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Preface 

 

Securing energy is an important issue for any country to achieve economic development. For 

a country to stabilize its energy supply, mitigating the effects of changes in the energy price change 

is extremely important. Hence, policymakers engaged in securing energy must pay special 

attention to factors that could destabilize the energy prices. Recently, sudden shocks such as the 

2008 financial crisis and the COVID-19 pandemic have caused devastating impacts on energy 

prices, and it is becoming crucial to learn how such events can influence the energy market.  

Decarbonization is another factor that influences energy policy related to securing energy. 

Since the world’s energy supply still relies heavily on fossil fuels, many countries are struggling 

to reduce the use of fossil fuels. Being the world’s largest CO2 emitting country, China is now 

trying to cut its coal use and shift towards natural gas, which is known to emit less CO2 than coal. 

For China to continue its economic growth while shifting toward a lower CO2 emitting 

energy, it is imperative to understand how the Chinese fossil fuel markets are affected by sudden 

shocks and how the relationships between coal, crude oil, and natural gas are changing at this 

critical juncture, where the issue of climate change is becoming increasingly severe. However, to 

the best of my knowledge, only a few studies have investigated how the Chinese fossil fuel 

markets are affected by recent shocks such as the financial crisis of 2008 and the COVID-19 

pandemic, and how the relationships among the major fossil fuel markets are changing by 

focusing on the time-varying aspect of fossil fuel time series data. The time-varying aspect 

captures the effects of time-varying factors on the parameters estimated in the time series models. 

Thus, the current dissertation is distinctive in that it examines how the relationships among 

the fossil fuel time series variables change from a time-varying aspect. Specifically, I use the 

following time series methods: the time-varying parameter vector autoregression (TVP-VAR), 

recursive cointegration test, and Bayesian dynamic conditional correlation-multivariate 

generalized autoregressive conditional heteroskedasticity (DCC-MGARCH). 

First, the TVP-VAR model enables us to capture the potential time-varying nature of the 

underlying structure in the economy flexibly and robustly based on the Bayesian algorithm 

method, which can resolve the question of whether the estimated time-varying coefficients are 

likely to be biased because a possible variation in the volatility of disturbances is ignored. Second, 

the recursive cointegration test overcomes the short-run parameters as fixed to evaluate the time 

paths of the non-zero eigenvalues instead of all parameters in the VAR model, which is important 

for understanding the long-term relationships over time. Third, the Bayesian DCC-MGARCH is 

a flexible tool for forecasting and capturing the volatility of time series when the volatility varies 
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over time, which is important to have knowledge about volatility because it is a measure of risk. 

Hence, these methods can decompose time series data into dynamic scales by estimating 

parameters or volatility over time, which contain more information on the time series under 

different periods. However, they are yet to be applied to fossil fuel markets.  

Thus, this study fills this gap in the literature, and this study aims to test the effectiveness of 

these time-series methods with time-varying parameters for the fossil fuel market and to examine 

the time-varying issues related to the fossil fuel market to understand fossil fuel price instability 

issues. Because fossil fuel markets are often strongly affected by changes in financial markets 

such as foreign exchange, relevant stock and gold markets, etc., and hedging across the financial 

markets is crucial for achieving sustainable energy supply, this issue is crucial for institutions 

seeking to assure energy for their citizens. 

For this purpose, Chinese and international fossil fuel markets (coal, crude oil, natural gas, 

and liquid natural gas (LNG)), foreign exchange markets, clean energy stock markets, gold, and 

bitcoin markets were selected because of the financialization of fossil fuel commodities, and 

traders and investors now only consider the fossil fuel market to understand the price stability 

issue for energy supply is not sustainable; it is necessary to consider the influence of the financial 

market as a potential diversifier of portfolio risk exposure when changing policies such as the 

2005 China exchange rate reform and economic events such as the 2008 financial crisis. The 

specific research contents are explained as follows: 

This dissertation is divided into four parts. This dissertation provides important implications 

for energy policymakers in stabilizing Chinese and international fossil fuel markets. In addition, 

this study will help Chinese and international energy investors understand the relationship 

between the Chinese and international fossil fuel markets and to conduct risk management from 

a time-varying perspective. 

In the first part of this dissertation, I tested the validity of applying the TVP-VAR method to 

fossil fuel market data to identify the impact of the Chinese Yuan (CNY) and Japanese Yen (JPY) 

on Chinese LNG import prices. TVP-VAR is known to be useful for identifying how the effect of 

one time series variable lasts on the other time-series variable. Furthermore, the TVP-VAR model 

enables us to capture the potential time-varying nature of the time series by estimating the 

parameter with stochastic volatility (Nakajima, 2011).  

Given the 2005 China exchange rate reform and 2013 China’s new energy policy to switch 

from coal to imported natural gas, exchange rate fluctuations could affect imported LNG prices. 

Moreover, there is no trading market based on supply and demand, and the imported natural gas 

prices in Asia are linked to Japanese crude oil; therefore, Asian prices are higher than in other 

regions such as the United States and Europe. Thus, it is necessary to study the issue of how the 



iv 
 

exchange rate affects the Chinese imported LNG market to understand the natural gas price 

instability issues.  

The empirical study suggests that since September 2005, the JPY pass-through rate on the 

Chinese LNG import price has been decreasing, while that of the CNY has been increasing. 

Notably, the pass-through rate of the CNY began to exceed that of the JPY after 2008. Moreover, 

since 2005, the lag effect of the CNY on the Chinese LNG import price has increased compared 

to the JPY. If any new currency reform of the CNY is implemented in the future, then the impact 

of the JPY on the Chinese LNG import price could be reduced and the lag effect of the CNY on 

the Chinese LNG import price could become longer. Therefore, fluctuations in CNY are becoming 

an important factor in understanding the movements of Chinese LNG import prices. This implies 

the significance of considering the effect of the exchange rate on the energy market when the 

market is influenced by the monetary reform of the importing country. 

In the second part of the dissertation, I applied the recursive cointegration test to analyze the 

connection between the energy market data, given the form of estimating parameters recursively. 

The recursive cointegration test is known to be effective in identifying the change in the 

cointegration relationship between two time series variables in the energy market under structural 

break effects. It is a useful method for investigating how the long-run relationships among the 

time-series variables change over time.  

The Chinese coal market, which accounts for 70% of China's energy consumption, also faces 

the same stability issues as the imported natural gas market. Thus, it is considered insufficient to 

understand the problem of price instability from the fossil fuel market of China alone because 

China’s domestic coal supply depends on the international market. To this end, it is important to 

study how the Chinese domestic coal market is related to international fossil fuel markets to 

provide useful information for conducting policies to stabilize coal prices. 

Therefore, I applied the recursive cointegration test to recognize the dynamic cointegration 

relationship between Chinese domestic coal and international fossil fuel markets during 2000–

2020, considering the structural break effects due to the 2008 financial crisis. I found that the 

cointegration relationship between Chinese coal prices and international coal, natural gas, and 

crude oil prices have different trends before and after 2008. We also found that the Chinese 

domestic coal price was only cointegrated with the prices of international natural gas prices after 

2018. These results indicate that the dynamic cointegration relationships between Chinese 

domestic coal and international fossil fuel markets change within the investigated period. Natural 

gas is one of the major energy sources following the 13th Five-Year Plan of China. The 

stakeholders and policymakers of the Chinese coal market must consider the impact of 

international natural gas prices to identify Chinese coal price movements to generate more 
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accurate expectations. 

In the third part of the dissertation, I employed both the recursive cointegration test and the 

VAR and VECM models to analyze the shocks in the Chinese and international fossil fuel time 

series data. A dummy variable capturing the shock in the time-series data is incorporated into the 

VAR and VECM models to test the impact of the shock on the time-series variables.  

Focusing only on one Chinese fossil fuel market (LNG import market or coal market) in the 

above two research contents is not enough to deeply understand the stability issues of Chinese 

fossil fuels. Furthermore, the world is affected by the COVID-2019 pandemic crisis. To gain a 

deeper understanding of the impact of the pandemic crisis on their relationship, it is also important 

to consider the 2008 financial shock to study the time-varying relationship between China and 

international fossil fuels from 2000 to 2020.  

To determine the validity of identifying shocks for the energy markets, I examined how the 

dynamic cointegration relationship between the Chinese and international fossil markets changed 

during the 2008 financial crisis and the COVID-19 pandemic. The results suggest that the effects 

of COVID-19 on the linkages between the Chinese and international fossil fuel markets are not 

as evident as in the 2008 financial crisis. The study identifies that the effects of the 2008 financial 

crisis and the COVID-19 pandemic on the linkages are mostly driven by the impacts of these 

crises on Chinese fossil fuel markets. This study indicates the importance of controlling the risk 

involved in the Chinese fossil fuel market when events such as the 2008 financial crisis and the 

COVID-19 pandemic are changing the linkages between the Chinese and international fossil fuel 

markets. 

In the fourth part of this dissertation, I investigated how the DCC-MGARCH method can be 

applied to fossil fuels and their hedging market data. The DCC-MGARCH is known to be 

effective for separating the dynamic correlation relationships among multiple time series variables. 

This model captures the correlation clustering and examines how a shock at time t−1 impacts the 

correlation at time t.  

Hedging between fossil fuels and other assets is important to assure capital for purchasing 

fossil fuels, which will help stabilize the energy supply. However, events such as the pandemic 

could make it difficult for the suppliers of energy to hedge the risk of changes in the fossil fuel 

price by combining their portfolios with financial assets, such as gold and Bitcoin. Thus, it is 

necessary to consider hedging markets such as clean energy stock, gold, and the Bitcoin market 

for cross-market investors to understand portfolio risk management based on modern portfolio 

theory.  

To examine its applications on fossil fuel and its hedging markets, the fourth section 

examines how the dynamic correlation relationship between the fossil fuel and clean energy stock, 
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gold, and bitcoin market changes after the COVID-19 pandemic took place. The parameters are 

estimated by the Bayesian method using the US daily data from January 2, 2019, to February 26, 

2021, which is divided into periods before and after 2020. The study identifies that the Bayesian 

DCC-MGARCH model with the skew multivariate generalized error distribution is credible for 

applying the model for the fossil fuel, clean energy stock, gold, and bitcoin markets to estimate 

the time-varying conditional correlations between them. The results suggest that the relationships 

between fossil fuels and the clean energy stock, gold, and bitcoin market are changing and that 

they become positively correlated after the pandemic occurred. The study indicated the 

importance of fostering energy and financial market stability and choosing optimal hedging 

strategies to minimize the diversification of risk when markets are facing shocks such as the 

COVID-19 pandemic. 

This dissertation suggests that the three time-series models are suitable for analyzing fossil 

fuel market relationships when they are affected by time-varying factors. This empirical 

dissertation also suggests that the linkage between the energy time series variable data is 

influenced from changes in energy and monetary policies and exogenous shocks like the financial 

and COVID-19 crises. 
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Exchange Rate on the Liquid Natural Gas 

(LNG) Import Price in China 
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1.1    Introduction 

North America, West Europe, and Asia-Pacific are the main markets for natural gas 

consumption in the world but in all of these regions, the liquid natural gas (LNG) import price 

has been unstable. For example, according to British Petroleum (BP) (2014, 2015), the Japanese 

LNG import price in Asia-Pacific regions decreased 57.5% from $16.33 to $6.94, the US 

Natural gas import price declined 43.33% from $4.35 to $2.46, and the UK Heren NBP Index 

of natural gas import price depreciated 43.15% from $8.25 to $4.69 during 2014–2016. 

Comparing the changes in the LNG import prices among Japan, the US, and the UK, it is 

noticeable in this example that the Japanese LNG import price is higher compared to the US 

and UK markets. The Japanese LNG price and the LNG import price in the Asian area have 

been fluctuating greatly at a higher price level (ANREME, 2015). 

One reason why the Asian LNG price has been higher than other regions is that the Asian 

LNG import price is known to be related to the average price of Japanese CIF (Cost, Insurance, 

and Freight) crude oil import price (ANREME 2016). The CIF crude oil has been kept at a 

higher price to protect sellers and buyers involved in the crude oil trade (Kawamoto and Tsuzaki 

2007), and as the international crude oil price increases, the CIF price increases accordingly, 

making the LNG import price higher. Furthermore, the Asian LNG import price has been much 

higher than that of Western countries due to the Asian premium, which is a premium imposed 

on Asian countries’ LNG imports from the major gas producers. From the perspective of price 

stability, it is necessary to reconstruct a different pricing mechanism from the conventional one, 

which reflects the supply-demand balance on the Asian LNG import price. This is crucial for 

the Asian natural gas markets to attract market participants (Tong et al. 2014; Choi and Heo, 

2017). However, little is known about how the market mechanism functions in determining 

LNG import prices in the Asian region. 

With the development of the Chinese economy, the demand for energy (especially natural 

gas) has increased dramatically. Since 1978, environmental problems such as PM 2.5 have 

intensified in China. To cope with such environmental problems, the Chinese government, 

proposed by the National Development and Reform Commission, announced a decision to 

change the supply and demand structure from fossil fuels to green energy between 2016–2020 

(National Energy Board (NEB) 2016) under the Paris agreement on 3 September 2016. 

However, according to British Petroleum (BP) (2019), the Chinese consumption of natural gas 

increased substantially from 81.9 in 2008 to 283 billion cubic meters in 2018, and the Chinese 

domestic production of natural gas increased from 80.9 to 161.5 billion cubic meters between 

2008 and 2018. 
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Furthermore, factors such as the risk of drastic changes in foreign exchange rates will 

affect the development of East Asian benchmark prices for the LNG spot market (Shi and Hari 

2016). The above-mentioned Asian premium issue and the risks from the foreign exchange rate 

changes are likely to become more serious as China continues to enhance more LNG imports 

through the spot market in the future. To address this situation, it is necessary to stabilize LNG 

import prices. Additionally, the Chinese government should re-examine factors such as foreign 

exchange risks that play an important role in determining the LNG import benchmark prices. 

This is crucial since the LNG import benchmark price reflects the supply-demand balance in a 

real-time way, and it is influential for ensuring the economic efficiency and stability of a natural 

gas supply. Furthermore, stabilizing the LNG import price in China is imperative for 

establishing a stable benchmark price and improving its energy security and pricing power for 

natural gas in the Asia-Pacific markets (Tong et al. 2014). 

Another aspect we need to be aware of when investigating the effects of the exchange rate 

on the Chinese LNG import price is the Chinese Yuan’s (CNY) monetary reform. Since July 

2005, China has made changes to the CNY exchange rate against the US dollar. However, when 

China began to apply this monetary reform in 2005, the daily fluctuation of CNY against the 

US dollar became less than 0.3%. According to the International Monetary Fund (IMF), until 

2015, China had a crawling-peg arrangement for its exchange rate regime. On 11 August 2015, 

the People’s Bank of China (PBC) took a decisive step towards floating the CNY. With China’s 

large economic scale and the increasing use of the CNY, the CNY was included in the Special 

Drawing Right (SDR) basket of the International Monetary Fund (IMF) in 2016. Thus, from 

November 2016, China introduced a monetary system to peg the CNY against the basket of 

currencies. Liu and Chen (2017) reported that a more flexible exchange rate regime will bring 

about a stronger transmission effect from the exchange rate and can cause inflation in China. 

Since the 2016 monetary reform, there is a debate about whether changes in the CNY’s value 

have effects on the prices of imported goods. 

However, up until now, no studies have investigated the exchange rate pass-through of 

CNY on the Chinese LNG import price considering the effects of CNY monetary reform. To 

bridge this gap, this study identifies the level of the pass-through rate of the exchange rate on 

LNG import price. The exchange-rate pass-through refers to the ratio of the price of traded 

goods that changes with the exchange rate (John et al. 1992). 

This research has the following two objectives. First, the study analyzes how the CNY and 

JPY influence the Chinese LNG import price. The import price of LNG in China is linked with 

the Japan Crude Cocktail (JCC) price (Martono and Aruga 2018), and the import benchmark 

price of LNG is likely connected to the Japanese Yen (JPY). Hence, the study considers the 
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effects of the foreign exchange risk on the Chinese LNG import price by comparing the 

influences on the LNG import price between CNY and JPY. Second, we examine the levels and 

the length of the pass-through rate of these currencies on the Chinese LNG import price. We 

do this because it is still not clear to what extent the exchange rate fluctuations influence the 

Chinese LNG import prices compared to JPY after the 2005 CNY monetary reform. 

We expect that before the monetary reform, JPY will have more influence on the LNG 

price compared to CNY, but this effect will become smaller after the 2005 monetary reform. 

This is because a study finds that countries with higher exchange rate volatilities have higher 

pass-through elasticities on import prices (Jose and Linda 2006) and it is known that the 

volatility of JPY has been higher compared to CNY before 2005. It is also believed that the 

pass-through rate of JPY on LNG import price will become smaller and shorter after the 

monetary reform, while that of the CNY will become larger and longer. We expect this result 

since as the volatility of the CNY increases, the exchange rate risk in the LNG trading market 

has been gradually transferred to the CNY after 2005, and the effects from the CNY will 

become more significant in the Chinese LNG market. 

The contributions of the present paper are the following. First, from the perspective of 

discovering the Chinese LNG import price, suppliers in the international LNG market need to 

consider the impact of exchange rate fluctuations on the Chinese LNG import price. Therefore, 

the results of this study provide valuable price discovery information for the international LNG 

suppliers exporting LNG to China. Second, the paper could be a good reference to energy-

consuming countries that need to mitigate the effects of exchange rate changes on energy prices. 

As China is a country whose exchange rate rule is changing rapidly, the current study could be 

a useful source for understanding the impact of monetary reform on energy markets. Finally, 

this is one of the first studies to apply the Time-Varying Parameter vector autoregressive (TVP-

VAR) model on an energy market to consider the effects of dynamic changes in the estimated 

parameters. Application of the TVP-VAR model is becoming popular in monetary and 

economic studies, but this method has not been used often for analyzing the dynamics of energy 

markets. Hence, the study can help scholars involved in analyzing energy markets with dynamic 

changes to understand the effectiveness of applying the TVP-VAR model on energy market 

data. 

1.2     Previous Studies 

Many studies have analyzed the pass-through rate of exchange rate on the import and 

export commodity prices. Some studies concluded that exchange rates have an incomplete pass-

through on import commodity prices (Shinkai 2011; Choudhria and Hakura 2015; Pennings 
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2017) but Choudhria and Hakura (2015) showed that the pass-through from the exchange rate 

to import and export goods are different. They revealed that there is an incomplete pass-through 

from the exchange rate to import goods but there is a significant pass-through on the export 

goods. Pennings (2017) indicated that the pass-through is incomplete for producer prices. 

Furthermore, Kurtović et al. (2018) found that the pass-through rate on import and export goods 

are asymmetric in the cases of monetary appreciation and depreciation. 

Moreover, according to Ceglowski (2010), in addition to oil prices, most of the pass-

through rate on the US import goods dropped sharply from 1992 to 2006 (Sekine 2006), and 

the same conclusion was reported in Japan after 1970 (Sekine 2006; Shioji and Uchino 2009). 

Shinkai (2011) found that the pass-through rate on import price increases when exchange rate 

volatility increases in the short run, but this trend is associated with inflation in the long run. 

Sasaki (2019) found that Japan’s import pass-through rate had been declining, but it started to 

increase during the financial crisis. On the other hand, Kurtović et al. (2018) reported that there 

has been no decrease in the pass-through rates on the aggregate import prices of 7 Southeast 

European countries. Hui et al. (2013) reported that compared to developed countries, 

developing countries have a higher pass-through rate. Thus, it is likely that the pass-through 

rate on the Chinese LNG import price will be high, but up until now, no studies have confirmed 

the extent of the pass-through rate on the Chinese LNG import price. 

We would also like to introduce studies related to the recent development of the methods 

used for analyzing the pass-through rate on import prices. Conventionally, the Vector 

autoregression (VAR) model has been applied for investigating the pass-through rate on 

commodity prices (Marazzi et al. 2005; Shinkai 2011). However, recently, according to the idea 

that the economic structure and conditions of financial policy change over time, the pass-

through rate on import commodity prices was analyzed by considering the effects of changes 

in the estimated parameters over time (Sasaki 2019). For example, Primiceri (2005) applied the 

time-varying parameter VAR (TVP-VAR) model to investigate the effects of changes in the 

US monetary policy in the 1970s and early 1980s. Nakajima and Watanabe (2012) developed 

the TVP-VAR extrapolation program in OX software using the macro data of Japan. They 

suggested that compared to VAR model fixing parameters, TVP-VAR considering time-

varying parameters improves the accuracy of the prediction of any variable (Nakajima and 

Watanabe 2012). Studies such as Shioji and Uchino (2009) and Shioji (2010) also measured 

the pass-through rate of the exchange rate on various commodities using the TVP-VAR. 

Finally, there are a lot of concerns about how the fluctuations of the CNY will influence 

the Chinese economy, production, and import and export prices over time. However, there is 

no study investigating how the Chinese LNG import price has been and will be affected by the 
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CNY and JPY fluctuations in the aftermath of China’s currency reform process. To cover this 

gap, this study examines the influence of the JPY and CNY on the Chinese LNG import price 

and compares the pass-through rate of these currencies on the Chinese LNG import price using 

the latest data available. 

Our study is also novel in the sense that although most previous studies analyzed the pass-

through rate by using the VAR model, the current study uses the TVP-VAR model to estimate 

the effects of the monetary rates on the Chinese LNG import price. This model enables us to 

consider the effects of dynamic changes in the estimated parameters. 

1.3     Materials and Methods  

The pass-through rate of the exchange rate on the Chinese LNG import price was 

estimated using four variables: the CNY (E1𝑡𝑡), JPY (E2𝑡𝑡), Chinese LNG import price (PL𝑡𝑡), 

and Japanese crude oil price (PJ𝑡𝑡). Since Asian LNG import price is linked with the JCC crude 

oil price (Martono and Aruga 2018) and causes major impacts on the global natural gas industry 

chain, the Japanese crude oil price was included in the study. 

Our econometric model was based on Primiceri’s TVP-VAR model (Nakajima and 

Watanabe 2012), which incorporates the effects of changes in the parameters during the test 

period. The model was estimated by using the Monte Carlo experiment with the OX 6 Console. 

Before estimating the TVP-VAR model, we tested the stationarity of our test variables with unit 

root tests. Then, we tested the cointegration between our variables to see if the VAR model was 

a suitable model for applying the data. 

1.3.1  Unit Root and Cointegration Test Method 

To identify the stationarity of our test variables, we applied the Augmented Dickey-Fuller 

(ADF), Phillips–Perron (PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. The 

ADF and PP test the non-stationarity of the variables while the KPSS tests the stationarity of 

the variables.  

