,t Strichartz estimate (2.9) obtained by
Quilodrán. Note that, in the non-wave regime, we are not allowed to let s→ 0 because
of the factor s−1 appearing in the constant.

On the other hand, Theorem 2.1.1 also yields (2.9) as a special case of the following
family of sharp null-form type estimates valid in all dimensions d ≥ 2. Indeed, since we
have another kernel estimate

K
d−2

2 +2β
1
2

(η1, η2) ≤ 2−
1
2K

d−2
2 +2β

0 (η1, η2)s−1 (2.19)

via (2.17), we immediately deduce the following from Theorem 2.1.1.

Corollary 2.2.3. Let d ≥ 2. Then the estimate (2.11) holds with the optimal constant

C =

(
2−d+1π

−d+2
2

sΓ(d2 )

) 1
2

for (α, β) = ( 1
2 ,

2−d
4 ), but there are no non-trivial extremisers. Furthermore, when

(α, β) = (1, 4−d
4 ), we have the refined Strichartz estimate

‖|�− (2s)2|
4−d

4 |eitφs(D)f |2‖2L2(Rd+1)

≤

(
2−d+1π

−d+2
2

sΓ(d+2
2 )

) 1
2 (
‖φs(D)f‖4L2(Rd) − s

2‖φs(D)
1
2 f‖4L2(Rd)

) 1
2

, (2.20)

where the constant is optimal and there are no non-trivial extremisers.

One may note that (2.20) provides a sharp form of the following refined Strichartz
inequality in the analogous manner of (2.7) when d = 4:

‖eitφ1(D)f‖L4(R4+1) ≤
(

1

16π

) 1
4

(‖f‖4H1(R4) − ‖f‖
4

H
1
2 (R4)

)
1
4 ,

however we have unable to conclude whether the constant ( 1
16π )

1
4 continues to be optimal

if we drop the second term on the right-hand side.

2.3 Proof of Theorem 2.1.1

Although some steps require additional care due to the extra parameter s, broadly
speaking Theorem 2.1.1 can be proved by adapting the argument for wave propagators
presented in [30], whose techniques are originated in [19] (see also [20]). The key tool
here is the following Lorentz transform given by L; for (t, x) ∈ R× Rd

L

(
t

x

)
=

(
γ(t− ζ · x)

x+ (γ−1
|ζ|2 ζ · x− γt)ζ

)
,
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where ζ := − ξ
τ and γ := τ

(τ2−|ξ|2)
1
2

. Let us first introduce two lemmas whose proof come

later in this section.

Lemma 2.3.1. For η1, η2 ∈ Rd and β > 1−d
4 , define

J2β(η1, η2)

:=

∫
R2d

|φs(|η1|)φs(|η4|)− η1 · η4 − s2|2β

φs(|η3|)φs(|η4|)
δ

(
τ − φs(|η3|)− φs(|η4|)

ξ − η3 − η4

)
dη3dη4, (2.21)

where τ = φs(|η1|) + φs(|η2|) and ξ = η1 + η2. Then, we have

J2β(η1, η2) = (2π)
d−1

2
Γ(d−2

2 + 2β)

Γ(d− 1 + 2β)
K
d−2

2 +2β
1
2

(η1, η2).

Lemma 2.3.2. Let η1, η2 ∈ Rd. Set

ξ = η1 + η2, τ = φs(|η1|) + φs(|η2|)

and η ∈ Rd satisfying
2φs(|η|) = (τ2 − |ξ|2)

1
2 .

Then, there exists ω∗ ∈ Sd−1 depending only on η1, η2 and |η| such that(
φs(|η1|)
−η1

)
· L
(
φs(|η|)
η

)
− s2 = |η|2

(
1 +

η

|η|
· ω∗
)
.

Proof of Theorem 2.1.1. Let u(t, x) = eitφs(D)f(x) and v(t, x) = eitφs(D)g(x). By the

expressions ũ(τ, ξ) = 2πδ(τ−φs(|ξ|))f̂(ξ) and ṽ(τ, ξ) = 2πδ(τ+φs(|ξ|))ĝ(−ξ), Plancherel’s
theorem, and appropriately relabeling the variables, one can deduce

(2π)3(d+1)‖|�− (2s)2|β(uv)‖2L2(Rd+1)

=

∫
Rd+1

|τ2 − |ξ|2 − (2s)2|2β |ũ ∗ ṽ(ξ, τ)|2 dτdξ

= 22β

∫
R4d

|φs(|η1|)φs(|η4|)− η1 · η4 − s2|2β F (η1, η2)F (η3, η4)

(φs(|η1|)φs(|η2|)φs(|η3|)φs(|η4|))
1
2

× δ
(
φs(|η1|)− φs(|η2|)− φs(|η3|) + φs(|η4|)

η1 + η2 − η3 − η4

)
dη1dη2dη3dη4.

Here,
F (η1, η2) := f̂(η1)ĝ(η2)φs(|η1|)

1
2φs(|η2|)

1
2 .

If we define Ψ = Ψs(η1, η2, η3, η4) =
(
φs(|η1|)φs(|η2|)
φs(|η3|)φs(|η4|)

) 1
2

, then by the arithmetic-geometric

mean we have

F (η1, η2)Ψ
1
2F (η3, η4)Ψ−

1
2 ≤ 1

2

(
|F (η1, η2)|2Ψ + |F (η3, η4)|2Ψ−1

)
so that

F (η1, η2)F (η3, η4)

(φs(|η1|)φs(|η2|)φs(|η3|)φs(|η4|))
1
2

≤ 1

2

(
|F (η1, η2)|2

φs(|η3|)φs(|η4|)
+
|F (η3, η4)|2

φs(|η1|)φs(|η2|)

)
. (2.22)
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Here, the equality holds if and only if

φs(|η1|)φs(|η2|)f̂(η1)ĝ(η2) = φs(|η3|)φs(|η4|)f̂(η3)ĝ(η4)

almost everywhere on the support of the delta measure, which is satisfied by, for instance,
f = g = fa with a > 0 that is given by

f̂a(ξ) =
e−aφs(|ξ|)

φs(|ξ|)
. (2.23)

Therefore,(
23d+3+2βπ3d+3

)−1 ‖|�− (2s)2|β(uv)‖2L2(Rd+1)

≤ 1

2

∫
R2d

F (η1, η2)J2β(η1, η2) dη1dη2 +
1

2

∫
R2d

F (η3, η4)J2β(η4, η3) dη3dη4,

which implies (2.10) by applying Lemma 2.3.1. One may note that the constant in (2.10)
is sharp since we only apply the inequality (2.22) in the proof.

To see the lower bound imposed on β for (2.10), we shall let f and g be its extremisers
(2.23) with a = 1. Then, by the polar coordinates,

‖|�− (2s)2|β(eitφs(
√
−∆)feitφs(

√
−∆)g)‖2L2(Rd+1) (2.24)

= KG(β, d)

∫ ∞
0

∫ ∞
0

|f̂(r1)|2|ĝ(r2)|2φs(r1)
d−1

2 +2βφs(r2)
d−1

2 +2β

×Θ
d−3

2 +2β
1
2

(r1, r2)rd−1
1 rd−1

2 dr1dr2,

where

Θb
a(r1, r2) :=

∫
(Sd−1)2

(
1− r1r2θ1·θ2

φs(r1)φs(r2) −
s2

φs(r1)φs(r2)

)b
(

1− r1r2θ1·θ2
φs(r1)φs(r2) + s2

φs(r1)φs(r2)

)a dσ(θ1)dσ(θ2).

For β ≥ 3−d
4 , by the argument in the subsequent section associated with Lemma 2.4.1,

it follows readily that (2.24) is bounded. For more delicate case when β < 3−d
4 , observe

that
s2 ≤ φs(r1)φs(r2)− r1r2λ+ s2 ≤ 3φs(r1)φs(r2)

and

φs(r1)φs(r2)− r1r2λ− s2 ∼ s2

φs(r1)φs(r2)
|r1 − r2|2.

Then, for β ∈ [ 2−d
4 , 3−d

4 ), the right-hand side is bounded if β ∈ [ 2−d
4 , 3−d

4 ). For β ∈
( 1−d

4 , 2−d
4 ), the right-hand side is essentially bounded above by∫ ∞

0

∫ ∞
0

H(r1)H(r2)|r1 − r2|d−2+4β dr1dr2, (2.25)

which is bounded by the dual form of Hardy–Littlewood–Sobolev inequality if −1 <
d − 2 + 4β < 0, or equivalently β ∈ ( 1−d

4 , 2−d
4 ). Here,H(r) = e−2φs(r)φs(r)

prd−1 for
some p ∈ R, which belongs to Schwartz class. Similarly, the right-hand side of (2.24) is
bounded below by (2.25) with different p from before so that β ∈ ( 1−d

4 , 2−d
4 ) is necessary

for (2.24) to be bounded.
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We now prove the aforementioned lemmas.

Proof of Lemma 2.3.1. Let τ = φs(|η1|)+φs(|η2|) and ξ = η1 +η2. It is well known that

the measure δ(σ−φs(|η|))
φs(|η|) for (σ, η) ∈ R×Rd is invariant under the Lorentz transform L,

|detL| = 1, and

L

(
(τ2 − |ξ|2)

1
2

0

)
=

(
τ

ξ

)
.

The change of variables
(
σj
ηj

)
7→ L

(
σj
ηj

)
for j = 3, 4 gives

J2β(η1, η2)

=

∫
R2(d+1)

∣∣∣∣(φs(|η1|)
−η1

)
·
(
σ4

η4

)
− s2

∣∣∣∣2β
× δ(σ3 − φs(|η3|))

φs(|η3|)
δ(σ4 − φs(|η4|))

φs(|η4|)
δ

(
τ − σ3 − σ4

ξ − η3 − η4

)
dσ3dσ4dη3dη4

=

∫
Rd

∣∣∣∣(φs(|η1|)
−η1

)
· L
(
φs(|η|)
η

)
− s2

∣∣∣∣2β 1

φs(|η|)2
δ(2φs(|η|)− (τ2 − |ξ|2)

1
2 ) dη.

