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Chapter 1

Introduction

1.1 Anti-canonical polar cylinders in del Pezzo surfaces

Let k be a field (this is not necessarily algebraically closed), and let X be an algebraic variety
defined over k. An open subset U of X is called an A} -cylinder if U is isomorphic to A} x Z
for some variety Z over k. When the rank r of cylinder U is not important, U is just said to
be a cylinder.

Certainly, cylinders are geometrically simple objects, however, they are known to have a
variety of applications. As an example, there exists its application to unipotent group actions
on affine cones over polarized varieties. In order to explain it, we shall define polarized
cylinders in normal projective varieties as follows:

Definition 1.1.1. Let k& be an algebraically closed field of characteristic zero, let X be a
normal projective variety over k, let H be an ample Q-divisor on X, and let U ~ A,lg X Z be a
cylinder in X such that Z is affine. Then we say that U is an H-polar cylinder if there exists
an effective Q-divisor D on X such that D ~g H and U = X\Supp(D).

The following theorem plays an important role in connecting polarized cylinders in pro-
jective varieties and unipotent group actions on affine cones:

Theorem 1.1.2 ([37, 40]). Let k be an algebraically closed field of characteristic zero, let X
be a normal projective variety over k£ and H be an ample Q-divisor on X. Then X contains
an H-polar cylinder if and only if the affine cone:

Conep (X) := Spec @HO(X, Ox(iH))
i>0

admits an effective G,-action.

We will give the application using Theorem T2 later. To do so, we consider the existing
condition of anti-canonical polar cylinders in del Pezzo surfaces. In what follows, let S be
a del Pezzo surface defined over an algebraically closed field of characteristic zero. In other
words, S is a normal projective surface such that its anti-canonical divisor —Kg is ample.

If S is smooth, then the existing condition of (— Kg)-polar cylinders is given by [37, 40, ).
More precise, [37] presents that S contains an (—Kg)-polar cylinder provided that this degree
d := (—Kg)? is more than or equal to 4. Furthermore, [40] shows that S does not contain any
(—Kg)-polar cylinder if d < 2. Finally, [I1] proves that S does not contain any (—Kg)-polar
cylinder if d = 3. Thus, their results can be summarized the following theorem:



Theorem 1.1.3 ([37, 40, IT]). Let S be a smooth del Pezzo surface over an algebraically
closed field of characteristic zero and let d be the degree of S, i.e., d = (—Kg)? € {1,...,9}.
Then S contains an (—Kg)-polar cylinder if and only if d > 4.

Incidentally, it is also known that the existing condition of (—Kg)-polar cylinders provided
that S has at most Du Val singularities.

Theorem 1.1.4 ([17]). Let S be a del Pezzo surface with at most Du Val singularities
over an algebraically closed field of characteristic zero and let d be the degree of S, i.e.,
d= (—Kg)? € {1,...,9}. Then S does not contain any (—Kg)-polar cylinder if and only if
one of the following three conditions holds:

e d =3 and S allows no singular point;
e d =2 and S allows only singular points of type Aj;
e d =1 and S allows only singular points of types Ay, Ao, As, Dy.

This paper in Chapter B will consider cylinders in del Pezzo surfaces of rank one with
at most Du Val singularities by using the result and some ideas of Theorem [T4. Hence,
Theorem T4 is the very important result in this paper.

Now, in order to explain an application of cylinders to unipotent group action, we state
the following problem:

Problem 1.1.5 ([23]). Let V be the 3-dimensional affine variety defined over the complex
number field C defined by:

V= (23 + 92 + 22 + w? = 0) C At = Spec(Clz, y, 2, w]).
Then does V' admit an effective G,-action?

Certainly, Problem T3 is a purely algebraic problem, however, this problem was solved
by the geometric approach for the cylinder. We shall present this outline.
Let S be the cubic hypersurface in IP’(% over C defined by:

S = (23 + 93 + 2% + w? = 0) C PE = Proj(Clz, y, 2, w)]).

Then we notice that S is a smooth del Pezzo surface of degree 3, so that S contains never
(=Ks)-polar cylinder by Theorem [TT3. Hence, the affine cone Cone(_g)(S) admits no
effective Gg-action by Theorem ICIT2. In particular, Problem I3 is false by virtue of:

Cone(_g)(S) ~ (23 + 93 + 2% + w® = 0) C A¢ = Spec(C[z, y, 2, w]).

Therefore, cylinders in normal projective varieties receive a lot of attention recently from
the viewpoint of unipotent group actions on affine cones over polarized varieties.
At the end of this section, we present several remarks on polarized cylinders:

Remark 1.1.6. Let S be a del Pezzo surface with at most Du Val singularities over an alge-
braically closed field of characteristic zero. If S is smooth, then it always contains an H-polar
cylinder for some an ample Q-divisor H on S. However, this does not hold unless S is smooth
(see [B], [13, §3]).

Remark 1.1.7. Although not used in this paper, partial results are also known for the existing
condition of polarized cylinders in smooth rational surfaces, which is an extension of Theorem
[T3. In other words, letting S be a smooth rational surface with (—Kg)? > 3 over an
algebraically closed field of characteristic zero, for any ample Q-divisor H on S except for
H € Qo[- K3 if (—Ks)? = 3, there exists an H-polar cylinder in S (see [I3, 53]).



Remark 1.1.8. In this section, we have mainly treated the application of polarized cylinders
to unipotent group action. However, there are several other known applications for polarized
cylinders. For example, Fano varieties containing anti-canonical polar cylinders also receive
attention recently since the a-invariant of these varieties is strictly less than 1 (see [I0, The-
orem 1.26)).

1.2 Cylinders in Mori fiber spaces

The importance of finding cylinders in projective varieties is treated in the previous section
0. In this section, we thus discuss cylinders in higher dimensional normal projective varieties
defined over the complex number field C. For example, the classification of Fano threefolds
of rank one containing the 3-dimensional affine space A2 is known (see [25, 26]). Moreover,
some examples of Fano threefolds and Fano fourfolds containing a cylinder are also known
(see, e.g., [0, B7, BY, 60, 61, 62]). However, in general, it is not easy to decide whether a
given projective variety contains a cylinder.

Now, we shall consider how to find cylinders in a projective variety X’ by using the
minimal model program (MMP, for short). Assume that X’ contains a cylinder. A resolution
of singularities of X’ still contains a cylinder, in particular, its canonical divisor is not pseudo-
effective. Then by virtue of [B, Corollary 1.3.3], X’ is birational to a suitable Mori fiber
space (MFS, for short) f : X — Y by means of minimal model program (MMP, for short).
Conversely, assuming that a normal projective variety X’ admits a process of MMP 6 : X' --»
X is MFS which contains a cylinder, it follows that so does the initial X’ by [20, Lemma 9].
Thus, in some sense, it is important and essential to try to find cylinders contained in MFS.
In this paper, as a special and ideal situation, we shall consider finding a vertical Af-cylinder
with respect to MES f: X — Y over C, where vertical cylinders are defined as follows:

Definition 1.2.1 ([19]). Let f : X — Y be a dominant projective morphism of relative
dimension s > 1 defined over C. For an integer r with 1 <r <'s, an Ag-cylinder U ~ Af. x Z
in X is called a vertical Af-cylinder with respect to f if there exists a morphism g : Z — Y
(of relative dimension s — r) such that the restriction of f to U coincides with g o pry.

It is known the following lemma about the existing condition of vertical cylinders:

Lemma 1.2.2 (|9, Lemma 3]). Let f : X — Y be a dominant projective morphism of
relative dimension s > 1 defined over C, and let r be an integer with 1 < r < s. Then f
admits a vertical Af-cylinder if and only if the generic fiber X, which is defined over the
function field C(Y) = C(n) of the base variety, contains an A%(Y)—cylinder.

Let f: X — Y be a MFS over C. Notice that the generic fiber X, of f is a Fano variety of
rank one defined over C(Y"). In particular, the dimension of X, over C(Y') is less than that of
X unless Y is a point. However, the base field C(Y") is not algebraically closed unless Y is a
point. Hence, in order to find a vertical cylinder with respect to MFS, the following problem
is essential to consider:

Problem 1.2.3. Let V be a normal Fano variety of rank one defined over a field k of char-
acteristic zero (this is not necessarily algebraically closed), and let r be an integer with
1 <r < dimg(V). In which case does V' contain an Aj-cylinder?

Let V be a Fano variety of rank one over a field k£ of characteristic zero. In the case of
dimg (V') = 1, the above problem is quite easy. Indeed, V' contains an Ak—cylinder if and only
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if V has a k-rational point. In case of dimy (V) = 2, then V is a del Pezzo surface. Dubouloz
and Kishimoto provided the following theorem about the existing condition of smooth del
Pezzo surfaces of rank one:

Theorem 1.2.4 ([T9, Theorem 1]). Let & be a field of characteristic zero, let S be a smooth del
Pezzo surface of rank one over k and let d be the degree of S, i.e., d = (—Kg)? € {1,...6,8,9}.
Then:

(1) S contains an Al-cylinder if and only if d > 5 and S has a k-rational point.
(2) S contains an A?-cylinder if and only if d > 8 and S has a k-rational point.

Remark 1.2.5. Any Az—cylinder in a surface is clearly isomorphic to the affine plane A%-

Remark 1.2.6. Let S be a del Pezzo surface of rank one (this is not necessarily smooth) over
a field &k of characteristic zero. Then Uy is an (—K, SE)—polar cylinder for any cylinder U in
S (if it exists) since Cl(S)q is generated by only —Kg. In particular, in Theorem X4, we
immediately see that any smooth del Pezzo surface of rank one with degree < 3 contains no
cylinder (but the case of degree 4 is not easy).

Remark 1.2.7. Although not used in this paper, partial results in the case of dimension 3 in
Problem T3 are also known (see [Z1, b1]).

In this paper, we shall extend Theorem 24 to the singular case. In other words, we will
give a partial answer to Problem 2273 when V is of dimension 2 and singular. We explain
the details in the next section.

1.3 Main results

In this paper, we shall mainly give the existing condition of cylinders in normal surfaces over
algebraically non-closed fields. Furthermore, we apply these results to the following fibrations:

Definition 1.3.1. Let f : X — Y be a dominant projective morphism of relative dimension
two between normal varieties defined over the complex number field C. Then:

(1) fis a weak del Pezzo fibration if the total space X has only Q-factorial terminal singu-
larities and the generic fiber X, of f is a weak del Pezzo surface, which is minimal over
the rational function field C(Y').

(2) fis a generically canonical (resp. kit, lc) del Pezzo fibration if the generic fiber X,, of f
is a Du Val (resp. a log, an Ic) del Pezzo surface of rank one over the rational function
field C(Y).

Remark 1.3.2. We present two remark about Definition 31

(1) Note that a del Pezzo fibration means a MFS of relative dimension two normal varieties
defined over C. Hence, letting f : X — Y be a weak del Pezzo fibration over C, f is a
del Pezzo fibration if and only if the generic fiber X, of f is of rank one over C(Y).

(2) In Definition I=31 (1), we may omit the assumption that X has only Q-factorial terminal

singularities. Indeed, we will not use this assumption in this paper.

The author studied the existing condition of vertical cylinders with respect to fibrations
as in Definition =371 ([65, 66, 67]). Then his results are summarized in the following Table:



Singularities Terminal | Canonical | Log terminal | Log canonical
Vertical Al—cylinder (9] [66] ? 7
Vertical A%-cylinder || [I9] (57 57 57

In what follows, we detailly state the author’s results in three subsections separately.

1.3.1 Cylinders in weak del Pezzo fibrations

Notice that Du Val del Pezzo surfaces have a one-to-one correspondence to weak del Pezzo
surfaces via minimal resolutions (see Subsection 2472). Hence, in order to consider Du Val del
Pezzo surfaces of rank one containing a cylinder defined over algebraically non-closed fields, we
shall study minimal weak del Pezzo surfaces containing a cylinder defined over algebraically
non-closed fields. Indeed, this consideration is necessary to determine the existing condition
of cylinders in Du Val del Pezzo surfaces of rank one over algebraically non-closed fields (for
details, see Section B4). As the results, we obtain the following two Theorems [Z3=3 and [-34:

Theorem 1.3.3 ([65, Theorem 1.6]). Let k be a field of characteristic zero, let S be a weak
del Pezzo surface, whose — K is not ample, defined over k and let d be the degree of S, i.e.,
d:= (—K§)2. Then S is minimal over k if and only if pi(S) = 2 and the type of S is one of

the following (for the definition of the type of S, see Section E22):
e d =8 and Aj-type;
e d =4 and (2A;)<-type;
e d=2and Ay, Ay or (441)-type;
e d =1 and 24; or 2A,-type.

Theorem 1.3.4 ([65, Theorem 1.7]). Let k be a field of characteristic zero, let S be a
minimal weak del Pezzo surface with pi(S) > 1 defined over k and let d be the degree of S,
ie., d:= (—Kg)? Then the following assertions hold:

(1) S contains an A}-cylinder if and only if d = 8 and S is endowed with a structure of
Mori conic bundle admitting a section defined over k.

(2) S contains the affine plane A? if and only if d = 8 and S has a k-rational point.

We shall present some corollaries of Theorem IZ34. Let the notation be the same as in
Theorem 34, assume further that d = 8. At first, consider the case that — K3 is not ample,
ie., S is a k-form of the Hirzebruch surface Fy of degree 2. Then any Mori conic bundle
7 : S — B such that m; admits the minimal section, which is defined over k. Hence, we
obtain:

Corollary 1.3.5 ([65, Corollary 4.5]). Let the notation be the same as in Theorem (34,
assume further that d = 8. If —K3 is not ample, then S always contains an Al-cylinder.

Next, consider the case that k = R. It is known the classification of smooth real del Pezzo
surfaces ([63]). In particular, we know that any weak del Pezzo surface, which is an R-form
of IP’(%: X IP’%:, of rank two is always endowed with a structure of Mori conic bundle admitting a
section defined over R ([63], see also [47, Lemma 3.2]). By this fact and Corollary [C3H, we
obtain:

Corollary 1.3.6 ([63, Example 4.6]). Let the notation be the same as in Theorem (34,
assume further that d = 8. If k = R, then S always contains an Aﬂ@—cylinder.



Incidentally, consider the case that k is a Ci-field. Hence, S always has k-rational point
by virtue of [29, Theorem 3.12], so that we obtain:

Corollary 1.3.7. Let the notation be the same as in Theorem 34, assume further that
d=8. If k is a C-field, then S always contains the affine plane A?.

Finally, by using Theorem =34 and Corollaries [Z3H and 2374 combined with Lemma
23, we obtain the following corollary about the existing condition of vertical cylinders with
respect to weak del Pezzo fibrations:

Corollary 1.3.8 ([65, Corollaries 1.8 and 1.9]). Let f : X — Y be a weak del Pezzo fibration
over C, let X,, be the generic fiber of f, and d be the degree of f, i.e., d := (—KXW)Q. Then
we have the following assertions:

(1) If f is not a del Pezzo fibration, i.e., PC(Y) (Xy) > 1, then we obtain:
e d=1,2,40r §;
e f admits a vertical A(lc—cylinder if and only if d = 8 and X, is endowed with a
structure of Mori conic bundle admitting a section defined over C(Y);

e f admits a vertical AZ-cylinder if and only if d = 8 and X,, has a C(Y)-rational
point.

(2) If X is a threefold, which is the equivalence that Y is a curve, and d = 8, then f always
admits a vertical A%—cylinder.

In Corollary I3 (2), we note that this assertion follows form Corollary =377 and the
Tsen’s theorem (see, e.g., [64, Lemma 12.3.1]). In other words, for a dominant morphism
f: X — C over C, the function field C(C) is a C;-field if C is a curve.

1.3.2 Cylinders in canonical del Pezzo fibrations

Let S be a Du Val del Pezzo surface of rank one over a field k of characteristic zero. As
a generalization of Theorem 24 in the sense of singularities, we will consider the existing
condition under which S contains a cylinder. Based on previous works (Theorems T4 and
[24), it may seem that this condition can be only determined by the degree of S, the existence
of k-rational points on S, and singularity type on Sz. However, as Theorem =39 shows, we
know that the treatment of singularity type on Du Val del Pezzo surfaces of rank one actually
turns out to be very subtle. For instance, even in the case that two Du Val del Pezzo surfaces
are of rank one over a field k of characteristic zero whose base extensions over k are mutually
isomorphic, it may be that exactly only one of them contains a cylinder (see Example [Z3710).

Theorem 1.3.9 ([66, Theorems 1.4, 1.5 and 1.6]). Let k be a field of characteristic zero, let
S be a Du Val del Pezzo surface of rank one defined over k and let d be the degree of S, i.e.,
d:= (—Kg)?. Then™:

(1) In case of d > 5, then S always contains a cylinder.

(2) In case of d = 3 or 4, then S contains a cylinder if and only if S has a singular point
defined over k, which is not of type A over k.

(3) In case of d =1 or 2, then:

(i) If d = 2 (resp. d = 1) and S; has a singular point of type Ag, A7, Dy, or E, (resp.
type As, Dg, D7, Dg, E7 or Eg), then S contains a cylinder.

“IFor the singularities notation, see Section El.



(ii) If d = 2 (resp. d = 1) and Sy has a singular point of type (As)” (resp. type
(A7)")2| say =, then S contains a cylinder if and only if 2 is not of type A+
(resp. type ATT) over k.

(iii) If d = 2 (resp. d = 1) and S allows only singular points of type A; (resp. types
A1, Ay, As and Dy), then S does not contain any cylinder.

(iv) If S does not satisfy any condition on singularities of (i), (ii) and (iii) above, then
S contains a cylinder if and only if S has a singular point defined over k, which is
of type A,,, D, or E_ over k.

Example 1.3.10 ([66, Example 6.4]). Let S,, be the quadratic hypersurface in the weighted
projective space P(1,1,1,2) over a rational function field C(¢) defined by:

S, = (t"w? + x22% + 223 = 0) C P(1,1,1,2) = Proj(C(t)[z,y, z, w]),

where n € Z. Then S, is a del Pezzo surface of degree 2. Moreover, Sn,@ has exactly two
singular points p; := [0:0:1:0] and py := [1:0:0:0] in P(1,1,1,2) of types Az and (45)’,
respectively. In particular, p; and ps are k-rational, and Sn,@ is of rank one, namely, so
is Sp,. Then we know that S, contains a cylinder if and only if n is even. Indeed, this fact
can be shown as follows: Let o : S, — S, be the minimal resolution over C(t). Then we see
that §n7m contains some reduced curves, whose union is defined over k, corresponding to

the following weighted dual graph (see Example BZ311):

O\.O z O./O
N e

(192 ({9}

Here “o” and “o” mean a (—1)-curve and a (—2)-curve on gm@’ respectively. By Theorem
39 (4)(iv) combined with above the weighted dual graph, S contains a cylinder if and only if
p1 is of type A5 over C(t). By easy computation, we see that the local equation of exceptional
set of p; € S, can be written t"u? +v? € C(t)[u, v] for some regular parameters v and v. Note
that p; is of type A, over C(t) on S, if and only if t"u? + v? is reducible over C(¢)[u,v]. In
particular, this is equivalent that n is even.

Let f: X — Y be a generically canonical del Pezzo fibration over C and let X, be the
generic fiber of f. By virtue of Theorem =39 combined with Lemma X2, we can give a
condition under which f admits a vertical Aé—cylinder depending on degree of f,i.e., (—K XW)Q,
and singularities in X, over C(Y').

1.3.3 Compactification of the affine plane over non-closed fields

Let &k be a field of characteristic zero. As the next target of Theorem [Z39, we shall deal with
the following problems:

Problem 1.3.11. In which case does a del Pezzo surface of rank one with at most Du Val
singularities (and more generally, with singularities worse than Du Val singularities) over k
contain the affine plane Ai?

"2Note that a singular point of type (As)” (resp. (A7)”) on a Du Val del Pezzo surface of degree 2 (resp. 1)
admits at most one point and is automatically k-rational.



In order to give the solution to the above problem, we consider compactifications of the
affine plane into lc del Pezzo surfaces of rank one over k. In the case of k = k, [66] classifies
compactifications of the affine plane into Du Val del Pezzo surfaces of rank one, furthermore,
[@2, d5] classify compactifications of the affine plane into lc del Pezzo surfaces of rank one.
More precisely, [42] and [45] give the classification of compactifications of the affine plane into
log del Pezzo surfaces and lc del Pezzo surfaces of rank one over C, respectively. Hence, we
shall generalize their reworks to the case where the base field is of characteristic zero without
assuming that it is algebraically closed. As a result, we obtain the following theorem:

Theorem 1.3.12 ([67]). Let (S, A) be an lc compactification of the affine plane over a field
k of characteristic zero (see Definition B3, for this definition), let o : § — S be the minimal
resolution and let A be the reduced effective divisor on S defined by A := 6*(A)eq.. Then
we have the following:

(1) Az is an SNC-divisor.
(2) The following three assertions about the number of singularities hold:

(i) #Sing(S) > 1. In other words, Sy has a singular point, which is k-rational.
(ii) #Sing(S) < 2. Moreover, §Sing(S) = 2 if and only if §Sing(S%) = 2.
(iii) #Sing(Sy) =1 or pr(Sf) + 1.
(3) In case of pr(S7) > 1, the weighted dual graph of AE is one of the graphs (1)—(52) in
Appendix B2

Remark 1.3.13. In Theorem 313, if p(S;) = 1, then the weighted dual graph of AE is
classified (see [42, Appendix C] and [d5, Fig. 1]).

By applying Theorem [Z3T2, we can determine the condition whether lc del Pezzo surfaces
of rank one contain the affine plane Ai as follows:

Theorem 1.3.14 ([67]). Let k be a field of characteristic zero, let S be an lc del Pezzo
surface of rank one defined over k such that Sing(Sy) # 0, and let o : S — S be the minimal
resolution over k. Then the following are equivalent:

(A) S contains the affine plane AZ.

(B) There exists a reduced effective divisor A on S such that the exceptional locus of o
is included in Supp(ﬁ), any irreducible component of AE is a rational curve and the
weighted dual graph of AE is one of the graphs in [42, Appendix C], [@5, Fig. 1] or
Appendix B2

Now, we shall focus on Du Val del Pezzo surfaces. By Theorem =314, we can determine
the condition whether Du Val del Pezzo surfaces contain the affine plane A2 depending only
on degrees and singularity types as follows:

Theorem 1.3.15 ([67]). Let k be a field of characteristic zero, let S be a Du Val del Pezzo
surface of rank one defined over k such that Sing(Sy) # 0, and let d be the degree of S, i.e.,
d := (—Kg)?. Then S contains the affine plane A? if and only if one of the following two
conditions holds:

e d = 8 and S contains a singular point of type Af over k (see Section EZI, for this
notation);

e d =5 or 6;



e d <4 and the pair of degree d and singularity type of S; is one of the following:

(47D5)7 (47D4)7 (47A2+2A1)a (47142)) (37E6)7 (3aD4)7 (2aE7)7 (QaE6)7 (2aA6)7 (17E8)'

Remark 1.3.16. We state some remarks of Theorem I3 13:

(1) In the case of k = k, it is known that the condition for a Du Val del Pezzo surface of
rank one to contain the affine plane can be determined only by the singularities type
(see, e.g., [66]). However, it is not true unless k is algebraically closed (see Example

654).

(2) Notice that the “if part” in Theorem 313 also follows from arguments of the proof of
Theorem 39 (see Remarks 228 and B21). In other words, Theorem [Z3TH particu-
larly asserts that the “only if part” in Theorem [C3T3 is also true.

By Theorem 314 combined with Lemma ™23, we can give a condition under which
any generically lc del Pezzo fibration f : X — Y over C admits a vertical A(Qc-cylinder. In
particular, by virtue of Theorem 313 combined with Lemma 22, the existing condition
of vertical A(%-Cylinders with respect to a generically canonical del Pezzo fibration f: X — Y
over C can be determined only degree and singularities of anm, where X, is the generic
fiber of f. For details, see Subsection B2

1.4 Organization of this paper

In Chapter B, we shall summarize basic properties. More precisely, we review five topics in this
chapter as follows. In Section EZ1l, we deal with basic properties on weak del Pezzo surfaces
defined over algebraically closed fields. In Section 22, we treat some facts about algebraic
varieties over algebraically non-closed fields. In particular, we recall Galois actions, forms of
the projective spaces, which are called the Severi-Brauer varieties, and the classification of
the minimal model of smooth projective surfaces over a field of characteristic zero. In Section
P33, we define terminal, canonical, log terminal and log canonical singularities. Moreover, we
recall the properties of singularities on normal algebraic surfaces over an algebraically closed
field of characteristic zero. In Section 24, we provide an overview of the classification of weak
del Pezzo surfaces. In Section P24, we prepare some useful facts about cylinders in normal
projective surfaces over a field of characteristic zero. Moreover, we also introduce the variant
of Corti’s inequality since this inequality is used to prove a few facts.

In Chapter B, we prove Theorems 373 and I34. In Section B, we show that any minimal
del Pezzo surface of rank two and of degree < 4 defined over a field of characteristic zero is
endowed with the structure of two Mori conic bundles. In Section B2, we classify minimal
weak del Pezzo surfaces. As a corollary, for any minimal weak del Pezzo surfaces of rank two
and of degree d, we obtain either d = 8 or d < 4. In Section B3, we determine the existing
condition of cylinders in a minimal weak del Pezzo surface S over a field of characteristic zero.
This proof will be divided according to the degree d, more precisely the case of d = 8 and
the case of d < 4, separately. In the case of d = 8, we show that S contains a cylinder by
using the property of Al-bundle. In the case that d < 4, we show that S does not contain
any cylinder by using a variant of Corti’s inequality combined with facts in Section B

In Chapter B, we prove Theorem 3. In other words, we determine the existing condition
of cylinders in any Du Val del Pezzo surface S of rank one over a field of characteristic zero.
In Section B, in order to precisely state our main result in this chapter, we prepare the
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more detailed notation on Du Val singularities. Note that the proof of our main result will
be divided according to the degree d, more precisely the case of d > 3 and the case of d < 2,
separately. In Section B2, we treat the case of d > 3. However, the case of d < 2 is a little
tricky. Thus, in Section B=3, we prepare some results. In Section B, we treat the case of d < 2
by using facts in Section B=3. In Section B, we shall provide some examples of cylinders in
Du Val del Pezzo surfaces of rank one over a field of characteristic zero and vertical cylinders
with respect to generically canonical del Pezzo fibrations.

In Chapter B, we prove Theorems 312, I3 T4 and 3TF. The main idea of the proof
of this theorem is to classify compactifications of the affine plane. In Section B, we thus
prepare the notation on this and present previous works. In Section b2, we also prepare some
properties of twigs, where a twig is a special kind of weighted dual graph, which will play an
important role in proving Theorem IZ3T2. In Section B3, we show Theorem 312 (1) and
(2). These results will play an important role in the next Section 64. In Section 54, we show
Theorem 312 (3). In other words, we classify the weighted dual graph of the boundary
divisors on the minimal resolution of lc compactifications of the affine plane. In Section B3,
we shall show Theorems IC3T4 and =3T3 as an application of Theorem IZ3TA. Moreover,
we will yield a criterion for generically canonical del Pezzo fibrations to contain vertical AZ-
cylinders in terms of degree and singular type of generic fibers (see Corollary 6554). Finally,
in Section b8, we will give various remarks about Theorem I=3T4.

In Appendix A, we summarize two kind lists as follows. Appendix B summarizes the list
of the classification of weak del Pezzo surfaces over algebraically closed fields over character-
istic zero for the readers’ convenience. Appendix B—2 summarizes the list of configurations of
all lc compactifications of the affine plane defined over algebraically non-closed fields in terms
of weighted dual graphs.

Conventions. We employ the notation basically as in [54].

In this paper, a del Pezzo surface means a normal projective surface such that its anti-
canonical divisor is ample. Also, weak del Pezzo surface means a smooth projective surface
such that its anti-canonical divisor is nef and big. On the other hand, throughout, the rank
of a del Pezzo surface means the rank of its Neron-Severi group.

Now, we state the notation on weighted dual graphs (see, e.g., [65, p. 52], for the defini-
tion). For any weighted dual graph, a vertex o with the number m corresponds to an m-curve
(see also the following Notation). Exceptionally, we omit this label if m = —2, moreover, we
omit this label and use the vertex e (resp. ¢) instead of o if m = —1 (resp. m = 0).

In what follows, letting k£ be a field of characteristic zero, we state the conventions on
varieties defined over k. Let X be an algebraic variety X defined over a field k. Then
X7 denotes the base extension of X to the algebraic closure k of k, i.e., X% = X Xgspec(k)
Spec(k). Moreover, we say that X is geometrically rational if X7 is rational. When X is a
smooth projective surface, we say that X is minimal over k (or simply, k-minimal) if any
birational morphism f : X — Y from X to a smooth projective surface Y defined over k is
an isomorphism. Letting X’ be an algebraic variety defined over k, we say that X is a k-form
of X" if X3 ~ X'. Also, we write Sing(X) := Sing(X3) N X (k), in other words, Sing(X) is
the set of singularities on X3 defined over k. For a normal surface V' over k, we say that
V has at most Du Val singularities (resp. quotient singularities, log canonical singularities)
if the base extension V4 has at most Du Val singularities (resp. quotient singularities, log
canonical singularities). For a del Pezzo surface S over k, we say that S is a Du Val (resp. a
log, an Ic) del Pezzo surface if S has at most Du Val singularities (resp. quotient singularities,
log canonical singularities) (see Section P23, for singularities). For = : X — Y a surjective
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morphism between algebraic varieties defined over k, we say that 7 is a P!-fibration (resp.
P-bundle) if a general fiber (resp. any fiber) of the base extension 7z : X3 — Y is isomorphic
to IP%. Moreover, we say that m is a conic bundle if any fiber of 7 is isomorphic to the plane
conic (not necessarily irreducible). Let D be a reduced effective divisor on a variety defined
over k. Then Dy denotes the base extension of D to the algebraic closure k. We say that D is
an SNC-divisor if Dy has only simple normal crossings. Moreover, §D denotes the number of
all irreducible components in Supp(D) over k. Note that if Supp(D) contains an irreducible
component, which is not geometrically irreducible, then $D < §Dr.
Notation. We will use the following notations:

e 7: the set of all integers.

e (Q: the rational number field.

e R: the real number field.

e C: the complex number field.

pr(X): the Picard number of a variety X defined over a field k.
e Cl(X): the divisor class group of a variety X.
©*(D): the total transform of a divisor D by a morphism ¢.

e . 1(D): the proper transform of a divisor D by a morphism .
e . (D): the direct image of a divisor D by a morphism 1.
e (D -D'): the intersection number of two divisors D and D’ on a surface.
e (D)% the self-intersection number of a divisor D on a surface.

e [F,: the Hirzebruch surface of degree m.

e m-curve: a smooth projective rational curve defined over an algebraically closed field
with self-intersection number m.

e Al,: The affine line over k with one k-point removed, i.e., Ai,k := Spec(k[tT!]).
e Cry: A k-form of the affine line with n-times closed points removed.
e 0;;: The Kronecker delta.
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Chapter 2

Preliminaries

2.1 Basic properties of weak del Pezzo surfaces

In this section, we review the basic but important properties of weak del Pezzo surfaces over
an algebraically closed field of characteristic zero. We mainly refer to [, §8]. Let V be a
weak del Pezzo surface over an algebraically closed field of characteristic zero.

It seems that the following two lemmas are basic:

Lemma 2.1.1. With the notation as above, we obtain (—Ky)? > 0 and (—Ky - C) > 0 for
any curve C' on V. Moreover, assuming that — Ky, is ample, we obtain (—Ky - C) > 0 for any
curve C' on V.

Proof. This assertion follows from [49, Proposition 2.61] and [49, Theorem 1.37]. O

Lemma 2.1.2. With the notation as above, let C' be an irreducible curve on V. Then the
following assertions hold:

(1) If (C)? < 0, then C is either a (—1)-curve or a (—2)-curve.
(2) Cisa (—2)-curve if and only if (C'- —Ky) = 0.

Proof. In (1), see [I8, Lemma 8.1.3]. We shall prove (2). If C' is a (—2)-curve, then (C)? = —2
and p,(C) = 0, so that we easily obtain (C - —Ky ) = 0. Conversely, assume (C' - —Ky) = 0.
Note that (—Ky)? > 0 since —Ky is nef and big. Hence, we know (C)? < 0 by the Hodge
index theorem (see, e.g., [64, Theorem 10.9]). Thus, C' is either a (—1)-curve or a (—2)-curve
by (1). However, we note that C' is not a (—1)-curve. Indeed, if C is a (—1)-curve, we obtain
(C - —Ky) = 1 by virtue of (C)? = —1 and p,(C) = 0. O

It is well known that any weak del Pezzo surface over an algebraically closed field of
characteristic zero is rational. More strictly, the following lemma holds:

Lemma 2.1.3. With the notation as above, then V is isomorphic to P! x P! or the Hirzebruch
surface Fy of degree 2, or a blow-up at most eight points, which may include infinitely near
points, from P?.

Proof. See, e.g., [I8, Theorem 8.1.15]. O

By Lemma P71, for a weak del Pezzo surface V, we see that (— Ky )? is an integer between
1 and 9.
Furthermore, we will use the following two lemmas after Chapters:
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Lemma 2.1.4. With the notation as above, let D be a divisor on V such that (D)? = —1,
(D-—Ky)=1and (D-M) >0 for any (—2)-curve M on V. Then there exists a (—1)-curve
E on V such that D ~ E.

Proof. See [I8, Lemma 8.2.22]. O
Lemma 2.1.5. With the notation as above, the number of (—2)-curves on V is less than or
equal to 9 — (—Ky )2

Proof. See [IR, Proposition 8.2.25]. O

2.2 Some properties of varieties over non-closed fields

In this section, we review standard facts on varieties over an algebraically non-closed field of
characteristic zero. Some basic facts about (geometrically) rational surfaces over algebraically
non-closed fields can be found in, e.g., [IH, B2, 29] (see also [69, b0]). Let k be a field (this is
not necessarily algebraically closed) of characteristic zero.

It seems that the Galois group actions are a useful tool for the studying of varieties defined
over algebraically non-closed fields. In particular, the following lemma plays an important
role in the studying:

Lemma 2.2.1 ([60, Exercise 1.8]). Let k’/k be a finite Galois extension. Note that the Galois
group Gal(k'/k) acts on A}, = Spec(k'[z1,...,x,]) as follows:
Gal(k'/k) x A}, 2 (g, (a1,...,an)) = (g(ar),...,g(an)) € A},
Let V' be a closed algebraic subset of A},. Then the following two conditions are equivalent:
e V can be defined by polynomials in k[x1,...,z,];

e V is invariant under the Gal(k’/k)-action.
Next, recall the following proposition on Severi-Brauer varieties:

Proposition 2.2.2. Let V' be a smooth algebraic variety over k satisfying V7 ~ IP’%. Then
V ~ P} if and only if V' has a k-rational point.

Proof. See, e.g., [69, Proposition 4.5.10]. O
Example 2.2.3. Let C be the irreducible plane conic over R as follows:

C = (z*+y* + 2% = 0) C P} = Spec(R[z,y, 2]).
By pa(Cc) = 0, we cleary see that C¢ ~ IP’%:. However, since C' has no R-rational point, we
obtain C' # Pk.

Lemma P13 implies that minimal weak del Pezzo surfaces over an algebraically closed
field is one of P?, P! x P! or F5. On the other hand, minimal weak del Pezzo surfaces over an
algebraically non-closed field are known as follows:

Proposition 2.2.4. Let S be a weak del Pezzo surface defined over k. If S is minimal over
k, then one of the following assertions hold:

e S is a smooth del Pezzo surface of rank one;

e S is of rank two and is endowed with a structure of Mori conic bundle defined over k.

Proof. Since S is minimal and the canonical divisor K. s of S is not nef by the assumption, we
obtain the assertion by [69, Theorem 9.3.20]. O
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2.3 Classes of singularities

In this section, we review the four classes of singularities about minimal model programs. We
will present these definitions in general dimensions, however, we will mainly treat singularities
on normal algebraic surfaces later. In this paper, we only consider singularities over an
algebraically closed field of characteristic zero. Throughout this section, we thus assume that
all varieties are defined over an algebraically closed field k of characteristic zero. We refer to
(@, @9, 55].

Definition 2.3.1 ([d9, Notation 2.26 and Definition 2.28]). Let X be a normal projective
variety and let D = ) y d;D; be an effective Q-divisor on X such that Kx + D is Q-Cartier.
For a birational morphism f : XX , we write:

K¢+ f7Y(D) =g f*(Kx + D)+ _a(E;, X, D)E,

7

where each Fj; is an irreducible component of the exceptional locus of f. Then the discrepancy
of (X, D) is given by:

discrep(X, D) := infg{a(E, X, D),| E is an exceptional divisor over X},

where FE runs through all the irreducible exceptional divisors for all birational morphisms
f+ X — X and through all the irreducible divisors of X.

Definition 2.3.2 (cf. [49, Definition 2.34]). Let X be a normal projective variety.

(1) Letting D = }_.d;D; be a Q-divisor on X such that Kx + D is Q-Cartier, we say
that (X, D) is terminal (resp. canonical, kawamata log terminal, log canonical) if
discrep(X, D) > 0 (resp. discrep(X,D) > 0, discrep(X,D) > —1 and 0 < d; < 1
for any j, discrep(X, D) > —1).

(2) We say that X has at most terminal singularities (resp. canonical singularities, log
terminal singularities, log canonical singularities) if (X,0) is terminal (resp. canonical,
kawamata log terminal, log canonical).

In what follows, we shall consider two-dimensional singularities.

Theorem 2.3.3 (cf. @9, Theorem 4.5 (1)]). Let S be a normal algebraic surface. Then S
has at most terminal singularities if and only if S is smooth.

Next, in order to deal with 2-dimensional canonical singularities, we recall Du Val singu-
larities.

Definition 2.3.4 (e.g. [4Y, Definition 4.4]). Let S be a normal algebraic surface, let x € X be
a singular point and let ¢ : § — S be the minimal resolution. Then z € X is a Du Val singular
point if any irreducible component E in the exceptional set of o satisfies (F - —Kg) = 0.

Then it is known the following fact:

Theorem 2.3.5 (cf. [49, Theorem 4.5 (2)]). Let S be a normal algebraic surface. Then S
has at most canonical singularities if and only if S has at most Du Val singular points.

[72] summarizes some properties on Du Val singularities. In particular, we will use the
following facts in this paper later:
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Lemma 2.3.6 ([22]). Let S be a normal algebraic surface, let = € S be a singular point, let
o : S — § be the minimal resolution and let E be the exceptional set of o. Then the following
facts hold:

(1) Any irreducible component of E is a (—2)-curve.

(2) The dual graph of E is one of the following:

e Type A,: © o
o\
e Type D,: = o o (n>4);
o
e Type Fg: o o o o o
o
e Type E7: © o o ° o ]
o
e Type E5: o o o ) o o o.
o

Next, in order to deal with 2-dimensional log terminal singularities, we recall (2-dimensional)
quotient singularities. We refer to [b5, Chap I. §§5.3]. For details, see [R]. Let G be a finite
subgroup of GL(2;k). Then G acts naturally on A? as follows:

a

GxAiB([C 2

b
| @ o @b, ok € a2

Letting A be the coordinate ring™ of Ai, then we have the following ring:
AY .= {fecAlg-f=fforanygeG}.

Now, we say that the scheme Ai/G := Spec(A®) is called the algebraic quotient scheme.
Moreover, the morphsim 7 : A% — Az /G, which corresponds to the inclusion A — A s
called the quotient morphism. Then the image via m of the point of origin 0 on Ai/G is
denoted also by 0.

Definition 2.3.7 (cf. [65, Chap. I, §§5.3]). Let S be a normal algebraic surface and let « € S
be a closed point. Let U be an affine open subset of S such that this coordinate ring R is
a local ring with the only maximal ideal corresponding to x. Then we say that x € S is a
quotient singular point if the completion of R is isomorphic to the completion of the local ring
026 for some finite subgroup G of GL(2; k), where the notation of A? /G and 0 are the
same as above.

Then the following fact is known:

“n this paper, a ring means a commutative ring with unit 1.
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Theorem 2.3.8 (cf. [49, Proposition 4.18]). Let S be a normal algebraic surface. Then S
has at most log terminal singularities if and only if .S has at most quotient singular points.

[§] firstly classify quotient singularities. Furthermore, [1] gives elementary other proof of
the classification. Their works are summarized as follows:

Lemma 2.3.9 (cf. [65, Chap. I, Lemma 5.3.3]). Let S be a normal algebraic surface, let
x € S be a quotient singular point, let o : S — S be the minimal resolution and let E be the
exceptional set of 0. Then the weight dual graph is one of the following:

—mq —my
(1) o o ,wherem; >2fori=1,...,r;
R R —
(2) o A o o o . o
o

such that three pairs of positive integers (n1,q1), (n2,¢2) and (ng, ¢3) satisfy 0 < ¢; < n;,
ged(ng, g;) = 1 and:

Mri=1 7 i)
mri

for i = 1,2, 3, where {ny,n2,n3} = {2,2,n} (n > 2), {2,3,3}, {2,3,4} or {2,3,5}.

Remark 2.3.10 ([74, (3.8)]). In general, the quotient singular point with respect to a finite
cyclic subgroup of GL(2; k) is called a cyclic quotient singular point. Letting G be the cyclic
subgroup of GL(2; k) given by:

G::<[g gq ]> (C::exp<27n/jl), 0<q<n, ged(n,g) = 1),

n

then the weighted dual graph of the exceptional set of minimal resolution at the quotient
singularity with respect to G is following:

—mq —m,
o
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such that:

1

mT'i—l -
Ti*

Hence, all cyclic quotient singularities up to isomorphic have a one-to-one correspondence to
the set of rational numbers in the interval (0,1).
Notice that the explicit list of weighted dual graphs of the exceptional set of the minimal
resolution of a quotient singular point is summarized in, e.g., [65, pp. 54-56] or [0, p. 57 (2)].
Next, 2-dimensional log canonical singularities are classified as follows:

Theorem 2.3.11 (cf. [1], [49, Theorem 4.7]). Let S be a normal algebraic surface, let « € S
be a log canonical singular point, let o : S — S be the minimal resolution and let E be the
exceptional set of o. Then one of the following proprieties holds:

(0) z is a quotient singular point.

(1) The weighted dual graph of E is the following;:
(1) (1) (2) (2)

—mrl _ml —m _ml —m7=2
o . e o (o) O . O
3
o mg )
3
© —m1(n3)

such that three pairs of positive integers (n1, q1), (n2,g2) and (ns, g3) satisfy 0 < ¢; < n;,
ged(ng, ¢;) = 1 and:

[

ni )
q; (i) 1

‘ 1
(%)
m,’ | — —
i m,(f}

for i = 1,2, 3, where {n1,n9,n3} = {3,3,3}, {2,4,4} or {2,3,6}.
(2) The weighted dual graph of E is as follows:

/

o

o\ o
o/_m\o

where m > 3.



(3) The weighted dual graph of E is as follows:

O o
\o PR O/
o —mi —Mmy o
where mq,...,m, > 2 and further m; > 3 for some ¢ =1,...,r.

