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Chapter 1

Introduction

1.1 Anti-canonical polar cylinders in del Pezzo surfaces

Let k be a field (this is not necessarily algebraically closed), and let X be an algebraic variety
defined over k. An open subset U of X is called an Ark-cylinder if U is isomorphic to Ark × Z
for some variety Z over k. When the rank r of cylinder U is not important, U is just said to
be a cylinder.

Certainly, cylinders are geometrically simple objects, however, they are known to have a
variety of applications. As an example, there exists its application to unipotent group actions
on affine cones over polarized varieties. In order to explain it, we shall define polarized
cylinders in normal projective varieties as follows:

Definition 1.1.1. Let k be an algebraically closed field of characteristic zero, let X be a
normal projective variety over k, let H be an ample Q-divisor on X, and let U ' A1

k×Z be a
cylinder in X such that Z is affine. Then we say that U is an H-polar cylinder if there exists
an effective Q-divisor D on X such that D ∼Q H and U = X\Supp(D).

The following theorem plays an important role in connecting polarized cylinders in pro-
jective varieties and unipotent group actions on affine cones:

Theorem 1.1.2 ([37, 40]). Let k be an algebraically closed field of characteristic zero, let X
be a normal projective variety over k and H be an ample Q-divisor on X. Then X contains
an H-polar cylinder if and only if the affine cone:

ConeH(X) := Spec

⊕
i≥0

H0(X,OX(iH))


admits an effective Ga-action.

We will give the application using Theorem 1.1.2 later. To do so, we consider the existing
condition of anti-canonical polar cylinders in del Pezzo surfaces. In what follows, let S be
a del Pezzo surface defined over an algebraically closed field of characteristic zero. In other
words, S is a normal projective surface such that its anti-canonical divisor −KS is ample.

If S is smooth, then the existing condition of (−KS)-polar cylinders is given by [37, 40, 11].
More precise, [37] presents that S contains an (−KS)-polar cylinder provided that this degree
d := (−KS)

2 is more than or equal to 4. Furthermore, [40] shows that S does not contain any
(−KS)-polar cylinder if d ≤ 2. Finally, [11] proves that S does not contain any (−KS)-polar
cylinder if d = 3. Thus, their results can be summarized the following theorem:
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Theorem 1.1.3 ([37, 40, 11]). Let S be a smooth del Pezzo surface over an algebraically
closed field of characteristic zero and let d be the degree of S, i.e., d = (−KS)

2 ∈ {1, . . . , 9}.
Then S contains an (−KS)-polar cylinder if and only if d ≥ 4.

Incidentally, it is also known that the existing condition of (−KS)-polar cylinders provided
that S has at most Du Val singularities.

Theorem 1.1.4 ([12]). Let S be a del Pezzo surface with at most Du Val singularities
over an algebraically closed field of characteristic zero and let d be the degree of S, i.e.,
d = (−KS)

2 ∈ {1, . . . , 9}. Then S does not contain any (−KS)-polar cylinder if and only if
one of the following three conditions holds:

• d = 3 and S allows no singular point;

• d = 2 and S allows only singular points of type A1;

• d = 1 and S allows only singular points of types A1, A2, A3, D4.

This paper in Chapter 4 will consider cylinders in del Pezzo surfaces of rank one with
at most Du Val singularities by using the result and some ideas of Theorem 1.1.4. Hence,
Theorem 1.1.4 is the very important result in this paper.

Now, in order to explain an application of cylinders to unipotent group action, we state
the following problem:

Problem 1.1.5 ([23]). Let V be the 3-dimensional affine variety defined over the complex
number field C defined by:

V := (x3 + y3 + z3 + w3 = 0) ⊆ A4
C = Spec(C[x, y, z, w]).

Then does V admit an effective Ga-action?

Certainly, Problem 1.1.5 is a purely algebraic problem, however, this problem was solved
by the geometric approach for the cylinder. We shall present this outline.

Let S be the cubic hypersurface in P3
C over C defined by:

S := (x3 + y3 + z3 + w3 = 0) ⊆ P3
C = Proj(C[x, y, z, w]).

Then we notice that S is a smooth del Pezzo surface of degree 3, so that S contains never
(−KS)-polar cylinder by Theorem 1.1.3. Hence, the affine cone Cone(−KS)(S) admits no
effective Ga-action by Theorem 1.1.2. In particular, Problem 1.1.5 is false by virtue of:

Cone(−KS)(S) ' (x3 + y3 + z3 + w3 = 0) ⊆ A4
C = Spec(C[x, y, z, w]).

Therefore, cylinders in normal projective varieties receive a lot of attention recently from
the viewpoint of unipotent group actions on affine cones over polarized varieties.

At the end of this section, we present several remarks on polarized cylinders:

Remark 1.1.6. Let S be a del Pezzo surface with at most Du Val singularities over an alge-
braically closed field of characteristic zero. If S is smooth, then it always contains an H-polar
cylinder for some an ample Q-divisor H on S. However, this does not hold unless S is smooth
(see [5], [13, §3]).
Remark 1.1.7. Although not used in this paper, partial results are also known for the existing
condition of polarized cylinders in smooth rational surfaces, which is an extension of Theorem
1.1.3. In other words, letting S be a smooth rational surface with (−KS)

2 ≥ 3 over an
algebraically closed field of characteristic zero, for any ample Q-divisor H on S except for
H ∈ Q>0[−KS ] if (−KS)

2 = 3, there exists an H-polar cylinder in S (see [13, 53]).
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Remark 1.1.8. In this section, we have mainly treated the application of polarized cylinders
to unipotent group action. However, there are several other known applications for polarized
cylinders. For example, Fano varieties containing anti-canonical polar cylinders also receive
attention recently since the α-invariant of these varieties is strictly less than 1 (see [10, The-
orem 1.26]).

1.2 Cylinders in Mori fiber spaces

The importance of finding cylinders in projective varieties is treated in the previous section
1.1. In this section, we thus discuss cylinders in higher dimensional normal projective varieties
defined over the complex number field C. For example, the classification of Fano threefolds
of rank one containing the 3-dimensional affine space A3

C is known (see [25, 26]). Moreover,
some examples of Fano threefolds and Fano fourfolds containing a cylinder are also known
(see, e.g., [10, 37, 39, 60, 61, 62]). However, in general, it is not easy to decide whether a
given projective variety contains a cylinder.

Now, we shall consider how to find cylinders in a projective variety X ′ by using the
minimal model program (MMP, for short). Assume that X ′ contains a cylinder. A resolution
of singularities of X ′ still contains a cylinder, in particular, its canonical divisor is not pseudo-
effective. Then by virtue of [6, Corollary 1.3.3], X ′ is birational to a suitable Mori fiber
space (MFS, for short) f : X → Y by means of minimal model program (MMP, for short).
Conversely, assuming that a normal projective variety X ′ admits a process of MMP θ : X ′ 99K
X is MFS which contains a cylinder, it follows that so does the initial X ′ by [20, Lemma 9].
Thus, in some sense, it is important and essential to try to find cylinders contained in MFS.
In this paper, as a special and ideal situation, we shall consider finding a vertical AsC-cylinder
with respect to MFS f : X → Y over C, where vertical cylinders are defined as follows:

Definition 1.2.1 ([19]). Let f : X → Y be a dominant projective morphism of relative
dimension s ≥ 1 defined over C. For an integer r with 1 ≤ r ≤ s, an ArC-cylinder U ' ArC×Z
in X is called a vertical ArC-cylinder with respect to f if there exists a morphism g : Z → Y
(of relative dimension s− r) such that the restriction of f to U coincides with g ◦ prZ .

It is known the following lemma about the existing condition of vertical cylinders:

Lemma 1.2.2 ([19, Lemma 3]). Let f : X → Y be a dominant projective morphism of
relative dimension s ≥ 1 defined over C, and let r be an integer with 1 ≤ r ≤ s. Then f
admits a vertical ArC-cylinder if and only if the generic fiber Xη, which is defined over the
function field C(Y ) = C(η) of the base variety, contains an ArC(Y )-cylinder.

Let f : X → Y be a MFS over C. Notice that the generic fiber Xη of f is a Fano variety of
rank one defined over C(Y ). In particular, the dimension of Xη over C(Y ) is less than that of
X unless Y is a point. However, the base field C(Y ) is not algebraically closed unless Y is a
point. Hence, in order to find a vertical cylinder with respect to MFS, the following problem
is essential to consider:

Problem 1.2.3. Let V be a normal Fano variety of rank one defined over a field k of char-
acteristic zero (this is not necessarily algebraically closed), and let r be an integer with
1 ≤ r ≤ dimk(V ). In which case does V contain an Ark-cylinder?

Let V be a Fano variety of rank one over a field k of characteristic zero. In the case of
dimk(V ) = 1, the above problem is quite easy. Indeed, V contains an A1

k-cylinder if and only
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if V has a k-rational point. In case of dimk(V ) = 2, then V is a del Pezzo surface. Dubouloz
and Kishimoto provided the following theorem about the existing condition of smooth del
Pezzo surfaces of rank one:

Theorem 1.2.4 ([19, Theorem 1]). Let k be a field of characteristic zero, let S be a smooth del
Pezzo surface of rank one over k and let d be the degree of S, i.e., d = (−KS)

2 ∈ {1, . . . 6, 8, 9}.
Then:

(1) S contains an A1
k-cylinder if and only if d ≥ 5 and S has a k-rational point.

(2) S contains an A2
k-cylinder if and only if d ≥ 8 and S has a k-rational point.

Remark 1.2.5. Any A2
k-cylinder in a surface is clearly isomorphic to the affine plane A2

k.

