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Abstract

Person re-identification (Re-ID) is one of the most important tools of in-

telligent video-surveillance systems, which aims to recognize an individual

across different non-overlapping sensors of a camera network. It is a very

challenging task in computer vision because the visual appearance of an

individual changes due to the variations in viewing angle, illumination

intensity, pose, occlusion and diverse cluttered background. The general

objective of this thesis is to tackle some of these constraints by proposing

different approaches, which exploit modern RGB-D sensor-based addi-

tional information.

At first, we present a novel cross-modal person re-identification technique

by exploiting local shape information of an individual, which bridges the

domain gap between two modalities (RGB and Depth). The core idea

is, most of the existing Re-ID systems widely use RGB-based appear-

ance cues, which is not suitable when lighting conditions are very poor.

However, for many security reasons, sometimes continued surveillance via

camera in low lighting conditions is inevitable. To overcome this prob-

lem, we take advantage of the depth sensor based cameras (e.g. Microsoft

Kinect and Intel RealSense Depth camera), which can be installed in

dark places to capture video, while RGB based cameras can be installed

in good lighting conditions. Such types of heterogeneous camera net-

works can be advantages due to the different sensing modalities available

but face challenges to recognize people across depth and RGB cameras.

In this approach, we propose a body partitioning method and novel HOG

based feature extraction technique on both modalities, which extract local

shape information from regions within an image. We find that combining

the estimated features on both modalities can sometimes help to better

reduce visual ambiguities of appearance features caused by lighting con-

ditions and clothes. We also exploit an effective metric learning approach

which obtains a better re-identification accuracy across RGB and depth

domain.



In this dissertation, we also present two novel multi-modal person re-

identification methods. In the first method, we introduce a depth guided

attention-based person re-identification method in multi-modal scenario,

which takes into account the depth-based additional information in the

form of an attention mechanism. Most of the existing methods rely on

complex dedicated attention-based architecture for feature fusion and thus

become unsuitable for real-time deployment. In our approach, we propose

a depth-guided foreground extraction mechanism that helps the model to

dynamically select the more relevant convolutional filters of the backbone

CNN architecture, for enhanced feature representation and inference.

In our second method, we propose a novel person re-identification tech-

nique that exploits the advantage of using multi-modal data for fusing in

dissimilarity space, where we design a 4-channel RGB-D image input in the

Re-ID framework. Additionally, lack of a proper RGB-D Re-ID dataset

prompts us to collect a new RGB-D Re-ID dataset named SUCVL RGBD-

ID, including RGB and depth images of 58 identities from three cameras

where one camera was installed in poor illumination conditions and the

remaining two cameras were installed in two different indoor locations

with different indoor lighting environments.

Finally, extensive experimental evaluations on our dataset and publicly

available datasets demonstrate that our proposed methods are efficient

and outperform all the related state-of-the-art methods.
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Chapter 1

Introduction

1.1 Motivation

In recent years, from the security and forensics concerns, the deployment of Closed-

Circuit TeleVision cameras (CCTV) has increased exponentially in both public and

private areas including supermarkets, shopping complexes, airports, railway stations,

university campuses, housing apartments and workplaces. According to a study by

Cisco, video surveillance traffic is projected to increase tenfold between 2015 and

2020 [1]. As the volume of surveillance video has increased exponentially, making the

continuous monitoring of surveillance data is quite impossible for a human operator

due to lack of attention. Moreover, there is foremost possibility of unexpected event

can take place simultaneously in multiple cameras when a large camera network (hun-

dreds or thousands of cameras) is installed in a large area (e.g. airport). Therefore,

it is also impossible to monitor all unexpected simultaneous events because a human

operator can concentrate only on one particular camera or event.

Figure 1.1: A security officer monitoring the CCTV [2].
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Fig. 1.1 shows a typical scenario of a security officer monitoring a surveillance

camera network, in which he can report alarms manually while observing any unex-

pected event in the scene. There is also have a privacy issue concerning the misuse of

technologies, which is ongoing debate, while depending on human operator. Thus, it

is essential to develop intelligent video surveillance systems that could provide infor-

mative data to the human operator and draw its attention whenever it is required.

Intelligent surveillance system requires the ability to track or associate people across

multiple cameras. The recognizing and associating the same person in a distributed

multi-cameara system is known in the computer vision and pattern recognition com-

munity as person re-identification. Considering the various practical applications and

challenges, it has been a unique and interesting field in research communities and

industries in the last few years.

1.2 Person Re-identification

Person re-identification (Re-ID) is an important video-surveillance task of recogniz-

ing an individual over a set of disjoint camera views. Fig. 1.2 shows a schematic

illustration of the re-identification problem where a set of probe images is captured

from one camera view and a set of gallery images is captured from another disjoint

camera views, a person re-identification system attempts to match each instance from

the probe set against all from the gallery set.

Figure 1.2: Schematic representation of person re-identification problem. In the left
side, images are captured from disjoint camera views. In the right side, each row
contains a probe image, and the corresponding rank gallery set, where the true match
is marked in red box [3].
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Person re-identification problems can be divided into two categorizes depending

on the number of frames available of each person in the probe and gallery sets. If

only one frame of each person is available in both the probe and gallery sets then it is

called single-shot, and if multiple frames available in both sets then it is called multi-

shot. Even though the multi-shot case provides more information, its computational

cost is high over single-shot.

Person re-identification can be further subdivided into two other categories: long-

term and short-term person re-identification. When the pedestrians keep their clothes

unchanged while passing across the disjoint cameras in a short period, this scenario

is called the short-term problem. However, this is not always true in practice because

pedestrians are high likely to reappear after a long period , such as several days, the

re-identification scenario is called the long-term problem.

Moreover, different sensory data such RGB, Depth and Skeleton information, ac-

quired by modern RGB-D sensors, which can be used combinedly to construct robust

features. When RGB data are combined with depth or skeleton information to im-

prove the Re-ID performance, it refers as multi-modal person re-identification.

In many real-world scenario, when matching RGB with depth modalities is important,

for example, a video surveillance system that must recognize the individuals in poorly

illuminated environments, which refers as cross-modal person re-identification.

Person re-identification has several practical applications to forensic search, multi-

camera tracking, access control, sports analytics in a collection of video sequences.

Recently it has also been applied to service robots and human-robot interaction for

elderly monitoring and assistance to perform personalized tasks [8]. Another practical

application for cross-modal Re-ID is autonomous self-driving vehicles, which require

tracking pedestrians around their vicinity, where some regions are covered by LiDAR

sensors, and others by RGB cameras [37].

1.3 Challenges of Person Re-ID

Though person re-identification has been studied over the past years, it is a still

challenging task in computer vision community and remains unsolved. The major

challenges in person re-identification are:

Pose and viewpoint variations: One of the biggest challenges is the variation

in pose and appearance of the person in various cameras and in time as shown in Fig

1.3 (a). When the people are observed under the different camera views, the same

3



individual may look different (intra-class variation) and different individuals may look

similar (inter-class variation). This variability happens due to the different camera

orientation and changes in subject pose, camera resolution or visual appearance of

the person itself. In Fig. 1.3 (b) shows the same person’s images taken from different

cameras. Even though the person is wearing same clothes across the camera, the color

of their clothing looks significantly different in images. These intra-class variation

makes the Re-ID more challenging.

Figure 1.3: Sample images showing the challenges related to camera variations and en-
vironmental conditions in the Re-ID problem. Images are taken from the MSMT17 [4],
i-LIDS [5] and Market-1501 [6] datasets.

Partial occlusion: When images are captured by the surveillance camera in a

camera network, it can be partially occluded by other people or objects of the scene,

or self occlusions caused by own body parts as shown in Fig. 1.3 (d).
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Illumination variations: This is another biggest challenge for Re-ID. Illumina-

tion variations may occur depending on the location of the camera and environmental

conditions, and it also varies in different periods of time in a day across the cameras

as shown in Fig. 1.3 (e).

Background clutter: Depending on the camera location, captured images con-

tain different objects as background scene shown in Fig. 1.3 (c). Cluttered back-

ground has a significant impact on the performance of the Re-ID because it is an

obstacle to construct robust features from the captured images. When a model is

trained with background cluttered images, it may suffer over-fitting problem which

cause overall performance degradation.

Depending on the RGB camera or camera network, Re-ID researchers have tried

to address the above challenges over the past years by proposing different computer

vision and machine learning algorithms. With the advent of reliable and affordable

RGB-D sensors can assist in these challenges by making use of their depth data. In

this dissertation, we propose different approaches to address the extreme illumination

changes and diverse cluttered background problems with RGB-D sensors for indoor

applications. In addition, we also propose an effective fusion technique for multi-

modal data to overcome the overfitting problem that appears in the feature-level

fusion method.

1.4 Objectives

Despite the recent advances, for some extreme cases (e.g. very poor lighting condi-

tions and clothing changes), Re-ID researchers fail to address the Re-ID challenges

with their proposed algorithms using traditional RGB cameras in a camera network.

As modern RGB-D sensors avail us with different modalities such as illumination

invariant high quality depth images, RGB images and skeleton information simulta-

neously as shown in Fig. 1.4, we exploit the sensor based additional information to

overcome the challenges by proposing different approaches . In addition, under nor-

mal lighting conditions, we combine RGB and depth information to construct robust

features to gain high re-identification accuracy.

The general objective of this thesis is to develop different models by considering

different challenges for person re-identification in indoor environments using modern

RGB-D sensors. The challenges are presented into the questions, which are investi-

gated through the dissertation. The questions are:
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Figure 1.4: Sample images showing different modalities such as RGB, depth and
skeleton in the RobotPKU RGBD-ID [7] dataset.

1) What will happen when one or more cameras will be installed in very low light-

ing conditions in a camera network? (see Fig. 1.5)

2) What will happen when people change their clothes in long-term monitoring

system? (see Fig. 1.6)

Figure 1.5: Illustration of challenges for typical re-identification under diverge lighting
conditions across the cameras in a camera network.

3) Is it possible to increase the re-identification accuracy if we combinedly use RGB

and Depth modalities in a system? and 4) How to combine these two modalities?

(see Fig. 1.4).
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Figure 1.6: Illustration of challenges for typical re-identification while an individual
changes clothes across the cameras in a camera network.

1.5 Research Contributions

As per the objectives, we pointed out two research questions (question 1 and 2), which

are not possible to address using conventional Re-ID approaches because one or more

camera operates in extreme low lighting conditions and remaining operates in nor-

mal lighting. Under the extreme low lighting condition, color information becomes

unreachable. Moreover, when people change clothes, color becomes unreliable. In

this scenario, we propose a heterogeneous camera network where depth sensor-based

cameras capture illumination and color invariant depth data in poor lighting condi-

tions, and RGB cameras capture RGB data in good lighting conditions. To that end,

matching RGB images with depth images (i.e. cross-modality matching) is required,

which are heterogeneous with very different visual characteristics. In this thesis, we

aim at investigating this cross-modal re-identification problem, thus need to bridge

the gap between these two heterogeneous modalities.

Beside the cross-modal re-identification, we also developed two deep learning Re-

ID frameworks which take depth data as an additional information with RGB data to

overcome background clutter problem as well as data overfitting problem for multi-

modal cases to achieve higher re-identification accuracy.

The main contributions of this thesis can be summarize as follows:
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� Cross-modal Person Re-identification: We propose a body partitioning

method and HOG based feature extraction technique on both modalities, RGB

and Depth domains, which extract local shape information from the images. To

the best of our knowledge, this is the first attempt to extract edge gradient fea-

tures on both modalities. We also exploit PCA and LDA based metric learning

approach to increase re-identification accuracy. (Chapter 3)

� Multi-modal Person Re-identification: We propose two methods for multi-

modal person re-identification. In the first method, We introduce a depth

guided (DG) attention-based person re-identification framework to overcome

background clutter problem. The key component of this framework is the

depth-guided foreground extraction that helps the model to dynamically se-

lect the more relevant convolutional filters of the backbone CNN architecture.

This leads to gain better re-identification performance. (Chapter 4)

In the second method, we propose a re-identification approach that exploits the

advantages of having multi-modal images in the form of RGB-D. In this context,

we develop an effective fusion technique in dissimilarity space for 3-channel RGB

and 4-channel RGB-D images to increase re-identification accuracy. (Chapter

5)

� Finally, extensive experimental evaluations demonstrate that our proposed re-

identification approaches are efficient and outperform all the related state-of-

the-art methods.