(4) FE is irreducible and either a smooth elliptic curve or a nodal curve.
(5) E consists of smooth rational curves such that this weighted dual graph is a cycle.

At the end of this section, we recall rational singularities.

Definition 2.3.12 ([4]). Let S be a normal algebraic surface and let o : § — S be a resolution.
Then S has at most rational singularities if Rlo, Os = 0. (Note that this definition is known
to be independent of the resolution. )

It seems that the following two theorems are basic but important facts.

Theorem 2.3.13 ([B, 4]). Let S be a normal protective surface. If S has at most rational
singularities, then S is Q-factorial, i.e., any Weil divisor on S is Q-Cartier.

Theorem 2.3.14 (cf. [, 4]). Let S be a normal algebraic surface and let = € S be a log
canonical singular point. Then z is a rational singular point if and only if x satisfies one of
the conditions (0), (1), (2) and (3) in Theorem PZ3T.

2.4 Classification of weak del Pezzo surfaces

In this section, we recall a classification of weak del Pezzo surfaces over an algebraically closed
field of characteristic zero, moreover, we define the type of weak del Pezzo surfaces. Almost
all parts of this section depend on [I7, §§2.1] and [IR, §8] (see also [I5, 9, BY]).

24.1

Let V' be a weak del Pezzo surface defined over an algebraically closed field of characteristic
zero, whose — K7y is not ample, and let d be the degree of V, i.e., d = (—Ky )2 If d = 8, then
V is the Hirzebruch surface Fo of degree 2. Namely, we have the contraction o : V' — P(1, 1, 2)
of the minimal section. In what follows, we shall consider the case of d < 7. We prepare the
following definition:

Definition 2.4.1 ([I7, Definition 3], [I2, Definition 2.8]). Letting Vi and V2 be two weak
del Pezzo surfaces over an algebraically closed field of characteristic zero, we say that these
surfaces have the same type if there is an isomorphism Pic(V;) ~ Pic(V3) preserving the
intersection form that gives a bijection between their sets of classes of (—1)-curves and (—2)-
curves.

By Lemma 213 and the assumption d < 7, we can take the following composition of
blow-downs to P?:

R A T T N A S e &
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where 7; is a contraction of a (—1)-curve on Vy_; for i = 1,...,9 — d. Let ey be the proper
transform on V' of a general line on P? and let e; be the total transform on V of the exceptional
divisor of 7; for i = 1,...,9 — d. Then we can write Pic(V) =~ @?;g Ze; preserving the
intersection form such that (eg)? =1, (¢;)> = —1 for i > 0 and (e; - €;) = 0 for i,j > 0 with
i # j. Let R(V') be the subset of Pic(V') preserving the intersection form defined by:

R(V) :={D € Pic(V) | (D)* = =2, (D - —Ky) = 0}.

By [I8, Lemma 8.2.6 and Proposition 8.2.7], R(V) is the root system of type Aj, Ay + Aj,
Ay, Ds and Eg_gq ifd=7,d=6,d=>5,d=4 and d < 3, respectively (see, e.g., [30, Chap.
I11], for the reference about root systems). By [I8, Proposition 8.2.25], the number r of all
(—2)-curves on V is less than 10 — d, moreover, letting My, ..., M, be all (—2)-curves on V,
the sublattice L(V'), which is generated by My,...,M,, in R(V) is a root lattice of rank r
corresponding to the intersection matrix with respect to these (—2)-curves. That is, L(V)
determines a subsystem of the root system R(V'). Indeed, this can be checked from the data
in [T5] for degree d > 4 and from [9] for d = 3. Moreover, [6Y] lists all cases with d < 2. Thus,
noticing that the base field is of characteristic zero, L(V) is one of the following according to
the degree d:

e d = T: the root system of type Ap;

e d=6 (resp. d =05,d =4, d=3): the subsystem of the root system of type Az + A;
(resp. A4, D5, Eﬁ);

e d = 2: the subsystem of the root system of type E7 except for type of 7Aq;

e d = 1: the subsystem of the root system of type Fg except for types of 7A;, 84; and
D4 + 4A17

Remark 2.4.2. In this paper, we treat only algebraic varieties over a field of characteristic
zero. Meanwhile, if the base field is algebraically closed and of characteristic two, there exists
a weak del Pezzo surface V' of degree 2 (resp. degree 1) such that L(V') is the root system of
type 7TA; (resp. TA1, 841 or Dy + 4A;). For details, see [69] or [35].

2.4.2

Let k be a field (this is not necessarily algebraically closed) of characteristic zero, let S a weak
del Pezzo surface defined over k and let d be the degree S. Letting S be the base extension
of S to the algebralc closure k, we obtain the root system L(S ). Let My,..., M, be all
(—2)-curves on SE' Notice that the dual graph of > ., M; corresponds to type of L(§E).
Moreover, the union )., M; is defined over k. Hence, we obtain the contraction o : S-S
of Y 7, M; over k, so that S is a Du Val del Pezzo surface over k by Lemmas PZT2 (2) and
2=3@. Conversely, for any Du Val del Pezzo surface S, its minimal resolution is a weak del
Pezzo surface. Hence, types of singularities of Du Val del Pezzo surfaces have a one-to-one
correspondence with types of root systems of their minimal resolution.

Now, we say that the type of singularity type of St is called “Sing” of S. Furthermore, we
say that the number of (—1)-curves on §f is called “# Lines” of S , where “# Lines” is finite
by Lemma PZT4 and [IR, Proposition 8. 2 19]. In this paper, the triplet (d, Sing, # Lines) is
called the > lype of S. For two weak del Pezzo surfaces Sl and Sg over k, it is known that the
types of Sy and Sy (in the sense of the above triplet) are the same if and only if Sy and Sy
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have the same type (in the sense of Definition 2271). Moreover, it is known that all pairs
(d, Sing) can uniquely determine the number of “# Lines” except for the following pairs:

(d7 Slng) :(67A1)7 (47A3)7 (47 2A1)7
(2,A5 + Ay), (2,A5), (2,A3 + 2A1), (2, A3 + Al), (2,4141), (2,3A1), (241)
(1?A7)7 (1aA5 +A1)7 (172A3)7 (1>A3 +2A1)7 (1>4A1)

On the other hand, if the pair (d, Sing) is one of those in the list of (2221), then it is known
that there are exactly two possibilities of the number of “# Lines” (][5, 9, 6Y]).

2.4.3

Let k be a field of characteristic zero. For the simplify of the notation, we introduce the
notation for types of weak del Pezzo surfaces instead of the triplet as follows: Let § be a
weak del Pezzo surface over k such that the pair (d, X) of the degree and “Sing” of S is not
in the list in (22270). Then we say that S is of X-type. On the other hand, let S; and Sy be
two weak del Pezzo surfaces over k such that pairs of the degree and “Sing” of them are the
same, and their common pair (d, X) is one of those in the list of (ZZ271). Moreover, assume
that # Lines of 5’1 is strictly more than # Lines of Sg Then we say that 5’1 (resp. 5’2) is of
(X)>-type (resp. (X)<-type). The detail is summarized in Appendix BT, for the reader’s
convenience.

Example 2.4.3. Let us look at cases (d, Sing) = (4,2A4;1), (2,4A4;). There are two possibilities
about # Lines for each of such cases as follows:
e In case of (d, Sing) = (4,2A1), if S is of (2A41)s-type (resp. (24;)-type), then
# Lines = 9 (resp. # Lines = 8).
e In case of (d, Sing) = (2,44,), if S is of (4A1)s-type (resp. (4A1)<-type), then
# Lines = 20 (resp. # Lines = 19).

2.5 Basic properties of cylinders in normal projective surfaces

Let k£ be a field of characteristic zero. In this section, we prepare some basic facts about
cylinders in normal projective surfaces.

We prepare two examples of cylinders in smooth rational surfaces over algebraically non-
closed fields (cf. [T9, Proposition 12]). Although not used in this paper, [I3, §§4.1] present
many examples of cylinders in smooth del Pezzo surfaces over algebraically closed fields.

Lemma 2.5.1. Let V be a k-form of }P% X IP% containing a k-rational point, say p, let F; and
F5 be k-forms of irreducible curves of types (1,0) and (0, 1) (see [28, Chap. II, Example 6.6.1],
for the notation) passing through p, respectively, and let C' be a geometrically irreducible
curve on V passing through p such that C' ~ F} + Fy. Then V\(F} U F, U () ~ A}C X Ai,k'

Proof. Notice that Cj is a 2-curve. Let ¢ : V' — V be the blow-up at p, let E’ be a
reduced exceptional curve by ¢, and let F|, Fj and C’ be the proper transform of Fy, F,
and C, respectively. Since Fz’/E is a (—1)-curve on V' for i« = 1,2 and F] + F} is defined
over k, we thus obtain the contraction 1 : V/ — V' of F{ + Fj, so that V" is a k-form of
the projective plane IP%. Since E’ contains a k-rational point, so does its image via v, in
particular, we know that V" ~ P? by Lemma 2ZZ2. On the other hand, ¢.(C’) and ¢.(E’)
are distinct lines on V" ~ P%. Namely, V"\(¢.(C") U ¢, (E")) ~ A} x Al - Hence, we have
VN(FLUFRUC) = V\(F{UF,UC'UE") =~ V"\(¢(C") U (E")) ~ A} x Ai7k O
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Lemma 2.5.2. Let V be a k-form of Fy admitting a k-rational point, say p, let M and F'
be k-forms of the minimal section and the closed fiber passing through p of the structure
morphism Vi ~ Fy — IP%, respectively, let Cs be a geometrically irreducible curve on V' such
that Cy ~ M +2F and let C5 be a geometrically irreducible curve on V such that C3 ~ M +3F
and M N FNC3#0. Then V\(MUFUCy) 2 V\(MUFUC3) ~ A} x Al .

Proof. Since V' has a k-rational point p, we note that V' ~ Fy by using Lemma 222, i.e., V ~
P(ﬁp}c o ﬁpi (2)). Hence, (V, M + F+C5) is a minimal normal comapctification of A} x Ai,k by
[68] or [43]. Indeed, M and F are rational curves over k by Lemma 2222, Moreover, Cy ~ Pt
since the intersection point of Cy and F is k-rational. Namely, V\(M UFUCy) ~ A x Al .

By assumption, M N F N Cs consists of a only one point, say ¢, defined over k. Let
¢ : V' — V be the blow-up at ¢, let E’ be a reduced exceptional curve by ¢, and let M’, F’ and
C4 be the proper transform of M, F' and Cj, respectively. Since F' is a (—1)-curve on V' and
defined over k, we thus obtain the contraction v : V! — V" of F’, so that V" is the Hirzebruch
surface F3 of degree 3, i.e., V ~ P(0p1 @ Opi1(3)). Hence, (V" h (M) + i (E') + 9. (CY))
is a minimal normal compactification of Aj x Al by [68] or [#3]. Indeed, since t.(M’),
¥« (E") and ¢,(C3) admit a k-rational point, respe’ctively, they are rational curves. Namely,
VA(MUFUC3) ~V\(M'"UFUC;UE') = V"\ (1o (M) Utps(E') Upu(C3)) = Ap x Ay . O

The following fact seems to be well-known to experts, however, it will play an important
role in later Chapters @ and B:

Lemma 2.5.3. Let V be a smooth projective surface over k and let U be a cylinder in V.
Then the boundary divisor of U has no cycle.

Proof. Let us write U ~ A,lf x Z for some curve Z, and let D be the boundary divisor of U,
i.e., V\Supp(D) = U. If D has a cycle, then so does D;. Hence, we may assume k = k.
The closures in V of fibers of the projection pry : U ~ A} x Z — Z yields a linear system
on V, say .Z, hence we have the rational map ® ¢ : V --» Z to a projective model Z of the
closure of Z in V. Note that Bs(.%) consists of at most one point by the configure of .Z. Let
¥ : V — V be the shortest succession of blow-ups the point on Bs(.#) and its infinitely near
points such that the proper transform of . is free of base points to give rise to a morphism
@ :=®yo01): V — Z, where we shall define ¢ := ® & if Bs(.Z) = (). Hence, ¢ is a P!-fibration,
moreover, ¥*(D)yq. is the union of a section and all singular fibers of ¢. Thus, if D has a
cycle, then some singular fibers of @ also have a cycle. However, it is impossible. Indeed, it is
known that any singular fiber of P'-fibration from a smooth projective surface does not have
a cycle (see, e.g., [64, Lemma 12.5]). This completes the proof. a

Now, we shall prepare the variant of Corti’s inequality. It seems to be a useful tool for
proving the absence of cylinders in smooth surfaces over algebraically non-closed fields.

Lemma 2.5.4 (The variant of Corti’s inequality). Let V' be a smooth projective surface
defined over k, let . be a mobile linear system on V, let p be a closed point on V and let
C1 and C5 be two curves on V' such that these curves meet transversely at p. Assume that
(V,(1—a1)C1+(1—az)Co+ p.Z) is not log canonical at p for some ay,as € Q>p and p € Qso.

(1) If either a3 <1 or ay < 1, then the following inequality holds:
i(L1, La; p) > daragps?,

where Ly and Lo are general members of Z.
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(2) If both a; > 1 and ag > 1, then the following inequality holds:
Z(LlaL27p) > 4(@1 + as — 1):“23
where Ly and Lo are general members of .Z.

Proof. See [, Theorem 3.1]. O

From now on, we present two lemmas, which are obtained by using Lemma P54, on
cylinders. The first lemma is a result of generalizing [65, Lemma 4.7], which is a key lemma
for the proof of Theorem =34

Lemma 2.5.5. Let V be a smooth geometrically rational projective surface with pg(V) > 2
and (—Ky)? < 4 over k, which endowed with a structure of P!-fibration 7 : V' — Pi. Let £ be
a linear system on V' such that Bs(.Z) consists of exactly one k-rational point p. Assume that
a general member L of & satisfies L\{p} ~ A,lg and is Q-linearly equivalent to a(—Ky ) 4+ bF
for some a,b € Q, where F' is the closed fiber of 7 : V' — IP’%; passing through p. Then a > 0
and b < 0.

Proof. The assertion a > 0 can be easily seen by 0 < (£ F) = 2a and 0 < (.£)? = a(da+4b).
Suppose b > 0. Let P : V --» IP’,I€ be the rational map associate to .#, and let ¢ : V — V
be the shortest succession of blow-ups the point p € Bs(.¥) and its infinitely near points such
that the proper transform .2 := ;1 (%) of 2 is free of base points to give rise to a morphism
@ = ® 5 01 (see the following diagram):

wT /
1 ®
|4

Notice that v is defined over k by construction. Letting {E;},.;-, be the exceptional divisors
of ¢ with E, the last exceptional one, which is a section of @, we have:

0 if 1<i<n—1

(j'Ei):{ L ien (2.5.1)

and
Ky bw*(F)Jrlj—w* K bF+1.$ +§n: E; (2.5.2)
L a” L a — cilti e
for some rational numbers cy,...,c,. As a >0, b> 0 and (.£)? = 0, we have:

-2=(Z Ky)

z(g.xv+1j>

a

S

> (2K - 2o (P + L)



Since Ky — gF + éf ~q 0, we have ¢,, < —2. This implies that (V, —gF + %3) is not log
canonical (see Definition P23, for this definition). We will consider whether p € F' is smooth
or not in what follows.

In the case that p € F is smooth: By Lemma 2254 (1), we have:

(L) >4 (14 1) 0 = daa +) (25.3)

where L and Ly are general members of .. Meanwhile, since L1 and Lo meet at only p, the
left hand side of (Z253) can be written as:

i(Ly, Los ) = (£)? = (—Kv)?a® + 4ab < 4a(a + b),

where we recall that (—Ky)? < 4. It is a contradiction to (2253).

In the case that p € F is not smooth: We then know that Fy is a singular fiber of m,
hence, there exists exactly two irreducible components F; and F, on F' meeting transversely
at p (see, e.g., [b, Lemma 2.11.2]). Hence, (V, —b’f”TlFl - bTT2F2 + %.,2”) is not log canonical
at p for some positive integers m; and msy. By Lemma 2224, we have:

b b
i(Ly, La;p) > 4 { <1 + ml) + <1 + mQ) - 1} a? =4da{a+ (m1 +mo)b},  (2.5.4)
a a
where Ly and Lo are general members of .Z. By the similar argument as above, we see:
i(L1, L2;p) < da(a +b) < 4a{a + (m1 + m2)b},
which is a contradiction to (2254). O

The other lemma, which is a generalization of [19, Proposition 9] in the sense of singular-
ities, will play important role in Chapter @:

Lemma 2.5.6. Let S be a Du Val del Pezzo surface of rank one and of degree d defined over
k. Assume that S contain a cylinder U ~ Al x Z. The closures in S of fibers of the projection
prz U >~ A}C X Z — Z yields a linear system on S, say .Z. Then the following assertions
hold:

(1) Bs(.Z) consists of exactly one k-rational point, say p.
(2) If d < 4, then p is a singular point on S.

Proof. In (1), since S is of rank one, CI(S)q is generated by only —Kg. Hence, two general
members L; and Ly on .Z meet at a point because of (—Kg)? > 0. This implies that
Bs(.Z) # 0. Hence, Bs(.¥) consists of exactly one k-rational point by construction of .Z.

In (2), suppose that d < 4 and p is a smooth point on S;. Let o : S — S be the minimal
resolution over k. Then S also contains a cylinder U := o~ 1(U) = U. The closures in S of
fibers of the projection prz : U ~ Al x Z — Z yields a linear system, say -if;, on S. By
assumption, o~ !(p) consists of only one k-rational point, say p. Hence, Bs(,i/”v) = {p}. On
the other hand, notice that we can write £ ~q a(—Kg) for some a € Q¢ Then since p is
smooth on S and 7 has at most Du Val singularities, we have:

L =0, (%) = 0"(£) ~q ao”(~Ks) ~q a(~Ky).

Thus, we can obtain a contradiction by the argument similar to Lemma ZZ5H. Therefore, p
must be a singular point on Sz provided that d < 4. ]
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Chapter 3

Cylinders in weak del Pezzo
fibrations

The purpose of this chapter is to prove Theorems 233 and [Z34. Throughout this chapter,
let k be a field of characteristic zero, let S be a weak del Pezzo surface defined over k and let
d be the degree of S, ie., d:= (—Kg)*.

3.1 Properties of Mori conic bundles from minimal weak del
Pezzo surfaces

Let the notation be the same as at the beginning of Chapter B and assume further that
pr(S) > 1 and S is minimal over k. By Proposition 2224, we then obtain that py(S) = 2 and
S is endowed with a structure of Mori conic bundle defined over k. In this section, we shall
prepare the basic properties of this Mori conic bundle for later use.

Lemma 3.1.1. With the notation and the assumptions as above, let 7 : S — B be a Mori
conic bundle over k. Then:

(2) 7 : S; — Bg is a P!-bundle if and only if d = 8.

(3) If d < 8, then 7 does not admit any section defined over k.

Proof. In (1) and (2), see [b0, Exercise 3.13]. We shall show (3). By (1), we have By ~ IP%.
Note that the base extension of 7 to the algebraic closure m : §E — Bg ~ ]P% admits always
a section defined over k, by the Tsen’s theorem. Let I' be a section of m7. By the assumption
that d < 8 and (2), 7 admits a singular fiber /'. We can easily see by the minimality of S
that F' is the union F + E’ of (—1)-curves E and E’ on §E meeting transversally at a point,
say p, in such a way that E and E’ lie in the same Gal(k/k)-orbit. Since I is a section of 7,
I' does not pass through p. Hence, we may assume that there exists a closed point ¢ € E\{p}
such that I' passes through ¢. Since E and E’ lie in the same Gal(k/k)-orbit, there exists a
closed point ¢’ € E'\{p} such that ¢ and ¢’ are contained in the same Gal(k/k)-orbit. This
implies that I" is not defined over k. O

The following two lemmas will play important roles in Subsection BZ372:
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Lemma 3.1.2. With the notation and the assumptions as above, any P'-fibration 7 : S—> B
over a geometrically rational curve B defined over k is a Mori conic bundle.

Proof. Assume that 77 admits a singular fiber F'. Since S is minimal over k, we know that
F does not contain any (—2)-curve by [fJ, Lemma 1.5]. Moreover, F' is the union F; + E3 of
two (—1)-curves E; and E; on S meeting transversally at a point in such a way that £y and
FEs lie in the same Gal(k/k)-orbit. This implies that 7 is a Mori conic bundle. O

The following lemma can be found in [82]. However, we give the proof for the reader’s
convenience since this is an important result.

Lemma 3.1.3. With the notation and the assumptions as above, assume further that S (k) #
0, —K g is ample, and d is equal to 1, 2 or 4. Then S is endowed with two distinct structures
of Mori conic bundles 7; : S — IP’,lg defined over k for ¢« = 1,2 such that Fy + Fy ~ %(—Kg),
where F; is a general fiber of T % which is defined over k, for i =1, 2.

Proof. For any Mori conic bundle 7 : S — B over k, note that B ~ IP)}C, in particular, there
exists a general fiber of 7; defind over k. Indeed, since S has a k-rational point, so it its image
via 7 by Lemmas 222 and BT (1).

By Proposition 22X, we see that pk(g) =2 and S is endowed with a structure of Mori
conic bundle m : § — IP’,i defined over k. In particular, there exists a general fiber F; of 7y,
which is geometrically irreducible. By pk(g ) = 2, the Mori cone ﬁ(g ) contains exactly two
extremal rays, say R; and Ry (cf. [49, §1.3]). Moreover, we can assume R; = R>¢[F}] and we
write Ry = R>¢[{] for some curve ¢ on S. Noticing that % is an integer by d € {1,2,4}, let D
be the divisor on S defined by D := %(—K g) — F1. By the Riemann-Roch theorem combined
with (D)? = 0 and (—Kg - D) = 2, we have X(§E7 ﬁgz(D)) =1+ X(§E, ﬁgg). Moreover,

by the Serre duality theorem combined with (Kg — D - Fy) = —2(1 + %) < 0, we have
k

h2(S, 05 (D)) = hO(S, 05 (Kg_— D)) = 0. Thus, we have dim |D| = hO(S, 05 (D)) ~12
X(§E7 ﬁ’%(D)). On the other hand, since §E is a rational surface by Lemma T3, we see
X(SVEv 6’%) = 1. Therefore, we have dim |D| > 1. In particular, Dy is linearly equivalent to
a union Y ;_, C; of some irreducible curves {C;}i<;<, on §E Since — Kz is ample, we have
r <2 by (=Kg- D) = 2, moreover, there are at most finitely many unions C; + C2 of two
irreducible curves C and C5 on §E with C7 + C2 ~ Dy, because these unions consist of two
(—1)-curves on gg Hence, there exists an irreducible curve I' on §E such that Dy ~ T'. Let
I’ be a Gal(k/k)-orbit of I'. Thus, we can write [[] = ai[F1] + ag[f] in NE(S) for some
non-negative real numbers ay,az. By (IV)? = 0 and (F1 - I”) > 0, we obtain a; = 0. Namely,
IV € Ry. This implies that there exists a Mori conic bundle 7 : S — IP’}C, which is different
from 7, such that a general fiber of Tk is linearly equivalent to I' on §E Furthermore, there
exists a general fiber F5 of Ty koo which is defined over k. By construction of my, we know

Fi+ Fy ~ 3(-K3). ]

Remark 3.1.4. Assuming that —Kgz is not ample, then we have either (£1)% # 0 or (¢2)* # 0
for two curves ¢; and ¢ on S such that NE(S) = R>¢[¢1] + R>[f2]. Otherwise, we obtain
(01 £5) > 0 by virtue of (—Kz)* > 0, however, this contradicts (—Kg- M) = 0, where M is a
Gal(k/k)-orbit of a (—2)-curve on S;. Hence, the assertion of Lemma B3 is not true unless
— K3 is ample.
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3.2 Proof of Theorem

Let the notation be the same as at the beginning of Chapter B and assume further that —Kgz
is not ample. In this section, we will prove the proof of Theorem I=33. In other words, we
shall classify minimal weak del Pezzo surfaces, whose anti-canonical divisor is not ample, over
a field of characteristic zero. Note that minimal weak del Pezzo surfaces of degree > 4 with
anti-canonical divisor not ample over a perfect field are already classified by [IH]. Our result
thus gives a generalization to any degree of their work in the characteristic zero case.

3.2.1 Quasi-minimal weak del Pezzo surfaces

The purpose of this section is that we shall give to classify of minimal weak del Pezzo surfaces
with anti-canonical divisor not ample. In order to state this classification, we shall introduce a
weaker version of being minimal, which depends only on degree and type, the so-called being
quasi-minimal.

Lemma 3.2.1. With the notation and the assumptions as above, assume further that pk.(g )=
2. Then the type of S is either mA;-type or mAs-type for some m € Z~¢. In particular, the
type of S is one of the following:

e d=7or 8 and Aj-type.

e d=06and Ay, 244, (A1)< or (Ay)s-type.

e d =5 and Ao, 241 or A;-type.

e d=4and 4A;, 34, As, (241)<, (2A1)> or A;-type.

e d =3 and 3As, 245, 444, 344, As, 2A; or A;-type.

e d=2and 34y, 6A1, 5A1, 249, (4A1)<, (4A1)s, (341)<, (3A1)s, Aa, 2A; or A;j-type.
e d=1and 4As, 345, 6A1, 5A1, 24, (4A1)<, (4A1)>, 3A1, Az, 2A; or A;-type.

Proof. At first, we show that the type of S is either mA;- -type or mAs-type for some positive
integer m. Let o : S — S be the contraction of all (—2)-curves on Sk, where o is defined
over k (see Section E). By virtue of 1 < pp(S) < pp(S) = 2, it follows that S is a Du Val
del Pezzo surface of rank one. Hence, we obtain py(S) — pi(S) = 1. This implies that all
(—2)-curves on S lie in the same Gal(k/ k)-orbit. Thus, it must be that S is of mA;-type
or mAs-type for some m € Z¢ and all singularities on Si are transformed to each other by
means of the action of Gal(k/k). Otherwise, by the dual graph of the union of all (—2)-curves
on §E, we can easily see pi(S) — pp(S) > 1, which is a contradiction. Moreover, the remaining
assertion follows from the above argument by combined with the classification of weak del
Pezzo surfaces over algebraically closed fields of characteristic zero (see Appendix B). O

By Proposition 224 and Lemma B=, the type of any minimal weak del Pezzo surface,
whose anti-canonical divisor is not ample, is one of those in the list of Lemma B=.

Now, let us consider an example of minimal weak del Pezzo surfaces. We say that a
singular intersection of two quadrics S C IP’% is an Iskovskih surface if its minimal resolution
is a weak del Pezzo surface of degree 4 and of (24;)--type, and two Du Val singular points
of type A; on S; are exchanged by the Gal(k/k)-action. It is known that a weak del Pezzo
surface of degree 4 is minimal if and only if it is the minimal resolution of an Iskovskih surface
([T5, Theorem 7.2]). The following is an example of an Iskovskih surface studied by [1]:
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Example 3.2.2. Let S be the singular intersection of two quadrics in IF’?‘Q defined by:
S:=@?+y P +22+2w=20—w?+30>=0)C ]P’a = Proj(Qlz,y, z,v,w]).
Then S is an Iskovskih surface such that Sg has two Du Val singular points [1:++/—1:0:0:0]

of type Ay. Let 7 : S — S be the minimal resolution over Q, so that S is a minimal weak del
Pezzo surface of degree 4 and of (24;)<-type over Q. In particular, there are exactly eight
(—1)-curves on S@, which are proper transforms the following defining equations in ]P%:

x:l:\/—ly:z:\/gw—i—uzo,:B:I:\/—ly:z+w:\/§w+u:0,
x:l:\/—ly:z:\/gw—uzo,:E:I:\/—ly:z+w:\/§w—u:0.

Thus, we know that S is minimal over Q.

Remark 3.2.3. Note that the minimality of weak del Pezzo surfaces can not be detected by
the type only. For instance, if we change the defining equation of S in Example BZ2Z4 to
22 — %+ 22 + 2, 2v —w? + 30? € Q[x,y, 2, w, u], then S is also a weak del Pezzo surface of
degree 4 and of (24;)<-type but not minimal over Q.

Now, letting E be any (—1)-curve on §E7 if §E is minimal, then there exists a (—1)-curve
E'" on Sg such that (E - E') > 0 and | A#Eg(i,j)| = | #p (i,7)| for i =1,2 and j = 1,2, where
AMc(i,7) is the set defined by:

Mc(i,5) = {M|M : (—i)-curve on gg, (C-M)=j}

fori = 1,2, 7 = 1,2 and a projective curve C' on gg By noticing this observation, we shall
define a weaker version of minimality as follows:

Definition 3.2.4. Let the notation and the assumptions be the same as above. Then S is
quasi-minimal if the following two conditions hold:

e S is either of mA;i-type or mAs-type for some positive integer m.

e For any (—1)-curve E on §E’ there exists a (—1)-curve E' on §E such that (F-E') >0
and | AE(i,j)| = | AE(i,5)| fori=1,2 and j =1,2.

By definition, if S is minimal, then S is quasi-minimal. Furthermore, we actually see that
quasi-minimality depends only on the type by the classification of weak del Pezzo surfaces
over algebraically closed fields of characteristic zero (see also Definition 2-471).

Theorem 233 is a consequence of the following proposition:

Proposition 3.2.5. With the notation and the assumptions as above, the following three
conditions are equivalent:

(1) S is minimal.

(2) pr(S) =2 and S is quasi-minimal.

(3) pr(S) = 2 and the type of S is one of those in the list of Theorem [33.

Remark 3.2.6. Assume that Proposition B273 is true and there exists a weak del Pezzo surface
S" with py(S’) = 2 such that S and S’ have the same type. Then we see that S is quasi-
minimal if and only if the type of S is one of those in the list of Theorem [33. Indeed, by
Proposition B4, S is quasi-minimal if and only if S’ is one of those in the list of Theorem
373, moreover, since quasi-minimality depends on the type, S is quasi-minimal if and only
if S is quasi-minimal.
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Let us prove Proposition BZH. It is clear that (1) implies (2) in Proposition B=Z4. Let
us show that (2) implies (3) and (3) implies (1) in Proposition B=ZH. In the case of d = 8,
it can be easily seen that these two implications hold, indeed, S is always minimal since S is
a k-form of the Hirzebruch surface Fy of degree two, i.e., §E ~ 5. However, in the case of
d < 8, the proofs of these two implications are a bit long. Thus, we will give the proof for the
case of d < 8 in Subsection B=2Z2.

3.2.2 Proof of Proposition B2Z5

In this subsection, assume further d < 7. In order to prove Proposition B=Z3, we prepare
some notation.

We shall consider the following composition of blowing-ups over k from the projective
plane IP’% to a weak del Pezzo surface Sy of degree d:

R S WA (3.2.1)

such that gd and :S% have the same type as §E (see Definition Z4), where 7; is a blow-up
at a closed point for ¢ = 1,...,9 — d. Notice that there exists such a birational morphism
T §d — IP’% by Lemma ZT73 and by the assumption d < 7. In what follows, we shall take a
composite of blowing-ups (B=21).

Let eg be the proper transform on §d of a general line on }P’% and let e; be the total
transform on §d of the exceptional divisor of 7; for ¢ = 1,...,9 — d. Then Pic(gd) can be
expressed as the free Z-module I; := EB?:_SZ Ze; with a bilinear form generated by (eg)? = 1,
(e;)2=—1fori>0and (e; - e;) = 0 for 4,7 > 0 with i # j.

Letting My, ..., M, be all (—2)-curves on Sy, we note that each (—2)-curve corresponds

to one of the following element in I; (see [I8, Proposition 8.2.7]):

mgﬁj::ei—ej 0<i<j<9—-d, d<T)

}1’1-271-3 =ep — (e, + €, + €iy) (0<iy <ig<izg<9—d, d<6);

m?:=2eg — (e1 + -+ eg) (d = 3); (3.2.2)

mi,...,ig,d =2e0— (e, +--+eiy ,) 0<iiz<---<iz_q<9—-d, d<2);

ms :=3eg— (e1 +---+eg) — e (0<i<9—-d, d=1).
Letting k4 := —3eg +e1 + -+ - + e9g_gq € 14, which corresponds to the canonical divisor on gd,
we also note that any e € I, satisfying ()2 = (e-ky) = —1 is expressed as one of the following

(see [I8, Proposition 8.2.19]):

0<i<9—d, d<T);

Ui =€y — (e +¢) 0<i<j<9—-d, d<T7)

2ep — (e, + -+ eiy) 0<ip<---<izg<9—d, d<5);

—ky— € 0<i<7, d=2);
(
(
(
(

€;

.. . (3.2.3)
0<i,j<8 i#j d=1)

0<i1 <ig<iz <8, le);
0<ig<---<ig<8, d=1);
0<i<8 d=1).

— k1 —e;+ej

— k1 +ep — (e, + ei, + €i5)
— k1 +2eg — (e + - +e€ig)
—2]{51—61
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Table 3.1: Configuration of all (—2)-curves.

’ d ‘ Type | all (—2)-curves ‘
’ 4 ‘ (241)< ‘ m(1)2a m§,4,5 ‘
2 Al m%
2 A M3 3.4 m%,6,7
2| (4A1)> m% 3,4 m5,5,67 m§,5 7 méll 6,7
1] 24, |[m?,, m3
L] 24, |my 3.7 méll,5,87 mé,?,S’ m%,s

By Lemma P14, the set of all (—1)-curves on Sy has one-to-one correspondence to the set
of all elements in (B=223) which have non-negative intersection number with elements in Iy
corresponding to all (—2)-curves on S;. Thus, we are able to see the intersection form of all
(—1)-curves and (—2)-curves on §E as the surfaces §E and S; have the same type. In what
follows, we will determine the quasi-minimality of S by studying elements as in (B=233) and
(B22) according to the type of S.

21172-271-3 (resp. m? or
mf’l) in Iy, is a proper transform of a line (resp. an irreducible conic, an irreducible

Remark 3.2.7. A (—2)-curve M, which corresponds to an element m
mgl,...,ig,,d’
cubic with a singular point) by a blow-up at some points on IP’%, which may include infinitely
’L11 ,f’i\/g,ig’
infinitely near points if and only if there exists a (—2)-curve on Sy corresponding to m?hiz,
0 0

Vo T Vo
11,23 o m227743

near points. For instance, assuming that M corresponds to m this blow-up includes

m in Id.
Proof of (3) = (1) in Proposition 325

Let us prove that (3) implies (1) in Proposition BZ3. Assume that p(S) = 2 and the type
of S is one of those in the list of Theorem =373 other than the type of d = 8.

We shall take a composite of blowing-ups (BZZ) in such a way that elements myq, . . S My €
1; corresponding to all (—2)-curves on Sy are as in Table BTl according to the type of Sy (for
the notation of their elements, see (B23)), where “all (—2)-curves” in Table Bl mean all
elements in Iy corresponding to all (—2)-curves on Sy, respectively. By construction, we see

Pic(Sy) ~ Pic(Sg) ~ I; preserving the intersection form. Then we obtain the following claim:

Claim 3.2.8. The following three assertions hold:

(1) For an arbitrary integer ¢ with 2 <1i < 9 — d, there exist two (—1)-curves E; y and E; _
on Sy corresponding to elements e; and ¢1 ; in I, respectively.

(2) If d > 2, then all (—1)-curves meeting at least one (—2)-curve on Sy are only E; 4 and
E_for2<i<9—d.

(3) If d = 1, then all (—1)-curves meeting at least two (—2)-curves on Sy are only E; 1 and
E; _for2<:<9—d.

Proof. In (1), we shall check that intersection numbers (e;-m;) and (¢;;-m;) are non-negative
for 2<i<9—dand1<j<r, however, it is left to the reader since it can be easily shown
by explicit computing.
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In (2) and (3), let E be a (—1)-curve on Sy, let € be an element in I; corresponding to E
and set m :=my + --- +m, € I;. Noting that e is one of those in the list of (B223), we shall
calculate the intersection number (e - m) according to degree d:

If d =4, then m =ey+e1 — (e2+ -+ + e5), so that we have:

1 ife=e;ort; .

. = ’ <3 <5H). 2.

(e-m) { —1 otherwise (2<i<5) (3.2.4)

If d = 2 and S is of Aj-type or Ao-type (resp. (44;1)>-type), then m = 2e9— (ea+-- - +e€7)
(resp. m = 2{2ep — (e2 + -+ + e7)}), so that we have:

1 (resp. 2) ife=-e; orty,;
(e-m)=< —1(resp. —2) ife=—ko—eor —ka—{1; (2<i<7), (3.2.5)
0 otherwise

where we note —kg — £1; = 2e9 — (e2 +---+e7) +e for 2 <i <7,
If d =1, then m = 5eg —e1 —2(ea + -+ +es) = —2k1 — (ep — e1), so that we have:

2 ifi>1 ,
(ei'm>_{1 i1 (1<i<B);

2 ifti=1 . 3.2.6
(fl’Jm):{l i1 (1§’L<]§8); ( )

(e-m)<2 if (e-eg)>2,

where we note (e-m) = (e- —2ky1) — (e-eg —ey) and (e-ep — e1) > 0 by (BEX3) if (e eg) > 2.

Therefore, we obtain the assertions (2) and (3) of the claim. Indeed, if d > 2 (resp. d = 1)
and E meets at least one (—2)-curve (resp. at least two (—2)-curves) on Sy, then E is E; +
or E; _ for some 2 < i <9 —d by virtue of (8324) and (B=2H) (resp. (B=2W)). ]

Now, we shall prove that (3) implies (1) in Proposition BZ3. Let Sy be the same as
above. Let D be the union of (—1)-curves on St corresponding to elements e; and £1; in Iy
for 2 <i<9—din I;. By Claim B2, we see that D is defined over k. Moreover, we have

(D) = (T0f(er +02)) = (8= D) {(e0)? — (e2)?) = 0.

Suppose on the contrary that there exists a birational morphism 7 : S — V to smooth
projective surface V with py(V) < pg(S) defined over k. Then V is a smooth del Pezzo surface
of pr(V) = 1 by virtue of pi(S) = 2 (see also Lemma 2-24). Hence, there exists a (—1)-curve
E meeting at least one (—2)-curve on §E such that 77 is a contraction of the Gal(k/k)-orbit
of E. Notice that E is not any irreducible component of D. Otherwise, we have 7.(D) # 0
and (7.(D))? = 0 by Claim BZ8(1). This is a contradiction to the fact p(V) = 1. Hence,
we see that d = 1 and E meets only one (—2)-curve on §E by Claim BZ8(2) and (3). Let
M, ..., M, be all (—2)-curves on §E’ where r = 2 (resp. r = 4) if S is of 24;-type (resp.
2As-type). Furthermore, let s be the number of (—1)-curves on gg, which meet a (—2)-curve
M, and are contracted by 77, where we note that S is constant not depending on the way to
take a (—2)-curve M; on gg Indeed, all (—2)-curves on §E lie on the same Gal(k/k)-orbit
since Vi does not contain any (—2)-curve. If S is of 24;-type (resp. 2As-type), then the
degree of V7 is equal to 25+ 1 (resp. 4s+ 1), which is not equal to 7 and is at most 9, and we
obtain 0 < (7.(My + -+ -+ M,))?> = =4+ 2s (resp. —4 + 4s) by virtue of pj(V) = 1. Thus, Vg
is of degree 9, namely, Vi ~ }P’%_ In particular, the self-intersection number of any irreducible
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curve on Vi is a positive square number, however, (7 ,(M7))? is equal to 2 (resp. 0) if S is of
2A;-type (resp. 2As-type). It is a contradiction.
Therefore, we see that S must be k-minimal.

Remark 3.2.9. Assuming pk(g) = 2, we see that S is minimal by the above argument. Letting
Sq be the same as above, for any 2 <7 <9 —d, two (—=1)-curves on Sy, which correspond to
e; and /1 ; respectively, lie on the same Gal(k/k)-orbit.

Proof of (2) = (3) in Proposition BZ1

In order to prove that (2) implies (3) in Proposition B2, assume that the type of S is one
of those in the list of Lemma BZZ1 such that it does not appear in the list of Theorem [3=3.
Then we shall show that S is not quasi-minimal.

At first, we deal with the case in which S is of degree d = 1 and of Aj-type. We can
choose a composite of blowing-ups (B=21) in such a way that Sd = S contains only one
(—2)-curve corresponding to m? € I; (for the notation of m$, see (B222)). Letting e be one
of those in the list of (B7223), we obtain that (e - m3) = 2 if and only if e = e, indeed,
(e-m3)=(e-—ki)—(e-e1) =1—(e-ey). Since S; and gg have the same type, there exists
a unique (—1)-curve E satisfying (E - M) = 2 on §E7 where M is the unique (—2)-curve on
§E. This means that |.#Zg(2,2)| = 1 and there is no (—1)-curve E’ meeting E on §E such that
| #5(2,2)| = 1. Hence S is not quasi-minimal.

In what follows, we deal with the remaining cases. As an example, we shall explain the
case in which S is of degree d = 2 and of (341)>-type. Then :S’VE contains exactly three (—2)-
curves. Let us put « := 2, where we notice that « is smaller than or equal to the number
of (—2)-curves on §E Let 8 be the number of (—1)-curves on §E meeting exactly a-times of

(—2)-curves on §E. In order to determine the value of 3, we shall take a composite of blowing-

ups (B2Z) in such a way that Sy = S contains exactly three (—2)-curves corresponding to
M3, M1 345 m? € I (see (B222)). Then we see that elements in I5 corresponding to all

(—1)-curves meeting exactly a-times of (—2)-curves on Sy are only ey, ..., e5 and ls 7 (see
Example BZ1). Hence, we obtain 5 = 6. Moreover, the union of f-times of (—1)-curves on
§2, which correspond to eq,...,e5 and fg7 in I, is disjoint. Since S, and §E have the same
type, letting E be a (—1)-curve on §E corresponding to one of ey, ...,e5 or fg7 in Iz, we see
that |.#g(2,1)] = « and there is no (—1)-curve E’ meeting F on SVE such that |#Zg(2,1)] = a.
Thus, S is not quasi-minimal.

The other cases can be shown by a similar argument, by changing the value of o and
elements in I, which correspond to all (—2)-curves on Sd, according to the type of S. We
will now explain how to do this. Let « be this as in Table B2 according to the type of S ,
and let us take a composite of blowing-ups (8=2) in such a way that all (—2)-curves on Sy
corresponding to elements in Iz, which are these as in “all (—2)-curves” in Table B2 according
to the type of S. Then we see that elements in I5, which correspond to all (—1)-curves meeting
exactly a-times of (—2)-curves on Sy, are only these as in “-times of (—1)-curves” in Table
B2 according to the type of S (see Examples B2Z11 and BZT2 for how to find all elements in
1;). For instance, if d = 2 and the type of S is (3A1)s-type, then such these elements yield
€1, ..., es, lg7 € I3 as demonstrated above. Hence, 3 is this as in Table B2 according to the

type of S. Moreover, we see that the union of _B-times of (—1)-curves, which meet exactly
a-times of (— ) curves on Sy, is disjoint. Since Sy and S have the same type, letting E be a

(—1)-curve on Sk corresponding to one of S-times of (—1)-curves meeting exactly a-times of
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(—2)-curves on Sg, we see that | #£(2,1)] = a and there is no (—1)-curve £’ meeting E on
Sz such that |.#Zg(2,1)| = a. Thus, S is not quasi-minimal.
In summary, we show that S is quasi-minimal if the type of S is one of those in the list of

Theorem [33.