After the order of integration was confirmed with the unit root tests, we performed the 

Johansen cointegration tests. The Johansen tests were conducted using the two monetary rates 

and LNG and crude oil prices: (E1𝑡𝑡 , PL𝑡𝑡 , PJ𝑡𝑡) and (E2𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡). Eviews 8.0 software was 

used for this purpose. 

1.3.2  TVR-VAR Model 

Based on the assumption that the variables have unit roots and are not cointegrated, the 

TVP-VAR model has a different structure from the VAR model; the estimated parameters 
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change over time (Primiceri 2005). To consider such parameter changes over time, we applied 

the TVP-VAR model on the CNY (E1), JPY (E2), Chinese LNG average import price (PL), 

and JCC average crude oil price. The JCC price was included in our model, which was mainly 

to avoid the impact of the JCC price on foreign exchange and to better understand the impact 

of the exchange rate on the Chinese LNG import price. The lag order of the time-varying model 

was determined by using the minimum AIC value obtained from the VAR model. In this study, 

two time-varying models for the CNY and JPY were constructed to compare the effects of these 

exchange rates on the Chinese LNG import price. 

In the CNY TVP-VAR model, the Chinese LNG import price (PL), CNY(E1) monetary 

rate, and the JCC crude oil price (PJ) was set as 𝑌𝑌𝐸𝐸1,𝑡𝑡 = (PL𝑡𝑡 , E1𝑡𝑡 , PJ𝑡𝑡)′.  The model was 

constructed as follows: 

∆YE1,t＝CE1,t + BE1,1t∆YE1,t−1 + ⋯+ BE1,st∆YE1,t−s + uE1,t, (1) 

uE1,t～ N�0,ΩE1,t�, t = s + 1, … , n (2) 

where ∆ denotes the first difference of the variable. 

Similarly, for the JPY model, the three main variables of our interest were set as 𝑌𝑌𝐸𝐸2,𝑡𝑡 =

(PL𝑡𝑡 , E2𝑡𝑡 , PJ𝑡𝑡)′ and the model had the following form: 

∆YE2,t＝CE2,t + BE2,1t∆YE2,t−1 + ⋯+ BE2,st∆YE2,t−s + uE2,t, (3) 

uE2,t～ N�0,ΩE2,t�,  t = s + 1, … , n. (4) 

Here, 𝐶𝐶𝐸𝐸1,𝑡𝑡＝�𝑐𝑐PL,E1t, 𝑐𝑐E1t, 𝑐𝑐PJ,E1t�
′,𝐶𝐶𝐸𝐸2,𝑡𝑡 = �𝑐𝑐PL,𝐸𝐸2t, 𝑐𝑐𝐸𝐸2t, 𝑐𝑐PJ,𝐸𝐸2t�

′ are the time-varying 

constant vectors of (3 × 1), 𝐵𝐵𝐸𝐸1,𝑖𝑖𝑡𝑡,𝐵𝐵𝐸𝐸2,𝑖𝑖𝑡𝑡 are the time-varying coefficient matrices (𝑖𝑖 = 1, … , s) 

of (3 × 3), and 𝑢𝑢𝐸𝐸1,𝑡𝑡 = �𝑢𝑢PL,E1t,𝑢𝑢E1t,𝑢𝑢PJ,E1t�
′,𝑢𝑢𝐸𝐸2,𝑡𝑡 = �𝑢𝑢PL,𝐸𝐸2t,𝑢𝑢𝐸𝐸2t,𝑢𝑢PJ,𝐸𝐸2t�

′ are error term 

vectors of (3 × 1). 

The error terms 𝑢𝑢𝐸𝐸1,𝑡𝑡,𝑢𝑢𝐸𝐸2,𝑡𝑡 in Equations (2) and (4) were assumed to follow the variate 

normal distribution with an average of 0 and time-varying covariance matrices of Ω𝐸𝐸1,𝑡𝑡. The 

time-varying covariance matrices Ω𝐸𝐸1,𝑡𝑡,Ω𝐸𝐸1,𝑡𝑡  were expanded by using the Cholesky 

decomposition: 

ΩE1,t = AE1,t
−1 ΣE1,tΣE1,t

′ AE1,t
−1 ′, (5) 

ΩE2,t = AE2,t
−1 ΣE2,tΣE2,t

′ AE2,t
−1 ′, (6) 

where 𝐴𝐴𝐸𝐸1,𝑡𝑡,𝐴𝐴𝐸𝐸2,𝑡𝑡 are diagonal matrices of (3). Here, all the diagonal components were  

𝐴𝐴𝐸𝐸1,𝑡𝑡 = �
1

𝑎𝑎𝐸𝐸1,21𝑡𝑡
𝑎𝑎𝐸𝐸1,31𝑡𝑡

 
0
1

𝑎𝑎𝐸𝐸1,32𝑡𝑡

 
0
0
1

 �, 𝐴𝐴𝐸𝐸2,𝑡𝑡 = �
1

𝑎𝑎𝐸𝐸2,21𝑡𝑡
𝑎𝑎𝐸𝐸2,31𝑡𝑡

 
0
1

𝑎𝑎𝐸𝐸2,32𝑡𝑡

 
0
0
1

 �.  

In addition, ΣE1,t,ΣE2,t were the diagonal matrices of (3 × 3) where 
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ΣE1,t = �
σE1,1t

0
0

 
0

σE1,2t
0

 
0
0

σE1,3t

�, ΣE2,t = �
σE2,1t

0
0

 
0

σE2,2t
0

 
0
0

σE2,3t

�.  

Here, 𝜎𝜎𝐸𝐸1,𝑖𝑖𝑡𝑡
2 ,𝜎𝜎𝐸𝐸2,𝑖𝑖𝑡𝑡

2  were the time-varying variances of structural shocks for variable 𝑖𝑖 , 

while 𝑎𝑎𝐸𝐸1,𝑖𝑖𝑖𝑖𝑡𝑡  and  𝑎𝑎𝐸𝐸2,𝑖𝑖𝑖𝑖𝑡𝑡  were the parameters of the time-varying simultaneous correlations 

given to the variable 𝑖𝑖 by the structural shock of the variables 𝑗𝑗 where (𝑖𝑖, 𝑗𝑗 = 1,2,3). 

Then, based on Equations (1), (2), and (5), the CNY(E1) model could be rewritten as the 

following equations:  

∆YE1,t＝∆XE1,t
′ βE1,t + AE1,t

−1 ΣE1,tεE1,t, (7) 

εE1t～ N(0, I3). (8) 

Similarly, based on Equations (3), (4), and (6), the JPY (E2) model could be expressed as 

follows:  

∆YE2,t＝∆XE2,t
′ βE2,t + AE2,t

−1 ΣE2,tεE2,t, (9) 

εE2,t～ N(0, I3). (10) 

Here, 𝛽𝛽𝐸𝐸1,𝑡𝑡,𝛽𝛽𝐸𝐸2,𝑡𝑡 were the vectors corresponding to Equations (7) and (9): 

βE1,t = �CE1,t, BE1,1t, … , BE1,st�,βE2,t = �CE2,t, BE2,1t, … , BE2,st�.  

 ∆XE1,t
′  is defined as below: 

∆XE1,t
′ = I3⨂�1,∆YE1,t−1

′ , … ,∆YE1,t−s
′ �,∆XE2,t

′ = I3⨂(1,∆YE2,t−1
′ , … ,∆YE2,t−s

′ ),  

where 𝐼𝐼3 is the identity matrix of 3 × 3, and ⨂ is the Kronecker product. In addition, 𝜀𝜀𝐸𝐸1,𝑡𝑡 =

(𝜀𝜀𝐸𝐸1,1𝑡𝑡, 𝜀𝜀𝐸𝐸1,2𝑡𝑡, 𝜀𝜀𝐸𝐸1,3𝑡𝑡)′, 𝜀𝜀𝐸𝐸2,𝑡𝑡 = (𝜀𝜀𝐸𝐸2,1𝑡𝑡, 𝜀𝜀𝐸𝐸2,2𝑡𝑡, 𝜀𝜀𝐸𝐸2,3𝑡𝑡)′  in Equations (8) and (10) are the 

normalized structural shocks. 

The time-varying parameter was set by assuming the following equations: 

βE1,t+1 = βE1,t + δE1,βt,  βE2,t+1 = βE2,t + δE2,βt, (11) 

αE1,t+1 = αE1,t + δE1,αt,  αE2,t+1 = αE2,t + δE2,αt, (12) 

hE1,t+1 = hE1,t + δE1,ht,  hE2,t+1 = hE2,t + δE2,ht, (13) 

where, 

�

εE1,t
δE1,βt
δE1αt
δE1ht

�～ N

⎝

⎜
⎛

0,�

I3 O O
O ΣE1,β O
O
O

O
O

ΣE1,α
O

 
O
O
O

ΣE1,h

�

⎠

⎟
⎞

 and  

�

εE2,t
δE2,βt
δE2αt
δE2ht

�～ N

⎝

⎜
⎛

0,�

I3 O O
O ΣE2,β O
O
O

O
O

ΣE2,α
O

 
O
O
O

ΣE2,h

�

⎠

⎟
⎞

.  
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𝛼𝛼𝐸𝐸1,𝑡𝑡 = �𝑎𝑎𝐸𝐸1,21𝑡𝑡,𝑎𝑎𝐸𝐸1,31𝑡𝑡,𝑎𝑎𝐸𝐸1,32𝑡𝑡�
′ 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝐸𝐸2,𝑡𝑡 = �𝑎𝑎𝐸𝐸2,21𝑡𝑡,𝑎𝑎𝐸𝐸2,31𝑡𝑡,𝑎𝑎𝐸𝐸2,32𝑡𝑡�

′ are the lower 

triangular components of the 𝐴𝐴𝐸𝐸1,𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐸𝐸2,𝑡𝑡  matrices. The diagonal components 

𝛴𝛴𝐸𝐸1,𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎  𝛴𝛴𝐸𝐸2,𝑡𝑡  were converted into ℎ𝐸𝐸1,𝑖𝑖𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝐸𝐸1,𝑖𝑖𝑡𝑡
2  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝐸𝐸2,𝑖𝑖𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝐸𝐸2,𝑖𝑖𝑡𝑡

2  ( 𝑖𝑖 = 1,2,3 ) 

where ℎ𝐸𝐸1,𝑡𝑡 = (ℎ𝐸𝐸1,1𝑡𝑡,ℎ𝐸𝐸1,2𝑡𝑡,ℎ𝐸𝐸1,3𝑡𝑡)′  and ℎ𝐸𝐸2,𝑡𝑡 = (ℎ𝐸𝐸2,1𝑡𝑡,ℎ𝐸𝐸2,2𝑡𝑡,ℎ𝐸𝐸2,3𝑡𝑡)′.  The time-varying 

parameters for the CNY and JPY models were defined as ( 𝛽𝛽𝐸𝐸1,𝑡𝑡,𝛼𝛼𝐸𝐸1,𝑡𝑡,ℎ𝐸𝐸1,𝑡𝑡 ) and 

( 𝛽𝛽𝐸𝐸2,𝑡𝑡,𝛼𝛼𝐸𝐸2,𝑡𝑡,ℎ𝐸𝐸2,𝑡𝑡). 

The prior distributions corresponding to (Σ𝐸𝐸1,𝛽𝛽,Σ𝐸𝐸1,𝛼𝛼 ,Σ𝐸𝐸1,h) and (Σ𝐸𝐸2,𝛽𝛽 ,Σ𝐸𝐸2,𝛼𝛼,Σ𝐸𝐸2,h) were 

set as follows: 

 ΣE1,β～IW�nE1,0, SE1,0�,ΣE1,α～IG�vE1,α0/2, VE1,α/2�,ΣE1,h～IG�vE1,h0/2, VE1,h/2�, (14) 

 ΣE2,β～IW�nE2,0, SE2,0�,ΣE2,α～IG�vE2,α0/2, VE2,α/2�,ΣE2,h～IG�vE2,h0/2, VE2,h/2�. (15) 

In Equations (14) and (15), the 𝐼𝐼𝐼𝐼 and 𝐼𝐼𝐼𝐼 denote the Inverse Wishart and Inverse Gamma 

distributions, respectively.  

In this study, the above time-varying parameter (𝛽𝛽𝑒𝑒𝑡𝑡 ,𝛼𝛼𝑒𝑒𝑡𝑡 , h𝑒𝑒𝑡𝑡) where 𝑒𝑒 = (𝐸𝐸1,𝐸𝐸2) in the 

TVP-VAR model was estimated using Bayesian theory. The Markov chain Monte Carlo 

(MCMC) method in the framework of Bayesian Inference was used for estimating the time-

varying parameters. According to Nakajima and Watanabe (2012), Y = {Yet}t=1n ,β =

{βet}t=s+1n ,α = {αet}t=s+1n , h = {het}t=s+1n , and ω = (Σe,β,Σe,α,Σe,h). Table 1.1 illustrates the 

sampling steps using the joint posterior probability density function π(𝛽𝛽,𝛼𝛼, h,ω|𝑌𝑌) and the 

MCMC method. The details of the steps are explained in Nakajima and Watanabe (2012) and 

Nakajima (2011). 

Table 1.1  Sampling steps of the Markov chain Monte Carlo (MCMC) method. 

Steps Detail of Steps 
1 Set the initial value of β,α, h,ω. 
2 Sampling from β|α, h, Σβ, Y. 
3 Sampling from Σβ�β. 
4 Sampling from α|β, h, Σα, Y. 
5 Sampling from Σα|α. 
6 Sampling from h|β,α, Σh, Y. 
7 Sampling from Σh|h. 
8 Back to step 2. 

In step 1, there is a possibility that the estimated value of the fixed parameter is unstable 

when the estimation period is short (Nakajima and Watanabe 2012). In this case, the prior 

distribution of the initial value of the time-varying parameters of the first 10 samples is drawn 

from the normal distribution as prior data (Primiceri 2005). The mean and covariance matrices 

of the prior distribution are determined by the ordinary fixed-parameter VAR model (Kosumi 
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2016). Using the obtained average estimated values (�̂�𝛽𝑒𝑒,0,𝛼𝛼�𝑒𝑒,0, h�𝑒𝑒,0) and the estimated values 

of the covariance matrix (V��̂�𝛽𝑒𝑒,0�, V�𝛼𝛼�𝑒𝑒,0�, V�h�𝑒𝑒,0�), the following normal distribution was set: 

βe,s+1～N(β�e,0, 4V�β�e,0�), αe,s+1～N( α�e,0, 4V�α�e,0�), he,s+1～N �h�e,0, 4V�h�e,0��. (16) 

In the MCMC method, it takes some time for the Markov chain to converge to the target 

distribution, so the first part of the sample sequence was discarded. The expected value was 

calculated using the remaining samples, and it was determined whether the chain converged 

(Kosumi 2016). In this study, the convergence test was performed with the following methods.  

First, we examined the convergence by plotting the sample parameters using the MCMC 

method. We used the plots to find out whether the fluctuation of the sample is stable (Kosumi 

2016). 

Second, the CD statistic proposed by Geweke (1991) was used. The CD statistic was used 

to identify whether the averages of the first to last sub-samples are the same. If the test suggested 

that the sample parameters converge to samples from the posterior distribution, and if the mean 

difference among the first to last sub-samples extracted became zero, then we could confirm 

that the parameters did converge. 

Finally, the prior distribution was based on Nakajima and Watanabe (2012) and the 

estimation is completed with the Ox program for the TVP-VAR model provided by Nakajima 

(2011).  

1.3.3  Impulse Response Function 

The impulse response method is a way to see how the innovation given to the error term 

of an equation propagates to the test variables. Since the models for the CNY (E1𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡) 

and JPY (E2𝑡𝑡 , PL𝑡𝑡 , PJ𝑡𝑡) are constructed in the same way, we only discuss the impulse response 

function for the CNY (E1𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡).  

The TVP-VAR model of Equation (1) with two lags can be rewritten as follows: 

∆YE1,t＝CE1,t + BE1,1,t∆YE1,t−1 + BE1,2,t∆YE1,t−2 + uE1,t . (17) 

Here, 𝐶𝐶𝐸𝐸1,𝑡𝑡＝�𝑐𝑐PL,E1t, 𝑐𝑐E1t, 𝑐𝑐PJ,E1t�
′, is a time-varying constant vector of ( 3 × 1 ), 

𝐵𝐵𝐸𝐸1,1𝑡𝑡,𝐵𝐵𝐸𝐸1,2𝑡𝑡  is a time-varying coefficient matrix of ( 3 × 3 ), and  𝑢𝑢𝐸𝐸1,𝑡𝑡 =

�𝑢𝑢PL,E1t,𝑢𝑢E1t,𝑢𝑢PJ,E1t�
′ is an error term vector of (3 × 1). The initial value of ∆𝑌𝑌𝐸𝐸1,𝑡𝑡 was set to 

zero (∆𝑌𝑌𝐸𝐸1,0 = O). 

The impulse response function can be obtained by the following steps. First, let the value 

of ∆𝑌𝑌𝐸𝐸1,𝑡𝑡 when innovation is not given (Ω𝐸𝐸1,𝑡𝑡 = O,∀t) be ∆𝑌𝑌𝐸𝐸1,𝑡𝑡
𝑛𝑛 . Second, according to Equation 

(17), let the value in period 𝑡𝑡 = 1 be ∆𝑌𝑌𝐸𝐸1,1
𝑛𝑛 = 𝐶𝐶𝐸𝐸1,1 while the next period’s value is ∆𝑌𝑌𝐸𝐸1,2

𝑛𝑛 =
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𝐶𝐶𝐸𝐸1,2 + 𝐵𝐵𝐸𝐸1,2,2𝐶𝐶𝐸𝐸1,1 . The value of ∆𝑌𝑌𝐸𝐸1,𝑡𝑡  when innovation is given (Ω𝐸𝐸1,𝑡𝑡 = σ𝐸𝐸1,𝑡𝑡,∀t ) is 

denoted as ∆𝑌𝑌𝐸𝐸1,𝑡𝑡
𝑎𝑎 . Hence, the value of ∆𝑌𝑌 in period 𝑡𝑡 = 1 is ∆𝑌𝑌𝐸𝐸1,1

𝑎𝑎 = 𝐶𝐶𝐸𝐸1,1 + σ𝐸𝐸1,1 and the 

next period’s value is ∆YE1,2
a = CE1,2 + BE1,2,2�CE1,1 + σE1,1� + σE1,2.  

Next, by calculating the difference between the case without and with innovations, the 

effect of innovation can be expressed as ∆YE1,t
d = ∆YE1,t

a − ∆YE1,t
n . In this case, ∆𝑌𝑌  can be 

expressed as: 

∆YE1,1
d = σE1,1,∆YE1,2

d = BE1,2,2σE1,1 + σE1,2 . (18) 

Equation (18) is called the impulse response function, and the cumulative response 

function is defined for every lag period (t = 1,2, ...). 

Finally, the pass-through rate on the LNG import price is defined as (cumulative impulse 

response to the foreign exchange shock of the import price)/(cumulative impulse response to 

the own monetary shock) (Shioji 2010). Based on the cumulative response function, the pass-

through rate on the Chinese LNG import price can be expressed as: 

Rpass−through
E1→PL =

TE1→PL,t
D

TE1→E1,t
D . (19) 

Here, 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸1→𝑃𝑃𝑃𝑃  is the pass-through related to the fluctuation of the CNY on the 

Chinese LNG import price, and 𝑇𝑇𝐸𝐸1→𝑃𝑃𝑃𝑃,𝑡𝑡
𝐷𝐷  is the accumulative impulse response of the CNY 

fluctuation shock on the Chinese LNG import price. Finally, 𝑇𝑇𝐸𝐸1→𝐸𝐸1,𝑡𝑡
𝐷𝐷  is the accumulative 

impulse response to its own shock from the CNY fluctuation. All the impulse response function 

estimations were performed with OxMetrics6.01. 

1.3.4  Data 

The monthly average price from China Customs (Wind 2019) was used for the LNG 

import price. The monthly average price released by the Petroleum Association of Japan (Wind 

2019) was used for the JCC crude oil price. Furthermore, the nominal effective exchange rate 

was the exchange rate used in the study. The CNY fluctuation is the monthly average nominal 

effective data published by the People’s Bank of China and the data were collected from Wind 

Net. The JPY represents the monthly average nominal effective data released by the Bank of 

Japan. The sample period covered in this study was from August 2005 to September 2018. All 

the data used in this study is provided as supplementary material. 

Figure 1.1 is the plots of the standardized data of our variables (E1𝑡𝑡, E2𝑡𝑡 , PJ𝑡𝑡 , PL𝑡𝑡) 

calculated from Equation (20). From this figure, we can see that the CNY (E1𝑡𝑡) is more volatile 

than the JPY ((E2𝑡𝑡). It is also discernible from the figure that the China LNG import price (PL𝑡𝑡) 

seems to fluctuate along with the Japanese crude oil price (PJ𝑡𝑡). 
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Figure 1.1 The plots of CNY (E1𝑡𝑡), JPY (E2𝑡𝑡), crude oil (PJ𝑡𝑡) and LNG import (PL𝑡𝑡) prices 
from August 2005 to September 2018. 

As US dollars are the most commonly used currency in international trades, we used US 

dollars as the base unit for our variables. Thus, the JCC crude oil import prices and Chinese 

LNG import prices were converted to dollar-denominated prices for unifying the Japanese and 

Chinese markets. However, because the data of the variables have different units, they were 

standardized by using the following formula: 

Z =
X − μ
σ

 . (20) 

Here, Z is the normalized value of X where X denotes the variable of our interest (CNY, 

JPY, JCC crude oil import price, and Chinese LNG import price), while μ and σ are the mean 

and variance of X. 

1.4   Results 

1.4.1  Unit Root and Cointegration Tests 

Table 1.2 depicts the results of the unit root tests. The table indicates that all our time series 

data are non-stationary at their level data but become stationary when first differencing them, 

suggesting that they are all integrated at order one. 
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Tables 1.3 and 1.4 show the results of the Johansen test for the CNY and JPY versus the 

natural gas and crude oil prices. The results of the maximum eigenvalue test suggest that both 

the CNY and JPY are not cointegrated with the natural gas and crude oil prices based on the 

5% significance level. These results point out the validity of using the TVP-VAR model instead 

of the TVP vector error correction model (VECM). 

Table 1.2  Unit root tests. 