By Lemma 2.3.2 and switching to polar coordinates,

J2β(η1, η2) =

∫ ∞
0

(∫
Sd−1

(1 + θ · ω∗)2β dσ(θ)

)
r4β

φs(r)2
δ(2φs(r)− (τ2 − |ξ|2)

1
2 )rd−1 dr.

Now, one can find a rotation R such that RTω∗ = e1 = (1, 0, . . . , 0)T so that∫
Sd−1

(1 + θ · ω∗)2β
dθ = 2d−2+2β |Sd−2|B

(
d−1

2 + 2β, d−1
2

)
,

where B denotes the beta function given by

B(z, w) =

∫ 1

0

λz−1(1− λ)w−1 dλ

for z, w ∈ C whose real parts are strictly positive. For the remaining radial integration,
one can perform the change of variables 2φs(r) 7→ ν in order to get∫ ∞

0

r4β

φs(r)2
δ(2φs(r)− (τ2 − |ξ|2)

1
2 )rd−1 dr = 2

−d+1
2 −2βK

d−2
2 +2β

1
2

(η1, η2)

and hence

J2β(η1, η2) = 2
d−3

2 |Sd−2|B(d−1
2 + 2β, d−1

2 )K
d−2

2 +2β
1
2

(η1, η2).

Finally, simplifying the constant by the formulae

|Sd−1| = 2π
d
2

Γ(d2 )
(2.26)

and

B(d−1
2 + 2β, d−1

2 ) =
Γ(d−1

2 + 2β)Γ(d−1
2 )

Γ(d− 1 + 2β)
,

we are done.
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Proof of Lemma 2.3.2. Observe first that

L

(
φs(|η|)
η

)
=

1

2

(
τ + ξ·η

φs(|η|)

2η + ξ(1 + ξ·η
(τ+2φs(|η|))φs(|η|) )

)
.

Then, a direct calculation gives(
φs(|η1|)
−η1

)
· L
(
φs(|η|)
η

)
= (φs(|η|))2

(
1 +

η

|η|
· |η|z

)
,

where

z =
(φs(|η|) + φs(|η1|))η2 − (φs(|η|) + φs(|η2|))η1

φs(|η|)2(φs(|η1|) + φs(|η2|) + 2φs(|η|))
.

Since we have the relation 2φs(|η|) = φs(|η1|)φs(|η2|)− η1 · η2 + s2, the numerator of z
can be simplified by

([φs(|η|) + φs(|η1|)]η2 − [φs(|η|) + φs(|η2|)]η1)2

= [φs(|η|) + φs(|η1|)]2|η2|2 + [φs(|η|) + φs(|η2|)]2|η1|2

− 2[φs(|η|) + φs(|η1|)][φs(|η|) + φs(|η2|)]η2 · η1

= [φs(|η|) + φs(|η1|)]2φs(|η2|)2 + [φs(|η|) + φs(|η2|)]2φs(|η1|)2

− 2[φs(|η|) + φs(|η2|)][φs(|η|) + φs(|η1|)](φs(|η1|)φs(|η2|)− 2φs(|η|)2)

− s2([φs(|η|) + φs(|η1|)]2 + [φs(|η|) + φs(|η2|)]2

+ 2[φs(|η|) + φs(|η1|)][φs(|η|) + φs(|η2|)])
=
(
φs(|η|)2 − s2

)
[φs(|η1|) + φs(|η2|) + 2φs(|η|)]2,

and so it follows that

|z| = |η|
φs(|η|)2

.

Therefore, (
φs(|η1|)
−η1

)
· L
(
φs(|η|)
η

)
− s2 = |η|2

(
1 +

η

|η|
· ω∗
)
,

where we have set ω∗ = z
|z| .

2.4 On estimate (2.15)

2.4.1 Estimate (2.15) with explicit constant

In this subsection, we prove (2.15) for radially symmetric data f and g for β > 2−d
4

and an explicit constant C < ∞; for β = [ 2−d
4 , 3−d

4 ] ∪ [ 5−d
4 ,∞), this explicit constant

coincides with F(β, d)
1
2 . In order to complete the proof of Corollary 2.2.1, we need to

show the sharpness of F(β, d)
1
2 for β ∈ [ 2−d

4 , 3−d
4 ] ∪ [ 5−d

4 ,∞), and the non-existence of
extremisers; for these arguments, we refer the reader to Section 2.5.

Lemma 2.4.1. Let a+ b > −1, b > −1 and κ ∈ [0, 1]. Define

ha,b(κ) :=

∫ 1

−1

(1− κλ)a(1− λ2)b dλ.
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Then,
sup
κ∈[0,1]

ha,b(κ) <∞.

Moreover, for a ∈ (−∞, 0] ∪ [1,∞)

sup
κ∈[0,1]

ha,b(κ) = ha,b(1) = 2a+2b+1B(a+ b+ 1, b+ 1).

Proof of Lemma 2.4.1. By the Lebesgue dominated convergence theorem,

d

dκ
ha,b(κ) = −aκ

∫ 1

−1

(1− κλ)a−1λ(1− λ2) dλ

= aκ

∫ 1

0

(
(1 + κλ)a−1 − (1− κλ)a−1

)
λ(1− λ2)b dλ

Thus, {
d

dκh
a,b(κ) ≥ 0 if a ∈ (−∞, 0] ∪ [1,∞),

d
dκh

a,b(κ) < 0 if a ∈ (0, 1).

For a ∈ (−∞, 0] ∪ [1,∞),

sup
κ∈[0,1]

ha,b(κ) = ha,b(1) =

∫ 1

−1

(1− λ)a(1− λ2)b dλ

and the change of variables 1 + λ 7→ 2λ gives∫ 1

−1

(1− λ)a(1− λ2)b dλ = 2a+2b+1B(a+ b+ 1, b+ 1) <∞

if a+ b > 0 and b > −1. Similarly, for a ∈ (0, 1),

ha,b(κ) ≤ ha,b(0) = 22b+1B(b+ 1, b+ 1) <∞

if b > −1.

Let f , g be radially symmetric. By Theorem 2.1.1, we have

‖|�− (2s)2|β(eitφs(
√
−∆)feitφs(

√
−∆)g)‖2L2(Rd+1)

≤ KG(β, d)

∫ ∞
0

∫ ∞
0

|f̂(r1)|2|ĝ(r2)|2φs(r1)
d−1

2 +2βφs(r2)
d−1

2 +2βΘ
d−2

2 +2β
1
2

(r1, r2)rd−1
1 rd−1

2 dr1dr2,

(2.27)

where

Θb
a(r1, r2) :=

∫
(Sd−1)2

(
1− r1r2θ1·θ2

φs(r1)φs(r2) −
s2

φs(r1)φs(r2)

)b
(

1− r1r2θ1·θ2
φs(r1)φs(r2) + s2

φs(r1)φs(r2)

)a dσ(θ1)dσ(θ2).

We divide the range of β into β ∈ [ 2−d
4 , 3−d

4 ] and β ∈ [ 5−d
4 ,∞) and treat these cases

differently. First, let us consider β ∈ [ 5−d
4 ,∞) as the easier case. By applying the

fundamental kernel estimate (2.14), we have

Θ
d−2

2 +2β
1
2

(r1, r2) ≤ Θ
d−3

2 +2β
0 (r1, r2) = |Sd−1||Sd−2|h

d−3
2 +2β, d−3

2 (κ)
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with κ = r1r2
φs(r1)φs(r2) . Since d− 3 + 2β ≥ 1, Lemma 2.4.1 implies that

sup
κ∈[0,1)

h
d−3

2 +2β, d−3
2 (κ) = h

d−3
2 +2β, d−3

2 (1),

and hence

sup
r1,r2>0

Θ
d−2

2 +2β
1
2

(r1, r2) ≤ 2
3d−7

2 +2β |Sd−1||Sd−2|B
(
d− 2 + 2β, d−1

2

)
,

which yields (2.15) with C = F(β, d)
1
2 .