Remark 3.2.10. In the above argument, we do not actually use the assumption pg(S) = 2.

Example 3.2.11. Assume that S is of degree d = 2 and of (34;)s-type. Then §E contains
exactly three (—2)-curves. Let us put a := 2 and let us choose a composite of blowing-
ups (B=ZT) in such a way that S; = Sy contains exactly three (—2)-curves corresponding to
m%72,3, mi4,5, m? € I (see Table B2). Then we shall determine all elements in I corre-
sponding to all (—1)-curves meeting exactly two (—2)-curves on §E At first, we can easily
check that intersection numbers (e - m%72’3), (e- mi4’5) and (e-m?) are equal to 0 or 1 for any
e=ei,...,es, {g7. Next, we put m := mizg —i—mi475 +m? and determine any element e € I
as in (B223) satisfying (e-m) = a(= 2). In consideration of m = 4eg—2(e1+---+e5)—(eg+e7),
we can calculate as follows:

o Ife=¢; (1 <i<T7),then (e-m)=2if and only if 1 <i <5.

e Ife=14;; (1<i<j<T7),then (e-m)=2if and only if (¢,5) = (6, 7).

o Ife=2ep— (e +-+e,) (1<i;<---<iz<7),then (e:m)<8-2-1-3-2=0<2.

o Ife=—k —e (1<i<7),then (e-m)<-1<2.

Thus, we certainly see that all elements in I3, which correspond to all (—1)-curves meeting
exactly a(= 2)-times of (—2)-curves on S, are exhausted by ey, ..., e5 and /7. For the other
cases with d > 2, we can calculate in a similar way.

The following deals with all cases of d = 1:

Example 3.2.12. Assume that S is of degree d = 1. We shall take a composite of blowing-
ups (BZJ)) in such a way that elements my,...,m, € I} corresponding to all (—2)-curves on
Si are as in Table B3, according to the type 0f~§. Then the element m :=mj + --- + m, is
expressed as follows depending on the types of S:

e 445 or (441)<: (Ba—1)eg — afer + - -+ eg), where a = 3, 8 = 8;
o 5A1: Ba—b)eg—ae; —(a—1)(ea+e3+es) — (a—2)(es+---+eg), where o =4, § =1,
e Otherwise: 3a’eg — a(er + -+ eg) — a'(epp1 + - - - + eg), where o < a.
Hence, letting e be one of those in the list of (B223), if (e-m) = «, then we see that (e-eg) = 0,
i.e., e = ¢; for some 1 < i < 8. Indeed, assuming (e-eg) > 0, we have (e-m) < (e-—aky) =«

by noting (e -e;) > 0 (1 <14 < 8). Moreover, we see that (e; - m) = « if and only if 1 <1i < f.
Obviously we obtain (e; - m;) >0for 1 <i<fand1<j <.

3.3 Proof of Theorem 134

Let the notation be the same as at the beginning of Chapter B and assume further that S is

minimal over k and pi(S) = 2. In this section, we shall prove Theorem I34. Notice that
Theorem =34 is a consequence of the following proposition:

Proposition 3.3.1. With the notation and the assumptions as above, the following three
assertions hold true:
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Table 3.2: The value of 8 and configuration of S-times of (—1)-curves.

’ d ‘ Type ‘ ot | all (—2)-curves H g | [-times of (—1)-curves
T A 1] [
0 0
6 A2 ]. ml 25 m273 2 63, 6172
0 i
6 2A1 2 mljz, m1’273 1 62
6| (A)< |1 | mi 3| e, ez e
1 273 17 27 3
6| (A)> | 1| m, 2 e lis
0 I
5 Az 1| miy, misy 3 | ez, €3, €4
50 241 | 2| mY,y migs 1] e
5 Al ]. m% 273 3 617 627 63
0 0 I T
4 4A4 2 Mig, M34, Mios, M345 4 | eg, ey, €5, 61,3
I
4 3A1 2 m[l) 29 mg74, ml 2}5 2 62, £173
I
4 A2 ]. ml 2.3 m275 4 617 627 63’ 64,5
I I
4| (2A1)> | 2 | mygg, miyg Lle
41 A 1| mly, 4 | e1, e e3 lp
0 T 0 T
3 34, 9 m(1],2, m%,3,4a mg 4, M35 65 3 | e, €4, €6
) 9
Ms56, Mior
0 T 0 T
3 249 2| miy Mise Mgy Migg 1 |e
I I 1 T
3 4141 2 ml 2.3, m174 55 m2 4.6 m375 6 6 €1, €2, €3, €4, €5, €6
I I I
3 3A1 2 My 94, m173 5, Mo 3,6 3 €1, €2, €3
I I
3 Ay L | myog, Myse 6 | e1, ez, €3, €4, €5, €6
I I
3| 24 2 | myg3, Myys l]lea
3 A1 1 m2 6 €1, €2, €3, €4, €5, €6
0 I 0 T
m m m m
1,2 1,34 4
21 345 |2 ml ’ ml’& AL 3,5,67 6 | e2, €4, €6, L1,7, {37, U57
5,67 1,2,5
1 I T T
2 6A; 3 m%%, m%’g’& T4 287 4 | e, e, €3, €4
) b )
My460 M345
i I i T T
2| 5A1 | 3| migs Migs Migr Maae Masy || 2 | €15 €2
0 I 1 i
2 2A2 2 ml 29 m173 7y ml 2,67 m374 5 2 62, €3
2| (4A1)< | 3 mim, mi4,5a m%,&?? m%A,G l]e
2| BA< | 3| migs, mi45, mj 6,7 l|e
I I 2
2 (3A1)> 2 mio3, m174 5, MY 6 €1, €2, €3, €4, €5, Z6,7
2 241 |2 | mi,,, mi 2 | e1, e
I T I T
my 3.4, My my ma4q
1| 44, | 3| b4 TasE 56 TeAT 8 | e1, €2, €3, €4, €5, €6, €7, €8
Mirzs Ma3e M357 Mi6s
I I I 1
m m m m
1 34, 3 m%,3,4v m%5,8’ 1,560 M2475 2 | e1, e
1,780 Ma36
mi mi ms my
1 6A1 4 %,2,47 %,3,5’ 2,3,6 1,6° 3 ey, €2, €3
) 7
mas5, M34
1| 5A;1 | 4| mige, Miss Magas M35 Mig L e
2 2 2 P)
1 (4A1)< 3| mi,, m34, M5e M73g 8 | e1, €2, €3, €4, €5, €6, €7, €8
T I I 3
1| (44;)> | 4 Mi23 Mi45 Migr Mg 1 |er
I I I
1] 34 3 | Mig3, Migs Mgy Lle
1 A2 2 m;{ 2.3 m%73 1 el
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(1) If d = 8, then S contains an Al-cylinder if and only if there exists a conic bundle
m: S — B, which admits a section defined over k.

(2) If d = 8, then S contains the affine plane A? if and only if S(k) # 0.
(3) If d < 8, then S does not contain any Al-cylinder.

We will prove Proposition BZ31 according to the degree d of S. More precisely, Proposition
B33 (1) and (2) will be shown in Subsection Bz31 and Proposition Bz31 (3) will be shown in
Subsection B33

3.3.1 Case of degree 8

In this subsection, we shall show Proposition B3 (1) and (2). Let us assume d = 8. Then
S is a k-form of ]P% X IP% or the Hirzebruch surface Fo of degree two, i.e., S ~ ]P% X ]P% or
S% ~ F5. Moreover, S is endowed with a structure of Mori conic bundle 7 : S — B such that

the base extension of 7 to the algebraic closure 7z : §E — Brisa P'-bundle over By ~ ]P% by
Lemma BT
We shall consider the following three conditions:

(A) S contains an Al-cylinder.
(B) There exists a Mori conic bundle 7 : S — B, which admits a section defined over k.
(C) S(k) # 0.
Then the following three lemmas hold:
Lemma 3.3.2. (C) implies (B).
Proof. Noting S(k) # 0 and pk(§)~: 2, we see that S ~ PL x P} or S is the Hirzebruch surface
of degree two defined over k (i.e., S ~ ]P’(ﬁpi b Op1 (2))) by using Lemma PZ272. In particular,

there exists a Pl-bundle S — ]P’,lC over k, which admits a section defined over k. O
Lemma 3.3.3. (A) implies (B).

Proof. Suppose that S contains an Al-cylinder, say U ~ A} x Z, and there is no Mori conic

bundle, which admits a section defined over k. The closures in S of fibers of the projection
prz U ~ Al X Z — Z yields a linear system, say .,f on S. Hence, we obtain the rational

map P . S —-» Z associated with .,2” where Z is the smooth projective model of Z. If ¢
is a morphism then @ -is a Mori conic bundle, which admits a section defined over k and is

contained in S \U, by Lemma B2 It is a contradiction to the assumption. Hence, Zis not

base point-free. Then the base extension of Dé;, say .,Ef,’%, is not also base point-free. Since fibers
of the base extension prz_: Uy =~ Al X Z — Z7; are isomorphic to the affine line, in particular,

having only one-place at mﬁmty, Bs(,i” ) is composed of one point. Furthermore, this point is

defined over k. Thus, Bs(.Z ) consists of only one k-rational point, which contradicts Lemma
B3 O

Lemma 3.3.4. (B) implies (A).

35



Proof. By the assumption, we can take a Mori conic bundle 7 : S — B, which admits a
section defined over k, and let I' be a section of 7 defined over k. As w itself is defined over k,
the base curve By, is also equipped with an action of Gal(k/k) induced from that on ‘§E The
complement, say U’, of a divisor composed of I" and the pull-back by 7% of a Gal(k/k)-orbit
on By is then a smooth affine surface defined over k. The restriction ¢ := 7|y of m to U’
yields a morphism over an affine curve Z’ C B. By construction, the base extension ¢y is
an Al-bundle to conclude that so is ¢ by [34, Theorem 1], which implies that there exists an
open subset Z C Z’ such that ¢~1(Z) ~ Al x Z. This completes the proof. |

Proposition BZ3T (1) follows from Lemmas B33 and B=34. Next, we will show Proposition
B3 (2) as follows:

Proof of Proposition =31 (2). Assume that S admits a k-rational point. Let 7 : S — Bbea
Mori conic bundle. Then the base B is a geometrically rational curve admitting a k-rational
point to conclude that B is isomorphic to P} by Lemma EZZ22. Thus, S contains the affine
plane Ai. The converse direction is obvious. O

3.3.2 Case of degree less than 8

In this subsection, let us assume d < 8. The purpose of this subsection is to prove Proposition
B33 (3). In other words, we shall show that S does not contain any A}C—cylinder by using

Lemma 2253, By Lemma BT, S is endowed with a structure of Mori conic bundle 7 B S— B
such that w7 admits a singular fiber. Notice that B is isomorphic to ]P’/,lc provided that S admits
a k-rational point.

Lemma 3.3.5. With a notation and the assumptions as above, then d < 4.

Proof. If —K3 is not ample, then it follows from Theorem [Z373. Hence, we may assume that
— K3 is ample in what follows. Then S is a smooth minimal del Pezzo surface of rank two.
Noting d # 7,9, suppose that d = 5 or 6. By Proposition 2274, S is endowed with a structure

of Mori conic bundle defined over k, say m : S — B. Any (—1)-curve on S, which is not an
irreducible component of any singular fiber of 77, meets all singular fibers of 7. Notice that

§E contains exactly (8 — d)-times of singular fibers of ;- such that each one consists of two
(—1)-curves, which lying the same Gal(k/k)-orbit, on gg meeting transversally at a point. By
the hypothesis, it can be easily seen that any (—1)-curve on §E meets transversally exactly
(8 — d)-times of (—1)-curves on Si since d > 5 and there exists a birational morphism to
P2, which is a composite of (9 — d)-times blow-up. Thus, the union of all (—1)-curves on S’JE,
none of which is an irreducible component of any singular fiber of 7, is defined over k and is

disjoint. It is a contradiction to the minimality of S. O

Remark 3.3.6. If —K3 is not ample, then we further see d # 3 by Theorem [Z323. Moreover,
d # 3 even if —Kz is ample (see [62, Theorem 28.1]).

Suppose on the contrary that S contains an A,{z—cylinder, say U ~ A}c X Z, where Z is a
smooth affine curve defined over k. The closures in S of fibers of the projection prz : U ~
Z x A} — Z yields a linear system, say %, on S.

Claim 3.3.7. The base locus Bs(.%) consists of only one point, which is k-rational.
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Proof. Let @ : S --» Z be the rational map associated with .,éz, where Z is the smooth

projective model of Z. Assume that Bs(.if”v) is base point-free. Then ® - is a morphism, in
particular, it is a Mori conic bundle, which admits a section defined over k and is contained
in S\U, by Lemma BI2. However, this is a contradiction to Lemma B0 (3). Thus, Bs(.%)
is not base point-free. By the similar argument as Lemma B=33, we see that Bs(.,?) consists
of only one k-rational point. O

Let us denote by p the base point of the linear system #. Recall that S is endowed with
a structure of a Mori conic bundle 7 : S — B over a geometrically rational curve B defined
over k. Since p is k-rational by Claim BZ37, so is its image via 7, in particular, B =~ IP’/,lC by
Lemma P72, Since Z is contained in a projective line IP’,l€ on k by the similar argument, 7z
is a linear pencil on S. Moreover, we can easily to see Pic(S Jo = Q[-K3g] @ Q[F], where F
is a general fiber of 7, which passes through p. In particular, Zis Q-linearly equivalent to
a(—K3z) + bF for some rational numbers a, b.

Proof of Proposition B=31 (3). With the notation and the assumptions as above, we notice
d < 4 by Lemma BZ34. In this proof, we will consider whether — Kz is ample or not as follows.

At first, we shall consider the case that — K is not ample. By the assumption, there exists
a Gal(k/k)-orbit of a (—2)-curve on S, say M. Then we have (M - —Kz) = 0. Moreover, we
notice (M - F) > 0 since every (—2)-curve on §E is not included in any singular fiber of .
Thus, we have b > 0 by virtue of 0 < (M - .Z) = b(M - F). However, it is a contradiction to
Lemma 2273,

Next, we shall consider the case that —K3 is ample. By Lemma 2535, we obtain a > 0
and b < 0. By Lemma B3, there exists a Mori conic bundle w9 : S — P} such that a
fiber Fy of mo passing through p is linearly equivalent to %(—K g) — F. Thus, we can write
gNQ (a+ %b)(—Kg) — bF,. Then we obtain —b > 0 by Lemma 2573 again. However, it is a
contradiction to b > 0.

Therefore, S never contains an A,lc—cylinder for both cases. O
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Chapter 4

Cylinders in canonical del Pezzo
fibrations

The purpose of this chapter is to prove Theorem I=39. Throughout this chapter, let & be
a field of characteristic zero, let S be a Du Val del Pezzo surface defined over k such that
Sing(Sy) # 0. Here, if S is smooth, then S clearly satisfies all assertions in Theorem =39
by virtue of Theorem I"24. Hence, the assumption Sing(Sy) # 0 is reasonable. Let d be the

degree of S, ie., d := (—Kg)?, and let o : S — S be the minimal resolution over k. Notice
that S is a weak del Pezzo surface with (—Kg)? = d.

4.1 Du Val singularities over non-closed fields

In this section, in order to state and prove Theorem =3, we prepare the notation about Du
Val singularities over algebraically non-closed fields.

4.1.1 Du Val singularities over algebraically non-closed fields

Let V be a normal algebraic surface over k and let p be a Du Val singular point on Vz,
which is k-rational. Notice that the exceptional set of the minimal resolution at p € Vi is
invariant under the action of the Galois group Gal(k/k). Thus, depending on a fashion of the
Gal(k/k)-action on the exceptional set, we shall divide the type of Du Val singularities in a
more refined way as follows:

Definition 4.1.1. Let V' be a normal algebraic surface over k, let p be a Du Val singular
point on Vi, which is k-rational, let o : V' — V be the minimal resolution of p over k and let

A be the exceptional set of o on V.
(1) In the case that p is of typeA; on Vz, then:
(i) pis of type Al over k if A(k) # 0.
(ii) p is of type A]" over k if A(k) = 0.
(2) In the case that p is of type A, for n > 2 on V4, then:
pe(V) = n.
(ii) pis of type A} over k if py( pe(V) < n and A(k) # 0.
(iii) p is of type At over k if pp(V) — pp(V) < n and A(k) = 0.

(i) pis of type A, over k if pk(f/) —
V) -
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(3) In the case that p is of type X,, on V, where X,, means D,, for n > 4 or E,, for n = 6,
then:

(i) pis of type X, over k if pi(V) — pp(V) = n.
(i) p is of type X;F over k if pp(V) — pp(V) < n.

Remark 4.1.2. If kK = R, then all types of Du Val singularities over k correspond to all types
of real Du Val singularities in [4R, §9] except for type A;. Meanwhile, although [48] defines
both of Du Val singularities of type A and type A, whereas in Definition EZT71, we do
not prepare the notation for type Ay intentionally in consideration of the assertion (3)(iv) in
Theorem —34.

4.1.2 Du Val singularities on Du Val del Pezzo surfaces of low degree

Let the notation be the same as at beginning of Chapter B, assume further that d < 2.

By the classification of types of weak del Pezzo surfaces, assuming that S; admits at least
one singular point of type Ag_o4 or at least two singular points, one of which is of type A7_oq4
and the other of which is of type Ay, the type of the weak del Pezzo surface S is not uniquely
determined by only “Degree” and “Singularities” if and only if “Singularities” of S is one of
the following:

{d:21 As + Ay, As, A3+ 2A1 or Ag + Aj. (411)

d=1: A7or As + A;.

For the above mentioned cases (B2111) only, we shall adopt the notation found in [12, §§2.2] as
follows to make the proof more transparent. Here, to be more precise, it seems that [69] firstly
introduces their notation. We note that in (E12) each of the left hand side is the notation
used in [I2, §§2.2], meanwhile, each of the right hand side is the one defined in Subsection
24. For types in (E1), we will adopt the ones at the left hand side in (B12):

(

d=2: (As+ A1) = (A5 + A1)<, (A5 + A1)" = (A5 + A1),
(A5)" = (A5)<, (A5)" = (As5)>,
(A3 +241) = (A3 +2A1)<, (As+241)" = (A3 +241)>, (4.12)
(A3 + A1) = (A3 + A1), (A3 + A1) = (A3 + A1)>.
d=1: (A7) =(A7)>, (A7)" = (A7)<,
(A5 + A1) = (A5 + A1)s, (A5 + A1) = (A5 + A1)<.

On the other hand, to state our main result exactly, we shall divide the types of k-rational
Du Val singularity x € St of type Ag_s4 as follows by making use of their notation:

Definition 4.1.3 (cf. [69]). With the notation and the assumptions as above, let z be a Du
Val singular point of type Ag_sq on Si defined over k. Then we say that x is of type (Ag_24)’

(resp. (Ag_oq)") if there exists a (—1)-curve on §E meeting the (—2)-curve corresponding to
the central vertex on the dual graph of the minimal resolution (resp. there does not exist
such a (—1)-curve on Sy).

Remark 4.1.4. If S;; admits a singular point = of type Ag_ag, then S is of one of the following:
o d=2: As + As, A5 + Ay, As.
e d=1: A7+ Aq, A5,

In particular, if S is of Ag_oq + Ag-type, then the singular point z is of type (Ag_24)".
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4.2 Proof of Theorem L339 (1) and (2)

In this section, we shall prove Theorem =39 (1) and (2).

4.2.1 Configurations of Du Val del Pezzo surfaces of rank one

Let the notation be the same as at beginning of Chapter @ and assume further that d > 3.
In this subsection, we shall study the configuration of (—2)-curves and (—1)-curves on §E’
furthermore, we classify Du Val del Pezzo surfaces of rank one and of degree > 3. Notice that
if d > 4, then we completely know the configuration of (—2)-curves and (—1)-curves on §E
(see [I4, Propositions 6.1, 8.1, 8.3 and 8.5]). On the other hand, weak del Pezzo surfaces of
degree 3 defined over an algebraically closed field is also studied (e.g., [9]) but could not find
the list of the configuration of (—2)-curves and (—1)-curves for all types of weak del Pezzo
surface of degree 3. Then, by using [I8, §§9.2] and based on the notation in Subsection B=22,
we consider the configuration of (—2)-curves and (—1)-curves on weak del Pezzo surfaces of
degree 3. In other words, considering a weak del Pezzo surface 5’3, which is the same type of
Sk, and the following composition of blow-downs to ]P’2 over k:

7.5, 88,8 BRGNS = P2 (4.2.1)

Let I3 be the free Z-module with a bilinear form such that it is generated by the proper
transform eq of a general line by 7 and total transforms ey, . . ., e of the exceptional divisors by
Ti,...,76. Then all (=2)-curves and all (—1)-curves on Sj; correspond to elements as in (622)
and (B=Z3), respectively. For simplicity, ¢; denotes the element 2eg — (e + -+ -+ eg) + ¢€; € I,
which is included in the list (B223).

At first, we shall treat the following proposition:

Proposition 4.2.1. Let the notation and the assumptions be the same as above. If pr(S) =1,
then the type of S is one of the following:

e d=28: Ai-type;

e d=06: Ay + Ay, Ag or (A1)<-type;

e d =05 Ay-type;

o d=4: D5, Az +2A1, Dy, A3+ Ay, As +2A1, 44,1, (A3)<, 3A1, Ag, 2A; or Aj-type;

e d=23: Fg, A5 + Ay, 3As, A5, 245 + Ay, Dy, 2As, 441, 3A1, Ay or Ai-type.

In order to prove Proposition =211, we prepare the following two lemmas:

Lemma 4.2.2. Let the notation and the assumptions be the same as above. If there exists a
(=1)-curve E on St , which does not meet any (—2)-curve on Sg, such that either £ is defined
over k or the Gal(k/k)-orbit of E is a disjoint union, then pg(S) > 1.

Proof. Assume that there exists a (—1)-curve E satisfying the assumption of this lemma.
Then the direct image of the Gal(k/k)-orbit of E via o is contactable in S. This implies that
pk(S ) > 1. O

Lemma 4.2.3. Let the notation and the assumptions be the same as above. If any (—1)-
curve and (—2)-curve on S are defined over k and the number of all (—2)-curves on S is less
than 9 — d, then pg(S) > 1
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Proof. By assumption we have py(S) = pg(gg) =10 — d and pi(S) — pr(S) < 9 — d. Hence,
we obtain pg(S) > (10 —d) — (9 —d) = 1. O

By explicitly using Lemmas B=2 and B=273, we obtain the following lemma:
Lemma 4.2.4. Let the notation and the assumptions be the same as in Proposition B2 If
the type of S is one of the following, then pg(S) > 1:

e d =7 and Aj-type.

e d =6 and 24; or (A;)s>-type.

e d=>5and As, As + Ay, Ay or Aj-type.

e d =4 and A4 or Ay + A;-type.

e d=3 and D5, A3 + 2A1, Ay + Ay, Ay, A3+ A1, Ay +2A4, A3, Ay + Aq or 2A1—type.
Proof. At first, we deal with the case of d > 4. By the list of weighted dual graphs in [I5,

Propositions 6.1, 8.1, 8.3 and 8.5], if the type of S is one of the following list, then the
assumption of Lemma E=22 holds:

e d =7 and A;-type.

d =6 and (A4;)s-type.

e d=>5and As + Ay, Ay or Aj-type.
e d =4 and Ay or Ay + A;-type.

Similarly, if the type of S is one of the following list, then the assumption of Lemma B=23
holds:

e d =6 and 2A;-type.
e d =5 and As-type.

Thus, this completes the proof of the case d > 4.

In what follows, we deal with the case of d = 3.

Then, by using mainly [I8, §§9.2] and based on the notation in Subsection B2, we
consider the configuration of (—2)-curves and (—1)-curves on weak del Pezzo surfaces of
degree 3 according to the list in this lemma.

e Ds-type: By [I8, p. 446], we can choose a morphism (E=21) such that all (—2)-curves on
Sy, correspond to m{ 5, m9 5, m§ 4, m 5 and mj 46 in I3 (see (L’:ZZZ, for these notation).
Then by using Lemma 214 there exists a unique (—1)-curve E on S, which corresponds
to cg in I3 (see the beginning of this subsection, for this notation), such that it does not
meet any (—2)-curve on S¢. Namely, £ is defined over k.

0
mio Mgg M3y Myjy €6
(o) O (e) O [ J
1
O Mjge
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e A3+ 2A;-type: By [Il, pp. 665-666]™, we can choose a morphism (EZZT) such that
all (—2)-curves on S7 correspond to m(1)727 mgA, mgﬁ, mi% and m§7475 in I3. Then by
using Lemma 27174 there exists a unique (—1)-curve E on §E, which corresponds to /5 ¢

in I3 (see (BZZ3), for this notation), such that they do not meet any (—2)-curve on S.
Namely, F is defined over k.

1 0 1 0 0
Mios Mse M345 Mio2 M3y ls6
] (o) o] O O [}

e Ay-type: By [I8, p. 446], we can choose a morphism (E=2T) such that all (—2)-curves
on Sy correspond to m(l)’Q, m873, mgA and m275 in I3. Then by using Lemma 214 there
exist exactly two (—1)-curves E; and E; on §E> which correspond to eg and ¢35 in I3,

such that it does not meet any (—2)-curve on Sz. Namely, the union E; + Ej is defined
over k and is disjoint.

e A3+ Aj-type: By [I8, p. 446], we can choose a morphism (E=2T) such that all (-2)-
curves on Sz correspond to m%z, mg’g, mg4 and mgﬁ in I3. Then by using Lemma 2714
there exists a unique (—1)-curve E on :S”VE, which corresponds to /56 in I3, such that it
does not meet any (—2)-curve on S% Namely, F is defined over k.

0 0 0 0
Mmio Mgz M3y Msg Us6
o] o O o [

o Ay +2A;-type: By [I, p. 446], we can choose a morphism (E=21) such that all (—2)-
curves on Sz correspond to m?Q, m%g, m9l75 and mi273 in I3. Then by using Lemma
T2 there exists a unique (—1)-curve E on §E, which corresponds to eg in I3, such that
it does not meet any (—2)-curve on 5% Namely, E is defined over k.

e As-type: By [I¥, p. 446], we can choose a morphism (EZZ1) such that all (—2)-curves
on S correspond to m(l)72, m873 and mgA in /3. Then by using Lemma 214 there exists
a unique (—1)-curve E’ on §*, which corresponds to ¢12 in I3, such that it meet the
(—2)-curve corresponding to m873 € I3 but does not meet the others (—2)-curves on :S’VE

Furthermore, there exists a unique (—1)-curve E on §E’ which corresponds to /56 € I3,
such that it meet F. Namely, F is defined over k, moreover, Ef does not meet any

“INote that the way to construct 7 using [IR, p. 494] is wrong.
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(—2)-curve on S.

° f576

e Ay + Aj-type: By [IR, p. 446], we can choose a morphism (E2ZT) such that all (—2)-
curves on Sz correspond to m(ig, m873 and mi 5 in 3. Then by using Lemma 2T there
exist exactly three (—1)-curves Ej, Fs and E3 on §E7 which correspond to eg, ¢4 5 and

¢g in I3, such that they do does not meet any (—2)-curve on §E Namely, the union
FEy + Eo + FE5 is defined over k and is disjoint.

0 0 0
Mmio Mgg Mys €6 U5 €6

)
(¢] O o L] [ ] [ ]

e 2A;-type: By [I¥, p. 446], we can choose a morphism (E=Z1) such that all (—2)-curves
on S% correspond to m‘iQ and m874 in Is. Then by using Lemma PT4 there exists a
unique (—1)-curve £ on §E7 which corresponds to £ 3 € I3, such that it meet two (—2)-

curves on §E Furthermore, there exists a unique (—1)-curve £ on S, which corresponds
to ¢56 € I3, such that it meet EJ. Namely, F is defined over k, moreover, E does not

meet any (—2)-curve on gg

0 0
myo b m34
O [ ] o]

o I56

Thus, if S is of D5, As+2Aq, Ay, As+ Ay, Ay +2A4, Ag, Ao+ A1 or 2A;-type, then the
assumption of Lemma holds, so that pg(S) > 1. On the other hand, assume that S is
of Ay + Aj-type. Then we know that all (—2)-curves and all (—1)-curves are defined over k
by the weighted dual graph of the union of these curves (see [14, (19°)] or [I'4, p. 667]). That
is, the assumption of Lemma B=23 holds, so that pr(S) > 1. This completes the proof of the
case d = 3. O

Meanwhile, the following lemma holds:

Lemma 4.2.5. With the notation and the assumptions as above, assume further that the
type of S is of one of the following:

e d=5: S isof 2A1-type;
o d=4: S is of either (A3)s or (24;)s-type.

Then pi(S) > 1.
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In order to prove Lemma B=Z3, we prepare the following lemma:

Lemma 4.2.6. With the notation as above, assume further that there exists a birational
morphism 7’ : § — S over k such that S’ is smooth, pj(S) — pk(S’) = 1 and the exceptional
locus of 77 meets only one Gal(k/k)-orbit of a (—2)-curve on Sy. Let o’ . §' = 9 be the
contraction of all (—2)-curve, where note that ¢’ is defined over k. Then pk(S) = pr(9).

Proof. By the assumption, we thus obtain pj(S) — pr(S") = 1 and pp(S") — pr(S") = pr(S) —
pi(S) — 1. Namely, pi(S') = pi(5). O

Proof of Lemma F-2-J. We shall consider three cases separately:

S is of d =5 and of 2A;-type: By [I4, Proposition 8.5], there exists a unique (—1)-curve
E meeting two (—2)-curves M and M’ on §E In particular, E is defined over k. If M and
M’ lie the same Gal(k/k)-orbit, letting 7/ : § — S’ be the contraction of E over k, then
T«(M + M) has self-intersection number 0. ThlS implies that py(S’) > 1. Moreover, by virtue
of pi(S") = pr(S) — 1 and py(S) = pr(S) — 1, we obtain p(S) > 1. In what follows, assume
that M and M’ are defined over k. By [I&, Proposition 8.5] again, there exist exactly two
(—1)-curve meeting no (—2)-curve such that they are defined over k. Hence, we see pi(S) > 1
by Lemma B2,

S is of d = 4 and of (As)s-type: By [IH, Proposition 6.1], there exists a unique (—1)-curve
E on §E meeting the (—2)-curve corresponding to the central vertex on the dual graph of all
(—2)-curves on §E (see the following dual graph):

o

(@]

o[

In particular, F' is defined over k. Hence, we obtain the contraction 7S = S of E over k,
so that S' is a weak del Pezzo surface of degree 5 and of 2A4;-type. Letting o’ : 5" — S be the
contraction of the (—2)-curve, noticing that ¢’ is defined over k, we obtain pg(S) = pr(S") > 1
by Lemma B=23 and Proposition E—2Z.

S is of d = 4 and of (241)>-type: By [I35, Proposition 6.1], there exists a unique (—1)-
curve E meeting two (—2)-curves M and M’ on Sf In particular, E is defined over k. If
M and M’ lie the same Gal(k/k)-orbit, letting 7/ § — S’ be the contraction of E over k,
then 7, (M + M’) has self-intersection number 0. This implies that p;(S’) > 1. Moreover, by
virtue of pi(S") = pr(S) — 1 and pp(S) = pp(S) — 1, we obtain pg(S) > 1. In what follows,
assume that M and M’ are defined over k. By [I5, Proposition 6.1] again, there exist exactly
two (—1)-curve E; and E3 (resp. Ej and EY) such that they meet M (resp. M’) but does
not meet M’ (resp. M) (see the following dual graph):

e v & //'Ei
— .

EQ' .Eé

Hence, we obtain the contraction 7/ : S — S’ of Ey + Ey + E| 4+ E} over k, so that S is a

smooth del Pezzo surface of degree 7. Noticing py(S') > 1, we obtain pi(S) = pi(S') > 1 by
Lemma B—Z3. O
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By using the classification of weak del Pezzo surfaces over an algebraically closed field,
Proposition B2 follows from Lemmas B2 and B—=3.

At the end of this subsection, for each type of a weak del Pezzo surface except for the list
of Proposition B2, we will fined all Du Val del Pezzo surfaces of rank one corresponding
to the above type. Moreover, assuming further p(S) = 1, we shall explicitly construct the
birational morphism 7 : S — V over a smooth k-minimal surface V according to the types of
S.

S is of d =8 and of Ai-type: Then S is a k-form of the Hirzebruch surface Fy of degree
2. In particular, S is minimal over k. Hence, we set V := S and 7 := id.

S is of d =6 and of As + Aj-type: By |05, Proposition 8.3], the weighted dual graph of
all (—2)-curves and all (—1)-curves is as follows:

Mo My E M

¢} (¢] ° (¢}

Let 7: S — V be the compositions of successive contractions of F, that of the image of M;
and that of the image of M>. By construction, 7 is defined over k and we see V =~ IP’% by
Lemma 27272, Moreover, the direct image 7.(M) is a line on V ~ PZ. Meanwhile, since any
(—2)-curve on §E is defined over k, we obtain p(S) = pp(S) + 3 = 4.

S is of d = 6 and of Ay-type: By [1H, Proposition 8.3], the weighted dual graph of all
(—2)-curves and all (—1)-curves is as follows:

Mo My

(¢]

Let 7: S — V be the contraction of FEq + E5. By construction, 7 is defined over k& and we
see V ~ Fy by using Lemma PZ22. Moreover, the direct images 7.(M;) and 7.(Mz) are the
minimal section and a closed fiber of the structure morphism Fy — IP’}C over k, respectively.
Meanwhile, since any (—2)-curve on 5% is defined over k, we obtain p(S) = pp(S) +2 = 3.

S is of d =6 and of (A1)<-type: By [I5, Proposition 8.3|, the weighted dual graph of all
(—2)-curves and all (—1)-curves is as follows:

Let 7 : S — V be the contraction of FE1 4+ Es + E3. By construction, 7 is defined over k,
and V is a k-form of P2, furthermore, we know V ~ ]P’i. Indeed, since TE’*(M ) is a line on
Vi o~ IP’% defined over k, there exists a general line defined over k£ on Vi ~ IP%. Hence, Vi has
a k-rational point, which is the intersection point for two general lines on V%, so that V' ~ IP’%
by Lemma ZZZ2. Meanwhile, we obtain pr(S) = pr(S) +1=2.

S is of d =5 and of Ay-type: By [I5, Proposition 8.5], the weighted dual graph of all
(—2)-curves and all (—1)-curves is as follows:

M3 My M, E

(¢} (¢] ¢} [ ]
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Let 7: S — V be the compositions of successive contractions of E, that of the image of M,
that of the image of My and finally that of the image of Ms5. By construction, 7 is defined over
k and we see V ~ P% by Lemma P-22. Moreover, the direct image 7.(M) is a line on V ~ P3.
Meanwhile, since any (—2)-curve on §E is defined over k, we obtain p;(S) = pp(S) +4 = 5.

S is of d = 4 and of Ds-type: By [T5, Proposition 6.1], the weighted dual graph of all
(—2)-curves and all (—1)-curves is as follows:

My M3 My M, E

(¢] ¢} (¢] o [ ]

o M

Let 7: S — V be the compositions of successive contractions of E, that of the image of M,
that of the image of Ms, that of the image of M3 and finally that of the image of My. By
construction, 7 is defined over k and we see V ~ IP’% by Lemma P22, Moreover, the direct
image 7.(M) is a line on V ~ P2, Meanwhile, since any (—2)-curve on gg is defined over k,

we obtain p(S) = pr(S) +5 = 6.
S is of d =4 and of As+2A;-type: By [I5, Proposition 6.1], the weighted dual graph of
all (—2)-curves and all (—1)-curves is as follows:

M, E. My M My E M

(¢} [ ] e} (¢] e} [ ] (¢]

Let 7 : S — V be the compositions of successive contractions of E; + Fo and that of the
images of M{ + M}. By construction, 7 is defined over k and V is a k-form of Fo. Moreover,
the direct images 7.(M) and 7.(M; + My) are k-forms of the minimal section and a disjoint
union of two closed fibers of the structure morphism Fy — }P’%, respectively. Meanwhile, if
since any (—2)-curve on §E is defined over k, we obtain pg(S) = pp(S) + 5 = 6. Otherwise,

we obtain pe(S) = pp(S) +3 =4.
S is of d = 4 and of Dy-type: By [I5, Proposition 6.1], the weighted dual graph of all
(—2)-curves and all (—1)-curves is as follows:

FEy My
[ ] (]
\M’ M
(@] [e]
O/

[ ]
Es Mo

Let 7 : S — V be the compositions of successive contractions of Fq + Fs and that of the
images of M + Ms. By construction, 7 is defined over k and we see V ~ Iy by using Lemma
=232, Moreover, the direct images 7,.(M) and 7.(M’) are the minimal section and a closed
fiber of the structure morphism Fy — }P’i over k, respectively. Meanwhile, note that E7 is not
defined over k. Indeed, otherwise, by Lemma E=28 the contraction 7’ : S — S of By provides
a Du Val del Pezzo surface of rank one and of degree 5 such that its minimal resolution is

S’ and of As-type. However, this is a contradiction to Proposition E21. Hence, we obtain
,Ok<S) = pk(S) +3=4.
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S is of d = 4 and of Az + Aq-type: By [T, Proposition 6.1], the weighted dual graph of
all (—2)-curves and all (—1)-curves is as follows:

0]

O [ ] o O \

[ ] E2

Let 7: S — V be the compositions of successive contractions of E; 4+ Fs, that of the image
of Mj and finally that of the image of My. By construction, 7 is defined over k and we see
V ~ P? by Lemma Z22Z2. Moreover, the direct images 7.(M) and 7.(M’) are two distinct
lines on V ~ P2, Meanwhile, since any (—2)-curve on §E is defined over k, we obtain pj(S) =
pr(S)+4=5.

S is of d =4 and of Ay + 2A;-type: By [I5, Proposition 6.1], the weighted dual graph of
all (—2)-curves and all (—1)-curves is as follows:

M E M}

[ ] [ ] (¢]

(¢] (¢] [ ]

i
[ ]
Eq My My Es

Let 7: S — V be the compositions of successive contractions of £y + Fs and that of the images
of M] + M}. By construction, 7 is defined over k and V is a k-form of P x PL. Moreover, the
direct image 7.(M; + Ma) is a k-form of a union of two irreducible curves of types (1,0) and
(0, 1), respectively (see [28, Chap. II, Example 6.6.1], for the notation). Meanwhile, note that
M is not defined over k. Indeed, otherwise, since E is defined over k by the configuration,
by Lemma B2 the contraction 7/ : S — S’ of E over k provides a Du Val del Pezzo surface
of rank one of degree 5 such that its minimal resolution is S and of Ay + Ajq-type. However,

this is a contradiction to Proposition B2271. Hence, we obtain pg(S) = pr(S) + 2 = 3, so that

pe(V) = pi(S) =2 =1.

S is of d = 4 and of 4A,-type: By [IH, Proposition 6.1], the weighted dual graph of all
(—2)-curves and all (—1)-curves is as follows:

If there is no singular point on St defined over k, then let 7 : S — V be the contraction
of E1o + Ei13 + Ea4 + E34. By construction, 7 is defined over k angl V is a k-form of
}P% X ]P%. Meanwhile, if all singular points on S; lie in the same Gal(k/k)-orbit, then we

obtain pg(S) = pr(S) + 1 = 2. Otherwise, we obtain px(S) = pr(S) +2 = 3.

On the other hand, if there is a singular point on Sz defined over k, assuming without loss
of generality that the (—2)-curve M; is defined over k, then let 7 : S — V be the compositions
of successive contractions of Fs 4+ F3 4 and that of the images of Ma+ Mj3. By construction, 7
is defined over k and V' is a k-form of Fy. Moreover, the direct images 7, (M) and 7,.(My4) are
k-forms of the minimal section and a section with self-intersection number 2 of the structure
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morphism Fy — JP%, respectively. Meanwhile, if any singular point on Sj is defined over £,

then we obtain pi(S) = px(S) +4 = 5. Otherwise, we obtain pi(S) = pp(S) + 3 = 4.
S is of d =4 and of (As)<-type: By [IH, Proposition 6.1], the weighted dual graph of all
(—2)-curves and all (—1)-curves is as follows:

Eye o Fy

S~ M M My~

O O

/ ’ \

B 2
Let 7: S — V be the contraction of Ej + E| + E3 + E). By construction, 7 is defined over
k and V is a k-form of Fy. Moreover, the direct images 7.(M) and 7,.(M; + Ms) are k-forms
of the minimal section and a disjoint union of two closed fibers of the structure morphism
Fy — ]P%, respectively. Meanwhile, if any (—2)-curve on Si is defined over k, we obtain

pr(S) = pr(S) + 3 = 4. Otherwise, we obtain py(S) = px(S) +2 = 3.

S is of d = 4 and of 3A;-type: By [IH, Proposition 6.1], the weighted dual graph of all
(—2)-curves and (—1)-curves meeting at least one (—2)-curve is as follows:

E e °

M Eq M Es My

o [ J o [ J o

— T

Let 7 : S — V be the contraction of FEy + E5 and that of the images of M + Ms. By
construction, 7 is defined over k and V is a k-form of ]P% X ]P%. Moreover, the direct image
T(M) is a k-form of an irreducible curve of type (1,1) (see [28, Chap. II, Example 6.6.1],
for the notation). Meanwhile, note that M is clearly defined over k but M; is not defined
over k. Indeed, otherwise, by Lemma E=Z the contraction 7/ : S — S of a Gal(k/k)-orbit
of E over k provides a Du Val del Pezzo surface of rank one of degree 5 or 6 such that its
minimal resolution is S’ and of 2A;-type. However, for both cases, this is a contradiction to
Proposition E-21. Hence, we obtain pi(S) = px(S) + 2 = 3, so that p(V) = 1.

S is of d = 4 and of Ay-type: By [I5, Proposition 6.1], the weighted dual graph of all
(—2)-curves and (—1)-curves meeting at least one (—2)-curve is as follows:

El.\Ml MQ/.E2
(] (e]
E{o/ \OEQ

Let 7: S — V be the contraction of Ey + Fy + E} + E). By construction, 7 is defined over k
and V is a k-form of PX x PL. Moreover, the direct image 7.(M; + Ms) is a k-form of a union
of two irreducible curves of types (1,0) and (0, 1), respectively (see [28, Chap. II, Example
6.6.1], for the notation). Meanwhile, note that M is not defined over k. Indeed, otherwise,
by Lemma B-28 the contraction 7/ : S — S’ of a Gal(k/k)-orbit of E; over k provides a Du
Val del Pezzo surface of rank one of degree 5 or 6 such that its minimal resolution is S” and
of Aj-type or (A1)--type, respectively. However, for both cases, this is a contradiction to
Proposition B2271. Hence, we obtain pg(S) = pi(S) + 1 = 2, so that p(V) = 1.

S is of d = 4 and of (2A41)<-type: By [I8, Proposition 6.1], the weighted dual graph of
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all (—2)-curves and all (—1)-curves is as follows:

If there is no singular point on Si defined over k, then pk(g) = 2. Thus, S is minimal
over k by Theorem =33, in other words, S is the minimal resolution of an Iskovskih surface
(see [IH, p. 74]). Hence, we set V := S and 7 := id.