Remark 1.2.6. Let S be a del Pezzo surface of rank one (this is not necessarily smooth) over
a field k of characteristic zero. Then Uk is an (−KSk

)-polar cylinder for any cylinder U in
S (if it exists) since Cl(S)Q is generated by only −KS . In particular, in Theorem 1.2.4, we
immediately see that any smooth del Pezzo surface of rank one with degree ≤ 3 contains no
cylinder (but the case of degree 4 is not easy).

Remark 1.2.7. Although not used in this paper, partial results in the case of dimension 3 in
Problem 1.2.3 are also known (see [21, 51]).

In this paper, we shall extend Theorem 1.2.4 to the singular case. In other words, we will
give a partial answer to Problem 1.2.3 when V is of dimension 2 and singular. We explain
the details in the next section.

1.3 Main results

In this paper, we shall mainly give the existing condition of cylinders in normal surfaces over
algebraically non-closed fields. Furthermore, we apply these results to the following fibrations:

Definition 1.3.1. Let f : X → Y be a dominant projective morphism of relative dimension
two between normal varieties defined over the complex number field C. Then:

(1) f is a weak del Pezzo fibration if the total space X has only Q-factorial terminal singu-
larities and the generic fiber Xη of f is a weak del Pezzo surface, which is minimal over
the rational function field C(Y ).

(2) f is a generically canonical (resp. klt, lc) del Pezzo fibration if the generic fiber Xη of f
is a Du Val (resp. a log, an lc) del Pezzo surface of rank one over the rational function
field C(Y ).

Remark 1.3.2. We present two remark about Definition 1.3.1:

(1) Note that a del Pezzo fibration means a MFS of relative dimension two normal varieties
defined over C. Hence, letting f : X → Y be a weak del Pezzo fibration over C, f is a
del Pezzo fibration if and only if the generic fiber Xη of f is of rank one over C(Y ).

(2) In Definition 1.3.1 (1), we may omit the assumption that X has only Q-factorial terminal
singularities. Indeed, we will not use this assumption in this paper.

The author studied the existing condition of vertical cylinders with respect to fibrations
as in Definition 1.3.1 ([65, 66, 67]). Then his results are summarized in the following Table:
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Singularities Terminal Canonical Log terminal Log canonical

Vertical A1-cylinder [19] [66] ? ?

Vertical A2-cylinder [19] [67] [67] [67]

In what follows, we detailly state the author’s results in three subsections separately.

1.3.1 Cylinders in weak del Pezzo fibrations

Notice that Du Val del Pezzo surfaces have a one-to-one correspondence to weak del Pezzo
surfaces via minimal resolutions (see Subsection 2.4.2). Hence, in order to consider Du Val del
Pezzo surfaces of rank one containing a cylinder defined over algebraically non-closed fields, we
shall study minimal weak del Pezzo surfaces containing a cylinder defined over algebraically
non-closed fields. Indeed, this consideration is necessary to determine the existing condition
of cylinders in Du Val del Pezzo surfaces of rank one over algebraically non-closed fields (for
details, see Section 4.4). As the results, we obtain the following two Theorems 1.3.3 and 1.3.4:

Theorem 1.3.3 ([65, Theorem 1.6]). Let k be a field of characteristic zero, let S̃ be a weak
del Pezzo surface, whose −KS is not ample, defined over k and let d be the degree of S̃, i.e.,
d := (−K

S̃
)2. Then S̃ is minimal over k if and only if ρk(S̃) = 2 and the type of S̃ is one of

the following (for the definition of the type of S̃, see Section 2.4.2):

• d = 8 and A1-type;

• d = 4 and (2A1)<-type;

• d = 2 and A1, A2 or (4A1)>-type;

• d = 1 and 2A1 or 2A2-type.

Theorem 1.3.4 ([65, Theorem 1.7]). Let k be a field of characteristic zero, let S̃ be a
minimal weak del Pezzo surface with ρk(S̃) > 1 defined over k and let d be the degree of S̃,
i.e., d := (−K

S̃
)2. Then the following assertions hold:

(1) S̃ contains an A1
k-cylinder if and only if d = 8 and S̃ is endowed with a structure of

Mori conic bundle admitting a section defined over k.

(2) S̃ contains the affine plane A2
k if and only if d = 8 and S̃ has a k-rational point.

We shall present some corollaries of Theorem 1.3.4. Let the notation be the same as in
Theorem 1.3.4, assume further that d = 8. At first, consider the case that −K

S̃
is not ample,

i.e., S̃ is a k-form of the Hirzebruch surface F2 of degree 2. Then any Mori conic bundle
π : S → B such that πk admits the minimal section, which is defined over k. Hence, we
obtain:

Corollary 1.3.5 ([65, Corollary 4.5]). Let the notation be the same as in Theorem 1.3.4,
assume further that d = 8. If −K

S̃
is not ample, then S̃ always contains an A1

k-cylinder.

Next, consider the case that k = R. It is known the classification of smooth real del Pezzo
surfaces ([63]). In particular, we know that any weak del Pezzo surface, which is an R-form
of P1

C × P1
C, of rank two is always endowed with a structure of Mori conic bundle admitting a

section defined over R ([63], see also [47, Lemma 3.2]). By this fact and Corollary 1.3.5, we
obtain:

Corollary 1.3.6 ([65, Example 4.6]). Let the notation be the same as in Theorem 1.3.4,
assume further that d = 8. If k = R, then S̃ always contains an A1

R-cylinder.
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Incidentally, consider the case that k is a C1-field. Hence, S̃ always has k-rational point
by virtue of [29, Theorem 3.12], so that we obtain:

Corollary 1.3.7. Let the notation be the same as in Theorem 1.3.4, assume further that
d = 8. If k is a C1-field, then S̃ always contains the affine plane A2

k.

Finally, by using Theorem 1.3.4 and Corollaries 1.3.5 and 1.3.7 combined with Lemma
1.2.2, we obtain the following corollary about the existing condition of vertical cylinders with
respect to weak del Pezzo fibrations:

Corollary 1.3.8 ([65, Corollaries 1.8 and 1.9]). Let f : X → Y be a weak del Pezzo fibration
over C, let Xη be the generic fiber of f , and d be the degree of f , i.e., d := (−KXη)

2. Then
we have the following assertions:

(1) If f is not a del Pezzo fibration, i.e., ρC(Y )(Xη) > 1, then we obtain:

• d = 1, 2, 4 or 8;

• f admits a vertical A1
C-cylinder if and only if d = 8 and Xη is endowed with a

structure of Mori conic bundle admitting a section defined over C(Y );

• f admits a vertical A2
C-cylinder if and only if d = 8 and Xη has a C(Y )-rational

point.

(2) If X is a threefold, which is the equivalence that Y is a curve, and d = 8, then f always
admits a vertical A2

C-cylinder.

In Corollary 1.3.8 (2), we note that this assertion follows form Corollary 1.3.7 and the
Tsen’s theorem (see, e.g., [54, Lemma 12.3.1]). In other words, for a dominant morphism
f : X → C over C, the function field C(C) is a C1-field if C is a curve.

1.3.2 Cylinders in canonical del Pezzo fibrations

Let S be a Du Val del Pezzo surface of rank one over a field k of characteristic zero. As
a generalization of Theorem 1.2.4 in the sense of singularities, we will consider the existing
condition under which S contains a cylinder. Based on previous works (Theorems 1.1.4 and
1.2.4), it may seem that this condition can be only determined by the degree of S, the existence
of k-rational points on S, and singularity type on Sk. However, as Theorem 1.3.9 shows, we
know that the treatment of singularity type on Du Val del Pezzo surfaces of rank one actually
turns out to be very subtle. For instance, even in the case that two Du Val del Pezzo surfaces
are of rank one over a field k of characteristic zero whose base extensions over k are mutually
isomorphic, it may be that exactly only one of them contains a cylinder (see Example 1.3.10).

Theorem 1.3.9 ([66, Theorems 1.4, 1.5 and 1.6]). Let k be a field of characteristic zero, let
S be a Du Val del Pezzo surface of rank one defined over k and let d be the degree of S, i.e.,
d := (−KS)

2. Then*1:

(1) In case of d ≥ 5, then S always contains a cylinder.

(2) In case of d = 3 or 4, then S contains a cylinder if and only if Sk has a singular point
defined over k, which is not of type A++

1 over k.

(3) In case of d = 1 or 2, then:

(i) If d = 2 (resp. d = 1) and Sk has a singular point of type A6, A7, Dn or En (resp.
type A8, D6, D7, D8, E7 or E8), then S contains a cylinder.

*1For the singularities notation, see Section 4.1.
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(ii) If d = 2 (resp. d = 1) and Sk has a singular point of type (A5)
′′ (resp. type

(A7)
′′)*2, say x, then S contains a cylinder if and only if x is not of type A++

5

(resp. type A++
7 ) over k.

(iii) If d = 2 (resp. d = 1) and Sk allows only singular points of type A1 (resp. types
A1, A2, A3 and D4), then S does not contain any cylinder.

(iv) If S does not satisfy any condition on singularities of (i), (ii) and (iii) above, then
S contains a cylinder if and only if Sk has a singular point defined over k, which is
of type A−

n , D
−
n or E−

n over k.