For β ∈ [ 2−d
4 , 3−d

4 ], in which case d−2
2 + 2β ∈ [0, 1

2 ], the basic idea of our argument
is the same as above but it requires a few more steps. Let

Ξ(ν, υ) :=

∫ 1

−1

(1− ν −
√

1− ν2 − υ2λ)
d−2

2 +2β

(1 + ν −
√

1− ν2 − υ2λ)
1
2

dµ(λ)

with ν and υ satisfying
ν ∈ [0, 1], υ2 ≤ 1− ν2,

and dµ(λ) = (1− λ2)
d−3

2 dλ. Then, from (2.27), it suffices to show

Ξ(ν, υ) ≤ Ξ(0, υ) ≤ Ξ(0, 0). (2.28)

In order to show the first inequality of (2.28), we establish monotonicity in ν on[
0,
√

1−υ2

2

]
, and calculate directly for ν ∈

[√
1−υ2

2 ,
√

1− υ2
]
. Indeed, it simply fol-

lows that

∂νΞ(ν, υ) ≤ −
(
d− 2

2
+ 2β

)∫ 1

0

(1− ν −
√

1− ν2 − υ2λ)
d−4

2 +2β

(1 + ν −
√

1− ν2 − υ2λ)
1
2

(
1− ν√

1− ν2 − υ2
λ

)
dµ(λ)

− 1

2

∫ 1

0

(1− ν −
√

1− ν2 − υ2λ)
d−2

2 +2β

(1 + ν −
√

1− ν2 − υ2λ)
3
2

(
1 +

ν√
1− ν2 − υ2

λ

)
dµ(λ)

−
(
d− 2

2
+ 2β

)∫ 1

0

(1− ν +
√

1− ν2 − υ2λ)
d−4

2 +2β

(1 + ν +
√

1− ν2 − υ2λ)
1
2

(
1 +

ν√
1− ν2 − υ2

λ

)
dµ(λ)

− 1

2

∫ 1

0

(1− ν +
√

1− ν2 − υ2λ)
d−2

2 +2β

(1 + ν +
√

1− ν2 − υ2λ)
3
2

(
1− ν√

1− ν2 − υ2
λ

)
dµ(λ),

which is non-positive since

1− ν√
1− ν2 − υ2

λ ≥ 0

for ν ∈
[
0,
√

1−υ2

2

]
. On the other hand, for ν ∈

[√
1−υ2

2 ,
√

1− υ2
]
, which imposes

0 ≤
√

1− ν2 − υ2 ≤ ν, it follows that

Ξ(ν, υ) =

∫ 1

0

(1− ν −
√

1− ν2 − υ2λ)
d−2

2 +2β

(1 + ν −
√

1− ν2 − υ2λ)
1
2

dµ(λ) +

∫ 1

0

(1− ν +
√

1− ν2 − υ2λ)
d−2

2 +2β

(1 + ν +
√

1− ν2 − υ2λ)
1
2

dµ(λ)

≤
∫ 1

0

2 dµ(λ)

≤
∫ 1

0

(1−
√

1− υ2λ)
d−3

2 +2β dµ(λ) +

∫ 1

0

(1 +
√

1− υ2λ)
d−3

2 +2β dµ(λ)

= Ξ(0, υ).
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Here, the last inequality is given by the arithmetic-geometric mean:

1

2

(
(1−

√
1− υ2λ)

d−3
2 +2β + (1 +

√
1− υ2λ)

d−3
2 +2β

)
≥
(
1− (1− υ2)λ2

) d−3
4 +β ≥ 1.

Since the second inequality of (2.28) can be readily proved by Lemma 2.4.1, we have

(2.15) with C = F(β, d)
1
2 for β ∈ [ 2−d

4 , 3−d
4 ] as well.

2.4.2 Threshold of our argument for β ∈ (3−d
4
, 5−d

4
)

Although C = F(β, d)
1
2 will be shown to be optimal for β ∈ [ 2−d

4 , 3−d
4 ] ∪ [ 5−d

4 ,∞)
in the case of radial data, it remains unclear whether this continues to be true for
β ∈ ( 3−d

4 , 5−d
4 ); here we establish that there is no way to obtain the constant F(β, d)

1
2 if

one first makes use of Theorem 2.1.1. In order to show that, we shall invoke the following
useful result for the beta function due to Agarwal–Barnett–Dragmir [1]:

Lemma 2.4.2 ([1]). Let m, p and k ∈ R satisfy m, p > 0, and p > k > −m. If we have

k(p−m− k) > 0

then
B(p,m) > B(p− k,m+ k)

holds.

Proposition 2.4.3. Let d ≥ 2 and β ∈ ( 3−d
4 , 5−d

4 ). Then there exist radially symmetric
f and g such that

KG(β, d)

∫
R2d

|f̂(η1)|2|ĝ(η2)|2φs(|η1|)φs(|η2|)K
d−2

2 +2β
1
2

(η1, η2) dη1dη2

> F(β, d)‖φs(D)
d−1

4 +βf‖2L2(Rd)‖φs(D)
d−1

4 +βg‖2L2(Rd)

holds.

O

r1

r2

∼ 1
δ

∼ δ
Oδ

Figure 2.1: The set Oδ along the curve r1 = r−1
2 .
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Proof of Proposition 2.4.3. Let 0 < δ � 1 and

A =

{
ξ ∈ Rd :

1

2
< |ξ| < 2

}
.

Define f = fA and g = gA so that for ξ ∈ Rd

f̂A(ξ) = χA( ξδ ) and ĝA(ξ) = χA(δξ),

where χA is the characteristic function of A. By use of polar coordinates∫
R2d

|f̂(η1)|2|ĝ(η2)|2φs(|η1|)φs(|η2|)K
d−2

2 +2β
1
2

(η1, η2) dη1dη2

=

∫
Oδ
|f̂(r1)|2|ĝ(r2)|2(φs(r1)φs(r2))

d−1
2 +2βΘ

d−2
2 +2β

1
2

(r1r2)d−1 dr1dr2.

Here, the set Oδ is defined by

Oδ =

{
(r1, r2) :

1

2δ
< r1 <

2

δ
,
δ

2
< r2 < 2δ

}
.

Now, for (r1, r2) ∈ Oδ, taking the limit δ → 0 so that φs(r1)→∞ and φs(r2)→ s and
invoking the Legendre duplication formula

Γ(z)Γ(z + 1
2 ) = 21−2zπ

1
2 Γ(2z), (2.29)

we obtain

Θ
d−2

2 +2β
1
2

(r1, r2)→ |Sd−1|2.

Therefore, for sufficiently small δ > 0,

KG(β, d)

∫
R2d

|f̂(η1)|2|ĝ(η2)|2φs(|η1|)φs(|η2|)K
d−2

2 +2β
1
2

(η1, η2) dη1dη2

= (2π)2dKG(β, d)‖φs(
√
−∆)

d−1
4 +βf‖2L2(Rd)‖φs(

√
−∆)

d−1
4 +βg‖2L2(Rd),

and it is enough to show

(2π)2dKG(β, d) > F(β, d). (2.30)

By the formula (2.26) and the definitions of constants, this can be simplified as

B( 3d−5
4 + β, 3d−3

4 + β) > B(d− 2 + 2β, d2 )

which, if fact, follows from Lemma 2.4.2 by letting p = 3d−5
4 + β, m = 3d−3

4 + β and

k = 3−d
4 − β.

2.4.3 Contributions of radial symmetry

Here, we observe for general (not necessary radially symmetric) data f and g the in-
equality (2.15) holds only if β ≥ 3−d

4 , in other words, the radial symmetry condition
on f and g widens the range of the regularity parameter β. The proof is based on the
Knapp type argument in [62] where they proved β− ≥ 3−d

4 is necessary for (2.5) to hold.
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Proposition 2.4.4. Let β < 3−d
4 . For any C∗ > 0, there exists f, g ∈ H

d−1
4 +β(Rd)

such that

‖|�− (2s)2|β(eitφs(
√
−∆)feitφs(

√
−∆)g)‖2L2(Rd+1) (2.31)

> C∗‖φs(
√
−∆)

d−1
4 +βf‖2L2(Rd)‖φs(

√
−∆)

d−1
4 +βg‖2L2(Rd).

Proof of Proposition 2.4.4. For η1 ∈ Rd (similarly, for η2 ∈ Rd), we set indices (1), . . . , (d)
to indicate components of vectors, namely, η1 = (η1(1), . . . , η1(d)). Also, denote η′1 =

(η1(2), . . . , η1(d)) ∈ Rd−1 and η′′1 = (η1(3), . . . , η1(d)) ∈ Rd−2. Now, for large L > 0,
eventually sent to infinity, define sets F and G by

F = {η ∈ Rd : L ≤ η(1) ≤ 2L, 1 ≤ η(2) ≤ 2, |η′′| ≤ 1}

and
G = {η ∈ Rd : L ≤ η(1) ≤ 2L,−1 ≤ η(2) ≤ −2, |η′′| ≤ 1}.

For such f and g∣∣∣|�− (2s)2|β(eitφs(D)f(x)eitφs(D)g(x))
∣∣∣ ∼ ∣∣∣∣∫

F

∫
G

eiΦs(x,t:η1,η2)K0
−β(η1, η2) dη1dη2

∣∣∣∣ ,
where

Φs(x, t : η1, η2) = x · (η1 − η2) + t(φs(|η1|)− φs(|η2|)).

Now, we follow the idea of Knapp’s example to derive a lower bound. From the setting
(see also Figure 2.2) we have |η1| ∼ |η2| ∼ φs(|η1|) ∼ φs(|η2|) ∼ |η1+η2| ∼ L, θ ∼ L−1 for
(η1, η2) ∈ F×G, |φs(|η1|)− η1(1)| ∼ |η′1|2|η1|−1 ∼ |φs(|η2|)− η2(1)| ∼ |η′2|2|η2|−1 ∼ L−1,
|η1(1) − η2(1)| ∼ 1 and |η′1 + η′2| . 1. Then, it follows that

(φs(|η1|)φs(|η2|))2 − (η1 · η2 − s2)2 ∼ s2|η1 + η2|2 + |η1|2|η2|2 sin2 θ ∼ L2 (2.32)

and hence

K0
−β(η1, η2) ∼

(
(φs(|η1|)φs(|η2|))2 − (η1 · η2 − s2)2

φs(|η1|)φs(|η2|) + η1 · η2 + s2

)β
∼ 1.

Moreover, for the phase, then it follows that

|Φs(x, t : η1, η2)|
= |t(φs(|η1|)− η1(1) − φs(|η2|) + η2(1)) + (x+ t)(η1(1) − η2(1)) + x′ · (η′1 + η′2)|

≤ |t|L−1 + |x+ t|L+ |x′| < π

3

for (x, t) in a slab R = [−L−1, L−1]× [−1, 1]d−1 × [−L,L] whose volume is the order of
1. Hence,

|�− (2s)2|β(eitφs(D)f(x)eitφs(D)g(x)) & |F||G|χR(x, t)

and so
‖|�− (2s)2|β(eitφs(D)f(x)eitφs(D)g(x)) & |F|2|G|2|R| ∼ |F|2|G|2.