On the other hand, if there is a singular point on Sz defined over k, then M is defined
over k. In particular, so is the disjoint union F; + --- 4+ Ej of (—1)-curves. Let 7 : S =V be
the contraction of this disjoint union. By construction, 7 is defined over k£ and V is a k-form
of Fy. Moreover, the direct images 7,.(M') and 7,.(M) are k-forms of the minimal section and
a section with self-intersection number 2 of the structure morphism Fy — IP%, respectively.

Meanwhile, we obtain py(S) = px(S) +2 = 3.
S is of d = 4 and of Ay-type: By [I5, Proposition 6.1], the weighted dual graph of all
(—2)-curves and (—1)-curves meeting at least one (—2)-curve is as follows:

El.\]oW/.ES
./ \.E4

Es

Let 7 : S — V be the contraction of FEy+-- -+ E4. By construction, 7 is defined over k and V/
is a k-form of PL x PL. Moreover, the direct image 7.(M) is a k-form of an irreducible curve
of type (1,1) (see [28, Chap. II, Example 6.6.1], for these notation). Meanwhile, we obtain
pe(S) = pr(S) + 1 =2, so that pi(V) = 1.

S is of d = 3 and of Eg-type: By [IR, p. 446], we can choose a morphism (E=21) such that
all (—2)-curves My, My, M3, My, Ms and M on §E correspond to mgﬁ, m9175, mgA, mg73, m(l)72
and mim in I3, respectively. Then by using Lemma P71 there exists exactly one (—1)-curve

E on S corresponding to eg in I3. Hence, we obtain the following weighted dual graph:

Ms My M3 My M, E
O O

O o O [ ]

o M

Let 7: S — V be the compositions of successive contractions of E, that of the image of M,
that of the image of My, that of the image of M3, that of the image of M, and finally that of
the image of M5. By construction, 7 is defined over k£ and we see V' ~ IP’% by Lemma P27,
Moreover, the direct image 7,.(M) is a line on V ~ P%. Meanwhile, since any (—2)-curve on
:S} is defined over k, we obtain py(S) = pp(S) 4+ 6 = 7.

S is of d = 3 and of As + Aj-type: By [I8, p. 446], we can choose a morphism (B=2)
such that all (—2)-curves My, My, M3, My, M and M’ on §E correspond to m873, m?2, mgA,
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mgé, m(i2 and mg,6 in I3, respectively. Then by using Lemma T4 there exist exactly two

(—1)-curve E and E’ on §E corresponding to eg and /¢y 2 in I3, respectively. Hence, we obtain
the following weighted dual graph:

M My Ms My M’ E Mo

(¢] e} (¢] (¢] (¢] [ ] e}

e E

Let 7: S — V be the compositions of successive contractions of F + E’, that of the images of
My + Ms, that of the image of M3 and finally that of the image of My. By construction, 7 is
defined over k and we see V ~ P% by Lemma P-22. Moreover, the direct images 7,(M;) and
7+(Ms) are two distinct lines on V' ~ P2. Meanwhile, since any (—2)-curve on :S’VE is defined

over k, we obtain pg(S) = p(S) +6 = 7.

S is of d = 3 and of 3As-type: By [T, p. 446], we can choose a morphism (E=2) such
that all (—2)-curves My, M|, Ma, M}, My and M} on Sy correspond to my 5, mY 3, m 5,
mgﬁ, m%’273 and m}l?576 in I3, respectively. Then by using Lemma PT4 there exist exactly
three (—1)-curves E 2, E 3 and Es 3 on 5% corresponding to /; 4, e3 and eg in I3, respectively.
Hence, we obtain the following weighted dual graph:

My M}, Ex3 M Ms
o) o [ ] o (o)

AN /

O O [ ]
Eio M M| Ei3

If there is no singular point on Si defined over k and pi(S) = 2, then let 7: S — V be
the contraction of Fy 2 + E1 3+ E23. By construction, 7 is defined over k£ and V' is a smooth
del Pezzo surface of degree 6 with pp(V) = pp(S) — 1 = 1.

If there is no singular point on Sy defined over £ and pk(g) = 3, then M; + My + M3 and
M + M} + M} are defined over k. Hence, let 7 : S — V be the compositions of successive
contractions of Ej o + Eq 3+ E2 3 and that of the images of M| + M} + M. By construction,
7 is defined over k and V is a k-form of IP’%.

On the other hand, if there is a singular point on S defined over k, assuming without
loss of generality that M; + M] is defined over k, then let 7 : S = V be the compositions
of successive contractions of o + Fi 3, that of the images of M + M3 and finally that of
the images of M} + M}. By construction, 7 is defined over k and we see V ~ P? by Lemma
P23, Moreover, the direct images 7.(Mp) and 7.(M]) are two distinct lines on V ~ P2.

Meanwhile, if M; is defined over k, then we obtain pi(S) = px(S) +6 = 7. Otherwise, we
obtain pg(S) = pr(S) +3 =4.

S is of d = 3 and of As-type: By [IR, p. 446], we can choose a morphism (E=21) such
that all (—2)-curves My, My, M3, M and M’ on §E correspond to mg,S, mgA, m275, m%z and
mgﬁ in I3, respectively. Then by using Lemma PZT4 there exist exactly three (—1)-curve E,

E’ and E” on §E corresponding to {12, eg and c¢g in I3, respectively. Hence, we obtain the
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following weighted dual graph:

Let 7 : S — V be the compositions of successive contractions of E + E’ + E”, that of the
image of M7, that of the image of Ms and finally that of the image of M3. By construction, 7
is defined over k and we see V ~ P2 by Lemma 22272, Moreover, the direct images 7. (M) and
7+(Ms) are two distinct lines on V' ~ P2. Meanwhile, since any (—2)-curve on §E is defined

over k, we obtain py(S) = pp(S) + 5 = 6.

S is of d =3 and of 2As + A;-type: By [I8, p. 446], we can choose a morphism (E=21)
such that all (—2)-curves My, M|, Ms, M} and M on §E correspond to m%g, m‘ig, mgﬁ, m275
and m}?273 in I3, respectively. Notice that M is defined over k. Then by using Lemma T4

there exist exactly two (—1)-curves Fy and Fy meeting M on §E corresponding to e3 and /4 5
in I3, respectively. Hence, we obtain the following weighted dual graph:

M{ My Ey M Es Mo Mé
O

(¢} (¢] L] o L] (¢]

Noticing that the union E; + E9 of (—1)-curves is disjoint, let 7 : S — V be the compositions
of successive contractions of this disjoint union, that of the images of M7 + Ms, and finally
that of the images of M| + MJj. By construction, 7 is defined over k and V is a k-form of
Pi, furthermore, we know V ~ IP’%. Indeed, since TE’*(M ) is an irreducible conic on V7 ~ IP’%
defined over k, there exists a general line defined over k on V5 >~ IP’%. Hence, V7 has a k-rational

point, which is the intersection point for two general lines on V7, so that V ~ IP’% by Lemma
223, Moreover, the direct image 7.(M) is an irreducible conic on V ~ P%. Meanwhile,

note that M is not defined over k. Indeed, otherwise, we know pg(S) — px(V) = 6. Thus,

pr(S) = pr(S) — 5 = pr(V) + 6 — 5 = 2, which contradicts the assumption pg(S) = 1. Hence,
we obtain pi(S) = pi(S) + 3 = 4.

S is of d = 3 and of Dy-type: By [IR, p. 446], we can choose a morphism (E=271) such
that all (—2)-curves My, Mo, M3 and M on §E correspond to m?g, mgv4, mgﬁ and m%7375 in
I3, respectively. Then by using Lemma T4 there exist exactly three (—1)-curves Ey, Fy and
E5 meeting at least one (—2)-curve on gg corresponding to es, e4 and eg in I3, respectively.

Hence, we obtain the following weighted dual graph:

FEq My

Let 7 : S — V be the compositions of successive contractions of E1 + Fo 4+ E3 and that of
the images of M; + Ms 4+ Ms. By construction, 7 is defined over k and we see V ~ IP’% by
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the similar argument to the case that S is of d = 6 and (3A41)<-type. Moreover, the direct
image 7,(M) is a line on V ~ IP’%. Meanwhile, M; is not defined over k. Indeed, otherwise,
since F is defined over k, by Lemma BE—28 the contraction 7’ : S — S of FE, over k provides
a Du Val del Pezzo surface of rank one of degree 4 such that its minimal resolution is S” and
of (As)>-type. However, this is a contradiction to Proposition B=271. Similarly, M and M3
are not defined over k. Hence, we obtain py(S) = pi(S) +2 = 3.

S is of d = 3 and of 2As-type: By [IR, p. 446], we can choose a morphism (Z=21) such
that all (—2)-curves My, My, M{ and M on :S’VE correspond to m(l),Q, mg’?), m275 and mg’6 in
I3, respectively. Then by using Lemma PZI4 there exist exactly one (—1)-curve E meeting
two (—2)-curves M; and M/ on §E corresponding to ¢ 4 in I3. Moreover, there exist exactly
three (—1)-curves Ey, E5 and E3 meeting only one (—2)-curve My on §E corresponding to es,
l12 and c3 in I3, respectively. Hence, we obtain the following weighted dual graph:

My Mo
O——O0
| T
E e Evo B2 B
[ ] [ [ ]
| T~
My M;

If there is no singular point on Si defined over k, then let 7 : S — V be the contraction
of E. By construction, 7 is defined over k£ and V is a weak del Pezzo surface of rank two and
(241)<-type, i.e., the minimal resolution of an Iskovskih surface (see [I5, p. 74]), by Theorem
333 combined with pg(S) = 3.

On the other hand, if there is a singular point on S;. defined over k, then each (—2)-curve
is defined over k. In particular, so is the union E+ F;+ Fso+ E3 of (—1)-curves. Let 7 : SV
be the compositions of successive contractions of F¥ + F1 + Ey + E3 and that of the image
of Mi. By construction, 7 is defined over k£ and we see that V =~ Fy by using Lemma =22
Moreover, the direct images 7.(MJ), 7.(M2) and 7.(M]) are the minimal section, a section
with self-intersection number 2 and a closed fiber of the structure morphism Fy — IP’}C over k,
respectively. Meanwhile, we obtain pk(g) = pp(S) +4 =5.

S is of d = 3 and of 4A;-type: By [I¥, p. 446], we can choose a morphism (E=2T) such
that all (—2)-curves My, My, M3 and My on S; correspond to mim, mi475, m%A,ﬁ and m§7576
in I3, respectively. Then by using Lemma P14 there exist exactly six (—1)-curves Ej 2, E 3,
Ey 4, Ey3, Ea 4 and Es4 meeting exactly two (—2)-curves on S% corresponding to ey, ..., e5
and eg in I3, respectively. Hence, we obtain the following weighted dual graph:

E34

14' E24 *Ei3

7

If there is no singular point on St defined over k, then let 7 : S — V be the contraction
of F1p2 + E13+ F14 + Ea3 + Es4 + E34. By construction, 7 is defined over k and V' is
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a k-form of IP’%, furthermore, we know V ~ P2, Indeed, since Trw(My + -+ 4+ My) is four
distinct lines on Vg ~ ]P’% defined over k, there exists a general line defined over k on Vi ~ IP’%.
Hence, Vi has a k-rational point, which is the intersection point for two general lines on
V%, so that V' ~ IP’% by Lemma PZ2Z2. Meanwhile, note that Mj,..., My lie in the same
Gal(k/k)-orbit. Indeed, otherwise, assume without loss of generality that M; + My is defined
over k. Since Ej and E34 are then defined over k, we know pe(S) = pe(V) > 3. Thus,

pe(S) = pr(S) —2 > pr(V) + 3 — 2 = 2, which contradicts the assumption pg(S) = 1. Hence,
we obtain pg(S) = pp(S) + 2 = 3.

On the other hand, if there is a singular point on Sz defined over k, assuming without loss
of generality that M, is defined over k, then let 7 : S — V be the compositions of successive
contractions of Ey 9 + F1 3+ F1 4 and that of the images of Ma + M3 + M. By construction,
7 is defined over k and we see V ~ ]P’z by the similar argument to the case that S is of
d =6 and (A1)<-type. Moreover, the direct image 7,(Mj) is an irreducible conic on V ~ P3.
Meanwhile, note that Ms is not defined over k. Indeed, otherwise, since Fq 3+ E1 4 is defined
over k, by Lemma EZZ8 the contraction 7’ : S = S of E1 3+ E1 4 over k provides a Du Val del
Pezzo surface of rank one of degree 5 such that its minimal resolution is S and of Aj-type.
However, this is a contradiction to Proposition EZ2Z1. Similarly, M3 and M, are not defined
over k. Hence, we obtain py(S) = pp(S) +2 = 3.

S is of d = 3 and of 3A;-type: By [IR, p. 446], we can choose a morphism (B—2)
such that all (—2)-curves M, M and M3 on §E correspond to m(l)z, mgA and mg,ﬁ in I3,
respectively. Then by using Lemma PZZT4 there exist exactly three (—1)-curves Ep, Eq3
and Ep3 meeting exactly two (—2)-curves on §E corresponding to f13, {15 and {35 in I3,
respectively. We note that there is no singular point on Sz defined over k. Otherwise, assume
without loss of generality that M; is defined over k. Then there exist exactly two (—1)-curves
meeting only one (—2)-curve M; on §E corresponding to es and co in I3. Hence, we obtain
the following weighted dual graph:

MQ E273 M3
O [ ] O

| |
ELQ [ ] o} [ ] E173

My

Letting E; be one of these (—1)-curves, by Lemma 28 the contraction 7/ : S — S of the
Gal(k/k)-orbit of Ey over k provides a Du Val del Pezzo surface of rank one of degree 4 or 5
such that its minimal resolution S’ is of (241)s-type or 2A;-type, respectively. However, this
is a contradiction to Proposition BE—2TI.

Hence, we obtain pp(S) = pp(S) +1 = 2. Let 7 : S — V be the contraction of Eis+
E1 3+ E>3. By construction, 7 is defined over k and V' is a smooth del Pezzo surface of degree
6 with pi(V) = 1.

S is of d = 3 and of Ao-type: By [IR, p. 446], we can choose a morphism (E=21)
such that all (—2)-curves M; and My on §E correspond to m(1),2 and m873 in I3, respectively.
Then by using Lemma PZT4 there exist exactly three (—1)-curves Ep, E] and E{ meeting M;
on §E corresponding to ¢1 4, 15 and {1 in I3, respectively. Moreover, there exist exactly

three (—1)-curves Ep, Ey and Ej meeting M; on S corresponding to e3, £12 and c3 in I3,
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respectively. Hence, we obtain the following weighted dual graph:

E1 [ ] [ ] E2
M M
\ 1 02/ . Eé

Ei ° o
1"
° E2

Ei’ o/

Let 7: S — V be the contraction of By + E} + E} 4+ E» + E} + EY. By construction, 7 is
defined over k and we see V =~ IP’% by Lemma ZZ2Z2. Meanwhile, if M; is defined over k, we

obtain pi(S) = pk(S) + 2 = 3. Otherwise, we obtain pk(g) =pp(S)+1=2.

S is of d = 3 and of Ay-type: By [I8, p. 446|, we can choose a morphism (=21 such
that the (—2)-curve M on 5% corresponds to m? in I3. Then by using Lemma ZZI4 there
exist exactly six (—1)-curves Ej, ..., Eg meeting M on 5% corresponding to ej,...,eq in I3,
respectively. Hence, we obtain the following weighted dual graph:

Eye *Ey
EQQ\]OW/QE5
Eg./ \.EG

Let 7: S — V be the contraction of Fy + - -+ + Eg. By construction, 7 is defined over k and
we see V ~ IP% by the similar argument to the case that S is of d = 3 and 24 + A;-type.
Moreover, the direct image 7,.(M) is an irreducible conic on V' ~ P?. Meanwhile, we obtain

pe(S) = pi(S) +1=2. B

Thus, for all cases, this completes the construction of the birational morphism 7:.5 =V
over k according to the type of S. By using this morphism 7, all Du Val del Pezzo surfaces
of rank one over k admitting a singular point defined over k can be summarized in Table BT
according to the type of S. Note that this table will play an important role in the proof of
Theorem =39 (1) and (2) in the next subsection. From now on, we shall present the notation
in Table EI. “pk(g )” means possible values of the Picard number of S. “Dual graph” means
the weighted dual graph of all (—2)-curves and (—1)-curves, which contracted by 7, on St.
By construction of 7, we see that the union of curves corresponding to this weighted dual
graph is defined over k, moreover, each curve on S corresponds to any vertex with no label
in this dual graph contracted by 7. Finally, n° is the number between 1° and 10° assigned by
the kind of V and the image via 7 of the union of all curves corresponding to this above dual
graph. More exactly:

o 1%V ~ ]P’z and the image via 7 of the curve corresponding to the vertex with label L
is a line.

e 2%V~ IP’% and the images via 7 of the curves corresponding to the vertices with labels
L1 and Ly are two distinct lines.

o 3% V> }P’i and the image via 7 of the curves corresponding to the vertex with label @)
is an irreducible conic.

e 4°: V is a k-form of IP% X ]P% and of rank one, and the images via 7 of the union of two
curves corresponding to the vertices with labels F} and F5 are a union of k-forms of two
irreducible curves of types (1,0) and (0, 1), respectively.

e 5% V is a k-form of IP% X IP% and of rank one, and the image via 7 of the curve corre-
sponding to the vertex with label C' is a k-form of an irreducible curves of types (1,1).
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e 6°: V ~ Fy and the images via 7 of the curves corresponding to the vertices with labels
M and F are the minimal section and a closed fiber of the structure morphism Fo — IP’/,lC
over k, respectively.

e 7°: V ~ Fy and the images via 7 of the curves corresponding to the vertices with labels
M, F and C are the minimal section, a closed fiber and a section with self-intersection
number 2 of the structure morphism Fo — IP’,lC over k, respectively.

e 8% V is a k-form of Fy, and the images via 7 of the curves corresponding to the
vertices with labels M and C are k-forms of the minimal section and a section with
self-intersection number 2 of the structure morphism Fo — IP%, respectively.

e 9° V is a k-form of o, and S=V.

e 10°: V is a k-form of Fy, and the images via 7 of the curves corresponding to the
vertices with labels M and F; are k-forms of the minimal section and a closed fiber of the
structure morphism Fy — IP%, respectively, where the union of two curves corresponding
to the vertex with label F; and F5 is defined over k.

4.2.2 Proof of Theorems IT-39 (1) and (2)

Let the notation be the same as at beginning of Chapter B and assume further that S is of
rank one and d > 3. In this subsection, we shall show Theorems =39 (1) and (2).

At first, we shall show the “only if” part in Theorem =3 (2). Assume that d is equal to
3 or 4 and S contains a cylinder U ~ A}C x Z. The closures in S of fibers of the projection
prz U ~ Al x Z — Z yields a linear system, say .Z, on S. By Lemma 2558, Bs(.#) consists
of only one singular point on S, which is k-rational, say p. In order to prove the “only if”
part in Theorem =39 (2), we shall show that p € S is not of type A" over k as follows:

Lemma 4.2.7. Let the notation and the assumptions be the same as above. If the singular
point p € St is of type Ay, then p € S is of type Af over k.

Proof. Since Uy is smooth, U= oY (U) ~ U is a cylinder on S. The closures in S of fibers
of the projection pry : U ~ A}C X Z — Z yields a linear system, say .,27/, on S. Since p € Sy
is of type A1, the exceptional locus over k of the minimal resolution at p consists of only one
(—2)-curve, say M. Notice that M is defined over k. By construction of 2. we see that a
general member of .:?% does not meet any (—2)-curve other than M on §E Hence, we can

write gw@ a(—Kg) —bM for some a,b € Q. Noting that the degree d of S is equal to 3 or 4,

we have (£)? = da® — 2b% # 0 because of a,b € Q. Thus, Bs(.£) # (. In particular, Bs(.Z)
consists of one point, which is k-rational and lies on M. Thus, we obtain M (k) # (), which
implies that p € S is not of type A over k. |

By Lemma B=277, this completes the proof of the “only if” part in Theorem =3 (2).

Next, we show Theorem =33 and the “if” part in Theorem 3. Assume that S has a
singular point, which is k-rational, such that it is not of type A over k if d is equal to 3 or
4. Let 7: S — V be the birational morphism over k as in Subsection B3 over k according
to the type of S. Let D be the union of all (—2)-curves on gg and let E be the reduced
exceptional divisor of 7, where the support Supp(D + E) corresponds to the dual graph as in
Table B according to the type of S. We shall construct a cylinder UonS according to the
number of n° in Table E1:
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Table 4.1: Types of S in Theorems =39 (1) and (2)

Type Type
~ n° Dual graph d ~ n° Dual graph
pi(S) Pr(S)
A A A o—o—e
1 e ]\04 6 2+ A1 10 |
2 4 oL
°
42 6° o—o 6 (A1)< 1° :;o L
3 [ ] F M 2 [ ]
Ay 10 o—o—c‘)—o 4 Ds 10 o—o—c‘)—o—o
) oL 6 o [,
As + 24, 10° “3 FL M B (" 4 Dy 6° *To< ., .
4 or 6 e—0—0—0—e 4 o—o/F M
As + Ay 90 0—0—0—0—0/. 4 Ag + 24, 40 0O—e—0—0—@—0
5 Ly Ly ® 3 f1 B
L e—_0_e— . ° °
44 8° ]\04 e 2, *=° |4 (4s)< 10° : 0—0—0 i
4orH Jor4d * N M I, ®
3A; 50 0—0—8—0—0 4 Ay 40 ° °o—_o *
3 2 * Fy Fy, ®
° °
@A)< | g o “No7 A *~or®
3 M * (O e 2 e (e
B, o 0—0—0—0—0—0 A+ A o 0O—0—0—0—0—e
0 1 | 3T 2o | Ly |
7 o[, ° 7 ° o
34 90 O*O*T Tio*o 3 As 20 0—0—0—0—0 *
4dor7 Llo*OL2 6 L1 ‘. LQ b
o—o o—o0 e —o0
2A2+A1 30 ‘ Q ‘ 3 D4 10 .fO*OL
4 e—0—e 3 e —o0
[ ] o —
24, 7° o—o—e—0—0Ze 3 44 3° o—:—oQ
5 M F C e 3 o—e
° °
4 2° e>o0—0Ze 3 A1 3° :>oi:
2 or 3 * I Ly ® 2 e (e
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n° = 1°: In this case, we see that V ~ IP% and the image of the vertex with a label written
L via 7 is a line on V ~ P2, say L. Put U := §\Supp(D + E). Then U ~ V\L ~ A2

n° = 2°: In this case, we see that V' ~ }P’i and the images of the vertices with labels written
L1 and Lo via 7 are distinct two lines on V' =~ IF’%, say L1 and Lo. Put U:= g\Supp(D +E).
Then U ~ V(L1 U Lg) ~ A} x Ai’k (resp. U~ V(L1 U Lg) ~ A} x C(y) if Ly and Ly are
defined over k (resp. L; and Ly are exchanged by the Gal(k/k)-action).

n° = 3°: In this case, we see that V =~ IP)% and the image of the vertex with a label
written () via 7 is an irreducible conic on V ~ IP’%, say . Notice that () has a k-rational
point. Indeed, the image via o of 7,1(Q) is a singular point on S of type A over k by the
assumption. Let L be a line on V' such that L and () tangentially meet at a general k-rational
point. Noting that 7, 1(L) is defined over k, put U := S\Supp(D + E + 77 *(L)). Then
U~V\(QUL) ~ AL x Al

n° = 4°: In this case, V is a k-form of IP% X ]P% and of rank one. Moreover, the images
of the vertices with labels written Iy and F» via 73 are k-forms of irreducible curves of types
(1,0) and (0,1) on V4 ~ IP% X IP%, say F1 and Fb, respectively. Noting that the union F} + F»
is defined over k, put U := S\Supp(D + E). Then U ~ V\(F, U F) ~ A2,

n° = 5°: In this case, V is a k-form of IP% X ]P% and of rank one. Moreover, the image
of the vertex with a label written C' via 75 is a k-form of irreducible curve of type (1,1) on
Vi~ IP% X IP%, say C. Notice that C has a k-rational point. Indeed, the image via o of 7, 1(C)
is a singular point on S of type Af over k by the assumption. By Lemma 2571, V' contains a
cylinder such that this boundary includes C. Hence, we take the pullback U of this cylinder
by 7. Then Uis a cylinder on S such that this boundary includes Supp(D + E).

n° = 6°: In this case, we see that V' ~ s and the images of the vertices with labels
written M and F via 7 are the minimal section and a closed fiber of the structure morphism
Fy — ]P’/,l€ over k, say M and F, respectively. Noting that the union M + F' is defined over k,
put U := S\Supp(D + E). Then U ~ V\(M U F) ~ AZ.

n° = 7°: In this case, we see that V' ~ [F5 and the images of the vertices with labels written
M, F and C via 7 are the minimal section, a closed fiber and a section with self-intersection
number 2 of the structure morphism Fy — P} over k, say M, F and C, respectively. Noting
that the union M + F + C is defined over k, put U := S\Supp(D + E). Then U ~ V\(M U
FUC)~A}l x Al, by Lemma 2ZZ52.

n° = 8°: In this case, V is a k-form of Fo. Moreover, the images of the vertices with
labels written M and C' via 7 are the minimal section and a section with self-intersection
number 2 of the structure morphism Fo — IP’}g over k, say M and C, respectively. Notice
that either M or C has a k-rational point. Indeed, the images via o of 7, 1(M) and 7, (C)
are singular points on Sg of type A;. By assumption, one of these is of type AT over k.
Hence, we obtain V ~ Fy by using Lemma X2, Let F' be a general fiber of the structure
morphlsm Fo — IP’l defined over k. Notlng that the union M + F' + C' is defined over k, put

= S\Supp(D + E + 7, Y(F)). Then U ~ V\(M UF U C) ~ ~ A} x A17 by Lemma 2572

n° = 9°: In this case, V = S and V is a k-form of Fy. Hence, § contains a cylinder U , SO
that U N Supp(M) = () (see Lemma B34).

n° = 10°: In this case, V is a k-form of Fo. Moreover, the images of the vertices with labels
written M and F; via 7 are k-forms of the minimal section and a closed fiber of the structure
morphism Fy — PL say M and Fj, respectively. Then V contains a cylinder such that this

boundary includes M, F} and F» (see Lemma B=34). Hence, we take the pullback U of this
cylinder by 7. Then U is a cylinder on S such that this boundary includes Supp(D + E).
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For all cases, we obtain a cylinder U on S such that this boundary includes Supp(D).

Therefore, S contains the cylinder o(U) ~ U. This completes the proof of Theorem I3 (1)
and the “if” part in Theorem 39 (2).

Remark 4.2.8. We shall state some remarks on the above argument.

(1) In these cases n° = 1°, 4° or 6°, then S always contains the affine plane Az (compare
the fact that the Du Val del Pezzo surface of rank one over C with pc(S) = 1 and of
degree d > 3 contains C? if and only if the pair of the degree and the singularities of
this surface is (8, A1), (6, A2 + A1), (5, A4), (4,Ds) or (3, Es), see [66]).

(2) In these cases n° = 9° or 10°, then S does not have to admit any k-rational point.
However, S always contains a cylinder, say U =~ A}C x Z (compare the fact that any
smooth del Pezzo surface over k with pi(S) = 1 containing a cylinder admits k-rational
points, see Theorem I™24). This implies that Z is not necessarily a rational curve over
k. Moreover, we also know that V' is a trivial k-form of Fy if and only if S; has a
k-rational point.

4.3 Properties of dvisors on weak del Pezzo surfaces

Let the notation be the same as at beginning of Chapter A. In this section, we shall study
some Q-divisors generated by (—2)-curves on S;. As an application, we explicitly construct the
union of (—1)-curves on :S’VE. Furthermore, we determine the condition that each irreducible
component of this union is defined over k. This argument will play an important role in
determining the existence of Du Val del Pezzo surfaces of rank one with degree < 2 in Section

A3,

4.3.1 Q-divisors composed of (—2)-curves

In this subsection, let 2 be a singular point of type A,, D5 or Eg on Sz, which is k-rational,
let My,..., M, be all irreducible components of the exceptional set on gg by the minimal
resolution at x on Sz. Assume that the dual graph of My,..., M, is the following graph
according to the singularity type of x on Sz:

e Type A,:
My My M, (4.3.1)
o @] [¢]
e Type Ds:
M e S~ Mz My Ms
/o o o (4.3.2)
M2 o
o Type Ej:
My Ms
o (@]
NI M (4.3.3)
Mo My _—
O [¢]




Table 4.2: The value of (M)? in Lemma B3

(o | L[ 2 | 3 [ 4[5 6] 7 [8]

1
o
=
T S I I
53 ) 5} 5
3 R I I
6 3 2 3 6
T (
g ?7> 175 L 175 ;) 7
AN e e A M A e A R B S R
8 Il-gl-9 1 2]-F|-5]-2]-9]|-9

Let M be a Q-divisor on §Ev which is generated by M, ..., M,, so that:

M = Zn: b; M;
j=1

for some bq,...,b, € Q.

Lemma 4.3.1. With the notation as above, assume further that z is of type A, on Sz. Let
Jjo be an integer with 1 < jo < n. If (=M - M;) = §j, ;, then we have:

M:n_j0+1jZOjM'+ Jo g]M
n+l = J n+l o i+l
and:
(”—jo*l-l)jo.

(M)QZ_ n+1

Proof. For all cases, we can easily show because it is enough to directly compute some inter-
section numbers. a

In Lemma BZ3T0, if (—M - M;) = §j, j, then the value of (M)? is explicitly summarized in
Table B2 depending on the values of n and jg.

Lemma 4.3.2. With the notation as above, assume further that x is of type D5 on Sz. Then
we have the following assertions:

(1) If (=M - M;) = 61 j + 62 j, then we have:

M:2M1+2M2+3M3+2M4+M5

and (M)? = —4.
(2) If (=M - M;) = 61, then we have:
) 3 3 1
M=-M +-Ms+ -M3+ My + =M
v + 12 + 5 M3 + My + 5 M5

and (M)? = —

I
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(3) If (=M - M;) = 63, then we have:

3 3
M:§M1+§M2+3M3—|—2M4—|—M5

and (M)% = —3.
(4) If (=M - M;) = 04,5, then we have:
M = My + My + 2Ms + 2M, + Ms
and (M)? = —2.
(5) If (=M - Mj) = 05, then we have:

1 1
M=§M1+§M2+M3+M4+M5

and (M)? = —1.

Proof. For all cases, we can easily show because it is enough to directly compute some inter-
section numbers. O

Lemma 4.3.3. With the notation as above, assume further that z is of type Eg on Sz. Then
we have the following assertions:

(1) If (=M - M;) = 61 j + 62 j, then we have:
M:2M1+2M2+3M3+3M4+4M5+M6

and (M)? = —4.
(2) If (*M . MJ) = (5373‘ + 547]', then we have:

M =3M; + 3Ms + 6M3 + 6My + 8M5 + 4M6
and (M)? = —12.

(3) If (=M - M;) = 01, then we have:

4 2 5 4
M= -M; + =My + =Ms + =My + 2Ms + Mg

3 3 3 3
4
and (M)2 = -3
(4) If (=M - M;) = 03, then we have:
5 4 10 8
M = ng —+ gMQ =+ §M3 —+ §M4 —+ 4M5 =+ 2M6

and (M)? = -1,

(5) If (=M - Mj) = 05, then we have:
M = 2M1 -+ 2M2 —|—4M3 + 4M4 + 6M5 + 3M6

and (M)? = —6.
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(6) If (=M - M;) = b6, then we have:
M:M1+M2+2M3+2M4+3M5+2M6
and (M)? = —2.

Proof. For all cases, we can easily show because it is enough to directly compute some inter-
section numbers. a

Lemma 4.3.4. With the notation as above, assume further that (—K gf)Q = 1 and one of the
k
following conditions holds:
(1) The dual graph of Mj, ..., M, is the same as in (B230) and M = >, Mj;
(2) n = 5, the dual graph of M, ..., M5 is the same as in (B232) and M = M; + My +
2Ms3 4+ 2My + Ms;
(3) m = 6, the dual graph of M, ..., Mg is the same as in (333) and M = My + My +
2Ms3 + 2My + 3M5 + 2Ms.

Then there exists a (—1)-curve E on §E such that £ ~ —Kgz — M and E is defined over k.
k

Proof. Noticing the assumption of M, we see (M)? = —2 by the straightforward calculation.
In particular, we obtain (—Kg — M)? = —1 and (—Kg — M - —Kg) = 1. Moreover, for
each case, we obtain (—Kg— M - M;) > 0 for any 7. Indeed, in the case of (1) we have
(=Kg—M-Mj) = §;1+0;, (cf. Lemma EZ3), in the case of (2) we have (—~Kg—M-M;) = §;4
(cf. Lemma EZ32 (4)), and in the case of (3) we have (—~Kg — M - M;) = d;6 (cf. Lemma
B33 (6)). Meanwhile, (~Kg — M - M') = 0 for every (—2)-curve M’ on §E other than the
irreducible components of M. Hence, by Lemma ZT4, there exists a (—1)-curve E on §E

such that E ~ —Kg — M. Notice that F is included in Pic(gg)Gal(E/k) because so are —Kg
and M. Thus, F is defined over k. This completes the proof. O

Lemma 4.3.5. With the notation as above, assume further that b1,...,b, € Z. Then the
following assertions hold:

(1) (M)? is a non-positive even integer.

(2) If z is of type A, on S and b; > 1 for any j, then (M)? < —2, moreover, (M)? = -2 if
and only if bj =1 for any j =1,...,n.

(3) If x is of type A, on S with n > 3, by,b, > 1 and b; > 2 for any j = 2,...,n — 1,
then (M)? < —4, moreover, (M)? = —4 if and only if b;,b, = 1 and b; = 2 for any
j=2...,n—1.

(4) If = is of type A, on S with n > 5, bi,b, > 1, b2,bp,—1 > 2 and b; > 3 for any
j =3,...,n—2, then (M)? < —6, moreover, (M)? = —6 if and only if by,b, = 1
ba,bp—1 =2 and b; =3 for any j =3,...,n — 2.

(5) If x is of type D5 on S and by, ba, by > 2, b3 > 3 and bs > 1, then (M)? < —4, moreover,
(M)? = —4 if and only if by, by, by = 2, b3 = 3 and b5 = 1.

(6) If = is of type Eg on S and by,be,bs > 2, b3,by > 3 and bs > 4, then (M)? < —4,
moreover, (M)? = —4 if and only if by, by, bg = 2, b3, by = 3 and b5 = 4.

)

Proof. In (1), since any irreducible component of M is a (—2)-curve and any coefficient of M
is an integer, it is clearly seen that (M)? is an even number. We shall show that (M)? < 0
according to the singularity type of z on Sz:
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o Type A, : we have:

n—1
(M)? == +b7) = > (b = bjy1)>. (4.3.4)
1

<.
Il

o Type Ds: we have:

1 1
(M)? = —5(261 — b3)% — 5(21)2 —b3)? — (bg — byg)? — (by — b5)* — 2. (4.3.5)
o Type Eg: we have:
2 1 2 1 2
. ) ) | (43.6)
— 6(3b3 — 2b5)% — 5(3ba— 2b5)? — 6(265 — 3b)% — 553.

Therefore, for all cases, we see that (M)? < 0. This completes the proof of (1).

In (2), (3) and (4), it is easy to show by (E=34).

In (5), if b5 > 1 then it is easy to see (M)? < —4 by assumption and (E=3H). Hence, we
assume bs = 1 in what follows. Now, if by > 2, then we also see (M)? < —4 by an argument
similar to the above. Hence, we also assume b4 = 2 in what follows. By sequentially replacing
b4 in the argument by bs, by and b1, we obtain the assertion.

In (6), it can be shown by an argument similar to (5) using (E=30) instead of (I=3H). O

4.3.2 Construction of (—1)-curves on weak del Pezzo surface

In this subsection, let d be the degree of S , let @1,..., 2 be all singular points on Sz let
M;q,. .., M; ) be all irreducible components of the exceptional set oW xy) fori=1,...,r"
Here, we assume that x1 € Sy is of type A, (1) with n(1) > 2 (resp. either ¥y € S7 is of type
Ap1y with n(1) > 4 or of type D5 or FEg) if d = 2 (resp. d = 1). Moreover, letting r be a
positive integer with r < r/, we also assume that the dual graph of > ;_; Z?g M, ; is one of
the following graphs (E=377), (A=331) and (E=39):

M1 Mo M; i)
o o o fori=1,...,r (4.3.7)
M
b S Mz Mg My Moy Map M,
o o o o o cen o (4.3.8)
Ml,g o
My, M3
O ——O0
S DMy Mg Moy Map Mo, (4.3.9)
(¢] @) o o) e o
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Table 4.3: Divisor D in Subsection B=32

’ Name ‘ d ‘ r H Irreducible decomposition of D
() |2]2] (—Kg) -2, 2N My
() | 2|1 (“Kg)+ (s o+, o) - 25270 My
(c) 13 2(_K~z) Zi—l Zj—l
(@) [ 12| 2-Kz)+(Mii+ M )—22 W — 30 My
() | 1] 1] 2(=Kg)+ My + M) +2(M1 2+ M1 n-1) =330 My
() 112 2(_KSE) (2My11 +2My 9+ 3My 3+ 2My 4 + My 5) — Z;‘ 1 Mo ;
(g) |1]2 2(—KSE (2Mi1 + 2Mup + 3My g+ 3Mi g +4AMis + Mig) — >0 Ma;

Here, in (B2377), we shall assume (d,r) = (2,2),(2,1),(1,3),(1,2) or (1,1). Furthermore, in
(E3R) (resp. (E239)), we immediately obtain n(1) =5 (resp. n(1) = 6) by the configuration,
moreover, we shall assume (d,r) = (1,2) and put n(2) := n.

Let D be the divisor on §E given by one of the lists in Table B=3 according to the above
cases of the dual graph and the pair (d,r). Here, when D is (a), (b), (c), (d) or (e) in Table

A3, the dual graph of Y, Z M, ; is as in (E2370). Moreover, when D is (f) and (g) in

Table B3, the dual graph of Y2, Z n® 1 M; ; is as in (A23R) and (E239), respectively. On the
other hand, we assume n(1) > 4 (resp n(1) > 6) if the case of D is either (b) or (d) (resp.

(e))-

For all cases, we see (D)? = —2 and (D - —Kg ) = 2 by construction, moreover, we have
k

the value of (D - M, ;), which is the following according to the cases:
(a): (D M) =061+ 0jnu fori=1,2.

(b): (DM ;) =6j2+6n1)-1-

(¢): (D~ M;j) =641+ 60 fori=1,2,3.

(d): (D Mij) = 61852 4 0jn1)—1) + 6i2(85,1 + 8;n(2)) for i =1,2.
(e): (D~ M;;) =063+ 6n1)—2

(£): (D-M;;)=06;1(0;1 +d;2) + 6i2(8;1 + 0jn) for i =1,2.

(g): (D . Mi,j) = 52‘,1((5]‘71 + (5j72) + (51‘72(5]'71 + 5]‘771) for ¢ = 1,2.

The purpose of this subsection is to prove Proposition BZ310. For the following two lemmas,
we only treat the case (a) since other cases can be shown by a similar argument.

Lemma 4.3.6. dim |D| > 0.

Proof. By the Riemann-Roch theorem and (D - D — ng) = 0, we have X(gp ﬁgz(D)) =
X (5%, ﬁ%). Moreover, by the Serre duality theorem combined with (K 5~ DM ;) =
~1 < 0, we have h%(Sg, 05 (D)) = hO(S, 05 (Kg_— D)) = 0. Thus, we have dim |D| =
ho(gg, ﬁgz(D)) -1> X(§E7 ﬁgz(D)) — 1. On the other hand, it is known that :S”VE is a rational
surface by Lemma 213, we see x (5%, O %) = 1. Therefore, we have dim |D| > 0. O
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By Lemma B=34, we can write D ~ D1+ Dy, whose D1 and D5 are effective divisors on :S’VE,

such that any irreducible component C (resp. C2) on D; (resp. Do) satisfies (C; - —K gf) >0
k

(resp. (C2-—Kg ) = 0). Hence, (D1 -—Kg ) = 2 because of (D - —Kg ) = 2. Meanwhile,

k k % _

note that Do is an effective divisor, which consists of (—2)-curves on St, since Sy is a weak

del Pezzo surface.

Lemma 4.3.7. (D1)? < 2.

Proof. By D1 ~ D — Do, we can write Dj ~ (_K%) - Zl 1 Z b i,j M ; — M', where each
bi; is an integer, and M is an effective divisor consisting of (—2)-curves {M; ;}, i<y, 1<j<n(i)-
By D2 ~ D — Dy, we then have Dy = 32| S")(b; ; — 1)M; j + M. Since D is effective, we
thus see b;; > 1 for i = 1,2 and j = 1,...,n(i). Thus, we obtain (D1)? <2+2.(-2) = -2
by Lemma B33 (2). O

Remark 4.3.8. The proof of Lemma B=371 uses Lemma B33 (2) since D is as in (a). On the
other hand, if D is as in (b) (resp. (d), (e), (f), (g)), we can show Lemma E=371 by using
Lemma B=33 (3) (resp. both (2) and (3), (4), both (2) and (5), both (2) and (6)) instead of
Lemma AZ33 (2).

Lemma 4.3.9. We shall consider the following formula:
1 T
= - M;)? 4.3.1
it L (43.10)

where each M; is an effective Q-divisor generated by M; 1,. .., M; ;) such that Z;Li?(—MZ .
M; ;) = 1. Then we have:

o If (d,r) = (2, 2) and the dual graph of >\, Z M; j is as in (B2377), then {(M)?, (M2)?} =

—2, -2}, {-2,-3} or {—1,—3}, so that {n() n(2)} = {5,2}, {3,3} or {3,1}, respec-

tively.

o If (d,r) = (2, 1) and the dual graph of Y, Z M; j is as in (B370), then (M;)? = —3,
so that n(1) =

o If (d,r) = (1, 3) and the dual graph of 3 ;| Z M; j is as in (B2377), then {(M)?, (M2)?,

{=% —3% 3} so that {n(1),n(2), n(3)} = (5.2 1}

(Ms)?} =

o If (d r) = (1, 2) and the dual graph of Zl 1 Z M; j is as in (B2377), then {(M)?, (M2)*} =

(=3, —sh {5 —-3h{-3, —3tor {-5. -3}, Sothat{n( ),n(2)} = {71}, {5,2}, {5, 1}

or {4 4}, respectively.

e If (d,r) = (1,1) and the dual graph of >, z”(z M is as in (B50), then (My)? = —2,
so that n(1) = 7.

e If (d,r) = (1,2) and the dual graph of >, Z M; ; is as in (238), then (M1)?, (M>)?)
(_37_%) or (—1,—1), so that n(2) = 3.

e If (d,r) = (1,2) and the dual graph of 3 7, Z M, j is as in (B239), then ((M7)?, (M2)?)
(—%,—2), so that n(2) = 2.