Example 1.3.10 ([66, Example 6.4]). Let Sn be the quadratic hypersurface in the weighted
projective space P(1, 1, 1, 2) over a rational function field C(t) defined by:

Sn := (tnw2 + x2z2 + xz3 = 0) ⊆ P(1, 1, 1, 2) = Proj(C(t)[x, y, z, w]),

where n ∈ Z. Then Sn is a del Pezzo surface of degree 2. Moreover, S
n,C(t) has exactly two

singular points p1 := [0 : 0 : 1 : 0] and p2 := [1 : 0 : 0 : 0] in P(1, 1, 1, 2) of types A2 and (A5)
′,

respectively. In particular, p1 and p2 are k-rational, and S
n,C(t) is of rank one, namely, so

is Sn. Then we know that Sn contains a cylinder if and only if n is even. Indeed, this fact
can be shown as follows: Let σ : S̃n → Sn be the minimal resolution over C(t). Then we see
that S̃

n,C(t) contains some reduced curves, whose union is defined over k, corresponding to

the following weighted dual graph (see Example 4.3.11):

•
◦ JJJJ

◦ ◦
•

◦ ◦
• t

ttt

◦
JJJ

J

◦
◦tttt

Here “•” and “◦” mean a (−1)-curve and a (−2)-curve on S̃
n,C(t), respectively. By Theorem

1.3.9 (4)(iv) combined with above the weighted dual graph, S contains a cylinder if and only if
p1 is of type A

−
2 over C(t). By easy computation, we see that the local equation of exceptional

set of p1 ∈ Sn can be written tnu2+v2 ∈ C(t)[u, v] for some regular parameters u and v. Note
that p1 is of type A−

2 over C(t) on Sn if and only if tnu2 + v2 is reducible over C(t)[u, v]. In
particular, this is equivalent that n is even.

Let f : X → Y be a generically canonical del Pezzo fibration over C and let Xη be the
generic fiber of f . By virtue of Theorem 1.3.9 combined with Lemma 1.2.2, we can give a
condition under which f admits a vertical A1

C-cylinder depending on degree of f , i.e., (−KXη)
2,

and singularities in Xη over C(Y ).

1.3.3 Compactification of the affine plane over non-closed fields

Let k be a field of characteristic zero. As the next target of Theorem 1.3.9, we shall deal with
the following problems:

Problem 1.3.11. In which case does a del Pezzo surface of rank one with at most Du Val
singularities (and more generally, with singularities worse than Du Val singularities) over k
contain the affine plane A2

k?

*2Note that a singular point of type (A5)
′′ (resp. (A7)

′′) on a Du Val del Pezzo surface of degree 2 (resp. 1)
admits at most one point and is automatically k-rational.
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In order to give the solution to the above problem, we consider compactifications of the
affine plane into lc del Pezzo surfaces of rank one over k. In the case of k = k, [56] classifies
compactifications of the affine plane into Du Val del Pezzo surfaces of rank one, furthermore,
[42, 45] classify compactifications of the affine plane into lc del Pezzo surfaces of rank one.
More precisely, [42] and [45] give the classification of compactifications of the affine plane into
log del Pezzo surfaces and lc del Pezzo surfaces of rank one over C, respectively. Hence, we
shall generalize their reworks to the case where the base field is of characteristic zero without
assuming that it is algebraically closed. As a result, we obtain the following theorem:

Theorem 1.3.12 ([67]). Let (S,∆) be an lc compactification of the affine plane over a field
k of characteristic zero (see Definition 5.1.2, for this definition), let σ : S̃ → S be the minimal
resolution and let ∆̃ be the reduced effective divisor on S̃ defined by ∆̃ := σ∗(∆)red.. Then
we have the following:

(1) ∆̃k is an SNC-divisor.

(2) The following three assertions about the number of singularities hold:

(i) ]Sing(S) ≥ 1. In other words, Sk has a singular point, which is k-rational.

(ii) ]Sing(S) ≤ 2. Moreover, ]Sing(S) = 2 if and only if ]Sing(Sk) = 2.

(iii) ]Sing(Sk) = 1 or ρk(Sk) + 1.

(3) In case of ρk(Sk) > 1, the weighted dual graph of ∆̃k is one of the graphs (1)–(52) in
Appendix A.2.

Remark 1.3.13. In Theorem 1.3.12, if ρk(Sk) = 1, then the weighted dual graph of ∆̃k is
classified (see [42, Appendix C] and [45, Fig. 1]).

By applying Theorem 1.3.12, we can determine the condition whether lc del Pezzo surfaces
of rank one contain the affine plane A2

k as follows:

Theorem 1.3.14 ([67]). Let k be a field of characteristic zero, let S be an lc del Pezzo
surface of rank one defined over k such that Sing(Sk) 6= ∅, and let σ : S̃ → S be the minimal
resolution over k. Then the following are equivalent:

(A) S contains the affine plane A2
k.

(B) There exists a reduced effective divisor ∆̃ on S̃ such that the exceptional locus of σ
is included in Supp(∆̃), any irreducible component of ∆̃k is a rational curve and the

weighted dual graph of ∆̃k is one of the graphs in [42, Appendix C], [45, Fig. 1] or
Appendix A.2.

Now, we shall focus on Du Val del Pezzo surfaces. By Theorem 1.3.14, we can determine
the condition whether Du Val del Pezzo surfaces contain the affine plane A2

k depending only
on degrees and singularity types as follows:

Theorem 1.3.15 ([67]). Let k be a field of characteristic zero, let S be a Du Val del Pezzo
surface of rank one defined over k such that Sing(Sk) 6= ∅, and let d be the degree of S, i.e.,
d := (−KS)

2. Then S contains the affine plane A2
k if and only if one of the following two

conditions holds:

• d = 8 and S contains a singular point of type A+
1 over k (see Section 4.1, for this

notation);

• d = 5 or 6;
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• d ≤ 4 and the pair of degree d and singularity type of Sk is one of the following:

(4, D5), (4, D4), (4, A2 + 2A1), (4, A2), (3, E6), (3, D4), (2, E7), (2, E6), (2, A6), (1, E8).

Remark 1.3.16. We state some remarks of Theorem 1.3.15:

(1) In the case of k = k, it is known that the condition for a Du Val del Pezzo surface of
rank one to contain the affine plane can be determined only by the singularities type
(see, e.g., [56]). However, it is not true unless k is algebraically closed (see Example
5.6.4).

(2) Notice that the “if part” in Theorem 1.3.15 also follows from arguments of the proof of
Theorem 1.3.9 (see Remarks 4.2.8 and 4.4.6). In other words, Theorem 1.3.15 particu-
larly asserts that the “only if part” in Theorem 1.3.15 is also true.

By Theorem 1.3.14 combined with Lemma 1.2.2, we can give a condition under which
any generically lc del Pezzo fibration f : X → Y over C admits a vertical A2

C-cylinder. In
particular, by virtue of Theorem 1.3.15 combined with Lemma 1.2.2, the existing condition
of vertical A2

C-cylinders with respect to a generically canonical del Pezzo fibration f : X → Y
over C can be determined only degree and singularities of X

η,C(Y )
, where Xη is the generic

fiber of f . For details, see Subsection 5.5.2.

1.4 Organization of this paper

In Chapter 2, we shall summarize basic properties. More precisely, we review five topics in this
chapter as follows. In Section 2.1, we deal with basic properties on weak del Pezzo surfaces
defined over algebraically closed fields. In Section 2.2, we treat some facts about algebraic
varieties over algebraically non-closed fields. In particular, we recall Galois actions, forms of
the projective spaces, which are called the Severi-Brauer varieties, and the classification of
the minimal model of smooth projective surfaces over a field of characteristic zero. In Section
2.3, we define terminal, canonical, log terminal and log canonical singularities. Moreover, we
recall the properties of singularities on normal algebraic surfaces over an algebraically closed
field of characteristic zero. In Section 2.4, we provide an overview of the classification of weak
del Pezzo surfaces. In Section 2.5, we prepare some useful facts about cylinders in normal
projective surfaces over a field of characteristic zero. Moreover, we also introduce the variant
of Corti’s inequality since this inequality is used to prove a few facts.

In Chapter 3, we prove Theorems 1.3.3 and 1.3.4. In Section 3.1, we show that any minimal
del Pezzo surface of rank two and of degree ≤ 4 defined over a field of characteristic zero is
endowed with the structure of two Mori conic bundles. In Section 3.2, we classify minimal
weak del Pezzo surfaces. As a corollary, for any minimal weak del Pezzo surfaces of rank two
and of degree d, we obtain either d = 8 or d ≤ 4. In Section 3.3, we determine the existing
condition of cylinders in a minimal weak del Pezzo surface S̃ over a field of characteristic zero.
This proof will be divided according to the degree d, more precisely the case of d = 8 and
the case of d ≤ 4, separately. In the case of d = 8, we show that S̃ contains a cylinder by
using the property of A1-bundle. In the case that d ≤ 4, we show that S̃ does not contain
any cylinder by using a variant of Corti’s inequality combined with facts in Section 3.1.

In Chapter 4, we prove Theorem 1.3.9. In other words, we determine the existing condition
of cylinders in any Du Val del Pezzo surface S of rank one over a field of characteristic zero.
In Section 4.1, in order to precisely state our main result in this chapter, we prepare the
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more detailed notation on Du Val singularities. Note that the proof of our main result will
be divided according to the degree d, more precisely the case of d ≥ 3 and the case of d ≤ 2,
separately. In Section 4.2, we treat the case of d ≥ 3. However, the case of d ≤ 2 is a little
tricky. Thus, in Section 4.3, we prepare some results. In Section 4.4, we treat the case of d ≤ 2
by using facts in Section 4.3. In Section 4.5, we shall provide some examples of cylinders in
Du Val del Pezzo surfaces of rank one over a field of characteristic zero and vertical cylinders
with respect to generically canonical del Pezzo fibrations.

In Chapter 5, we prove Theorems 1.3.12, 1.3.14 and 1.3.15. The main idea of the proof
of this theorem is to classify compactifications of the affine plane. In Section 5.1, we thus
prepare the notation on this and present previous works. In Section 5.2, we also prepare some
properties of twigs, where a twig is a special kind of weighted dual graph, which will play an
important role in proving Theorem 1.3.12. In Section 5.3, we show Theorem 1.3.12 (1) and
(2). These results will play an important role in the next Section 5.4. In Section 5.4, we show
Theorem 1.3.12 (3). In other words, we classify the weighted dual graph of the boundary
divisors on the minimal resolution of lc compactifications of the affine plane. In Section 5.5,
we shall show Theorems 1.3.14 and 1.3.15 as an application of Theorem 1.3.12. Moreover,
we will yield a criterion for generically canonical del Pezzo fibrations to contain vertical A2

C-
cylinders in terms of degree and singular type of generic fibers (see Corollary 5.5.4). Finally,
in Section 5.6, we will give various remarks about Theorem 1.3.12.