On the other hand, we have

‖φs(
√
−∆)

d−1
4 +βf‖2L2(Rd)‖φs(

√
−∆)

d−1
4 +βg‖2L2(Rd) . L

d−1+4β |F||G|.
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η(1)

η(2)

η′′

θ

F

G

2L

1
2

O

Figure 2.2: The sets F and G, which are sent away from the origin along η(1)-axis.

Therefore, it is implied that

|F|2|G|2 . Ld−1+4β |F||G|.

The fact |F| ∼ |G| ∼ L and letting L→∞ result in the desired necessary condition

3− d
4
≤ β.

2.5 Sharpness of constants

It is straightforward that the estimates (2.11) with claimed constants in Corollaries
2.2.2 and 2.2.3 when (α, β) = ( 1

2 ,
3−d

4 ) and (α, β) = ( 1
2 ,

2−d
4 ) coincides with the results

obtained by applying the kernel estimates (2.14) and (2.19) to (2.10), respectively. We
will see in the forthcoming sections the sharpness of those constants. To obtain the
estimate (2.16) and (2.20), we require the additional fact that∫

R2d

f(x)f(y)x · y dxdy ≥ 0.

Indeed, in the wave regime, after we apply the kernel estimate (2.14) to (2.10), it follows
that ∫

R2d

|f̂(η1)|2|f̂(η2)|2φs(|η1|)φs(|η2|)K1
0(η1, η2) dη1dη2

≤
∫
R2d

|f̂(η1)|2|f̂(η2)|2φs(|η1|)φs(|η2|)(φs(|η1|)φs(|η2|)− s2) dη1dη2,

which immediately yields (2.16). Similarly, one can deduce (2.20) in the non-wave

regime. Finally, the estimate (2.11) with C = F( 5−d
4 , d)

1
2 when (α, β) = (1, 5−d

4 ) is
obtained by further estimating the kernel of (2.16) as

φs(|η1|)φs(|η2|)− s2 ≤ φs(|η1|)φs(|η2|).
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Again, we will see the sharpness of constants below. Of course, by a similar argument
to the above, one can easily obtain the estimate (2.11) with

C =
2−d+1π

−d+2
2

sΓ(d+2
2 )

(2.33)

when (α, β) = (1, 4−d
4 ) from (2.20) in the non-wave regime, and it is natural to hope

that the constant is still optimal. We do not, however, know whether or not the constant
(2.33) is optimal, which will become clear from the following argument on the sharpness
of constants.

In the rest of Section 2.5, we focus on completing our proof of Corollaries 2.2.1,
2.2.2 and 2.2.3 by proving that the stated constants are optimal and non existence of
non-trivial extremisers. We achieve optimality of constants by considering the functions
fa given by (2.23); this is a natural guess given that such functions are extremisers for
(2.10), as shown in our proof of Theorem 2.1.1. Before proceeding, we introduce the
following useful notation.

Na(β) :=

∫ ∞
4as

e−ρ
∫ (2a)−1

√
ρ2−(4as)2

0

(ρ2 − (2ar)2 − (4as)2)
d−2

2 +2β

ρ2 − (2ar)2
rd−1 drdρ

and

Da(β, b) :=

(∫ ∞
2as

e−ρρb(ρ2 − (2as)2)
d−2

2 dρ

)2

.

2.5.1 Wave regime

We shall consider (2.11) with (α, β) = (d−1
4 + β, β) for β ∈ [ 3−d

4 ,∞). Let fa satisfy
(2.23). Then, we have

‖|�− (2s)2|β |eitφs(D)fa|2‖2L2(Rd+1) = 2
−3d+7

2 −2β |Sd−1|KG(β, d)(2a)−2d+5−4βNa(β)

and

‖φs(D)
d−1

4 +βfa‖4L2(Rd) = (2π)−2d|Sd−1|2(2a)−3d+5−4βDa(β, d−3
2 + 2β), (2.34)

and so it is enough to show

lim
a→0

‖|�− (2s)2|β |eitφs(D)fa|2‖2L2(Rd+1)

‖φs(D)
d−1

4 +βfa‖4L2(Rd)

= lim
a→0

(2a)dC(β, d)
Na(β)

Da(β, d−3
2 + 2β)

= F(β, d),

(2.35)
where

C(β, d) = 2−2(d−2)π
−d+1

2
Γ(d−1

2 + 2β)

Γ(d− 1 + 2β)
.

Since we have, by appropriate change of variables,

Na(β) = e−4as(2a)−d
∫ ∞

0

e−ρρ
3
2d−2+2β(ρ+ 8as)

3
2d−2+2β

×
∫ 1

0

(1− ν2)d−2+2βνd−1

(ρ+ 4as)2(1− ν2) + (4as)2ν2
dνdρ
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and

Da(β, d−3
2 + 2β) = e−4as

(∫ ∞
0

e−ρ(ρ+ 2as)
d−3

2 +2βρ
d−2

2 (ρ+ 4as)
d−2

2 dρ

)2

,

one may deduce

lim
a→0

(2a)d
Na(β)

Da(β, d−3
2 + 2β)

=
Γ(3d− 5 + 4β)B(d− 2 + 2β, d2 ))

2Γ( 3d−5
2 + 2β)2

,

which leads to (2.35).

In order to show the constant F( 5−d
4 , d)

1
2 is sharp in (2.16), we apply a similar

calculation. In particular, one may note that the right-hand side of (2.16) can be written
as

(2π)−2d|Sd−1|2(2a)−2d(Da(β, 1)− (2as)2Da(β, 0)), (2.36)

instead of (2.34). One can also see the second term is negligible in the sense of the
optimal constant since it vanishes while a tends to 0.

2.5.2 Non-wave regime

Let fa satisfy (2.23). Note that in the non-wave regime the right-hand side of (2.11) is
expressed as

‖φs(D)
d
4 +βfa‖4L2(Rd) = (2π)−2d|Sd−1|2(2a)−3d+4−4βDa(β, d−2

2 + 2β). (2.37)

Then, as we have done above, reform Na(β) and Da(β, d−2
2 + 2β) as follows by some

appropriate change of variables:

Na(β) = e−4as(2a)
d
2−4+2β

∫ ∞
0

e−ρρ
3
2d−2+2β(

ρ

2a
+ 4s)

3
2d−2+2β

×
∫ 1

0

(1− ν2)d−2+2βνd−1

( ρ2a + 2s)2(1− ν2) + (2s)2ν2
dνdρ

and

Da(β, d−2
2 + 2β) = e−4as(2a)2d−4+4β

(∫ ∞
0

e−ρ(
ρ

2a
+ s)

d−2
2 +2βρ

d−2
2 (

ρ

2a
+ 2s)

d−2
2 dρ

)2

.

First, we shall consider (2.11) with (α, β) = (0, 2−d
4 ). By a similar argument to the wave

regime above, one can easily check that

lim
a→∞

(2a)d+1 Na( 2−d
4 )

Da( 2−d
4 , 0)

= 2d−3s−1

holds, from which it follows that

lim
a→∞

‖|�− (2s)2| 2−d4 |eitφs(D)fa|2‖2L2(Rd+1)

‖φs(D)
1
2 fa‖4L2(Rd)

= lim
a→∞

(2a)d+1C( 2−d
4 , d)

Na( 2−d
4 )

Da( 2−d
4 , 0)

=
2−d+1π

−d+2
2

sΓ(d2 )
.
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Similarly, for the case when (α, β) = (1, 4−d
4 ), it is enough to show

lim
a→∞

‖|�− (2s)2| 4−d4 |eitφs(D)fa|2‖2L2(Rd+1)

‖φs(D)fa‖4L2(Rd)
− (2as)2‖φs(D)

1
2 fa‖4L2(Rd)

= lim
a→∞

(2a)d+1C( 4−d
4 , d)

Na( 4−d
4 )

Da( 4−d
4 , 1)− (2as)2Da( 4−d

4 , 0)

=
2−d+1π

−d+2
2

sΓ(d+2
2 )

. (2.38)

In fact,

((2a)d−2e−4as)−1
(
Da( 4−d

4 , 1)− (2as)2Da( 4−d
4 , 0)

)
=

(∫ ∞
0

e−ρ(ρ+ 2as)ρ
d−2

2

( ρ
2a

+ 2s
) d−2

2

dρ

)2

−
(

(2as)

∫ ∞
0

e−ρρ
d−2

2

( ρ
2a

+ 2s
) d−2

2

dρ

)2

= (2a)

(∫ ∞
0

e−ρρ
d−2

2

( ρ
2a

+ 2s
) d

2

dρ

)(∫ ∞
0

e−ρρ
d
2

( ρ
2a

+ 2s
) d−2

2

dρ

)
implies

lim
a→∞

(2a)d+1 Na( 4−d
4 )

Da( 4−d
4 , 1)− (2as)2Da( 4−d

4 , 0)
= 2d−2s−1

and so (2.38) follows.
In the contrast to the wave regime, here a is sent to ∞ and the second term of the

denominator of (2.38) does not vanish so that we cannot follow the argument for the
wave regime and do not know whether the constant (2.33) is still optimal for (2.11) when
(α, β) = (1, 4−d

4 ).