Proof. Notice that the assmption Z?S%(—Mz - M; ;) = 1 implies that there uniquely exists jg
such that (—M;,-M; ;) = 6;;,. Hence, for all cases it can be easily shown by using Lemmas
A3, 32 and B-33 (see also Table B72), where we note n(1) > 2 (resp. n(1) > 4) if d = 2
(resp. d =1). O
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Now, we shall consider the following two conditions () and (f) on D:

(1): There exist two (—1)-curves E; and E on §E satisfying D; = Ey + E3 and (Fy - E3) = 0.
(t): There exists a (—1)-curve E on §E satisfying D, = 2E.

Then we obtain the following proposition, which will play an important role in Section E=3:

Proposition 4.3.10. With the notation as above, the following assertions hold:
(1) D satisfies either condition (1) or ():
(2) If D satisfies the condition (1), then we have D ~ D;.
(3) We write D; ~ %(—Kgg) - Z:/:1 Z?g b; ;M; ;, where each b; ; is a non-negative integer.
Then:
e For any ¢ <, b; ; # 0 for some j € {1,...,n(i)}.
o Bachi=1,...,r", if b; # 0 for some j € {1,...,n(i)}, then >/} (E - M;;) = 1.
(4) If D is of the case (f) or (g), then D satisfies the condition (7).
(5) Assume that D satisfies (1), and write E ~q é(—KgE) - Z:’:l M;, where M; is an

effective Q-divisor consisting of M; 1, ..., M; ;). Letting s be the number of Q-divisors
M; as M; # 0, then s < 2. Hence, if D is of the case (c), then D satisfies the condition

().

(6) Assume that D satisfies the condition (). If any irreducible component E of D; is
contained in (@[—ng] (@z 1 @n(z [M”D, then each n(7) is one of the following
according to the case of D:

), then {n(1),n(2
e In the case of (b), then n(1) = 7.

e In the case of (c), then n( ) =5 and {n(2),n ( )} ={2,1}.

e In the case of (d), then (n(1),n(2 ) (7,1), (5,2) or (4,4).

e In the case of (e), then n(1) = 8.

(f), then n(2) = 3 (it is clear that n(1) = 5).

o In the case of (g), then n(2) = 2 (it is clear that n(1) = 6)

(7) Assume that D satisfies the condition (). If the case of D is (a) or (d), i.e., r = 2, then
the irreducible component E of D; is contained in Q[— Sk] S5 (@Z 1 @j 1 @[ ])
and each n(7) is as follows according to the case of D:

e In the case of (a), then (n(1),n(2)) = (3,1).
e In the case of (d), then (n(1),n(2)) = (5,1).

(8) Assume that D satisfies the condition (1). If the case of D is (b) or (e), i.e, r = 1, and
the irreducible component E of D; is contained in Q[—K §g] P (@7&) Q[Ml,j]>a then
each n(i) is as follows according to the case of D:

e In the case of (b), then n(1) = 5.
e In the case of (e), then n(1) = 7.

)} ={5,2} or {3,3}.

e In the case of (a

~—

);
);

e In the case of (f
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Proof. In (1), note that D; consists of at most two irreducible components by the construction
of D1 combined with (D - —K %) = 2. In the case that D consists of exactly one irreducible
component, say E. By Lemma B=377, we see (E)? < 0. Since (E - _K%) > 0 and §E is a
weak del Pezzo surface, we know that E is a (—1)-curve. In particular, we obtain Dy = 2F
by virtue of (D; - _Ké}) = 2. Namely, D satisfies the condition (f). In the case that D
consists of exactly two irreducible components, say E; and Fy. Then (E; - —K %) =1 and
D1 = Ej + E», so that we have (D1)? = (E1)? + (E2)? + 2(E; - Es). By the above similar
argument, Fy and Fy are (—1)-curves, in particular, we obtain (E; - F3) = 0 by Lemma B=372.
Namely, D satisfies the condition ().

In (2), assuming that D satisfies the condition (f), we have (D1)? = —2. Hence, we see
that this assertion follows from Lemma B33 according to the case of D (cf. Remark B=3R).

In (3), this proof is a bit long and is needed a technical argument. Hence, we will present
this proof in the next Subsection EZ323.

In what follows, we present the proof under the assumption that (3) is valid.

In (4), we only treat the case where D is of (f), the other cases are similar and left to the
reader. Suppose on the contrary that D satisfies the condition (1). In other words, there exists
a (—1)-curve E on 5”% such that Dy = 2E. Then by (3) there uniquely exists j' € {1,...,5}
and j” € {1,...,n(2)} such that (E-M, ;) = 0, ;s and (E- My ;) = §; j, respectively. Since D;
is a Z-divisor, j' # 1,2 by Lemma B=32. (Note that we shall use Lemma =323, when we treat
the case (g) instead of the case (f). ) On the other hand, we write E ~q (—K%) - Z:/:l M;,
where M; is an effective Q-divisor consisting of M 1,..., M; ;). Then (M;)? < 0 by using
Lemma E=33 (1), moreover, (M;)? < —2 and (M)? < 0 by Lemmas EZ31 and E32. Hence,
we have —1 = (F)? < 1+ (—2) = —1, which is absurd.

In (5), by the assumption of E, we have:

-4:(@2:;+§]MN (4.3.11)
=1

Here, if M; # 0, we see (M;)> < —3 by (3) and Lemmas B30 I-32 and B233 (see also Table
). Furthermore, (Mp)? < —2 by virtue of n(1) > 1. Hence, we have:
1 & 12 1
= <= - —(s—1)- = 4.3.12
Y MP S s 1) g (1.312)

Two formulas (E=311) and (E312) imply s < 2 + 2. Since s is an integer, we thus obtain
s <2and s < 3ifd =2 and d = 1, respectively. In what follows, we consider the case
d = 1 and suppose s = 3. Then we may assume M; # 0 for ¢ = 1,2,3. Notice that each
singularity on Sz corresponding to 2?2 M; ; is of type Ay for i = 1,2,3 by virtue of
(1) and (4), moreover, note n(1) > 4. By looking for the triplet {(M;)?, (Ms)?, (M3)?} with
(M1)*+(Ma2)?+(M3)? = —2 in Table A3, the triplet is only {—2, —2, —3}, moreover, n(1) =5
and {n(2),n(3)} = {2,1}. Hence, we may assume:

6 — 23— 1
Iy > 2 My — M,
=~ 6 1,9 J:Zl 3 2,5 2 3,1

NE

Er~g(—Kg)—

k
However, this contradicts that Dy = 2F is a Z-divisor.
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In (6), assume that D satisfies the condition () and E € @[—ng]@ (@;7:1 @?g @[M”D
Hence, we can write E ~q %(—K%) — >i_y M; by noticing (E - _K%) = 1, where M, is an
effective Q-divisor generated by M; 1, ..., M; ;). By (E)? = —1, we then have the formula
(E231m). We shall look for the combination of the values of (M), ..., (M,)? such that the
equality (E2310) holds according to each case. As an example, we will explain the case of
(a). Note that the equality (Z=310) implies (M;)? + (M2)? = —3 by d = 2 and r = 2. Since
(D - M; ;) = 8j1 + 6 ng), we may assume that (Ey - M; ;) = §;1 for i = 1,2 by virtue of (2)
and (3). By using Lemma =39 and looking at the row of jo = 1 in Table B2, we obtain
{(Mq)?, (M2)?} = {—2,—2} or {—2,—32}. This implies that {n(1),n(2)} = {5,2} or {3,3}.
The other cases are left to the reader because these can be shown by a similar argument
above.

In (7), assume that D satisfies the condition (), in other words, there exists a (—1)-
curve E on §E such that D; = 2E. Then E € Q[—Kgg] @ (@321 @72 Q[M”D by virtue
of (3) and (5). In particular, we write E ~q (—ng) - 23:1 M;, where M; is an effective
Q-divisor generated by M; 1, ..., M;,;). Hence, we then have the formula (E=3T0) as 7 = 2.
We shall look for the combination of the values of (M;)? and (Ms)? such that the equality
(3310) holds and 2E ~ D — Dy according to each case. As an example, we will explain
the case of (a). Note that the equality (E=3T0) implies (M7)? + (M2)? = —2 by d = 2
and 7 = 2. By Lemma B39, {(M1)?, (Ms)?} = {-2,-2}, {-2,-3} or {—3,—1}, so that
{n(1),n(2)} = {5,2}, {3,3} or {3,1}. However, we note {n(1),n(2)} # {5,2}. Indeed,
otherwise, by Lemma B=3 (see also Table B2), we see that 2E is a Q-divisor but not a Z-
divisor (cf. the proof of (5)). This contradicts that 2E = D; is a Z-divisor. By the similar
argument, we also see {n(1),n(2)} # {3,3}. Thus, we obtain {n(1),n(2)} = {3,1}. Namely,
E ~q %(—K%) — (M1 +2My 2+ M 3) — Ms ;. The other cases are left to the reader because
these can be shown by a similar argument above.

In (8), this proof can be shown by an argument similar to (7) and is left to the reader. O

Now, we shall present the following example about the application of Proposition BE=3T10:

Example 4.3.11. With the notation as above, assume further that d = 2 and S is of As+ As-
type. Let My1,..., M5, Ma; and My o be all (—2)-curves on S with the configuration as

in (B2377). Then we shall consider two divisors D% and D®) on S'/E given by:

5 2
D) = ~Kz =) M=) My
j=1 j=1
D(g) = —ng — M171 - 2(M1,2 + M173 + M174) — M175.

Notice that D% and D®) are divisors as in (a) and (b) in Table EZ3, respectively. Hence,
since DU?) satisfies the condition (1) by Proposition EZ30 (1),(2) and (7), there exist two
(—1)-curves E; and Ej5 on §E such that D15 ~ Ey 4 E5. Moreover, D®) satisfies the condition
either (1) or (f). However, D®) does not satisfy the condition (f). Indeed, otherwise, since
there exist two (—1)-curves Fy and E3 on §E such that D®) ~ Ey + Ej. Hence, we obtain
the compositions 7 : §E — V of successive contractions of Fs + Fy4, that of the images of
M 2 + My 4 and finally that of the images of M 1 + M 5 over k, so that the weighted dual
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graphs of Z?:1 My ; + Z?,:l My j» + Eq + Eo + Ey + E5 and its image via 7 are as follows:

Myy Mo Mz Mg Mgs (M1 3)

O (@] O O O

. B o . o / \
- " E E\ / Es)

M1 Mspo T*(MZI) (M2,2)

Then (—Ky)? = 8 and V contains two (—2)-curves 7(Ms1) and 7.(Ma2). This is a contra-
diction. Thus, D® satisfies the condition (1). In other words, there exists a (—1)-curve E3
on §E such that Dig) = 2F3. In particular, we know (Es3 - M; ;) = 01,03 ;. Since E; + E5 and
FE5 are defined over k, we see that §E contains a union defined over k corresponding to the
following weighted dual graph:

My Mys M3z My M;
O O O O

o

\
E\1° * E3 ® Es

M2,1 (¢] (¢] ﬁg,g

4.3.3 Proof of Proposition AZ3T10 (3)

In this subsection, we shall prove Proposition B=310 (3). With the notation as in Proposition
E3T0 (3), notice that £ is a (—1)-curve on Sy by Proposition E310 (1). Since Dy ~ D — Do,
we can write E ~g L(—K §E) — Z:;l M;, where each M; is an effective Q-divisor generated
by M1, ..., M;, ). In particular, we note M; # 0 for every i = 1,...,7r.

Lemma 4.3.12. Let DM and D® be two Q-divisors on §E generated by M;1,..., M; ).
If (DM . M; ;) = (D@ - M; ;) for any j = 1,...,n(i), then DU = D),

Proof. Tt is enough to show when we assume D) = 0. We shall write D(V) = Z;Lg b; j M; ;
for some b; ; € Q. By assumption, we have the following linear simultaneous equation:

(DW . M; 1) bi 0
: =4 : =1 : 1>
(DD - M; 1)) bi n(i) 0
where A is the intersection matrix with respect to M; 1, ..., M; (), i-e., A = ((M; ;-M; j1))1<j, jr<n(i)-
It is well known that intersection matrix is negative definite ([58]), so that b; ; = 0 for any
j=1,...,n(:¢). Namely, we obtain DM = . a

Lemma 4.3.13. With the notation as above, Z Z)(E M;;)<lfori=1,...,r

Proof. Let A; j be the Q-divisor generated by M 1, ..., M; ;) such that (A;; - M; ) = 0;
for j,j/ = 1,...,n(i) on S;. Note that such a Q-divisor A;; is uniquely exists by using
Lemmas B30, 32 and 22373, In particular any coefficient of A;; is less than or equal to

—5. Hence, we have (A;;-A; ) < —5 for any j,7' = 1,...,n(i), where the equal sign holds
if and only if n(i) = 1. On the other hand by Lemma ZEE:EZ we obtain:

M; = (M; - M; j)Aij = (E - M)A
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for any j by virtue of (E — M; - M; ;) = 0. Meanwhile, by using Lemma B33 (1), we note

(M;)? < 0 if M; # 0. Suppose that Zn z)(E M; ;) > 2. Notice (E - M;;) > 0 for any j. If
there exists jo such that (£ - M; j,) > 2 then we have:

—1=(E)> <=+ (E-M;)*(Aij)* <1-2=—1,

IS

furthermore, we see (E)? < —1 by virtue of n(i) > 2 or both n(i) = 1 and 7 > 1. This is
absurd. Otherwise, by hypothesis there exist two integers j; and jo such that (E - M; ;) =
(E - M;;,) = 1. By virtue of n(i) > 2, we have:

—1=(E)? < =+ (Dij1)* + (Dije)® +2(A, - Aijy) < 1— 3 5 1=-1

IS

which is absurd. O

Lemma 4.3.14. With the notatlon as above, assume further that D satisfies the condition
(). Fori=1,...,r thenz (E M; ;) > 1if M; # 0.

Proof. Suppose Z;LQ(E - M; ;) =0 for some ¢ € {1,...,7'}. Then we note (E - M; ;) = 0 for
any j = 1,...,n(i). Hence, we obtain M; = 0 by Lemma B=3T2. a

Proposition B30 (3) can be shown by using Lemmas B3T3 and B=3T4 as follows:

Proof of Proposition f=3-10 (3). The first assertion of Proposition B=310 (3) follows immedi-
ately from the beginning of Subsection B=373. Hence, we shall prove the second assertion of
this in what follows. In this proof, we will consider two cases separately:

In the case that D satisfies the condition (f). In other words, we can write D; = 2E.

Hence, we obtain Zn( )(E M;;)=1fori=1,...,r by Lemmas B3T3 and B-314
In the case that D satisfies the condition (1). In other words, there exists a (—1)-curve E’

on Sy such that D; = E+ E" and E # E'. Notice that Z"“ (£"-M;;) < 1 by Lemma I3 T3.
On the other hand, we see D ~ E + E’ by Proposition B=310 (2) and Zn(z (D - M; ;) =2.
Hence, we see E;LQ(E - M; ;) = Z?S%(E’ - M; ;) = 1. -

4.4 Proof of Theorem T-39 (3)

Let the notation be the same as at beginning of Chapter B and assume further that S is of
rank one and d < 2. In this section, we shall show Theorem =319 (3).

4.4.1 Base locus with respect to cylinder

In this subsection, assuming that S contains a cylinder, say U ~ A,lc X Z, where Z is a smooth
affine curve defined over k, the closures in S of fibers of the projection prz : U ~ Al x Z — Z
yields a linear system, say .2, on S. By Lemma 250 we see that Bs(.Z) consists of exactly
one k-rational point, say p, which is a singular point on Sz. Hence, £ is especially a linear

pencil on S. On the other hand, U := o~ 1(U) ~ U is a cylinder on S since Uy, is smooth. The
closures in S of fibers of the projection pry : U ~ A,lc X Z — Z yields a linear system, say .Z,
on S. The purpose of this subsection is to show the following proposition:
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Proposition 4.4.1. With the notation and the assumptions as above, assume further that
one of the following conditions holds:

(

1) d

2) d =1 and p is of type A,, on Si but not type A over k for somen=1,...,8.
k n

3)

(

(4) d =1 and p is of type EJ on St

=2 and p is of type A, on S but not type A, over k for some n =1,...,6.
d =1 and p is of type D; on Sz.

Then Bs(.%) consists of only one k-rational point. In particular, the singular point p € S is
not of type A} over k except for only one case (d,n) = (2,7).

In what follows, we shall prove Proposition BZ1. Let Mi,..., M, be all irreducible
components of the exceptional divisor of oz at p such that the dual graph of M, ..., M, is
that as in (E=3), (B232) or (E33) according to the singularity type of p on Sz. Now, the
following two lemmas hold:

Lemma 4.4.2. With the notation and the assumptions as above, assume further that p € Sg
is of type A,. Then we obtain the following assertion:
(1) If d = 2, then there exists a curve C' on §E such that C' ~ (=Kg ) — (M1 + -+ + My).
k
Hence, My +--- + M,, + C' is a cycle.

(2) If d =1 and n > 3, then there exists a curve C' on S such that C ~ 2(=Kg ) —2(M +
k
<o+ My) + (M1 + M,). Hence, My + .-+ M,_1 + C is a cycle.

Proof. In (1), we take the divisor D := (=Kg ) — (M1 +---+ M,) on 5”% By construction, we
k
have (D)? = 0 and (D-—Kg ) = 2. Hence, we see dim |D| > 1 by the Riemann-Roch theorem.
k

Thus, there exists a curve C on §E such that C ~ D. Namely, (C-M;) = (D-M;) =61+ n-
This completes the proof of (1).
In (2), it can be shown by the argument similar to (1). O

Lemma 4.4.3. With the notation and the assumptions as above, assume further that p € S;

is of type D5. Then there exists a curve C' on Si such that C ~ 2(—Kg ) — (2M; + 2M3 +
k

3Ms + 2My + Ms). Hence, M} + My + M3 + C' is a cycle.

Proof. This lemma can be shown by the argument similar to Lemma B2 O

Proof of Proposition fZ-l. Let L be a general member of #. Since Bs(Z) = {p}, we see that
L meets M; for some 1 < ¢ < n. By construction of .,EZ if I meets two distinct irreducible
components M; and M;, then Bs(.,é”v) = M; N M; # 0. In what follows, we thus assume that
L meets exactly one irreducible component, say M;,. Notice that M;, is defined over k. Let

a and b be two positive rational numbers such that da = (g —K3) and 2b = (g M;,).

Now, we notice that Bs(.Z) # () provided that (.£)? # 0. Hence, we shall show ()% # 0
according to the cases (1)—(4) in Proposition B2 in what follows:

In (1) or (2), by the configuration of a dual graph of M; + - -- + M,,, we see that n is odd
and ig is equal to m, where m := [§] for simplicity. In particular, M,, corresponds to the

central vertex in this graph. Thus, by Lemma =31, we have .,?NQ a(—Kg) — bM, where

M = Z;”:_llj(Mj + Mp_j+1) + mM,,. Moreover, we obtain (.,QT)2 = da® — 2mb%. Suppose

that (.£)? = 0. Note that m < 4 because of n < 8. Hence, we obtain (d,m) = (1,2) or (2,1)
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since a, b are rational numbers. In particular, we have a = (3 — d)b. However, the curve C
on §E, which is that as in Lemma B2, then satisfies (027 -C') = 0. This implies that C' is
included in the boundary of ﬁE Moreover, so is M; for ¢ = 1,...,n. Hence, the boundary of
ﬁ% includes a cycle My + C (resp. My + C) if d =2 (resp. d = 1). However, this contradicts

Lemma Z53. Therefore, we see (.£)? # 0.

In (3), since p € S is a singular point of type D;r over k, note that M; and Ms lie in
the same Gal(k/k)-orbit, on the other hand, M3, My and Mj are defined over k, respectively.
Hence, ig is equal to 3, 4 or 5. Thus, by Lemma B=32, we have gfv@ a(—Kg) — bM and

(£)? = a® + (M)?b?, where M is that as in Lemma B=32 (3), (4) or (5) according to the

number of ig. In particular, (M)? = —3, —2 and —1 if ip = 3, 4 and 5, respectively. Suppose

that (.:?7)2 = 0. Then (M)? = —1 since a, b are rational numbers. Hence, we see ig = 5
and a = b. However, the curve C' on S, which is that as in Lemma B2=3(1), then satisfies

(.:?z/ - (') = 0. This implies that the boundary of ﬁE includes a cycle My + Ms + C, which

contradicts Lemma 2Z523. Therefore, we see (.£)? # 0.
In (4), since p € S'is a singular point of type Eé’r over k, note that M; and My (resp. Ms
and My) lie in the same Gal(k/k)-orbit, on the other hand, Ms and Mg are defined over k,

respectively. Hence, ij is equal to 5 or 6. Thus, by Lemma B=373, we have . ~q a(—K 5) —bM

and (£)? = a® + (M)?*?, where M is that as in Lemma E=33 (5) or (6) according to the
number of ig. In particular, (M)? = —6 and —2 if iy = 5 and 6, respectively. Thus, we see
(£)? # 0 since a, b are rational numbers. O

4.4.2 Proof of Theorem 39 (3)(i)—(iii)

In this subsection, we shall show the assertions (i), (ii) and (iii) in Theorem =39 (3). In
order to prove Theorem =3 (3)(i) and (ii), we will use Table 4. In fact, in this proof, we
mainly consider the two morphisms over k. One is the minimal resolution o : S — S over k
and the other is the contraction 7 : S — Wy over k of the union of some (=1)-curves, which
can be determined by the weighted dual graph in Table B2 according to the type of S (the
detailed configuration of 7 will be treated in the following Lemmas B4, AA1 and @477). By
construction of 7, we will know that Wy contains a cylinder such that the boundary of this
pullback via 7 includes the union of all (—2)-curves, which is clearly defined over k. Thus,
this image via o is a cylinder in S, namely, we see that S certainly contains a cylinder.
Now, we shall state the notation in Table B4. Letting 7 :.S — Wy be the morphism as
above depending on the type of S, we then see that Wy is a weak del Pezzo surface. Then
“d” and “Type of Wy in Table B4 mean the degree and the type of Wy according to the
type of S, respectively. On the other hand, “px(S)” in Table 4 means the Picard number of
S according to the type of S. Notice that this can be obtained by the Picard number of Wy,
which is explicitly given (see Table B), and the construction of 7. Moreover, “Dual graph”

in Table B4 means a weighted dual graph on §E according to the type of S , where “— ()"
means either “— e —o07” or “<: 7, which can be determined according to the type of S.

Note that the union of curves on §E corresponding to all vertices on this graph is certainly
defined over k by the configuration of Wy (see Table BT0) and the construction of 7.

Proof of Theorem 39 (3)(i)

We consider the following two lemmas separately:
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Table 4.4: Types of S in Theorem I=39 (3) (i) and (ii)

d ‘ Type of S ‘ pk(S) ‘ Dual graph ‘ d ‘ Type of Wy
2 Dy 3,4o0rb o
2 Dy + Ay 9 or b 7o>o 8 A
2| Di+24, | 50r7 s !
2| Dy4+3A1 [4,60r8 -0
0—0—0—0—0—0
2 A6 4 \ ‘ 4 A2+2A1
° °
0—0—0—0—0—0—0
2 A7 50r8 \ \ 4 A3+2A1
° °
2 Ds 5 *—o. 4 (A3)<
2 Ds + Ay 6 .70/0707070 4 As+ Ay
2 Dg 7 ®—0 __ 3 As
2 D6+A1 8 0/070707076 3 A5—|—A1
e—o0—o0__
2 E6 ) _0—0° 4 D4
e —_—0—0
0—0—0—0—0—0
2 FEy 8 \ \ 3 Eg
o °
0—0—0—0—0—0—0—0
1 Ag 5or9 \ \ 3 3A2
° °
1 Dg 6 or 7 O*T O\ 2 Dy + Ay
1 D¢ + Aq 8 o O*O;O 2 Dy+ 24,
1| Dg+ 24, 7or9 -0 2 Dy + 344
o o
1 D 7 0o—o0—0—0 2 Ds + Ay
o °
o _ o
1 Dg 9 ~o0—0—0—0—-0_ 2 Dg + Ay
o °
1 FE5 8 & —0—0_ 2 Dg
1 E7—|—A1 9 0/0707076 2 D6—|-A1
0—0—0—0—0—0—0
1 Eg 9 \ \ 2 Er
o °
0—0—0—0—0
2 (As)" 4 | | 4 3A1
. °
0—0—0—0—0—0—0
1] (A7) 5 | | 3| 24y+ A
° °
© 0—0—0—0—0
2 (A5—|—A1)// 5 | \ 4 4A1
° °
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Lemma 4.4.4. Let the notation and the assumptions be the same as above. If d = 2 and Sg
has a singular point of type Dy, then S contains a cylinder.

Proof. Let x be a singular point of type D4 on Sz. Note that x is k-rational on Sz by Lemma
ZTH. Moreover, we see that S is of Dy + nA;-type for n = 0,1,2,3 and §(k) # () by the
configuration of S; (see Table EA). Let E be the union of reduced curves corresponding
to three subgraphs () — o in the weighted dual graph in Table B4. Then we obtain the

birational morphism 7 : S — Wg over k sgch that Wy is a k-form of the Hirzebruch surface
Fy of degree 2 and the direct image ¢ ,(E) is the disjoint union of three closed fibers, say
Fy, F5 and F3, of the P'-bundle Wez ~Fo — IP%. In particular, we see Wg ~ [F5 because of
S(k) # () by using Proposition ZZ223. Hence, U := g\E is certainly the cylinder on S since
U ~TFo\(MUF,UF,UF3) ~ A} x Cy), where M is the (—2)-curve on Fy. Therefore, we see

that S contains a cylinder o(U) ~ U. g

Lemma 4.4.5. Let the notation and the assumptions be the same as above. If d = 2 (resp.
d = 1) and 57 has a singular point of type Ag, A7, Ds, D¢, Eg or E7 (resp. type Ag, Dg, Dy,
Dg, E7 or Eg), then S contains a cylinder.

Proof. Let x be a singular point of the type of the one of the above list on S;. Note that x
is k-rational on S; by Lemma ZTH. Let E be the union of the (—1)-curves corresponding
to all vertices e in the Table B4 according to the type of S. Notice that E is defined over
k and EE is either irreducible or disjoint. Hence, we obtain the contraction 7 : S — War of
E defined over k, so that W is a weak del Pezzo surface of degree d’ € {2,3,4}, where d’ is
determined according to the type of S. Ifd € {3,4}, then Wy contains a cylinder such that
this boundary includes 7(E) by the argument in Subsection E=Z2 (see also Table E-I). Thus,
this pullback, say U , via 7 is a cylinder in S such that this boundary includes the union of
all (—2)-curves on ,§E, which is defined over k. Therefore, we see that .S contains a cylinder
a(ﬁ) ~ U. If d = 2, then Wy is one of the lists in Table B4 and contains a cylinder such
that this boundary includes T(E) by the above argument. Namely, the above argument can
work as well even if d’ = 2. This completes the proof. |

Remark 4.4.6. We shall state some remarks on Lemma BEZ3. Let z be the same as in Lemma
B and assume d = 2. Then:

(1) If z is of type Ag, g or E7 on Sz, then S always contains the affine plane A2 (compare
the fact that the Du Val del Pezzo surface of rank one and of degree 2 over C contains
C? if and only if this surface has a singular point of type E7, see [56]).

(2) If = is of type A7 on Si, then S does not have to admit a k-rational point but always
contains a cylinder (compare the fact in Theorem ["2A4).

Theorem 39 (3)(i) follows from Lemmas B4 and B235.

Proof of Theorem 31 (3)(ii)

Assume that SVE has a singular point x of type (Ag_24)" (see Definition B3, for the definition).
Note that x is k-rational on S by Lemma ZT3. Notice that S is only of (As)” or (As+ A;)"-
type (resp. (Az7)"-type) if d = 2 (resp. d = 1). We consider the following two lemmas
separately:
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Lemma 4.4.7. With the notation and the assumptions as above, assume further that S is
of (Ag_oq)"-type. Then S contains a cylinder if and only if 2z € S not of type A 4 over k.

Proof. Assume that S contains a cylinder U ~ A} x Z, where Z is a smooth affine curve
defined over k. Then S contains a cylinder U := o~ }(U) ~ U. The closures in S of fibers of
the projection prz U~ Al X Z — Z yields a linear system, say DS,” on S. By Proposition

A1, we see Bs(.¥ ) # 0. Thus, z € S is not of type Af™,, over k by the assumption and
Lemma P2A4.
Conversely, assume that 2 € S is not of type Ag™,, over k. Let M be the (—2)-curve on

S% corresponding to the central vertex on the dual graph with the minimal resolution at .
Notice that M is defined over k, moreover, M has a k-rational point by the assumption. Let
E be the union of the (—1)-curves corresponding to two vertices e in the Table B4 according
to the type of S. Notice that E is defined over k and Ek, is disjoint. Hence, we obtain the
contraction 7 : § — Waqa of E defined over k, so that Wat2 is a weak del Pezzo surface of
degree d + 2 and 1(M) is a (—2)-curve. Moreover, since M has a k-rational point, so does
the image via 7. Hence, W, , ¢ contains a (—2)-curve with a k-rational point. This implies
that W45 contains a cylinder by using Theorem -39 (2) such that this boundary includes
7(E) (see also Table ET). Thus, this pullback, say U, via 7 is a cylinder in S such that this
boundary includes the union of all (—2)-curves on SVE, which is defined over k. Therefore, we

see that S contains a cylinder o(U) ~ U. O

Lemma 4.4.8. With the notation and the assumptions as above, assume further that d = 2
and S is of (45 + A1)"-type. Then S contains a cylinder if and only if € S not of type A7 "
over k.

Proof. Let My 1,...,M;5 and My be the (—2)-curves on §E with the configuration as in
(A2377). By the configuration, M; 3 and My ; are defined over k. By using Proposition E=311,
there exist two (—1)-curves Fy and Fj4 on §E such that (E; - My ;) = 6;j and (E; - Ma;) =0
for © = 2,4 and j = 1,...,5, moreover, the union Ey + Ej is defined over k (cf. Example
A3TW). Let 7 : S — Wy be the compositions of successive contractions of a disjoint union
E, + Ey4, that of the images of M o + M 4 and finally that of the images of My + M; 5. By
construction, 7 is defined over k and Wy is a k-form of the Hirzebruch surface Fy of degree 2.

From now on, we prove this lemma. Assume that S contains a cylinder. Let y € Sy be the
singular point of type A; over k. Then we know that either z is not of type Agr+ over k or y
is not of type A" over k by the similar argument to Lemma EZ=7. In what follows, we may
assume that y € S is not of type Afr over k. In other words, Ms 1 has a k-rational point,
hence, so does Tk(Mm). Namely, Wg ~ Fo. Hence, there exists uniquely closed fiber of the
P'-bundle Fy — IF’ passing through this k-rational point. Let F' be the pullback of this fiber
by 7. Note that the configuration of the weighted dual graph of Z 1 My j+Moy+Eo+Ey+F
is as follows:

My Mo DMz Mg Mg
o o o o o

| | |
Eye Fo Eye

\
Mg’lo

In particular, the intersection point of M; 3 and F' is k-rational, namely, M; 3(k) # 0. This
implies that x € S is not of type AgH' over k.
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Conversely, assume that x is not of type Agr+ over k. By putting M := M; 3, the proof of
this assertion is similar as Lemma BEZ774 and left to the reader. O

Theorem 39 (3)(ii) follows from Lemmas B-477 and B4R.

Proof of Theorem 31 (3)(iii)

The assertion (iii) in Theorem =39 (3) can be shown by an argument similar to [I9, Remark
10] as follows:

Proof of Theorem _Z2 (8)(iii). Assume that either d = 2 and Sy allows only singular points
of type A; or d = 1 and S}, allows only singular points of types A1, Aa, A3, D4. Suppose that

S contains a cylinder U. Then we see that S admits an (—K SE)—polar cylinder Uy because
of pr(S) =1 (see Definition IT, for the definition), which contradicts Theorem IT4. O

As a corollary, we have the following:

Corollary 4.4.9. With the notation and the assumptions as above, assume further that d = 1
and Sz has a singular point of type D4. Then S does not contain any cylinder.

Proof. Assume that S; has a singular point of type Dy. Then S is only of 2Dy, Dy + As,
Dy+3A1, Dy+ As, Dy+2A;1, Dy+ Ay or Dy-type. Therefore, we see that S does not contain
any cylinder by Theorem I=39 (3)(iii). O

4.4.3 Proof for the “only if” part of Theorem =39 (3)(iv)

In this subsection, we shall show the “only if” part of Theorem =39 (3)(iv). Assume that
S does not satisfy any condition on singularities of (i), (ii) or (iii) in Theorem I3 (3)
and contains a cylinder, say U =~ A}C x Z. The closures in S of fibers of the projection
prz U ~ A}C X Z — Z yields a linear system, say .2, on S. By Lemma P75 @ we then see that
Bs(.Z) = {p} such that p is a singular point on S;. defined over k. In order to show the “only
if” part of Theorem =39 (3)(iv), we shall prove that p is of type A, D, or E;,. Letting U
be the cylinder in S defined by U:= o~ 1(U) ~ U, the closures in S of fibers of the projection
prz U ~ A}C X Z — Z yields a linear system, say 9’22” on S. By Proposition 2271 we then see

that Bs(,f?/) = {p} such that p is k-rational. In other words, the singular point p € S is not of
type AT over k for any n. In what follows, suppose that the singularity type of p € S over

k is one of the following according to the degree d:
e d=2: type Af, Ay, A7, Af or (AF);
o d=1: type Af, AS, A}, Af, AT, AL, (ATY, DF or Ef.

Meanwhile, we will prove Lemmas B-412, BZ2T4 and B4TH, which contradict the above hy-
pothesis. Now, we shall treat the following Lemmas 4110 and B24—11], which will play a crucial
role to show Lemmas B4 T2 and B—4T4:

Lemma 4.4.10. With the notation and the assumptions as above, assume further that z ~Q
a(—Kgz) — bM for some positive rational numbers a and b, where M is an effective Q-divisor
on S and consists of some irreducible components of exceptional set of o. Let «, 8 and v be
three positive rational numbers satisfying a > ab, 8 = —(M - My) and v = —(M)?, where My
is an irreducible component of M;. passing through p. Then the following hold:
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(1) If d = 2, then the following four inequalities do not hold simultaneously:

a—u>0
a—u—v>0

20u+ Pv—v >0
4u2+4uv+202—’y§0

(4.4.1)

for any rational numbers u, v with v > 0.

(2) If d = 1, then the following four inequalities do not hold simultaneously:

a—u>0

a—u—v>0

au+ pv—v>0

4u? 4 duv + 4% — 3y <0

(4.4.2)

for any rational numbers u,v with u > 0.

Proof. We only show (1), because (2) can be shown by the argument similar to (1).

Suppose that there exist v € Q¢ and v € Q such that the all inequalities (E=2) hold
simultaneously. By virtue of a—u > 0, a—u—v >0, b > 0 and a > ab, we then see a—ub > 0
and 1 — af—l;b > 0. Hence, we have:

—~ 1 = 1
Z Kz + ob My + Z | = {72a(a7ub)+ﬁvb2+(2a277b2)}
a—ub a—ub a —ub
b (4.4.3)
= 2 b—b).
. (2ua+ Bub — )
By virtue of au > aub and 2au + fv — v > 0, we have:
b 2
——(2ua + pvb — vb) > (2au + v —7) > 0. (4.4.4)

a— ub a— ub

Notice that the rational map @ - S --» Z is not a morphism since Bs(é?) = {p}, where
Z is the smooth projective model of Z2. Let ¢ : S — S be the shortest succession of blow-ups

of p and its infinitely near points such that the proper transform .# := v 1(‘,ZA”J) of . is free
of base points. Note that, p € My and (£ - My) = 0 by construction of .,5:’7, where My is the
proper transform ¢, 1 (My) of My. Letting {E;},-;-, be the exceptional divisors of ¢ with
E,, the last exceptional one, which is a section of @ := P o1, we have:

vb - 1 _ vb 1 = L
Kg M =" | Kz M B 4.4.
S+a—ub O+a—ub$ 4 < S+a—ub O+a—ub$>+;c (445)
and
> =y J 0 (1<i<n—1)
(.i”EZ)—{ 1 (i=n) (4.4.6)

*2 Actually, we further know that Z ~ P} by using [[9, Lemma 7].
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for some rational numbers ci,...,c,. Note that the general member of .Z is a general fiber
of the P!-fibration . Hence, we have:

-2=(Z-Kj)

— vb - 1 .
= -K‘ M
(g S+a—ub 0+a—ub$>

2 vb 1 = _
= | Kg M, (L E;
(zZ5) (g 4 ( 5+a—ub 0+a—ub$>>+gcz($ 0

— 1 =
= 2Kz + vb My + L) +ec,
(z=ZT) a — ub a— ub

Thus, (S, 22 My + — .,5,,;) is not log canonical by (B2=3) and (B22) (see Definition 22372,

) a—ub a—ub
for this definition). Furthermore, since 1 — fl;b > 0 and ﬁ > 0, by the variant of Corti’s

inequality (see Lemma Z53) we have:

a

vb

a—1u

i(L1, Lo;p) > 4 <1 - b) (a — ub)? = 4{a — (u+ v)b}(a — ub),

where L1 and Lo are general members of .. Meanwhile, since L1 and Ly meet at only p, we
see i(L1, La; p) = (£)?. Hence, we have:

(%2 > 4{a — (u+v)b}(a — ub) < 0> 2a® — 4(2u + v)ab + {4u(u +v) + v} b2. (4.4.7)
On the other hand, we have:
202 — 4(2u + v)ab + {4u(u + v) + 7} b? = 2{a — (2u+ v)b}* — (4u? + 4uv + 20% — 4)b* > 0,
by 4u? + 4uv + 2v? — v < 0. Tt is a contradiction to (E=ZZ7). O

Note that the following Lemma B=2TT is the special case of Lemma EZATI:

Lemma 4.4.11. With the notation and the assumptions as in Lemma B0, the following
two assertions hold:

(1) If d = 2, then we obtain a? < 7.

(2) If d = 1, then we obtain 3a? < 4.

Proof. In (1), suppose that a? > 7. Then we can easily see that the four inequalities (E=Z1)
hold for (u,v) = (5%,0), which contradicts Lemma B-2T0 (1).

In (2), suppose that 3a? > 4. Then we can easily see that the four inequalities (EZ-2)
hold for (u,v) = (Z,0), which contradicts Lemma BZT10 (2). O

Now, we show Lemmas B-4T2, B4 T4 and BE-ATH. For these lemmas, let My, ..., M, be all
irreducible components of the exceptional set over k of o at p such that the weighted dual
graph of My, ..., M, is as in (E=3), (E=32) or (E=33) according to the singularities of p on
St

Lemma 4.4.12. With the notation and the assumptions as above, the following assertions
hold:

(1) If d = 2, then the singular point p € S is not of type A}, A5, A nor (AF) over k.
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(2) If d = 1, then the singular point p € S is not of type A, AT, AT, AF, Al nor (AT)
over k.

Proof. Suppose that the singularity type of p on S is one of the lists in Lemma EZT2. We
shall write m := [%] for simplicity. By noting Bs(#) = {p}, we see (£ - M;) = 0 for any i
other than ¢ = m (resp. i = m, m+1) if nis odd (resp. even). Indeed, if n is odd (resp. even),
then p lies on M,, (resp. the intersection point of M,, and M,,+1). Hence, we can write 2 ~Q
a(—Kg)—bM for some a,b € Qo, where M = Z;”:_ll F(Mi+My—j1)+m(Mp4- - +My_mt1)
by Lemma B=3TI.

Let 8 and v be two rational numbers defined by 8 := —(M - M,,) and v := —(M)2.
Moreover, let o be the positive number defined by a := (M - E), where E is the (—1)-curve
on §E according to the degree d and the singularity type of p on St as follows:

e (d,Singularity) = (2, A3), (2, A4), (1, 45), (1, Ag): By using Proposition B=3T0, we take
a (—1)-curve E on St such that (M; - E) = §,, ; (see also Example BZ3TT).

e (d,Singularity) = (2, A1), (1, A3): Notice that S; allows a singular point other than p
by the assumption of Theorem 39 (3)(iv). If S admits a cyclic singular point other
than p, then we take a (—1)-curve E on §E such that (M; - E) = §,,; by an argument
similar to the above. Otherwise, since d = 1 and S is of D5 + As-type by the assumption
of Theorem I3 (3)(iv), it is known that there exists a (—1)-curve E on §E such that
(Mj - E) =0y (see, e.g., [b6, Figure 1]), so that we take such a (—1)-curve E.

e (d,Singularity) = (2, (As5)"), (1, (A7)"): By the configuration of singularity of p, we can
take the (—1)-curve E such that (M; - E) = 6y, 5.

e (d,Singularity) = (1, A41), (1, A2): We take the (—1)-curve E as in Lemma B=34(1).
Namely, (M; - E) =2 (vesp. (M;-E) = (M- E)=1)if p € S is of type A (resp. type
A7) over k.

By construction of «, we see that a > ab because of 0 < (g E) = a — ab. Here, the values
of a, B and 7 are summarized in Table BZ3 according to the degree d and the singularity
type of p on S;. For all cases except for (d, Singularity) = (2, A1), (1, A3), we thus obtain
a contradiction to Lemma BT (1) or (2) according to the degree d. In what follows, we
consider the remaining cases. In the case of (d, Singularity) = (2, A1), setting (u,v) := (0,1),
the inequalities (A221) hold simultaneously, which contradicts Lemma BT (1). In the case of
(d, Singularity) = (1, As), setting (u,v) := (1, 1), the inequalities (22=2) hold simultaneously,
which contradicts Lemma E4T10 (2). O

Remark 4.4.13. 1f the pair of the degree d and the singularity type of p on S; is (2, A2) (resp.
(1, Ay)), there is actually no rational numbers pair (u,v) such that the inequalities (E=2)
(resp. (E272)) hold simultaneously. We will deal with these cases later (see Lemma B—4TH).

Lemma 4.4.14. With the notation and the assumptions as above, if d = 1 then the singular
point p € S is not of type D;r nor Eg’ over k.

Proof. Suppose that p € S is of type D;‘ or Eg' over k. By Proposition B271, Bs(.¥) consists
of only one k-rational point, say p. Note that p € M3 U My U My but p ¢ My U My (resp.
P € MsU Mg but p ¢ My UMsU M;U My) provided that p € S is of type Dy (resp. type Ey )
over k. Thus, we can write grv@ a(—Kgz) — bM for some a,b € Qo by Lemmas B3 and
B33, where M is the effective Q-divisor and is given as in the Table B8 depending on one
parameter ¢ and according to both the singularity type of p on S; and the position of p. Let
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Table 4.5: Values of «, 5 and v in Lemma B—412

’ d ‘ Singularity H Irreducible decomposition of M H Q ‘ 15} ‘ ~y ‘
2 Ay M, 1122
2 Ag My + 2Ms + M; 212 |4
2 Ay My + 2Ms + 2M3 + My 2114
2 (A5)/ M1 —|—2M2 —|—3M3 —|—2M4+M5 31216
1 Ay M, 21212
1 As My + M, 21112
1 Az My + 2Ms + M; 212 |4
1 A5 M1 +2M2—|—3M3—|—2M4—|—M5 31216
1 Ag My + 2Ms + 3M3 + 3My + 2Ms + Mg 311]6
1 (A7)/ My +2Ms + 3Ms +4My + 3Ms +2Mg+ M7 || 4 | 2 | 8

7 be the positive rational number defined by 7 := —(M)?2. The value of v and its range are

summarized in Table B74 depending on one parameter ¢ and according to both the singularity
type of p on S and the position of p. Let E be the (—1)-curve on S that as in Lemma £=32
(2) or (3) according to the singularity type of p on Sz. Noting that 0 < (,,5/,; E)=a—2b, we
shall put a = 2.