1.6 Thesis Overview

The remaining chapters of this thesis are structured as follows:

In Chapter 2, We briefly discuss about the state-of-the-art methods in person

re-identification. The chapter is divided into several sections based on different ap-

proaches in re-identification. Most of the state of the art focuses on RGB appearance

based approaches which emphasize RGB with RGB matching process (i.e. single

modality matching). Others approaches (i.e. Cross-modal and Multi-modal) are also

described.

In Chapter 3, We present a novel cross-modal person re-identification framework

which brides the domain gap between two heterogeneous modalities (i.e. RGB and
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Depth). This chapter explores how the extreme illumination and clothing changes

problem were tackled by exploiting local shape information from both RGB and Depth

images of an individual. A benchmark assessment is conducted by experimenting with

different viewpoints in the probe and gallery samples.

In Chapter 4, We present a depth guided attention-based person re-identification

method which takes into account the depth-based additional information in the form

of an attention mechanism. The experimental results and discussion conclude the

chapter.

In Chapter 5, we present a novel person re-identification technique that exploit

the advantages of using multi-modal data for fusing in dissimilarity space, where we

successfully adapt a 4-channel image input in re-identification framework. We also

present the description of our collected dataset for experimental purposes. The ex-

perimental results, failure cases analysis and discussion conclude the chapter.

Finally, Chapter 6 concludes this dissertation with a summary of the research

and a discussion of the advantages and limitations of the work, as well as future

perspectives.
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Chapter 2

Literature Review

In the last few years, a large number of methods have been proposed for person re-

identification systems, which are generally categorized into image-based and video-

based Re-ID (see Fig. 2.1). In this chapter, we mainly focus image-based Re-ID and

their state-of-the-art researches towards person re-identification.

Figure 2.1: General categories of person re-identification systems.

Currently, most of the works focus on RGB image-based Re-ID. However, in some

applications, RGB images are not suitable (e.g. dark environment). With the ad-

vent of modern RGB-D (e.g. Microsoft Kinect and Intel RealSense depth camera)

sensors [9], RGB-D and Infrared (IR) image-based Re-ID methods have also gained

increasing attention in recent years to tackle the challenges mentioned in the section

1.3.

Depending on the different modalities such as RGB, Depth and Infrared images,

which are acquired by the different senors, existing image-based Re-ID works can be

further subdivided into three categories as modality-aware:

� Single-modality Person Re-identification
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� Cross-modality Person Re-identification

� Multi-modality Person Re-identification

2.1 Single-modality Person Re-identification

Conventional person re-identification mainly focuses on single-modality module (i.e.

RGB-RGB feature matching process), where all the person images are captured by

visible cameras in normal lighting conditions. For example, there are a set of probe

images (RGB) and a set of gallery images (RGB) which are captured by RGB cameras,

the re-identification system is usually return a ranked list of the individuals from the

gallery set for each query from the probe set (see Fig. 2.2).

Figure 2.2: Conventional person re-identification system [15].

Existing single-modality person Re-ID approaches can be divided into three cat-

egories:

(1) Feature learning approach

(2) Metric learning approach

(3) Deep learning approach
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2.1.1 Feature Learning approach

Feature learning approaches focus on learning a discriminative and robust feature

representation to design a powerful descriptor (or signature) for each individual re-

gardless of the scene [10, 11, 12, 13, 14]. In [10], the authors propose a Covariance de-

scriptor based bio-inspired features for person re-identification. At first, they extract

Biologically Inspired Features (BIF) from an individual image, and then the Covari-

ance descriptor is used to compute the similarity of BIF features taken at neighboring

scales where covariance descriptors can capture shape, location and color information.

In [11], Bhuiyan et al. propose a re-identification method by segmenting the pedes-

trian images into meaningful parts, then extract features from such parts as well as

from the whole body and finally, perform a salience analysis based on regression coeffi-

cients. Liao et al. [12] propose an efficient feature representation called Local Maximal

Occureence (LOMO), and a subspace and metric learning method called Cross-view

Quadratic Discriminant Analysis (XQDA) for person re-identification. The LOMO

feature analyzes the horizontal occurrence of local features, and maximizes the oc-

currence to make a stable representation against viewpoint changes. In [13], the

authors propose a salient color names based color descriptor (SCNCD) for person

re-identification. Based on SCNCD, color distributions over color names in different

color spaces are obtained and fused to generate a feature representation. Zheng et

al. [14] propose an unsupervised Bag-of-Words (BoW) descriptor for scalable person

re-identification. In the BoW model, local features are quantized to visual words

using a pretrained codebook.

2.1.2 Metric Learning approach

In metric learning approaches usually aim at learning a discriminative distance mea-

surements to measure the similarity on top of the learned features [16, 17, 18, 19].

In [16], the authors use an efficient asymmetric metric learning for person re-identification

where they consider a positive semi-definite (PSD) constraint to provide a useful reg-

ularization to smooth the solution of the metric, and hence the learned metric is more

robust than without the PSD constraint. Wang et al. [17] propose a cross-scenario

transfer person re-identification system which maximize the cross-task data discrep-

ancy on the shared components during asymmetric multitask learning (MTL), along

with maximizing the local inter-class variation and minimizing local intra-class vari-

ation on all tasks.. The authors in [18], formulate an asymmetric distance model for

learning camera-specific projections for person re-identification where they transform
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the unmatched features of each view into a common space, and then discriminative

features across view space are extracted. In [19], Zheng et al. formulate person re-

identification as relative distance comparison (RDC) learning problem in order to

learn the optimal similarity measure between a pair of person images.

2.1.3 Deep Learning approach

In recent years, deep learning approaches for Re-ID have received substantial atten-

tion due to their powerful deep features, which enable to obtain good performance

compared to hand-crafted features, specially for large dataset. The general architec-

ture for deep learning person Re-ID system is shown in Fig. 2.3.

Figure 2.3: Deep learning person re-identification system [15].

The main idea of using deep learning architecture of person re-identification

comes from Siamese CNN with either two or three branches for pairwise verification

loss [20, 21, 22, 23, 24, 25] or triplet loss [26, 27, 28] respectively, or combination of

both [29]. In [21], the authors present a new deep convolutional architecture for person

Re-ID by designing two special layers for capturing relationships between two views:

a cross-input neighborhood differences layer, and a subsequent layer that summarizes

these differences. Some approaches [22, 30] fuse features from different body parts
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with a multi-scale CNN structure. To obtain superior accuracy, some re-identification

methods [26, 28, 31] use the pre-trained or different variants of pre-trained models(e.g.

ResNet [32], GoogleNet [33]). Transfer learning is another form of deep learning ar-

chitecture which is successfully applied in person Re-ID approaches [24, 34, 35], when

the distribution of the training data from the source domain is different from that of

the target domain.

All the above mentioned approaches (i.e. Feature learning, Metric Learning and

Deep Learning) have been effective but in the situations where people may change

their clothing in long-term monitoring or in dark environments, these RGB-based

appearance features tend to fail.

2.2 Cross-modality Person Re-identification

Different from the aforementioned single-modality person Re-ID , cross-modality per-

son Re-ID aims to match quires of one modality against a gallery set of another

modality, such as RGB-Depth Re-ID and RGB-Infrared(IR) Re-ID. Fig. 2.4 illus-

trates a typical cross-modal person re-identification system.

Figure 2.4: A typical cross-modal person re-identification system based on RGB
(gallery set) and depth (query) modalities.

Beside the well known single-modality person Re-ID, very few works have been
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investigated for RGB-Depth [36, 37] cross-modal person Re-ID. In [36], Zhuo et al.

perform cross-modal person re-identification between depth and RGB on heteroge-

neous camera networks. They propose a dictionary learning based method to encode

different-modality body shape features such as edge gradient feature and Eigen-depth

feture which are extracted from the RGB and depth domain respectively. In [37], the

authors propose a cross-modal distillation network for robust person re-identification.

Recently, some works [38, 39, 40, 41, 42, 43, 44, 45] perform RGB-IR cross-modal

person Re-ID. Lu at al. [38] propose a cross-modality person re-identification wih

shared-specific feature transfer. Dai et al. [39] design a cutting-edge generative ad-

versarial training based discriminator to learn discriminative feature representation

from RGB and infrared modalities. In [41, 42], Ye at al. advance a two-stream based

model and bi-directional top-ranking loss function for the shared feature embedding.

In [43], the authors propose to generate cross-modality paired-images and perform

both global set-level and fine-grained instance-level alignments. Wang et al. [45] in-

troduce dual-level discrepancy reduction learning based on a bi-directional cycle GAN

to reduce the gap between RGB and depth modalities. Wang et al. [44] construct a

novel GAN model with the joint pixel-level and feature-level constraint, which achieve

the state-of-the-art performance.

In this thesis, we consider RGB-Depth cross-modal person re-identification where

we extract local shape information from partitioned regions of the body of an individ-

ual for the RGB and depth domains on the heterogeneous camera networks, and also

exploit PCA and LDA based metric learning approach to increase re-identification

accuracy.

2.3 Multi-modality Person Re-idetification

As most of the current Re-ID methods focus on matching individuals based on tra-

ditional RGB cameras, some constraints such as illumination and clothing changes

cannot properly be addressed using RGB cameras. After the arrival of RGB-D sen-

sors, Re-ID researchers took advantage of other modalities such as depth and skeleton

information to address the above-mentioned problems, and to increase Re-ID accuracy

as well. In this section, we overview the RGB-D sensor-based person re-identification

methods which are most relevant to our thesis work.

In the RGB-D based Re-ID literature, some re-identification methods have been

proposed based on depth images, point clouds and anthropometric measurement to
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solve the problems of changing clothing (i.e. for long-term re-identification) and

extreme illumination [46, 47, 48, 49, 50, 51, 52, 53]. Though RGB-D sensors can

capture RGB, depth and skeleton information simultaneously, however when people

appear in excessive lighting environments or change clothes, in this case some authors

consider only depth-based person Re-ID [51, 52] approaches to solve such constraints.

In [51], Haque et al. propose a recurrent attention model for depth-video-based

person identification, in which a 3D RAM model is for still 3D point clouds and a

4D RAM model is for 3D point cloud sequences. However, Haque’s method is not

suitable for solving the person re-identification problem under the setting when there

is no overlap between identities in training and testing. In [52], the authors propose

an approach for long-term person re-identification by using depth videos where they

develop a sparse canonical correlation analysis using a local third-order tensor model

to perform multi-level person Re-ID.

In some works, authors propose skeleton-based anthropometric measures for per-

son re-identification [47, 49, 50]. Barbosa et al. [50] use skeleton-based features based

on anthropometric measurements of the Euclidean distance between selected body

parts such as legs, arms and the overall height, and geodesic distances on the body

surface. The geodesic distances are computed from a predefined set of joints (e.g.

from the torso to the right hip). In [49], the authors propose two kinds of descrip-

tors where the first descriptor contains anthropometric measures computed from body

joint points and the other descriptor contains a point cloud model of the human body.

In [47], Munaro et al. modified the work proposed in [50] by combining Point Cloud

Matching (PCM) and skeleton-based features. Although these works use depth-based

point clouds and skeleton information to tackle the pose variations of a person, they

do not perform any feature-level fusion or score-level fusion techniques.

Apart from them, some works [46, 48, 53] propose two different types of features

extracted from a given depth image and skeleton joint points accordingly, and then

finally fused by score-level fusion to gain high re-identification accuracy. Wu et al. [46]

propose to exploit depth information to provide a depth voxel covariance descriptor

and rotation invariant depth shape descriptor called Eigen-depth feature. To enrich

the depth shape descriptor, they also employ a skeleton-based feature as comple-

mentary physical information. In this work, they calculate the Euclidean distance

between skeleton-based features, and the geodesic distance be-tween the correspond-

ing within-voxel covariance matrices and between-voxel covariance matrices. Finally,

they measure the similarity of two subjects by summing both distances. In [48], Imani
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et al. extract three types of histogram features (Local Binary Patterns (LBP), Lo-

cal Derivative Patterns (LDP) and Local Tetra Patterns (LTrP)) from depth images

where at first depth images are divided into three regions of head, torso and legs

using skeleton data. Then these histogram features are fused with anthropometric

features (where anthropometric features are calculated from skeleton joint points)

using score-level fusion. In [53], the authors introduce two novel features: histogram

of the edge weight (HEW) and histogram of the node strength (HNS) where these

features fit both single-shot and multi-shot person Re-ID. Then these features are

combined with skeleton features using score-level fusion.