Variables Level Data (t-Value) First Difference Data 
ADF PP KPSS ADF PP KPSS 

E1 −1.29 −2.43 0.98 ∗ 8.04 ∗ −6.71 ∗ 0.63 
E2 −0.16 −1.34 0.31 3.06 ∗ −9.68 ∗ 0.18 
PL −0.34 −2.45 0.71 ∗ −5.85 ∗ −22.49 ∗ 0.09 
PJ −0.46 −2.19 0.26 8.48 ∗ −5.58 ∗ 0.07 

* Significant at the 5% significance level. 

Table 1.3  Results of the Johansen cointegration test for CNY (E1𝑡𝑡 , PL𝑡𝑡 , PJ𝑡𝑡). 

Rank 
Number 

Trace 
Test 

Statistic 

0.01  
Critical 
Value 

p-
Value 

Maximum 
Eigenvalue 

Test Statistic 

0.01  
Critical 
Value 

p-
Value 

None 31.38 ∗ 35.46 0.03 16.00 25.86 0.22 
At most 1 15.38 19.94 0.05 10.94 18.52 0.15 
At most 2  4.44 ∗ 6.63 0.03 4.44 ∗ 6.63 0.03 

* Significant at the 5% significance level. 

Table 1.4  Results of the Johansen cointegration test for JPY (E2𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡). 

Rank 
Number 

Trace Test 
Statistic 

0.01  
Critical 
Value 

p-
Value 

Maximum 
Eigenvalue Test 

Statistic 

0.01  
Critical 
Value 

p-Value 

None 24.02 35.46 0.19 12.04 25.86 0.54 
At most 1 11.98 19.94 0.16 7.29 18.52 0.45 
At most 2 4.68 ∗ 6.63 0.03 4.68 ∗ 6.63 0.03 

* Significant at the 5% significance level. 

1.4.2 MCMC Estimation Results 

In the MCMC estimation, we ran 10,000 iterations with a burn-in phase of 1000, and a 

thinning interval of 10.  

Figures 1.2 is the sample autocorrelation function (upper), sample-path (middle), and 

posterior probability density function (bottom) of time-varying parameters obtained by the 

estimation. From the results in Figures 2a,b, both sample paths (middle) converge after 1000 

iterations. The sample autocorrelation function shows that both the coefficients (upper) for 

CNY and JPY were approximately reduced to 0 after 500 iterations. In addition, the results 

following the normal distribution were obtained for all parameters of the posterior probability 

density function (bottom). 
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(a) The CNY (E1𝑡𝑡 , PL𝑡𝑡 , PJ𝑡𝑡) 

 

(b) The JPY (E2𝑡𝑡 , PL𝑡𝑡 , PJ𝑡𝑡) 

Figure 1.2  The sample autocorrelation function (upper), sample-path (middle), and posterior 

probability density function (bottom) of TVP-VAR parameters. sb1 , sa1 , and sh1  are error 

terms of the original time-varying parameters based on the first 𝑎𝑎0 sub-samples. sb2, sa2, and 

sh2 are error terms of the original time-varying parameters based on the last 𝑎𝑎1 sub-samples. 

The vertical axis of the upper figure is the sample autocorrelation, and the horizontal axis 

denotes the number of iterations. The vertical axis of the middle figure is the sample path and 

the horizontal axis is the number of iterations. The vertical axis of the bottom figure is the 

posterior probability density and the horizontal axis is the deviation from the average. 
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Table 1.5  Estimation results of the TVP-VAR model parameters on the CNY (E1𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡). 

Paramete
r 

Averag
e 

Standard 
Deviation 

95%Credit 
Section CD Inefficiency 

Factor 
sb1 0.023 0.003 [0.018, 0.029] 0.422 ∗ 9.160 
sb2 0.021 0.002 [0.017, 0.025] 0.594 ∗ 6.650 
sa1 0.082 0.032 [0.043, 0.163] 0.38 ∗ 70.690 
sa2 0.074 0.026 [0.040, 0.140] 0.165 ∗ 51.010 
sh1 0.610 0.132 [0.385, 0.901] 0.009 ∗ 41.910 
sh2 0.686 0.168 [0.397, 1.063] 0.147 ∗ 56.460 

* Significant at the 5% significance level. CD is the normal distribution statistic of Geweke’s 
(1991) convergence test. sb1 , sa1 , and sh1  are error terms of the original time-varying 
parameters based on the first 𝑎𝑎0 sub-samples. sb2, sa2, and sh2 are error terms of the original 
time-varying parameters based on the last 𝑎𝑎1 sub-samples. 

Table 1.6  Estimation results of the TVP-VAR model parameters on the JPY (E2𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡). 

Paramet
er 

Averag
e 

Standard 
Deviation 

95%Credit 
Section CD Inefficiency 

Factor 
sb1 0.023 0.003 [0.018, 0.028] 0.542 ∗ 9.360 
sb2 0.022 0.002 [0.018, 0.028] 0.154 ∗ 5.170 
sa1 0.068 0.022 [0.039, 0.125] 0.912 ∗ 41.420 
sa2 0.063 0.019 [0.038, 0.124] 0.432 ∗ 78.930 
sh1 0.246 0.084 [0.124, 0.458] 0.879 ∗  72.560 
sh2 0.613 0.171 [0.331, 1.001] 0.214 ∗ 89.370 

* Significant at the 5% significance level. CD is the normal distribution statistic of Geweke’s 
(1991) convergence test. sb1 , sa1 , and sh1  are error terms of the original time-varying 
parameters based on the first 𝑎𝑎0 sub-samples. sb2, sa2, and sh2 are error terms of the original 
time-varying parameters based on the last 𝑎𝑎1 sub-samples. 

Tables 1.5 and 1.6 show the posterior mean, standard deviation, 95% confidence interval, 

Geweke’s convergence decision (CD) statistic (p-value) (Geweke 1991), and the inefficiency 

factor of the two-sided parameters for the CNY and JPY. Instead of looking directly at the 

sample path, we used the CD statistics to estimate how many samples were needed to obtain 

the same variance as the sample mean, which was calculated from the uncorrelated samples. 

This is called the inefficiency factor. The value of the CD statistics suggests that the model 

parameters converged to the posterior distribution. As explained before, the CD statistic is the 

normal distribution statistic of Geweke (1991) for the convergence test and it is known that the 

Z value of the normal test statistic is 1.6 at the 5% significance level. All the CD test values in 

Tables 1.5 and Tables 1.6 are above 1.6, indicating that the null hypothesis was not rejected at 

the 5% significance level. Therefore, the null hypothesis of parameters converging to the 

posterior distribution was satisfied.  

As seen in the tables, the values of the inefficiency factor were all less than 100, which 

validated the use of the MCMC method (Nakajima and Watanabe 2012). This also confirmed 

that our posterior distribution sampled 10,000 times from the prior distribution is valid. Based 
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on these results that both of our CNY and JPY samples converge to the posterior distribution, 

we used the MCMC method for both currencies. 

In summary, the above results of the CD values and the inefficiency factor in Tables 5 and 

6 indicate that the parameters of the TVP-VAR model in this study have changed during our 

test period. 

1.4.3  Results of the Impulse Response Analysis 

In this section, the impulse response function of the TVP-VAR model is discussed. Since 

the parameter values of the TVP-VAR model change at each time point, the impulse response 

function can be drawn in a different diagram at each period. Figure 1.3 shows the shock and 

response of each variable of the time paths from the shock (4th, 8th, and 12th lag periods) at 

each period. 

According to Figure 1.3(a), the impulse response value of the Chinese LNG import price 

from the CNY (E1) (4th lag period: 𝜀𝜀𝐸𝐸1 ↑→ 𝑃𝑃𝑃𝑃) decreased positively from August 2005 to 

February 2007, but increased in March 2007. As the value of CNY appreciated after the 

financial crisis, the effects from the CNY on the LNG import price tended to decline from April 

2008 to February 2012. However, from March 2012 to September 2018, the value of the 

Chinese LNG import price from the CNY (4th lag period : 𝜀𝜀𝐸𝐸1 ↑→ 𝑃𝑃𝑃𝑃) became negative and 

increased with a negative tendency, and started to decrease toward zero from July 2015. It is 

discernible from Figure 1.3(a) that the CNY negatively affects the JCC crude oil price and the 

JCC price positively influences the LNG import price, meaning the CNY has negative impacts 

on the LNG import price. 

According to Figure 1.3(b), the impulse response of the Chinese LNG import price against 

the JPY (E2) for the fourth lag period (4th lag period :𝜀𝜀𝐸𝐸2 ↑→ 𝑃𝑃𝑃𝑃) is similar to that of the JCC 

price against the JPY (E2) (4th lag period :𝜀𝜀𝐸𝐸2 ↑→ 𝑃𝑃𝑃𝑃). Both the LNG import price and the JCC 

crude oil price were negatively correlated with the JPY, suggesting that JPY appreciation may 

lead to a drop in the Chinese LNG import and JCC crude oil prices. The 4th lag period for the 

𝜀𝜀𝐸𝐸2 ↑→ 𝑃𝑃𝑃𝑃 and 𝜀𝜀𝐸𝐸2 ↑→ 𝑃𝑃𝑃𝑃 between August 2005 to August 2014 has a declining trend, but after 

September 2014, the impulses from both of the currencies have been increasing toward zero. 

Comparing the results of the CNY and JPY in Figure 1.3, the CNY has a lower impulse 

response than the JPY on both the LNG import and JCC crude oil prices at the 4th lag period. 

It is apparent that in both currencies, the impulse response effects at the 4th lag periods are 

higher than the other lag periods. 
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(a) CNY 

 

(b) JPY 

Figure 1.3  Posterior mean of the impulse response functions. 
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(a) CNY 

 

(b) JPY 

Figure 1.4. Posterior mean of impulse response functions. 
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Figure 1.4 shows the impulse responses of October 2008, December 2010, and December 

2016, which are likely to reflect the effects of the CNY monetary reform. According to Figure 

1.4(a), the impulse response of the CNY on the Chinese LNG import price (𝜀𝜀𝐸𝐸1 ↑→ 𝑃𝑃𝑃𝑃) from 

October 2008 has a higher degree of response than those from December 2010 and December 

2016. The reason for this increased impulse from the CNY on the LNG import price might be 

related to the monetary reform and the shock of the 2008 financial crisis. From Figure 4b, the 

impulse response of the JPY on the Chinese LNG import price (𝜀𝜀𝐸𝐸2 ↑→ 𝑃𝑃𝑃𝑃) from 2008 seems 

lower than those from December 2010 and December 2016. This might be because the JPY had 

more influence on the LNG import price than the CNY when the 2008 financial crisis occurred. 

It could be that the JPY was more susceptible to the oil price plummeted after the crisis. 

Observing Figure 1.4 from a comparative viewpoint, the impulse response of JPY to JPY 

(𝜀𝜀𝐸𝐸2 ↑→ 𝐸𝐸2) from October 2008 shows that the impulse stayed relatively stable for December 

2010 and December 2016. On the other hand, the impulse response of CNY to CNY (𝜀𝜀𝐸𝐸1 ↑→

𝐸𝐸1) shows that the shock from October 2008 was larger than the shocks from the other two 

periods. Its lag effect remained up to the 10th examined period. This longer lag effect in the 

CNY compared to JPY is again likely to be the influence of governmental control regarding the 

CNY. 

 
Figure 1.5. 3D impulse response functions. This is a 3D diagram created using MATLAB 

R2016a software. The upper part represents the impulse response function (𝐸𝐸1 → 𝑃𝑃𝑃𝑃) of the 

Chinese LNG import price for the CNY E1, and the lower part represents the impulse response 

function (𝐸𝐸2 → 𝑃𝑃𝑃𝑃) of the Chinese LNG import price for the JPY E2. The X-axis (year) 

represents each time point at the data period, the Y-axis (section) represents the time elapsed 

from the shock (0–16), and the Z-axis represents the response size (post-shock mean). 
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Figure 1.5 shows the three-dimensional (3D) plot that captures the overall image of the 

impulse response of the CNY and JPY on the Chinese LNG import price. From the figure, it is 

observable that the shock from the CNY to the LNG price (upper figure) is stable up until the 

6th lag period while the shock from the JPY seems stable only until the 4th lag period. 

Presumably, the reason for JPY having a shorter period to absorb the shock is that the JPY is 

more capable to adjust to the free inflow and outflow of foreign capital while the CNY has been 

controlled under the regulations imposed by the Chinese government. 

1.4.4. Pass-Through Rate Results 

In Figure 1.6, the pass-through rate was calculated using the cumulative response value of 

the impulse in the first period from the shock of the CNY and JPY on the Chinese LNG import 

price. 

 
Figure 1.6. Changes in the pass-through rate for the CNY (E1𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡) and JPY (E2𝑡𝑡, PL𝑡𝑡 , PJ𝑡𝑡). 

Let 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸1→𝑃𝑃𝑃𝑃  be the pass-through rate of CNY to the Chinese import LNG import 

price and 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸2→𝑃𝑃𝑃𝑃  be the pass-through rate of JPY on the Chinese LNG import price. 

Then, the figure indicates that from 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸2→𝑃𝑃𝑃𝑃 , the pass-through rate of the JPY exceeded 

−100% in September 2005. On the other hand, the results of the 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸1→𝑃𝑃𝑃𝑃  show that the 

pass-through rate of the CNY in this period was only −25%. The figure illustrates that compared 

to CNY, the effects of the JPY began to decline after September 2005. 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸2→𝑃𝑃𝑃𝑃  decreased 

to 0% by September 2008, while 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸1→𝑃𝑃𝑃𝑃  did not decline by that much and fluctuated at 

around negative 25% from October 2006 to May 2008. 
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Then, from September 2008 to May 2010, 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸2→𝑃𝑃𝑃𝑃  increased toward a positive 

direction and reached a maximum of about 20%, while 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸1→𝑃𝑃𝑃𝑃  decreased slightly, but 

then seemed to be stable at around 20%. Besides, 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸2→𝑃𝑃𝑃𝑃  decreased to approach 0% 

from May 2010 to October 2013, while 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸1→𝑃𝑃𝑃𝑃  was stable near the 25% level from 

October 2008 to 2013. However, 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸1→𝑃𝑃𝑃𝑃  increased in the negative direction since 

October 2013, while 𝑅𝑅𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐸𝐸2→𝑃𝑃𝑃𝑃  declined to near zero.  

These weakening impacts of JPY on the LNG import price were likely related to the CNY 

monetary reform. The year 2005 was the year when the Chinese government conducted the 

monetary reform, so the declining impact of the JPY after 2005 might be indicating that the 

CNY began to have more influence on the Chinese LNG import market after the monetary 

reform occurred. It is known that even if the CNY is managed by the government, this reform 

can be a significant influential factor in import price fluctuations (John et al. 1992). Hence, we 

conceived that it is reasonable to interpret the fact that the CNY began to play an important role 

in the Chinese LNG market after 2005 is related to the CNY monetary reform. It is probable 

that due to the effect of this 2005 CNY reform, the CNY pass-through rate on the LNG import 

price began to become higher than that of the JPY after 2008 and this higher CNY pass-through 

rate remained during our investigation period. 

1.5  Discussions 

First, the above results of Tables 1.5 and 1.6, and Figure 1.2 indicate that the parameters 

of the TVP-VAR model in this study have changed during our test period. This implies that 

importing companies and suppliers in the international LNG market need to consider the effects 

of the CNY fluctuations when purchasing LNG. Thus, the study results provide valuable price 

discovery information for Chinese LNG market stakeholders. Numerous studies indicate that 

the TVP-VAR model can be applied to analyze macroeconomic data and has its strength in 

estimating parameters of models that change with time (Primiceri 2005; Nakajima and 

Watanabe 2012; Shioji and Uchino 2009; Shioji 2010). However, this method has not been 

applied to understand the relationship between the Chinese LNG import market and the Chinese 

exchange rate market after monetary reform took place in China. Hence, the current study 

provides some evidence on how effective the TVP-VAR model can be when analyzing the 

energy price and currency rate relationship.  

Second, Figure 1.5 revealed that the shock from the CNY to the LNG price (upper figure) 

was stable up until the 6th lag period, while the shock from the JPY was stable only until the 

4th lag period. These results are consistent with the conclusion of Shinkai (2011), Choudhria 
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and Hakura (2015), and Pennings (2017) suggesting that the exchange rate pass-through to 

import prices is incomplete for a large number of countries. The result of the impulse response 

analysis indicated that as the volatility of the CNY increased, the exchange rate risk in the LNG 

trading market gradually transferred from the JPY to the CNY after 2005. The results in Figure 

1.6 also indicate that compared to JPY, the influence of the CNY began to intensify after 2005. 

These results imply that since the July 2005 currency reform, the impact of the CNY on the 

LNG import market became stronger. This suggests the importance of considering the effects 

of monetary reform for understanding the Chinese LNG import and the exchange rate 

relationship. 

1.6  Conclusions 

This paper provided an overview of the empirical methodology of the TVP-VAR model 

with stochastic volatility, as well as its application to the pass-through rate of the JPY and CNY 

on the Chinese LNG import price. The empirical application of the TVP regression model 

revealed the importance of incorporating stochastic volatility into parameter estimation when 

analyzing the impact of the exchange rate on the LNG import price.  

The results of our study indicate that if a new CNY monetary reform takes place in the 

future, the effects of JPY on the Chinese LNG price will be reduced and those of the CNY on 

the Chinese LNG price is likely to become stronger. The study suggests the importance of 

considering the CNY fluctuation range when discovering or forecasting the price of the Chinese 

LNG import price. These findings imply that the LNG import price will be more stabilized 

when the CNY is controlled by the Chinese government. 

Hence, the study indicates the significance of considering effects of the exchange rate on 

an energy market when it is likely to be influenced by a monetary reform of the importing 

country. The study also suggests the importance of applying the TVP-VAR model instead of 

using the conventional VAR model when the parameters in the VAR model are time-variant. 

Finally, our study is limited in a way that it did not consider other factors such as the freight 

and insurance premiums that could influence the pass-through rate on the LNG import price. 

Hence, for our future study, we are hoping to investigate the pass-through rate when these 

factors are considered in the TVP-VAR model 
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2.1    Introduction 

As coal is an important input factor for production in China, the country faces significant 

economic uncertainty resulting from coal price fluctuations (Guo et al., 2016). A decrease in 

domestic coal price could reduce the cost for industrial consumers, and thus energy price 

changes could be regarded as supply shocks to the Chinese economy (Li et al., 2019). 

As the world’s largest producer and consumer of coal, China needs to understand the 

relationship between Chinese domestic coal and international energy prices, important for 

formulating policies to stabilize the domestic coal price. If the domestic coal market is related to 

the international coal, crude oil, and natural gas markets, it implies that companies involved in 

assuring fuel sources for the coal-using segments must consider the effects of international coal, 

crude oil, and gas markets when they decide their coal consumption levels (Honorata et al., 2020). 

It also indicates that policymakers seeking to stabilize the coal price must consider the sharp 

increase or decrease in the global energy price to mitigate the effects of the domestic coal price 

change on economic growth (Li et al., 2020). 

Numerous papers have investigated the long-run price relationship between crude oil and 

imported natural gas in the international market (Ji et al., 2014; Li et al., 2017). For example, Ji 

et al. (2014) revealed a long-run correlation between crude oil prices and the regional natural gas 

import price among the North American, European, and Asian markets. Li et al. (2017) 

investigated the price relationship between the natural gas and the coal markets to find that they 

have cointegration relationships. Li et al. (2017) also indicated that the relationship between 

Chinese domestic coal prices and international natural gas became apparent after the market 

reforms in the Chinese coal market. 

The above research did not test the dynamic relationship among the fossil fuel markets. 

However, Ates and Huang (2011) applied the recursive cointegration method to show that the 

price relationship between crude oil and natural gas markets had changed dramatically from April 

4, 1990, to June 23, 2009. This study is among the few studies investigating the dynamic 

relationship among the fossil fuel markets. However, little has been done to identify the dynamic 

relationship for the Chinese fossil fuel markets. 

The dynamic relationship between Chinese coal and international coal and crude oil prices 

is only analyzed based on the dynamic conditional correlation (DCC) model by Li et al. (2019). 

The DCC shows how price volatility in one energy market relates to price volatility in another 

energy market. However, the DCC does not identify the cointegration relationships among the 

market prices. The current study’s first point of divergence from Li et al. (2019) is that it uses the 

national overall coal price index, whereas Li et al. (2019) used the Chinese Qinhuangdao (QHD) 

coal price, which only considers the coal price of a particular area. Second, our study is different 
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from other relevant studies because we apply the recursive cointegration test to capture the 

dynamic relationship between Chinese coal and international natural gas markets. 

Li et al. (2019) found that the co-movement between Chinese coal and international coal 

and crude oil prices have different trends before and after mid-2008. This result indicates that it 

might be necessary to isolate some unique economic events as endogenous structural breaks and 

consider the time series data (Byrne and Perman, 2006). For example, many studies have 

suggested that the 2008 financial crisis caused immense impacts on energy markets (Aruga and 

Kannan, 2020; Yuan, Liu, and Wu., 2010). Additionally, Ling et al. (2013) suggest the importance 

of incorporating structural breaks when analyzing macroeconomic time-series data. 

Due to structural breaks, understanding the dynamic relationship between international 

energy prices and Chinese coal prices is important for stakeholders and policymakers. This study 

shows that if the dynamic relationship between coal and international fossil fuel markets changes 

within the investigated period, it can imply that stakeholders and policymakers need to consider 

changes in the relationship between domestic coal prices and international energy prices to 

understand coal price movements and to conduct more accurate forecasting. We expect that the 

results of this study can provide valuable price discovery information for Chinese coal market 

stakeholders and policymakers. 

We expect that the Chinese domestic coal market will not have a relationship with the 

international coal, crude oil, and natural gas market before 2008. The Chinese domestic coal 

market will begin to have a relationship with them after 2008. This is because China had enough 

supply from its domestic production and even exported its coal until mid-2008, suggesting that it 

was independent of the international energy market (Li et al., 2020). However, after the 2008 

financial crisis, China started to import a fair amount of coal from the international coal market. 

One probable reason for this is that the 2008 financial crisis led to a decline in international energy 

prices (Joo et al., 2020), and the cost of importing coal was reduced. Furthermore, due to the 

implementation of a 4 trillion yuan ($586 billion) stimulus plan, the Chinese economy was still at 

a high growth stage relative to foreign economies since 2008, which led China to increase its coal 

demand (Yuan, Liu, and Xie., 2010). 

We also anticipate that the drastic changes in domestic and international gas markets in the 

2010s might have influenced the relationship between the Chinese coal and international fossil 

fuel markets. First, as the shale gas revolution causes downward pressure on international gas 

markets (Aruga, 2016), the Chinese coal market was affected by this revolution in the 2010s. 