If v < 3, then we have 3a? = 12 > 4+, which contradicts Lemma EZTT (2). Hence,
we suppose 7 > 3 in what follows. Then p € Si is of type D5 and lies on M5 by Table
B72. In particular, we see 1 < ¢t < 2. We shall put 8 := —(M - M5) = 2t — 2 and (u,v) :=
(—t% + 3t — 1,2t — 3). Noting u = —t? + 3t — 1 > 0, we have:

) 3\* 3
a—u=2—(—2+3t—1)=(t—=) +=>0,
2 4
a—u—v=2—(—t>+3t—1)— (2t —3) = (t—2)(t —3) >0,
oau+ v —y=2(—t2+3t — 1)+ (2t —2)(2t —3) — (2t> — 4t +4) =0

and
4u? + duv + 4% — 3y = 4(—t2 + 3t — 1)? +4(—t> + 3t — 1)(2t — 3) + 4(2t — 3)% — 3(2t% — 4t + 4)
= 2(t — 2)%(2t* — 8t + 5)
<20t —2)2{2t* — 8t + 5+ (2t — 1)}
= 4(t —2)3(t — 1)
<0.

This implies that the inequalities (B2272) hold simultaneously, which contradicts Lemma B=2710
(2). O

Finally, we treat the case that p is of type Ag_Q 4 over k. If the singular point p € Sy is of
Ag_oq over k, then the type of S is one of the following:

o d=2and A5 + Az, Ay + Az, A3+ Az + Ay, 343, Az + Ao, 245 + Ay, As + 341, 245,
Ao+ 2A1, As + Ay or As-type.
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Table 4.6: Effective Q-divisor M in Lemma BZ414

’ Singularity ‘ Position of p H Irreducible decomposition of M \ Range of ¢ ‘
Ds Ms U My tMy + t My + 2t Ms + 2M, + M5 1<t<3
Ds Ms My 4+ Moy + 2M3 + 2My + t M5 1<t<2

| Es | MsUMgs || tMy+tMy+ 2tMg + 26My + 3tMs +2M | 1 <t <3 |

Table 4.7: Value and range of v in Lemma B=4T4

’ Singularity \ Position of p \ Range of ¢ H ~y \ Range of ~ ‘
Ds MsUM; | 1<t<3 || 4°-8t+6 | 2<y<3
Ds M 1<t<2 || 22 —4t+4 | 2<y<4

| Es | MsUMs | 1<t<3[62-12t+8[2<y<3% |

e d=1and 24y, Ay + A3, Ay + As + Ay, Ay + 3A1, Ay + Ao, Ay + 2A1, Ay + Ay or
Ay-type.

In particular, we see that Si has only cyclic singular points. Noting the above argument, we
obtain the following lemma:

Lemma 4.4.15. With the notation and the assumptions as above, then the singular point
p € S is not of type Aé“_Qd over k.

Proof. Suppose that p € S is of type Ag_Qd over k. If d = 2 and S is of As-type, then

S is a weak del Pezzo surface of degree 2 with pk(g) = 2. Hence, S is minimal over k by
Theorem I=33. However, by construction S contains the cylinder U , which is a contradiction
to Theorem IZ34. In what follows, we shall treat other cases and consider the cases of d = 2
and d = 1 separately.

In case of d = 2: Let z1,...,z, be all singular points on Sg other than p, and let
M;,. .., M;, @) be the irreducible components of the exceptional set on S of the minimal
resolution at x; for i = 1,...,r such that the weighted dual graph of Y 7, Z?g M; ; is as in
(A=377). By using Proposition 82311, for ¢ = 1,...,r, there exist two (—1)-curves E; ; and E; o
on S such that the weighted dual graph of My + M + E;1 + E;2 + Z?g M; ; is as follows
(cf. Example BZ3TT):

My M,
O ——0O
E@l 0/0 . o\o Ei72
M; 4 M; )
for i =1,...,r. Notice that:
n(i) n(i’)
(Big+Eig-Ey1+ Eys)= | —Kg— M — M — ZMi,J’ -—Kg— My — My — Z M 5
j=1 J'=1

n(i) n(i’)
= (—Kg — My — M2)2 + Mi,j . Z Mi’,j’
J=1 J'=1

= —251'77;.
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Write m(i) = [@l for simplicity. Let 7: S — V be the sequence of contractions of (—1)-
curves » .., (E;1+E;2) and subsequently (smoothly) contractible curves in Supp (Zgzl Z?:(ll) M; ;
such that for each i = 1,...,r, unions M;1 + M; ), -, Mim(iy—1 T M; n(i)—m(i)42 are con-
tracted if m(i) > 1. By constructlon 7 is defined over k and V is a smooth del Pezzo surface

with pi(V) = 2 endowed with a structure of Mori conic bundle 7 : V' — B over k such that
each TE(M@m(i)) is included in a union of some closed fibers of ;. Moreover, p is a k-rational
point on S , SO is its image via 7. Thus, B ~ ]P’/,lC by Lemma PZZ2. In particular, we obtain
Pic(V)q = Q[-Ky|®Q[F], where F is a general fiber of 7. Let {e; j}1<i<y, 1<j<m(i)—1 be the
total transforms of all irreducible components on the exceptional set satisfying (e; ;- M; ;) <0
by rfori=1,...,rand j =1,...,m(i)—1, moreover, we set e; o := E; 1 + Ej; 2. By identifying

Pic(S)Q with PIC(S )gal(k/k) we thus obtain:

r m((i)—1

Pic(S)g C QK @ @ Qleig] | € Pic(Sp)e,

=1 j5=0

where F is a total transform of F by 7. In particular, we can write:

r m(i)—1

L ~ga(—K +bF+ Z Z Ci j€ij

i=1 j=0

for some a,b, c;; € Q. By construction, we obtain that M; ; + M; iy j41 ~ €ij — €i;-1 for
j=1,...,m(i)=1and M; ) (vesp. M; p i)+ M; miy41) is linearly equivalent to F— €im(i)—1
if n(i) is odd (resp. even). Moreover, we notice (F)2 = (€i - F) =0 for any i,j. Hence, we
have ¢; j = 0 by virtue of (g M; j) = 0 for any 4, j. On the other hand, since E; 1+ Ej 2 ~ e€;,
we have a > 0 by virtue of 0 < (g i) =2aand 0 < (%2 = 2a(a+2b). Moreover, we have
b > 0 by virtue of 0 < (.35 My + My) = b(F - My + My). Thus, we see gw@ a(—Kgz) + bF
as a,b > 0, however, we obtain a contradiction to Lemma PZZh3. B

In case of d = 1: By Lemma BZ34 (1), there exists a (—1)-curve Ep on S such that
(Eop - M;) = 61, + d4,. Hence, we have the contraction 7 : S — Wy of Ey defined over k such
that Wy is a weak del Pezzo surface of degree 2, moreover, this condition is as the above case

of d = 2. Thus, by an argument similar to the above case with d = 2, there exists a O-curve
F on S such that we can write:

jw@ a(—Kg) + bE 4+ coFEo

for some a, b, ¢y € Q. By the configuration of 7y, we see (ﬁ -Ep) =0 and My + My ~ F —2E,.
Hence, we have ¢y = 0 by virtue of 0 = (& - My + My) = 2¢y. Moreover, by an argument

similar to the above case with d = 2 we see a,b > 0, which is a contradiction to Lemma PZZ53.
O

As we already mentioned, the “only if” part in Theorem =39 (3)(iv) follows from Lemmas
B4 T2, B4 T4 and B47T3.

4.4.4 Assumption for the “if” part of Theorem .39 (3)(iv)

In this subsection, in order to prove the “if” part in Theorem =39 (3)(iv), we shall observe
the assumption of this precisely. In other words, the purpose of this subsection is to show the
following proposition:
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Proposition 4.4.16. Let the notation be the same as at beginning Section B4, and assume
that S does not satisfy any condition of (i), (ii) or (iii) in Theorem I3 (3). If S has a
singular point defined over k of type A, , D, or E, over k, then the type of S is one of the
following:

o d=2: A5+ Ay, 2A3+ A1, 243, A3+3A1, 3As, (A5)/, (A3+2A1)”, As+3A4, (A3+A1)/,
Az or As-type.

o d=1: A7+ Ay, Eg + A, D5 + A3, As + Ay + Ay, 2A4, (A7), D5 + 241, As + As, Eg,
(A5 + A1), D5, As or Ay-type.

In what follows, we will prove Proposition B4Td. Let the notation and assumptions be
the same as in Proposition B4T8. Then we can take a singular point x¢ on S, which is
k-rational, of type A, , D,  or E_ . Let r be the number of all singular points other than xg
on Sz, which are k-rational, and let x1,...,z, be the singular points other than z¢ on St,
which are k-rational. We shall consider two cases according to the degree d of S separately.

At first, we shall treat the case of d = 2. Then z¢ € S is of type A, over k for some
2 < n <5, since S does not satisfy any condition of (i) nor (iii) in Theorem =39 (3). Then
all singular points of S; other than xo are also necessarily of type A, i.e., cyclic quotient
singularities. We obtain the following two lemmas:

Lemma 4.4.17. Let the notation and the assumptions be the same as above. If r > 0, then
S is of As + Ag, 2A3 + Ay, 2A3, A3+ 3A; or (Ag + Al)/—type.

Proof. Let n(i) be the number such that x; € S¢ is of type Ay for i =1,...,r. Here, we
may assume n(1) > n(2) > --- > n(r) by replacing the subscripts ¢ = 1,...,r as needed. Let
{M; j}1<j<n() be all irreducible components of the exceptional set of the minimal resolution
at x; for i =0,1,...,r with the configuration as in (E=31), where n(0) := n, and let D be the

divisor on §E defined by D := (—K §E) - 22-1:0 Zyg M, ;. Since the divisor D is as in (a) in
Table B3, we see that D satisfies the condition on divisors of either (f) or (f) by Proposition
=310 (1).

Assume that D satisfies the condition (f). Then the pair (n,n(1)) is (3,1), by Proposition
310 (7). In particular, we see r = 1. Otherwise, supposing r > 2 and taking the divisor

(_K%) -2, Z?g M; ; on §Ev which is the divisor as in (a) in Table B3, we have n(2) = 3
by the argument similar to the above, however, it is a contradiction to n(1) > n(2). Hence, if
there exists a singular point on Sz other than x¢ and w1, then there exist exactly two singular
points of type Ay on Sy, which lie in the same Gal(k/k)-orbit. Indeed, there is no Az +mA;-
type of S for m > 4 by the classification of types of weak del Pezzo surfaces. Namely, S is
then of Az 4+ A; or A3 + 3A;-type.

Assume that D satisfies the condition (). In other words, there exist two (—1)-curves E
and Fy on §E such that D ~ E; + E» (see Proposition =310 (2)). Hence, the configuration

of the weighted dual graph of Zil:o Zyg M; ; + E1 + Es is as follows:

My 1 My
10 . o)
1 ® o [y
\ o) PN o) /
M1 My 1)
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Since xg € S is of type A, over k with n > 2, we see that F; and E» are defined over k,
respectively. This implies that the two Q-divisors F; and Ej are included in Q[—K —S;] &)
k

(@}:0 @?g Q[M”]> since pi(S) = 1. Hence, the pair (n,n(1)) is (5,2), (2,5) or (3,3) by
Proposition B30 (6). If (n,n(1)) = (5,2) or (2,5), then all singular points on S; are only
xo and x; since there are at most seven (—2)-curves on §E by Lemma ZZT75. Namely, S is of
As + Ag-type. If (n,n(1)) = (3,3), then there exists at most a singular point of type A; on
57 other than x¢ and 1 by a similar argument using Lemma ZZT-3. Namely, S is then of 2A3
or 2A3 + Aj-type. O

Lemma 4.4.18. Let the notation and the assumptions be the same as above. If » = 0, then
the following assertions hold:

(1) x € 5% is not of type Ay. Namely, n = 2,3 or 5.
(2) S is not of Ay + 2A;-type.
(3) Sis of (As), (As+2A4,)", As, 3Ay, Ay + 3A; or Ag-type.

Proof. In (1), supposing that n = 4, let {M;}i<j<4 be all irreducible components of the
exceptional set of the minimal resolution at xy with the configuration as in (E=377) and let
D be the divisor on §E defined by D := (—Kgg) — (My + 2My + 2Ms3 + My), which is the
divisor as in (b) in Table E=3. By Proposition 310 (1) and (6), we see that D satisfies the
condition (f). In particular, by Proposition B30 (2), there exist two (—1)-curves Es and
Es on :S’VE such that D ~ Ey + FE3. Hence, the configuration of the weighted dual graph of
Z?:l M; + E1 + Es is as follows:

M, Mo M3 My

(¢] (¢] (¢] (¢]

- S~

EQ' .E3

Since zg € S is of type A, over k by assumption, E» and E3 are defined over k, respectively.
This implies that the two Q-divisors F; and Fj are included in Q[—K %] ® (@?:1 Q[Mj])
since pi(S) = 1. However it is a contradiction to Proposition B=310 (6).

In (2), supposing that S is of Ay+2A;-type, let y; and y» be two singular points of type A
on SE? let Mo,1 and My (resp. M1, Ms 1) be all irreducible components of the exceptional
set of the minimal resolution at =g (resp. w1, y2) with the configuration as in (A=371) and
let D; be the divisor on §E defined by D; := (—ng) — (Mo + Mp2) — M; 1, which is the
divisor as in (a) in Table B=3 for ¢ = 1,2. By Proposition B=310 (1) and (7), we see that D;
satisfies the condition (f) for ¢ = 1,2. In particular, by Proposition B=310 (2), there exist two
(—1)-curves E;; and E;2 on 5% such that D; ~ E; 1 + E; 2. Hence, the configuration of the

weighted dual graph of Mo + Moo + M1 + M2 + 2?21 Z?:l E; ; is as follows:

Er Mo 1 Es 1
(o)
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Since z¢ € S is of type A, over k by assumption, My is defined over k. Hence, so is the
union FEy; + Fp;. This implies that the Q-divisor Fy11 + Fa; is contained in Q[-Kgz] @

(@?:1 Q[MOJ]) ® (@?:1 Q[Miyl]) since pg(S) = 1. Hence, we have:

1 1 1
Ey1+ E3p ~q (—K3) — §(2M1,1 + M) = 5 Mz — 5 Mz
by Lemma BZXT combined with the above graph, however, by the above formula, we then

obtain:

1

1 1 2
3(2M1,1 + M o) — §M2,1 - 2M3,1> =—3

—2=(Ey1 + E31)” = <(—K§)
which is absurd.

In (3), if 20 is the only singular point of Sy, then we clearly see that S is of (As), As
or As-type by the assumptions and (1). In what follows, assume that there exists a singular
point y on Si other than xg. Since r = 0, there exists a singular point y' other than y on
Sy such that y and 3’ are included in the same Gal(k/k)-orbit. Moreover, since there are at
most seven (—2)-curves on §E by Lemma T4, the singular point y is of type A1 or Ay on
Sz. If singular point y is of type Az on Sz, then we see that all singular points on S are
only zg, y and 3’, namely, S is then of 34s-type. In what follows, we can thus assume that
any singular point on §E other than xzg is of type A;. Then S is of A, + sAq-type for some
integer s. In particular, we precisely see that S is then of (As +2A1)" or Ay + 3A;-type by
the classification of types of weak del Pezzo surfaces (see [6Y]) combined with (2). O

Next, we shall treat the case of d = 1. Notice that xo € S is of type D, Eg or A, over k
for some 2 < n < 7, since S does not satisfy any condition of (i) or (iii) in Theorem =39 (3).
If zg € S is of type D5 or Ey over k, then we obtain the following lemma by the argument
similar to Lemma B—4T7:

Lemma 4.4.19. With the notation and the assumptions as above, assume further that Sg

has a singular point, which is k-rational, of type Dy or Eg over k, then the type of S is one
of the following according to the number of 7:

(1) r>0: D5+ Az or Eg + As-type.
(2) r=0: D5+ 2A1, D5 or Eg-type.

Proof. By assumption of this lemma, we may assume that xo € S is of type Dy or E; over
k. We only treat the case where the singularity xg is of type D; over k, the other cases are
similar and left to the reader.

In (1), let {M; j}1<j<n(i) be all irreducible components of the exceptional set of the minimal
resolution at x; for ¢ = 0,1 with the configuration as in (A=38), where n(0) := 5, and let D be
the divisor on §E defined by D := 2(_K§E) _(MO,I +2MO,2 +3MO,3 —|—2M0,4—|—M075)_Z;i11) Ml,j?
which is the divisor as in (f) in Table B=3. By the argument similar to Lemma B-4T47, we see
that n(1) = 3. In particular, all singular points on S; are only x¢ and z; since there are at
most eight (—2)-curves on gg by Lemma 2ZT3. Namely, S is then of Ds + As-type.

In (2), if there exists a singular point other than xzp on S, then there exist exactly two
singular points of type A; on Sz, which lie in the same Gal(k/k)-orbit, by a similar argument
using Lemma Z7T3. Namely, S is then of D5 or D5 +2A;-type. Indeed, there is no D5+ 3A;-
type of S (see [6Y]). (We also note that there is no Eg + 2A;-type of S (see [6Y]). ) O
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In what follows, we shall treat the case that .S allows only cyclic singular points by noting
Lemma PZT3. Thus, the singular point xg € S is of type A, over k for some 2 < n < 7. By
the argument similar to Lemmas B4T7 and B4T8, we obtain the following two lemmas:

Lemma 4.4.20. Let the notation and the assumptions be the same as above. If r > 0, then
the type of S is one of the following according to the number of 7:

(1) r>2: As + As + Aj-type.
(2) m=1: (A5 + A1), A7 + Ay, A5 + Ay or 2A4-type.

Proof. Let {Mi,j}lgjgn(i) be all irreducible components of the exceptional set of the minimal
resolution at x; for ¢ = 0,1,...,r with the configuration as in (£=377), where n(0) := n.

In (1), let D be the divisor on S defined by D := 2(—Kg ) — ¥.7 >0} M; j, which
is the divisor as in (c) in Table BZ3. By the argument similar to Lemma B2, we see that
(n,n(1),n(2)) = (5,2,1) or (2,5,1). In particular, all singular points on S; are only x¢, x1
and x4y since there are at most eight (—2)-curves on §E by Lemma Z-T°5. Namely, S is then
of A5 + As + Aj-type.

In (2), at first we assume that n > 4. Let D be the divisor on :S’VE defined by D :=

2(—K§E) + (Mo, + Moyn) — 2377 Moj — Z;ill) M, j, which is the divisor as in (d) in Table
3. By the argument similar to Lemma B4 T4, we see that (n,n(1)) = (5,1) (resp. (7,1),
(5,2) or (4,4)) if D satisfies the condition (1) (resp. (f)). In particular, all singular points on
St defined over k are only x¢ and x; by a similar argument using Lemma ZT-3. Namely, S is
then of (A5 + A1), A7 + A1, A5 + Ay or 2A,-type. Here, note that there is no As + 3A4;-type
of S (see [59)).

On the other hand, if n < 4, then we have n(1) > 4 since S does not satisfy the condition
on singularities of (iii) in Theorem =39 (3). The same argument as above applies with the
role of i = 0 and 7 = 1 exchanged. O

Lemma 4.4.21. Let the notation and the assumptions be the same as above. If » = 0, then
the following assertions hold:

(1) x € 5% is not of type Ay, A3 nor Ag. Namely, n = 4,5 or 7.
(2) S is not of As + 2A1 nor Ay + 2A1-type.
(3) Sis of (A7), A5 or Ag-type.

Proof. In (1), since 7 = 0, for any singular point y other than zg on Sy, there exists a singular
point 3’ other than y on Si such that y and 3y’ are included in the same Gal(k/k)-orbit.
Moreover, since there are at most eight (—2)-curves on §E by Lemma 2T, the singular point
y € Sy is of type Ay, A or A3. Hence, we see that n > 4 since S does not satisfy the condition
of (iii) in Theorem 39 (3).

Supposing that xz¢ € St is of type Ag, let {M;}1<j<¢ be all irreducible components of the
exceptional set of the minimal resolution at xzy with the configuration as in (E=371). Letting
D be the divisor on Sy defined by D := 2(—Kg ) — (My +2My + 3Ms + 3My + 2M5 + M),
which is the divisor as in (e) in Table BZ3, we obtain a contradiction by the argument similar
to Lemma B4R (1).

In (2), otherwise, let y; and y2 be two singular points of type Ay on S¢, let {My;}1<j<n
(resp. My 1, M3 1) be all irreducible components of the exceptional set of the minimal resolu-
tion at zo (resp. yi, y2) with the configuration as in (E=377). Letting D be the divisor on §E

85



defined by D := 2(—K§E) — >4y Moj — Mi,1 — Mz, which is the divisor as in (c) in Table
A3, we obtain a contradiction by the argument similar to Lemma EZ2TS (1).

In (3), by the classification of types of weak del Pezzo surfaces (see [6Y]) combined with
the assumption that n > 4, S is of A, + sAj-type for some integer s = 0 or 2. Moreover,

we precisely see that S is then of (A7)”, As or As-type by (2) and a similar argument using
Lemma P2T°3. O

Proposition B2718 follows from Lemmas 417, B4 T8, B—219, and B2,

Conversely, for each type of weak del Pezzo surface in the list of Proposition BATH, there
exists certainly a Du Val del Pezzo surface S of rank one over k admitting a singular point of
type A,,, D, or E_ over k such that its minimal resolution S is of this type. Indeed, for each
type of weak del Pezzo surface in the list of Proposition EZ4T8, we can explicitly construct
a birational morphism 7 : S — F2 over k and the contraction ¢ : S — S of all (—2)-curves
over k such that S is of this type and S is the Du Val del Pezzo surface of rank one (see also
Subsection B3, for detailed constructions of such morphism 7). Here, the Picard number
of S is the number, which is summarized in pk(S)” in Table EZ8 according to the type of
S. Furthermore, the singularity types of all singular points on Sz, which are k-rational, are

summarized in “k-rat. sing.” in Table ER according to the type of S. As an example, in the

case d = 2 and 3As-type, S has three singular points of type Az. If pi(S) = 1, then one is
k-rational and of type A, over k, however, the others lie in the same Gal(k/k)-orbit, namely
pi(S) = pe(S) +4 =5.

At the end of this subsection, we shall present the notation in Table E8. The meanings of
“k-rat. sing.” and “pg(S)” have already been presented. “Dual graph” in Table EZ8 means the
weighted dual graph corresponding to the union of all (—2)-curves and some (—1)-curves on
S. For all types of S in the list of Table B8, the union of the (—1)-curves on S corresponding
to all vertices e in Table =8 certainly exists and is further defined over k. The existence of
these curves can be shown by using Proposition E=37T0 with suitable choices of divisors on S
except for the case d = 2 and S is of As- -type. Moreover, the other case also follows that S
admits a Mori conic bundle with exactly six singular fibers by Theorem =373 combined with
[60, Exercise 3.13]. These dual graphs will be used for the construction of cylinders on the
surfaces S in Subsection EZ3.

4.4.5 Proof for the “if” part of Theorem 39 (3)(iv)

Let the notation and assumptions be the same as in Proposition BE4TH. Then the type of S
is one of those in Table ER. In this subsection, we shall show the “if” part of Theorem 34
(3)(iv). In other words, we will explicitly construct a cylinder on S according to the type in
the list of Table ER.

Lemma 4.4.22. Let the notation and assumptions be the same as in Proposition B4T8. If
d=2or bothd=1and S is of A7 + Ay, D5+ 2A1, (A7)', D5+ 2A;, Eg or Ds-type. Then S
contains a cylinder.

Proof. In the case of d = 2, let D be the union of all (—2)-curves on S. At first, we shall deal
with the cases in which S is of (A5)’, (A3 + A1)" and As-type. For these cases, we can take a
birational morphism 7 : S — Wy, which is the compositions of the successive contractions of
the (—1)-curves corresponding to the vertices e in the weighted dual graph in Table B8 and
that of the proper transform of the branch components such that all curves corresponding to
vertices with no label in the weighted dual graph in Table B=8 are contracted by 7, according
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Table 4.8: Types of S in the “if’ part of Theorem I=39 (3)(iv)

Type Type
(k-rat. sing.) Dual graph (k-rat. sing.) Dual graph
Pk(5) Pr(S)
As + A 243 + A o—e
. N O—0—@®@—0-:++--0 _ o T |
(A5,A2) M Cs T — (A3,A3,A1) 0—0—0—®—0—0—0
8 ] M F C
245 - Az + 34, O*T .o
(Ag’Ag) O—O0—0—@—0—0—0 (Ag,Af) O—O—Oi
. M F Oy 6 M F Cy ®—0
3A2 /o—o—o (A5)/ T
)| e I
5 6 111 2 Mo
(A3+2A1)” o\ /o/o—o A2+3A1 /o—o
_ o>o0Zo - o—oZe—o0
(f?) M F CQ\Q—O ("12) MCg\.*O
(A3+A1)/ OiT As e e
(A3, AY) 0—0—o0 (A3) oo
5 My T Ms 4 My T M,
Ag M Cs A7+ Ay B -
(A7) 0o (A, ah | 7 TE
2 o --- @ 7 0—0—0—0—0—0—0
3 6-vertices 9
Eg+ Ay L © ® o L Ds + A3 o—o—ef
E— A— O O—O0—0—0 D— A—
( 6’9 2) @C% (% ( 5;} 3) 0—(‘)—0—0—0—0—0
As + Ay + A ® ® ® ® 244 ® ® ©®
— _ + o—e ® —0—0 _ _ fe) O—0—0
(A5=A2’A1) \ \ (A4,A4) l o oo
0—0—0 o—o0 —0—0—0—
9 D B ® @ G 9 G Q00O
(A?)/ .E D5+2A1 of(‘)f.E.io
(A;) ofofofc‘)fofofo (Dg) 0—ofoi
8 7 M F Cy ®—0°
Ag + Ag ® ®@ O o 6 FEg o .E
[ ] [ ] ® —O0 —O0 -
(A5, A7) N (Eg) |
—0— _ 0—0—0—0—0
; W A G
! (OONO) ® ® D -
((14145_‘1‘;1441_3 0—0—o0 0—o (DE) o—o‘—oE
50 441 \ 5 L
7 éié 6 (o] ] (@]
As O @ 6 ® ® Ay
- 0—0—0 o—o0 _ o 0—0—0
(A5) /N (A7) ® ® ® ©®
6 > o 5
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to the type of S , where Wy is a weak del Pezzo surface of degree 4 and (2A4;)--type over
k. Note that, by construction, 7 is defined over k. Moreover, the image of the reduced
curves corresponding to all vertices of this weighted dual graph via 7 is the union of either
M+ Ma+T or My + My +T1+T2, where M; and My are (—2)-curves on W, , I is a O-curve
on W4 7 and I'; and I' are (—1)-curves on W4 7 meeting transversally at a pdint Notice that
these curves on W, ¢ 5 are in one-to-one correspondence to these vertices with a label of this
weighted dual graph Since two (—2)-curves on W, AR admit a k-rational point respectively,
Wy contains a cylinder, which contains 7(D) in thls boundary (see also Subsection B=277).
Thus, S contains a cylinder U which contains D in this boundary. Therefore, we see that S
contains a cylinder o(U) ~ U.

In what follows, we shall deal with the remaining cases. For all remaining cases, we
can take a birational morphism 7 : S = Fy, which is the compositions of the successive
contractions of the (—1)-curves corresponding to the vertices e in the weighted dual graph
in Table I8 and that of the proper transform of the branch components such that all curves
corresponding to vertices with no label in the weighted dual graph in Table B8 are contracted
by 7, according to the type of S. Note that, by construction, 7 is defined over k. Moreover,
the image of the reduced curves corresponding to all vertices of this weighted dual graph via
7 is the union of either M + F' 4+ Cs or M + ('3, where M and F' are the minimal section and
a closed fiber of the structure morphism Fo — IP’,lg over k, respectively, and C), is a rational
curve on Fy with C,, ~ M +nF for n = 2, 3. Notice that these curves on [Fy are in one-to-one
correspondence to these vertices with a label of this weighted dual graph. For all cases, o
contains a cylinder, whose boundary includes the above union of curves, by Lemma P52.
Thus, we see that S contains a cylinder by an argument similar to the above.

In (2), for all cases, the weighted dual graph in Table &8 corresponding to the type of
S contains a vertex with a label written E. This vertex corresponds to a (—1)-curve on Sg,
which is defined over k. Letting E be this (—=1)-curve on S, we can take the contraction
7:8 = W, of E over k, so that W3 is a weak del Pezzo surface of degree 2, whose type is one
of those in the list of Table B8, moreover, the point 7(FE ) lies on a curve, which corresponds
to a vertex with no label in the weighted dual graph in Table B8 according to the type of Wa.
Thus, we see that S contains a cylinder by using (1). O

In order to deal with all remaining cases, we shall recall how to construct cylinders in del
Pezzo surfaces with Du Val smgularltles found in [, §§4.2-4.3]. More precisely, we construct
two birational morphisms g : S — S and h: S — ]P’2 over k (but not necessarily defined over

k) in such a way that there exists a suitable cyhnder U in P2, which would be preserved via
goh™1: IP% --3» §E and (goh™1)(U)NSupp(N) = ), where N is the union of all (—2)-curves on
§E' In particular, Sy contains the cylinder (cogoh™)(U). In the following lemmas (Lemmas
A3, B425 and B2428), in order to show that above argument is still working well over k,
we shall prove that g and h are defined over k. In the proofs for Lemmas BE4235 and B=4728,
we look at the corresponding to weighted dual graphs in Table B8 and [T2, Table 1]. We note
that the numbering something like (¥) in Table B8 corresponds to that in [I2, Table 1].

Lemma 4.4.23. Let the notation and assumptions be the same as in Proposition B2718. If
d=1and S is of Eg+ Ay, A5 + As + Ay, 2A4 or As + As-type, then S contains a cylinder.

Proof. For all cases, we see that any (—2)-curve on §E is defined over k by the configuration
of singular points on Sy (see also Table E8). In particular, any point meeting two (—2)-curves
on St is also defined over k. Then we can construct a birational morphism g : S — S, whose
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S is that as in [I2, §§4.2] according to the type of S, defined over k. Indeed, we shall consider
a sequence of some blow-ups at some k-rational points starting at an intersection point of two
(—2)-curves on §E (according to the type of S ) and including infinitely near points such that
we obtain the configuration of “Construction” in [, Table 1] according to the types of S.
Moreover, we immediately have a birational morphism A : SE — IP’%, which plays same role as
h in |2, §§4.2]. This h is clearly defined over k. Therefore, we see that S contains a cylinder.
O

Remark 4.4.24. In Lemma B2723 if S is of Eg + Ag, As + Az + Ay or 2A4-type, then we
could have also inferred the same result from the fact that g : S — S and h : S — ]P’% are
clearly defined over k, where g and h are those as in [I2, §§4.2]. Indeed, for these types, all
(—=1)-curves and (—2)-curves on Sj are defined over k since p(S) = pz(S%) = 9.

Lemma 4.4.25. Let the notation and assumptions be the same as in Proposition B4T8. If
d=1and S is of (45 + A1)’ or As-type, then S contains a cylinder.

Proof. Let M; be the smooth rational curve on §E corresponding to the vertex with a label
written (7) in the weighted dual graph of Table BR. There exists a (—1)-curve E on §E, which
is defined over k, such that (E - M;) = 01, + 06, by Lemma B34 (1). Hence, we obtain the
birational morphism 7 : S — Wy over k with the reduced exceptional divisor My + Ms + E’,
so that Wy is a weak del Pezzo surface of degree 4 and (2A;)-type. Notice that 7.(M2)
and 7, (M7) (vesp. 7.(M1) and 7.(Mg)) are (—2)-curves (resp. (—1)-curves) on W, z. By the
configuration of W, z, we know that 7.(M7);; meets exactly four (—1)-curves such that one is
7«(Ms)z. Let E be the union of three (—1)-curves meeting 7, (M7); other than 7,(Mg); on
W4,E' Noting that E is defined over k, so is 7, '(F). Moreover, all irreducible components

of 7, 1(E) consist of three (—1)-curve on §E corresponding to curves with a label written (8),
9, in [2, Table 1]. Thus, we can construct two birational morphisms g : S — §E and
h:S— IP’%, which play same role as in g and h in [12, §§4.2], defined over k (see the following
weighted dual graph):

®
My Mo M: My M, _3 L1 Lo _ h« (L hs«(L
(As + Ay)'-type : o—o—o o—o I @7%)7 o— 017.27047@ N (01) (02)
\ /1IN \ /1IN 1 1
oO—e o o o c— e o o o
My Ms S~~~ ® 6 ®O®O
o H(E)
® @
My My M3 Mz Mg ¢ @O @ -3 L1 L2 —4 ® p h«(L1) h«(L2)
A5-type; 0—0—o0 0o—0 ¢ 0—0—0—0——0—0 —3 o
/ \ /1IN / \ I\ 1 1
[} e o o o [ ] [} o 0 o
My Ms >~~~ @ ® ®O0
L2

Here, the numbering something like (¥) in the above graph corresponds to that in [, Table
1]. Therefore, we see that S contains a cylinder. O

Lemma 4.4.26. Let the notation and assumptions be the same as in Proposition B2718. If
d=1 and S is of A4-type, then S contains a cylinder.

Proof. Let M; be the (—2)-curve on §E corresponding to the vertex with a label written (i)
in the weighted dual graph of Table E. There exists a (—1)-curve E on Sy, which is defined
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over k, such that (E - M;) = &1; + d; by Lemma B34 (1). Hence, we have the contraction

1S = Wy of E over k, so that W5 is a weak del Pezzo surface of degree 2 and As-type. Notice
that 71 +(M7) and 11 «(Mg) (resp. T1«(M;) and 71 ,+(Ms)) are (—2)-curves (resp. (—1)-curves)
on W, . By the configuration of W, ¢, we know that 71,.(Ms) meets exactly six (—1)-curves
such that one is the 7 «(My). Let 'E be the union of five (—1)-curves meeting T (Mg)z
other than 71 ,(My); on W, ¢ 5 Noting that E is defined over k, so is 7y "H(E). Moreover, all

irreducible components of 7y, (E) consist of five (—1)-curves on Sk corresponding to curves
with a label written (9)-@3 in [T2, Table 1]. On the other hand, we have the contraction

: Wy — Fy of 71 «(My) + E over k. Set M := 7.(M7), Fy := 17.(Ms) and Cs := 7, (My),
Where T :=T90T] : S — Wy — Fy. Then M and F are the minimal section and a closed
fiber of the structure morphism Fy — IF’,{T over k, moreover, ('3 is a rational curve on Fy with
C3 ~ M + 3Fp (cf. Lemma 8222 (1)). Since (Fp-C3) = 1, Fy and C3 meet transversely at a
point, say p, which is k-rational. Moreover, we see that there exists a unique rational curve Co
on [Fy such that Cy ~ M 4 2F and i(C2, Cs3; p) = 3, where i(C2, C3; p) is the local intersection
multiplicity at p of Cy and C3. Notice that Cs is defined over k. Moreover, 7, (Cs), which is
also defined over k, corresponds to the curve with a label written (5) in [I2, Table 1]. Thus,
we can construct two birational morphisms ¢ : S — §E and h: S — IP’%, which play same role
as in g and h in |2, §§4.2], defined over k (see the following weighted dual graph):

My Mg M7 Mg 4 O @ @ @ L1 L -6 @ ©® p h«(L1) ha(L2)
o 0—0—0 ¢ 0—-0—-0—0—®—0—0—0—0 —% O o
PZANN -3 | 3 1IN 1 1
EEEE ° R
\ﬁ?—)" ® OOLOOB
Tf,*E

Here, the numbering something like (¥) in the above graph corresponds to that in [I2, Table
1]. Therefore, we see that S contains a cylinder. a

The “if” part of Theorem =39 (3)(iv) follows from Proposition B4718 and Lemmas B-4-27,
0473 479 and 4789

4.5 Examples

In this section, we shall present some examples of Du Val del Pezzo surfaces of Picard rank
one and canonical del Pezzo fibrations.

Example 4.5.1. Put ¢ := _1%‘/?3 and let S be the cubic surface over Q defined by:
S = (122%w — 22° — y* — 4w’ + 6zyw = 0) C P(?@ = Proj(Q[z,y, z,w])

Then Sg has exactly three singular points [V/2¢7: ¥/4¢%:0:1] € ]P% of type Ay for i =0,1,2

(see also Remark E57). Let o : S — S be the minimal resolution over Q. Then there exists
the birational morphism 7 : S — Sg over QQ such that Sg is a smooth del Pezzo surface of

degree 6. Hence, Sgg has six (—1)-curves, say {E;}1<i<6. Moreover, the proper transform of

1

these (—1)-curve by 7 o0~ are defined by the following equations:

alia =y, 2= £220(C ~ 1)z + V2
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for i = 0,1,2. Since all (—1)-curves on 567@ lie in the same Gal(Q/Q)-orbit, Sg is Q-minimal,
in particular, we obtain pg(Ss) = 1. By construction of ¢ and 7, we also obtain pg(S) = 1.
Thus, S does not contain any cylinder by Theorem =39 (2). Indeed, Sg does not allow any
singular point which is Q-rational (see also Table ETl). On the other hand, we know that Sg
contains a cylinder by Theorem IT4. This implies that any cylinder on S@ is not defined
over Q.

Remark 4.5.2. Let S and ¢ be those as in Example E51 and let A be the square matrix of
order 4 defined by:

V2 V2 V2

A | VA VA YAC
“l o o0 o0
11 1

€ GL(4;Q).

S W o o

Then we obtain the projective transformation ¢4 : IP% = IP% associated to A and we see:
¥4 (Sg) = (W@ +y+2) +2yz = 0) C PL = Proj(Qlz, y, 2, w)).

It is easily to see that @21(3@) has exactly three singular points [1:0:0:0],[0:1:0:0],[0:0:1:
0] € IE%, which are of type Aj.

Example 4.5.3. Let S be the complete intersection of two quadrics over R in }P’%R as follows:
S = (:lc2 + 2 +wo = 2w+ wu+ vz = 0) C Pg = Proj(R[z, y, z, w,v]).

Then S is a Du Val del Pezzo surface of degree 4 such that S¢ has exactly three singular
points py := [1:44/=1:0:0:0] and p := [0:0:1:0:0] in P, which are of type A;. Since
p+ and p_ lie in the same Gal(C/R)-orbit, we see pr(S) =1 (see Subsection A=31). Hence, S
contains a cylinder if and only if p € S is of type A]L over k, by Theorem =39 (2). However,
p € S is actually of type Af’ over k, that is, S does not contain any cylinder. Indeed, the
exceptional set by the minimal resolution at p does not have any R-rational point since it can
be written locally as follows:

(u? +v? +1=0) C A% = Spec(R[u, v])
for some two parameters u and v.
In what follows, we treat three examples of generically canonical del Pezzo fibrations.

Example 4.5.4. Let f : X — Y be a generically canonical del Pezzo fibration of degree 3
or 4 over a curve Y and let X, be the generic fiber of f. For simplicity, we put S := X,
and k := C(Y'). Assuming that S; has a singular point x of type A; defined over k, and let
o : S — S be the minimal resolution at z. Since z is defined over k, so is the exceptional
curve E := o~ !(z). Note that E. is a (—2)-curve. Now, we see that E has a k-rational point
since k = C(Y') is a Cy-field by the Tsen’s theorem (see also [29, Theorem 3.12]). In other
words, the singular point x € S is always of type Af over k (compare the example in Example
A53). Therefore, by Theorem 39 (2) combined with the above observation, we obtain that

f admits a vertical cylinder if and only if Xn ) has a singular point defined over C(Y').
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Example 4.5.5. Note that there exists a Du Val del Pezzo surface of Picard rank one with
degree 1,...,6 or 8 such that Sing(S) # 0 (see, e.g., [66]). Let S be a Du Val del Pezzo surface
of Picard rank one with degree d € {1,...,6,8} over C such that Sing(S) # 0, let Y be an
algebraic variety over C and let X be the direct product S x Y. Then the second projection
[+ X — Y is a generically canonical del Pezzo fibration of degree d. Let X, be the generic
fiber of f. For simplicity, put k := C(Y’). Then all (—1)-curves and (—2)-curves on X,  are
defined over k. Therefore, f does not admit any vertical cylinder if and only if d = 1 and
X iy allows only singular points of types Ay, Aa, A3, Dy by Theorem IZ39. This condition
is actually equivalent to the condition that S does not contain any cylinder (see [5, Theorem
1.6]).

Example 4.5.6. Let & be a discrete valuation ring of the rational function field C(¢) such
that the maximal ideal of & is generated by ¢, and let X be the 3-fold variety over C defined
by:

X = (t"w? 4 2%y + 223 = 0) C Pp(1,1,1,2) = Proj(Ox, y, z,w)]).

Then we obtain the structure morphism f : X — Spec(€) as an O-scheme. Letting 1 be the
generic point on Spec(?), the generic fiber X, of f can be written as follows:

X, = (t"w? + 2%y + 22° = 0) C Pe)(1,1,1,2) = Proj(C(t) [z, y, 2, w]).

By Example 2310, X, is a Du Val del Pezzo surface of rank one defined over C(Y') and of
degree 2, moreover, X, contains a cylinder if and only if n is even. Hence, f is a generically
canonical del Pezzo fibration of degree 2, furthermore, f admits a vertical cylinder if and only
if n is even.

92



Chapter 5

Compactifications of the affine
plane over non-closed fields

In this chapter, we will prove Theorem [C3TA. Moreover, we will consider the application of
this theorem. Throughout this chapter except for Section b3, let k be a field of characteristic
ZEro.

5.1 Compactifications of the affine plane

Let V be a normal projective surface defined over k and let D be a reduced effective divi-
sor on V. Then we say that the pair (V,D) is a compactification of the affine plane A? if
V\Supp(D) ~ Az. Moreover, for a compactification (V, D) of Ai, we say that D is called the
boundary divisor. In this section, we prepare some facts about compactifications of the affine
plane. For any compactification (V, D) of A2, we notice that D has no cycle by Lemma 2253
since V\Supp(D) is the cylinder in V. Furthermore, we obtain the following lemma:

Lemma 5.1.1. For any compactification (V, D) of Ai over k, we have §D = pp(V).