In Appendix A, we summarize two kind lists as follows. Appendix A.1 summarizes the list
of the classification of weak del Pezzo surfaces over algebraically closed fields over character-
istic zero for the readers’ convenience. Appendix A.2 summarizes the list of configurations of
all lc compactifications of the affine plane defined over algebraically non-closed fields in terms
of weighted dual graphs.

Conventions. We employ the notation basically as in [54].
In this paper, a del Pezzo surface means a normal projective surface such that its anti-

canonical divisor is ample. Also, weak del Pezzo surface means a smooth projective surface
such that its anti-canonical divisor is nef and big. On the other hand, throughout, the rank
of a del Pezzo surface means the rank of its Neron-Severi group.

Now, we state the notation on weighted dual graphs (see, e.g., [55, p. 52], for the defini-
tion). For any weighted dual graph, a vertex ◦ with the number m corresponds to an m-curve
(see also the following Notation). Exceptionally, we omit this label if m = −2, moreover, we
omit this label and use the vertex • (resp. � ) instead of ◦ if m = −1 (resp. m = 0).

In what follows, letting k be a field of characteristic zero, we state the conventions on
varieties defined over k. Let X be an algebraic variety X defined over a field k. Then
Xk denotes the base extension of X to the algebraic closure k of k, i.e., Xk := X ×Spec(k)

Spec(k). Moreover, we say that X is geometrically rational if Xk is rational. When X is a
smooth projective surface, we say that X is minimal over k (or simply, k-minimal) if any
birational morphism f : X → Y from X to a smooth projective surface Y defined over k is
an isomorphism. Letting X ′ be an algebraic variety defined over k, we say that X is a k-form
of X ′ if Xk ' X ′. Also, we write Sing(X) := Sing(Xk) ∩ X(k), in other words, Sing(X) is
the set of singularities on Xk defined over k. For a normal surface V over k, we say that
V has at most Du Val singularities (resp. quotient singularities, log canonical singularities)
if the base extension Vk has at most Du Val singularities (resp. quotient singularities, log
canonical singularities). For a del Pezzo surface S over k, we say that S is a Du Val (resp. a
log, an lc) del Pezzo surface if S has at most Du Val singularities (resp. quotient singularities,
log canonical singularities) (see Section 2.3, for singularities). For π : X → Y a surjective
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morphism between algebraic varieties defined over k, we say that π is a P1-fibration (resp.
P1-bundle) if a general fiber (resp. any fiber) of the base extension πk : Xk → Yk is isomorphic
to P1

k
. Moreover, we say that π is a conic bundle if any fiber of πk is isomorphic to the plane

conic (not necessarily irreducible). Let D be a reduced effective divisor on a variety defined
over k. Then Dk denotes the base extension of D to the algebraic closure k. We say that D is
an SNC-divisor if Dk has only simple normal crossings. Moreover, ]D denotes the number of
all irreducible components in Supp(D) over k. Note that if Supp(D) contains an irreducible
component, which is not geometrically irreducible, then ]D < ]Dk.

Notation. We will use the following notations:

• Z: the set of all integers.

• Q: the rational number field.

• R: the real number field.

• C: the complex number field.

• ρk(X): the Picard number of a variety X defined over a field k.

• Cl(X): the divisor class group of a variety X.

• ϕ∗(D): the total transform of a divisor D by a morphism ϕ.

• ϕ−1
∗ (D): the proper transform of a divisor D by a morphism ϕ.

• ψ∗(D): the direct image of a divisor D by a morphism ψ.

• (D ·D′): the intersection number of two divisors D and D′ on a surface.

• (D)2: the self-intersection number of a divisor D on a surface.

• Fm: the Hirzebruch surface of degree m.

• m-curve: a smooth projective rational curve defined over an algebraically closed field
with self-intersection number m.

• A1
∗,k: The affine line over k with one k-point removed, i.e., A1

∗,k := Spec(k[t±1]).

• C(n): A k-form of the affine line with n-times closed points removed.

• δi,j : The Kronecker delta.
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Chapter 2

Preliminaries

2.1 Basic properties of weak del Pezzo surfaces

In this section, we review the basic but important properties of weak del Pezzo surfaces over
an algebraically closed field of characteristic zero. We mainly refer to [18, §8]. Let V be a
weak del Pezzo surface over an algebraically closed field of characteristic zero.

It seems that the following two lemmas are basic:

Lemma 2.1.1. With the notation as above, we obtain (−KV )
2 > 0 and (−KV · C) ≥ 0 for

any curve C on V . Moreover, assuming that −KV is ample, we obtain (−KV ·C) > 0 for any
curve C on V .

Proof. This assertion follows from [49, Proposition 2.61] and [49, Theorem 1.37]. 2

Lemma 2.1.2. With the notation as above, let C be an irreducible curve on V . Then the
following assertions hold:

(1) If (C)2 < 0, then C is either a (−1)-curve or a (−2)-curve.
(2) C is a (−2)-curve if and only if (C · −KV ) = 0.

Proof. In (1), see [18, Lemma 8.1.3]. We shall prove (2). If C is a (−2)-curve, then (C)2 = −2
and pa(C) = 0, so that we easily obtain (C · −KV ) = 0. Conversely, assume (C · −KV ) = 0.
Note that (−KV )

2 > 0 since −KV is nef and big. Hence, we know (C)2 < 0 by the Hodge
index theorem (see, e.g., [54, Theorem 10.9]). Thus, C is either a (−1)-curve or a (−2)-curve
by (1). However, we note that C is not a (−1)-curve. Indeed, if C is a (−1)-curve, we obtain
(C · −KV ) = 1 by virtue of (C)2 = −1 and pa(C) = 0. 2

It is well known that any weak del Pezzo surface over an algebraically closed field of
characteristic zero is rational. More strictly, the following lemma holds:

Lemma 2.1.3. With the notation as above, then V is isomorphic to P1×P1 or the Hirzebruch
surface F2 of degree 2, or a blow-up at most eight points, which may include infinitely near
points, from P2.

Proof. See, e.g., [18, Theorem 8.1.15]. 2

By Lemma 2.1.3, for a weak del Pezzo surface V , we see that (−KV )
2 is an integer between

1 and 9.
Furthermore, we will use the following two lemmas after Chapters:
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Lemma 2.1.4. With the notation as above, let D be a divisor on V such that (D)2 = −1,
(D · −KV ) = 1 and (D ·M) ≥ 0 for any (−2)-curve M on V . Then there exists a (−1)-curve
E on V such that D ∼ E.

Proof. See [18, Lemma 8.2.22]. 2

Lemma 2.1.5. With the notation as above, the number of (−2)-curves on V is less than or
equal to 9− (−KV )

2.

Proof. See [18, Proposition 8.2.25]. 2

2.2 Some properties of varieties over non-closed fields

In this section, we review standard facts on varieties over an algebraically non-closed field of
characteristic zero. Some basic facts about (geometrically) rational surfaces over algebraically
non-closed fields can be found in, e.g., [15, 32, 29] (see also [59, 50]). Let k be a field (this is
not necessarily algebraically closed) of characteristic zero.

It seems that the Galois group actions are a useful tool for the studying of varieties defined
over algebraically non-closed fields. In particular, the following lemma plays an important
role in the studying:

Lemma 2.2.1 ([50, Exercise 1.8]). Let k′/k be a finite Galois extension. Note that the Galois
group Gal(k′/k) acts on Ank′ = Spec(k′[x1, . . . , xn]) as follows:

Gal(k′/k)× Ank′ 3 (g, (a1, . . . , an)) 7→ (g(a1), . . . , g(an)) ∈ Ank′ .

Let V be a closed algebraic subset of Ank′ . Then the following two conditions are equivalent:

• V can be defined by polynomials in k[x1, . . . , xn];

• V is invariant under the Gal(k′/k)-action.

Next, recall the following proposition on Severi-Brauer varieties:

Proposition 2.2.2. Let V be a smooth algebraic variety over k satisfying Vk ' Pn
k
. Then

V ' Pnk if and only if V has a k-rational point.

Proof. See, e.g., [59, Proposition 4.5.10]. 2

Example 2.2.3. Let C be the irreducible plane conic over R as follows:

C := (x2 + y2 + z2 = 0) ⊆ P2
R = Spec(R[x, y, z]).

By pa(CC) = 0, we cleary see that CC ' P1
C. However, since C has no R-rational point, we

obtain C 6' P1
R.

Lemma 2.1.3 implies that minimal weak del Pezzo surfaces over an algebraically closed
field is one of P2, P1×P1 or F2. On the other hand, minimal weak del Pezzo surfaces over an
algebraically non-closed field are known as follows:

Proposition 2.2.4. Let S̃ be a weak del Pezzo surface defined over k. If S̃ is minimal over
k, then one of the following assertions hold:

• S̃ is a smooth del Pezzo surface of rank one;

• S̃ is of rank two and is endowed with a structure of Mori conic bundle defined over k.

Proof. Since S̃ is minimal and the canonical divisor KS of S̃ is not nef by the assumption, we
obtain the assertion by [59, Theorem 9.3.20]. 2

14



2.3 Classes of singularities

In this section, we review the four classes of singularities about minimal model programs. We
will present these definitions in general dimensions, however, we will mainly treat singularities
on normal algebraic surfaces later. In this paper, we only consider singularities over an
algebraically closed field of characteristic zero. Throughout this section, we thus assume that
all varieties are defined over an algebraically closed field k of characteristic zero. We refer to
[1, 49, 55].