Some authors have proposed some conventional Re-ID methods to combine RGB

appearance cues with other modalities, such as depth, thermal data, gait and an-

thropometric measures [54, 55, 56, 57, 58]. In [54], the authors propose Skeleton

Standard posture (SSP) and color descriptors from RGB-D data (color point clouds).

A partition grid is computed to extract color-based features through the SSP. Then,

the extracted features from the database are re-projected using the partition grid

under investigation. Finally, these extracted features are used to determine people’s

differences. Pala et al. [55] fuse clothing appearance descriptors with anthropomet-

ric measures extracted from depth data to improve re-identification accuracy. They

also propose a dissimilarity-based framework for building and fusing multi-modal de-

scriptors of pedestrian images, which is an alternative of score-level fusion. In [56],

Mogelmose et al. propose a tri-modal re-identification method to combine RGB,

depth and thermal features. The modalities are combined in a late fusion strategy,

which is able to predict a new subject in the scene as well as to recognize previous

subjects based on a combined rule cost. Kawai et al. [57] introduce a view-dependent

score-level fusion method to combine color and gait features. In [58], the authors

propose an online re-identification method based on metric model update for robotic

applications. In this method, each person is described by appearance and geometric

features using skeleton information. Then a fusion technique named Feature Funnel

Model (FFM) is proposed to fuse multi-modal features effectively.

Recently, a few works [59, 60, 61, 62] based on deep learning methods have been

proposed for RGB-D multi-modal person re-identification. In [59], the authors pro-

pose a multi-modal uniform deep learning method to extract the RGB appearance

feature and anthropometric features from processed depth images. The proposed

method uses two CNNs for separately analyzing the depth and RGB images. After-

wards, they design a multi-modal fusion layer to combine these features extracted

from both depth images and RGB images with a uniform latent variable. In [60], Ren
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et al. propose a uniform and variational deep learning method for RGB-D object

recognition and person re-identification. This method extracts the depth feature and

the appearance feature from the depth and RGB images with two CNNs respectively.

The depth feature and appearance feature are then combined with a variational auto-

encoder at the top layer of their proposed deep network. Lejbolle et al. [61] propose

a multi-modal CNN which is trained using both depth and RGB modalities to pro-

vide a fused feature. Later the authors improve their approach with a multi-modal

attention network [62], in which they add an attention module to extract local and

discriminative features that are fused with globally extracted features.

In this thesis, we consider RGB and depth modalities, and propose two new deep

learning Re-ID frameworks for multi-modal cases. The key component of our first

deep learning Re-ID framework is the depth-guided foreground extraction by remov-

ing background clutter of an individual image, which helps the model to dynamically

select the more relevant convolutional filters of the the backbone CNN architecture.

In our second method, we use two individually trained models for RGB-D person re-

identification, where models are trained using 3-channel RGB and 4-channel RGB-D

images accordingly. Then the dissimilarity score is calculated using feature embed-

dings extracted from both trained models and finally fuse both scores in dissimilarity

space. As some of the above state-of-the-art Re-id approaches use multi-modal fusion

in feature space, which may cause overfitting problem due to the noisy/heterogeneous

feature. Different from them, we utilize the ensemble of RGB and RGB-D based

trained models in dissimilarity space which assists to overcome the overfitting prob-

lem due to noise.

There are some state-of-the-art methods in the Re-ID task [63, 64, 65, 66] to

handle the background clutter problem in RGB images using whole body attention

and part-based attention mechanisms. The first key ingredient of these approaches

is human body mask generation which is very costly in computation. These methods

obtain human body masks using different deep learning based image segmentation

models such as FCN [67], Mask R-CNN [68], JPPNet [69], and Dense Pose [70]. All

these sate-of-the-art approaches heavily depend on very complex dedicated attention-

based architectures which involve large computational costs. For this reason, it is

difficult to deploy for them in real time scenario. In contrast to the above works, we

introduce a depth guided attention mechanism for person re-identification with less

computational effort.
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Chapter 3

Cross-modal Person
Re-identification using Local Shape
Information

3.1 Introduction

Recent Re-ID research has mainly focused on RGB-RGB matching, which is the most

common scenario where there is only a single-modality. However, RGB based Re-ID

systems have limitations in surveillance when lighting is either very poor, since RGB

based cameras cannot capture sufficient information in dark environments. Moreover,

when people change their clothes in the long-term monitoring system, color becomes

unreliable (see Fig. 3.1). In comparison to RGB cameras, depth cameras can capture

video even in low lighting conditions. So, it is possible to extract depth information

and the body skeleton using depth cameras [46] (e.g., Microsoft Kinect) in dark

environments. The Kinect sensor in particular, can capture the depth information of

each pixel by using an infrared sensor, regardless of the pedestrian’s color appearance

and illumination in indoor environments (see Fig. 3.2).

Most existing works in person Re-ID emphasize on either RGB camera networks

or depth camera networks [46, 51]. Some recent works utilize RGB-Infrared hetero-

geneous camera network [38, 39, 40, 41, 42]. While less sensitive than RGB, infrared

cameras can still be affected by illumination changes from real-world environments, as

well as temperature changes in the environment. Very few works use RGB-depth het-

erogeneous camera network for RGB-Depth cross-modality matching [36, 37]. In [37],

the authors propose a cross-modal distillation network for person re-identification

across RGB and depth sensors while Zhuo et al. [36] proposes a dictionary learning

based method on heterogeneous camera networks that contain RGB and depth im-
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Figure 3.1: Illustration of change of light and clothes across different cameras in
different times and locations. (a) Same person in different lighting conditions. (b)
Same person in different times of the day with different clothes

ages. Specifically, the authors in [36] proposed two kinds of edge gradient features for

RGB images, which are the classic Histogram of Oriented Gradient (HOG) [71] and

Scale Invariant Ternary Patterns (SILTP) [12]. Both of them can describe the body’s

shape coarsely. For depth images, they extract Eigen-depth features from 3D point

clouds of segmented torso and head parts only.

In this work, we propose a body partitioning method and HOG based feature ex-

traction technique on both modalities because it captures edge or gradient structures

which represent local shapes in scenes. In [36], they extract features only from seg-

mented regions (head and torso part) from the depth domain. However, to the best

of our knowledge, our work is the first attempt to extract edge gradient features on

both RGB and depth modalities at the same time. To learn discriminant features, we

first apply Principle Component Analysis (PCA) for dimensionality reduction, then

we exploit the beneficial properties of Linear Discriminant Analysis (LDA) within the

PCA subspace to find the low intra-class variation and high inter-class variation of

the data. This allows us to gain good performance than the existing methods for the

task of person re-identification on heterogeneous camera networks.
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Figure 3.2: Examples of RGB and depth images captured in indoor environments. In
Row 1, columns 1, 4, 5 and 6 show the RGB images in good illumination conditions,
with columns 2 and 3 in poor illumination conditions accordingly. Row 2 shows the
depth images of all RGB images.

We tested our methods on two publicly available datasets, the BIWI RGBD-ID [49]

and IAS-Lab RGBD-ID [47]. Our contributions can be summarized as follows:

1. We propose a body partitioning method and HOG based feature extraction

technique on both modalities, RGB and Depth domains, which extract local shape

information from the image. To the best of our knowledge, this is the first attempt

to extract edge gradient features on both modalities.

2. We exploit PCA and LDA based metric learning approach to increase re-

identification accuracy.

3. Extensive experiments show the effectiveness of the proposed method over two

RGB-D benchmark re-identification datasets.

3.2 Methodology

Our re-identification approach has three distinct phases: (1) Feature extraction, (2)

Metric learning, and (3) Feature matching. The overall system is illustrated in Fig.

3.3.
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Figure 3.3: Overview of our proposed approach. In the training stage, labeled image
pairs from RGB and depth cameras are used to jointly learn the discriminative fea-
tures by LDA. After dimensionality reduction, the projected features are matched by
using Euclidean distance in the testing stage.

3.2.1 Feature extraction

In this section, we give the details of feature extraction using HOG [71], which extracts

features from both camera images. HOG has been widely accepted as one of the

best features to capture edges or local shape information. Though HOG can extract

features from a true color (RGB and LAB color spaces) or grayscale images, we

find extracting features from grayscale images works best in our RGB-depth setup.

According to our proposed method (see Fig. 3.3), RGB images are captured by an

RGB camera and depth images captured by a depth camera (e.g. Kinect or Intel

RealSense Depth camera) on the heterogeneous camera network. To facilitate cross-

modal learning, our aim is to first make the images from the RGB and depth domains

as similar as possible. Since RGB images have three color channels, we need to convert

it to a single channel for convenience because the Kinect sensor depth images are 16-

bit depth monochrome images with 65,536 levels of sensitivity.

In this work, we divide a person image into six horizontal stripes (see Fig. 3.4).

This is a generic human body partitioning method that is widely used in existing

methods [72, 73] to capture distinct areas of interest. For HOG features, each strip
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is further divided into 2Ö2 blocks of 8Ö8 pixel cells with 50% overlapping blocks,

and each cell contains 9 orientation bins. Each strip returns the features as a 1-by-v1

vector. Finally, the feature vectors of all 6 strips are concatenated to construct a final

feature vector of 1-by-d, where d=v1 + . . . +v6, is inside an image window. Since

the histograms are computed for regions of a given size within a window, HOG is

robust to some location variability of body parts. HOG is also invariant to rotations

smaller than the orientation bin size.

Figure 3.4: A spatial representation of human body is used to capture visually distinct
areas of interest. The representation employs six equal-sized horizontal strips in order
to capture approximately the head, upper and lower torso and upper and lower legs.

3.2.2 Metric learning

In the metric learning approach, we first extract features for each image, and then

learn a metric with which the training data have strong inter-class differences and

intra-class similarities. In such a case, we employ linear discriminant analysis (LDA)

to determine a set of projection vectors maximizing the between-class scatter matrix

(Sb) while minimizing the within-class scatter matrix (Sw) in the projective space.

However, LDA often suffers from issues such as small sample size and high dimension-

ality (so there are too many variables). When there are not enough training samples

and/or the dimensionality is too high, (Sw) may become singular, and it is difficult to

compute the LDA vectors. In our work, we use a two-stage approach PCA+LDA [74]

to address this problem. First, we reduce the feature dimensionality using Principal

Component Analysis (PCA), and then LDA is applied on the reduced PCA subspace,

in which (Sw) is non-singular.
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LDA tries to find the projection matrix W maximizing the ratio of the determinant

of Sb to Sw,

W = arg max

∣∣∣∣W TSbW

W TSwW

∣∣∣∣ (3.1)

Consider that the training set contains C classes which are taken from the RGB

camera and depth camera, and each class Xi has ni samples. Sb and Sw are defined

as,

Sb =
C∑
i=1

ni(µi − µ)(µi − µ)T (3.2)

Sw =
C∑
i=1

∑
x̄k∈Xi

(x̄k − µi)(x̄k − µi)T (3.3)

where µ is the mean of all data, µi is the mean for the class Xi, and x̄k is the sample

belonging to class Xi. W can be computed from the eigenvectors of S−1
w Sb [75]. The

eigenvectors corresponding to the first m largest eigenvalues are used to construct the

projection matrix.

3.2.3 Feature matching/classification

After obtaining the projection matrix, we aim to recognize a certain person on hetero-

geneous camera network. The goal of our cross-modal person re-identification system

now is to find a person image that has been selected in the depth camera (probe

image) in all images from the RGB camera (gallery images). This is obtained by cal-

culating the Euclidean distances between the probe image and all gallery images using

the learned metric, and returning those gallery images with the smallest distances as

potential feature matches.

3.3 Experiments

In this section, we evaluate the performance of our approach by performing exper-

iments on two RGB-D person re-identification datasets BIWI RGBD-ID [49] and

IAS-Lab RGBD-ID [47] recorded by Microsoft Kinect cameras. Both datasets target

long-term people re-identification from RGB-D cameras. In our work, besides the

HOG based feature extraction technique, we also experimented on two well-known

local shape descriptors SILTP [12] and LBP [76, 77] for both datasets. The SILTP

descriptor is an improved operator over LBP [12].

24



3.3.1 Datasets

BIWI RGBD-ID [49]. This dataset has three groups of sequences, namely “Train-

ing”, “Still” and “Walking”, each of which contains groups of 50, 28 and 28 people

respectively with different clothes, and collected on different days and in a different

scenes. Some sample images are shown in Fig. 3.5, which are taken from ”Training”

and ”Still” groups. Each person is associated with about 300 sequence of frames of

depth images, RGB images and skeletons. The BIWI dataset consists of RGB images

with a resolution of 1280× 960 and depth images with a resolution of 640× 480.