Second, as the Chinese government announced an increase in natural gas consumption between 

2016 and 2020 (NEB1), 2016) to improve its air quality by reducing PM2.5 and CO2 emissions, 

China may shift from coal to natural gas consumption. Chinese natural gas consumption increased 
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by 18% from 2018, accounting for 22% of global gas consumption net growth (BP2), 2019). Thus, 

the relationship between the Chinese coal and international fossil fuel markets might have 

changed in the 2010s. 

We explain the research methodology in the next section. The second section describes the 

dataset employed in this study. Finally, the results and conclusions are introduced. 

2.2    Methods 

         The traditional Johansen cointegration test can only detect the price linkage during the whole 

period and cannot evaluate whether the price linkage changes with time. However, the recursive 

Johansen test reveals how the cointegration relationship changes during the investigated period 

(Aruga, 2020). The recursive cointegration test can reveal the dynamic time-path of international 

energy prices on domestic coal prices. By applying the recursive cointegration test, this study 

provides dynamic information on the impact of international prices on domestic coal prices to 

stakeholders of the Chinese coal market. To confirm the validity of the recursive cointegration 

test, we apply the conventional Johansen test for periods identified to have cointegration 

relationships. Thus, this study applies two cointegration tests: the recursive and conventional 

Johansen tests (Johansen & Juselius, 1990). 

      Before performing a cointegration test on the price series, integrating the test variables is 

examined through stationarity tests. Therefore, the Augmented Dickey-Fuller (ADF), Phillips-

Perron (PP), and KPSS unit root tests are performed on our time series data. We then identified 

the optimal lag orders of the vector autoregressive (VAR) model based on the Schwarz 

information criterion (SIC).  

Let 𝑃𝑃𝑡𝑡  be the column vector of the 𝑘𝑘  price series in this study. Then, the mathematical 

representation of VAR is given by:  

∆𝑃𝑃𝑡𝑡 = 𝐴𝐴0 + 𝐴𝐴1∆𝑃𝑃𝑡𝑡−1 + ⋯+ 𝐴𝐴𝑛𝑛∆𝑃𝑃𝑡𝑡−𝑛𝑛 + 𝜀𝜀𝑡𝑡 (1) 

where Δ is the first difference operator, 𝐴𝐴0 is a constant vector (𝑘𝑘 × 1), 𝐴𝐴1⋯𝐴𝐴𝑛𝑛 are matrices of 

coefficients to be estimated (𝑘𝑘 × 𝑘𝑘), n is the lag order, and 𝜀𝜀𝑡𝑡 is the 𝑘𝑘 × 1 vector of error terms. 

        Then the Johansen test is performed using the following vector error correction model: 

∆𝑃𝑃𝑡𝑡 = �𝑃𝑃𝑡𝑡−1 + �𝛤𝛤𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

∆𝑃𝑃𝑡𝑡−𝑖𝑖 + 𝛾𝛾𝑡𝑡 , 𝑡𝑡 = 1,⋯ ,𝑇𝑇 
 

(2) 

where Δ is the first difference operator, ∏ =∑ 𝐴𝐴𝑖𝑖 − 𝐼𝐼𝑛𝑛
𝑖𝑖=1 , and 𝛤𝛤𝑖𝑖 = −∑ 𝐴𝐴𝑖𝑖𝑛𝑛

𝑖𝑖=𝑖𝑖+1 . The number of 

cointegration vectors is determined by the rank of the 𝛱𝛱 matrix in Eq. (2). If rank (𝛱𝛱)=0, the 

matrix is null, and the price variables will not be cointegrated. If 𝛱𝛱 is of rank 𝑘𝑘, the price series is 

stationary. If 1 < 𝑟𝑟𝑎𝑎𝑎𝑎𝑘𝑘(𝛱𝛱) < 𝑘𝑘, there are cointegration relations among the price variables. 𝛾𝛾𝑡𝑡 is 

a vector of independent and identically and normally distributed random disturbance terms.  
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The model in equation (2) is also applied to the recursive Johansen test. Following Aruga 

and Kannan (2020) and Tang and Aruga (2021), first, the estimation algorithm automatically treats 

the first k observations as the initial base sample. Second, additional observations are added with 

shifts from the base sample. Then, the trace statistics are estimated recursively for each iteration. 

Finally, this recursive estimation continues until the final sample period, June 2020, is reached. 

The estimation is conducted by CATS 2.0 of RATS Version 10.0. The results are presented in 

graphs and are evaluated graphically (Tang and Aruga, 2021). 

2.3    Data 

         The study uses monthly data covering the period 2000:01–2020:06. As different provinces 

in China use different coal prices, the Chinese price indices of domestic coal industrial sectors are 

used. These data were obtained from the CEINET3) Statistics Database. The international coal, oil, 

and natural gas prices are acquired from the World Bank commodity markets4). 

         The Japanese liquefied natural gas (LNG) and the Australian port thermal coal are used in 

the study. These data are obtained from the World Bank. Although the Japanese LNG price is 

based on a long-term contract it is often used as an indicator for the Asian LNG market (Martono 

and Aruga, 2018), and hence, it is meaningful to investigate the relationship with the Chinese coal 

market. All price data are shown in Figure 2.1. 

As energy prices have different units, they are standardized by the following formula: 

𝑍𝑍 =
𝑃𝑃 − 𝜇𝜇
𝜎𝜎

, (3) 

where 𝑍𝑍 is the normalized value of 𝑃𝑃; 𝑃𝑃 denotes the price variable in this study, and 𝜇𝜇, and 𝜎𝜎 are 

the mean and standard deviation of P. 
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Figure 2.1  Plots of the price data 
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2.4    Results 

2.4.1  Unit root test  

Table 2.1 shows the unit root test results for the level and the first differences with constant 

and trend. The result shows that all price series are non-stationary at their level data but are 

stationary when first differencing them at the 1% significance level. Thus, all price series are first-

order integrals in the entire test period. 

Table 2.1  Unit root tests. 

Variables Level Data (t-Value) First Difference Data 
ADF PP KPSS ADF PP KPSS 

Australian coal -2.39 -2.33 0.95* -11.71* -11.78* 0.1 
Dubai crude oil -2.51 -2.04 0.78* -9.53* -8.75* 0.16 
Japanese LNG -2.05 -1.73 1.00* -6.83* -9.50* 0.12 
Chinese coal -3.69 -3.02 0.22* -5.43* -6.91* 0.05 

Note) * Significant at the 1% significance level 
 

2.4.2  Cointegration tests 

Table 2.2 illustrates the results of the Johansen test. The table indicates that the Australian 

coal and Dubai crude oil prices are not cointegrated with the Chinese domestic coal price for the 

entire period (2001:01–2020:06). This might be because the Chinese government has been 

controlling the domestic coal price until 2013 (Zhang et al., 2018). On the contrary, the table 

suggests the Chinese domestic coal and the Japanese natural gas markets have a cointegration 

relationship for the entire period. This cointegration is likely due to natural gas being a direct 

substitute for coal. To reduce its carbon emissions, China began to import natural gas to replace 

coal (Ding et al., 2017), decreasing its coal-oriented energy source from 64% to 58% while 

increasing the natural gas ratio to 10% during 2015–2020 (National Energy Board, 2016). This 

shift in energy sources from coal to natural gas may have affected the price linkage between 

Chinese coal and the Japanese natural gas market. 

 

Table 2.2 Cointegration tests 

Variables H0: rank = r Trace test Max test 

Entire period (2001:01–2020:06)  
China coal  vs  
Australian coal  

r = 0 24.16**(0.002) 19.69**(0.006) 
r ≤ 1 4.47**(0.003) 4.47**(0.003) 

China coal  vs  
Dubai crude oil  

r = 0 25.81**(0.001) 21.51**(0.003) 
r ≤ 1 4.31**(0.037) 4.31**(0.037) 

China coal  vs  
Japanese LNG 

r = 0 26.36**(0.000) 23.27**(0.000) 
r ≤ 1 3.08(0.108) 3.08(0.108) 

Note) ** Significant at the 5% significance level. The value inside the parentheses is a p-value. 
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2.4.3  Recursive Johansen test 

Figure 2.2 shows the results of the recursive Johansen test. The figure presents the dynamic 

changes in the cointegration relationships. The value in the vertical axis denotes the ratio of the 

critical value and trace statistics. When this value is larger than one, it indicates that the two series 

are cointegrated. Thus, the test results show that the price relation of the whole interval is dynamic 

cointegration. Fig (a) indicates that the Chinese domestic coal price is only cointegrated with the 

Australian coal price between January 2008 and July 2013. Fig (b) indicates that the Chinese 

domestic coal price is cointegrated with the Dubai crude oil price from February 2009 to 

November 2014. Fig (c) reveals that the Chinese domestic coal price is cointegrated with the 

Japanese natural gas from June 2008 to November 2008 and from December 2017 to June 2020. 

   

 
Fig. (a): China coal vs Australian coal 

 
Fig. (b): China coal vs Dubai crude oil 

 
Fig. (c): China coal vs Japanese natural gas 

Figure 2.2: the recursive Johansen test between Chinese domestic coal price and prices of 
Australian coal, Dubai crude oil, and Japanese natural gas 
 

The Johansen test is conducted on periods determined to have such relationships to verify 

the cointegration relationships identified by the recursive cointegration test. The unit root tests 

were conducted, results are as shown in Table 2.1. The results suggested that all price series are 

non-stationary at their level data and become stationary for the first differenced series at the 5% 
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significance level. As seen in Table 2.3, the Johansen test reveals that the test variables are 

cointegrated during the specific periods identified by the recursive cointegration test. The Chinese 

domestic coal price was cointegrated with the Australian coal price from January 2008 to July 

2013. The Chinese domestic coal price was cointegrated with the Dubai crude oil price from 

February 2009 to November 2014. The Chinese domestic coal price is cointegrated with the 

Japanese natural gas price from December 2017 to June 2020. 

 
Table 2.3. Cointegration tests 

Variables H0: rank = r Trace test Max test 
period (2008:01–2013:07)  
China coal  vs  
Australian coal  

r = 0 29.04**(0.019) 22.40**(0.017) 
r ≤ 1 6.64(0.38) 6.64(0.38) 

period (2009:02–2014:11)  
China coal  vs  
Dubai crude oil  

r = 0 32.06**(0.007) 22.89**(0.014) 
r ≤ 1 9.18(0.16) 9.18(0.16) 

period (2017:12–2020:06)  
China coal  vs  
Japanese LNG 

r = 0 28.23**(0.024) 21.02**(0.028) 
r ≤ 1 7.21(0.322) 7.21(0.322) 

Note) ** Significant at the 5% significance level. The value inside the parentheses is a p-value. 
   

2.5   Discussion 

The results indicate that the Chinese domestic coal market is not related to the international 

coal, crude oil, and natural gas market before 2008. However, the Chinese domestic coal market's 

relationship with them became apparent after 2008. One probable reason for this is that the 2008 

financial crisis has influenced the relationship between the Chinese coal and international fossil 

fuel markets (Tang and Aruga, 2021). The results also show that the relationships between the 

Chinese coal and international fossil fuel markets had changed during the 2010s. It became 

apparent that the Chinese domestic coal market was cointegrated with the international natural 

gas market after 2018. This could be because the shale gas revolution in the 2010s had influenced 

Chinese coal and international fossil fuel market relationships. 

2.6    Conclusions 

The above results have the following implications. First, the long-run relationship between 

the Chinese coal and international fossil fuel markets were changing during the study period, 

implying that importing companies in China must consider the impact of the dynamic relationship 

between international energy prices and domestic coal prices to identify coal price movements 

when purchasing coal. Second, we found that the Chinese domestic coal and international natural 

gas markets became  cointegrated after 2018, signifying that after 2018, policymakers must 
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consider the impact of international natural gas prices when formulating a policy to stabilize the 

Chinese coal price. Thus, this study provides valuable price discovery information for Chinese 

coal market stakeholders and policymakers. 

As natural gas is one of the major energy sources after the 13th Five Year Plan of China5), 

stakeholders and policymakers of the Chinese coal market must consider international natural gas 

prices for identifying Chinese coal price movements and generate more accurate expectations. 

These results of this study will provide important information for the Chinese government 

to substitute coal with natural gas to address the climate change issue until it can totally replace 

its fossil fuels with renewable sources. 

This empirical investigation is limited to investing the Chinese coal market only from a price 

perspective. Further studies must incorporate other relevant variables that are important for 

understanding the demand and supply structure. 

 

NOTES 
1)  National Energy Board(NEB). (01/17/2017 updated ) The 13thFive-Year Plan for Energy 

Development(Written in Chinese).page.<http://www.nea.gov.cn/2017-

01/17/c_135989417.htm>,10/25/2020 referred.13 
2) British Petroleum (BP)(07/28/2019 updated) Annual report 

page.<https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-

economics/statistical-review/bp-stats-review-2019-full-report.pdf.> 8/10//2020 referred. 
3)        CEINET Statistics Database(07/28/2020 updated) month page.< https://db.cei.cn/> 

8/10//2020 referred. 
4)       Commodity markets of the world bank. (07/28/2020 updated) month data page. 

< https://www.worldbank.org/en/research/commodity-markets> 8/10//2020 referred. 
5)      National Energy Board. (01/17/2017 updated ) The 13th Five Year Plan for Energy 

Development(Written in Chinese) page. 

<http://www.nea.gov.cn/2017-01/17/c_135989417.htm>,10/25/2020 referred. 
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3.1 Introduction 

According to the WHO report (WHO 2020), Coronavirus disease 2019 (COVID-19) was 

first reported in Wuhan City, Hubei Province of China, in late December 2019. In response to 

minimize the threat of the coronavirus, the Chinese government sealed off Wuhan City on 

January 23, 2020, and then all the cities in China were compelled to restrict business activities 

(Wu et al. 2020). Subsequently, Covid-19 was confirmed as a widespread pandemic over the 

world, affecting many industrial sectors, and restrictive measures are used to prevent the spread 

of the virus (Aruga et al. 2020).  

With these restrictions, many industries, including agriculture, manufacturing, finance, 

education, healthcare, sports, tourism, and food are largely at a halt, causing adverse impacts 

on energy demand and consumption (Jiang et al. 2021). According to the International Energy 

Agency (IEA) (2020), it is predicted that countries in full lockdown will experience a 25% 

decline on average in energy demand per week, where countries in partial lockdown will decline 

18% on average. The Asian demand for oil and gas was expected to fall by 15 percent, with the 

possibility of a 17 percent drop due to the pandemic in 2020 (Energy 2020). According to the 

Chinese government (SIPA 2020), national energy consumption and power demand declined 

2.8% and 6.5%, respectively, in the first quarter of 2020 compared to that of 2019.  

The COVID-19 shock on energy markets in the Asian-Pacific region became more evident 

in the fossil fuel market. The World Bank calculated that there was a 63.5% drop in Dubai crude 

oil price, a 15.9% drop in the Australian coal price, and a 1.2% increase in the Japanese 

Liquefied Natural Gas price from January 2020 to April 2020. In China, the domestic petroleum 

and natural gas price indices fell 31.4% and 58.6%, respectively, during the same period 

(CEINET Statistics Database 2021). We expect that the drop in fossil fuel prices in 2020 is 

related to the decline in oil consumption due to the COVID-19 outbreak and political factors 

affecting the supply side like the price war between Saudi Arabia and Russia in March 2020 

(Turak 2020). However, in this study, based on Fama’s efficient market hypothesis (Fama 

1991), we focus on the price itself rather than the factors behind the price changes assuming 

that the demand and supply factors are incorporated in the market price. 

China is an interesting case study for the following three reasons (Norouzi et al. 2020). 

First, China is the first country suffering from the COVID-19, which is feasible for capturing 

the early stage of the shocks of the COVID-19 crisis. Second, it is the second-largest economy 

and largest developing country, having the highest fossil fuel consumption in the world. Thus, 

we believe conducting a case study on China can serve as a proxy for understanding the impacts 

of the COVID-19 crisis on fossil fuel-consuming countries. Finally, China is the world’s largest 
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energy importer, and thus, we can learn from this case study how an energy importing country 

is affected by the COVID-19 pandemic.  

Furthermore, the above drastic price fluctuations in the Chinese and international fossil 

fuel prices will increase the risk of uncertainty for energy trading participants and policymakers. 

To better understand the above drastic price fluctuations caused by the COVID-19 crisis, it 

would be interesting to compare the impacts with another well-known exogenous shock 

affecting the fossil fuel market: The 2008 financial crisis. Before the 2008 financial crisis, 

energy-producing companies increased their investments significantly. However, when global 

energy demand dropped sharply due to the crisis, companies addressed the drastic decline in 

cash flow with a reduction of prices (Hauser et al. 2020). Spatt (2020) suggests that the 

examples of two crises analyzed simultaneously can lead to more insight than a single one to 

help understand the covid-19 crises and the causes and consequences of both crises. The 2008 

financial crisis reflects the infection of the financial system due to excess leverage and poor-

quality mortgage loans while the COVID-19 crisis is related to a substantial global economic 

shock due to the outbreak of the coronavirus.  

We expect that the dynamic relationships between the Chinese and international fossil 

fuel markets are changing differently from the 2008 financial crisis during the COVID-19 

pandemic periods. The impact of the 2008 financial crisis on the energy market is related to 

financial market behavior, which will act differently in bear and bull markets (Mollick and 

Assefa 2013). So, the relationship between the variables may be subject to drastic changes 

during the crisis (Mollick and Assefa 2013), and thus, we expect that it would be more difficult 

for the stakeholders of the fossil fuel market to predict the effects of the impact from the 2008 

financial crisis.  

On the other hand, the information for the impact of the COVID-19 crisis on the energy 

market could be predicted according to historical production data announced by the government. 

When a lockdown is announced by the government it is easy to forecast that the energy demand 

will decrease. Thus, energy stakeholders can expect beforehand that the COVID-19 crisis 

would cause a sharp drop in energy prices when a lockdown is conducted. If the cause and 

timing of the event are known to the market participants, effects of the shock will likely be 

quickly incorporated into the market, and hence, we anticipate that the shock from the COVID-

19 crisis will have little change on the linkages between the Chinese and international fossil 

fuel markets.  

Therefore, analyzing the impacts of the 2008 financial crisis and the COVID-19 

pandemic on the relationship between the Chinese and international fossil fuel markets will 

provide useful information for the market participants and policymakers of the fossil fuel 
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markets to hedge against the uncertainty and risk involved with the energy price fluctuations 

related to the economic crises. If the study identifies that the dynamic relationships between the 

Chinese and international fossil fuel markets are changing during the crisis periods, it will imply 

that stakeholders and policymakers trading between the Chinese and international fossil fuel 

markets need to consider the shocks from these crises in their price discovery processes. Thus, 

we expect that the study will provide valuable information for stakeholders and policymakers 

managing risks in the Chinese energy markets.   

We describe and explain the previous research in the second section. The third section 

presents the materials and methodology of the study. Then in the fourth section, we will report 

the results of the analyses performed in the study. Finally, the discussion and conclusion will 

be introduced in the fifth and last sections.  

3.2 Previous Research 

Numerous papers have investigated the impact of the COVID-19 epidemic crisis on 

different countries and regional energy markets (Aruga et al. 2020; Nyga-Lukaszewska and 

Aruga 2020; Bahmanyar et al. 2020; Norouzi et al. 2020; Jiang et al. 2021). Aruga et al. (2020) 

found that a long-run relationship holds between the COVID-19 cases and energy consumption 

and that the COVID-19 cases have a positive effect on Indian energy consumption. Bahmanyar 

et al. (2020) suggested that the energy consumption profiles reflect the difference in peoples’ 

activities in different European countries using various measures in response to the Covid-19 

pandemic. Norouzi et al. (2020) suggested that the elasticity of petroleum and electricity 

demand toward the population of the infected people in China is −0.1% and −0.65%, 

respectively. Jiang et al. (2021) showed that although the overall energy demand declines, the 

extra energy for COVID-19 fighting is non-negligible for stabilizing energy demand, and the 

energy recovery in different regions presents significant differences.  

Next, some studies brought important implications in the risk management of energy 

during the pandemic (Akhtaruzzaman et al. 2020; Chang et al. 2020). Akhtaruzzaman et al. 

(2020) showed that oil supply industries benefit from positive shocks to oil price risk in general, 

whereas oil and financial industries react negatively to positive oil price shocks. Chang et al. 

(2020) believed that there are strong cross-sector herding spillover effects from US fossil fuel 

energy to renewable energy, especially before the 2008 financial crisis, while the US fossil fuel 

energy market has a significant influence on the European and Asian renewable energy returns 

during the COVID-19 pandemic.  

On the other hand, there is a large amount of literature studying the volatility spillovers 

in commodity and financial markets to understand the cross-market linkages during the 
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COVID-19 crisis (Bouri and Lei et al. 2021; Bouri and Lucey et al. 2021; Shahzad et al. 2021). 

For example, Bouri et al. (2021a) examine the realized volatility connectedness across 15 

international commodity futures showing strong and moderate levels of volatility 

connectedness among energy and metals and moderate connectedness within the group of 

agricultural commodities. Shahzad et al. (2021) indicated that the impact of volatilities on the 

inter-sectoral stock market is asymmetric and time-varying during the COVID-19 period. 

However, few prior studies examined whether the dynamic cointegration relationships 

between the Chinese and international fossil fuel markets are changing during periods related 

to the 2008 financial crisis and the COVID-19 pandemic. Unlike the previous study, the current 

study is among the first studies to explore this issue. In addition, recently, many studies 

investigating energy market linkages use the cointegration methods (Aruga and Kannan 2020; 

Hu et al. 2020) but up until now, no studies have applied both the recursive cointegration test 

and the VAR or VECM model including the crises as dummy variables for identifying market 

linkages. By including the dummy variable, the model can grasp the impact of the crisis on the 

dynamic relationships. The study not only contributes to understanding how the crises 

influenced the dynamic relationship between the Chinese and international energy sectors but 

also becomes a good reference for analyzing the effects of events causing economic shocks on 

other Asian-Pacific countries.  

3.3 Materials and Methods 

To identify the dynamic cointegration relationships between the Chinese and international 

fossil fuel markets during the 2008 financial crisis and COVID-19 pandemic, we used the 

recursive Johansen cointegration test developed by Hansen and Johansen (1993). Our 

cointegration tests are performed between January 2000 to December 2020. 

  
(a): Chinese fossil fuel price (b): International fossil fuel price 

Figure 3.1. Plots of the Chinese and international fossil fuel prices. 

As Chinese and international fossil fuel prices have different units, they are standardized as 

shown in Figure 3.1. First, we used the monthly price indices of the domestic coal, natural gas, 
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and petroleum industrial sectors to represent the Chinese fossil fuel market because different 

provinces of China use different fossil fuel prices. These price indices are obtained from the 

CEINET statistics database (2021). Second, for the international fossil fuel prices, we used the 

Australian coal, Dubai crude oil, and Japanese liquefied natural gas (LNG) prices. These 

international fossil fuel prices are gathered from the World Bank (2021).  