Definition 2.3.1 ([49, Notation 2.26 and Definition 2.28]). Let X be a normal projective
variety and let D =

∑
j djDj be an effective Q-divisor on X such that KX +D is Q-Cartier.

For a birational morphism f : X̃ → X, we write:

K
X̃
+ f−1

∗ (D) ≡R f
∗(KX +D) +

∑
i

a(Ei, X,D)Ei,

where each Ei is an irreducible component of the exceptional locus of f . Then the discrepancy
of (X,D) is given by:

discrep(X,D) := infE{a(E,X,D), |E is an exceptional divisor over X},

where E runs through all the irreducible exceptional divisors for all birational morphisms
f : X̃ → X and through all the irreducible divisors of X.

Definition 2.3.2 (cf. [49, Definition 2.34]). Let X be a normal projective variety.

(1) Letting D =
∑

j djDj be a Q-divisor on X such that KX + D is Q-Cartier, we say
that (X,D) is terminal (resp. canonical, kawamata log terminal, log canonical) if
discrep(X,D) > 0 (resp. discrep(X,D) ≥ 0, discrep(X,D) > −1 and 0 ≤ dj < 1
for any j, discrep(X,D) ≥ −1).

(2) We say that X has at most terminal singularities (resp. canonical singularities, log
terminal singularities, log canonical singularities) if (X, 0) is terminal (resp. canonical,
kawamata log terminal, log canonical).

In what follows, we shall consider two-dimensional singularities.

Theorem 2.3.3 (cf. [49, Theorem 4.5 (1)]). Let S be a normal algebraic surface. Then S
has at most terminal singularities if and only if S is smooth.

Next, in order to deal with 2-dimensional canonical singularities, we recall Du Val singu-
larities.

Definition 2.3.4 (e.g. [49, Definition 4.4]). Let S be a normal algebraic surface, let x ∈ X be
a singular point and let σ : S̃ → S be the minimal resolution. Then x ∈ X is a Du Val singular
point if any irreducible component E in the exceptional set of σ satisfies (E · −K

S̃
) = 0.

Then it is known the following fact:

Theorem 2.3.5 (cf. [49, Theorem 4.5 (2)]). Let S be a normal algebraic surface. Then S
has at most canonical singularities if and only if S has at most Du Val singular points.

[22] summarizes some properties on Du Val singularities. In particular, we will use the
following facts in this paper later:
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Lemma 2.3.6 ([22]). Let S be a normal algebraic surface, let x ∈ S be a singular point, let
σ : S̃ → S be the minimal resolution and let E be the exceptional set of σ. Then the following
facts hold:

(1) Any irreducible component of E is a (−2)-curve.
(2) The dual graph of E is one of the following:

• Type An: ◦ · · · ◦ ;

• Type Dn: ◦ · · · ◦
◦ OOOOOO

◦ oo
ooo

o (n ≥ 4);

• Type E6: ◦ ◦ ◦

◦

◦ ◦ ;

• Type E7: ◦ ◦ ◦

◦

◦ ◦ ◦ ;

• Type E8: ◦ ◦ ◦

◦

◦ ◦ ◦ ◦ .

Next, in order to deal with 2-dimensional log terminal singularities, we recall (2-dimensional)
quotient singularities. We refer to [55, Chap I. §§5.3]. For details, see [8]. Let G be a finite
subgroup of GL(2; k). Then G acts naturally on A2

k as follows:

G× A2
k 3 (

[
a b
c d

]
, (x, y)) 7→ (ax+ by, cx+ dy) ∈ A2

k.

Letting A be the coordinate ring*1 of A2
k, then we have the following ring:

AG := {f ∈ A | g · f = f for any g ∈ G}.

Now, we say that the scheme A2
k/G := Spec(AG) is called the algebraic quotient scheme.

Moreover, the morphsim π : A2
k → A2

k/G, which corresponds to the inclusion AG ↪→ A, is
called the quotient morphism. Then the image via π of the point of origin 0 on A2

k/G is
denoted also by 0.

Definition 2.3.7 (cf. [55, Chap. I, §§5.3]). Let S be a normal algebraic surface and let x ∈ S
be a closed point. Let U be an affine open subset of S such that this coordinate ring R is
a local ring with the only maximal ideal corresponding to x. Then we say that x ∈ S is a
quotient singular point if the completion of R is isomorphic to the completion of the local ring
OA2

k/G,0
for some finite subgroup G of GL(2; k), where the notation of A2

k/G and 0 are the
same as above.

Then the following fact is known:

*1In this paper, a ring means a commutative ring with unit 1.
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Theorem 2.3.8 (cf. [49, Proposition 4.18]). Let S be a normal algebraic surface. Then S
has at most log terminal singularities if and only if S has at most quotient singular points.

[8] firstly classify quotient singularities. Furthermore, [1] gives elementary other proof of
the classification. Their works are summarized as follows:

Lemma 2.3.9 (cf. [55, Chap. I, Lemma 5.3.3]). Let S be a normal algebraic surface, let
x ∈ S be a quotient singular point, let σ : S̃ → S be the minimal resolution and let E be the
exceptional set of σ. Then the weight dual graph is one of the following:

(1) ◦
−m1

· · · ◦
−mr

, where mi ≥ 2 for i = 1, . . . , r;

(2) ◦
−m(1)

r1 · · · ◦
−m(1)

1 ◦−m ◦
−m(2)

1 · · · ◦
−m(2)

r2

◦ −m(3)
1

...

◦ −m(3)
r3

such that three pairs of positive integers (n1, q1), (n2, q2) and (n3, q3) satisfy 0 < qi < ni,
gcd(ni, qi) = 1 and:

ni
qi

= m
(i)
1 −

1

m
(i)
2 −

1

m
(i)
3 −

1

. . . −
1

m
(i)
ri−1 −

1

m
(i)
ri

for i = 1, 2, 3, where {n1, n2, n3} = {2, 2, n} (n ≥ 2), {2, 3, 3}, {2, 3, 4} or {2, 3, 5}.

Remark 2.3.10 ([24, (3.8)]). In general, the quotient singular point with respect to a finite
cyclic subgroup of GL(2; k) is called a cyclic quotient singular point. Letting G be the cyclic
subgroup of GL(2; k) given by:

G :=

〈[
ζ 0
0 ζq

]〉
(ζ := exp

(
2π
√
−1
n

)
, 0 < q < n, gcd(n, q) = 1),

then the weighted dual graph of the exceptional set of minimal resolution at the quotient
singularity with respect to G is following:

◦
−m1

· · · ◦
−mr
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such that:

n

q
= m1 −

1

m2 −
1

m3 −
1

. . . −
1

mri−1 −
1

mri .

Hence, all cyclic quotient singularities up to isomorphic have a one-to-one correspondence to
the set of rational numbers in the interval (0, 1).

Notice that the explicit list of weighted dual graphs of the exceptional set of the minimal
resolution of a quotient singular point is summarized in, e.g., [55, pp. 54–56] or [1, p. 57 (2)].

Next, 2-dimensional log canonical singularities are classified as follows:

Theorem 2.3.11 (cf. [1], [49, Theorem 4.7]). Let S be a normal algebraic surface, let x ∈ S
be a log canonical singular point, let σ : S̃ → S be the minimal resolution and let E be the
exceptional set of σ. Then one of the following proprieties holds:

(0) x is a quotient singular point.

(1) The weighted dual graph of E is the following:

◦
−m(1)

r1 · · · ◦
−m(1)

1 ◦−m ◦
−m(2)

1 · · · ◦
−m(2)

r2

◦ −m(3)
1

...

◦ −m(3)
r3

such that three pairs of positive integers (n1, q1), (n2, q2) and (n3, q3) satisfy 0 < qi < ni,
gcd(ni, qi) = 1 and:

ni
qi

= m
(i)
1 −

1

m
(i)
2 −

1

m
(i)
3 −

1

. . . −
1

m
(i)
ri−1 −

1

m
(i)
ri

for i = 1, 2, 3, where {n1, n2, n3} = {3, 3, 3}, {2, 4, 4} or {2, 3, 6}.
(2) The weighted dual graph of E is as follows:

◦
−m

◦ OOOOOO

◦ oo
ooo

o

◦oooooo

◦
OOO

OOO

where m ≥ 3.
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(3) The weighted dual graph of E is as follows:

◦
−m1

◦ OOOOOO

◦ oo
ooo

o · · · ◦
−mr

◦oooooo

◦
OOO

OOO

where m1, . . . ,mr ≥ 2 and further mi ≥ 3 for some i = 1, . . . , r.

(4) E is irreducible and either a smooth elliptic curve or a nodal curve.

(5) E consists of smooth rational curves such that this weighted dual graph is a cycle.

At the end of this section, we recall rational singularities.

Definition 2.3.12 ([4]). Let S be a normal algebraic surface and let σ : S̃ → S be a resolution.
Then S has at most rational singularities if R1σ∗OS = 0. (Note that this definition is known
to be independent of the resolution. )

It seems that the following two theorems are basic but important facts.

Theorem 2.3.13 ([3, 4]). Let S be a normal protective surface. If S has at most rational
singularities, then S is Q-factorial, i.e., any Weil divisor on S is Q-Cartier.

Theorem 2.3.14 (cf. [3, 4]). Let S be a normal algebraic surface and let x ∈ S be a log
canonical singular point. Then x is a rational singular point if and only if x satisfies one of
the conditions (0), (1), (2) and (3) in Theorem 2.3.11.

2.4 Classification of weak del Pezzo surfaces

In this section, we recall a classification of weak del Pezzo surfaces over an algebraically closed
field of characteristic zero, moreover, we define the type of weak del Pezzo surfaces. Almost
all parts of this section depend on [17, §§2.1] and [18, §8] (see also [15, 9, 69]).