Figure 3.5: Example of the RGB and their corresponding depth images of the same
person with different clothes, and captured on different days and in different indoor
locations.

IAS-Lab RGBD-ID [47]. In the IAS-Lab RGBD-ID dataset, there are 11 different

people. This dataset contains three groups of sequences “Training”, “TestingA” and

“TestingB”, and each person performs out-of-plane rotations on himself and walks

in the recordings. There are about 500 frames of depth images, RGB images and

skeletons for each person. The first (Training) and second (TestingA) sequences were

acquired when same person was wearing different clothes (see Fig. 3.6), while the

third one (TestingB) was collected in a different room, but with the same clothing

as in the first group (Training). Some sequences in ”TestingA” and “TestingB” were

recorded under low lighting (see Fig. 3.7). The IAS-Lab dataset consists of RGB im-

ages with a resolution of 640× 480 and depth images with a resolution of 640× 480.
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Figure 3.6: Example of the RGB and their corresponding depth images of the same
person with different clothes.

Figure 3.7: Example of the RGB and their corresponding depth images of the same
person with different lighting conditions.

Data Pre-processing. As depth images are single channel, so we convert all RGB

images to gray scale images. Before HOG feature extraction, all depth and RGB

images are resized to 256 × 192 to maintain the original aspect ratio of the images,

which retain edge gradient shape without distortions.
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3.3.2 Evaluation Metrics

We show the results in terms of recognition rate as a cumulative matching charac-

teristic (CMC) curve and rank-k accuracy, which are common practice in the Re-ID

literature [46]. Rank-k accuracy is the cumulative recognition rate of correct matches

at rank k. The CMC curve represents the cumulative recognition rates at all ranks.

The evaluation is repeated 10 times and the average results are reported. For quan-

titative evaluation, the average rank 1, 5 and 10 accuracy performance measures are

reported. In this work, all results are reported using the single-shot strategy, where

one image per sample is randomly selected as the gallery. Even though multiple im-

ages (which refer as multi-shot) can be used as query and gallery set to increase the

re-identification accuracy, it computational cost is high over single-shot.

3.3.3 Compared Methods

To evaluate the effectiveness of our approach, we compare our method with a re-

cently proposed cross-modal re-identification approach on a heterogeneous camera

network [36, 37]. In [36], the authors performed the Re-ID task across the depth

and RGB modalities and proposed a dictionary learning based method to encode

different-modality body shape features including an edge gradient feature and the

Eigen-depth feature for the BIWI RGBD-ID and RGBD-ID datasets. In [37], a deep

neural networks is proposed for cross-modal person re-identification between RGB

and depth modalities. In our work, we use PCA and LDA based metric learning

method for edge gradient feature extraction on both modalities. Besides HOG fea-

tures, we also investigate two local body shape descriptors including SILTP and LBP

on our proposed approached. These feature descriptors are extracted using same

algorithm for both modalities. LBP has a nice invariant property under monotonic

gray-scale transforms, but it is not robust to image noise. SILTP improves on LBP

by introducing a scale invariant local comparison tolerance and robustness to image

noise [12].

3.3.4 Evaluation on BIWI RGBD-ID

We use the complete “Training” and “Still” groups in our experiment, hence there are

78 video sequences (samples) in total. As in [36] same person with different clothing

is considered as a separate instance. we randomly select five frames each from the

RGB and depth video sequences for each sample. By convention, we randomly choose

about half of the samples, 40 pedestrians for training and the remaining for testing.
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Each experiment is carried out in two cases. For the first case, we select RGB images

as the gallery and depth images as the probe, and in the second case, we use depth

images as the gallery and RGB images as the probe. Table 3.1 reports the results with

single-shot setting and compare with other existing methods [36, 37], where in [36]

no detailed information on the evaluation procedure is given. In [36, 37], public codes

are not available. It is also hard and time consuming to implement the all methods.

Therefore, we couldn’t verify the results under this setting.

Table 3.1: Average accuracy of the existing methods and our proposed approach for
different scenarios on the BIWI dataset.

Approaches
Gallery-RGB, Probe-Depth Gallery-Depth, Probe-RGB
rank-1
(%)

rank-5
(%)

rank-10
(%)

rank-1
(%)

rank-5
(%)

rank-10
(%)

Eigen-depth HOG,
CCA [36]

6.31 27.63 40.79 6.31 24.21 40.79

Eigen-depth SILTP,
CCA [36]

6.58 27.37 45.00 8.42 26.32 41.58

Eigen-depth HOG,
LSSCDL [36]

7.11 28.42 41.32 8.42 27.11 46.05

Eigen-depth SILTP,
LSSCDL [36]

7.37 29.47 50.26 9.47 24.21 40.26

Eigen-depth SILTP,
Dictionary learn-
ing [36]

9.21 26.32 46.05 12.11 26.32 41.58

Eigen-depth HOG,
Dictionary learn-
ing [36]

11.32 30.26 48.16 11.84 28.42 44.47

Cross-modal distil-
lation network [37]

29.23 70.50 88.13 26.85 65.88 84.13

LBP, PCA+LDA
metric learning
(Ours)

35.01 82.51 95.08 34.30 82.53 95.21

SILTP, PCA+LDA
metric learning
(Ours)

36.89 84.20 96.52 36.14 83.34 95.21

HOG, PCA+LDA
metric learning
(Ours)

41.43 82.51 94.36 36.52 79.73 92.38

Table 3.1 shows that our approach outperforms all the existing methods [36, 37].

In [36], the authors also compared their method with Least Square Semi-Coupled

Dictionary Learning (LSSCDL) [78] and Canonical Correlation Analysis (CCA) [79].
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In [37], though the authors proposed a deep neural network to transfer knowledge

from one modality to a second modality to solve the re-identification task across the

two modalities (RGB and depth), they failed to achieve good result because of the

intrinsic nature of data. In the results, we also see that when LBP and SILTP features

are extracted from both modalities and we apply our metric learning approach, then

results also outperform the method proposed by [36, 37] on the heterogeneous camera

network. Our method achieves 41.43%, 36.89% and 35.01% rank-1 accuracy for HOG,

SILTP and LBP features, respectively when we select RGB as gallery and depth as

probe. However, when we choose depth as gallery and RGB as probe, we obtain

36.52%, 36.14% and 34.30% rank-1 accuracy, which are slightly lower than previous

settings. The average results of the three local shape descriptors with our metric

learning approach is shown in Fig. 3.8 using a CMC curve over 10 trials.

Figure 3.8: Performance on BIWI RGBD-ID (single-shot) dataset for three local
shape descriptors with our approach, where we set Gallery-RGB and Probe-Depth
images.

3.3.5 Evaluation on IAS-Lab RGBD-ID

On this dataset, the evaluation also follows the same settings as with the BIWI

dataset with one exception. In this experiment, we randomly select ten frames from
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the RGB and depth images to avoid singularity problem with LDA. We use the

complete “Training” and “TestingA” groups in our experiment, hence there are 22

samples in total. By convention, we randomly choose exact half of the samples, 11

pedestrians for training and the remaining for testing. The average rank-1, rank-5

and rank-10 accuracies over 10 trials of evaluation are reported in Table 3.2. The

performance of the tested methods is shown in Fig. 3.9 and 3.10 using a CMC curve

over 10 trials.

Figure 3.9: Performance on IAS-Lab RGBD-ID (single-shot) dataset for three local
shape descriptors with our approach, where we set Gallery-RGB and Probe-Depth
images.

Table 3.2: Average accuracy of our proposed approach for different scenarios on the
IAS-Lab dataset.

Approaches
Gallery-RGB, Probe-Depth Gallery-Depth, Probe-RGB
rank-1
(%)

rank-5
(%)

rank-10
(%)

rank-1
(%)

rank-5
(%)

rank-10
(%)

LBP, PCA+LDA
metric learning
(Ours)

34.11 94.38 99.94 33.71 95.45 99.74

SILTP, PCA+LDA
metric learning
(Ours)

37.20 95.33 100 35.24 96.04 99.78

HOG, PCA+LDA
metric learning
(Ours)

38.93 96.28 99.89 38.21 96.80 99.99
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Figure 3.10: Performance on IAS-Lab RGBD-ID (single-shot) dataset for three local
shape descriptors with our approach, where we set Gallery-Depth and Probe-RGB
images.

As observable, we obtain better result on both datasets (BIWI and IAS-Lab) when

we select RGB images as gallery and depth image as probe. This implies that our

method is consistent and effective for this setting.

3.4 Conclusion

In this paper, we have presented a cross-modal re-identification system for RGB and

depth heterogeneous camera networks. This is in contrast to most existing camera

networks, which are based on RGB cameras only. Such RGB only camera networks

tend to fail in poor lighting conditions or dark environments. To the best of our

knowledge, ours is the first attempt at cross-modal person re-identification where

edge gradient features for local shape descriptors are used the same for both modali-

ties. We have also exploited an effective metric learning approach to obtain a better

re-identification matching score across the RGB and depth modalities. Experimental

results on two benchmark RGB-D person re-identification datasets show the effec-

tiveness of our proposed approach for the cross-modal re-identification problem.
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Chapter 4

Depth Guided Attention for
Person Re-identification in
Multi-modal Scenario

4.1 Introduction

In recent years, Person re-identification (Re-ID) has gained great attention in both the

computer vision community and industry because of its practical applications, such as

in forensic search, multi-camera tracking and public security event detection. Person

re-identification is still a challenging task in computer vision due to the variation

of person pose, misalignment, different illumination conditions and diverse cluttered

backgrounds. Fig. 4.1 shows a typical person re-identification system, where the task

is to match the unknown probe with a set of known gallery images captured over

non-overlapping cameras. It can be clearly observed from Fig. 4.1 that background

clutter here in the scene works as the source of noisy information. And the trained

model could be suffering from over-fitting as noisy information could propagate to it

as salient features.

State-of-the-art approaches in Re-ID deal with this problem by relying on different

attention-based mechanisms [63, 64, 65, 66]. All state-of-the-art attention-based Re-

ID approaches can be placed into two categories: whole body attention and part-

based attention. In the former case, methods focused on whole body attention, fully

focused on the foreground while part-based methods focus more on local body parts.

In all of these cases, methods rely on complex dedicated architectures which hinder

the processes to deploy them in real world applications due to their large and over-

parametrized models. Moreover, these methods are mainly based on RGB input that

do not leverage additional information from other sources such as depth images.
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Figure 4.1: Illustration of challenges for a typical re-identification system. Sample
images are taken from [80].

In our work, we emphasize how to extract discriminative and robust features using

a depth sensor-based camera (e.g. Microsoft Kinect) when an individual appears on

different cameras with diverse cluttered backgrounds. Specifically, whenever videos

are recorded with a Kinect camera (i.e. RGB-D sensor) for each person, the Kinect

SDK provides RGB frames, depth frames, the person’s segmentation mask and skele-

ton data [49] with low computational effort.

In this research, we introduce depth guided binary segmentation masks to con-

struct masked-RGB images (i.e. foreground images), where masked-RGB images

retain the whole-body part of a person with different viewpoint variations and pose

(see Fig. 4.2). In this work, we also focus on long-term person re-identification for

RGB-D sensors with different pose variations of a person, which is suited to our
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proposed approach.

Figure 4.2: (a) Illustration of depths and their corresponding masks. (b) Examples
of RGB images [58] and their corresponding body regions extracted directly with the
masks.

Most previous methods directly learn features from the whole image which contain

a person’s body with a cluttered background. Recently, several deep learning methods

have been proposed to learn features from the body parts [30] and pose[84, 85]. These

methods have been proved effective through extracting features exactly from the body

part rather than the background regions in the person image (i.e. pedestrian bounding

box). It indicates that eliminating the background clutter in each person image is

helpful for improving the performance of person re-identification.

This work also proposes a new deep learning Re-ID framework that takes into

ac-count the additional information from the depth domain, thanks to the depth

camera. Unlike past methods, the proposed approach exploits the advantage of using

the depth image to generate a person’s segmentation mask that helps us to develop

deep learning methods which focus only on the foreground.
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We evaluated the proposed method on the publicly available RGB-D dataset

Robot-PKU RGBD-ID. Experimental results show the effectiveness of our proposed

method. The contributions of this work can be summarized as follows:

1. We introduce a depth guided (DG) attention-based person re-identification

framework. The key component of this framework is the depth-guided fore-ground

extraction that helps the model to dynamically select the more relevant convolutional

filters of the backbone CNN architecture.