2.5.3 Non-existence of an extremiser

Suppose there were non-trivial f and g that satisfy any of the statements in Corollary
2.2.3 with equality. From our proof via Theorem 2.1.1, it would be required that∫

R2d

|f̂(η1)|2|ĝ(η2)|2φs(|η1|)φs(|η2|)K
d−2

2 +2β
1
2

(η1, η2) dη1dη2

= 2−
1
2 s−1

∫
R2d

|f̂(η1)|2|ĝ(η2)|2φs(|η1|)φs(|η2|)K
d−2

2 +2β
0 (η1, η2) dη1dη2

holds. Then,∫
R2d

|f̂(η1)|2|ĝ(η2)|2φs(|η1|)φs(|η2|)
(
K
d−2

2 +2β
1
2

(η1, η2)− 2−
1
2 s−1K

d−2
2 +2β

0 (η1, η2)
)

dη1dη2

= 0
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would hold. Since f , g are assumed to be non-trivial f̂ , ĝ 6= 0 on some set F×G ⊆ R2d

with |F|, |G| > 0, it would be deduced that

K
d−2

2 +2β
1
2

(η1, η2)− 2−
1
2 s−1K

d−2
2 +2β

0 (η1, η2) = 0 (2.39)

on (F × G) \ N where N ⊆ R2d is a null set. However, (2.39) would hold only on the
diagonal line {(η1, η2) : η1 = η2} (the equality condition of (2.19)), which is a null set
and so is {(η1, η2) : η1 = η2} ∩ (F×G). This is a contradiction.

For Corollary 2.2.1, Corollary 2.2.2, similar arguments above can be carried. In
particular, for equality in the wave regime, the formula (2.39) might be replaced by

K
d−2

2 +2β
1
2

(η1, η2)−K
d−3

2 +2β
0 (η1, η2) = 0

on (F×G) \N, which would only occur when s = 0 (the equality condition of (2.13)).
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Chapter 3

A new perspective on
hypercontractivity

3.1 Introduction

This chapter is based on work of the author in collaboration with Yosuke Aoki, Jonathan
Bennett, Neal Bez, Shuji Machihara, and Kosuke Matsuura in [2].

The hypercontractive nature of the heat semigroup associated with the free Hamil-
tonian plays an important role in order to show the total Hamiltonian is bounded from
below. This may be interpreted in quantum physics as the stability of the concerned
system, and further characterization of the physical ground state or the physical vacuum
for certain models, such as Boson fields and Fermi fields. Hypercontractivity inequality
extracted from the Markov property was one of celebrated tools when Nelson [117] ex-
plored the Euclidean Field Theory. Aside from those fruitful applications in quantum
physics, hypercontractivity inequalities have also kept engaging researchers by its purely
mathematical charm up to the present day, about seventy years later after [117]. In this
chapter, we consider the well-known hypercontractivity of the Ornstein–Uhlenbeck semi-
group (and later the significantly more general setting of Markov semigroups). Here, we
give a new “closure property” perspective on the hypercontractive inequality, which is
closely associated with the heat-flow monotonicity method mentioned in Chapter 2.

We shall begin with the familiar Lebesgue measure space setting: One of the funda-
mental properties of the Laplacian ∆ =

∑n
j=1 ∂

2
j is∫

Rd
(∆f(x)) g(x) dx = −

∫
Rd
∇f(x) · ∇g(x) dx, (3.1)

for compactly supported smooth functions f and g by invoking the divergence theorem
and the fact that

∇ · (g∇f) = ∇g · ∇f + g(∇ · ∇f).

Now, it is natural to ask what would play a role of ∆ if dx was replaced by the Gauss
measure dγ(x) given by

dγ(x) = (2π)−
d
2 e−

|x|2
2 dx.
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Note that
∫
Rd 1(x) dγ(x) = 1 so that dγ is a probability measure. It turns out that a

direct calculation gives∫
Rd

(Lf(x)) g(x) dγ(x) = −
∫
Rd
∇f(x) · ∇g(x) dγ(x).

Here, L is defined by
Lf(x) = ∆f(x)− x · ∇f(x),

and is sometimes called the Ornstein–Uhlenbeck operator. In this context, one can think
L as the “Laplacian” for the Gauss measure dγ.

Now, let us introduce the Ornstein–Uhlenbeck semigroup (esL)s≥0 by

esLf(x) =

∫
Rd
f(e−sx+ (1− e−2s)1/2y) dγ(y), (3.2)

then this can be the solution to the “heat equation” determined by L{
∂su(s, x) = Lu(s, x),

u(0, x) = f(x),

for sufficiently nice initial data f . For p ∈ [1,∞], the Ornstein–Uhlenbeck semigroup
satisfies the contraction property derived by Fubini’s theorem and Hölder’s inequality,
namely,

‖esLf‖Lp(dγ) ≤ ‖f‖Lp(dγ).

Furthermore, the Ornstein–Uhlenbeck semigroup has an even stronger contractive nature
found by Edward Nelson called hypercontractivity. In the paper published in 1966 [117],
he proved the special case of the inequality (3.4) below when (p, q) = (2, 4). After
some improvements by several authors, in [119], Nelson himself finally completed his
celebrated result as follows.

Theorem (Nelson’s hypercontractivity inequality). Let 1 < p < q ≤ ∞ and s ≥ 0. If

e2s =
q − 1

p− 1
(3.3)

then
‖esLf‖Lq(dγ) ≤ ‖f‖Lp(dγ) (3.4)

holds for all f ∈ Lp(dγ).

The hypercontractivity inequality in the framework of the Ornstein–Uhlenbeck semi-
group (esL)s≥0 is the model case of what we explore in this chapter. As seen later, the
story above can be vastly generalized and understood in the language of the Markov
semigroup and the so-called diffusion property. Aside from the numerous applications
in quantum physics, from a purely mathematical perspective, the hypercontractivity
inequality has been considered to be important by its remarkable connections to other
famous inequalities in analysis. For the earlier results and futher background in quan-
tum physics, we recommend the interested reader to visit [42, 65, 66, 69, 70, 78, 118,
127, 130, 131] and work cited in there. The earliest discovery was the equivalence of
hypercontractivity to certain logarithmic Sobolev inequalities, expressed as∫

Rd
|f(x)|2 log |f(x)|dγ(x) ≤ ‖∇f‖2L2(dγ) + ‖f‖2L2(dγ) log ‖f‖L2(dγ).
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Paul Federbush [59] first indicated their connection and later Leonard Gross [67] estab-
lished the equivalence.

The logarithmic Sobolev inequality above itself has been generalized as Beckner’s
inequality1 by William Beckner [13] (differentiate the following at p = 2); for 1 ≤ p ≤ 2,

‖f‖2L2(dγ) ≤ (2− p)‖∇f‖2L2(dγ) + ‖f‖2Lp(dγ),

which yields the so-called Poincaré inequality by letting p = 1. In a slightly different
context, Beckner has made the observation that the hypercontractivity inequality is a
special case of the sharp Young’s inequality; this can be found in [12] where Beckner
famously found the optimal constant for Young’s convolution inequality.

Beckner’s inequality

Poincaré inequality

Gross’ log Sobolev inequality

Nelson’s hypercontractivitySharp Young’s inequality

The heat-flow monotonicity method has been successfully used to derive several sharp
inequalities. With this method, we often flow the input function(s) according to an ap-
propriate heat equation and obtain the desired inequality by comparing time at zero
and infinity. We refer the reader to work of Eric Carlen, Elliott Lieb and Michael Loss
[41] and Jonathan Bennett, Anthony Carbery, Michael Christ and Terence Tao [22] in
the context of the Brascamp–Lieb inequality.

In [17], Bennett and Neal Bez have further developed an intriguing perspective on
the heat flow monotonicity method by considering supersolutions and their algebraic
closure properties. In other words, supersolutions are closed under certain operations.
For example, suppose u1 and u2 are supersolutions to the heat equation

∂tu(t, x) = ∆u(t, x),

and we denote this by
u1, u2 ∈ S := {u : ∂tu ≥ ∆u}.

Then, the geometric mean U = u
1/2
1 u

1/2
2 from u1 and u2 satisfies U ∈ S. The reader

may refer to [17] for more detail. In a similar manner we show the following for the
Ornstein–Uhlenbeck semigroup.

Theorem 3.1.1. Let ∞ > q > p > 1 and s > 0 be given by e2s = q−1
p−1 . Suppose u :

(0,∞)×Rd → (0,∞) is such that u(t, ·)1/p, ∂t(u(t, ·)1/p), ∇(u(t, ·)1/p), u(t, ·)−1/p|∇(u(t, ·)1/p)|2
and ∆(u(t, ·)1/p) are of polynomial growth locally uniformly in time t > 0, and satisfies

∂tu ≥ Lu.
1Beckner’s inequality itself has been extended in a beautiful way by Ewain Gwynne and Elton P.

Hsu [77] (see also [76]): for 1 ≤ p < q and 2 ≤ q

‖f‖2Lq(dγ) − ‖f‖
2
Lp(dγ) ≤ (q − p)‖∇f‖2Lq(dγ).
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Let U : (0,∞)× Rd → (0,∞) be given by

U (t, x)1/q = esL(u(t, ·)1/p)(x). (3.5)

Then U (t, ·)1/q, ∂t(U (t, ·)1/q), ∇(U (t, ·)1/q), U (t, ·)−1/q|∇(U (t, ·)1/q)|2 and ∆(U (t, ·)1/q)
are of polynomial growth locally uniformly in time t > 0, and

∂tU ≥ LU .

The main point of this theorem is, of course, the closure property. Although the
regularity conditions imposed on u are of a more technical nature, some care has been
exercised to ensure that they are strong enough for the relevant terms in the statement
of the theorem and its proof to be rigorously defined, and weak enough so that the
regularity conditions are themselves preserved under the transformation u 7→ U .

The following corollary shows that the closure property above underlies the key
nature and, in fact, we immediately acquire a monotone quantity which provides the
aforementioned Nelson’s hypercontractivity.