2.4.1

Let V be a weak del Pezzo surface defined over an algebraically closed field of characteristic
zero, whose −KV is not ample, and let d be the degree of V , i.e., d = (−KV )

2. If d = 8, then
V is the Hirzebruch surface F2 of degree 2. Namely, we have the contraction σ : V → P(1, 1, 2)
of the minimal section. In what follows, we shall consider the case of d ≤ 7. We prepare the
following definition:

Definition 2.4.1 ([17, Definition 3], [12, Definition 2.8]). Letting V1 and V2 be two weak
del Pezzo surfaces over an algebraically closed field of characteristic zero, we say that these
surfaces have the same type if there is an isomorphism Pic(V1) ' Pic(V2) preserving the
intersection form that gives a bijection between their sets of classes of (−1)-curves and (−2)-
curves.

By Lemma 2.1.3 and the assumption d ≤ 7, we can take the following composition of
blow-downs to P2:

τ : V = Vd
τ9−d→ Vd+1

τ8−d→ . . .
τ2→ V8

τ1→ V9 = P2,
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where τi is a contraction of a (−1)-curve on V9−i for i = 1, . . . , 9 − d. Let e0 be the proper
transform on V of a general line on P2 and let ei be the total transform on V of the exceptional
divisor of τi for i = 1, . . . , 9 − d. Then we can write Pic(V ) '

⊕9−d
i=0 Zei preserving the

intersection form such that (e0)
2 = 1, (ei)

2 = −1 for i > 0 and (ei · ej) = 0 for i, j ≥ 0 with
i 6= j. Let R(V ) be the subset of Pic(V ) preserving the intersection form defined by:

R(V ) := {D ∈ Pic(V ) | (D)2 = −2, (D · −KV ) = 0}.

By [18, Lemma 8.2.6 and Proposition 8.2.7], R(V ) is the root system of type A1, A2 + A1,
A4, D5 and E9−d if d = 7, d = 6, d = 5, d = 4 and d ≤ 3, respectively (see, e.g., [30, Chap.
III], for the reference about root systems). By [18, Proposition 8.2.25], the number r of all
(−2)-curves on V is less than 10 − d, moreover, letting M1, . . . ,Mr be all (−2)-curves on V ,
the sublattice L(V ), which is generated by M1, . . . ,Mr, in R(V ) is a root lattice of rank r
corresponding to the intersection matrix with respect to these (−2)-curves. That is, L(V )
determines a subsystem of the root system R(V ). Indeed, this can be checked from the data
in [15] for degree d ≥ 4 and from [9] for d = 3. Moreover, [69] lists all cases with d ≤ 2. Thus,
noticing that the base field is of characteristic zero, L(V ) is one of the following according to
the degree d:

• d = 7: the root system of type A1;

• d = 6 (resp. d = 5, d = 4, d = 3): the subsystem of the root system of type A2 + A1

(resp. A4, D5, E6);

• d = 2: the subsystem of the root system of type E7 except for type of 7A1;

• d = 1: the subsystem of the root system of type E8 except for types of 7A1, 8A1 and
D4 + 4A1,

Remark 2.4.2. In this paper, we treat only algebraic varieties over a field of characteristic
zero. Meanwhile, if the base field is algebraically closed and of characteristic two, there exists
a weak del Pezzo surface V of degree 2 (resp. degree 1) such that L(V ) is the root system of
type 7A1 (resp. 7A1, 8A1 or D4 + 4A1). For details, see [69] or [35].

2.4.2

Let k be a field (this is not necessarily algebraically closed) of characteristic zero, let S̃ a weak
del Pezzo surface defined over k and let d be the degree S̃. Letting S̃k be the base extension

of S̃ to the algebraic closure k, we obtain the root system L(S̃k). Let M1, . . . ,Mr be all

(−2)-curves on S̃k. Notice that the dual graph of
∑r

i=1Mi corresponds to type of L(S̃k).

Moreover, the union
∑r

i=1Mi is defined over k. Hence, we obtain the contraction σ : S̃ → S
of

∑r
i=1Mi over k, so that S is a Du Val del Pezzo surface over k by Lemmas 2.1.2 (2) and

2.3.6. Conversely, for any Du Val del Pezzo surface S, its minimal resolution is a weak del
Pezzo surface. Hence, types of singularities of Du Val del Pezzo surfaces have a one-to-one
correspondence with types of root systems of their minimal resolution.

Now, we say that the type of singularity type of Sk is called “Sing” of S̃. Furthermore, we

say that the number of (−1)-curves on S̃k is called “#Lines” of S̃, where “#Lines” is finite
by Lemma 2.1.4 and [18, Proposition 8.2.19]. In this paper, the triplet (d, Sing, #Lines) is
called the type of S̃. For two weak del Pezzo surfaces S̃1 and S̃2 over k, it is known that the
types of S̃1 and S̃2 (in the sense of the above triplet) are the same if and only if S̃1 and S̃2
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have the same type (in the sense of Definition 2.4.1). Moreover, it is known that all pairs
(d, Sing) can uniquely determine the number of “#Lines” except for the following pairs:

(d, Sing) =(6, A1), (4, A3), (4, 2A1),

(2, A5 +A1), (2, A5), (2, A3 + 2A1), (2, A3 +A1), (2, 4A1), (2, 3A1),

(1, A7), (1, A5 +A1), (1, 2A3), (1, A3 + 2A1), (1, 4A1).

(2.4.1)

On the other hand, if the pair (d, Sing) is one of those in the list of (2.4.1), then it is known
that there are exactly two possibilities of the number of “#Lines” ([15, 9, 69]).

2.4.3

Let k be a field of characteristic zero. For the simplify of the notation, we introduce the
notation for types of weak del Pezzo surfaces instead of the triplet as follows: Let S̃ be a
weak del Pezzo surface over k such that the pair (d,X) of the degree and “Sing” of S̃ is not
in the list in (2.4.1). Then we say that S̃ is of X-type. On the other hand, let S̃1 and S̃2 be
two weak del Pezzo surfaces over k such that pairs of the degree and “Sing” of them are the
same, and their common pair (d,X) is one of those in the list of (2.4.1). Moreover, assume
that #Lines of S̃1 is strictly more than #Lines of S̃2. Then we say that S̃1 (resp. S̃2) is of
(X)>-type (resp. (X)<-type). The detail is summarized in Appendix A.1, for the reader’s
convenience.

Example 2.4.3. Let us look at cases (d, Sing) = (4, 2A1), (2, 4A1). There are two possibilities
about #Lines for each of such cases as follows:

• In case of (d, Sing) = (4, 2A1), if S̃ is of (2A1)>-type (resp. (2A1)<-type), then
#Lines = 9 (resp. #Lines = 8).

• In case of (d, Sing) = (2, 4A1), if S̃ is of (4A1)>-type (resp. (4A1)<-type), then
#Lines = 20 (resp. #Lines = 19).

2.5 Basic properties of cylinders in normal projective surfaces

Let k be a field of characteristic zero. In this section, we prepare some basic facts about
cylinders in normal projective surfaces.

We prepare two examples of cylinders in smooth rational surfaces over algebraically non-
closed fields (cf. [19, Proposition 12]). Although not used in this paper, [13, §§4.1] present
many examples of cylinders in smooth del Pezzo surfaces over algebraically closed fields.

Lemma 2.5.1. Let V be a k-form of P1
k
×P1

k
containing a k-rational point, say p, let F1 and

F2 be k-forms of irreducible curves of types (1, 0) and (0, 1) (see [28, Chap. II, Example 6.6.1],
for the notation) passing through p, respectively, and let C be a geometrically irreducible
curve on V passing through p such that C ∼ F1 + F2. Then V \(F1 ∪ F2 ∪ C) ' A1

k × A1
∗,k.

Proof. Notice that Ck is a 2-curve. Let ϕ : V ′ → V be the blow-up at p, let E′ be a
reduced exceptional curve by ϕ, and let F ′

1, F
′
2 and C ′ be the proper transform of F1, F2

and C, respectively. Since F ′
i,k

is a (−1)-curve on V ′ for i = 1, 2 and F ′
1 + F ′

2 is defined

over k, we thus obtain the contraction ψ : V ′ → V ′′ of F ′
1 + F ′

2, so that V ′′ is a k-form of
the projective plane P2

k
. Since E′ contains a k-rational point, so does its image via ψ, in

particular, we know that V ′′ ' P2
k by Lemma 2.2.2. On the other hand, ψ∗(C

′) and ψ∗(E
′)

are distinct lines on V ′′ ' P2
k. Namely, V ′′\(ψ∗(C

′) ∪ ψ∗(E
′)) ' A1

k × A1
∗,k. Hence, we have

V \(F1 ∪ F2 ∪ C) ' V ′\(F ′
1 ∪ F ′

2 ∪ C ′ ∪ E′) ' V ′′\(ψ∗(C
′) ∪ ψ∗(E

′)) ' A1
k × A1

∗,k. 2
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Lemma 2.5.2. Let V be a k-form of F2 admitting a k-rational point, say p, let M and F
be k-forms of the minimal section and the closed fiber passing through p of the structure
morphism Vk ' F2 → P1

k
, respectively, let C2 be a geometrically irreducible curve on V such

that C2 ∼M+2F and let C3 be a geometrically irreducible curve on V such that C3 ∼M+3F
and M ∩ F ∩ C3 6= ∅. Then V \(M ∪ F ∪ C2) ' V \(M ∪ F ∪ C3) ' A1

k × A1
∗,k.