Proof. Let us put n := D and U := V\Supp(D). Let Ci,...,C, be all irreducible compo-
nents of D, let G be a free abelian group generated by Ci,...,C,, and let f : G — CI(V)
be the group homomorphism defined by f(C;) := [C;]. Then f is surjective by virtue of
Cl(U) ~ Pic(U) = 0 (cf. [40, Lemma 4.6]). In what follows, we shall show that f is injective.
Assume that a Weil divisor a;C1+- - -+ a,C,, is a principal divisor div(f) for some f € k(V)*.
Since (1, . .., C, are included in Supp(D), we have a1C; +- - -+a,Cp|y = 0. Hence, f|y € R*,
where R is the coordinate ring of U. Moreover, we see f € k™ by virtue of R* = k*. Namely,
div(f) = 0. This implies that f is injective. Thus, we have a group isomorphism G ~ Cl(V).
In particular, n = pg(V). O

In this paper, we will mainly deal with the following special kinds of compactifications of
the affine plane:

Definition 5.1.2. Let (S,A) be a compactification of the affine plane A2 over k. We say
that the pair (S,A) is an lc compactification of the affine plane A% over k if S is an lc del
Pezzo surface of rank one over k such that Sing(S%) # 0.

The following lemma will be used in Subsection b=2=3:
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Lemma 5.1.3. Assume that k is algebraically closed. For any lc compactification (S, A) of
the affine plane A? over k, then #Sing(S) < 2.

Proof. See [45, Lemma 4.2]. O

In what follows, we recall minimal normal compactifications of the affine plane.

Definition 5.1.4. Assume that k is algebraically closed. Let (V, D) be a compactification
of the affine plane Ai over k such that V' is smooth. Then this pair (V, D) is a minimal
normal compactification of the affine plane Ai if D is an SNC-divisor and any (—1)-curve E
in Supp(D) satisfies (E- D — E) > 3.

Morrow classified the minimal normal compactifications of the affine plane when the base
field is C ([567]). In this paper, we will mainly use the following facts:

Lemma 5.1.5. Assume that k is algebraically closed. Let (V,D) be a minimal normal
compactification of the affine plane A% over k. Then the following assertions hold:

(1) Any irreducible component of D is a smooth rational curve and the dual graph of D is
a linear chain. In particular, Supp(D) does not contain any (—1)-curve on V.

(2) If D = 1, then (D)% = 1.
(3) If D = 2, then D contains at least one irreducible component, say I, satisfying (I')? = 0.
(4) If 4D > 3, then D contains exactly two irreducible components, say I'g and I';., satisfying
(Tg)2 =0, (T4)?>0and (Ty-T'y) = 1.
Proof. See [517]. O

Furthermore, [88, Theorem 1.2] proves that the converse of Morrow’s result is true. More
precisely, the following result holds:

Lemma 5.1.6. Assume that k is algebraically closed. Let V' be a smooth protective surface
defined over k and let D be a reduced divisor on V such that V\Supp(D) is affine and each
irreducible component of D is a rational curve. If the weighted dual graph of D is the same
as that of the boundary divisor of a minimal normal compactification of the affine plane Ai,
then (V, D) is a minimal normal compactification of AZ.

Proof. See [36]. O

5.2 Properties of twigs

Throughout this section, we always assume that all varieties are defined over an algebraically
closed field of characteristic zero.

5.2.1 Some definitions of twigs

Let D be an SNC-divisor on a smooth projective surface. Let A be the weighted dual graph
of D. If A is given by the following graph, then A is called the twig and we write this weighted
dual graph [m1,...,m,] as A:

In this subsection, we will present some definitions for the twig. The following two definitions
are based on [24] (see also [42]):
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Definition 5.2.1. Let A = [mq,...,m,] be a twig. Then the twig [m,,m,_1,...,m1] is
called the transposal of A and denoted by 'A. We define also A := [ma,...,m,] and A =
[m1,...,m._1], where we put A = A = () if r = 1. We say that A is admissible if m; > 2 for
any @ = 1,...,r. In what follows, we assume that A is admissible. Then d(A) denotes the
absolute value of the determinant of the intersection matrix corresponding to A and is simply
called the determinant of A, where we put d()) = 1. We say that e(A) := d(A)/d(A) is the
inductance of A. By [24, Corollary (3.8)], e defines a one-to-one correspondence from the set
of all admissible twigs to the set of rational numbers in the interval (0,1). Hence, there exists
uniquely an admissible twig A*, whose inductance is equal to 1 — e(*A4), so that we call the
admissible twig A* the adjoint of A.

Example 5.2.2. Consider two admissible twigs A := [2,4] and B := [2,2,3]. Then d(*A) =
d(A) = 7 and d(*A) = 2, so that e(*A) = 2. Moreover, d(B) = 7 and d(B) = 5, namely,
e(B) =2 =1—¢("'A). Hence, B = A*.

Furthermore, we will use the following notation in this article:

Definition 5.2.3. (1) Letting Ay,..., As be twigs given by A; = [my1,...,m;,,] for i =
1,...,s, we write [Aq,..., Agl == [m11, .., M1, .-... JMs 1y e s Mg ]

(2) For a positive integer t, we write [t X 2] :=[2,...,2].

t-times
(3) For a positive integer m and a non-negative integer ¢, we write two twigs L(m;t) and

R(m;t) respectively as follows:

o JEx 2 m]] ift>0 [ m]tx2)] ift>0
L(m;t) ._{ ] gi_q @ B ._{ ] gro0 -

5.2.2 Twigs contracted to single smooth rational curves

Let D be an SNC-divisor on a smooth projective surface such that any irreducible component
of D is a rational curve. We recall the following proposition for later use in Subsection h=23.

Proposition 5.2.4. Let D be the same as above. Assume that the weighted dual graph of
D is the twig [A, [1], B] for some admissible twigs A and B. Then D can be contracted to a
0-curve if and only if B = A*.

Proof. See, [24, Proposition (4.7)]. |

In Proposition bB224, since the adjoint of any admissible twig is unique, note that B is
uniquely determined according to A. By applying Proposition 5224, we obtain the following
proposition:

Proposition 5.2.5. Let D be the same as above. Assume that the weighted dual graph of
D is the twig [[m], A, [1], B] for some integer m and admissible twigs A and B. Then D can
be contracted to the twig [m, 1] if and only if B = A*.

Proof. Since A is admissible, notice that A can be uniquely denoted by [L(my;t,), ..., L(m;t1)]
for some my > 2, m; >3 (i > 1) and t; > 0 (1 < j <r). By the induction on r, we see that
D can be contracted to the twig [m, 1] if and only if B can be written as follows:

 [m1 —2) x 2] ifr=1
B—{ [ —2) 2, Rty + 3:ms —3),... Rty + 3my—3)] ifr>1 - (2D
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Let D’ be an SNC-divisor on a smooth projective surface such that the weighted dual graph
of D’ is the twig [A, [1], B'], where B’ is the admissible twig defined by:

po{ lim =22l -2 T
’ [[(m1—2) x2],R(t1 +3;ma —3),...,R(tr—1;my — 3),[t, —2]] ifr>1

Then we easily see that D’ can be contracted to a O-curve by induction on r. Hence, we
have B’ = A* by Proposition BZ4. In particular, we see that B is as in (6220) if and only if
B =B = A*. O

Definition 5.2.6. Let A = [L(m;;t,),...,L(mi;t1)] be an admissible twig, m; > 2, m; > 3
(¢>1)and t; >0 (1 <j <r). In this article, we then put my4 :=t, + 3.

Remark 5.2.7. Let A be an admissible twig. By definition of m4 and Lemma B3, the twig
[[m], A, [1], A*, [m4]] can be contracted to the twig [m, 1, 2] for an arbitrary integer m.

Example 5.2.8. Consider the admissible twig A := [2,4]. By definition, we know m4 = 4.
Meanwhile, since A* = [2,2,3], we obtain A* = [2,2]. For an arbitrary integer m, the twig
[[m], A, [1], A*, [ma]] = [m,2,4,1,2,2,4] is then contracted to [m,1,2] as follows:

(m,2,4,1,2,2,4] = [m,2,3,1,2,4] — [m,2,2,1,4] — [m,2,1,3] — [m,1,2].

5.2.3 Twigs as boundary divisors of the affine plane

In this subsection, let (17, 15) be a compactification of the affine plane A2 such that Vis a
smooth projective surface over k and the weighted dual graph of D is the twig [mq,...,my]
with m; > 1 for any ¢ = 1,...,r. By Lemma BT3, D consists of irreducible components
{Ci}1<i<r such that C; is a (—m;)-curve for i = 1,...,r, moreover, we see that (V,D) is
not a minimal normal compactification of A2. Let v : (V,D) — (V,D) be a sequence of
contractions of (—1)-curves and subsequently (smoothly) contractible curves in Supp(D) such
that the pair (V, D) is a minimal normal compactification of A2, where D := v, (D).

Lemma 5.2.9. With the notation as above, then the following three assertions hold:
(1) r>3.
(2) There exists at least one integer e with 2 < e <r — 1 such that m, = 1.
(3) If r = 3, then we obtain m; = 1 or mgz = 1.
Proof. In (1), supposing n < 2, we can easily obtain a contradiction by Lemma BT3.
In (2), noticing r > 3 by (1), suppose m; > 2 for any i = 2,...,r — 1. Since (V, D)
is not a minimal normal compactification of A%, we obtain m; = 1 or m, = 1. Then D
can be contracted to the twig [m] for some non-negative integer m or an admissible twig by
straightforward calculation. It contradicts Lemma bT3.
In (3), we note my = 1 by (2). Hence, D can be contacted to the twig [m; — 1,ms — 1].
By Lemma T3 (2) and (3), we see m; —1 =0 or m3 — 1 = 0. This completes the proof. O
Lemma 5.2.10. With the notation as above, then the following two assertions hold:

(1) Assume that there exists exactly one integer e with 1 < e < r — 1 such that m; = 1 if
and only if ¢ = e or e + 1. Then we obtain r = 3.
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(2) Assume that r > 4, m; = m,;1—; for any i and there exists exactly one integer e with
1 < e < 5 such that m; = 1 if and only if i = e, e+ 1, r —e or r+1 —e. Then we obtain

r = 4. Namely, the weighted dual graph of D is [1,1,1,1].

Proof. In (1), notice that » > 3 by Lemma 5279 (1). We may assume e+ 1 < r by symmetry.
Moreover, we can assume that v starts with the contraction of ée. Then we see that 1D > 2,
and any irreducible component of D with self-intersection number > 0 is only C' := y*(6~’6+1).
Thus, we have 4D = 2 and (C)? = 0 by Lemma 613. This implies 7 = 3 by virtue of
4D — D = (C)? — (Corr)? = 1. o

In (2), we can assume that v starts with the contraction of C¢ 4+ Cr41—. Then we see
that D > 2, and any irreducible component of D with self-intersection number > 0 is only

Ci = Vi(Cey1) or Cy = v«(Cr_¢). Moreover, by mey; = my_. and construction of v, we
obtain (C1)% = (Cy)2. Thus, we have 4D = 2 and (C1)? = (Co)? = 0 by Lemma BET3. This
implies 7 = 4 by virtue of D — #D = (C1)? — (Cey1)? + (C2)? — (Cr_e)? = 2. O

Lemma 52710 (1) can be generalized as follows:

Lemma 5.2.11. Let (V/, D) be a compactification of the affine plane A? such that V'is a
smooth projective surface and D’ is an SNC-divisor. Assume that any irreducible component
of D' has self-intersection number < —2 except for exactly two irreducible components Fj
and Ey such that (E1)? = (F2)? = —1 and (F; - E3) = 1. Then the weighted dual graph of
D' is the twig [1,1,m] for some integer m > 2.

Proof. By Lemma 613 (1), we note (E;-D'— E;) < 2fori =1,2. Let v/ : (V/,D') — (V', D)
be a sequence of contractions of (—1)-curves and subsequently (smoothly) contractible curves
in Supp(ﬁ’ ) such that the pair (V’,D’) is a minimal normal compactification of A2, where
D' := /(D). By Lemma EI3 (1), we note (E; - D' — E;) < 2 for i = 1,2. Noting that D’
is connected and has no cycle by Lemma P53, the divisor D' — E can be decomposed into
connected components 5/1 + ]_3’2 such that (]5; - Ej) =0 for i,j = 1,2 with i # j, where it is
not necessarily lN); # 0 for i = 1,2. Since we can assume that v/ starts with the contraction of
By (vesp. Es), the weighted dual graph of v/.(D) + Es) (resp. v.(D} + E1)) is then a twig by
Lemma 5TH (1). In particular, the weighted dual graph of D'is a twig. Hence, this assertion
follows from Lemma 6210 (1). O

Lemma 5.2.12. With the notation as above, assume that r = §D is odd, m; = m,41—; for
any 4, and there exists exactly one integer e with 1 < e < r’ such that m; = 1 if and only if

i=eorr+1—e, where r' := % Then the following assertions hold:
(1) e #£7".
(2) If e = ' —1, then we obtain m,» =r—2and m; =2 for any i = 1,...,r with |’ —i| > 1,

namely, the weighted dual graph of D can be denoted by [L(1;7/ —2), [r—2], R(1; 7' —2)].

Proof. In (1), suppose e = r’. Noting r > 5 by Lemma 529, the weighted dual graph of the

contraction of Cys is the twig [my,...,mpy_9,mp_1 — 1, mpiq — 1, mpqo, ..., my], which is
not admissible by Lemma BTH. Hence, we obtain m, 41 — 1 = 1, which contradicts Lemma
6210 (1).

In (2), it is proved by the induction on r, where we note r > 5 by Lemma 529. Assume
r = 5. By assumption, we have mg = my4 = 1. Hence, we obtain m; = ms = 2 and m3 = 3
by Lemma BZ9 (3) since D can be contracted to the twig [m; — 1,m3 — 2, m5 — 1]. Assume
r > 5. Then the weighted dual graph of the contraction of C —1+ 5’,,/“ on D is the twig
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[ma,...,mp_g,mp_o—1,mp —2,mpuyo—1,mus3,...,my]. Then we obtain mpi1o —1 =1
by virtue of (1) and Lemma BT (4). Moreover, we obtain m,» —2 > 1. Indeed, otherwise,

by contracting further the direct image of C,/, we have [mq,...,my_g,mp_o9 — 2, My 49 —
2,mp43,...,my|, where mu 1o —2 = 0. However, this contradicts Lemma B3 (4). By the
inductive hypothesis, we thus obtain m,» —2 =r — 2 and m; = 2 for any ¢ = 1,...,r with
|r" —i| > 2. This completes the proof. O

Finally, we shall prepare the following proposition, which will play an important role in
Section B4

Proposition 5.2.13. With the notation as above, then the following assertions hold:

(1) Assume that there exists exactly one integer e satisfying m. = 1. Then the weighted
dual graph of D can be denoted by [A, [1], A*, [m]] for some admissible twig A.

(2) Assume that r = ﬁf? is even, m; = my41—; for any i, and there exists exactly one integer
e with 1 < e < § such that m; = 1 if and only if i = e or r + 1 — e. Then the weighted

dual graph of D can be denoted by [f(A*), [1],%4, A, [1], A*] for some admissible twig A.

(3) Assume that r = ﬁf) is odd, m; = m,4+1—; for any 4, and there exist exactly one integer
e with 1 < e < 7’ such that m; = 1 if and only if i = e or 7 + 1 — e, where 1’ := %
Then the weighted dual graph of D can be denoted by one of the following:

o [L(1;7" —2),[r—2], R(1;7" — 2)].

o [L(ma;t), (A*),[1],1A, [2t + 3], A, [1], A*, R(m;t)] for some admissible twig A,
where m 4 is as in Definition b=28 and ¢ is a non-negative integer.

Proof. For each case, we shall prove this proposition by the induction on r.

In (~1)7 notice r > 4 by Lemma b=29. Assume r = 4. We may assume mo = 1 by symmetry.
Since D can be contracted to the twig [m; —1,m3—1,my|, we obtain m; = ms = 2 by Lemma
629 (3). Thus, [m1,...,m4] = [2,1,2,m4] = [[2], [1], [2]*, [4]], where note [2]* = [2]. Assume
r > 4. Noting 1 < e < r by Lemma 629 (2), the weighted dual graph of the contraction of
C. on D is the twig B’ := [mq,...,Me—2,Me—1 — 1, Mer1 — 1,Mey2,...,my]. Then we obtain
Me—1—1=1o0r mer; —1 =1 since B’ is not admissible by Lemma 6145. Moreover, we also
obtain me—1 —1 > 1 or mey1 — 1 > 1 by Lemma B210 (1). By the inductive hypothesis, B’
can denote [A’,[1],(A")*, [m]] for some an admissible twig A’. We may assume m, = m by
symmetry. Since the twig [A’, [1], (A)*] can be contracted to the twig [0] by Lemma 524, so
is [m1,...,my—1]. Hence, [m1,...,m,| = [A,[1], A*, [m,]], where A :=[mq,...,me_1].

In (2), notice r > 6 by Lemmas b9 (2) and bZT0 (1). Assume 7 = 6. Then we
have mg = ms = 1 by Lemmas 6229 (2) and 62210 (1). Since D can be contracted to the
twig [m1 — 1,m3 — 1,myq — 1, mg — 1], which is not admissible by Lemma 513, we obtain
mi = m3 = my = mg = 2 by Lemmas 629 (2) and 6210 (1). Thus, [mq,...,mg] =
2,1,2,2,1,2] = [*([2]*), [1],%]2], [2],[1],[2]*]. Assume r > 6. We put ¢’ := r + 1 — ¢ for
simplicity. Note 1 < e and €’ —e > 1 by Lemmas 529 (2) and 6210 (1). Since the weighted
dual graph of the contraction of C, 4+ C, on D is a non-admissible twig, say B’, by the similar
argument to (1), we obtain me_1 — 1 = 1 or mes1 — 1 = 1. Furthermore, we also obtain
Me—1 —1 > 1o0r meyr —1 > 1 by Lemma 522710 (2). Meanwhile, we note the assumption
m; = mypy1—; for any ¢ = 1,...,r, so that B’ satisfies the hypothesis of (2). Thus, we can
show this assertion by the inductive hypothesis combined with a similar argument to (1).

In (3), notice » > 5 by Lemma 629 (3). Assume r = 5. Then we obtain mg = my =1
by Lemmas 57279 (2) and B22T2 (1). Hence, it follows from Lemma 52712 (2). Assume r = 7.
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Then we have either my = 1 or m3 = 1 by Lemmas B29 (2) and b2212 (1). If m3 = 1, then
it follows from Lemma 52212 (2). Thus, it is enough to consider the case of mgy = 1. Since D
can be contracted to the twig [m1 — 1, m3 — 1, myg, ms — 1, m7 — 1], we obtain m; = my = 3,
ms = mg = 2 and my = 3 by Lemmas 657279 (2) and 522710 (2) combined with the result of r =
5. Namely, [mq,...,m7] = [3,1,2,3,2,1,3] = [L(3;0),"([2]*), [1],"[2], [3], 2], [1], [2]*, R(3; 0)],
where note [2]* = () and mjy = 3 (see Definition b28). Assume r > 7. We put € :=r+1—e
for simplicity. If e = 7/ — 1, then it follows from Lemma 52712 (2). Thus, it is enough to
consider the case of ¢ < r’—1. Namely, ¢/ —e > 1. Letting B’ be the weighted dual graph of the
contraction of C~'e +C~'e/ on D is a non-admissible twig, we see that B’ satisfies the hypothesis of
(3) by a similar argument to (2). If B’ = [L(1;7'—3),[r—4], R(1;r' —3)], then [my,...,m,] =
[L(3;7" — 4),[1],[2], [ — 4],[2],[1], R(3;7" — 4)] by the assumption e < r’ — 1, where we note
r—4 =2(r" —4) + 3. In what follows, we assume that B’ = [L(ma;t),"(A""), [1],*A’, [2t +
3], A’ [1], A, R(m as; t)] for some admissible twig A’, where t is a non-negative integer. Hence,
the twig [my, ..., my_4_1] can be contracted to [[2t+3], A", [1], A”"]. Since [[2¢+3], A’,[1], A”"]
can be contracted to [2¢+3, 1] by Lemma 523, so is [m, ..., m,—¢—1]. Hence, by using Lemma
621 again, we obtain [mg/,...,m,_—1] = [[2t + 3], A, [1], A*], where A := [mpr11,...,me_1].
Meanwhile, since the twig [m,, ..., m,| = [[2t+3], A, [1], A*, [mr—¢, . . ., m,]] can be contracted
o [[2t + 3,1], R(2; )], we know [my_¢,...,m;| = R(ma;t) (cf. Remark 5277). By symmetry,
we thus obtain [mq,...,m.] = [L(ma;t), (A%),[1],1A, [2t + 3], A, [1], A%, R(ma; t)]. O

By Proposition B22T3 combined with Propositions b4 and b3, if D satisfies the as-
sumptions of Proposition B2T3 (1) (resp. (2), (3)), then we can take the birational morphism
v:V — V with V\Supp(D) ~ V\Supp(D) ~ AQ such that V ~ F,, for some m > 2 (resp.
V ~ IP’1 X IF’l V ~ IP’Z) and the weighted dual graph of D is the twig [0, m] (resp. [0,0], [—1]),

where D = I/*(D)

5.3 Proof of Theorem (1) and (2)

Let (S,A) be an lc compactification of the affine plane A? over k (see Definition 512, for
this definition). Let {C;}i1<i<n be all irreducible components of the divisor A; on Sz. By
Lemma BTD, we see that n = pr(S7), and C1,...,C, lie in the same Gal(k/k) orbit. Let
g S — S be the minimal resolution defined over k let A be the divisor on S defined by
A=oc *(A)req. and let C’ be the proper transform of C; by o for i =1,...,n. Let pu: S— S
be the composite of the shortest sequence of blow-ups such that Ak is an SNC-divisor (see
also [A5, Lemma 4.1]), where A := ;*(A)eq.. Notice that p is defined over k. Indeed, p is
a composite of some blow-ups of a Gal(k/k)-orbit of one point. Hence, the compactification
(S , A) of the affine plane is defined over k. Now, let Au be the reduced exceptional divisor of
uz let A, be the proper transform of the reduced exceptional divisor of oy by pz, and let G
be the proper transform of 6’2 by ug for i = 1,...,n. Namely, AE = Au + A, + Dy C;.

With the same notation as above, the purpose of this section is to prove Theorem 312
(1) and (2). For these assertions, the case of n = 1 is mostly based on the argument of [42, A5,
on the other hand, in order to deal with the case of n > 2, we need to observe the behavior
of the Galois group Gal(k/k) acting naturally on SE Hence, we shall treat such observations
in Subsection B3, and we shall show Theorem I3T2 (1) and (2) in Subsections B32 and
B33, respectively.
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5.3.1 Some observations in case of n > 2

Let the notation be the same as at beginning Section b=3, assume further that n > 2.
By using Lemma B3 and construction of u, the following lemma is obvious:

Lemma 5.3.1. With the notation and assumptions as above, the following two assertions
hold:

(1) Any irreducible component of A, (resp. Au) has self-intersection number < —2 (resp.
_1)

(2) Assume that p # id. Then, A contains at least one (—1)-curve. Moreover, any (—1)-
curve E on A ‘does not meet any (—1)-curve on A,,, and satisfies both (E-A - E) >3
and > ;' (E-C;) > 0.

By considering the behavior of the Gal(k/k)-action, we obtain the following lemma:

Lemma 5.3.2. With the notation and assumptions as above, (Sk,A ) is not a minimal

normal compactification of A%. In particular, C; is a (—1)-curve with (C; - A — C;) < 2 for
1=1,...,n

Proof. Suppose that (S‘ AE) is a minimal normal compactification of the affine plane. By
virtue of n > 2 and Sing(S;) # 0, we have jjA > 3. By Lemma BT (4), there exist two
irreducible components I'y and I'}. on A such that (I'9)? = 0 and (I';)? > 0. By Lemma
631 (1), I'g and 'y are contained in Z?:l C;. However, we see (C1)? = --- = (C,,)? since
C1,...,Cy lie in the same Gal(k/k)-orbit. It is a contradiction. O

Since A has no cycle by Lemma 2233, C1, ..., (), meet only one point, say pg. Then we
obtain the following lemma:

Lemma 5.3.3. Let the notation and the assumptions be the same as above. If n = 2, then
po is a singular point on S7.

Proof. Suppose that pg is a non-singular point on Sz. Then we obtain #A > 4 since Sz has
at least two singular points by Lemma PZ2=3. Moreover, we see (Cl . ég) = 1. On the other
hand, C and Cy are (—1)-curves by Lemma 532. It is a contradiction to Lemma BZT1. O

5.3.2 Properties of boundary divisors

Let the notation be the same as at beginning Section 6B23. In this subsection, we prove Theorem
312 (1). Since the case of n =1 follows from [A2, 45|, we shall only treat case of n > 2.
Now, we prepare the following lemma;:

Lemma 5.3.4. Let (V, D) be a compactification of the affine plane A% over k such that V is

a smooth projective surface over k and D is an SNC-divisor on V, and let E’o, El, cee E, be
all (—1)-curves in Supp(D D). Assume that r > 1, (Ey- E;) =1 for i = 1,...,r and the union
S, F; is disjoint. Then (Ep - D — Ep) < 2.

Proof. Suppose that (Ey-D—Ey) > 3. Let v : (V,D) = (V,D) be a sequence of contractions
of (—1)-curves and subsequently (smoothly) contractible curves in Supp(D), starting with the
contraction of Y., E;, such that the pair (V,D) is a minimal normal compactification of
A2, where D := v,(D). Putting E := v, (Ep), we notice E # 0, moreover, (E - D — E) <
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and (E)2? > 0 by Lemma 63 (1). Since D has no cycle by Lemma E53, we know that any
irreducible component of D — E has self-intersection number < —1 (if it exists at all). Thus,
we have tiD < 2 by Lemma BT3 (4). If #D = 2, we obtain (F)? = 0 by Lemma 613 (3) and
r+1> (Ey-D—Epy) > 3 by the assumption. However, we then have 0 = (E)? > (Eo) r>1,
which is absurd. If #D = 1, we obtain (E)? = 1 by Lemma 613 (2) and r = (Eo D—FEy) >3
by the assumption. However, we then have 1 = (E)2 > (Eg)? +r > 2, which is absurd. O

In order to prove Theorem [Z3T2 (1), suppose on the contrary that p # id. Then we have:
Claim 5.3.5. The union ) ;" ; C; is disjoint.

Proof Suppose that C; and C meet at a point, say q, for some i and j with ¢ # J- Since
Ak is an SNC-divisor, any irreducible component of Ak passing through ¢ is only C; or C’

Hence, ¢ := (03, o pz)(q) is a smooth point on Sz, moreover, C; and C; pass through g. Let
po be the intersection point of C1,...,C, on Sz. By noting Lemma B33, we see pg # q.
However, since C; and C; also pass through pg, we see that C; + Cj; is a cycle on Az. It is a
contradiction to Lemma 2Z573. |

Proof of Theorem I_312 (1). By Lemma 532 and Claim 5233, we see that Y ;" C; can be
contracted. Let v : (SEv AE) — (S,A) be a sequence of contractions of (—1)-curves and
subsequently (smoothly) contractible curves in Supp(A) over &, starting with the contraction
of S | C;, such that the pair ($,A) is a minimal normal compactification of A%, where
A= v, (A). For any (—1)-curve E on A , we have (F - D — E) > 3 by Lemma 5370 (2), in
particular, v, (E) # 0 and (v, (E))2 > 0. Hence there exist at most two (—1)-curves on A”
by Lemma 6TH. By Lemma B34, we further see that there exist exactly two (—1)-curves Ey
and E2 on Auv where we note that £ and s lie in the same Gal(k/k)-orbit. We may assume
that E; meets C; for i = 1,2. Let D be the connected component of the reduced exceptional
divisor of v containing C. Letting E; := v (E;) for i = 1,2, we obtain (E - Eg) = 0 and
(Ey - Ey) = 1 by Lemmas 631 (2) and 613, so that (E; - D) > 0. Hence, C is included
in Supp(D), where we recall the assumption n > 2. Indeed otherwise, letting Gal(k/k) - D
be the Gal(k/k)-orbit of D, then E) + Fy 4+ Gal(k/k) - D has a cycle. However, this is a
contradiction to Lemma ZZ53. Moreover, we know n = 2 by the similar argument. This
implies (Ey - A — E1) = (E;, - A — Ey) > 3, which is a contradiction to Lemma BIA (1). O

Example 5.3.6. Note that the assertion of Theorem 32 (1) is not always true unless
pr(S) = 1. We shall construct an example of the lc compactification (S, A) of A? such that

pr(S) > 1 and EE is not an SNC-divisor. Let C be a cubic curve with a cusp o on P? and let
L be the Zariski tangent line to C at o, i.e., Cz N Ly = {0}. By construction, L ~ P}. Let x4
be a k-rational point on C7\{o} and let 3, x3, x4 be three points, whose union x1 + 2 4 x3 is
defined over k, on L \{o}. Letting v : S — JP’% be a blow-up at four points x1, ..., r4 defined
over k, then S is a weak del Pezzo surface of degree 5 such that §E contains exactly one (—2)-

curve V_I(Lk) which is clearly defined over k. Hence, we obtain a contraction o : S — S of
the (—2)-curve over k, so that S is a Du Val del Pezzo surface with pi(S) > 1 over k. Now, v
can be factorized v/ : § — S and v/ : ' — P? defined over k such that ” is a blow-up at a
point z1. Let A’ be the _proper transform of C' + L by v", and let A be the reduced effective
divisor on S defined by A := 1/ *(A’ )red.- Since (S' A') is a compactification of A? (), so are
(S,A) and (S, A), where A := o, (A). However, Ak is not an SNC-divisor by construction.
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5.3.3 Properties of singularities

In this subsection, we prove Theorem IZ3T2 (2) by using results in Subsections B271 and
B, Let the notation be the same as above.

Proof of Theorem I-312 (2)(i). We shall consider two cases whether n = 1 or not separately.

In the case of n = 1, then A is geometrically irreducible on S. Namely, Az = Ci.
Hence, we see fSing(S;) < 2 by Lemma BT3. If §Sing(S;) = 1, then the assertion is clearly
true. If #§Sing(S;) = 2, then two weighted dual graphs given by the minimal resolution at
these singular points on S7 are different (see [42, 45]). Hence, two singular points on S; are
k-rational.

In the case of n > 2, let pp be the intersection point of C1,...,Cy on Sz, so that pg is
k-rational. If n = 2, then py is a singular point on S by Lemma b233. Moreover, py is also a
singular point on Sz even if n > 3. Indeed, otherwise, the divisor KE is not normal crossing
at the point po := o0~ *(pg), which is a contradiction to Theorem =312 (1). O

Proof of Theorem -3 12 (2)(ii1). If n = 1, then it follows from Lemma BT3. Indeed, n =
p7(S%) by Lemma 611, Hence, we assume n > 2 in what follows. Let pg be the intersection
point of C1,...,Cy on Sz. Then we notice that pg is k-rational and singular on St (see Proof
of Theorem (2)(i)). Suppose #Sing(S;) > 1. Noting Lemma 2573, there exist n-times of
singular points p1,...,p, on S, which lie in the same Gal(k/k)-orbit, such that p; € C;\{po}
fori=1,...,n. For each ¢ = 1,...,n, there exist two irreducible components meeting C; on

&E — (Z?:l @) such that the images of these via of are two points py and p;, respectively.

On the other hand, (C;- A — @) < 2 by Lemma 5332, so that (C;- A — C;) = 2, which implies
Sing(S7) N C; = {po, pi}. Therefore, §Sing(S;) = n + 1 = pr(S;) + 1 by Lemma BT, This
completes the proof. |

Proof of Theorem I-312 (2)(ii). By Theorem 312 (2)(i), we can take a singular point on
Sz, which is k-rational, say po. If §Sing(S3) < 2, we see §Sing(S%) = #Sing(S). In what follows,
we shall treat the case of j:LSing(SE) > 3. Then we know that all singular points except for pg
on Sz lie in the same Gal(k/k)-orbit (see Proof of Theorem 312 (2)(iii)). This implies that
Sing(S) = {po}. This completes the proof. O

5.4 Proof of Theorem (3)

In this section, we will prove Theorem I=3T17 (3). In other words, we shall classify the weighted
dual graphs corresponding to lc compactifications of the affine plane whose boundary divisor
is not geometrically irreducible. In fact, if this boundary divisor is geometrically irreducible,
the weighted dual graph corresponding to this lc compactification of the affine plane was
already classified by [d2, #5]. The argument for proving this theorem is similar to [d2, 45],
however, we need to consider a little technical argument. We firstly prepare the following
lemma generalizing Lemma 62710 (2):

Lemma 5.4.1. Let (V/,D') be a compactification of the affine plane A? over k such that
V' is a smooth projective surface over k, D/E is an SNC-divisor. Assume that any irreducible

component of E/E has self-intersection number < —2 except for exactly four irreducible com-
ponents E}, B}, E} and Ej such that (E/)> = —1 for i = 1,...,4, (B} - E}) = (E} - E}) = 1,
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and E/ and E} lie in the same Gal(k/k)-orbit. Then the weighted dual graph of D’ is the
twig [1, 1,1, 1] (for this notation, see Section b2).

Proof. Let V' : (VE’, ZN)’E) — (V', D) be a sequence of contractions of (—1)-curves and subse-
quently (smoothly) contractible curves in Supp(lN)’E) such that the pair (V’, D’) is a minimal
normal compactification of A2, where D' := V;(IN)’E) Since Supp(f)’g) contains a (—1)-curve,
we notice 1/ # id by Lemma 5T (1). Hence, we may assume (E| - D' — E}) < 2.

Now, we suppose (Ef - Ej) = 1. Then (E) - E5) = 0 by Lemma 253, furthermore,
(Ey- D' — Eb) <2 and (E}- D' — E}) < 2. Indeed, we can assume that v/ starts with F
(resp. Ej), so that v,(E}) and v.(E}) (vesp. v.(E%) and v,(E})) are curves on V', which
transverselly meet each other. By Lemma P53, we then see that E} (resp. Ej) meets at
most one irreducible component on D' — (E + Eb) (resp. D' — (E4 + E})) by Lemma 5IH
(1), namely, (E} - D' — E}) <2 and (E} - D' — E}) < 2.

Hence, we may assume (Ef - E}) = 0 in what follows. Indeed, if (F} - E}) = 1, we swap the
roles of the pairs (E], EY) and (E}, EY). Moreover, since E/E is connected and has no cycle, we
may assume that EY) and Ej are included in the same connected component of ﬁ’g— (E1+EY).
Then we can assume that v/ starts with E} + E}, so that v/ (E}) and v, (E}) are curves on V'
with self-intersection number > 0. Hence, (v, (E%) - v, (E35)) =1 by Lemma 513 (3) and (4).
Meanwhile, by Lemma P53, we obtain (EY - E) = 1 by the above assumption. Moreover, by
symmetry of the weighted dual graph of D', we can assume further (v/.(E}))% = (VL(EL))2.
By Lemma 5T (3) and (4), we then obtain #D’ = 2 and (V.(FE}))? = (VL(FE%))? = 0. This
implies that the weighted dual graph of ﬁlﬁ is the twig [1,1,1,1]. |

The following result will play an important role in the proof of Theorem =312 (3):

Lemma 5.4.2. Let (17,5) be a compactification of the affine plane Ai over k such that

V' is smooth and Dy is an SNC-divisor. Assume that (V%, Dy) is not a minimal normal
compactification of A%. Moreover, letting Ey, ..., E;. be all (—1)-curves on Supp(Dy), assume

further that they lie in the same Gal(k/k)-orbit and the union E := Sy E; is disjoint.
Hence, we obtain the contraction v/ : (V, D) — (V/,D’) of E defined over k by Lemma 513
(1). Then one of the following three situations holds:

(1) (‘7%’, IND’E) is a minimal normal compactification of A%

(2) The weighted dual graph of lN)’E is the twig either [1, 1, m| for some m > 1 or [1,1,1,1].

(3) Letting E, ... ,E;, be all (—1)-curves on Supp(ﬁ’g), they lie in the same Gal(k/k)-orbit
and the union Z:lzl E! is disjoint.

Proof. Letting z; := u%(El) for i = 1,...,r, we see that x1,...,x, lie in the same Gal(k/k)-
orbit by the assumption. Moreover, z; lies in at most two (—1)-curves in Supp(D;) because
Of(El'D—El)SQ. 5 .

Assume that x7 lies in no (—1)-curve in Supp(D’E). Then Supp(D’E) contains no (—1)-
curve. Hence, (f%, ﬁ’g) is a minimal normal compactification of A%.

Assume that z; lies in exactly two (—1)-curves, say E] and EY, in Supp(D’E). At first, we

consider the case that Ei is defined over k. Then we see x1,...,x, € Ei since these points
lie in the same Gal(k/k)-orbit. Thus, we obtain (E] - D' — E{) < 2 by Lemma E34. In
particular, r < 2. If 7 = 1, then Supp(D7) contains only two (—1)-curves £} and Ej. Hence,
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the weighted dual graph of 13’% is the twig [1,1,m] for some m > 2 by Lemma 6211, If
r = 2, letting v : VE/ — V"’ be the contraction of E] over k, then (V”,D”) is a minimal
normal compactification of A%. Moreover, Supp(D”) contains exactly two O-curves, so that
the weighted dual graph of D" is the twig [0,0] by Lemma 513 (4). This implies that the
weighted dual graph of D,E is the twig [1,1, 1]. Next, we consider the case that E] and E), are
not defined over k. Since (VE/’ D/E> is not a minimal normal compactification of A2, we have
either (B} - D' — EY) < 2 or (E; - D' — Ej) < 2. Moreover, each (—1)-curve on Supp(Dy) is

included in the Gal(k/k)-orbit of either E or E} since z1,...,z, lic in the same Gal(k‘/k:)

orbit. Suppose that x5 € E1 Then there exists a (—1)-curve E3 other than E2 in Supp(D’ )
meeting E| such that E) and E} lie in the same Gal(k/ 'ki)-orbit. Since E/ is not defined over
k, there exists a (—1)-curve £} other than E} in Supp(D7) lying in the Gal(k/k)-orbit of Ej.

Moreover, there exists a (—1)-curves E5 in Supp(D’ ) lying in the Gal(k/k)-orbit of E) such
that (E} - E5) =1and E5 # E27 E3 If (E/ - E}) = 0, then the direct images of Ej, E3 and E5
by the cgntraN(:tlon of Ef + % h@ye seli—mtersectlonNnumber > 0. It contradicts Lemma B13
(4). If (E1 - E}) = 1, since (B3 - D — F3) < 2 and Dy; has no cycle, there exists a (—1)-curve
Eé other than Ef meeting Eé’l in Supp(Dy) and lying in the Gal(k/k)-orbit of Ej, moreover,

E6 # E2, E3 and the union E2 + E3 + E5 + E6 is disjoint. Then the direct images of E’ and
E4 by the contraction of E2 + E3 + E5 + E6 are two 1-curves. It contradicts Lemma bBIT3
(3) and (4). Hence, Supp(D’E) contains exactly 2r-times of (—1)-curves El, e E 5, such that
z; lies on EY, | and EY, for i = 1,...,7. Then we note r # 1. Otherwise, E] and Ej lie in
the same Gal(k/k)-orbit, however, thls is impossible by Lemma B2T1. Meanwhile, suppose
r > 3. Then we may assume (E1 D’ E}) <2, and E/ E3 and E5 lie in the same Gal(k/k)-

orbit. If the union E1 + E3 + E5 is dlSJOlIlt, then the direct image of D/E by the contraction
of £ + E5 + Ey contains three 0-curves. It contradicts Lemma 613 (4). Otherwise, we may
assume (E7-E3) = 1. Then (E]-E5) = 0 since B meets only Ej and Ej on Supp(Dy), so that
the direct image of D/E by the contraction of Ef + Ef contains three 0-curves. It contradicts

Lemma BTH (4). Hence, we obtain r = 2. Thus, the weighted dual graph of 15’% is the twig
[1,1,1,1] by Lemma 52T, _ N N

Assume that z; lies in exactly one (—1)-curve in Supp(D7). Let Ef,..., E}, be all (—1)-
curves on Supp(ﬁ’g). Then each x; lies in exactly one (—1)-curve in Supp(ﬁ’?) fori=1,...,r,
so that E}, ..., E;, lie the same Gal(k/k)-orbit. In what follows, we will show that the union
Z:/:l E! is disjoint. Suppose on the contrary that E] and EY transversely meet at a point, say
z. By the assumption, we obtain x # x; for any ¢ = 1,...,r. On the other hand, we obtain
r’ > 2. Indeed, otherwise the weighted dual graph of D/E is the twig [1, 1, m] for some m > 2
by Lemma BT, however, it contradicts that El and EQ lie in the same Gal(k/k)-orbit.
Noticing that the Gal (k/k)-orbit of E} + E} has no cycle by Lemma 253, we thus have r' > 4
and the union Z ", E! is not connected. Hence, we may assume (FE} - E;) = 1. Now, note
(E} + B - E3 + E}) = 0. On the other hand, since D’ is connected, we may assume that there
exists a connected divisor D) 13 on V’ such that Supp(E’ + E%) C Supp(D) 3) € Supp(D’)

Moreover, since E + E} and E3 + E4 lie in the same Gal(k/k)-orbit, there exists a connected
divisor D274 lying the Gal(k/k)-orbit of D173 such that Supp(E} + E}) C Supp(D) 1) C
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Supp(f)’g). Then 1333 + 5’2’4 has a cycle by construction. This contradicts Lemma PZ573.
Thus, > ., E! is a disjoint union.
This completes the proof. O

Now, let (S, A) be an lc compactification of the affine plane A over k (see Definition 512,
for this definition) such that pz(S;z) > 1, and let {C;}1<i<, be all irreducible components of
the divisor Az on S;. By Lemma BT, note that n = §A, and Cy,...,C), lie in the same
Gal(k/k)-orbit. Hence, n > 2 by the assumption. Let o : S — S be the minimal resolution
over k and let A be the divisor on S defined by A := 0*(A);eq.. Notice that A is an
SNC-divisor by Theorem =312 (1). N

Let C; be the proper transform of C; by oz. By Lemma B32, any C; is a (—1)-curve
on §E, furthermore, we obtain a contraction contg, : (51, A1) := (§E, ZE) — (S, Ay =
contEh*(&l)) of By :=>"", Ci. If (§2,E’ 3215) satisfies the situation (1) in Lemma 5272, then
we put v := contg,. If (S’VQE, &25) satisfies the situation (2) in Lemma 6472, let Es be the
union of (—1)-curves, which are all terminal component of KZE’ and let contg, : (S2, Ay) —

(Ss,As := cont EQ*(AQ)) be the contraction of Ey, which is defined over k, hence, we put
v := contp, ocontg,. Otherwise, by using Lemma b2 repeatably, we can construct a sequence
of contractions contp, o---ocontg, : (§E7 AE) = (51,A1) = (S5, Ay = contEh*(ﬁl)) — e
(Sit1, Diy1 = contEi,*(zi)) of Gal(k/k)-orbits of (—1)-curves over k such that (§i+1,E7 ZHLE)
satisfies either situation (1) or (2) in Lemma BZ3, where E; is the disjoint union of all

(—=1)-curves in Supp(A j,E) defined over k for j = 1,...,i. Hence, we obtain a sequence
v = contp, o ---ocontg : (S5, Ap) = (S1,A1) — (S2,42) = -+ = (Sey1, Apgr) = (S,A)
of contractions of Gal(k/k)-orbit of (—1)-curves and subsequently (smoothly) contractible
curves in Supp(ﬁg) such that the pair (S,A) is a minimal normal compactification of A%.
Notice that v is defined over k since each contg, is defined over k.