2. Extensive experiments show the effectiveness of the proposed method in a

depth-based benchmark re-identification dataset.

4.2 Methodology

In this section, we present our proposed depth guided attention-based person Re-ID

in detail. First, we describe the overall framework of our method, then we present

our triplet-based convolutional neural networks (CNNs) structure.

4.2.1 The Overall Framework

Our proposed pipeline is illustrated in Fig. 4.3. Our Re-ID framework consists of two

states: depth guided body segmentation and triplet loss for re-identification.

In the first stage, we extract the foreground part of each image with the help of

depth guided person segmentation masks. Once the foreground has been separated,

then we feed the extracted body part T into the CNN model for feature mapping.

For a given mask Im and corresponding RGB image Irgb, we separate the foreground

after performing following operation,

T = Im ⊗ Irgb (4.1)

where ⊗ represents the element-wise product.

In the second stage, we describe the whole training procedure for Re-ID with

CNN blocks. All the CNN blocks share parameters (i.e. weights and biases). During

training, three CNNs take triplet examples (i.e. three foreground images), which

is denoted as Ti = (T ai , T
p
i , T

n
i ) and forming the i-th triplet, where superscript ‘a’

indicates the anchor image, ‘p’ indicates positive image and ‘n’ indicates negative

image. ‘a’ and ‘p’ come from the same person while ‘n’ is from a different person.
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Figure 4.3: Triplet training framework for re-identification. It is composed of two
stages: 1) Depth guided body segmentation and 2) Body segmented images are fed
into three CNN models with shared parameters, where the triplet loss aims to pull
the instances of the same person closer and at the same time, push the instances of
different persons farther from each other in the learned feature space.

Foreground images are fed into the CNN model and maps the triplets Ti from the

raw image space into a learned feature space Fi = (F a
i , F

p
i , F

n
i ). For details, when a

sample image is fed into the CNN model, it maps to the deep feature space F = ϕ(x),

where ϕ(·) represents the mapping function of the whole CNN model and x is the

input representation of the corresponding image T .

4.2.2 Triplet Loss

The CNN model is trained with triplet loss function introduced by Weinberger and

Saul [92]. In particular, the triplet loss has been shown to be effective in state-of-

the-art person Re-ID systems [26, 81]. The triplet loss function aims to reduce the

distance of feature vectors (i.e. F a
i and F p

i ) taken from the same person (i.e. a and
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p) and enlarge the distance between different persons (i.e. a and n). It is defined as

Ltrp = max
{

0,
∥∥F a

i − F
p
i

∥∥2

2
−
∥∥F a

i − F n
i

∥∥2

2
+m

}
(4.2)

where
∥∥ · ∥∥2

2
is the squared Euclidean distance and m is a predefined margin which

regularizes the distance. In our work, we train our model with margin m = 0.3. We

use the Euclidean distance in our all experiments because the authors in [26] notice

that using the squared Euclidean distance makes the optimization more prone to

collapsing, whereas using an actual (non-squared) Euclidean distance is more stable.

Triplet generation is crucial to the final performance of the system. When the

CNN is trained with the triplet inputs for a large-scale dataset then there can be an

enormous possible number of combinations of triplet inputs (because triplet combi-

nations increase cubically), making the training of all possible triplets impractical.

To address this issue, we follow the Batch-hard triplet mining strategy introduced

in [26]. The main idea is to form a batch by randomly sampling P identities and

then randomly sampling K instances from each identity, and thus a resulting mini-

batch contains P × K images in total. The Batch-hard triplet loss (BHtrp) can be

formulated as

LBHtrp =
P∑
i=1

K∑
a=1

[
m+ max

p=1...K

∥∥F a
i − F

p
i

∥∥
2
− min

n=1...K
j=1...P
j 6=i

∥∥F a
i − F n

j

∥∥
2

]
+

(4.3)

where F a
i , F p

i and F n
i are normalized features of anchor, positive and negative samples

respectively, and
[
·
]

+
= max(., 0).

4.3 Experiments

In this section, we evaluate the performance of our approach by performing experi-

ments on the RobotPKU RGBD-ID [58] dataset.

4.3.1 Dataset

There are some publicly available RGB-D datasets [49, 47] which are very small in

size, making it difficult to train a good model using our deep learning approach.

Therefore, we consider the RobotPKU RGBD-ID dataset because this dataset con-

sists of a decent amount of instances and a large number of frames per instance with

different pose variations. This dataset was collected with Kinect sensors using the
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Microsoft Kinect SDK. There are 180 video sequences of 90 people, and for each per-

son still and walking sequences were collected in two separate indoor locations.

Data Pre-processing. Depth sensor-based cameras can capture depth images of a

person within a particular range. In situations where depth sensors cannot capture

depth frames properly, our system cannot extract the foreground part of the RGB

image (see Fig. 4.4). Therefore, in our experiment, we consider only those RGB

frames that have proper depth images of a person which can generate proper masks.

After pre-processing, we obtain about 7,109 frames for training and 6,958 frames for

testing, which come from 46 and 44 different identities respectively. We note that

this is not a serious limitation as our system still covers a wide range of real world

use cases.

Figure 4.4: Illustration of the limitation of depth sensor to capture the depth frame
of a distant person and their corresponding person segmentation mask.

4.3.2 Evaluation Protocol

We use cumulative matching characteristic (CMC) for quantitative evaluation, which

is common practice in the Re-ID literature. For our experimental dataset, we ran-

domly select about half of the people for training, and the remaining half for testing.

In the testing phase, for each query image, we first compute the distance between the

query image and all the gallery images using the Euclidean distance with the features

extracted by the trained network, and then return the top n images which have the

smallest distance to the query image in the gallery set. If the returned list contains an

image featuring the same person as that in the query image at the k-th position, then

this query is considered as rank k. In all our experiments, rank 1 result is reported.
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4.3.3 Implementation Details

In our experiments, we use ResNet-18 [32] as well as ResNet50 [32] as the backbone

CNN model. We use ResNet18 because it takes less memory and is computationally

efficient, and the parameters are pre-trained on the ImageNet dataset [93]. Following

the state-of-the-art methods, we also did our experiments using ResNet50. We train

our model with stochastic gradient descent with a momentum of 0.9, weight decay

of 5 × 10−4, and initial learning rate of 0.01. The batch size is set to 32 × 4 = 128,

with 32 different persons and 4 instances per person in each mini-batch. In our im-

plementation, we follow the common practice of using random horizontal flips during

training [21]. We resize all the images to 256× 128. Our framework is implemented

on the Pytorch [82] platform.

4.3.4 Experimental Evaluation

In this section, we report our experimental results on the RobotPKU RGBD-ID

dataset. To demonstrate the effectiveness of our method using the additional in-

formation available from the depth domain, first we evaluate our proposed approach

with different backbone architectures (such as ResNet50 and ResNet18) and variants

of the original backbones. Second, we compare our approach with the available state-

of-the-art methods for the given dataset.

Evaluation with different backbone. The goal of this experimental evaluation to

check the effectiveness of our proposed method for different backbone architectures.

As we already mentioned, we choose ResNet50 and ResNet18 as our backbone archi-

tectures. We also try different variants of those backbone architectures. To do so,

we adopt the stride version of ResNet50 and ReNet18 by changing the stride of the

last convolutional layer from 2 to 1, which basically increases the resolution of the

final activation layers. We report our results in Table 4.1, and summarize the results

using bar diagram in Fig. 4.5. Table 4.1 reports the rank-1 accuracy rate of the

methods on the experimental dataset. We can make the following observations from

these reported results:

ResNet50-strided indeed outperforms the original ResNet18 and ResNet18-strided

for both scenarios in all the measures, which confirms our claims that increasing

resolution on the final activation does affect the re-identification accuracy. The rank-1

performance improvement of the ResNet18-strided version over the original ResNet18

is 3.41% on both RGB and depth guided (DG) foreground images. From the above
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Table 4.1: Comparison results of our method with different backbone architectures
on RobotPKU dataset.

Method Backbone Rank-1
(%)

RGB ResNet18 84.09
DG foreground ResNet18 86.36
RGB ResNet18-strided 87.50
DG foreground ResNet18-strided 89.77
RGB ResNet50-strided 90.90
DG foreground ResNet50-strided 92.04

results, we can also see that our depth guided approach outperforms RGB for all the

backbone CNN architectures.

Figure 4.5: The performance of our method with different backbone networks on
RobotPKU dataset.

Our proposed depth-guided foreground approach consistently works well for both

versions of the considered backbone CNNs. The margin of improvement of our pro-

posed approach considering original backbone architectures are relatively higher than

their strided version. This implies that the finer details introduced by the proposed

architecture on backbone architectures further improves the re-identification accuracy.

Comparison with Representative State-of-the-art Methods. The aim of these

experiments is to analyze and compare the effectiveness of our proposed depth-guided

foreground method to relevant state-of-the-art methods. Table 4.2 and Fig. 4.6 re-

port the comparative performances of our methods with the state-of-the-art meth-

ods. Though some state-of-the-art methods [37, 83] performed experiments with this
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dataset, but all of these are cross-modality matching (i.e. RGB-Depth matching).

The performance of the cross-modality matching is very low, around 20%, that’s why

we do not include the results in this report.

In our experiments, we couldn’t verify the results of the existing methods because

public codes are not available, and it is also difficult and time consuming to implement

the whole procedure.

Table 4.2: Comparison with other existing methods on RobotPKU dataset.
Method Rank-1

(%)
HSV [58] 69.79
SILTP [58] 46.71
Concatenation [58] 72.95
Score-level [58] 74.95
FFM [58] 77.94
RGB+ResNet18-strided (Ours) 87.50
DG foreground+ResNet18-strided (Ours) 89.77
RGB+ResNet50-strided (Ours) 90.90
DG foreground+ResNet50-strided (Ours) 92.04

Figure 4.6: Comparison with different existing methods on RobotPKU dataset.

Our proposed approach considerably outperforms the state-of-the-art in all the

measures. Among the alternatives, SILTP [58] performs worse while using hand-
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crafted features which are mostly biased by the color or textures. The margin of

improvement over the high performing state-of-the-art FFM (feature funnel model)

is 14.1%. In FFM, the authors use both appearance and skeleton information provided

by RGB-D sensors. The performance of the state-of-the-art methods varies signifi-

cantly depending on their backbone architectures. We demonstrate the results of our

method using different backbones and its variants in the previous section. Never-

theless, our proposed approach consistently outperforms the state-of-the-art methods

irrespective to their backbone architectures.

Our proposed approach does not rely on complex dedicated architectures for ex-

tracting foreground as it does in most of the state-of-the-art works. Thus, our pro-

posed approach is computationally efficient and provides better recognition accuracy

using depth data, which can be useful to deploy in real-time applications.

4.4 Conclusion

In this work, we have presented a depth guided attention-based re-identification sys-

tem. The key component of this framework is the depth-guided foreground extraction

that helps the model to dynamically select the more relevant convolutional filters of

the backbone CNN architecture, for enhanced feature representation and inference.

Our proposed framework requires minimal modification to the backbone architecture

to train the backbone network. Experimental results with a particular implementa-

tion of the framework (Resnet50 and Resnet18 with triplet loss) on the benchmark

dataset indicate that the proposed framework can outperform related state-of-the-art

methods. Moreover, our proposed architecture is general and can be applied with a

multitude of different feature extractors and loss functions.
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Chapter 5

Fusion in Dissimilarity Space for
RGB-D Person Re-identification

5.1 Introduction

Person re-identification (Re-ID) is one of the most important parts of intelligent

surveillance systems, which can recognize an individual across non-overlapping camera

views. Person re-identification is a challenging task in computer vision because the

visual appearance of an individual changes due to the variations in viewing angle,

illumination intensity, pose, occlusion and background clutter. There have been a

number of proposed approaches to address these problems based on conventional

RGB cameras [86, 24, 87, 88, 12, 89, 23, 90] and recent invented modern RGB-

D sensors [54, 46, 47, 48, 49, 50, 91]. Based on conventional RGB cameras, Re-ID

researchers perform RGB-RGB matching, which is the most common scenario. While

the RGB modality has been widely used, other modalities (i.e. depth and skeleton)

can also be used as an additional information by taking advantage of RGB-D sensors

to tackle some constraints (e.g. illumination), and form robust features by combining

with visual features (i.e. RGB).

Most of the above mentioned RGB-D sensor-based Re-id works propose hand-

crafted methods to extract new types of features from depth and skeleton joint points.