Corollary 3.1.2. Suppose u satisfies ∂tu = Lu with initial data a bounded and com-
pactly supported nonnegative function on Rd. Let Q : (0,∞)→ (0,∞) be given by

Q(t) =

∫
Rd

(
esL(u(t, ·)1/p)

)q
(x) dγ(x),

where ∞ > q > p > 1 and e2s = q−1
p−1 . Then Q is nondecreasing on (0,∞).

Taking U as in (3.5), we have Q(t) =
∫

U (t, ·) dγ and by passing the time derivative
through the integral, we may quickly obtain Corollary 3.1.2 from Theorem 3.1.1. In turn,
the monotonicity of Q generates the well-known hypercontractivity inequality enjoyed
by the Ornstein–Uhlenbeck semigroup. Indeed, taking u to satisfy ∂tu = Lu with initial
data fp, where f is a bounded and compactly supported nonnegative function on Rd,
the dominated convergence theorem implies that

lim
t→0

Q(t) = ‖esLf‖qLq(γ)

and
lim
t→∞

Q(t) = ‖f‖qLp(γ). (3.6)

The above arguments concerning non-negative functions are enough since we trivially
have ‖esLf‖qLq(γ) ≤ ‖e

sL|f |‖qLq(γ).

3.2 Markov semigroups

3.2.1 Preliminaries

Let p ∈ [1,∞] and (E, E , µ) be a σ-finite measure space.

Definition 3.2.1 (Markov semigroup). Suppose the operator (Pt)t≥0 acts on bounded
measurable functions on (E, E) and is given by

Psf(x) =

∫
E

f(y) dνs,x(y) (3.7)

where νs,x is a non-negative measurable probability measure for s ≥ 0 and x ∈ E. The
family of such operators (Ps)s≥0 is called a Markov semigroup if (Ps)s≥0 enjoys:
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(i) P0 = id (initial condition),

(ii) Ps ◦ Pt = Ps+t for all s, t ≥ 0 (semigroup property),

(iii) for each f ∈ L2(dµ), Ps converges to f in L2 as s→ 0 (continuity),

(iv) for every 1 ≤ p < ∞ and f ∈ Lp(dµ), ‖Psf‖Lp(dµ) ≤ ‖f‖Lp(dµ) (contraction
property).

Regarding the conditions (iii) and (iv), by Jensen’s inequality, the contraction prop-
erty holds for all bounded measurable functions. Hence, by density, the domains of
(Ps)s≥0 may be extended to Lp(dµ) for 1 ≤ p <∞ with the contraction property. One
also may note that it immediately follows from the definition that (Ps)s≥0 is positivity
preserving and satisfies Ps(1) = 1, where 1 is the constant function equal to 1.

Definition 3.2.2 (Ergodicity). A Markov semigroup (Pt)t≥0 with a measure µ is said
to be ergodic if for all f ∈ Lp(dµ)

lim
t→0

∥∥∥∥Ptf − ∫
Rd
f(x) dµ(x)

∥∥∥∥
Lp(dµ)

= 0.

The assumption of (Pt)t≥0 being ergodic is crucial in our argument when Corollary
3.1.2 deduces hypercontractivity. It is easy to see ergodicity is being used to derive with
(3.6).

Definition 3.2.3 (Symmetric Markov semigroup). Let (Pt)t≥0 be a Markov semigroup
on Lp(dµ) and µ be the associated invariant measure. We call (Pt)t≥0 a symmetric
Markov semigroup with respect to µ if∫

Rd
Ptf(x)g(x) dµ(x) =

∫
Rd
f(x)Ptg(x) dµ(x)

for all f, g ∈ Lp(dµ) and t ≥ 0.

Definition 3.2.4 (Infinitesimal generator). Let (Pt)t≥0 be a Markov semigroup on
Lp(dµ). Consider the limit

lim
t→0

Ptf − f
t

in Lp(dµ). When there exists such a limit, we denote the limit by Lf and call it the
infinitesimal generator.

An important property of L is

∂sPsf = LPsf = Ps[Lf ], (3.8)

which we will use several times throughout the chapter. By using the definition of a
Markov semigroup (i), Ps1(x)− 1(x) = 0 for all s ≥ 0 and x ∈ Rd so that L1 = 0. The
following are the key concepts to expose the nature of a Markov semigroup, on which
our proof of Theorem 3.1.1 rely. These are somehow related, at least in the formal sense,
to differential and Riemannian geometry, for which the reader may consult [8].
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Definition 3.2.5. The infinitesimal generator L is diffusion if, for all C∞ functions ψ
on Rn, we have

Lψ(f) =

n∑
j=1

∂jψ(f)Lfj +

n∑
j,k=1

∂2
j,kψ(f)Γ(fj , fk), (3.9)

where f = (f1, . . . , fn).

Definition 3.2.6. The bilinear forms L2(µ)×L2(µ)→ L2(µ) denoted by Γ and Γ2 are
defined by

2Γ(f, g) = L(fg)− fL(g)− gL(f),

2Γ2(f, g) = LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf),

and called the carré du champ operator of L and the curvature operator of L, respec-
tively. We write Γ(f) = Γ(f, f) and similarly for Γ2. Furthermore, if for Γ and Γ2 there
exists c ∈ R such that

Γ2(f) ≥ cΓ(f). (3.10)

for all f in the respective domain of Γ and Γ2, then we call c the curvature.

Under the diffusion condition, suppose Γ and Γ2 also enjoy the curvature condition,
then the following key gradient bound due to Dominique Bakry [4] holds (the curvature
condition is actually equivalent to (3.11)).

Lemma 3.2.7. If L is a diffusion and of curvature c, then√
Γ(Psf) ≤ e−csPs[

√
Γ(f)] (3.11)

for all s ≥ 0.

In the remainder of this section, we assume that (Ps)s≥0 satisfies the diffusion con-
dition (3.9) and the curvature condition (3.10) with curvature constant c ∈ R. Also, we
assume ∞ > q > p > 1 and let s be defined by e2cs = q−1

p−1 .
Our goal is to present an abstract argument which yields the closure property

∂tu ≥ Lu ⇒ ∂tU ≥ LU , (3.12)

where u : (0,∞)× E → (0,∞), and U : (0,∞)× E → (0,∞) is given by

U (t, x)1/q = Ps[u(t, ·)1/p](x).

Consequently, if we additionally assume that µ is a probability measure and (Ps)s≥0 is
ergodic, then the monotonicity argument outlined in the previous section generates the
associated hypercontractivity inequality

‖Psf‖Lq(µ) ≤ ‖f‖Lp(µ) (3.13)

from (3.12).
The inequality (3.13) is known in the above setting and is a fundamental component

of a wider and celebrated theory. Systematic study of the curvature operator Γ2 and
associated curvature-dimension conditions (of which (3.10) is a particular case) go back
to work of Bakry [5], and Bakry and Michel Émery [7]. Since then, a significant body
of work of a highly geometric flavour has emerged on the analysis of Markov operators
satisfying diffusion and curvature conditions; we refer the reader to the monograph by
Bakry, Ivan Gentil and Michel Ledoux [8] and the lecture notes of Ledoux [102] for
further details.
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3.2.2 The closure property

For simplicity of the exposition, the following argument for (3.12) is based on certain
formal considerations. For instance, we shall make multiple use of the identity

L(fλ) = λfλ−1Lf + λ(λ− 1)fλ−2Γ(f) (3.14)

for λ > 0. Observe that (3.14) formally follows from the diffusion property by taking
ψ(f) = fλ (or in a rigorous sense in the case of, for example, the Ornstein–Uhlenbeck
semigroup via direct computations).

Proceeding via the representation formula (3.7) and formally passing the time deriva-
tive through the integral, we have

∂tU (t, x) =
q

p
U (t, x)1−1/qPs[u(t, ·)1/p−1∂tu(t, ·)](x). (3.15)

Since u is a supersolution and by use of (3.14) we get

∂tU (x) ≥ q

p
U (x)1−1/qPs[u

1/p−1Lu](x)

= qU (x)1−1/qPs[Lu
1/p](x) +

q

pp′
U (x)1−1/qPs[u

1/p−2Γ(u)](x).

Here we have dropped the dependence on the t variable since all operators are now
acting in the spatial variable.

On the other hand, by a further application of (3.14),

LU (x) = qU (x)1−1/qLPs[u
1/p](x) + q(q − 1)U (x)1−2/qΓ(Ps[u

1/p])(x)

and, using that Ps and L formally commute, we thus have

1

q
U (x)2/q−1[∂tU − LU ](x) ≥ 1

pp′
U (x)1/qPs[u

1/p−2Γ(u)](x)− (q − 1)Γ(Ps[u
1/p])(x).

However, by an application of Lemma 3.2.7 followed by the Cauchy–Schwarz inequality
we have

(q − 1)Γ(Ps[u
1/p])(x) ≤ (q − 1)e−2csPs[u

1/p](x)Ps[u
−1/pΓ(u1/p)](x).

Applying the identity2

Γ(u1/p) =
1

p2
u2/p−2Γ(u) (3.16)

and using the relation e2cs = q−1
p−1 , it is clear from the above argument that ∂tU ≥ LU .