Proof. Since V has a k-rational point p, we note that V ' F2 by using Lemma 2.2.2, i.e., V '
P(OP1

k
⊕OP1

k
(2)). Hence, (V,M+F+C2) is a minimal normal comapctification of A1

k×A1
∗,k by

[68] or [43]. Indeed, M and F are rational curves over k by Lemma 2.2.2. Moreover, C2 ' P1
k

since the intersection point of C2 and F is k-rational. Namely, V \(M ∪ F ∪C2) ' A1
k ×A1

∗,k.
By assumption, M ∩ F ∩ C3 consists of a only one point, say q, defined over k. Let

ϕ : V ′ → V be the blow-up at q, let E′ be a reduced exceptional curve by ϕ, and letM ′, F ′ and
C ′
3 be the proper transform of M , F and C3, respectively. Since F

′ is a (−1)-curve on V ′ and
defined over k, we thus obtain the contraction ψ : V ′ → V ′′ of F ′, so that V ′′ is the Hirzebruch
surface F3 of degree 3, i.e., V ' P(OP1

k
⊕ OP1

k
(3)). Hence, (V ′′, ψ∗(M

′) + ψ∗(E
′) + ψ∗(C

′
3))

is a minimal normal compactification of A1
k × A1

∗,k by [68] or [43]. Indeed, since ψ∗(M
′),

ψ∗(E
′) and ψ∗(C3) admit a k-rational point, respectively, they are rational curves. Namely,

V \(M ∪ F ∪C3) ' V ′\(M ′ ∪ F ∪C ′
3 ∪E′) ' V ′′\(ψ∗(M

′) ∪ ψ∗(E
′) ∪ ψ∗(C

′
3)) ' A1

k ×A1
∗,k. 2

The following fact seems to be well-known to experts, however, it will play an important
role in later Chapters 4 and 5:

Lemma 2.5.3. Let V be a smooth projective surface over k and let U be a cylinder in V .
Then the boundary divisor of U has no cycle.

Proof. Let us write U ' A1
k × Z for some curve Z, and let D be the boundary divisor of U ,

i.e., V \Supp(D) = U . If D has a cycle, then so does Dk. Hence, we may assume k = k.
The closures in V of fibers of the projection prZ : U ' A1

k × Z → Z yields a linear system
on V , say L , hence we have the rational map ΦL : V 99K Z to a projective model Z of the
closure of Z in V . Note that Bs(L ) consists of at most one point by the configure of L . Let
ψ : V̄ → V be the shortest succession of blow-ups the point on Bs(L ) and its infinitely near
points such that the proper transform of L is free of base points to give rise to a morphism
ϕ̄ := ΦL ◦ψ : V̄ → Z, where we shall define ϕ := ΦL if Bs(L ) = ∅. Hence, ϕ̄ is a P1-fibration,
moreover, ψ∗(D)red. is the union of a section and all singular fibers of ϕ̄. Thus, if D has a
cycle, then some singular fibers of ϕ̄ also have a cycle. However, it is impossible. Indeed, it is
known that any singular fiber of P1-fibration from a smooth projective surface does not have
a cycle (see, e.g., [54, Lemma 12.5]). This completes the proof. 2

Now, we shall prepare the variant of Corti’s inequality. It seems to be a useful tool for
proving the absence of cylinders in smooth surfaces over algebraically non-closed fields.

Lemma 2.5.4 (The variant of Corti’s inequality). Let V be a smooth projective surface
defined over k, let L be a mobile linear system on V , let p be a closed point on V and let
C1 and C2 be two curves on V such that these curves meet transversely at p. Assume that
(V, (1−a1)C1+(1−a2)C2+µL ) is not log canonical at p for some a1, a2 ∈ Q≥0 and µ ∈ Q>0.

(1) If either a1 ≤ 1 or a2 ≤ 1, then the following inequality holds:

i(L1, L2; p) > 4a1a2µ
2,

where L1 and L2 are general members of L .
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(2) If both a1 > 1 and a2 > 1, then the following inequality holds:

i(L1, L2; p) > 4(a1 + a2 − 1)µ2,

where L1 and L2 are general members of L .

Proof. See [16, Theorem 3.1]. 2

From now on, we present two lemmas, which are obtained by using Lemma 2.5.4, on
cylinders. The first lemma is a result of generalizing [65, Lemma 4.7], which is a key lemma
for the proof of Theorem 1.3.4:

Lemma 2.5.5. Let V be a smooth geometrically rational projective surface with ρk(V ) ≥ 2
and (−KV )

2 ≤ 4 over k, which endowed with a structure of P1-fibration π : V → P1
k. Let L be

a linear system on V such that Bs(L ) consists of exactly one k-rational point p. Assume that
a general member L of L satisfies L\{p} ' A1

k and is Q-linearly equivalent to a(−KV ) + bF
for some a, b ∈ Q, where F is the closed fiber of π : V → P1

k passing through p. Then a > 0
and b < 0.

Proof. The assertion a > 0 can be easily seen by 0 ≤ (L ·F ) = 2a and 0 < (L )2 = a(da+4b).
Suppose b ≥ 0. Let ΦL : V 99K P1

k be the rational map associate to L , and let ψ : V̄ → V
be the shortest succession of blow-ups the point p ∈ Bs(L ) and its infinitely near points such
that the proper transform L̄ := ψ−1

∗ (L ) of L is free of base points to give rise to a morphism
ϕ̄ := ΦL̄ ◦ ψ (see the following diagram):

V
ΦL // P1

k

V̄

ψ

OO

φ̄

??�������

Notice that ψ is defined over k by construction. Letting {Ēi}1≤i≤n be the exceptional divisors
of ψ with Ēn the last exceptional one, which is a section of ϕ̄, we have:

(L̄ · Ēi) =
{

0 if 1 ≤ i ≤ n− 1
1 if i = n

(2.5.1)

and

KV̄ −
b

a
ψ∗(F ) +

1

a
L̄ = ψ∗

(
KV −

b

a
F +

1

a
L

)
+

n∑
i=1

ciĒi (2.5.2)

for some rational numbers c1, . . . , cn. As a > 0, b ≥ 0 and (L̄ )2 = 0, we have:

−2 = (L̄ ·KV̄ )

=

(
L̄ ·KV̄ +

1

a
L̄

)
≥

(
L̄ ·KV̄ −

b

a
ψ∗(F ) +

1

a
L̄

)
=

(2.5.2)

(
L̄ · ψ∗

(
KV −

b

a
F +

1

a
L

))
+

n∑
i=1

ci(L̄ · Ēi)

=
(2.5.1)

(
L̄ · ψ∗

(
KV −

b

a
F +

1

a
L

))
+ cn.
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Since KV − b
aF + 1

aL ∼Q 0, we have cn ≤ −2. This implies that (V,− b
aF + 1

aL ) is not log
canonical (see Definition 2.3.2, for this definition). We will consider whether p ∈ F is smooth
or not in what follows.

In the case that p ∈ F is smooth: By Lemma 2.5.4 (1), we have:

i(L1, L2; p) > 4

(
1 +

b

a

)
a2 = 4a(a+ b), (2.5.3)

where L1 and L2 are general members of L . Meanwhile, since L1 and L2 meet at only p, the
left hand side of (2.5.3) can be written as:

i(L1, L2;x) = (L )2 = (−KV )
2a2 + 4ab ≤ 4a(a+ b),

where we recall that (−KV )
2 ≤ 4. It is a contradiction to (2.5.3).

In the case that p ∈ F is not smooth: We then know that Fk is a singular fiber of πk,
hence, there exists exactly two irreducible components F1 and F2 on F meeting transversely
at p (see, e.g., [55, Lemma 2.11.2]). Hence, (V,− bm1

a F1 − bm2
a F2 +

1
aL ) is not log canonical

at p for some positive integers m1 and m2. By Lemma 2.5.4, we have:

i(L1, L2; p) > 4

{(
1 +

bm1

a

)
+

(
1 +

bm2

a

)
− 1

}
a2 = 4a{a+ (m1 +m2)b}, (2.5.4)

where L1 and L2 are general members of L . By the similar argument as above, we see:

i(L1, L2; p) ≤ 4a(a+ b) ≤ 4a{a+ (m1 +m2)b},

which is a contradiction to (2.5.4). 2

The other lemma, which is a generalization of [19, Proposition 9] in the sense of singular-
ities, will play important role in Chapter 4:

Lemma 2.5.6. Let S be a Du Val del Pezzo surface of rank one and of degree d defined over
k. Assume that S contain a cylinder U ' A1

k×Z. The closures in S of fibers of the projection
prZ : U ' A1

k × Z → Z yields a linear system on S, say L . Then the following assertions
hold:

(1) Bs(L ) consists of exactly one k-rational point, say p.

(2) If d ≤ 4, then p is a singular point on Sk.

Proof. In (1), since S is of rank one, Cl(S)Q is generated by only −KS . Hence, two general
members L1 and L2 on L meet at a point because of (−KS)

2 > 0. This implies that
Bs(L ) 6= ∅. Hence, Bs(L ) consists of exactly one k-rational point by construction of L .

In (2), suppose that d ≤ 4 and p is a smooth point on Sk. Let σ : S̃ → S be the minimal

resolution over k. Then S̃ also contains a cylinder Ũ := σ−1(U) ' U . The closures in S̃ of

fibers of the projection prZ : Ũ ' A1
k × Z → Z yields a linear system, say L̃ , on S̃. By

assumption, σ−1(p) consists of only one k-rational point, say p̃. Hence, Bs(L̃ ) = {p̃}. On
the other hand, notice that we can write L ∼Q a(−KS) for some a ∈ Q>0 Then since p is
smooth on Sk and Sk has at most Du Val singularities, we have:

L̃ = σ−1
∗ (L ) = σ∗(L ) ∼Q aσ

∗(−KS) ∼Q a(−KS̃
).

Thus, we can obtain a contradiction by the argument similar to Lemma 2.5.5. Therefore, p
must be a singular point on Sk provided that d ≤ 4. 2
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Chapter 3

Cylinders in weak del Pezzo
fibrations

The purpose of this chapter is to prove Theorems 1.3.3 and 1.3.4. Throughout this chapter,
let k be a field of characteristic zero, let S̃ be a weak del Pezzo surface defined over k and let
d be the degree of S̃, i.e., d := (−K

S̃
)2.