It is necessary to test the stationarity of time series data and identify the optimal lag orders 

before performing a cointegration test. For this purpose, we conducted the Augmented Dickey-

Fuller (ADF), Phillips-Perron (PP), and KPSS unit root tests on our time series data. Trend and 

intercept are included in the unit root tests. The Akaike Information Criterion (AIC) is used for 

selecting the optimal lag length for the unit root tests, and the Parzen kernel is used for the 

estimations. Table 1 illustrates the results of these tests. The result shows that all our test 

variables are non-stationary at their level data but are stationary when first differencing them at 

the 5% significance level. 

Table 3.1. Unit root tests. 

Variables Level Data (t-Value) First Difference Data 
ADF PP KPSS ADF PP KPSS 

Australian coal −2.46 −2.41 0.85 * −11.5 * −11.59 * 0.05 
Japanese LNG −1.81 −1.73 0.92 * −7.45 * −9.44 * 0.19 

Dubai Crude-oil −2.55 −1.97 0.67 * −9.67 * −8.92 * 0.18 
China coal −2.60 −3.10 0.38 * −4.55 * −6.90 * 0.03 

Chinese natural gas −3.27 −4.12 0.37 * −7.45 * −13.4 * 0.02 
Chinese crude oil −2.88 −3.75 0.43 * −12.89 * −12.88 * 0.02 

Note: * Significant at the 5% significance level. 

Table 3.2. Optimal lag orders. 

Relationship Between Variate Lag Lowest SC 
Chinese coal vs Australian coal 2 −1.35 * 
Chinese coal vs Dubai crude oil 2 −1.62 * 
Chinese coal vs Japanese LNG 2 −2.38 * 

Chinese crude oil vs Australian coal 2 −0.41 * 
Chinese crude oil vs Dubai crude oil 2 −1.04 * 
Chinese crude oil vs Japanese LNG 4 −1.60 * 

Chinese natural gas vs Australian coal 2 −0.02 * 
Chinese natural gas vs Dubai crude oil 2 −0.69 * 
Chinese natural gas vs Japanese LNG 4 −1.28 * 

Note: The * symbol represents the lowest value of SC. 

As the precondition of the cointegration test was satisfied, we performed the recursive 

Johansen cointegration test between the Chinese and international fossil fuel prices. To apply the 

recursive cointegration test, we identified the optimal lag orders to be included in the test model 

based on the vector autoregressive (VAR) model. The optimal lag lengths are determined based 
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on the Schwarz Information Criterion (SC). The lag orders selected by the criterion are based 

on the lowest SC value. The results of the optimal lag orders are presented in Table 3.2. 

The algorithms for recursive estimation are first performed by estimating the Johansen 

trace test over an initial sample (Aruga and Kannan 2020). Thus, the base initial sample will be 

automatically treated as the first k observations by the program. Then, additional observations are 

added to this base sample, and at each iteration, the trace statistic is estimated recursively. Finally, 

this recursive estimation continues until the final sample period, December. 2020, is reached. The 

above Algorithms for the recursive estimation process are used in the CATS 2.0 package in RATS 

Version 10.0. The results are plotted and evaluated graphically. The recursive Johansen trace 

statistics are reported in the graph, and the critical values larger than one in the graph indicate that 

the two series are cointegrated. 

To check the cointegration relationship for the whole period investigated in the study, we 

also performed the Johansen test (Johansen and Juselius 1990).  

Finally, to find out if the changes in the cointegration relationship identified by the 

recursive cointegration test were related to the changes in the Chinese and international fossil 

fuel prices due to the shocks from the 2008 financial crisis and COVID-19 pandemic, we applied 

the VAR and VECM models by including these events as dummy variables. 

To verify whether the VAR or VECM model should be used, we use the results obtained 

from the Johansen test. If the Johansen test revealed that there is not a cointegration relationship 

between the Chinese and international fossil fuel prices, the VAR model is used while the 

VECM model is applied when a cointegration relationship is found. 

The mathematical representation of the VAR model is given by: 

∆𝑃𝑃𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1∆𝑃𝑃𝑡𝑡−1 + ⋯+ 𝛽𝛽𝑛𝑛∆𝑃𝑃𝑡𝑡−𝑛𝑛 + 𝜀𝜀𝑡𝑡 (1) 

where 𝑃𝑃𝑡𝑡 is the column vector of the 𝑘𝑘 fossil fuel price series of this study. Δ is the first difference 

operator, 𝛽𝛽0 is a constant vector (𝑘𝑘 × 1), 𝛽𝛽1 ⋯𝛽𝛽𝑛𝑛 are matrices of coefficients to be estimated 

(𝑘𝑘 × 𝑘𝑘), n is the optimal lag order, and 𝜀𝜀𝑡𝑡 is the 𝑘𝑘 × 1 vector of error terms. 

The mathematical representation of the VECM model is given by: 

∆𝑃𝑃𝑡𝑡 = 𝜆𝜆𝐸𝐸𝑃𝑃𝑡𝑡−1 + �𝜙𝜙′𝑡𝑡−𝑖𝑖∆𝑃𝑃𝑡𝑡−𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡 (2) 

here the difference from equation (1) is that in this equation the error correction term 𝐸𝐸𝑃𝑃𝑡𝑡−1 is 

included in the VAR model. The error correction term captures the long-run relationship 

between the Chinese and international fossil fuel markets. 
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To capture the impacts of the 2008 financial crisis and COVID-19 pandemic on Chinese and 

international fossil fuel markets for analyzing the change in the relationship between the Chinese 

and international fossil fuel markets, we applied the VAR model (1) and VECM model (2) 

including these events as dummy variables. 

The mathematical representation of the VAR model (1) with dummy variables is given by: 

∆𝑃𝑃𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1∆𝑃𝑃𝑡𝑡−1 +⋯+ 𝛽𝛽𝑛𝑛∆𝑃𝑃𝑡𝑡−𝑛𝑛 + 𝑎𝑎𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑1 + 𝑎𝑎𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑2 + 𝜀𝜀𝑡𝑡 (3) 

The mathematical representation of the VECM model (2) with dummy variables is given 

by: 

∆𝑃𝑃𝑡𝑡 = 𝜆𝜆𝐸𝐸𝑃𝑃𝑡𝑡−1 + �𝜙𝜙′𝑡𝑡−𝑖𝑖∆𝑃𝑃𝑡𝑡−𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

+ 𝑎𝑎𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑1 + 𝑎𝑎𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑2 + 𝜀𝜀𝑡𝑡 (4) 

The models in Equations (3) and (4) have prices and the same dummy variables. Dummy1 

considers the effects of the COVID-19 pandemic on the price relationships, which takes the 

value “1” for the 2020:01–2020:12 periods and “0 “otherwise since the coronavirus patient was 

first reported in China in late December 2019. Dummy 2 takes “1” if the data belong to the 

2008:09–2009:08 period and “0 “otherwise capturing the impact of the 2008 financial crisis. 

Dummy 2 is defined as this period since the bankruptcy of Lehman Brothers occurred on 15 

September 2008 (Adrian and Shin 2010) and it is often assumed that the 2008 financial crisis 

began in September 2008 (Aruga and Kannan 2020). 

3.4. Results 

3.4.1. Recursive Cointegration 

Figure 3.2 illustrates the results of the recursive cointegration test conducted between the 

Chinese and international fossil fuel markets. It is observable from Figure 3.2(a) that the Chinese 

domestic coal price is not cointegrated with the Australian coal and Dubai crude oil markets until 

January 2008 and March 2009, respectively. On the other hand, the Chinese domestic coal and 

the Japanese LNG markets were mostly not cointegrated during periods before the 2008 financial 

crisis but they became cointegrated just before the crisis and again became not cointegrated after 

the shock from the crisis. These results were also confirmed by Li et al. (2019) showing that the 

co-movement between the Chinese coal and international energy prices has different trends before 

and after mid-2008 due to inter-fuel substitution of crude oil and inter-market contagion of the 

international coal market.  
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From figure 3.2(a), it is also discernible that the COVID-19 pandemic did not have impacts 

on the Chinese coal and international fuel market relationships. Both the Australian coal and 

Dubai crude oil markets continued to have no cointegration relationships with the Chinese coal 

market and the Japanese LNG market remained to show a cointegration relationship with the 

Chinese coal market even after the COVID-19 pandemic occurred. 

Next, we would like to look into the effects of the two crises on the Chinese crude oil and 

international fossil fuel market linkages. Figure 3.2(b) suggests that both the relationships 

between the Chinese crude oil vs the Australian coal and the Chinese crude oil vs the Japanese 

LNG market received impacts from the 2008 financial crisis since the cointegration relationships 

have altered before and after the crisis for these relationships. However, the Dubai crude oil 

market remained to have no cointegration relationship with the Chinese crude oil market during 

this crisis.  

Regarding the COVID-19 shock, none of the relationships between the Chinese crude oil 

and the international fossil fuel market were influenced by this shock. 

  
(a) Chinese coal and International fossil fuel (b) Chinese crude oil and international fossil fuel 

 
(c) Chinese natural gas and international fossil fuel 

Figure 3.2. Recursive cointegration of Chinese and International fossil fuel prices. 

Finally, Figure 3.2(c) illustrates the results of the impacts of the crises on the Chinese 

natural gas market. Similar to the results of Figure 2b while the relationship between the China 

natural gas vs the Australian coal and that between the China natural gas vs the Japanese LNG 

were influenced by the 2008 financial crisis, the relationship between the Chinese natural gas and 
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Dubai crude oil market did not change during this crisis. The COVID-19 shock also did not show 

any impact on the Chinese natural gas and international fossil fuel market linkages. 

3.4.2. Johansen Cointegration 

Table 3.3 illustrates the results of the Johansen test between Chinese fossil fuel and 

international fossil fuel prices.  

Table 3.3 Results of the Johansen cointegration test. 

Between Different 
Market Rank Number Trace  

Statistic 

0.05 
Critical 
Value 

Max-
Eigenvalue  

Statistic 

0.05 
Critical Value 

Chinese coal vs  
Australian coal 

None * 25.95 * 15.49 21.45 * 14.26 

At most 1 * 4.5 * 3.84 4.5 * 3.84 

Chinese coal vs  
Dubai crude oil 

None * 27.65 * 15.49 23.19 * 14.26 

At most 1 * 4.45 * 3.84 4.45 * 3.84 

Chinese coal vs  
Japanese LNG 

None * 38.54 * 15.49 35.84 * 14.26 

At most 1 2.69 3.84 2.69 3.84 

Chinese crude oil vs 
Australian coal 

None * 23.16 * 15.49 18.81 * 15.49 

At most 1* 4.34 * 3.84 4.34 * 3.84 

Chinese crude oil vs  
Dubai crude oil 

None * 23.64 * 15.49 21.45 * 15.49 

At most 1 * 4.5 * 3.84 4.5 * 3.84 

Chinese crude oil vs  
Japanese LNG 

None * 39.54 * 15.49 35.65 * 15.49 

At most 1* 3.89 * 3.84 3.89 * 3.84 

Chinese natural gas vs 
Australian coal 

None * 28.59 * 15.49 23.55 * 15.49 

At most 1* 5.04 * 3.84 5.04 * 3.84 

Chinese natural gas vs  
Dubai crude oil 

None * 26.18 * 15.49 22.68 * 15.49 

At most 1 3.49 3.84 3.49 3.84 

Chinese natural gas vs 
Japanese LNG 

None * 45.01 * 15.49 40.81 * 15.49 

At most 1 4.20 3.84 4.20 3.84 
Note: * Significant at the 5% significance level. 

First, Table 3.3 suggests that the Chinese domestic coal price is not cointegrated with the 

Australian coal and Dubai crude oil prices during the 2001:01–2020:12 period. The reason for 

this is perhaps because the Chinese domestic coal price has been controlled by the Chinese 

government until 2013 (Zhang et al. 2018). In contrast, the Chinese domestic coal market is 

cointegrated with the Japanese LNG market. This is likely related to China’s shift from coal to 

natural gas to reduce its carbon emission.  
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Secondly, Table 3.3 indicates that the Chinese crude oil price is not cointegrated with the 

Australian coal, Dubai crude oil, and Japanese LNG prices. The reason for the Chinese crude oil 

not having linkages with the international market is perhaps because the crude oil market is still 

regulated by the government (Lin and Ouyang 2014). For example, the prices of gasoline, diesel, 

and aviation kerosene are subsidized by the Chinese government. 

Thirdly, the Chinese natural gas price is not cointegrated with the Australian coal price, while 

the Chinese natural gas price is cointegrated with the Dubai crude oil and Japanese LNG prices. 

This is because China's natural gas is still mainly imported. The imported natural gas prices of the 

Asian countries are often linked with the Japan Crude Cocktail (JCC) oil price, which represents 

the average price of Dubai crude oil imported to Japan (Tang and Aruga 2020). 

3.4.3. Results of the Impact of both Crises on the Chinese and International Fossil Fuel Market 

Table 3.4 shows the impact of the two crises on the Chinese and international fossil fuel 

markets estimated with the VAR and VECM. These analyses are conducted to see whether the 

changes in the linkages between the Chinese and international fossil fuel markets are related to 

the effects of the two crises on the Chinese and international fossil fuel prices. 

It is discernible from Table 4 that the shock from the 2008 financial crisis at least became 

significant in one of the three linkage models in all three Chinese fossil fuel markets where the 

effect of COVID-19 was only evident in the Chinese natural gas market. Furthermore, comparing 

the coefficients of the two dummy variables in the Chinese natural gas model, it is evident that 

the negative shock from the 2008 financial crisis on the Chinese natural gas market was severer 

than that of the COVID-19.  

On the other hand, except for the Australian coal market, none of the coefficients of the 

international fossil fuel prices in Table 3.4 became significant suggesting that the shocks from 

the two crises on the linkages between the Chinese and international fossil fuel markets were 

not influenced by the shocks on the international fossil fuel markets. Even the shock from the 

2008 financial crisis found on the Australian coal market is likely related to the effects of the 

Chinese energy policy since the Chinese government has implemented a 4 trillion yuan ($586 

billion) stimulus package during the 2008 financial crisis and that this stimulus package has led 

China to increase its coal imports from Australia (Yuan, Liu, and Wu. 2010). Hence, it is 

believable that all the shocks affecting the linkages between the Chinese and international fossil 

fuel markets are driven by the shocks in the Chinese fossil fuel market. 

In sum, the results of Table 3.4 indicate that the linkages between the Chinese and 

international fossil fuel markets were more severely affected by the 2008 financial crisis compared 
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to the COVID-19 pandemic and both the shocks from the 2008 financial crisis and the COVID-

19 pandemic on the linkages are likely driven by the impacts on the Chinese fossil fuel markets. 

Table 3.4 Results of the impact of both crises on Chinese and international fossil fuels. 

Chinese and  
International Fossil Fuel 

Used  
Model 

Independent  
Variables 

Dummy  
Variate Coefficient t-Value 

Chinese coal vs  
Australian coal VAR 

China coal dummy1 −0.129 * −2.994 * 
dummy2 0.036 0.920 

Australian coal dummy1 −0.160 * −2.549 * 
dummy2 0.043 0.742 

Chinese coal vs  
Dubai crude oil VAR 

China coal dummy1 −0.147 * 3.203 * 
dummy2 0.048 1.131 

Dubai crude oil dummy1 −0.067 −1.291 
dummy2 −0.020 −0.414 

Chinese coal vs  
Japanese LNG VAR 

China coal dummy1 −0.181 * −3.890 * 
dummy2 0.037 0.841 

Japanese LNG dummy1 −0.037 −1.103 
dummy2 0.033 −1.029 

Chinese crude oil vs  
Australian coal VAR 

Chinese crude oil dummy1 −0.097 −0.925 
dummy2 −0.071 −0.723 

Australian coal dummy1 −0.145 * −2.320 * 
dummy2 0.050 0.852 

Chinese crude oil vs  
Dubai crude oil VAR 

Chinese crude oil dummy1 −0.066 −0.699 
dummy2 −0.036 −0.392 

Dubai crude oil dummy1 −0.051 −1.014 
dummy2 −0.023 −0.475 

Chinese crude oil vs  
Japanese LNG VAR 

Chinese crude oil dummy1 −0.208 * −2.252 * 
dummy2 −0.081 −0.899 

Japanese LNG dummy1 −0.048 −1.573 
dummy2 −0.044 −1.451 

Chinese natural gas vs 
Australian coal VAR 

Chinese natural gas dummy1 −0.263 * −2.194 * 
dummy2 −0.241 * −2.138 * 

Australian coal dummy1 −0.162 * −2.536 * 
dummy2 0.033 0.553 

Chinese natural gas vs  
Dubai crude oil VECM 

Chinese natural gas dummy1 −0.186 −1.675 
dummy2 −0.193 −1.781 

Dubai crude oil dummy1 −0.082 −1.552 
dummy2 −0.058 −1.123 

Chinese natural gas vs 
Japanese LNG VECM 

Chinese natural gas dummy1 −0.304 * −3.005 * 
dummy2 −0.242 * −2.421 * 

Japanese LNG dummy1 −0.048 −1.523 
dummy2 −0.039 −1.243 

Note: * Significant at the 5% significance level. Dummy1 is defined as the 2008 financial crisis 
dummy variable. Dummy2 is defined as the COVID-19 dummy variable. 

3.5 Discussion 

The results indicate that besides the Chinese fossil fuel and Dubai Crude oil, the 

cointegration relationships between the Chinese and international fossil fuel markets were 

changing during the 2008 financial crisis. However, our results suggest that the cointegration 
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relationships between the Chinese and international fossil fuel markets remained unchanged when 

the COVID-19 pandemic occurred except for the linkages between the Chinese natural gas market 

vs the Australian coal and Japanese LNG markets.  

We believe this difference in the shock on the relationship between the Chinese and 

international fossil fuel market is due to the different causes and consequences of the crises 

(Spatt 2020). The 2008 financial crisis reflected infection of the financial system due to excess 

leverage and poor-quality mortgage loans (Spatt 2020), and this financial behavior is likely to 

be considered as endogenous structural breaks, which caused immense impacts on energy markets 

(Aruga and Kannan 2020; Yuan, Liu, and Xie., 2010). Furthermore, since the date of the 

occurrence of the 2008 financial crisis was uncertain, the energy stakeholders could not expect 

the timing of the shock, and hence, it is likely that this uncertainty affected the dynamic linkages 

between the Chinese and international fossil fuel markets.  

On the other hand, the COVID-19 pandemic was somewhat predictable and the shock on the 

financial system was not as severe compared to the 2008 financial crisis. Indeed, even during the 

COVID-19 pandemic, the world’s major stock markets like the Dow Jones and Nikkei 225 index 

have plummeted briefly but quickly recovered. One likely reason for the financial market to 

remain stable compared to the 2008 financial crisis during the COVID-19 pandemic is that the 

causes of the pandemic were clear and the investors were possible to forecast that the economy 

will recover when the pandemic ends (Jackson et al. 2021). Thus, it is probable that the impact of 

the COVID-19 on energy markets was somewhat anticipated by the stakeholders and this kept the 

Chinese coal and crude oil markets to have the same relationship with the international fuel 

markets.  

Although the linkages between the Chinese and international fossil fuel markets were not 

changing before and after the COVID-19 pandemic, we identified that the incident at least affected 

negatively on the Chinese natural gas price. This reduced Chinese natural gas price during the 

COVID-19 pandemic might be reflecting the reduced natural gas demand during the lockdown 

periods. 

6. Conclusions 

The study revealed that the cointegration relationships between the Chinese and 

international fossil fuel markets are affected by the 2008 financial crisis, while the COVID-19 

pandemic did not have a clear impact on the relationships. Thus, we identified that the effects 

of the COVID-19 on the linkages between the Chinese and international fossil fuel markets are 

not as evident compared to the 2008 financial crisis. As the stock and energy markets are 

recovering quickly to levels before the COVID-19 pandemic hit the world economy (Höhler 
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and Lansink 2021), the market participants of the Chinese fossil fuel markets were likely able 

to anticipate the outcomes of the shock of the incident compared to that of the 2008 financial 

crisis. 

These conclusions provide some suggestions regarding risk management and policy 

recommendations. As we found that the shocks from the 2008 financial crisis and the COVID-

19 on the relationships between the Chinese and international energy markets were driven by 

the effects on the Chinese fossil fuel market, the stakeholders in the Chinese fossil fuel market 

need to pay more attention to the Chinese fossil fuel market when considering the risk involved 

in trading between the Chinese and international energy markets. As argued by Chan and Woo 

(2016), China should consider its domestic fossil fuel market when examining the dynamic 

relationship between the Chinese and international energy markets suggesting that 

policymakers should account not only for the dynamics relationships but also attach importance 

to the dynamic relationship driven by the Chinese fossil fuel market when stabilizing energy 

prices during the crises. 

Our study is limited in the sense that the impact of the recent 2008 financial crisis is only 

considered in this study. Furthermore, our research may be expanded to involve other global 

events, such as the 1997 Asian Financial Crisis and SARS. 
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4.1. Introduction 

Since the outbreak of the COVID-19 pandemic, many countries have adopted restrictive 

measures to prevent the spread of the virus, which has led to the stagnation of many industries 

and a decrease in the demand and consumption of fossil fuels (Jiang et al., 2021). Global fossil 

fuel demand fell by 6% in 2020, with the United States (US) and the European Union (EU) 

reporting the largest fall of 9% and 11%, respectively (IEA, 2020). The reduction in the 

consumption of fossil fuels is likely to have adverse impacts on fossil fuel prices. Taking the 

price of the US West Texas Intermediate (WTI) as an example, it dropped below US $20 per 

barrel, which was the lowest in the past 18 years (Dutta et al., 2020). Meanwhile, Zhang et al. 

(2020) suggested that the pandemic had a significant impact on the stability of the financial 

markets. For example, the S&P 500 Index reached 3380.16 points on February 14, 2020, but 

plunged to 2237.40 on March 23, 2020, which indicated a drop of 30% within one month 

(Yahoo. finance) as the pandemic started to spread in the US.  

We conjecture that, before the pandemic, the relationship between fossil fuel and financial 

assets was relatively stable. To deal with the risk of fluctuation in the price of fossil fuels, 

investors in the fossil fuel market would hold assets that are negatively correlated or 

uncorrelated with the fossil fuel market, such as clean energy stock, gold, and Bitcoin (Al-

Yahyaee et al, 2019).  