These types of features are invariant against many variations such as illumination

changes. Some Re-ID researchers combine these features with appearance features to

enhance the Re-ID accuracy using feature-level fusion [55] and score-level fusion [56,

57, 58] techniques. In the most recent literature, some researchers have started to use

deep learning methods for RGB-D person Re-ID [59, 60, 61]. These deep learning Re-

ID approaches combine RGB-D sensor-based multi-modal features using the feature-

level fusion strategy (see Fig. 1(a)) [59, 60] where [59] uses a multi-modal fusion layer
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to fuse depth and RGB appearance features, and [60] designs a uniform and variational

multi-modal auto-encoder at the top layer of their proposed deep network.

Figure 5.1: (a) A schematic of typical re-identification frameworks with deep learning.
Current approaches focus on a feature-level fusion strategy with a single trained
model. (b) Different from them, we use two individual trained models to extract
features from 3-channel RGB and 4-channel RGB-D images accordingly.

These approaches, however, use a single trained model for multi-modal features

(i.e. RGB and Depth) where they use 3-channel RGB and processed depth images

(i.e. converted to 3-channel image) to increase Re-ID performance. In [61], two

CNN streams (RGB CNN and depth CNN) separately process RGB image and depth

image, and then features from the last fully connected layer of the both CNNs are
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fused for jointly learning Re-id framework. Although these approaches achieve higher

re-identification accuracies, the feature-level fusion may lead to the model being over-

fitted as the fusion of noisy/heterogeneous features result in the noisy parts of the

features to be dominated in the decision process. In our work, we address this issue

by leveraging the fusion in dissimilarity space for multi-modal images (i.e. RGB-D)

to increase the re-identification accuracy.

In this work, we focus on two individual modes instead of a single mode for RGB-

D person re-identification (see Fig. 5.1). Unlike most existing learning-based RGB-

D person re-identification methods which exploit the RGB and depth information

from two different channels but fuse in a single fusion layer under a joint learning

framework, we emphasize on two individually trained models based on 3-channel RGB

and 4-channel RGB-D images (see Fig. 5.2), and compute the dissimilarity between

query (i.e. RGB/RGB-D) and gallery (i.e. RGB/RGB-D) using feature embeddings

extracted from two different trained models. The calculated dissimilarities for two

individual modes are then fused in dissimilarity space to obtain final matching scores

between query and gallery.

Figure 5.2: Formation of a 4-channel RGB-D image for person Re-ID input.

In this work, we take RGB and depth information in the form of RGB and RGB-D

for two individual models. Therefore, we have the privilege to get the ensemble of

RGB and RGB-D based trained models in dissimilarity space. Ensembling in such

scenarios helps us to overcome the overfitting problem, while conventional feature
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fusion approaches may suffer from overfitting due to the fusion of noisy/heterogeneous

feature points.

Generally, depth information is robust to the variations of illumination, viewpoint,

and resolution. In our work, we use RGB-D images which contain one more channel

of depth information when compared with RGB images (see Fig. 5.2) and exploit the

advantage of having an extra channel in the form of an illumination invariant depth

image, and we also adjust the 4-channel RGB-D input with a 4-channel adaptive

CNN in our Re-ID framework.

The main contributions of this work are as follows:

� First, we propose a novel Re-ID technique that exploits the advantage of using

multi-modal data for fusing in dissimilarity space, where we design a 4-channel

RGB-D image input in the Re-id framework.

� Second, we present an RGB-D Re-ID dataset including 58 identities. For each

identity, a sequence of RGB and depth images is captured by the Intel RealSense

Depth Camera D435 [9] in three different indoor locations with different illumi-

nation conditions.

� Finally, experimental analysis on our proposed dataset and two publicly avail-

able datasets indicate that fusion in dissimilarity space assists to increase the

recognition accuracy compared to fusion in feature space

The remainder of the chapter is organized as follows. In section 5.2, we describe

our dissimilarity-based Re-id framework using 3-channel RGB and 4-channel RGB-

D sensor data, and our collected dataset SUCVL RGBD-ID is described in section

5.3. In section 5.4, Th experimental results of our method on different datasets are

reported and compared with state-of-the-art methods. The general observations and

typical failure cases are discussed in section 5.5. Finally, we offer concluding remarks

in section 5.6.

5.2 Methodology

In this section, we present our proposed person re-identification method. Our pro-

posed method is illustrated with a flowchart in Fig. 5.1(b). We divide our whole

Re-ID framework into two phases. In the first phase, we train two models M1 and M2

using RGB and RGB-D images, respectively on the same training dataset. We refer
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to these models as “RGB CNN” and “RGB-D CNN”, respectively. Specifically, RGB-

D CNN takes RGB images and their corresponding depth images to form 4-channel

images as input. In the second phase, we calculate dissimilarity scores between the

probe and galleries on the same testing dataset for each individually trained model

and then finally fuse both scores in dissimilarity space.

Figure 5.3: Triplet training framework of re-identification. It is composed of two
stages: 1) 4-channel image formation with 3-channel RGB and 1-channel depth image
and 2) 4-channel images are fed into three 4-channel adaptive CNN models with
shared parameters, where the triplet loss aims to pull the instances of the same
person closer and at the same time, push the instances of different persons farther
from each other in the learned embedding space.

5.2.1 Model Training

In our proposed approach, RGB images are fed into three deep CNNs with shared

parameters and triplet loss is used to train the RGB CNN. We use ResNet50 [32] as
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the backbone for the RGB CNN and parameters are pre-trained on the ImageNet [93].

Ideally, ResNet50 accepts 3-channel input, but our Re-ID framework also needs to take

4-channel inputs. In Fig. 5.3, we present our Re-ID training framework with 4-channel

RGB-D image input. 3-channel RGB images can be easily used with conventional

pre-trained CNN models. But we require 4-channel RGB-D images as input to models

with shared parameters, also pre-trained on the ImageNet. So, we modify the first

convolution layer (by adding an extra 2D Conv layer) of ResNet50 in order to feed

the model with 4-channel RGB-D images (see in Fig. 5.4).

Figure 5.4: Adaptation of ResNet50 to 4-channel RGB-D image input.

Generally, ResNet50 should be first pre-trained on the ImageNet dataset to ini-

tialize the large numbers of parameters. In this work, we copy the parameters of the

layers of the RGB model and then fine tune the RGB-D model with the same weights

(w) of the RGB channels and 4th channel (depth channel) is initialized with the 3rd

component’s weights (see Fig. 5.4) to start the network training.

As like the RGB CNN model, we also train the RGB-D CNN model with triplet

loss function. We describe the whole training procedure with three 4-channel adaptive

CNN blocks (see Fig. 5.3) where all the CNN blocks share parameters (i.e. weights

and biases). For a given RGB image Irgb and corresponding depth image Id, we
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create a 4-channel RGB-D image Irgbd as input. During training, three 4-channel

adaptive CNNs take triplet examples (i.e. three Irgbd images), which is denoted as

Ti = (T ai , T
p
i , T

n
i ) and forming the i-th triplet, where superscript ‘a’ indicates the

anchor image, ‘p’ indicates hard positive image and ‘n’ indicates hard negative image.

‘a’ and ‘p’ come from the same person while ‘n’ is from a different person. RGB-D

images are fed into the 4-channel adaptive CNN model and maps the triplets Ti from

the raw image space into a learned embedding space Fi = (F a
i , F

p
i , F

n
i ). For details,

when a sample image is fed into the CNN model, it maps to the feature embedding

space F = ϕ(x), where ϕ(·) represents the mapping function of the whole CNN model

and x is the input representation of the corresponding image Irgbd. For each image

in the triplet examples, we calculate the gradient using the values of ϕ(F a
i ), ϕ(F p

i ),

ϕ(F n
i ) and

δϕ(Fa
i )

δw
,
δϕ(F p

i )

δw
,
δϕ(Fn

i )

δw
, which can be obtained by separately running the

standard forward and backward propagation.

The RGB-D CNN as well as RGB CNN networks are trained using a triplet

hard loss technique. In this technique, when a network is trained, the triplet loss

function reduce the distance of feature embeddings (i.e. F a
i and F p

i ) taken from the

same person (i.e. anchor ‘a’ and hard positive ‘p’) and enlarges the distance between

different persons (i.e. anchor ‘a’ and hard negative ‘n’) (see Fig. 5.3).

Triplet generation is an important factor to the final performance of the system.

We follow Batch-hard triplet mining strategy, similar to our previous method, to

tackle the generation of unnecessary number of triplet inputs. A batch is formed

by randomly sampling P identities and then randomly sampling K instances from

each identity, and thus a resulting mini-batch contains P ×K images in total. The

Batch-hard triplet loss (BHtrp) can be formulated as

LBHtrp =

all anchors︷ ︸︸ ︷
P∑
i=1

K∑
a=1

[
m+

hardest positive︷ ︸︸ ︷
max
p=1...K

∥∥F a
i − F

p
i

∥∥
2
−

hardest negative︷ ︸︸ ︷
min

n=1...K
j=1...P
j 6=i

∥∥F a
i − F n

j

∥∥
2

]
+

(5.1)

where F a
i , F p

i and F n
i are normalized feature embeddings of anchor, positive and

negative samples respectively, m is predefined margin and
[
·
]

+
= max(., 0).

Our whole training procedure is shown in Algorithm 1, which goes through all

the triplets in each mini-batch to accumulate the gradients for each iteration and

obtain model M2 for RGB-D images.
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Algorithm 1 shows the overall implementation of our training procedure for RGB-D images.

Input: Training samples of 4-channel RGB-D images {Ti}. Initialize the learning

rate µ, margin m, network parameters {w} and the number of iteration t← 0.

Output: Model M2

1: while t < T do

2: t← t+ 1

3:
δLBHtrp

δw
= 0

4: Form all training triplet samples Ti from randomly sampled P identities

and randomly sampled K instances from each identity;

5: for all the training triplet samples Ti do

6: calculate ϕ(F a
i ), ϕ(F p

i ), ϕ(F n
i ) by forward propagation;

7: calculate
δϕ(Fa

i )

δw
,
δϕ(F p

i )

δw
,
δϕ(Fn

i )

δw
by back propagation;

8: end for

9: update the parameters wt = wt−1 − µt δLBHtrp

δw

10: end while

11: return M2

As the same procedure, except initializing network parameters, we follow the Algo-

rithm 1 to obtain model M1 for RGB image inputs.

5.2.2 Fusion Technique

We calculate dissimilarity scores (i.e. a score represents the Euclidean distance be-

tween two samples) using feature embeddings extracted from both trained models

(M1 and M2) for a given set of gallery (G) and query (q) images (see Fig. 5.5). Then

we sum both dissimilarity scores using the score-level fusion strategy (as the most

of existing works for multi-modal cases follow this rule) in dissimilarity space with a

fusion weight α. The fusion strategy is formulated as

DFusion(q,G) = αDrgb(q,G) + (1− α)Drgbd(q,G) (5.2)

where Drgb(q,G) and Drgbd(q,G) are the dissimilarity scores calculated using RGB

and RGB-D feature embeddings respectively between each query sample (q) and

gallery set (G), and DFusion(q,G) is the final score between each query sample (q)

and gallery set (G). Algorithm 2 shows the fusion technique in dissimilarity space.
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Figure 5.5: Final matching score calculation for our proposed Re-ID approach.

Algorithm 2

Input: Query q, gallery set G and initialize the dissimilarity fusion weight α.

Output: Dissimilarity scores DFusion(q,G)

1: Load model M1, and extract query and gallery feature embeddings of RGB

images;

2: for each RGB query image and gallery set do

3: calculate the dissimilarity scores using the following equation

Drgb = arg min
IDi

D(q, IDi), IDi ∈ G

4: end for

5: Load model M2, and extract query and gallery feature embeddings of RGB-D

images;

6: for each RGB-D query image and gallery set do

7: calculate the dissimilarity scores using the following equation
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Drgbd = arg min
IDi

D(q, IDi), IDi ∈ G

8: end for

9: calculate final dissimilarity scores DFusion(q,G) according to Eq. (5.2)

5.3 SUCVL RGBD-ID Dataset Description

In this section, we describe our collected RGB-D Re-ID dataset. To the best of our

knowledge, there are five publicly available RGB-D datasets including RGBD-ID [50],

KinectREID [55], BIWI RGBD-ID [49], IAS-Lab RGBD-ID [47] and RobotPKU [58]

collected using the Microsoft Kinect Camera. All the above recorded datasets empha-

size mainly on viewing angle variations. Some sequences were recorded in different

lighting conditions in [47, 55]. Although most of these datasets are suitable for con-

ventional RGB-D Re-ID methods, it is difficult to train a good model for deep learning

methods because of the small size. Only RobotPKU dataset has a decent amount of

instances and a large number of frames per instance with different viewpoint varia-

tions, though depth images are noisy (often body parts are absent in some frames).