By construction of v, we obtain the following lemma:

Lemma 5.4.3 (cf. [45, Lemma 4.5]). With the notation and assumptions as above, then we
obtain $Az < 2. Hence, (Sg, Af) is either (]P’%, L) or (Fy,, M,, + F) for some non-negative
integer m # 1, where L is a line on IP’% and M, (resp. F) is the minimal section (resp. a
fiber) of the structure morphism F,, — IP%.

Proof. Suppose that jjAE > 3. Since (SEv AE) is a minimal normal compactification of A2,

we see that Az contains two components I'g and I'y such that (I'g)? = 0, (I'+)? > 0 and
(I'p-I'+) = 1 by Lemma 613 (4). Moreover, I'g and I'; are defined over k, respectively. Since

v is defined over k, so is v (Z?Zl @) Hence, we know that (v, 1(T))? > —1or (v, 1(I'y))? >

—1. However, this is a contradiction since any irreducible component of AE -3 C~'Z has
self-intersection number < —2. O

Let us put v; := contg, o ---ocontg, for i« = 1,...,/. By Lemma BZ73, we see that

(Eij -V (A)red. — Ei ;) is equal to 1 or 2 for any irreducible component E; ; of Ej.

By Theorem 312 (2)(ii) and Lemma BT, Si contains exactly one singular point po,
which is k-rational. Moreover, noticing #Sing(S;) = n + 1 or 1 by Theorem [3T2 (2)(iii),
let p1,...,p, be singular points other than pg on Sz such that p; € C; for i = 1,...,n (if it
exists) and let A be the reduced exceptional divisor of the minimal resolution at p; on Sz for
i =0,...,n, where we define A®) := 0 if p; does not exist. Namely, EE =>", ﬁ(")—i—Z?:l C;.
By the above argument, we obtain the following lemma:
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Lemma 5.4.4 (cf. [45, Lemma 4.6]). Let the notation and the assumptions be the same as
above. For any i = 1,...,n, the following three assertions hold:

(1) If §Sing(Sz) = n + 1, then the dual graph of A® is a linear chain.
(2) If §Sing(S%) = n + 1, then C; meets a terminal component of A(®).
(3) Any irreducible component fo of A with (fo A0 fo) > 3 does not meet &

Now, the singular point pg has the following three possibilities:
(I) po is a cyclic quotient singular point;
(IT) pg is a non-cyclic quotient singular point;

(IIT) po is a log canonical but not a quotient singular.

In order to determine the weighted dual graph of &E, we will consider the above three cases
(I)~(III) separately according to the following Subsections b4 1-5273.

5.4.1 Case (I): py is a cyclic quotient singularity

Assume that pg is a cyclic quotient singular point. Then we will consider the following three
Subcases separately:

(I-1) Eg is not a linear chain and any irreducible component of A© is defined over k;

(I-2) AE is not a linear chain and there exists an irreducible component of K(O), which is not
defined over k;

(I-3) Ag is a linear chain.

Subcase (I-1)

Assume that AE is not a linear chain and any irreducible component of A ig defined over
k. Then notice that there exists exactly one irreducible component I' of A© guch that
Yo (I-C;) = n. In particular, we see (I'"A—I") > 3. Thus, v must first repeat the contraction

until all irreducible components in Supp (Z?:l A(i)> fori =1,...,n are contracted. In other

words, A is a linear chain consisting entirely of (—2)-curves for i = 1,...,n (see also Lemma
62772). By the above argument combined with Lemma BT8 and Proposition B2213 (1), we
see that the weighted dual graph of AE is given as (i) (i = 1,2,3) in Appendix B2, where
n > 3 in the case of (1).

Subcase (I-2)

Assume that AE is not a linear chain and there exists an irreducible component of A not
defined over k. Then there exist exactly two irreducible components I'; and Ty of A© such
that (I; - A —I;) > 3 for i = 1,2 by noting Lemma EZT2 (1), in particular, I'; and T'y lie
in the same Gal(%k/k)-orbit. By a similar argument to Subcase (I-1), A® is a linear chain
consisting entirely of (—2)-curves for ¢ = 1,...,n. Hence, by Lemma 513 and Proposition
6213 (2) and (3), we see that the weighted dual graph of AE is given as (i) (1 = 4,5,6,7) in
Appendix B2, where n’ := § > 2 in the case of (4).
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Subcase (I-3)

Assume that AE is a linear chain. Then we immediately see that n = 2 and both 6’1 and 6’2

meet a distinct terminal component in A®©) , respectively. Thus, by Proposition B2T3 (2) and
(3), we see that the weighted dual graph of Ay is given as (i) (i = 8,9,10) in Appendix B2

5.4.2 Case (II): py is a non-cyclic quotient singularity

Assume that pg is a non-cyclic quotient singular point. In this case, Lemma B2 and the
following lemma play a useful role:

Lemma 5.4.5. Let the notation and the assumptlons be the same as above. For any irre-
ducible component T of A satisfying n’ := (I'- C +- - - + Cy,) > 0, then we have (I')2 < —n/.

Proof. Suppose that (I')2 > —n/. By the construction of contg,, we have (con‘cEmk(ﬂf))2 >

—n/4+n’ = 0. This means that any irreducible component of A is not contract by v. Thus,
A is not a linear chain, which is a contradiction to Lemma B3 (1). O

Note that the classification of quotient singularities of dimension two is well-known (see
Lemma 2Z39).

By the assumption, A is not a linear chain, in particular, there is exactly one irreducible
component Iy of A® such that (fo A0 fo) = 3. On the other hand, since A is a linear
chain by Lemma 613 (1), v is factorized v o v/ such that A 7é 0 and (T} - A’ —T)) < 2,
where F .= 1/ (Ty) and A := v (AE)- We can assume that v/ is defined over k since v is
a sequence of contractions of the Gal(k/k)-orbit consisting of (—1)-curves and subsequently
Gal(k/k)-orbits consisting of (smoothly) contractible curves in Supp(ﬁg). In other words,
any irreducible component A’ except for fg has self-intersection number < —2. Hence, v/
is uniquely determined. Now, we will consider the following three Subcases (II-1)—(II-3)
separately:

(I-1) (I} - A’ —=T}) = 2 holds;
(I1-2) (T} - A’ —T}) =1 holds;
(I1-3) (I} - A’ —T}) = 0 holds.

Subcase (II-1)

At first, we shall treat the case of (I - A’ — I'j) = 2. By virtue of $A’ > 3 combined with
Lemma BT (4), we see that I} is a (—1)-curve. Thus, by Proposition 5213 (1) and Lemmas

b2 and b2-3 combined with the classification of quotient singularities of dimension two, we
see that the weighted dual graph of Ak is given as (i) (¢ = 11,...,17) in Appendix B2

Subcase (II-2)

Next, we shall treat the case of (fg A — fg) = 1. By using the classification of quotient
singularities of dimension two, the weighted dual graph of A is then one of the following
three weighted dual graphs, where m; and m are integers such that m; > 2 and m > 2:

o -3 0 o

™~ N S
o/—m1 —Mms —Mmy /_m /_m




Note that T is not a (—1)-curve by Lemma 529 (2). Hence, we obtain v/ = v. Moreover, we
see that fA" = 2 and I}, is a O-curve by Lemma 513 (3) and (4). Thus, by Lemmas 644 and
643, we see that the weighted dual graph of Ay is given as (i) (¢ = 18,...,25) in Appendix
A2

Subcase (II-3)

Finally, we shall treat the case of (f’o A — f’o) = 0. By using the classification of quotient
singularities of dimension two, the weighted dual graph of A is then as follows, where m is
an integer with m > 2:

By the assumption, we see v = v/ and jjﬁ’ = 1. In particular, fé is a 1-curve by Lemma BT
(2). Thus, by Lemmas 524 and 6273, we see that the weighted dual graph of Az is given as
(26) or (27) in Appendix B,

5.4.3 Case (III): p, is a log canonical but not a quotient singularity

Assume that pg is a log canonical but not a quotient singular point. Note that the classification
of log canonical singularities of dimension two is known (see Theorem PZ3T), where it is
enough to treat only the rational singularities (cf. [45, Theorem 1.1(2)]). By the classification
of rational log canonical but not quotient singularities of dimension two, there exists at least
one irreducible component I'y of A satisfying (I'g - A(®) — Ty) > 3. More precisely, one of
the following three Subcases holds:

(I1I-1) There exists exactly one irreducible component I'y of A©) satisfying (o A® —T) = 4.
0)

(ITI-2) There exist exactly two irreducible components f071 and fog satisfying (fo,i Al
;) =3fori=12.

(III-3) There exists exactly one irreducible component T'g of A satisfying (Ig- A —T) = 3.

Notice that Lemma 6273 works verbatim for Subcases (I1I-1)—(III-3). In what follows, we will
consider Subcases (I1I-1)—(III-3) separately.

Subcase (III-1)

Assume that there exists exactly one irreducible component Ty of A0 satisfying (fo A0

fo) = 4. Then the weighted dual graph of A is as follows, where m is an integer with
m > 2:

o\o/o
o/_m\o

By the similar argument to Subsection B2, v is factorized v o v/ such that V' is as in
Subsection EZ2. In particular, we can assume that any irreducible component A" except for
'y has self-intersection number < —2, where A’ := v} (Ay) and I'y := v, (). By Lemma
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6274 (3), C; meets a terminal component of A for any i = 1,...,n. Moreover, n < 4 by
Lemma B3, in particular, n # 2 by Lemmas 513 and 52212 (1). In what follows, we shall
consider the two cases of n = 3 and n = 4 separately.

If n = 3, then we see v/ = v and A’ = 2. Moreover, fg is a 0-curve by Lemma 513 (3).
Therefore, we see that the weighted dual graph of AE is given as (28) or (29) in Appendix
A

If n = 4, then we see / = v and A’ = 1. Moreover, l~“6 is a 1-curve by Lemma BTH (2).

Therefore, we see that the weighted dual graph of AE is given as (30) or (31) in Appendix
A

Subcase (I1I-2)

Assume that there exist exactly two irreducible components 1:071 and fog of A satisfying
(To - AO) — I'g;) =3 for i = 1,2. Then the weighted dual graph of AO) ig as follows, where
each m; is an integer with m; > 2 (furthermore, at least one m; is strictly more than 2 and
r>1):

(¢] (¢]

O O

" my >

r o

(e]

Since A is a linear chain by Lemma BT (1), v is factorized v” o v/ such that f6,i # 0 for
i=1,2 and (f6,1 A — f6,1) < 2 by replacing To; and Ty as needed, where fG,i = v/ (To,)
for i = 1,2 and A/ := V;(AE) For the same reason as in Subsection b4, we can assume
that v/ is defined over k. Then v/ is uniquely determined, and any irreducible component A/
except for I‘fm for ¢ = 1,2 has self-intersection number < —2. By noticing I'g; # 0 for i = 1,2

combined with Lemma 522(3), C; meets a terminal component of A for any i = 1,...,n.
Moreover, n < 4 by Lemma b275, in particular, n # 3 by considering the symmetry of the
weighted dual graph of A(®. In what follows, we shall consider the two cases of n = 2 and
n = 4 separately.

In the case of n = 2, suppose that the weighted dual graph of AO 4 Z?Zl C; is as follows:

o O

(¢] (¢]

° o mi —my o

Then we see that (f{m A —1:6,1) = 1 and A/ is not a linear chain, so that f6,1 isa (—1)-curve.
Moreover, r > 2 by Lemma 529 (3). Namely, the weighted dual graph of A is as follows:

By contracting of A’ —f{m over k, we have a log del Pezzo surface of rank one with exactly one
quotient singular point of type D, which is a contradiction to [#1, Theorem 3.1(1)]. Hence,
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the weighted dual graph of A0 4 25:1 C; is as follows:

O o

e} e}

o —my —my o

Then we see that $A’ > 4 and A’ is a linear chain. Moreover, f{” is a (—1)-curve for i = 1,2

by noting Lemma B3 (4). Thus, the weighted dual graph of A’ satisfies the condition of
Proposition BZT3 (2) or (3). In particular, by Proposition 5213 (2) and (3) and Lemma
547 we see that the weighted dual graph of AE is given as (i) (i = 32,33,34) in Appendix
A2

In the case of n = 4, note that f{)l is not a (—1)-curve for i = 1,2 by Lemma B9 (2).

Hence, we obtain v/ = v. Moreover, we see that fA’ = 2 and 1~167i is a O-curve for ¢ = 1,2 by
Lemma BT (3) and (4). Therefore, by Lemma 524 we see that the weighted dual graph of
Az is given as (35) in Appendix B2,

Subcase (III-3)

Assume that there exists exactly one irreducible component fo of A satisfying (fo A0
fo) = 3. By the similar argument as in Subsection B2 combined with the classification of
rational log canonical singularities of dimension two, we see that the weighted dual graph of
A is given as (i) (i = 36,...,52) in Appendix A2,

The argument in Subsections B2 1623 completes the proof of Theorem 3T (3).

5.5 Applications of Theorem

5.5.1 Existing conditions for the affine plane in lc del Pezzo surfaces of
rank one

In this subsection, we shall prove Theorems =314 and =3T3 by applying Theorem I=3T2.
Let S be an lc del Pezzo surface of rank one defined over k such that Sing(S;) # 0, and let
o : S — S be the minimal resolution over k.

At first, Theorem 314 can be shown as follows:

Proof of Theorem [[-3.13. Notice that (A) implies (B) in Theorem I=314 is obvious by Theo-
rem 3172 (3). Hence, we shall prove the converse of this. Assume that there exists a reduced
effective divisor A on S as in Theorem =314 (B). By the configuration of the weighted
dual graph of ﬁ, we can construct the birational morphism v : S — S over k such that
g\Supp(ﬁ) ~ S\Supp(A) and the weighted dual graph of A is either:

1 m 0
o or o o (m#-1)

(see also Example 52, for an example on the construction of v), where A := v, (A). Mean-
while, letting A := a*(ﬁ), we see g\Supp(ﬁ) ~ S\Supp(A) since the exceptional locus of o
is included in Supp(A). Moreover, since A is Q-ample because of pi(S) = 1, we know that
S\Supp(A) is affine by [27, Theorem 1]. By Lemma 58, we thus obtain S7\Supp(Az) ~ A%.

Since there is no non-trivial k-form of A% ([83]), we then have S\Supp(A) ~ A2. Therefore,
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S contains the affine plane S\Supp(A) ~ A2. This implies that the assertion (A) in Theorem
=314 holds. O

Remark 5.5.1. Notice that each weighted dual graph in [d2, Appendix C] (except for (1)),
[@5, Fig. 1] or Appendix A= includes at least one vertex corresponding to a (—1)-curve.
Hence, it is quite subtle to determine whether S contains the affine plane or not by using only
singularities on Sz. In fact, we can construct some examples that two lc del Pezzo surfaces
of rank one with the same singularities such that one contains the affine plane but the other
does not (see Subsection B63).

Example 5.5.2. With the notation as above, we shall consider a case that there exists a
reduced effective divisor A on S such that the exceptional locus of o is included in Supp(A)
and the weighted dual graph of A is as (21) in Appendix B2, Let C1,. .., Cs be all irreducible
component of Az named as follows:

o ° o
-3 Cy Cy
o o
(s Cy CG/
o ° o
-3

By the symmetry of the above graph, Cl + 02, Cg + C’4, C5 + CG, C’7 and Cg are defined over
k, respectively. Then we construct the compositions of successive contractions v : S — Sofa
disjoint union Cs+ C4, that of the images of C1+C, and ﬁnally that of the i images of Cs+ C.
By construction, v is defined over k. Moreover, putting A := V*(A), then A consists of two
irreducible components C7 := V*(57) and Cy := V*(ég) such that Cr and C’g are a O-curve
and a (—2)-curve, respectively. Since S\(C'7 U Cy) is affine by [22, Theorem 1] combined with
S\(C7 U Cg) ~ S\o«(A), we obtain Sz ~ Fy and Sk\(C7k U Cs 7))~ A by Lemma BT0.

Furthermore, we see S ~ Fy and S\(C7 U Cs) ~ A2 by [33]. Namely, S\Supp(o*(A)) ~ AZ.

From now on, we shall prove Theorem =3T3 by using Theorem [C3T4. Thus, assume that
S has at most Du Val singularities, and let d be the degree of S, i.e., d := (—Kg)?. Then
Theorem IZXTA can be shown as follows:

Proof of Theorem 3 T14. We shall consider the two cases of pr(S7) = 1 or p(Sr) > 1 sepa-
rately.

In the case of p;(S7) = 1, then looking for all weighted dual graphs in [42, Appendix C]
such that each vertex corresponds to either a (—1)-curve or a (—2)-curve, we know that such
the graphs are summarized in (1), (14), (2), (3), (5), (7) and (12) in [42, Appendix C], where
we assume n = 2 for graphs (1), (14), (2) and (3), and that the subgraph A consists of only one
vertex corresponding to a (—2)-curve for graphs of (14) and (2). Notice that the these graphs
correspond to the pair of the degree and singularity type of Sy (8, A1), (6, A2 + A1), (5, As),
(4, Ds), (3, Es), (2, Er7) and (1, Eg), respectively. Moreover, for each graph except for (1), the
union of (—1)-curves corresponding to all vertices e is always defined over k. Meanwhile, for
the graph (1), a curve corresponding to the vertex with the weight zero is defined over k if
and only if the singularity type of S is type A} over k, which is equivalent to S ~ P(1,1,2).
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In the case of p(S7) > 1, then looking for all weighted dual graphs in Appendix B2 such
that each vertex corresponds to either a (—1)-curve or a (—2)-curve, we know that such the
graphs are summarized in (1), (2), (4), (5), (8), (18), (24) and (26) in Appendix A2, where
we assume (t,n) = (0,3) (resp. (t,n,m) = (0,2,2), (t,n") = (0,2), (t,n') = (0,1), m = 2)
for graphs of (1) (resp. (2), (4), (5), (18)) and that the subgraph A consists of only one
vertex corresponding to a (—2)-curve for graphs of (5) and (8). Notice that the these graphs
correspond to the pair of the degree and singularity type of Sg (6, A1) (with 3 lines), (6, A2),
(4, Aa), (2,A6), (4, A2 + 2A1), (4,D4), (2, Es) and (3, Dy4), respectively. Moreover, for each
graph, the union of (—1)-curves corresponding to all vertices e is always defined over k.

By the argument in Subsection B2 (see also Table B), we then note that the pair of
the degree and singularity type of Sy is (8, A1), (6, A2 4+ A1), (6, A2), (6,(A1)<) or (5, Ag)
provided that d > 5. Thus, by using Theorem [CZ3T4 we obtain this assertion of Theorem
[=3T3. O

Remark 5.5.3. Let S be a Du Val del Pezzo surface of rank one over k. If k is algebraically
closed, we can determine whether S contains the affine plane or not by using only the singular
type on Si ([56, Theorem 1]). However, in general, it seems to need the singularity type on
S; and further the degree. See also Example b64.

5.5.2 Application to singular del Pezzo fibrations

Let f: X — Y be a generically canonical del Pezzo fibration defined over C (see Definition
[=37) and let X, be the generic fiber of f. By Lemma I"Z32, recall that f admits a vertical
AZ-cylinder (see Definition [2T) if and only if X, contains the affine plane Aé(y). Hence, by
Theorem IZ3TH we then obtain the following corollary:

Corollary 5.5.4. Let f : X — Y be a generically canonical del Pezzo fibration of degree
d e {l,...,6,8} and let X, be the generic fiber of f such that Sing(Xmm) # (. Then we
have the following:

(1) If d = 8, then f admits a vertical AZ-cylinder if and only if the singularity type of

X, ey i AT . (see Section BT, for this definition)

2) If d = 5,6, then f always admits a vertical AZ-cylinder.
» Yy y C y
(3) If d < 4, f admits a vertical A(%-cylinder if and only if the pair of the degree d and the
singularity type of X77 v is one of the following:

(4a D5)7 (47 D4)7 (47 Ao +2A1)’ (47 AQ)’ (37E6)7 (3aD4)7 (27E7)’ (27E6)’ (2aA6)’ (1aE8)‘

Remark 5.5.5. If a generically canonical del Pezzo fibration f : X — Y of degree d, whose

generic fiber X, of f satisfies Sing(X17 m) = (0, then by Theorem 24 we know that f
admits a vertical A?C—Cylinder if and only if d > 8 and X, has a C(Y")-rational point.

Example 5.5.6. Let ¢ be a DVR of C(t) such that the maximal ideal of & is generated by
t and let X be the three-dimensional algebraic variety over C defined by:

X = (tw® + z1® + 2* + yzw = 0) C Py(1,1,1,2) = Proj(O[z,y, z, w]).

Let f : X — Spec(0) be the structure morphism as an ¢-scheme and let 7 be the generic
point of Spec(&). Then the generic fiber X, of f is an irreducible quartic hypersurface of the
weighted projective space given by:

X7] = (tw2 + $y3 + Z4 T yzw = O) - ]P)(C(t)(L 1,1, 2) = PI‘OJ(C(t)[x, Y, Z,W])
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Then X =7 is a Du Val del Pezzo surface of degree 2 with exactly one singular point p :=

7,C(t)
[1: 0:0:0] of type Es. Note that the weighted dual graph of all (—1)-curves and (—2)-curves
on the minimal resolution of XHW is as (11°) in (14, p. 349]. Hence, we see that X, is of

rank one by straightforward calculation. Thus, f is a generically canonical del Pezzo fibration
of degree 2. Moreover, it admits a vertical A%—cylinder by Corollary B54 (see also Lemma

Similarly, notice that Theorem =314 also provides a way to determine whether generically
It del Pezzo fibrations and generically lc del Pezzo fibrations admit vertical A(Qc—cylinders or
not.

5.6 Remarks on Theorem

5.6.1 Existence of Ic compactifications of the affine plane

In this subsection, we shall discuss whether there exists indeed an lc compactification of
the affine plane corresponding to the weighted dual graph (i) in Appendix B2 for each i =

1,...,52.
At first, we consider the situation that an affine line £ defined over k meeting transversely
at exactly m-times of curves lying in the same Gal(k/k)-orbit. Letting ai,...,a, be these

intersection points, we know that they lie in the same Gal(k/k)-orbit. This implies that the
minimal polynomial of a; over k is of degree n.
Now, we prepare the following condition (=) with respect to the base field k:

For any n € Z~q, there exist a,,b, € k, which are not Galois conjugate over k, ()

such that their minimal polynomials over k are of degree 2 and n, respectively.

Letting A be one of the graphs in Appendix A=, assume that there exists an lc compact-
ification (S, A) of the affine plane A% corresponding to this graph A. In other words, letting
c: 8 = § be the minimal resolution and letting A= 0*(A)red., then the weighted dual
graph of A is the same as A. By Lemmas b1 and 5232, we notice that all (—1)-curves,

which are included in Supp(ﬁg), lie in the same Gal(k/k)-orbit. Hence, we can completely
see the configuration of Gal(k/k)-orbits of each irreducible component of AE More precisely,
one of the following four situations holds:

Situation 1: There exist connecting two vertices, which lie in the same Gal(k/k)-orbit.
Moreover, there exist exactly two vertices v; and vy such that these two vertices are con-
nected to no-times of vertices respectively, in which 2no-times of curves corresponding to
these vertices lie in the same Gal(k/k)-orbit, where ny > 2. Note that the following graphs
in Appendix A show this situation:

e (4), (5), where ng :=n’ with n’ > 2;
e (35), where ng := 2.

Situation 2: There exist connecting two vertices, which lie in the same Gal(k/k)-orbit.
However, there is no vertices v; and vy as in Situation 1. Note that graphs (5) with n’ = 1,
(8) and (32) in Appendix B2 show this situation.

Situation 3: There exists a unique vertex, which corresponds to a curve defined over k,
connecting ni-times of vertices corresponding to curves, which lie in the same Gal(k/k)-orbit,
where n1 > 2. Moreover, there exist exactly ni-times of vertices vy, ..., vy, such that these
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ni-times of vertices are connected to ns-times of vertices respectively, in which nqns-times of
curves corresponding to these vertices lie in the same Gal(k/k)-orbit, where ny > 2. Note
that the following graphs in Appendix A2 show this situation:

(6), (7), where (n1,n2) := (2,n') with n’ > 2;
(20), (35), (45), where (n1,n2) := (2, 2);

e (37), where (n1,n2) := (2,3);

e (48), where (n1,n2) := (3,2).

Situation 4: There exists a unique vertex, which corresponds to a curve defined over k,
connecting ni-times of vertices corresponding to curves, which lie in the same Gal(k/k)-orbit,
where n; > 2. However, there is no vertices vy, ...,v,, as in Situation 3. Note that the
following graphs in Appendix A=A show this situation:

e (1) (resp. (2), (3)), where ny :=n with n > 3 (resp. n > 2);

e (36), where ny := 5;

e (14), (30), (31), where ny :=4;

o (13), (26), (27), (28), (29), (49), (50), (51), (52), where n1 = 3;

e Otherwise, where n; := 2.

Thus, if for any graph A one of those as in Appendix A2 there exists an lc compactification
(S, A) of the affine plane Ai corresponding to this graph A, then the base field k satisfies the
condition (=).

Example 5.6.1. Let (S, A) be an lc comapctification of the affine plane A%Q over the real
number field R, let o : S — S be the minimal resolution over R and let us put A= 0" (A)red. -
Notice that R does not satisfy the condition (=) because of Gal(C/R) ~ Z/27Z. In particular,
the weighted dual graph of &C does not appear in the list of Situations 1 or 3. If the weighted
dual graph of Ac occurs Situation 2, then this graph is one of (5) with n/ = 1, (8) and (32)
in Appendix BA. If the weighted dual graph of AC occurs Situation 4, then this graph is one
of (5) with n’ = 1, (2)—(3) with n = 2, (6)—(7) with n’ = 1, (9)—(12), (15)—(19), (21)-(25),
(33)—(34), (38)—(44), (46) or (47) in Appendix B

Conversely, assuming that k satisfies the condition (=), let A be one of the graphs in
Appendix B, Then we can explicitly construct an lc compactification (S, A) of the affine
plane AZ. We shall explain the method of this construction. Let (S, A) be a minimal normal
compactification of the affine plane Ai over k according to the configuration of A as follows:

o If A'is as the graph (1), (6), (7), (9), (10), (26), (27), (30), (31), (33), (34), (48), (49),
(50), (51) or (52) in Appendix B3, then (S, A) := (P?, L), where L is a general line on

S~ Pz;

e If A is as the graph (4), (5), (8), (32) or (35) in Appendix B2, then S is a k-form of
IP’% X IP% of rank one and A := F| + F,, where F} and F5 is a k-form of an irreducible

curve of type (1,0) and (0,1), respectively. Notice that A is defined over k;

o If Ais as the graph (11), (13), (14), (15), (16), (17), (20), (2L, (22), (23), (24), (25), (28),
(29), (36), (37), (38), (39), (43) or (44) in Appendix B, then (S, A) := (Fy, M + F),
where M and F' is the minimal section and a general fiber of the structure morphism
Fy — I[”l,lf over k;

114



o If A is as the graph (12), (40), (41), (42), (45), (46) or (47) in Appendix A2, then
(S,A) := (F3, M + F), where M and F is the minimal section and a general fiber of the
structure morphism F3 — IP’,IC over k;

e If Ais as the graph (2), (3), (18) or (19) in Appendix B2, then (S, A) := (F,,, M + F),
where M and F' is the minimal section and a general fiber of the structure morphism
F,, — IP’}C over k.

Then we can construct two birational morphisms v : S — S and o: S — S over k such that
the weighted dual graph of AE is the same as A and (S,A) is an lc compactification of the
affine plane AZ, where A = V*(A)req. and A := 0*(8). As for how to construct the above
two blratlonal morphisms for concrete examples, see the following example (notice that we
can construct by the similar way for other cases):

Example 5.6.2. Assume that the base field k satisfies the condition (=), and let A be the
weighted dual graph of A is as (37) in Appendix B, Since (=) holds, there exist two elements
as, bz € k, which are not Galois conjugate over k, such that there are exactly two (resp. three)
elements a:()) ), 2k (resp. bg ), 6(2), bg?’) € k), which are Galois conjugates of ag (resp. b3)
over k, where agl) := ag and b(3) := bs. Let P(t) € k[t] be the minimal polynomial for as
over k. Now, put S := Fy, and let F' and M be a fiber and the minimal section of the
structure morphism S ~ Fy — IP’/%C over k, respectively. Then we shall take an affine open
neighborhood U ~ Spec(k[z,y]) such that ¢ := FNU ~ (x = 0) C A2. Let v/ : S’ — St be
the blow-up at two points (0, a:(;)) € Ag for 1 = 1,2. Note that v/ is defined over k. Then the

pullback /! (¢) and the exceptional set E of v/ can be written by (u = 0) and (P(y) =0)in
A}l x P} = Spec(k[y]) x Proj(k[u,v]). Hence, we can construct the blow-up v : S — S’ at six

points a:(,f) X [1:b§j)] € A% X IP% fori =1,2 and j = 1,2, 3. Noticing v” is defined over k, so is
v =1/ o1". Now, let E be the reduced exceptional divisor of v, and put F := v *(F) and
M = v Y (M). Then the weighted dual graph of the reduced divisor A=E+F+MonS
is as in A. Moreover, we know that v/ 1(E) + F + M can be contracted, hence, we obtain

this contraction o : S — S over k. By construction, letting A := 0, (A), we see that (S, A) is
certainly an lc compactification of AQ.

5.6.2 Maximal number of singular points on lc compactifications of the
affine plane

Let (S,A) be an lc compactification of the affine plane over k. If £ = C, then §Sing(S5%) < 2
by Lemma BT3. Meanwhile, by Theorem IZ3T2 (2)(iii) we see §Sing(S%) < pp(Sz) + 1, which
can be regarded as a generalization of the case of k = k. In particular, assuming that k
satisfies (=), for any positive integer n, there exists a log del Pezzo surface S,, of rank one
defined over k containing A such that £Sing(S, ) = n+ 1. Indeed, it follows from [A2] (resp.
the weighted dual graph (2) in Appendix A=) ifn=1 (resp. n > 2). On the other hand, we
see §Sing(S%) < 4 (resp. #Sing(S%) < 5) if S; has a non-cyclic quotient singular point (resp.

log canonlcal but not a quotient singular pomt) by Theorem 312 (3) (see also Appendix

5.6.3 Converse of Theorem (3)

Let S be an lc del Pezzo surface of rank one over k such that p(S;) > 1, and let o : S— S
be the minimal resolution over k. By Theorem =312 (3), if S contains the affine plane A?,
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then there exists a reduced divisor A on S such that the weighted dual graph of AE is one
of the lists (1)—(52) in Appendix B=. Now, we shall consider this converse. According to
Theorem =314, if there exists a reduced divisor A on S such that the exceptional set of o is
included in Supp(&), each irreducible component of &E is a rational curve and the weighted
dual graph of AE is one of the lists (1)—(52) in Appendix A2, then S contains the affine plane
Ai. Furthermore, we shall the following problem:

Problem 5.6.3 (cf. [42, Problem 1]). Let S be an lc del Pezzo surface of rank one over k.
Assume that the singularity type of Si is given as one of the graphs in [42, Appendix C], [43,
Fig. 1] or Appendix B=2. Does then S contain the affine plane Az?

In the case of k = k, Problem BB is not true in general ([d2, §4]) but is true if S has
a singular point, which is not a cyclic quotient singularity, ([45, 6]) or S is a log del Pezzo
surface of the Gorenstein index < 3 ([66, 44, &2]). On the other hand, in the case of k # k,
we find some counter-examples of Problem BE63 as follows:

Example 5.6.4. Let S be a Du Val del Pezzo surface of rank one, let o : S — S be the
minimal resolution. Assume that Si has only one singular point p of type EG+ over k (see
Section EZT, for this notation). Then the degree d := (—Kg)? of S is equal to 1 or 2. If
d = 2, then S contains the affine plane A% since g@ includes a reduced effective divisor with a
weighted dual graph as (24) in Appendix B2, If d = 1, then S does not contain Az since it
does not contain any cylinder by Theorem =39 (3)(iv).

Example 5.6.5. Assume that there exist two elements in & such that their minimal polyno-
mials over k are of degree 2 and 4, respectively. Let us fix the Hirzebruch surface Fs of degree
3 defined over k, let M be the minimal section of the structure morphism 7 : F3 — IP’}C. Let
Fi,...,Fy be four fibers of m and let {z; ;}1<i<4, 1<j<2 be eight points on F3, which lie in the
same Gal(k/k)-orbit, such that x;,1 and x; 2 lie on the fiber F; of mfori =1,...,4. Letting v :
S — F3bea blow-up at {z; j }1<i<4, 1<j<2, the weighted dual graph of v*(M +F; +- - -+ Fy)red.
is as follows:

Let o : S — S be the contraction of v, 1(M + F| + - -- + Fy). By construction, S is then an
lc del Pezzo surface of rank one, which has a log canonical but not a quotient singular point.
In particular, the singularity type of Si is the same singularity type as (30) in Appendix A2,
however, S does not contain the affine plane AZ by Theorem =312 (3).

Example 5.6.6. Assuming k = Q, let m be a positive integer, let C' be the plane conic over
Q defined by (zz = y?) C IP’é = Proj(Ql[z,y, 2]) and let z1,...,Zoy14 be points on Cg given

by x; := [1: *"/2¢: "R/2¢% € IP% for i =1,...,2m + 4, where ¢ := exp (7r _1>. Noticing

m—+2

that the union Z?flﬂ x; is defined over Q, let v : S — IE% be a blow-up at z1,...,Tom14
over Q. By construction, C' := v;}(C) is a Q-form of (—2m)-curve. Hence, we obtain the
contraction o : S — S of 5, so that S is a log del Pezzo surface of rank one over Q. Since
S@ has exactly one singular point, whose singularity type is the same as the singular point on
the weighted projective space P(1,1,2m) over Q, we see that S is of the Gorenstein index m.
However, S does not contain the affine plane A?@ by Theorem =312 (3). On the other hand,
the weighted projective space P(1,1,2m) over Q is a log del Pezzo surface of rank one and of
the Gorenstein index m, and contains Aé.
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Appendix A

Classification lists

A.1 Types of weak del Pezzo surfaces

This Appendix summarizes all types of weak del Pezzo surfaces over algebraically closed fields
of characteristic zero (see Subsection 2472, for the definition). We mainly refer to [IR, I35, 69].

Degree 8 Degree 7
Singularities | # Lines || Singularities | # Lines
Aq 0 Ay 2
Degree 6
Singularities | # Lines || Singularities | # Lines Singularities | # Lines
Ay + Ay 1 Ag 2 24, 2
(A1)< 3 (A1)> 4
Degree 5
Singularities | # Lines || Singularities | # Lines Singularities | # Lines
Ay 1 Asg 2 As + Ay 3
Ao 4 241 5 Ay 7
Degree 4
Singularities | # Lines || Singularities | # Lines Singularities | # Lines
Dg 1 Az +2A4A; 2 Dy 2
Ay 3 As + Ay 3 Ay + 24, 4
4 A, 4 (As)< 4 (As)> 5
As + Ay 6 344 6 Ao 8
(241)< 8 (241)> 9 Ay 12
Degree 3
Singularities | # Lines || Singularities | # Lines Singularities | # Lines
FEg 1 As + Aq 2 345 3
Ds 3 As 3 Ay + Ay 4
As + 244 5 245 + A 5 Dy 6
Ay 6 As + Ay 7 2A9 7
Ao + 244 8 4A4 9 As 10
Ag + Ay 11 344 12 Ao 15
24, 16 Ay 21
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Degree 2

Singularities | # Lines || Singularities | # Lines Singularities | # Lines
E~ 1 A7 2 Deg + Ay 2
As + A, 3 D4+ 34, 4 2A3 + Ay 4
Eg 4 Dg 3 Ag 4
D5 + Ay 5 (A5 + A1)< o (A5 + Ay)> 6
Dy + 24 6 Ay + Ay 6 2A3 6
A+ A+ Ay 7 Az + 344 8 3A, 8
6A1 10 Ds 8 (As5)< 7
(A5)> 8 Dy + Ay 9 Ay + Ay 10
As + As 10 (A3 +2A;1)< 11 (A3 +2A;1)> 12
245 + Ay 12 Ay +3A; 13 5A; 14
Dy 14 Ay 14 (As+ A< 15
(Ag + A1)> 16 2A9 16 As + 24, 18
(441)< 19 (4A1)~ 20 As 22
As + Ay 24 (3A1)< 25 (3A1)> 26
Ao 32 244 34 Ay 44
Degree 1
Singularities | # Lines || Singularities | # Lines Singularities | # Lines
FEg 1 Dg 2 Ag 3
B+ Ay 3 A7+ Ay 5 Eg + Ay 4
Dg + 24, 9 D5 + As 5} As + Ay + Ay 8
2D, D 2A4 6 2A3 + 2A, 11
4A, 12 Er ) Dr )
(A7)< 7 (A7)> 8 FEg + Ay 8
D¢+ Ay 9 Ag + Aq 10 D5 + Ay 10
D5 + 2A1 12 A5 —+ AQ 12 A5 =+ 2A1 14
Dy + As 11 Dy + 34 17 Ay + As 12
Ag+ Ay + A 15 2A3 + A 16 Az + Ag + 244 19
As + 44, 22 345 + Ay 20 Eg 13
Dg 13 Ag 15 Ds + Ay 18
(A5 + A1)< 20 (A5 + A1)> 21 Dy + Ay 20
Dy +2A4; 24 Ay + Ay 22 Ay + 24, 25
(243)< 22 (243)> 23 Ag+ Ay + Ay 27
As + 34, 31 345 29 2A9 + 244 32
Ao+ 44, 36 6A1 41 Ds 27
Ag 29 Dy + Ay 34 Ay + Ay 36
As+ A, 38 (A3 +2A;)< 43 (A3 +2A;)> 44
245 + Ay 45 Ao+ 344 50 5A; 56
Dy 49 Ay 51 As + Ay 60
249 62 Ay + 24 69 (4A1)< 76
(4A1)> s Asg 83 Ay + Ay 94
3A; 103 Ao 127 2A4 138
Aq 183
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A.2 Lc compactifications of the affine plane

Letting the notation and the assumptions be the same as in Theorem 312 (3), this Appendix
summarizes the list of configurations of all weighted dual graphs of A, where we employ the
following notation:

For the following all weighted dual graphs, ¢, ' and m are arbitrary integers with ¢ > 0,
' >0and m > 2.

In (4), (5), (6) or (7), assume that n is even and let n’ be the integer with 2n’ = n.

[e]
The subgraph U(t) means t-vertices
o
The subgraph L(m;t) means o ce o o .
t-vertices -m
The subgraph R(m;t) means o o o.

-m t-vertices

In (3), (5), (7), (8) or (10), the subgraph A means an arbitrary admissible twig, and
m4 means the integer as in Definition BE2Z8. Moreover, the subgraph A means the
transposal of A, and A* means the adjoint of A (see Definition B21). On the other

hand, if A can be denoted by o o e o , then the subgraph A means
—mi  —m2 —my
O O e O
—m ) —Mr_1

Noting that S; contains exactly one singular point pg, which is k-rational, by Theorem =312
(2)(ii) and (iii), the list is divided into three case about the singularity of py (cf. Section b4):

Case of admitting only cyclic quotient singularities

In this case, there are 10 cases (1)—(10):

n-times n-times
Uty U Uty U@

\o/ n > 3) (2) \O/ o (n>2)
—(t+1)n+1 —(t+1)n —m
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n-times n’-times n’-times

—
U U U Ul U@ o)
3) A \o/ A* o (n>2) (4) \0/7\0/ n' > 2)
—(t+1)n-1 —m —(t+1)n’ —(t+1)n’
n’-times n’-times
) o) U o)
° o« ° ° o °
(5) t(A*) ° tA A o A*
—(t+1)n' -1 —(t+1)n' -1
n/-times n/-times
O O
(6) L(2;¢t) A o A R(2:t)
(4D =1 2 —3 —(t+ D/ —1
n’-times n’-times
ut) U() U@ Ul)
(1) Lmat) — (AN —— " —tg o A0l A" Rmy¥)
—(t+1)n' -1 —2t' -3 —(t+1)n -1
(8) (A" —eo——tg—A——0— A
(9) L(2;t) . o o — R(21)
—2t—3
(10) L(mast) —"(A*) —o tA 0 A . A* R(m;t)
—2t—3

Case of admitting non-cyclic quotient singularities

In this case, there are 17 cases (11)—(27):

'\ '\

(11) ./_3 (12) ./_3 °
.\ :k

(13) ./_4 (14) :7_5
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\ \
15 o) o o) o 16 o o o
W >, w0 e
° \ ° o \
(17) : /_3 2 (18) ] o / o
L(3;t) . o * o
(19 I
L(3;t) ° o/@t+4) -m .>o/
° -3
o ° _03\ L(3;t) o ° _03\
21 o o 22
( ) o ° o/ ( ) L(B;t) o ° o/@t+4)
-3 -3
° > o ° o o
° \ \
(23) o o (24) o o
f > o /_4 ° o o /
L(4;t) . o o ~
(25) o o
L(4;t) . o o /(Qt +4)
° o \ L(3;t) ° o \
(26) o o / o (27) L(3;t) . o /i(gt +5)
° o L(3; t) ° o

Case of admitting log canonical but not quotient singularities

In this case, there are 25 cases (28)—(52):

° o \ L(S; t) ° o \
(28) o ° ° ° (29) L(3;t) . o o
=3 —(3t +6)
° o / L(3; t) ° o /
(30) . N o o .
. /_3\
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L(3;t) . o \ / o . R(3;t)
(31) o
L(3;t oio/mtmoio R(3;t)
L(3;t o o o o R(3;1)
(32) \ o o o o /
o /<t + 3) _(t +% o
- ° o > O o O < o °
o -3 o
L(3;t) o o ~ - o o R(3;1)
(34) o )
o/(t"i'g) -3 _(t_‘_%o
L(3;t) ° o ~_ - o . R(3;1)
(35) o o
L(S; t) ° o /(Zt + 4) _(2t +$ o ° R(S; t)
° :\ o
o . /_4\
o« —o o) o o 7 o o)
0 =, w, >
T
(38) _4> o °
o o ° _04
L(S;t) o o ° 04\
(39) - o °
L(3; t) o o ° o /(Qt + 4)
—4
° > o ° o o
° \ \
(40) o o (41) o o
o > . /—4 -3 R o o / -3
L(4;t) ° o o ° ° > o
(42) S (43) ) S~
L(4;t) ° o o/(Qt—l—Zl) —3 © i>o/_6
L(5;t) . o o o ~_
(44) o °
L(5; t) ° o o o /(% + 4)
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(47)

R o (46) _3> T
-3 o
e ) -3
-3 .-
° /_3\
L(3;t) o ° _03\ 48) P T—o o
o 3 . /—3/
L3 . . _03 Z(2t + 4) .
° /_3
° o L(3;1) © * _O
o _3\ i\ )
. . ° ° (50) L(3;t) ° T3 /_(375 +5)
_3/ .
o [ ] o) L(B’ t) ° * -3
-3
i o \ L(4;t) © ° \
——o _05 (52) L(4:1) ° ° /3(315 +5)
/ L(4;1) ° °
°— o
i
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