 
(a): the new cases in the US 

 
(b): the new deaths in the US 

Figure 4.1: the Covid-19 pandemic condition in the United States. 
Note: This figure is created by new cases and deaths data of the US from a database source: Johns 

Hopkins University CSSE COVID-19 Data, Link: https://github.com/CSSEGISandData/COVID-19 
 

In response to the pandemic, the US implemented lockdown regulations prohibiting people 

from stepping out. The regulations caused many industries to stagnate and directly affected 

energy consumption, which lowered the price volatility of the energy market (Jiang et al., 2021). 

Simultaneously, due to the increasing number of new infections and deaths (see Figure 1), the 

restrictions also affected investor confidence. The investors began to panic and sold their 

financial assets (Chang et al., 2020), which further depreciated the prices of those financial 

https://github.com/CSSEGISandData/COVID-19
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assets. Thus, it is probable that both the fossil fuel and financial asset markets were adversely 

affected by the pandemic (Zhang et al., 2021), and as a result, both markets formed a positive, 

correlative relationship. Hence, we expect their relationship to differ before and after the crisis. 

However, if their relationship changes before and after the pandemic, it becomes difficult for 

investors to manage their portfolios rationally by combining various assets based on modern 

portfolio theory (MPT) (Ding et al., 2014).  

Since Markowitz (1952), MPT has become one of the fundamental pillars of portfolio 

construction. The MPT assumption is that risk-averse investors can construct a portfolio that 

minimizes risk, which is calculated by a weighted average related to the correlation coefficients 

of the returns of its component assets. Thus, it is speculated that the greater the positive 

correlation of the portfolio, the greater the risk because all the weights in this average are 

positive values. According to the MPT assumption, Baur and Lucey (2010) proposed the 

concept that an asset is a haven asset if it is negatively correlated or uncorrelated with another 

asset during crisis periods and suggested gold as a haven asset for stock markets. Along these 

lines, Dutta et al. (2020) also suggested gold as a haven asset for oil because there is a significant 

negative relationship between gold and oil. Bitcoin, however, is not a haven asset for oil because 

of the positive relationship between Bitcoin and oil during the pandemic. Nonetheless, the MPT 

assumption is still undermined by crisis. For example, there was a strongly positive cross-

market linkage during the 2008 financial crisis period (Ding et al., 2014). Moreover, So et al. 

(2021) suggested that the diversification effect during a pandemic is weaker than during normal 

periods due to the co-movement of the cross-financial market triggered by extraordinary events 

such as a pandemic.  

While the linkage between fossil fuels and their hedging assets started drawing attention 

due to the pandemic, academic research on this issue is insufficient. Hedging between fossil 

fuel and other assets is important to assure capital for purchasing fossil fuel, which will help 

stabilize the energy supply. However, events like the pandemic could make it difficult for the 

suppliers of energy to hedge the risk of changes in the fossil fuel price by combining their 

portfolios with financial assets such as gold and Bitcoin. Therefore, it is necessary to re-analyze 

the connection between fossil fuels and their hedging assets for cross-market investors to 

understand portfolio risk management based on the MPT. This issue is crucial for institutions 

seeking to assure energy for their citizens because energy markets are often strongly affected 

by changes in financial markets such as relevant stock and gold markets and hedging across the 

financial markets is crucial for achieving sustainable energy supply. 

If the linkage between the fossil fuel market and its hedging assets is time-varying during 

the pandemic, investors should pay more attention to the changes in their relationships. For 
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example, it would be worthwhile to note whether the change is from a negative correlation to a 

positive correlation, from a positive correlation to a negative correlation, or from a strong 

correlation to a weak correlation. This implies that it is difficult to grasp the specific change to 

model their variations (risk) over time. In particular, when fossil fuels become positively 

correlated with clean energy, gold, and Bitcoin during the pandemic, the effect of reducing risk 

may become very low based on MPT. Hence, investors and policymakers would be expected 

to account for the dynamic relationship between fossil fuels and its hedging assets during a 

pandemic. Therefore, our study is expected to provide important information on the dynamic 

relationship between the energy and financial markets so that the right adjustments can be made 

to diversifying portfolios after accounting for price fluctuation risk caused by the pandemic. 

The results of the study can therefore offer a valuable reference to understand how the 

relationships between the energy and financial markets will be affected by the pandemic.  

Although some empirical studies have explored the relationship between oil prices and 

hedging assets, such as clean stock, gold, and Bitcoin prices separately, to the best of our 

knowledge, no study has explored the linkage between fossil fuel prices (coal, crude oil, and 

natural gas) and its hedging assets (such as clean energy stock, gold, and Bitcoin prices) 

simultaneously during a pandemic. 

Therefore, to fill this important gap, the study examines how the relationships among the 

fossil fuel and financial markets have been affected during the COVID-19 pandemic. For this 

purpose, the US market was chosen for the following reasons: First, the US has the world's 

largest energy and financial trading market, and it is important for investors to deepen their 

understanding of the relationship between the energy and financial markets. Second, the US 

has one of the largest numbers of COVID-19 patients in the world, which means that the US 

market can better reflect the impact of the pandemic on the energy and financial markets. In 

addition, compared to prior studies, which mostly employed the Dynamic Conditional 

Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) or 

Constant Conditional Correlation (CCC)-GARCH model using the Maximum Likelihood (ML) 

estimation to test the correlation, our study employs the Bayesian DCC-multivariate GARCH 

(DCC-MGARCH) models. In the Bayesian DCC-MGARCH models, the standard error of the 

estimated parameter is smaller than the ML (Shiferaw, 2019) and thus, more accurate for the 

results of the study. 

The clean energy stock, gold, and Bitcoin cryptocurrency markets are chosen as the 

markets that may have the characteristics of hedging for fossil fuels (Kumar et al., 2019; 

Reboredo et al., 2017; Gkillas et al., 2020). Gold is usually chosen as a hedging asset to offset 

the risk that investors face because it is a universal currency recognized all over the world 
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(Cunado et al., 2019; Lin et al., 2018; Ruan et al., 2018). Bitcoin is a new financial product that 

may be useful for inclusion in investment portfolios (Henriques and Sadorsky, 2018) because 

of its popularity as a cryptocurrency. During the pandemic, while demand for fossil fuels has 

declined, the demand for clean energy has risen accordingly (Wan et al., 2021), which means 

that the clean energy stock market has attracted more private capital reallocation (Reboredo et 

al., 2017) as clean energy is now considered the most efficient alternative to meet fossil fuel 

consumption (Baz et al., 2021). Thus, it is reasonable to assume that clean energy stocks might 

be regarded as a good hedge asset during the pandemic. 

As the world still heavily relies its energy on fossil fuels, countries need to hedge the risk 

of sudden price change for sustainable energy supply. To mitigate such risk, energy suppliers 

need to hedge across the financial markets since energy prices are often affected by financial 

markets. Since the COVID-19 had devastating impacts on fossil fuel and financial markets, the 

current study seeks how susceptible the relationships among the fossil fuel and financial 

markets are during this pandemic to provide important information to cope with potential risks 

that might have similar impacts on the relationships in the future. 

In the next section, the related prior literature is discussed. The third section describes the 
data and methods. The fourth section explains the results of the analysis. The final section 
discusses the implications of the results and draws conclusions. 

4.2 Previous Research 

We present our review of previous studies from four aspects: the nexus between the fossil 

fuel and financial markets; whether bitcoin and gold are safe havens against the crude market; 

whether the COVID-19 pandemic affected the fossil fuel market and financial market such as 

gold, clean energy stock, bitcoin; studies applying the DCC-GARCH model. A summary of 

relevant studies introduced in this study is shown in Table 4.1. 

Table 4.1. Publication year, authors, type of study, and approach of relevant literature. 
Publication 

year 
Authors Type of study Approach 

2014 Fioruci, 
Ehlers, and 
Louzada 

Studying an implementation of 
Multivariate GARCH DCC Models 
by Bayesian estimation  

DCC-MGARCH 
model with Bayesian 
estimation 

2017 Reboredo et 
al 

Studying co-movement and 
causality between oil and renewable 
energy stock prices 

continuous wavelets 
and cross-wavelet 
transforms 

2019 Shiferaw Studying the application of Bayesian 
DCC-MGARCH to agricultural and 
energy markets 

DCC-MGARCH 
model with Bayesian 
estimation 

2019 Al-Yahyaee 
et al 

Studying the volatility and 
correlation between Bitcoin and oil 
and international commodity 
markets 

DCC-GARCH model 
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2020 Chang et al Examining Herding behavior in 
energy stock markets during the 
Global Financial Crisis, SARS, and 
ongoing COVID-19 

the cross-section 
Standard Deviation 
(CSSD) and the cross-
section Absolute 
Deviation (CSAD) 
measures 

2020 Das et al Studying whether Bitcoin and gold 
are safe havens against crude oil 

a dummy variable 
GARCH and quantile 
regression model 

2020 Kyriazis Studying whether Bitcoin and gold 
are safe havens against other markets 

DCC-GARCH model 

2020 Kanamura Studying the correlations between 
clean energy indices and energy 
commodities 

supply and demand-
based correlation 
model, DCC-
GARCH 

2021 Moussa et al Studying the dynamic relationship 
between Bitcoin and fossil fuel 
markets in the short and long-run 
over the period 2011–2018 

Smooth Transition 
Error Correction 
Model (STECM) 

2021 Rehman and 
Kang 

Studying causality relationship 
between Bitcoin and energy 
commodity markets 

Maximal overlap 
discrete wavelet 
transformation 
(MODWT), and 
nonlinear causality 

2021 Hoang et al Examining how the impact of the 
COVID-19 pandemic on the global 
energy market 

Review by previous 
literature and data 
related to energy 
market 

2021 Heinlein et al Examining the relationship between 
crude oil and stock market returns 
during Covid-19 crisis 

multiplicative 
component GARCH 

2021 Hammoudeh 
et al 

Examining the causal relationship 
between oil prices returns and clean 
energy stock market during the 
COVID-19 pandemic. 

Unit root-in-quantiles 
test and 
nonparametric 
quantile causality test 

2021 Baz et al Studying the nexus between fossil 
fuel, renewable energy, and 
economic growth 

nonlinear 
autoregressive 
distributed lag 
(ARDL) model 

2021 Wan et al Examining the impact of the 
COVID-19 pandemic on investment 
in clean energy versus the fossil fuel 
stock market in China 

Regression modeling 
method by relevant 
variable 

2021 Tang and 
Aruga 

Studying how the impact of the 
COVID-19 pandemic and 2008 
financial crisis on China and 
international fossil fuel 

Vector 
Autoregressive 
(VAR) model 
including Dummy 
variable 

2021 Shehzad et al Examining how the impact of 
COVID-19 on stock markets from a 
comparative analysis of an 
asymmetric volatility spillover 
between China and Pakistan 

the bivariate VAR- 
DCC –  
Exponential GARCH 
(EGARCH) model  

2021 Chevallier Studying how the correlations 
between the macro-financial 

Dynamic Conditional 
Correlation with 
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environment and CO2 emissions in 
the aftermath of the COVID-19 
diffusion 

Mixed Data Sampling 
(DCC-MIDAS) 

2021 Sayed and 
Eledum 

Studying how the short ‐ term 
response of the Saudi stock market 
(Tadawul) to the COVID ‐ 19 
outbreak 

Event study 
methodology 

 

Some studies have attempted to investigate the nexus between clean energy and fossil fuels, 

such as the causality between oil and renewable energy stock prices (Reboredo et al. 2017) and 

the relationship between fossil fuels, renewable energy, and economic growth in Pakistan (Baz 

et al. 2021). In addition, there is a growing body of literature on the relationships between 

Bitcoin and fossil fuel markets. For example, Moussa et al. (2021) investigate their relationship 

in a dynamic aspect from the short and long-run over the period 2011–2018 using the STECM 

approach. The study reveals that the impact of Bitcoin on fossil fuel lagged values is positive, 

while Rehman and Kang (2021) employ the MODWT approach to test their time-frequency co-

movement and causality relationship to suggest that while both oil and gas have a significant 

co-movement with the Bitcoin returns, it no longer exhibits a co-movement when the effect of 

coal market is considered. 

Other studies have investigated the relationship between crude oil, Bitcoin, and gold from 

a finance perspective. For instance, using the DCC-GARCH model, Al-Yahyaee et al. (2019) 

suggested that Bitcoin and gold assets have diversification and hedging properties for S&P 

Goldman Sachs Commodity Index investors. Conversely, using a dummy variable GARCH and 

a quantile regression model, Das et al. (2020) showed that 1) Bitcoin is not a superior asset over 

others in hedging oil-related uncertainties, and 2) the hedging capacity of different assets is 

conditional upon the nature of the oil risks and market situation. Moreover, using 

methodologies of DCC and wavelet coherence, Kyriazis (2020) indicated that Bitcoin had a 

long way to go before it can be considered a safe-haven asset like gold. From the results of the 

studies above, we can conclude that it is uncertain whether Bitcoin is a hedging asset for crude 

oil and that gold is a haven asset in different periods. 

Among the studies investigating the impact of the COVID-19 on fossil fuel and financial 

markets, Wan et al. (2021) conducted a study on the impact of the crisis on investment in clean 

energy versus the fossil fuel stock market in China. They find evidence that the pandemic is 

causing impacts on the clean energy and fossil fuel markets. Hoang et al. (2021) suggest that 

while the COVID-19 pandemic affected the fossil fuel market the most, the clean energy market 

was also not spared. Even after the outbreak, there is a controversy regarding whether clean 

energy can replace fossil fuels as the economic and environmental impact need to be considered 
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for investment in renewable energy to replace fossil fuels (Kanamura, 2020). According to 

Kanamura [28], the clean energy business might represent a form of environmental value, while 

fossil fuels might represent economic value. It is also known that all renewable energy stock 

markets are affected by the volatility of the US fossil fuel energy prices due to COVID-19 

(Chang et al. 2020).  

In addition to the prior studies on the impact of COVID-19 on stock related to clean energy, 

there are also studies on stock indices and industry stocks during COVID-19. For example, 

Shehzad et al. (2021) utilized VAR-DCC-EGARCH to test the volatility spillover between the 

stock market and reported a volatility spillover for both China and Pakistan stock markets 

during the pandemic. Sayed and Eledum (2021) used event study methodology to suggest that 

when the announcement of the COVID-19 went in after 9 days, it only had a negative and 

significant effect Saudi stock market and has different effects on different industries such as 

banks, consumer services, capital goods, and transportation. 

However, these studies above did not investigate whether the correlation between clean 

energy and fossil fuels became any stronger during the pandemic. Moreover, Heinlein et al. 

(2021) apply the multiplicative component GARCH model to investigate how the relationship 

between crude oil and stock markets, suggesting that there are correlations between the crude 

oil and stock markets for all countries during the COVID-19 crisis. The authors also indicate 

that the stock markets of commodity exporters have stronger correlations with oil returns than 

their importing counterparts. Hammoudeh et al. (2021) explore the causal relationship between 

oil prices and clean energy based on the nonparametric causality-in-quantiles, indicating the oil 

price returns have an absence of significant causal relationships with clean energy stock during 

the COVID-19 pandemic period. Tang and Aruga (2021) suggest that there exists an impact 

from the COVID-19 pandemic on the relationship between China and international fossil fuel 

and that the changes in the relationship are driven by the influence of the pandemic on the 

Chinese fossil fuel market. Besides, Chevallier (2021) indicates that the COVID-19 confirmed 

cases and deaths have an adverse influence on CO2 emissions. 

Finally, the Bayesian DCC-MGARCH method was first proposed by Fioruci, Ehlers, and 

Louzada (2014). Then, this method was applied by Shiferaw (2019) to study the time-varying 

correlation between agricultural commodities and energy prices in comparison with ML 

methods. Shiferaw (2019) showed that the posterior standard deviations of the parameters 

generated by the Bayesian DCC-MGARCH models were slightly lower than the standard 

deviations of the parameters from ML. These results indicate that the Bayesian inference 

process might be better than the conventional ML approach for estimating parameters in the 

DCC-MGARCH models. Compared to the above previous literature, our current study explores 
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how these relationships among fossil fuel, bitcoin, gold, clean energy stock markets are 

changing during the COVID-19 pandemic periods using the Bayesian DCC-MGARCH model. 

4.3. Data 

       The daily returns of the US fossil fuel market (Coal, WTI crude oil, and Henry Hub Natural 

Gas) and Invesco Wilder Hill Clean Energy (IWHCE) Index are the samples analyzed in this study 

from January 2, 2019 to February 26, 2021. The IWHCE Index is not directly available, so our 

study uses the clean energy Exchange-Traded Fund as a proxy variable because the fund is based 

on the IWHCE Index, which is computed by the stocks of US publicly traded companies engaging 

in the business of advancing clean energy and conservation (Invesco, 2021). The daily prices of 

these samples related to US energy are the official close prices sourced from INSIDER (2021). 

The daily gold data comes from GOLDHUB (2021), and the price unit is US dollars per troy 

ounce. The Bitcoin daily prices are obtained from Yahoo Finance (2021) and are quoted as US 

dollars. Since the energy markets and financial markets mentioned above have different 

calculation units, we take the data logarithmically, as shown in Figure 2.  

The DCC-MGARCH models require price returns data; therefore, the percentage of continuously 

compounded returns 𝑟𝑟𝑡𝑡 is computed by 𝑟𝑟𝑡𝑡 = 100 × [ln(𝑝𝑝𝑡𝑡) − ln(𝑝𝑝𝑡𝑡−1)], where 𝑝𝑝𝑡𝑡 denotes the US 

fossil fuel, IWHCE, gold, and Bitcoin prices in period t. Figure 3 shows the plot of price returns 

against time. 

 

 
(a) the logarithmic prices of fossil fuel 

 
(b)  the logarithmic prices of financial variable 

Figure 4.2: the related variables being studied between 3 January 2019 and 26 February 2021 
Notes: IWHCE: Invesco Wilder Hill Clean Energy ; WTI: West Texas Intermediate 
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Figure 4.3. The US fossil fuel, IWHCE, Gold, and Bitcoin price return series. Source: Own calculation. 

Notes: IWHCE: Invesco Wilder Hill Clean Energy; WTI: West Texas Intermediate 
 

4.4 Methods 

According to the MPT presented in the introduction, we investigated the correlations among 

the fossil fuel and IWHCE, Gold, and Bitcoin price returns for analyzing how the portfolio 

investment has been affected during the COVID-19 pandemic. To this end, we used the DCC-

MGARCH model with Bayesian estimation. In the Bayesian DCC-MGARCH model framework, 

we present our methods in three steps: the MGARCH model, the Bayesian estimation of the 

models, and estimating the posterior distribution using Markov Chain Monte Carlo (MCMC). The 

summary of the steps is shown in Figure 4.4. 
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Figure 4.4: the framework of methodology. Source: Own drawing. 

 

4.4.1 DCC-MGARCH Models (step 1) 

We employ the DCC-MGARCH model to study the connectedness of fossil fuel and IWHCE, 

gold, bitcoin market during the COVID-19 period. The MGARCH model is developed by many 

researchers with the examples of Engle and Sheppard (2001), Bauwens et al. (2006), Silvennoinen 

and Teräsvirta (2009), and Tsay (2010). Due to the MGARCH model is the conditional 

heteroskedasticity, the conditional covariance matrix of the models can be decomposed into 

conditional standard deviations and a conditional correlation Matrix. Moreover, the conditional 

correlation can be assumed to be constant and dynamic over time.  
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If the conditional correlation is constant over time and only the conditional standard 

deviation is time-varying, the model is to be the CCC-MGARCH model introduced by Bollerslev 

(1990). However, it is believed that the assumption of the conditional correlation constant 

overtime is not always reasonable based on a lot of empirical applications such as Dutta et al 

(2020a) and Shiferaw (2019). Moreover, Shiferaw (2019) suggests that the DCC-MGARCH is 

flexible enough to examine the co-movements between different energy and financial market. 

Thus, the DCC-MGARCH model is applied in our study.  

According to Engle and Sheppard (2001), the DCC-MGARCH model is defined as:  

𝑃𝑃𝑡𝑡 =  𝜇𝜇𝑡𝑡 +  𝑟𝑟𝑡𝑡 (1) 

𝑟𝑟𝑡𝑡 =  𝐻𝐻𝑡𝑡1/2𝑍𝑍𝑡𝑡 (2) 

𝐻𝐻𝑡𝑡 =  𝐷𝐷𝑡𝑡𝑅𝑅𝑡𝑡𝐷𝐷𝑡𝑡 (3) 

where 𝑃𝑃𝑡𝑡 is a 𝑎𝑎 × 1 vector of log prices of 𝑎𝑎 prices at time t, 𝜇𝜇𝑡𝑡 is a 𝑎𝑎 × 1 vector of the expected 

value of 𝑃𝑃𝑡𝑡, 𝑟𝑟𝑡𝑡 is a 𝑎𝑎 × 1 vector of mean-corrected returns of n assets at time t with 𝐸𝐸[𝑟𝑟𝑡𝑡] = 0, 

Cov[𝑟𝑟𝑡𝑡] = 𝐻𝐻𝑡𝑡. 𝐻𝐻𝑡𝑡 is a 𝑎𝑎 × 𝑎𝑎 conditional variance matrix of return 𝑟𝑟𝑡𝑡 and 𝐻𝐻𝑡𝑡1/2 is obtained by a 

Cholesky factorization of 𝐻𝐻𝑡𝑡, 𝑍𝑍𝑡𝑡 is a vector of identically independently distributed (𝑖𝑖𝑖𝑖𝑎𝑎) errors 

with E(𝑍𝑍𝑡𝑡) = 0 and 𝐸𝐸(𝑍𝑍𝑡𝑡𝑍𝑍𝑡𝑡′)  = 𝐼𝐼. 𝐷𝐷𝑡𝑡 is a 𝑎𝑎 × 𝑎𝑎 diagonal matrix of standard deviations of return 

𝑟𝑟𝑡𝑡. 𝑅𝑅𝑡𝑡 is the time-varying correlation matrix. The analysis of detailed decomposing is as follows: 

       First, the diagonal matrix 𝐷𝐷𝑡𝑡 in equation (3) is specified as a univariate GARCH model, and 

given by: 

𝐷𝐷𝑡𝑡 =  

⎣
⎢
⎢
⎢
⎡�ℎ11,𝑡𝑡 0

0 �ℎ22,𝑡𝑡

 ⋯       0
 ⋱       ⋮

⋮          ⋱
0       ⋯     

⋱     0
0  �ℎ𝑛𝑛𝑛𝑛,𝑡𝑡

 

⎦
⎥
⎥
⎥
⎤
  

Where ℎ𝑖𝑖𝑖𝑖,𝑡𝑡  is conditional covariance. Here we specify a GARCH (p, q) model for each 

conditional covariance  ℎ𝑖𝑖𝑖𝑖,𝑡𝑡, which can be written as: 

ℎ𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝜔𝜔𝑖𝑖  +  ∑ 𝛼𝛼𝑖𝑖𝑝𝑝
𝑃𝑃𝑖𝑖
𝑝𝑝=1 𝑟𝑟𝑖𝑖,𝑡𝑡−𝑝𝑝2 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖,𝑡𝑡−𝑖𝑖

𝑄𝑄𝑖𝑖
𝑖𝑖=1  ,  𝑖𝑖 = 1, 2, … ,𝑎𝑎 (4) 

with 𝜔𝜔𝑖𝑖 > 0,𝛼𝛼𝑖𝑖 ≥ 0,𝛽𝛽𝑖𝑖 ≥ 0,∑ 𝛼𝛼𝑖𝑖𝑖𝑖
𝑄𝑄𝑖𝑖
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖𝑝𝑝

𝑃𝑃𝑖𝑖
𝑝𝑝=1 < 1. Note that the subscripts p and q are the 

lag lengths. The GARCH model is not limited to the standard GARCH (p, q) models and is often 

the simplest model GARCH(1,1), which is adequate when p is 1 and q is 1.  