In our collected dataset, we emphasize on diverse lighting conditions in the recorded

environments and have no alignment problem between RGB and depth images.

Our RGB-D Re-ID dataset contains 172 video sequences of 58 people col-lected

using the Intel RealSense Depth Camera D435 and each person is captured under

about 74 sequences of frames. Video sequences were recorded in three separate in-

door locations on the same day, but different lighting conditions. The whole video

recording scenario is depicted in the Fig. 5.6. Three cameras, indicated as Cam1,

Cam2 and Cam3, were installed on the same floor of the building, but at three disjoint

locations. To create lighting variations, Cam1 was installed in such a location where

sunlight comes through two glass windows and changes the lighting condition of the

environment. Cam2 was installed in our laboratory with an indoor lighting environ-

ment. The location of the third camera was in a corridor where indoor light was shut

off, as a result the lighting condition was poor. All individuals were requested to walk

normally forward to the camera. These videos were recorded at 30fps. The dataset

includes synchronized RGB images (captured at a resolution of 1280Ö720 pixels) and

depth images. Although the Intel RealSense Depth Camera D435 can capture images

with a range up to 10m [9], we recorded all the videos within 5m ranges to get good

quality depth images. The depth sensor can capture the depth information of each

pixel by using infrared sensors, regardless of the pedestrian’s color appearance and

illumination condition in indoor environments.
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Figure 5.6: Overall video recording map.

As we setup up three cameras in three different illumination conditions, this makes

it more challenging to recognize people from three non-overlapping cameras. We can

see in Fig. 5.7, the RGB images of Cam1 are affected by sunlight which comes from

outside through glass windows and changes the lighting environment of the indoor

open space.

In Fig. 5.8, we show some example RGB and their corresponding depth images

which were recorded in indoor and low lighting environments using Cam2 and Cam3

respectively. Although there are visual differences among RGB images for both cam-

eras due to the lighting variations, depth images have no such differences (see in Fig.

5.7) because the depth sensors can capture illumination invariant high-quality depth

images.

In our dataset, about half of the people wore jackets and some individuals wore

face masks. Our dataset was designed for short-term person re-identification and

therefore, the same person wore the same clothes in different acquisitions.
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Figure 5.7: Example of RGB and their corresponding depth images. All images are
captured on the same day and location but different times. Columns 1, 2, and 3 show
the same person at different distances of view in normal lighting. Columns 4 and 5
show another person when sunlight comes through a glass window at a different time
of the same day.

Figure 5.8: Columns 1, 2, and 3 show RGB and corresponding depth images captured
by Cam2 in indoor lighting conditions, and columns 4 and 5 show the same person
in low lighting environments captured by Cam3 at a different indoor location.

5.4 Experiments

Our proposed approach is evaluated on three RGB-D Re-ID datasets: RGBD-ID [50],

RobotPKU RGBD-ID [58]] and our new proposed SUCVL RGBD-ID dataset. Al-

though there are some other RGB-D Re-id datasets available, we chose the RobotPKU

and RGBD-ID datasets for our experimental evaluation because of their large sizes.

5.4.1 Datasets

RobotPKU RGBD-ID. This dataset was collected with Kinect sensors using the

Microsoft Kinect SDK. There are 180 video sequences of 90 people, and for each
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person still and walking sequences were collected in two separate indoor locations.

However, in some sequences, some depth frames are noisy and often body parts are

absent in the images. This might happen because depth sensor-based cameras can

capture depth images of a person within a particular range. In situations where

depth sensors cannot capture depth frames properly, we discard all those frames us-

ing pre-processing techniques introduced in our previous method [91]. Therefore, in

our experiment, we consider only those RGB frames that have proper depth images

of an individual.

RGBD-ID. This dataset contains RGB and depth data for 79 individuals, and each

individual has four acquisitions (walking1, walking2, collaborative and backwards),

one rear view (backwards) and three frontal views (walking1, walking2 and collabo-

rative). In each acquisition, four or five RGB and 3D frames (3D point clouds) are

provided for each individual. Some individuals change their clothes in different ac-

quisitions. As we perform our experiment with 3-channel RGB images and 4-channel

RGB-D images, first we compute depth values from all 3D frames.

5.4.2 Evaluation Protocol

We use the cumulative matching characteristic (CMC) curve and mean average pre-

cision (mAP) for quantitative evaluation, which is common practice in the Re-ID

literature. For all experimental datasets, we randomly select about half of the people

for training, and the remaining half for testing. In the testing phase, for each query

image(RGB/RGB-D), we first compute the dissimilarity (dissimilarities are a vector of

Euclidean distance) between the query image and all the gallery images (RGB/RGB-

D) using the feature embeddings extracted by the trained network (RGB/RGB-D

model) (see Fig. 5.5), and then fuse both scores (RGB and RGB-D) in dissimilarity

space. Finally, our Re-ID system returns the top n images which have the lowest dis-

similarity to the query image in the gallery set. If the returned list contains an image

featuring the same person as that in the query image at the k-th position, then this

query is considered as rank k. We repeat the experiments 10 times, and the average

accuracies of rank 1, 5 and 10 are reported along with mAP. All results reported in

this paper are under a single query setting.

5.4.3 Implementation Details

We apply data augmentation techniques for both models (RGB and RGB-D) to in-

crease the dataset’s variability and improve network performance. All images are
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resized to 256× 192. In our implementation, we follow the common practice of using

random horizontal flips during training [21]. ResNet50 with pre-trained parameters

on ImageNet is adopted as the backbone network for the RGB model and we men-

tioned earlier in our proposed method section (5.2) how to train the RGB-D model

for 4-channel image input. We train both our models with stochastic gradient de-

scent with a momentum of 0.9, weight decay of 5× 10−4, and initial learning rate of

0.01. In our work, we set margin m=0.3 in Eq. 5.1 to train both models. We use

the Euclidean distance instead of squared Euclidean distance in all our experiments

because the authors in [26] notice that using the squared Euclidean distance makes

the optimization more prone to collapsing, whereas using an actual (non-squared)

Euclidean distance is more stable. The batch size is set to 20 × 4 = 80, with 20

different persons and 4 instances per person in each mini-batch. We set dissimilarity

fusion weight α = 0.5 in Eq. (5.2). This work is also implemented on the Pytorch

platform.

5.4.4 Experimental Evaluation

In this section, we report our experimental results on our own SUCVL RGBD-ID

dataset and the two other datasets mentioned above. To demonstrate the effectiveness

of our method, first we compare the results of our dissimilarity based fusion model

with two baseline models (RGB and RGB-D) as well as feature-level fusion of them.

Second, we compare our Re-id approach with the available state-of-the-art methods

for the given datasets.

Figure 5.9: The CMC curve of different baseline methods and our approach on the
SUCVL RGBD-ID dataset.
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Figure 5.10: The CMC curve of different baseline methods and our approach on the
RGBD-ID dataset.

Comparison with Baseline Models. The goal of this experiment is to check

the effectiveness of our proposed method (Fusion in dissimilarity space) and compare

with baseline models. The CMC curve of different baseline models and our method

on the SUCVL RGBD-ID, RGBD-ID and RobotPKU datasets are shown in Fig.

5.9, 5.10 and 5.11, respectively. Table 5.1, 5.2 and 5.3 summarize the CMC curves

reporting the rank-1, rank-5, rank-10 accuracies, and mAP for all the experimental

datasets. From the CMC curves, we see that our proposed fusion model outperforms

all the baseline models and feature-level fusion method especially at the top rank

for all experimental datasets, which confirms our claims that multi-modal fusion in

dissimilarity space increases the re-identification accuracy.

Figure 5.11: The CMC curve of different baseline methods and our approach on the
RobotPKU dataset.
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Table 5.1: Comparison results of our model with baseline models on SUCVL RGBD-
ID dataset.

Models
SUCVL RGBD-ID

rank 1 rank 5 rank 10 mAP
RGB 84.56 89.01 92.22 71.14
RGB-D 83.58 88.51 91.23 70.11
Feature-level
fusion

85.80 89.81 92.28 75.54

Ours fusion 87.65 90.86 92.46 76.94

Table 5.2: Comparison results of our model with baseline models on the complete
RGBD-ID dataset.

Models
RGBD-ID

rank 1 rank 5 rank 10 mAP
RGB 79.74 83.27 87.50 69.11
RGB-D 78.65 83.33 86.86 68.32
Feature-level
fusion

80.48 83.75 86.75 70.47

Ours fusion 82.05 84.74 88.20 71.86

Table 5.3: Comparison results of our model with baseline models on RobotPKU
dataset.

Models
RobotPKU

rank 1 rank 5 rank 10 mAP
RGB 91.35 94.19 95.43 86.29
RGB-D 89.63 93.45 95.80 84.27
Feature-level
fusion

92.22 95.18 95.73 87.56

Ours fusion 93.33 96.04 96.66 89.49

Table 5.1 shows that the mAP and rank-1 accuracy for the RGB model are 71.14%

and 84.56%, and for the RGB-D model 70.11% and 83.58%, respectively. While our

dissimilarity based fusion model increases the mAP to 76.94%, with 5.8% and 6.83%

gain, and rank-1 accuracy to 87.65%, with 3.09% and 4.07% gain, respectively. Table

5.2 gives the comparison results on the complete RGBD-ID dataset where the RGB

and RGB-D baseline models achieve 69.11% and 68.32% mAP, 79.74% and 78.65%

rank-1 accuracy respectively. With the help of our fusion mechanism the mAP is

increased to 71.86%, with 2.75% and 3.54% gain, and the rank-1 accuracy is increased

to 82.05%, with 2.31% and 3.4% gain, respectively. Table 5.3 reports the results on
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the RobotPKU dataset where mAP/rank-1 is 86.29%/91.35% for the RGB model and

84.27%/89.63% for the RGB-D model. Our fusion model improves the accuracy by

+3.2%/+1.98% and +5.22%/3.7% for mAP/rank-1 over RGB and RGB-D baseline

models accordingly. As shown in Tables 5.1, 5.2 and 5.3, the performance of our

fusion approach is also better than the feature-level fusion method by considering the

top rank and mAP for all experimental datasets.

Our proposed fusion approach consistently works well compared to the individual

mode as well as feature-level fusion method for all experimental datasets. This implies

that when the dissimilarity score vectors from two individual models (RGB and RGB-

D) are fused in dissimilarity space, which increases re-identification accuracy.

Figure 5.12: Effect of parameter α (shown by rank-1 and mAP accuracy) on the
SUCVL RGBD-ID dataset.

Effect of Parameter α. For all experimental datasets, we repeated the experi-

ments 10 times and estimated the average accuracies of rank 1, 5 and 10 along with

mAP. To analyze the effects of dissimilarity fusion weight α in Eq. (5.2), we randomly

choose one trial from the 10 trials and observe the effectiveness of α. we varied the

value of α from 0 to 1 in the interval of 0.1 to see how the performance changed. The

rank-1 accuracies and mAP under the different parameter settings are reported in

Fig. 5.12, 5.13 and 5.14 for SUCVL RGBD-ID, RGBD-ID and RobotPKU datasets,

respectively. It can be observed that, for all datasets, the rank-1 performance is im-

proved significantly within range from α = 0.2 to α = 0.6, however SUCVL RGBD-ID

extends the range to 0.8. Another evaluation measure, mAP, Fig. 5.12, 5.13 and 5.14

show that the best performance is approximately obtained when α = 0.5 because

mAP is calculated as the mean over all query images of the average precision. In our
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experimental evaluation, we set α = 0.5 to achieve the best performance of rank-1

and mAP.

Figure 5.13: Effect of parameter α (shown by rank-1 and mAP accuracy) on the
RGBD-ID dataset.

Figure 5.14: Effect of parameter α (shown by rank-1 and mAP accuracy) on the
RobotPKU dataset.

Comparison with the State-of-the-art Methods. We further compare our

proposed model with state-of-the-art methods on RGBD-ID and RobotPKU datasets.