3.2.3 Ornstein–Uhlenbeck semigroup

In this section, we quickly check that Ornstein–Uhlenbeck semigroup enjoys the condi-
tions in Section 3.2.1. In this case, Psf = esLf where L = ∆ − x · ∇, and a simple
change of variables shows that (3.7) holds with

dνs,x(y) = exp

(
− |ρx− y|

2

2(1− ρ2)

)
dy

[2π(1− ρ2)]d/2
,

2The identity Γ(ψ(u)) = ψ′(u)2Γ(u) holds for smooth ψ as a result of the diffusion property (3.9)
and thus (3.16) holds in a formal sense by taking ψ(u) = u1/p. In the case of the Ornstein–Uhlenbeck
semigroup, (3.16) may be rigorously verified by direct calculations.
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where ρ = e−s. Also, direct computations reveal that

Γ(f) = |∇f |2 (3.17)

and
Γ2(f) = |D2f |2 + |∇f |2, (3.18)

where |D2f |2 =
∑d
j,k=1(∂kjf)2) is the Frobenius norm of the Hessian of f . In fact,

2Γ(f) = L(f2)− 2fLf

= (2|∇f |2 + 2f∆f − 2f∇f · x)− (2f∆f − 2f∇f · x)

= 2|∇f |2,

which clearly shows (3.17). Similarly, one can show Γ(f, g) = ∇f ·∇g. In addition, since
we have

∆|∇f |2 = 2

 d∑
j,k=1

∂kf∂kjjf + |D2f |2
 ,

x · ∇|∇f |2 = 2
d∑

i,j=1

xj∂jf∂ijf,

and

Γ(f,Lf) = ∇f · ∇(∆f − x · ∇f))

=

d∑
j,k=1

∂kf∂kjjf −

 d∑
j=1

|∇f |2 + 2

d∑
i,j=1

xj∂jf∂ijf

 ,

the equality (3.18) then follows by combining the above;

2Γ2(f) =
(
∆|∇f |2 − x · ∇|∇f |2

)
− Γ(f,Lf)

= 2|D2f |2 + 2|∇f |2.

Therefore, (3.9) and (3.10) with c = 1 hold. In this special case, the key estimate (3.11)
can be too deduced significantly easily from the explicit formula (3.2); passing through
each derivative ∂j and using Cauchy–Schwarz inequality.

3.3 Proofs of main results

In this section, we write Psf = esLf , where L = ∆− x · ∇, and Bs(x, y) = e−sx+ (1−
e−2s)1/2y.

3.3.1 Proof of Theorem 3.1.1

To begin, we observe that U (t, x) is well-defined in a pointwise sense since our assump-
tions on u mean that u(t, ·)1/p is of polynomial growth for each fixed time.

In order to prove ∂tU ≥ LU , we run the argument in the previous section with c = 1.
Rigorous justification of (3.15), at which point we passed the time derivative through the
integral appearing in (3.7), is made using the fact that ∂t(u

1/p) is of polynomial growth
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locally uniformly in time. Another formal step in the argument is the commutativity
property

Ps[L(u1/p)](x) = LPs[u
1/p](x).

Since L = ∆ − x · ∇, we may rigorously justify this since ∇(u1/p) and ∆(u1/p) are
of polynomial growth locally uniformly in time t > 0. Finally, we note that the term
Ps[u

1/p−2Γ(u)](x) is well-defined in a pointwise sense thanks to the assumption that
u−1/p|∇(u1/p)|2 is of polynomial growth locally uniformly in time. This completes the
verification of the formal steps in the argument in the previous section.

It remains to check that the regularity conditions imposed on u result in U satisfying
analogous regularity properties. Our assumption on u means that, for a fixed t > 0,
there is a natural number N and compact interval I ⊂ (0,∞) containing t such that
supt′∈I u(t′, x)1/p .t 〈x〉N for all x ∈ Rd. Here, we are using the Japanese bracket
notation 〈x〉 = (1 + |x|2)1/2. Thus, clearly we have

U (t′, x)1/q =

∫
u1/p(t′, Bs(x, y)) dγ(y) .t

∫
〈Bs(x, y)〉N dγ(y) .s,t 〈x〉N (3.19)

for each t′ ∈ I and x ∈ Rd, and it follows that U 1/q is of polynomial growth locally
uniformly in time.

For ∂t(U (t, ·)1/q), the assumption that ∂t(u
1/p) is of polynomial growth locally uni-

formly in time means, by a routine application of the dominated convergence theorem,

∂t(U
1/q)(t′, x) =

∫
∂t(u

1/p)(t′, Bs(x, y)) dγ(y)

for all t′ in an appropriate compact interval, and now estimating in a similar manner
to (3.19) reveals that ∂t(U (t, ·)1/q) of polynomial growth locally uniformly in time. By
similar considerations, the same conclusion also holds for∇(U 1/q) and ∆(U 1/q). Finally,
by the Cauchy–Schwarz inequality

|∇(U 1/q)(t′, x)|2 =

∣∣∣∣ ∫ ∇(u1/p)(t′, Bs(x, y)) dγ(y)

∣∣∣∣2
≤ U (t′, x)1/q

∫
|∇(u1/p(t′, Bs(x, y))|2

u1/p(t′, Bs(x, y))
dγ(y)

and the fact that u−1/p|∇(u1/p)|2 is of polynomial growth locally uniformly in time can
be easily seen to induce the same property for U−1/q|∇(U 1/q)|2.

3.3.2 Proof of Corollary 3.1.2

Suppose that f is bounded and nonnegative function with support inside {x ∈ Rd : |x| ≤
R}, and let u(t, x) = Pt[f

p](x). By Theorem 3.1.1, it suffices to show that u(t, ·)1/p,
∂t(u(t, ·)1/p), ∇(u(t, ·)1/p), u(t, ·)−1/p|∇(u(t, ·)1/p)|2 and ∆(u(t, ·)1/p) are of polynomial
growth locally uniformly in time t > 0. Indeed, if this is the case, then ∂tU ≥ LU where
U (t, x)1/q = Ps(u(t, ·)1/p)(x) and therefore

Q′(t) =
1

q
Q(t)1−1/q

∫
∂tU (t, x) dγ(x) ≥ 1

q
Q(t)1−1/q

∫
LU (t, x) dγ(x) = 0.

Note that we may use the dominated convergence theorem to justify the interchange
of the time derivative and the integral in the above argument. Indeed, we know from

56



Theorem 3.1.1 that both U (t, ·)1/q and ∂t(U (t, ·)1/q) are of polynomial growth locally
uniformly in t > 0. By writing ∂tU = qU 1−1/q∂t(U

1/q) and recalling that q > 1, we see
that the same property also holds for U , and this is sufficient to justify the interchange
of time derivative and integral.

It remains verify the regularity claimed hypotheses for u. We first note that u(t, x)1/p ≤
‖f‖∞ obviously follows from (3.2). For ∂t(u

1/p), we shall make use of the representation
formula

u(t, x) = C(t)

∫
Rd
f(y)p exp

(
− |ρ(t)x− y|2

2(1− ρ(t)2)

)
dy,

where C(t) = [2π(1− ρ(t)2)]−d/2 and ρ(t) = e−t. Using the assumption on the support
of f , it easily follows that

|∂tu(t, x)| .R (1− ρ(t)2)−2〈x〉2u(t, x)

and therefore, since ∂t(u
1/p) = 1

p
∂tu
u u1/p, we see that ∂t(u

1/p) is of polynomial growth lo-

cally uniformly in t > 0. A similar argument reveals |∇u(t, x)| .R (1−ρ(t)2)−1〈x〉u(t, x).
From this we quickly obtain that ∇(u1/p) is of polynomial growth locally uniformly in

t > 0 and, via the identity u−1/p|∇(u1/p)|2 = 1
pu

1/p |∇u|2
u2 , the same conclusion too for

u−1/p|∇(u1/p)|2. Finally, similar considerations show that ∆(u1/p) is also of polynomial
growth locally uniformly in t > 0.

3.4 Further remarks

3.4.1 Reverse hypercontractivity

A further appealing feature of our abstract argument in Section 3.3.1 is that it applies
to exponents p and q in the setting of the reverse hypercontractivity inequality, thus
providing a simple and unified approach to both forward and reverse forms. In general,
we let U be given by

U (t, x) =


Ps[u(t, ·)1/p]q(x) if p, q 6= 0,

Ps[e
u(t,·)]q(x) if p = 0, q 6= 0,

logPs[u(t, ·)1/p](x) if p 6= 0, q = 0.

Then, at least in a formal sense, the following closure properties hold:

∂tu ≥ Lu ⇒ ∂tU ≥ LU for 1 < p < q <∞, and for −∞ < q < p < 0,
∂tu ≤ Lu ⇒ ∂tU ≤ LU for 0 ≤ q < p < 1,
∂tu ≤ Lu ⇒ ∂tU ≥ LU for −∞ < q < 0 ≤ p < 1.

(3.20)
As a result, in each of the above cases, one may obtain the monotonicity of

Q(t) =

{
(
∫

U (t, ·) dµ)1/q if q 6= 0
exp(

∫
U (t, ·) dµ) if q = 0

for solutions u of the diffusion equation ∂tu = Lu with nonnegative initial data.
The closure properties (3.20) for q < p < 1 yield Borell’s reverse form of the hyper-

contractivity inequality
‖Psf‖Lq(µ) ≥ ‖f‖Lp(µ) (3.21)
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for positive functions.
In the special case of the Ornstein–Uhlenbeck semigroup, Christer Borell [32] ob-

served that a unified approach to both forward and reverse hypercontractivity inequali-
ties may be taken, whereby one first establishes a discrete “Boolean hypercontractivity
inequality” (the forward form independently due to Aline Bonami [31] and Gross [67])
and then applies the central limit theorem. We note that our setting of a diffusion
semigroup takes us outside the scope of discrete hypercontractivity inequalities.

3.4.2 Related work and extensions

As we have already alluded to, the closure properties perspective taken in [17], as well as
the earlier work [16], gave inspiration to the present paper. In these papers one may find
different examples of closure properties of supersolutions to certain diffusion equations
in the context of euclidean spaces (with substantial influence from [41] and [24]).

We close the paper with a discussion on further related work in the literature and
extensions to more general forms of hypercontractivity.