       Next, the time-varying conditional correlation 𝑅𝑅𝑡𝑡  in equation (3) is the symmetric matrix : 

𝑅𝑅𝑡𝑡 =  

⎣
⎢
⎢
⎡

1 𝜌𝜌12,𝑡𝑡
𝜌𝜌12,𝑡𝑡 1

 ⋯   𝜌𝜌1𝑛𝑛,𝑡𝑡
 ⋱  ⋮

⋮ ⋱
𝜌𝜌1𝑛𝑛,𝑡𝑡  𝜌𝜌2𝑛𝑛,𝑡𝑡

 ⋱     0   
⋯ 1

 

⎦
⎥
⎥
⎤
 

       Then, the elements of 𝐻𝐻𝑡𝑡 =  𝐷𝐷𝑡𝑡𝑅𝑅𝑡𝑡𝐷𝐷𝑡𝑡 could be expressed as follows: 
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[𝐻𝐻𝑡𝑡]𝑖𝑖𝑖𝑖 =  �ℎ𝑖𝑖𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑡𝑡 𝜌𝜌𝑖𝑖𝑖𝑖,𝑡𝑡 
(5) 

where 𝜌𝜌𝑖𝑖𝑖𝑖,𝑡𝑡 is a time-varying conditional correlation between returns series 𝑖𝑖 and 𝑗𝑗. If and only if 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡 > 0, we can know that 𝐻𝐻𝑡𝑡 is positive definite and 𝑅𝑅𝑡𝑡 is positive definite.  

Finally, the proposed symmetric dynamic correlation structure is: 

 

𝑄𝑄𝑡𝑡 = (1 − 𝑎𝑎 − 𝑏𝑏)𝑄𝑄� + 𝑎𝑎𝜇𝜇𝑡𝑡−1𝜇𝜇𝑡𝑡−1′ + 𝑏𝑏𝑄𝑄𝑡𝑡−1 (6) 

𝑅𝑅𝑡𝑡 =  𝑄𝑄𝑡𝑡∗−1𝑄𝑄𝑡𝑡𝑄𝑄𝑡𝑡∗−1 (7) 

where 𝑄𝑄� = 𝐶𝐶𝑙𝑙𝐶𝐶[𝜇𝜇𝑡𝑡𝜇𝜇𝑡𝑡′] = 𝐸𝐸[𝜇𝜇𝑡𝑡𝜇𝜇𝑡𝑡′ ]  is the unconditional covariance matrix of the standardized 

errors 𝜇𝜇𝑡𝑡 . In addition to the conditions for the univariate GARCH model to ensure positive 

unconditional variances, the parameters 𝑎𝑎  and 𝑏𝑏  are 𝑎𝑎 ≥ 0 , 𝑏𝑏 ≥ 0 , and 𝑎𝑎 + 𝑏𝑏 < 1 . The 𝑄𝑄𝑡𝑡∗  is a 

diagonal matrix with the square root of the diagonal elements of 𝑄𝑄𝑡𝑡 at the diagonal: 

𝑄𝑄𝑡𝑡∗ =  

⎣
⎢
⎢
⎢
⎡�𝑞𝑞11𝑡𝑡 0

0 �𝑞𝑞22𝑡𝑡
 ⋯      0
 ⋱        ⋮

⋮       ⋱
0       0     

⋱     0   
⋯  �𝑞𝑞𝑛𝑛𝑛𝑛𝑡𝑡

 

⎦
⎥
⎥
⎥
⎤
 

       Hence, the typical element of 𝑅𝑅𝑡𝑡 will be of the form 𝜌𝜌𝑖𝑖𝑖𝑖,𝑡𝑡 =  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

.  

 

4.4.2 Bayesian estimation of DCC-MGARCH models(step 2) 

4.4.2.1   Multivariate Skew Densities 

To estimate the parameters of the DCC-MGARCH model, the Bayesian approach is used. 

The Bayesian approach that skewed distributions of the errors should be taken into account in 

calculating the parameters process because there is potential skew in financial time series (Fioruci, 

Ehlers, and Louzada. 2014). Therefore, for the distributions of the errors 𝑍𝑍𝑡𝑡 in equation (2), we 

consider three different innovation distributions: a skew multivariate normal (SMN), skew 

multivariate Student t (SMST) (Fiorentini et al. 2003), and skew multivariate Generalized Error 

Distribution (SMGED) (Kotz and Nadarajah 2004) to fit Bayesian DCC-MGARCH.  

According to Kotz  and Nadarajah (2004), the multivariate skewed densities can be written 

as: 

𝑠𝑠(𝑥𝑥|𝛾𝛾) =  2𝑘𝑘 ��
𝛾𝛾𝑖𝑖

1 + 𝛾𝛾𝑖𝑖2

𝑘𝑘

𝑖𝑖=1

� 𝑓𝑓(𝑥𝑥∗),   𝑖𝑖 = 1, … ,𝑘𝑘 
 

(8) 

where 𝑓𝑓(𝑥𝑥∗) is a symmetric multivariate density, 𝑥𝑥∗ = (𝑥𝑥1∗, … , 𝑥𝑥𝑘𝑘∗), 𝛾𝛾 = (𝛾𝛾1, … , 𝛾𝛾𝑘𝑘), 𝑥𝑥𝑖𝑖∗ = 𝑥𝑥𝑖𝑖/𝛾𝛾𝑖𝑖 

if 𝑥𝑥𝑖𝑖 ≥  0 and 𝑥𝑥𝑖𝑖∗ = 𝑥𝑥𝑖𝑖𝛾𝛾𝑖𝑖 if 𝑥𝑥𝑖𝑖 ≤ 0. 𝛾𝛾1, … , 𝛾𝛾𝑘𝑘 is a shape parameter to judge the class of skewed 

distributions, if the values of 𝛾𝛾𝑖𝑖 is 1 (𝛾𝛾𝑖𝑖 = 1), the density distributions would be symmetric, and 
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the values of 𝛾𝛾𝑖𝑖 > 1 (𝛾𝛾𝑖𝑖 < 1 ) indicate right (left) skewness. It also can be used to compute the 

mean 𝜇𝜇𝛾𝛾𝑖𝑖 and variance 𝜎𝜎𝛾𝛾𝑖𝑖
2  . The details of the calculations are explained in Fioruci, Ehlers, and 

Louzada (2014) 

Given the extra degrees of freedom parameter 𝜈𝜈  to equation (8), the SMST has density 

functions given as follows: 

𝑠𝑠(𝑥𝑥|𝛾𝛾, 𝜈𝜈) =  2𝑘𝑘 ��
𝛾𝛾𝑖𝑖𝜎𝜎𝛾𝛾𝑖𝑖

1 + 𝛾𝛾𝑖𝑖2

𝑘𝑘

𝑖𝑖=1

�
Γ �𝜈𝜈 + 𝑘𝑘

2 �

Γ �𝜈𝜈2� [𝜋𝜋(𝜈𝜈 − 2)]
𝑘𝑘
2
�1 +

𝑥𝑥∗′𝑥𝑥∗

𝜈𝜈 − 2
�
−𝜈𝜈+𝑘𝑘2

,   𝑖𝑖 = 1, … ,𝑘𝑘 
 

(9) 

where  𝑥𝑥𝑖𝑖∗ = (𝑥𝑥𝑖𝑖𝜎𝜎𝑖𝑖 + 𝜇𝜇𝛾𝛾𝑖𝑖)/𝛾𝛾𝑖𝑖 if 𝑥𝑥𝑖𝑖 ≥  −𝜇𝜇𝛾𝛾𝑖𝑖/𝜎𝜎𝛾𝛾𝑖𝑖 and 𝑥𝑥𝑖𝑖∗ = (𝑥𝑥𝑖𝑖𝜎𝜎𝑖𝑖 + 𝜇𝜇𝛾𝛾𝑖𝑖)𝛾𝛾𝑖𝑖 if 𝑥𝑥𝑖𝑖 ≤ −𝜇𝜇𝛾𝛾𝑖𝑖/𝜎𝜎𝛾𝛾𝑖𝑖. 

       Moreover, if the parameter 𝜈𝜈 is to be ∞ (𝜈𝜈 → ∞) in equation (8), we would obtain the SMN 

density.  

Finally, the SMGED is also known as multivariate exponential power distribution. Its density 

function can be written as: 

𝑠𝑠(𝑥𝑥|𝛿𝛿) =  2𝑘𝑘 ��
𝛾𝛾𝑖𝑖𝜎𝜎𝛾𝛾𝑖𝑖

1 + 𝛾𝛾𝑖𝑖2

𝑘𝑘

𝑖𝑖=1

� �
Γ �3
𝛿𝛿�

Γ �1
𝛿𝛿�
�

𝑘𝑘
2

1

�2 Γ �(𝛿𝛿 + 1)
𝛿𝛿 ��

𝑘𝑘 𝑒𝑒𝑥𝑥𝑝𝑝

⎩
⎪
⎨

⎪
⎧
−�

Γ �3
𝛿𝛿�

Γ �1
𝛿𝛿�
�

𝛿𝛿
2

�|𝑥𝑥𝑖𝑖|𝛿𝛿
𝑘𝑘

𝑖𝑖=1
⎭
⎪
⎬

⎪
⎫

 

𝑖𝑖 = 1, … ,𝑘𝑘 

 

 

(10) 

 

 

where 𝛿𝛿 is a common tail parameter, 𝑥𝑥𝑖𝑖∗ = (𝑥𝑥𝑖𝑖𝜎𝜎𝑖𝑖 + 𝜇𝜇𝛾𝛾𝑖𝑖)/𝛾𝛾𝑖𝑖 if 𝑥𝑥𝑖𝑖 ≥  −𝜇𝜇𝛾𝛾𝑖𝑖/𝜎𝜎𝛾𝛾𝑖𝑖 and 𝑥𝑥𝑖𝑖∗ = (𝑥𝑥𝑖𝑖𝜎𝜎𝑖𝑖 +

𝜇𝜇𝛾𝛾𝑖𝑖)𝛾𝛾𝑖𝑖 if 𝑥𝑥𝑖𝑖 ≤ −𝜇𝜇𝛾𝛾𝑖𝑖/𝜎𝜎𝛾𝛾𝑖𝑖. 

      Therefore, if the errors 𝑍𝑍𝑡𝑡 in equation (2) are assumed to be SMN, there would be no extra 

parameter to be estimated. However, the extra degrees of freedom parameter 𝜈𝜈 will be estimated 

(Fiorentini et al. 2003) when the errors 𝑍𝑍𝑡𝑡 is SMST, and the extra parameter 𝛿𝛿 will be calculated 

when the errors 𝑍𝑍𝑡𝑡 is SMGED.  

4.4.3 Estimating the posterior distribution (step 3) 

4.4.3.1  Prior and posterior Distributions  

According to the equation (4), (9), and (10), the set of all model parameters of interest is 

represented by 𝜃𝜃 = (𝜔𝜔𝑖𝑖,𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖 , 𝜈𝜈, 𝛿𝛿, 𝛾𝛾𝑖𝑖 ). Following the Bayesian theory, these parameters need 

to specify the prior distributions and are assumed to be a priori independent and normally 

distributed. First, according to Ardia (2006), the prior distributions of parameters 𝜔𝜔𝑖𝑖,𝛼𝛼𝑖𝑖, and 𝛽𝛽𝑖𝑖 

are given by 𝜔𝜔𝑖𝑖 ∼ 𝑁𝑁�𝑢𝑢𝜔𝜔𝑖𝑖 , 𝜎𝜎𝜔𝜔𝑖𝑖
2 �𝐼𝐼(𝜔𝜔𝑖𝑖>0)  , 𝛼𝛼𝑖𝑖 ∼ 𝑁𝑁�𝑢𝑢𝛼𝛼𝑖𝑖 , 𝜎𝜎𝛼𝛼𝑖𝑖

2 �𝐼𝐼(0<𝛼𝛼𝑖𝑖<1)  and 𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁�𝑢𝑢𝛽𝛽𝑖𝑖 ,

𝜎𝜎𝛽𝛽𝑖𝑖
2 �𝐼𝐼(0<𝛽𝛽𝑖𝑖<1), 𝑖𝑖 = 1, … ,𝑘𝑘. Secondly, the prior distributions of the tail parameter are assumed as 

𝜈𝜈 ∼ 𝑁𝑁(𝑢𝑢𝜈𝜈 , 𝜎𝜎𝜈𝜈2)𝐼𝐼(𝜈𝜈>2) or 𝛿𝛿 ∼ 𝑁𝑁�𝑢𝑢𝛿𝛿 , 𝜎𝜎𝛿𝛿2�𝐼𝐼(𝛿𝛿>0) when the error is SMST or SMGED. Finally, for 
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the skewness parameters, 𝛾𝛾𝑖𝑖 is set to be 𝛾𝛾𝑖𝑖 ∼ 𝑁𝑁(0, 0.64−1) based on Fioruci, Ehlers, and Filho. 

(2014). Moreover, the Markov chain Monte Carlo (MCMC) method in the framework of Bayesian 

Inference was used to obtain samples from the joint posterior distributions. The Metropolis-

Hastings algorithm is applied to provide the easiest sampling.   

4.4.3.2 The performance of the fitted Bayesian DCC-MGARCH 

Because three different innovation distributions are considered to fit Bayesian DCC-

MGARCH, we applied the three criteria of Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Deviance Information Criterion (DIC) to choose the best fitted 

DCC-MGARCH model. The model with smaller values of AIC, BIC, and DIC is a way to 

determine the best fitted DCC-MGARCH models.  

It is essential to realize the statistical characterization for the fossil fuel and clean energy, 

gold, and bitcoin price returns series before the fitted DCC-MGARCH model. On the one hand, 

to avoid pseudo-regression problems, the idea is to use the Augmented Dickey-Fuller (ADF), 

Phillips–Perron (PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests to identify the 

stationarity of our test variables. On the other hand, we used the Shapiro-Wilk (SW) and Jarque-

Bera (JB) test to detect the sample distribution and skewness, and kurtosis. Moreover, Engle’s 

Lagrange multiplier(LM) test is applied to identify the effects of autoregressive conditional 

heteroscedastic(ARCH) for each of the returns. 

The Shapiro-Wilk (SW) test is published by Shapiro and Wilk (1965) to test the null 

hypothesis that a sample 𝑟𝑟1, … , 𝑟𝑟𝑡𝑡  came from a normally distributed population. Its statistic is 

defined as S𝐼𝐼 =  �∑ 𝑎𝑎𝑖𝑖𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚
𝑖𝑖
1 �

2

∑ (𝑟𝑟𝑖𝑖−�̅�𝑟)2𝑖𝑖
1

, where 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛 is the smallest return in the sample; �̅�𝑟 is the sample 

mean; 𝑎𝑎𝑡𝑡 are the coefficients, it is given by : (𝑎𝑎1, … ,𝑎𝑎𝑡𝑡)=
𝐸𝐸𝑇𝑇𝑉𝑉−1

𝐶𝐶
, where 𝐶𝐶 is a vector norm: 𝐶𝐶 =

(𝐸𝐸𝑇𝑇𝑉𝑉−1𝑉𝑉−1𝐸𝐸𝑇𝑇)1/2 and the vector 𝐸𝐸𝑇𝑇 = (𝐸𝐸1, … ,𝐸𝐸𝑡𝑡)𝑇𝑇 is made of the expected values of variables 

sampled from the standard normal distribution; finally, 𝑉𝑉 is the covariance matrix of those normal 

order statistics. 

The Jarque-Bera (JB) test is a goodness of fit test that determines whether or not sample data 

have skewness and kurtosis that matches a normal distribution. The test is proposed by Jarque and 

Bera (1980). The JB can be calculated as follows: JB = 𝑇𝑇
6

(𝑆𝑆2 + 1
4

(𝐾𝐾 − 3)2) , where T is the 

number of observations, K represents kurtosis and S represents skewness. The value of JB is a 

positive number and if it is far from zero, it would indicate that the sample data does not have a 

normal distribution. 
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4.5. Result 

4.5.1 Descriptive summary of all prices and return series data 

Table 4.2 presents the unit root test for all the prices and returns series data. The unit root test 

of the price series is not exogenous when the p test is applied. The ADF, PP, and KPSS test results 

in Table 4.2 show that the null hypothesis of non-stationarity is rejected at a 5% level of 

significance in each of the returns series, but each of the price series becomes stationary from the 

first difference. 

Table 4.2:  Unit root tests. 

Variables 
Level data (t-value) 

  
First difference data 

  
ADF PP KPSS ADF PP KPSS ADF PP KPSS 
return return return price price price price price price 

Coal -6.46* -13.20* 0.18 -2.65 -2.65 0.90* -18.54* -18.56* 0.18 

WTI (Oil) -7.03* -33.75* 0.10 -1.68 -2.32 1.14* -5.36* -62.77* 0.12 

Natural 
Gas -9.72* -34.17* 0.04 -2.49 -0.82 1.01* -12.45* -78.45* 0.09 

IWHCE -10.24* -43.01* 0.03 -2.12 -3.73 1.54* -4.95* -41.75* 0.22 

Bitcoin -10.68* -41.15* 0.04 -0.34 -5.87 1.46* -6.73* -41.78* 0.33 

Gold -10.05* -41.92* 0.01 -1.57 -0.43 2.56* -8.58* -41.93* 0.23 

Note: *Denotes statistical significance at the 5% level. 
 
Table 4.3:  Statistical properties of fossil fuel and clean energy, Bitcoin and gold market returns 

Return  
Variables Min. Max. Std. Skewness Kurtosis  JB SW LM 

Coal -12.86  21.51  2.14  2.02  27.28  14585.19 ** 0.74 ** 3235.64 ** 

WTI (Oil) -96.46  97.55  16.43  0.10  8.66  1443.89 ** 0.80 ** 511.47 ** 

Natural 
Gas -55.89  49.90  11.96  -0.05  3.23  201.69 ** 0.91 ** 251.66 ** 

IWHCE -175.15  169.38  39.19  -0.10  8.09  1258.96 ** 0.71 ** 104.39 ** 

Bitcoin -277.00  254.79  57.40  -0.03  6.41  789.99 ** 0.82 ** 118.43 ** 

Gold -42.67  42.80  13.58  -0.02  1.98  75.80** 0.89 ** 105.60 ** 

Note: **Denotes statistical significance at the 1% level. 
 

Table 4.3 presents the results of summary statistics. The JB statistic is statistically significant 

at the 1% level, indicating that all the returns series have skewedness and excess kurtosis. 
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Moreover, the SW statistic is also statistically significant at the 1% level, which indicates that the 

returns series do not come from a normally distributed population. Thus, according to the SW and 

JB statistics, all return series are violations of normality assumptions. This implies that it is 

necessary to consider their asymmetric distributions. Moreover, the results of Engle’s Lagrange 

multiplier (LM) test are statistically significant at the 1% level, which indicates that autoregressive 

conditional heteroscedastic (ARCH) effects exist for all returns series. As a result, there are three 

possible Bayesian DCC-MGARCH (1,1) models to be fitted using the SMN, SMST, and SMGED 

as innovations. 

 

4.5.2 Bayesian estimation of the Dynamic Conditional Correlation-multivariate Generalized 

Autoregressive Conditional Heteroskedasticity (1,1) model 

       For the MCMC method in the framework of Bayesian inference (Fioruci, Ehlers, and Filho. 

2014), we ran 10,000 iterations with a burn-in phase of 1,000 and a thinning interval of 10 in the 

MCMC sampling. The remaining 9,000 samples generated from the posterior distribution were 

kept for the estimation of each parameter sample. 

       Table 4.4 reports the results of the information criteria of the AIC, BIC, and DIC, which are 

to identify the goodness of fit statistics for the Bayesian DCC-MGARCH (1,1) models with the 

SMN, SMST, and SMGED errors. As seen in Table 4.4, the values of the AIC, BIC, and DIC are 

the smallest for all return and bivariate series under the SMGED, which indicates that the Bayesian 

DCC-MGARCH model with SMGED errors provided a better fit compared to other models 

(Fioruci, Ehlers, and Filho., 2014). This is because it is more likely to capture the fat tails and 

skewed features present in the prices of clean energy stocks, Bitcoin, and gold (Shiferaw, 2019). 

Table 4.5 shows the results of the DCC-MGARCH (1,1) model with the SMGED errors for 

all returns based on Bayesian estimation by the MCMC method. The table consists of the posterior 

means, medians, and standard deviation with 2.5% to 97.5% credible intervals. First, according 

to the 95% credible intervals, the estimated posterior densities of the skewness parameters 𝛾𝛾𝚤𝚤�  are 

statistically significant because their mean is included in the 95% credible intervals. According to 

Fioruci, Ehlers, and Filho. (2014), these results provide strong evidence of asymmetry for all 

returns. Next, the conditional variance parameters 𝑎𝑎 and 𝑏𝑏 are statistically significant at 95% 

credible intervals, while the values of 𝑎𝑎 + 𝑏𝑏 are less than 1, which indicates the existence of 

GARCH effects for all returns (Katzke, 2013). Finally, the extra parameter 𝛿𝛿 also statistically and 

significantly implies that the model with the SMGED is applicable. 