RGBD-ID: On this dataset, we compare with several current proposed state-of-the-

art methods. As this dataset has four different groups and few people wore different

clothes in different acquisitions, some state-of-the-art methods disregarded those in-

dividuals who changed their clothes, and others considered the whole dataset in their

experiments. In our experiment, we consider all the aspects for fair comparison with

state-of-the-art methods.
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Imani et al. [48, 94] divide the dataset into two smaller databases where the first

one retains 59 people from walking1 and collaborative groups and the second one

retains 72 people from walking2 and backwards groups after removing the people

who changed their clothes in these groups. Table 5.4 reports the results with this

setting and compares with other methods. Our method achieves high accuracy on

rank-1 compared to other representative methods for both smaller datasets, although

rank-5 and rank-10 fail to outperform. Table 5.4 shows the recognition rate of the

walking1 and collaborative groups is slightly higher than the walking2 and backwards

groups, this is because the first groups are in frontal view however, but latter groups

are in the opposite view (frontal and back).

Table 5.4: Comparison of our proposed dissimilarity based fusion strategy with other
methods when the RGBD-ID dataset is subdivided into two datasets by disregarding
the people who changed their clothes. In all tables, * and ‘-‘ denote approximate
values and non-present results respectively.

Methods
Walking1-collaborative Walking2-backwards

rank
1

rank
5

rank
10

mAP rank
1

rank
5

rank
10

mAP

SGLTrP3+score
level [48]

76.58 - 99.35 - 72.58 - 95.91 -

GLVP3(Depth)
+ Skl. [94]

85∗ 97∗ 98∗ - 81∗ 94∗ 98∗ -

RGB+depth [94] 81∗ 90∗ 99∗ - 72∗ 86∗ 92∗ -
Ours Fusion 87.58 91.72 96.20 88.8 84.95 89.12 93.52 85.8

We also performed experiments on the whole RGB-D ID dataset. The perfor-

mance of our proposed method and other state-of-the-art methods on this dataset is

shown in Table 5.5. Our proposed fusion method in dissimilarity space for RGB-D Re-

ID achieves 82.05% rank-1 accuracy and 71.86% mAP, outperforming the compared

state-of-the-art methods. However, lower rank results of most of the state-of-the-

art representative methods are better, but this aspect is negligible since top rank

is the most significant for person re-identification tasks. The RTA [95], AIFL [96]

and DVCov+SKL [46] methods consider the walking1 and walking2 groups for all

individuals (79), where MMUDL [59] and UVDL [60] methods include the whole four

groups (walking1, walking2, collaborative and backwards) for their experiments. As

some individuals wear different clothes in different acquisitions in RGBD-ID dataset,

some state-of-the-art methods (MCMimplDIS multimodal [55] and APC-USG [54])

remove the corresponding tracks from different acquisitions and conducted experi-

ments. To compare our proposed approach with the method presented in [54, 55], we
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also remove the corresponding tracks and conduct experiments. Table 5.6 reports the

results with this setting and compare with both methods. The rank-1 recognition rate

of our method is 88.5%, against to the 77.7% of MCMimplDIS multimodal [55]. An

improvement of about 10.8% is achieved. Though, our approach fails to outperform

APC-USG [54], but very close to the performance, only 0.84% lower.

Table 5.5: Comparison of our proposed dissimilarity based fusion strategy with other
state-of-the-art methods when the entire RGBD-ID dataset is considered for experi-
mental evaluation.

Methods
RGBD-ID

rank 1 rank 5 rank 10 mAP
RTA [95] 52.4 - - -
AIFL [96] 59.4 61 - 64.5
DVCov+SKL [46] 71.74 88.4 - -
MMUDL [59] 76.7 87.5 96.1 -
UVDL [60] 76.7 92 98.2 -
Ours fusion 82.05 84.74 88.20 71.86

Table 5.6: Comparison of our proposed method with other state-of-the-art meth-
ods, where the people who change their clothes in different acquisitions, have been
discarded from the computation.

Methods
RGBD-ID

rank 1 rank 5 rank 10 mAP

MCMimplDIS multimodal [55] 77.7∗ 94∗ 99∗ -
APC-USG [54] 89.34 - - -
Ours fusion 88.50 90.87 93.12 84.09

Table 5.7: Comparison with other methods on RobotPKU dataset.

Methods
RobotPKU

rank 1 rank 5 rank 10 mAP
HSV [58] 69.79 - - -
SILTP [58] 46.71 - - -
Concatenation [58] 72.95 - - -
Score-level [58] 74.95 - - -
FFM [58] 77.94 - - -
Depth Guided (DG)
attention [91]

92.04 - - -

Ours fusion 93.33 96.04 96.66 89.49

As observable, our proposed score-level fusion for 3-channel RGB and 4-channel

RGB-D in dissimilarity space, outperforms feature-level fusion methods likeMCMimplDIS
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multimodal [55], MMUDL [59] and UVDL [60] in the top rank, which indicates that

fusion in dissimilarity space assists with increasing the recognition accuracy compared

to the fusion in feature space.

RobotPKU: On RobotPKU dataset, our proposed method outperforms all the

other methods and exceeds our previous model Depth Guided (DG) attention [91]

by +1.29% in rank-1, results are reported in Table 5.7.

5.4.5 Runtime Performance Evaluation

We evaluate the running time of our re-identification system. We use the NVIDIA

GeForce GTX TITAN X (GPU) to extract image features, and take SUCVL RGBD-

ID dataset as an example. In the testing phase, we use 5,955 gallery and 81 query

images which are taken from 27 individuals. As our method uses 3-channel RGB and

4-channel RGB-D images, we extract features separately using trained models M1

and M2. When we use 3-channel RGB images, it costs 47.573s to extract all features

and 65.018s for 4-channel RGB-D images, in total 112.591s. Hence, our method takes

18.65 × 10−3s in average to extract feature for each image. In addition, 81 queries

are evaluated against all gallery images (5,955), it costs 0.2247s. So, our proposed

method takes 2.77× 10−3s in average to obtain a rank list for each query image.

5.5 Discussion

In this section, we discuss the insights we observed in our experiments and typical

failure cases.

5.5.1 General Observations

We make the following general observations from experimental results on our proposed

dataset and two publicly available datasets.

� Among the different baseline models, feature-level fusion model achieves good

accuracy even though this model may cause overfitting problem because of the

direct fusion of two CNNs features extracted from two different modalities RGB

and depth. However, blindly fusing of heterogeneous features may not increase

discrimination power, as different features have different reliability. In contrast

to fusion in feature space, ensembling of 3-channel RGB and 4-channel RGB-

D based models in dissimilarity space mitigates the overfitting problem and
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achieves superior accuracy which is shown in Fig. 5.9, 5.10 and 5.11. From

these figures, we observe the effectiveness of our method for all experimental

datasets. Beside two public datasets, we also verified our method using our own

collected dataset (SUCVL RGBD-ID), which also outperforms the feature-level

fusion method (see in Fig. 5.9), margin of improvement 1.85% and 1.4% for

rank-1 and mAP, respectively.

� To verify the effectiveness of our method on different backbones of ResNet, we

replaced the Res-Net50 with a shallower architecture (ResNet18) as a backbone

network and performed the experiments on all experimental datasets. In this

case, we kept the value of all parameters (margin, learning rate, momentum,

weight decay and fusion weight) same as we set for ResNet50 and performed

the experiments for given datasets. We observed the slight improvement of our

fusion method over feature-level fusion for RobotPKU dataset, only 0.55% and

0.91% for rank-1 and mAP, respectively. For RGBD-ID dataset, results are al-

most same for our method and feature-level fusion for rank-1 and mAP. While

experimented with SUCVL RGBD-ID dataset, we achieved slightly higher ac-

curacy than feature-level fusion, 1.48% and 1.41% improvement for rank-1 and

mAP, respectively. For the first two datasets, improvement was very low, how-

ever, for third one, improvement was slightly higher. This is because first two

datasets were captured by Kinect depth sensor, which has limitation of captur-

ing depth images within a particular range [97], while third one were captured

by Intel RealSense depth camera which has wider range of capturing ability of

good quality depth images [9]. Therefore, the general observation is that our

dissimilarity based fusion method works well for deeper networks like ResNet50

than shallower network (ResNet18) for all experimental datasets.

5.5.2 Failure Cases Analysis

In this section, we illustrate the failure cases of our method, caused by two reasons:

limitation of capturing depth image and dissimilarity fusion weight.

Our proposed method is two steps process. In the first step, two models are

trained using 3-channel RGB and 4-channel RGB-D images. Depth sensor-based

cameras can capture depth images of a person within a particular range, for example,

operational range of Microsoft Kinect is between 0.8m and 4m. Although the Intel

RealSense Depth sensor can capture image with a range up to 10 meters, but good

quality depth image can capture within 6m. In situations where depth sensors cannot
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capture depth frames properly (see Fig. 5.15), our proposed system fail to train a good

model. Consequently, recognition rate drops significantly because feature embeddings

extracted from RGB-D trained model for a given set of gallery and query images are

not well formed.

Figure 5.15: Illustration of failure case caused by depth sensor.

In the second case, if we set fusion weight α ≤ 0 or α ≥ 1 in Eq. (5.2), our method

will fail.

5.6 Conclusions

In this work, we have presented a re-identification approach that exploits the ad-

vantages of having multi-modal images in the form of RGB-D. In this context, we

developed an effective fusion technique in dissimilarity space for 3-channel RGB and

4-channel RGB-D images to increase re-identification accuracy. Most existing Re-

ID approaches follow the feature-level fusion strategy, which may lead to the model

being overfitted in the fusion of noisy/heterogeneous features, so there are chances

of deterioration in the final recognition process. We have also proposed an RGB-D

Re-ID dataset which was captured under diverse lighting conditions which makes it

more challenging to recognize people. Experimental results on our collected dataset

and two other benchmark datasets show the efficiency of our proposed approach for

RGB-D person re-identification. Moreover, our proposed method is general and can

be applied to a multitude of different RGB-D based applications.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have presented three methods to tackle the challenges (i.e. very

poor lighting conditions, clothing changes, background cluttered problem and also

overfitting problem for multi-modal data.) of person re-identification with RGB-D

sensors for video-surveillance. In the first method, we have investigated a cross-modal

person re-identification to address the poor illumination and clothing changes problem

with RGB-D sensors by making use of their depth data. In the second method, we

have introduced a depth guided attention-based person re-identification approach to

tackle the diverse clutter background problem in multi-modal scenario, and our third

method is improved version of the previous method, where we fully use RGB and

depth modalities to improve the re-identification accuracy.

In cross-modal person re-identification, we proposed a heterogeneous camera net-

work where RGB cameras can capture RGB sequence of video frames in normal

lighting conditions and depth cameras can capture illumination and color invariant

depth sequence of video frames in very poor lighting conditions. To re-identify a per-

son across RGB and depth modalities, we also proposed a body partitioning method

and HOG based feature extraction technique on RGB and depth modalities. In ad-

dition, we have exploited a PCA and LDA based metric learning approach for person

re-identification which has the ability to maximize inter-class variations and min-

imize the intra-class variations. A rigorous experimental analysis on two publicly

available datasets, we have demonstrated the effectiveness of our cross-modal person

re-identification method.

In multi-modal scenario, first we proposed a deep learning person re-identification

framework in the form of attention mechanism to address diverse clutter background

problem where we separated foreground part of an RGB image with the help of
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depth-based additional information, unlike state-of-the-art methods of complex ar-

chitectures. Second, we propose a novel Re-ID technique that exploits the advantage

of using multi-modal data for fusing in dissimilarity space. In this method, we suc-

cessfully adapt 4-channel RGB-D image inputs in the Re-ID framework.This adaption

helps to use 4-channel RGB-D images and 3-channel RGB images separately to train

two models, and then calculate the scores from each individual model. Finally, fuse

the scores in the dissimilarity space which assists to overcome the overfitting problem

due to the heterogeneous data as a result system performance increase.

6.2 Future Work

In this thesis, we have presented three methods to address the constraints, such

as extreme low lighting conditions, clothing changes, background clutter, and also

overfitting problem for multi-modal data. There are still many open issues associated

with RGB-D and Infrared (IR) sensor-based person Re-ID problem, which we couldn’t

explore completely during this thesis period. Here, we mention two issues of multi-

modal and cross-modal person Re-ID problem, which we want to extend.

� As RGB-D sensors provide RGB, depth and skeleton information simultane-

ously, therefore, we have a plan to extend our multi-modal fusion work for com-

bining 4-channel RGB-D image features and skeleton-based features together

to form a complete representation of human body.

� As new generation surveillance camera can automatically switch to infrared

mode to capture the person image at night, therefore, we have a plan to extend

our cross-modality person Re-ID problem for visible thermal, which will play

important role in practical night-time video surveillance applications.
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