Yao-Zhong Hu [80] (see also [81]) has approached hypercontractivity, in dual form,
by considering the quantity

Λ(t) = PT−t[Ps[u(t, ·)1/p] · v(t, ·)1/q′ ] (t ∈ [0, T ])

where u(t, ·) = Pt[f
p] and v(t, ·) = Pt[g

q′ ] (here, and in what follows, we consider positive
functions). It is shown in [80] that Λ′(t) ≥ 0, yielding

PT [Psf · g] ≤ Ps[PT [fp]1/p] · PT [gq
′
]1/q

′
(3.22)

and, assuming ergodicity, taking the limit T → ∞ yields the dual form of (3.13). As
in the current paper, the approach taken by Hu is applicable in the abstract setting
of a Markov semigroup which satisfies the diffusion and curvature conditions (3.9) and
(3.10).

The inequality in (3.22) is reminiscent of so-called local hypercontractivity inequalities.
In recent work of Bakry, Franoçis Bolley and Ivan Gentil in [6], it was shown that, for
diffusion Markov semigroups, the curvature condition (3.10) is equivalent to the local
hypercontractivity inequality

PT−s[(Psf)q]1/q ≤ PT [fp]1/p,

where s ∈ (0, T ], ∞ > q > p > 1 and

q − 1

p− 1
=

e2cT − 1

e2c(T−s) − 1
.

As before, c ∈ R denotes the curvature constant from (3.10). Again, we see that the as-
sociated hypercontractivity inequality (3.13) follows by taking T →∞. We also remark
that, much earlier in their fundamental paper [7], Bakry and Michel Émery established
an analogous local form of the log-Sobolev inequality using a heat flow monotonicity
argument.

In [80], Hu actually obtained a rather general form of hypercontractivity∫
E

Ps[φ(f)](x)ψ(g(x)) dµ(x) ≤ φ
(∫

E

f dµ

)
ψ

(∫
E

g dµ

)
(3.23)
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where φ, ψ are (sufficiently nice) nonnegative concave functions such that

(e−csφ′(σ)ψ′(τ))2 ≤ φ(σ)φ′′(σ)ψ(τ)ψ′′(τ) (3.24)

for nonnegative σ, τ . One can easily verify that equality holds in (3.24) under the
assumption e2cs = q−1

p−1 when φ(σ) = σ1/p and ψ(τ) = τ1/q′ , thus recovering the dual

form of (3.13). The argument in [80] leading to (3.23) proceeds as described above for
power-type φ and ψ, with the obvious modifications to the functional Λ.

We remark that our method too extends in a similar manner. Assume

e−2csφ′(σ)2θ(τ)θ′′(τ) ≥ θ′(τ)2φ(σ)φ′′(σ) (3.25)

for nonnegative σ and τ , where φ and θ are (sufficiently nice) nonnegative, increasing
and concave functions. Let

U (t, x) = θ−1(Ps[φ(u(t, ·))])(x),

where u is positive and satisfies ∂tu ≥ Lu. Exactly as in our argument in Section 3.3.1,
we quickly obtain

∂tU − LU ≥ θ′(τ)−3
(
θ′′(τ)Γ(θ(τ))− θ′(τ)2Ps[φ

′′(u)Γ(u)]
)
,

where θ(τ) = Ps[φ(u)]. Using Lemma 3.2.7, the Cauchy–Schwarz inequality, and Γ(φ(u)) =
φ′(u)2Γ(u), it follows that

Γ(θ(τ)) ≤ −e−2csPs[φ
′′(u)Γ(u)]Ps

[
(φ′(u))2

−φ′′(u)

]
.

Thus, using assumption (3.25), we may deduce ∂tU ≥ LU . As a result of this closure
property, taking u = Ptf , we generate a generalised form of hypercontractivity

Pθ(Psf) ≤ Pφ(f) (3.26)

where Pθ(f) := θ(
∫
E
θ−1(f) dµ). An advantage of our approach in the present paper

is the avoidance of duality and it is conceivable that this may be fruitful in certain
contexts.

One may readily verify that (3.25) holds if we take φ(σ) = σ1/p and θ(τ) = τ1/q,
under the condition e2cs = q−1

p−1 , and consequently we may view (3.26) as a generalisation

of (3.13). Moreover, by a generalised form of Hölder’s inequality we may obtain (3.23)
from (3.26). To see this, note that∫

E

J(f(x), g(x)) dµ(x) ≤ J
(∫

E

f dµ,

∫
E

g dµ

)
(3.27)

holds for concave functions J which are nondecreasing in each variable3. With J(σ, τ) =
θ(σ)ψ(τ), the concavity condition becomes

θ′′(σ)θ(σ)

θ′(σ)2
≥ ψ′(τ)2

ψ′′(τ)ψ(τ)
(3.28)

3This seems to be a fact of folklore type; a proof (based on a closure property of supersolutions
to heat equations) may be found in [17]. Working in a probability measure space, a result of Janusz
Matkowski [109] asserts that concavity of J is almost always necessary for (3.27).
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for all σ, τ . Setting λ = infτ
ψ′(τ)2

−ψ′′(τ)ψ(τ) and taking θ(σ) = σ
1

λ+1 , we see that (3.28)

holds. It is also clear that (3.24) implies (3.25). Hence, combining (3.27) and (3.26), we
deduce (3.23).

Reminiscent of (3.27), Hu’s generalised form of (dualised) hypercontractivity (3.23)
was extended in a different sense by Ledoux [103] to the setting∫

E

∫
E

J(f(x), g(y)) dνs,y(x)dµ(y) ≤ J
(∫

E

f dµ,

∫
E

g dµ

)
(3.29)

for J satisfying a so-called ρ-concavity condition, where ρ = e−cs. Here, ρ-concavity
refers to the semi-negative definiteness of the matrix(

∂11J ρ∂12J
ρ∂12J ∂22J

)
and, rather interestingly, at least in the case of the Ornstein–Uhlenbeck semigroup,
e−s-concavity is necessary as well as sufficient (see [103]). Clearly the case J(σ, τ) =
φ(σ)ψ(τ) reduces (3.29) to (3.23), and e−cs-concavity to (3.24). Ledoux’s approach
was based on flowing the input functions f and g under the semigroup Pt and deriving
monotonicity of the left-hand side of (3.29); the argument more closely resembles those
in [41] and [24] rather those in the current paper.
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[13] W. Beckner, A generalized Poincaré inequality for Gaussian measures, Proc. Amer.
Math. Soc. 105 (1989), 397–400.

61



[14] D. Beltran, L. Vega, Bilinear identities involving the k-plane transform and Fourier
extension operators, to appear in Proc. Roy. Soc. Edinburgh Sect. A.

[15] J. Bennett, Aspects of multilinear harmonic analysis related to transversality, Har-
monic analysis and partial differential equations, Contemp. Math., 612, Amer.
Math. Soc., Providence, RI, (2014), 1–28

[16] J. Bennett, N. Bez, Closure properties of solutions to heat inequalities, J. Geom.
Anal. 19 (2009), 584–600.

[17] J. Bennett, N. Bez, Generating monotone quantities for the heat equation, J. Reine
Angew. Math. 756 (2019), 37–63.

[18] J. Bennett, N. Bez, A. Carbery, D. Hundertmark, Heat-flow monotonicity of
Strichartz norms, Anal. PDE 2 (2009), 147–158.

[19] J. Bennett, N. Bez, M. Iliopoulou, Flow monotonicity and Strichartz inequalities,
Int. Math. Res. Not. IMRN (2015), 9415–9437.

[20] J. Bennett, N. Bez, C. Jeavons, and N. Pattakos, On sharp bilinear Strichartz
estimates of Ozawa–Tsutsumi type, J. Math. Soc. Japan 69 (2017), 459–476.

[21] J. Bennett, N. Bez, T. C. Flock, S. Gutiérrez, and M. Iliopoulou, A sharp k-plane
Strichartz inequality for the Schrödinger equation, Trans. Amer. Math. Soc. 370
(2018), 5617–5633.

[22] J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp–Lieb inequalities: finite-
ness, structure and extremals, Geom. Funct. Anal. 17 (2007), 1343–1415.

[23] J. Bennett, A. Carbery, T. Tao, On the multilinear restriction and Kakeya conjec-
tures, Acta Math. 196 (2006), 261–302.

[24] J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp–Lieb inequalities: finite-
ness, structure and extremals, Geom. Funct. Anal. 17 (2007), 1343–1415.

[25] J. Bennett, M. Iliopoulou, A multilinear Fourier extension identity on Rd, Math.
Res. Lett. 25 (2018), 1089–1108.

[26] J. Bennett, S. Nakamura, Tomography bounds for the Fourier extension operator
and applications, to appear in Math. Ann.

[27] J. Bennett, K. M. Rogers, On the size of divergence sets for the Schrödinger equation
with radial data, Indiana Univ. Math. J. 61 (2012), 1–13.

[28] N. Bez, K. M. Rogers, A sharp Strichartz estimate for the wave equation with data
in the energy space, J. Eur. Math. Soc. 15 (2013), 805–823.

[29] N. Bez, C. Jeavons, A sharp Sobolev–Strichartz estimate for the wave equation,
Electron. Res. Announc. Math. Sci. 22 (2015), 46–54.

[30] N. Bez, C. Jeavons, T. Ozawa, Some sharp bilinear space-time estimates for the
wave equation, Mathematika 62 (2016), 719–737.

[31] A. Bonami, Étude des coefficients Fourier des fonctiones de Lp(G), Ann. Inst.
Fourier 20 (1970), 335–402.

62



[32] C. Borell, Positivity improving operators and hypercontractivity, Math. Z. 180
(1982), 225–234.

[33] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1–16.

[34] J. Bourgain, Estimates for cone multipliers, Geometric Aspects of Functional Anal-
ysis, Oper. Theory Adv. Appl. 77, Birkhäuser (1995), 41–60.
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