Table 4.6 reports the Bayesian DCC-MGARCH (1,1) model with the SMGED errors for the 

bivariate combinations of the returns of clean energy, Bitcoin, and gold. As seen from the tables, 

it is easy to confirm that all estimated parameters are significant at 97.5% credible intervals. Based 



71 
 

on parameters 𝑎𝑎 and 𝑏𝑏 results, the CCC model hypothesis (𝑎𝑎 = 𝑏𝑏 = 0) is rejected, indicating that 

the DCC parameters 𝑎𝑎 and 𝑏𝑏 are satisfied with the model. Moreover, it is easy to calculate that 

the values of 𝑎𝑎 + 𝑏𝑏 in all bivariate models are less than 1, which implies that the time-varying 

conditional correlations measured by the Bayesian DCC-MGARCH model with the SMGED are 

credible. 

        
Table 4.4: Information criteria for all returns and bivariate under the SMN, SMST, SMGED. 

 Cri. SMN SMST SMGED  Cri. SMN SMST SMGED 

All return 

AIC 19007.3  18308.7  18193.7  Coal 
vs 
Oil 

AIC 5338.7  4962.1  4889.8  

BIC 19114.5  18420.0  18305.0  BIC 5379.9  5007.5  4935.2  

DIC 18984.8  18284.0  18173.0  DIC 5324.2  4947.3  4878.8  

Coal 
vs 

Natural gas 

AIC 5365.9  4988.4  4932.9  Oil 
vs 

Natural gas 

AIC 6652.2  6453.5  6432.3  

BIC 5407.2  5033.8  4978.2  BIC 6693.4  6498.9  6477.6  

DIC 5354.6  4974.1  4924.5  DIC 6641.7  6439.7  6418.9  

Coal 
vs 

IWHCE 

AIC 5677.2  5368.2  5296.8  Coal 
vs 

gold 

AIC 5176.4  4889.7  4769.7  

BIC 5718.4  5413.5  5342.2  BIC 5217.6  4935.0  4815.1  

DIC 5662.6  5354.9  5284.2  DIC 5161.6  4875.7  4755.8  

Oil 
vs 

IWHCE 

AIC 6917.2  6825.1  6765.1  Oil 
vs 

gold 

AIC 6366.0  6288.8  6186.8  

BIC 6958.4  6870.5  6810.4  BIC 6407.2  6334.1  6232.1  

DIC 6906.3  6813.0  6752.7  DIC 6353.9  6277.8  6175.0  

Natural gas 
vs 

IWHCE 

AIC 6916.1  6784.1  6752.8  Natural gas 
vs 

gold 

AIC 6415.7  6323.0  6263.4  

BIC 6957.3  6829.5  6798.2  BIC 6457.0  6368.3  6308.7  

DIC 6904.9  6771.8  6741.8  DIC 6404.9  6311.7  6252.1  

Coal 
vs 

bitcoin 

AIC 6611.0  6207.0  6075.4  IWHCE 
vs 

gold 

AIC 6434.2  6368.1  6329.3  

BIC 6652.3  6252.4  6120.7  BIC 6475.4  6413.5  6374.6  

DIC 6598.8  6193.0  6062.5  DIC 6424.1  6355.8  6318.6  

Oil 
vs 

bitcoin 

AIC 7903.2  7739.0  7616.5  IWHCE 
vs 

bitcoin 

AIC 7987.8  7788.7  7766.1  

BIC 7944.4  7784.4  7661.8  BIC 8029.0  7834.0  7811.4  

DIC 7890.8  7725.7  7605.5  DIC 7977.6  7775.9  7753.3  

Natural gas 
vs 

bitcoin 

AIC 7891.6  7714.5  7666.6  Bitcoin 
vs 

gold 

AIC 7538.6  7385.6  7321.7  

BIC 7932.8  7759.8  7712.0  BIC 7579.8  7430.9  7367.1  

DIC 7881.5  7701.3  7652.1  DIC 7526.3  7372.1  7308.3  

 
 



72 
 

Table 4.5: Summary of the MCMC simulations for the model with SMGED 

commodities parameters mean Sd. 2.5% 25% 50% 75% 97.5% 

Coal 

𝛾𝛾 1.089  0.026  1.037  1.076  1.086  1.104  1.142  

𝜔𝜔 2.252  0.413  1.603  2.024  2.262  2.481  3.012  

𝛼𝛼 0.673  0.159  0.318  0.583  0.680  0.775  0.964  

𝛽𝛽 0.132  0.106  0.025  0.066  0.118  0.172  0.299  

WTI (Oil) 

𝛾𝛾 0.963  0.025  0.924  0.945  0.962  0.976  1.019  

𝜔𝜔 2.006  0.646  0.868  1.625  1.949  2.271  3.562  

𝛼𝛼 0.150  0.025  0.108  0.132  0.152  0.163  0.201  

𝛽𝛽 0.806  0.031  0.747  0.786  0.802  0.829  0.865  

Natural Gas 

𝛾𝛾 0.994  0.031  0.933  0.979  0.993  1.015  1.050  

𝜔𝜔 9.171  3.112  3.925  6.839  9.317  11.042  16.061  

𝛼𝛼 0.221  0.032  0.155  0.204  0.222  0.241  0.280  

𝛽𝛽 0.709  0.048  0.603  0.678  0.713  0.747  0.790  

IWHCE 

𝛾𝛾 0.938  0.038  0.879  0.917  0.942  0.959  0.999  

𝜔𝜔 2.716  0.725  1.353  2.324  2.700  3.075  4.206  

𝛼𝛼 0.156  0.023  0.103  0.146  0.160  0.167  0.191  

𝛽𝛽 0.829  0.023  0.791  0.816  0.826  0.838  0.882  

Bitcoin 

𝛾𝛾 0.968  0.024  0.928  0.955  0.967  0.981  1.017  

𝜔𝜔 14.763  5.164  5.481  11.406  14.420  18.355  24.611  

𝛼𝛼 0.192  0.036  0.087  0.186  0.202  0.213  0.228  

𝛽𝛽 0.792  0.034  0.755  0.770  0.782  0.800  0.889  

Gold 

𝛾𝛾 0.929  0.038  0.880  0.906  0.928  0.952  1.008  

𝜔𝜔 0.113  0.058  0.024  0.068  0.107  0.150  0.236  

𝛼𝛼 0.119  0.024  0.075  0.099  0.119  0.138  0.164  

𝛽𝛽 0.866  0.024  0.822  0.847  0.866  0.888  0.908  

 

 𝛿𝛿 0.798  0.030  0.739  0.779  0.797  0.822  0.857  

𝑎𝑎 0.203  0.020  0.173  0.194  0.204  0.213  0.233  

𝑏𝑏 0.666  0.034  0.611  0.650  0.668  0.686  0.714  

𝑎𝑎 + 𝑏𝑏 0.869  0.054  0.785  0.845  0.872  0.899  0.947  
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Table 4.6: The Bayesian DCC-MGARCH(1,1) estimation results for the bivariate model 
with SMGED 

Bivariate parameters mean Sd. 2.5% 25% 50% 75% 97.5% 

Coal vs  
IWHCE 

𝑎𝑎 0.046  0.039  0.001  0.016  0.037  0.067  0.151  

𝑏𝑏 0.303  0.194  0.015  0.155  0.282  0.420  0.756  

Coal vs 
Gold 

𝑎𝑎 0.028  0.026  0.001  0.009  0.020  0.039  0.094  

𝑏𝑏 0.383  0.227  0.046  0.186  0.360  0.546  0.870  

Coal vs  
Bitcoin 

𝑎𝑎 0.045  0.040  0.001  0.013  0.035  0.065  0.146  

𝑏𝑏 0.470  0.220  0.073  0.296  0.493  0.639  0.884  

WTI (Oil) vs 
IWHCE  

𝑎𝑎 0.284  0.043  0.209  0.255  0.281  0.311  0.377  

𝑏𝑏 0.592  0.066  0.459  0.548  0.597  0.639  0.707  

WTI(Oil) vs 
Gold 

𝑎𝑎 0.252  0.046  0.153  0.224  0.254  0.284  0.332  

𝑏𝑏 0.667  0.059  0.566  0.627  0.663  0.701  0.806  

WTI(Oil)  vs  
Bitcoin  

𝑎𝑎 0.240  0.050  0.092  0.216  0.245  0.272  0.324  

𝑏𝑏 0.643  0.068  0.528  0.594  0.635  0.690  0.784  

Natural Gas  vs 
IWHCE 

𝑎𝑎 0.321  0.082  0.216  0.273  0.302  0.345  0.520  

𝑏𝑏 0.522  0.209  0.044  0.525  0.612  0.652  0.706  

Natural Gas vs 
Gold 

𝑎𝑎 0.326  0.271  0.056  0.151  0.235  0.273  0.311  

𝑏𝑏 0.534  0.588  0.100  0.395  0.525  0.587  0.656  

Natural Gas vs  
Bitcoin  

𝑎𝑎 0.432  0.301  0.055  0.200  0.265  0.299  0.334  

𝑏𝑏 0.376  0.590  0.078  0.399  0.544  0.602  0.646  

Coal vs 
WTI(oil) 

𝑎𝑎 0.064  0.042  0.006  0.032  0.058  0.089  0.167  

𝑏𝑏 0.378  0.172  0.084  0.247  0.377  0.492  0.744  

Coal vs  
Natural Gas 

𝑎𝑎 0.038  0.031  0.002  0.015  0.029  0.054  0.116  

𝑏𝑏 0.395  0.246  0.019  0.176  0.386  0.586  0.872  

WTI(oil) vs 
Natural Gas 

𝑎𝑎 0.219  0.058  0.120  0.179  0.214  0.254  0.345  

𝑏𝑏 0.272  0.147  0.041  0.168  0.251  0.354  0.615  

Gold vs 
Bitcoin 

𝑎𝑎 0.138  0.040  0.080  0.109  0.131  0.158  0.232  

𝑏𝑏 0.784  0.087  0.579  0.756  0.803  0.836  0.881  

Gold vs 
IWHCE 

𝑎𝑎 0.201  0.043  0.119  0.176  0.200  0.227  0.283  

𝑏𝑏 0.759  0.049  0.651  0.731  0.763  0.792  0.838  

Bitcoin vs 
IWHCE 

𝑎𝑎 0.295  0.046  0.216  0.268  0.293  0.322  0.384  

𝑏𝑏 0.595  0.059  0.462  0.564  0.599  0.634  0.702  
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4.5.3 The time-varying conditional correlations  

Based on the results in Table 4.4, we applied the Bayesian DCC-MGARCH model with the 

SMGED to estimate the time-varying conditional correlations (𝑅𝑅𝑡𝑡 in equantion (3)) between the 

fossil fuel and the financial market.  

The results of the fossil fuel relation to IWHCE are shown in Figure 4.5(a). Noteworthily, 

during the COVID-19 period, the correlations between  IWHCE and coal are almost positive value 

and the fluctuation range is smaller compared to that of IWHCE to WTI crude oil and Natural Gas 

(Figure 4.5(a): R1). The nexus between IWHCE and WTI crude oil fluctuates between positive 

and negative correlation values -0.8 to 0.8 before and after 2020, while it become a negative 

correlation from June 2020 to January 2021 (Figure 4.5(a): R2). In addition, the relationship 

between IWHCE and Natural Gas fluctuates between positive and negative correlations from 

2020 to 2021(Figure 4.5(a): R3). The result in Figure 4.5(a) indicate that the IWHCE relation to 

oil and natural gas is stronger than the correlation between  IWHCE and coal, and then their 

relationship shifts from negative to positive after 2020 because the IWHCE, oil, and natural gas 

in the US were all affected by COVID-19 (World resources institute, 2020).  

Figure 4.5(b) shows the DCC conditional correlations between fossil fuel and gold. It is 

evident from Figure 4.5(b) that the correlations between coal and gold are also almost positive 

and that there is only a small fluctuation range before and after covid-19 periods (Figure 4.5(b): 

R4), while the relationship between WTI and natural gas and gold is stronger, alternating between 

positive (0.8) and negative values (-0.8) ((Figure 4.5(b): R5, R6)), their relationship also changes 

from negative to positive after the pandemic as seen in figure 4.5(a). From Figure 4.5(c), we can 

observe that the correlation between fossil fuels and Bitcoin fluctuates between positive and 

negative in the COVID-19 period, and the relationship between Bitcoin and WTI crude oil and 

natural gas also becomes stronger, but not as strong as the correlation between fossil fuels and 

IWHCE and gold. This may be because Bitcoin acts only as a diversifier for fossil fuel portfolio 

investments (Dutta et al., 2020).  

Finally, Figure 4.5(d) displays the correlation among coal, natural gas, and WTI crude oil, 

while Figure 4.5(e) focuses on the linkage among IWHCE, Bitcoin, and gold. Noteworthily, the 

magnitude of IWHCE and gold correlation displays higher positive values (Figure 4.5(d): R14) 

before and after the covid-19 period. There is also a small minor positive relationship between 

coal and WTI crude oil and natural gas, with the correlation of WTI and natural gas being stronger 

during the COVID-19 period (Figure 4.5(e)). 
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(a): fossil fuel and IWHCE (b): fossil fuel and Gold 

 
(c): fossil fuel and Bitcoin 

 

 

 

 
(d): Among financial market (e): Among fossil fuel 

Figure 4.5: The time-varying conditional correlations between fossil fuel and clean energy 

 

4.6 Discussion 

        In this study, we find a GARCH effect between fossil fuel and its hedging assets based on 

the LM test. This means that the volatility between them is related. Moreover, we also suggest 

that the Bayesian DCC-MGARCH model with the SMGED is credible for estimating the DCC 

conditional correlations between them. As per the results shown in Table 5, we can conclude that 

the values of a + b in equation (6) are less than 1 in all bivariate models, indicating the existence 

of the time-varying conditional correlations. This implies that the conditional correlations between 

our interesting fossil fuel and its hedging assets prices returns are time-varying during the 

pandemic period. This confirms the result of Zhang et al (2021) revealing that the linkage between 
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energy and the stock market is dynamic in the context of Covid-19. We also confirm that nexus 

with their hedging assets tend to have a stronger negative correlation before the pandemic and a 

stronger positive correlation value after the pandemic (Figure 4.3).  

A possible reason for this is as follows. In order to mitigate their risks, energy investors in oil 

and natural gas usually need to make a portfolio plan based on MPT. In this theory, a negative or 

low correlation is a key concept for creating diversified portfolios that can better withstand 

portfolio volatility. Gold, clean energy stocks, and Bitcoin are most likely to be selected as hedging 

assets to diversify investment portfolios in the energy market (Dutta et al., 2021). This might 

indicate that crude oil and natural gas have a stronger negative correlation with these markets 

before the pandemic because diversification works best when the assets are negatively correlated 

with one another, such that, as some parts of the portfolio fall, others rise. However, during the 

early days of the pandemic, crude oil and natural gas in the US suffered from negative influences 

related to COVID-19 (World resources institute, 2020; Mensi et al., 2020), as did the IWHCE 

(Zhang et al, 2021), gold, and Bitcoin markets (Dutta et al., 2021). This means that, when a 

pandemic occurs, investors may panic and simultaneously sell crude oil, natural gas, IWHCE, and 

other relatively risky assets to buy relatively low-risk or low-correlation assets such as bonds. This 

behavior triggered by panic will cause the market prices of these assets to decline simultaneously; 

thus, their volatility correlation may also become positive after the pandemic.  

In particular, we also find that the relationship between WTI oil and natural gas and its 

hedging assets has a stronger positive correlation value after the pandemic. This implies that the 

effect of portfolio investment between fossil fuel and clean energy stock, gold, and Bitcoin to 

diversify risks through negative correlation may not be as significant during the pandemic. This 

result is consistent with the findings of So et al. (2021), pointing out that the hedging effect in a 

diversified portfolio weakened due to the high positive correlation of financial markets during the 

pandemic. However, this finding also contradicts Dutta et al. (2020) suggesting that gold has either 

negative or zero correlations with the oil indexes during the COVID-19 period. 

Furthermore, we also find that the relationships among the fossil fuel and financial assets 

only became positive for the short-term and their relationship returned negative in mid-2020. As 

Waggle and Agrrawal (2015) define three to six months as an indicator for short-term investments, 

our result might be implying that the impact of the COVID-19 pandemic on their relationship only 

sustained for the short-term. This indicates that for the long term the stakeholders in the fossil fuel 

markets were able to cross hedge their portfolios with the financial assets. 

Therefore, the changes in the relationships among the fossil fuel and financial markets due 

to the COVID-19 pandemic became apparent in the short run but might be not as prevalent in the 

long term. This result is somewhat different from Chang et al.(2020), suggesting that the dynamic 
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relationships between the fossil fuel and clean energy stock markets were dramatically affected in 

both the short and long run. 

4.7 Conclusion 

        Our study employed the Bayesian DCC-MGARCH model to examines how the correlation 

between the fossil fuel and clean energy stock, gold, and bitcoin market is changing since the 

COVID-19 pandemic took place. The study identifies that the Bayesian DCC-MGARCH model 

with the skew multivariate generalized error distribution is credible for fossil fuel, clean energy 

stock, gold, bitcoin market to estimate the time-varying conditional correlations between them. 

Our results suggest that the fossil fuel relation to clean energy stock, gold, and bitcoin market are 

changing, and they have almost become positively correlated since the pandemic occurred. It is 

important for fostering energy and financial market stability and choosing optimal hedging 

strategies that minimize the diversification of risk under the situation of the pandemic. Thus, the 

study can offer a valuable reference for policymakers and energy traders to help their decision-

making in the future. 

Moreover, our results show that during the COVID-19 pandemic, the relationship between 

the fossil fuel (WTI oil and natural gas) and financial (IWHCE, gold, and Bitcoin) assets changed 

from a negative correlation to a stronger positive correlation in the short term; three to six month. 

However, such a positive correlation did not last for more than six months and the correlation 

returned negative within less than six months. This positive correlation between fossil fuels and 

the financial market indicates difficulties for cross-market investors to hedge across these markets 

in the short term. Therefore, investors should be cautious in hedging the risk across the fossil fuel 

and financial markets for the short term when the shock from the pandemic is evident. However, 

our result suggests that hedging across the fossil and financial markets is still effective for the long 

term when the shock of the pandemic on markets is weakening.  

Our findings have some significant implications for investors and energy policymakers that 

are cross-hedging among the fossil fuel and financial markets. 

First, as the COVID-19 pandemic did change the correlations among fossil fuel and financial 

markets to become negative in the short term, the stakeholders to secure fossil fuel energy should 

note that hedging across the fossil fuel and financial markets becomes difficult in the short term. 

Hence, the study provides evidence that a shock like the COVID-19 makes it difficult for the 

market participants to hedge the price risk involved in the fossil fuel market in the short term.         

Second, given that the correlations among fossil fuel and financial markets returned negative 

within less than six months, the optimal hedging strategies that minimize the risk in the short and 

long term based on the MPT can be still effective for the long term. Thus, this indicates that 
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hedging the price risk in fossil fuel can be still mitigated by cross-hedging with financial assets 

like renewable energy stock, gold, and Bitcoin in the long term. This implies that keeping track 

of the relationships among the fossil fuel and financial markets in the long term is important for 

stakeholders in the fossil fuel market to conduct a sustainable energy supply. 

One limitation of this study is that the fossil fuel relation to IWHCE, gold, and Bitcoin 

markets is considered only during the pandemic. In future research, we should focus on the 

volatility spillovers between all energy and financial markets to identify which market is the 

transmitter/receiver of volatility to manage risk in cross-market investment during this pandemic. 
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Dissertation Conclusion 

The first part of the dissertation provided an overview of the empirical methodology of the 

TVP-VAR model with stochastic volatility, as well as its application to the pass-through rate 

of the JPY and CNY on the Chinese LNG import price. Moreover, part 1 suggests the 

importance of applying the TVP-VAR model instead of using the conventional VAR model 

when the parameters in the VAR model are time-variant. Part 1 also suggests the importance of 

considering the CNY fluctuation range when discovering or forecasting the price of the Chinese 

LNG import price. This implies that the LNG import price will be more stabilized when the 

CNY is controlled by the Chinese government. Hence, part 1 indicates the significance of 

considering the effects of the exchange rate on an energy market when it is likely to be 

influenced by a monetary reform of the importing country.  

The second part of the dissertation applied the recursive cointegration test to analyze the 

relationship between the Chinese coal and international fossil fuel markets. I found that the long-

run relationship between the Chinese coal and international fossil fuel markets was changing 

during the study period, implying that importing companies in China must consider the impact of 

the dynamic relationship between international energy prices and domestic coal prices to identify 

coal prices movements when purchasing coal. I also found that the Chinese domestic coal and 

international natural gas markets became cointegrated after 2018, signifying that after 2018, 

policymakers must consider the impact of international natural gas prices when formulating a 

policy to stabilize the Chinese coal price. These results provide important information for the 

Chinese government to substitute coal with natural gas to address the climate change issue until 

it can totally replace its fossil fuels with renewable sources.  

In the third part of the dissertation, the recursive cointegration test is employed to identify 

whether the dynamic relationship between the Chinese and international fossil markets changed 

during the 2008 financial crisis and is changing during the COVID-19 pandemic. Besides, the 

impact of the crises is analyzed by including the periods affected by the crises as dummy variables 

in the VAR and VECM models. As we found that the shocks from the 2008 financial crisis and 

the COVID-19 on the relationships between the Chinese and international energy markets were 

driven by the effects on the Chinese fossil fuel market, the stakeholders in the Chinese fossil fuel 

market need to pay more attention to the Chinese fossil fuel market when considering the risk 

involved in trading between the Chinese and international energy markets. This implies that 

policymakers should account not only for the dynamics relationships but also attach importance 

to the dynamic relationship driven by the Chinese fossil fuel market when stabilizing energy prices 

during the crises.  

In the last part of the dissertation, I verified that the Bayesian DCC-MGARCH model with 
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the SMGED is credible to estimate the DCC conditional correlations between the fossil fuel 

and its hedging assets. It implied that the conditional correlations between our interesting fossil 

fuel and its hedging assets prices returns are time-varying during the pandemic period. 

Furthermore, the study revealed that the WTI crude oil and natural gas relations to IWHCE, 

gold, and bitcoin market are changing before and after the pandemic suggesting the importance 

for the policymakers to pay more attention to the change in the relationship between fossil fuel 

and the financial market after the pandemic. 

I can conclude from this dissertation that the TVP-VAR, recursive cointegration test and 

Bayesian DCC-MGARCH time series model are suitable for the analyzing the energy and 

financial markets that are often affected by events like to the 2008 financial crisis and the COVID-

19 pandemic. Especially, I found that the linkage between the energy market and financial market 

is more likely to change when shifts in energy and monetary policies and crises occurs. Thus, this 

paper provides an important reference for investors and policymakers in the energy and financial 

markets to conduct risk management and to give policy recommendations for stabilizing these 

markets. 
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