3.1 Properties of Mori conic bundles from minimal weak del
Pezzo surfaces

Let the notation be the same as at the beginning of Chapter 3 and assume further that
ρk(S̃) > 1 and S̃ is minimal over k. By Proposition 2.2.4, we then obtain that ρk(S̃) = 2 and
S̃ is endowed with a structure of Mori conic bundle defined over k. In this section, we shall
prepare the basic properties of this Mori conic bundle for later use.

Lemma 3.1.1. With the notation and the assumptions as above, let π : S̃ → B be a Mori
conic bundle over k. Then:

(1) Bk ' P1
k
.

(2) πk : S̃k → Bk is a P1-bundle if and only if d = 8.

(3) If d < 8, then π does not admit any section defined over k.

Proof. In (1) and (2), see [50, Exercise 3.13]. We shall show (3). By (1), we have Bk ' P1
k
.

Note that the base extension of π to the algebraic closure πk : S̃k → Bk ' P1
k
admits always

a section defined over k, by the Tsen’s theorem. Let Γ be a section of πk. By the assumption

that d < 8 and (2), πk admits a singular fiber F . We can easily see by the minimality of S̃

that F is the union E + E′ of (−1)-curves E and E′ on S̃k meeting transversally at a point,
say p, in such a way that E and E′ lie in the same Gal(k/k)-orbit. Since Γ is a section of πk,
Γ does not pass through p. Hence, we may assume that there exists a closed point q ∈ E\{p}
such that Γ passes through q. Since E and E′ lie in the same Gal(k/k)-orbit, there exists a
closed point q′ ∈ E′\{p} such that q and q′ are contained in the same Gal(k/k)-orbit. This
implies that Γ is not defined over k. 2

The following two lemmas will play important roles in Subsection 3.3.2:
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Lemma 3.1.2. With the notation and the assumptions as above, any P1-fibration π : S̃ → B
over a geometrically rational curve B defined over k is a Mori conic bundle.

Proof. Assume that πk admits a singular fiber F . Since S̃ is minimal over k, we know that
F does not contain any (−2)-curve by [70, Lemma 1.5]. Moreover, F is the union E1 +E2 of
two (−1)-curves E1 and E2 on S̃k meeting transversally at a point in such a way that E1 and
E2 lie in the same Gal(k/k)-orbit. This implies that π is a Mori conic bundle. 2

The following lemma can be found in [32]. However, we give the proof for the reader’s
convenience since this is an important result.

Lemma 3.1.3. With the notation and the assumptions as above, assume further that S̃(k) 6=
∅, −K

S̃
is ample, and d is equal to 1, 2 or 4. Then S̃ is endowed with two distinct structures

of Mori conic bundles πi : S̃ → P1
k defined over k for i = 1, 2 such that F1 + F2 ∼ 4

d(−KS̃
),

where Fi is a general fiber of πi,k, which is defined over k, for i = 1, 2.

Proof. For any Mori conic bundle π : S̃ → B over k, note that B ' P1
k, in particular, there

exists a general fiber of πk defind over k. Indeed, since S̃ has a k-rational point, so it its image
via π by Lemmas 2.2.2 and 3.1.1 (1).

By Proposition 2.2.4, we see that ρk(S̃) = 2 and S̃ is endowed with a structure of Mori
conic bundle π1 : S → P1

k defined over k. In particular, there exists a general fiber F1 of π1,

which is geometrically irreducible. By ρk(S̃) = 2, the Mori cone NE(S̃) contains exactly two
extremal rays, say R1 and R2 (cf. [49, §1.3]). Moreover, we can assume R1 = R≥0[F1] and we

write R2 = R≥0[`] for some curve ` on S̃. Noticing that 4
d is an integer by d ∈ {1, 2, 4}, let D

be the divisor on S̃ defined by D := 4
d(−KS̃

)−F1. By the Riemann-Roch theorem combined

with (D)2 = 0 and (−K
S̃
· D) = 2, we have χ(S̃k,OS̃k

(D)) = 1 + χ(S̃k,OS̃k
). Moreover,

by the Serre duality theorem combined with (K
S̃k
− D · F1) = −2(1 + 4

d) < 0, we have

h2(S̃k,OS̃k
(D)) = h0(S̃k,OS̃k

(K
S̃k
−D)) = 0. Thus, we have dim |D| = h0(S̃k,OS̃k

(D))− 1 ≥
χ(S̃k,OS̃k

(D)). On the other hand, since S̃k is a rational surface by Lemma 2.1.3, we see

χ(S̃k,OS̃k
) = 1. Therefore, we have dim |D| ≥ 1. In particular, Dk is linearly equivalent to

a union
∑r

i=1Ci of some irreducible curves {Ci}1≤i≤r on S̃k. Since −K
S̃
is ample, we have

r ≤ 2 by (−K
S̃
· D) = 2, moreover, there are at most finitely many unions C1 + C2 of two

irreducible curves C1 and C2 on S̃k with C1 + C2 ∼ Dk because these unions consist of two

(−1)-curves on S̃k. Hence, there exists an irreducible curve Γ on S̃k such that Dk ∼ Γ. Let

Γ′ be a Gal(k/k)-orbit of Γ. Thus, we can write [Γ′] = a1[F1] + a2[`] in NE(S̃) for some
non-negative real numbers a1, a2. By (Γ′)2 = 0 and (F1 · Γ′) > 0, we obtain a1 = 0. Namely,
Γ′ ∈ R2. This implies that there exists a Mori conic bundle π2 : S̃ → P1

k, which is different

from π1, such that a general fiber of π2,k is linearly equivalent to Γ on S̃k. Furthermore, there
exists a general fiber F2 of π2,k, which is defined over k. By construction of π2, we know

F1 + F2 ∼ 4
d(−KS̃

). 2

Remark 3.1.4. Assuming that −K
S̃
is not ample, then we have either (`1)

2 6= 0 or (`2)
2 6= 0

for two curves `1 and `2 on S̃ such that NE(S̃) = R≥0[`1] + R≥0[`2]. Otherwise, we obtain
(`1 · `2) > 0 by virtue of (−K

S̃
)2 > 0, however, this contradicts (−K

S̃
·M) = 0, where M is a

Gal(k/k)-orbit of a (−2)-curve on S̃k. Hence, the assertion of Lemma 3.1.3 is not true unless
−K

S̃
is ample.
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3.2 Proof of Theorem 1.3.3

Let the notation be the same as at the beginning of Chapter 3 and assume further that −K
S̃

is not ample. In this section, we will prove the proof of Theorem 1.3.3. In other words, we
shall classify minimal weak del Pezzo surfaces, whose anti-canonical divisor is not ample, over
a field of characteristic zero. Note that minimal weak del Pezzo surfaces of degree ≥ 4 with
anti-canonical divisor not ample over a perfect field are already classified by [15]. Our result
thus gives a generalization to any degree of their work in the characteristic zero case.

3.2.1 Quasi-minimal weak del Pezzo surfaces

The purpose of this section is that we shall give to classify of minimal weak del Pezzo surfaces
with anti-canonical divisor not ample. In order to state this classification, we shall introduce a
weaker version of being minimal, which depends only on degree and type, the so-called being
quasi-minimal.

Lemma 3.2.1. With the notation and the assumptions as above, assume further that ρk(S̃) =
2. Then the type of S̃ is either mA1-type or mA2-type for some m ∈ Z>0. In particular, the
type of S̃ is one of the following:

• d = 7 or 8 and A1-type.

• d = 6 and A2, 2A1, (A1)< or (A1)>-type.

• d = 5 and A2, 2A1 or A1-type.

• d = 4 and 4A1, 3A1, A2, (2A1)<, (2A1)> or A1-type.

• d = 3 and 3A2, 2A2, 4A1, 3A1, A2, 2A1 or A1-type.

• d = 2 and 3A2, 6A1, 5A1, 2A2, (4A1)<, (4A1)>, (3A1)<, (3A1)>, A2, 2A1 or A1-type.

• d = 1 and 4A2, 3A2, 6A1, 5A1, 2A2, (4A1)<, (4A1)>, 3A1, A2, 2A1 or A1-type.

Proof. At first, we show that the type of S̃ is either mA1-type or mA2-type for some positive
integer m. Let σ : S̃ → S be the contraction of all (−2)-curves on S̃k, where σ is defined

over k (see Section 2.4). By virtue of 1 ≤ ρk(S) < ρk(S̃) = 2, it follows that S is a Du Val
del Pezzo surface of rank one. Hence, we obtain ρk(S̃) − ρk(S) = 1. This implies that all
(−2)-curves on S̃k lie in the same Gal(k/k)-orbit. Thus, it must be that S̃ is of mA1-type
or mA2-type for some m ∈ Z>0 and all singularities on Sk are transformed to each other by
means of the action of Gal(k/k). Otherwise, by the dual graph of the union of all (−2)-curves
on S̃k, we can easily see ρk(S̃)−ρk(S) > 1, which is a contradiction. Moreover, the remaining
assertion follows from the above argument by combined with the classification of weak del
Pezzo surfaces over algebraically closed fields of characteristic zero (see Appendix A.1). 2

By Proposition 2.2.4 and Lemma 3.2.1, the type of any minimal weak del Pezzo surface,
whose anti-canonical divisor is not ample, is one of those in the list of Lemma 3.2.1.

Now, let us consider an example of minimal weak del Pezzo surfaces. We say that a
singular intersection of two quadrics S ⊆ P4

k is an Iskovskih surface if its minimal resolution
is a weak del Pezzo surface of degree 4 and of (2A1)>-type, and two Du Val singular points
of type A1 on Sk are exchanged by the Gal(k/k)-action. It is known that a weak del Pezzo
surface of degree 4 is minimal if and only if it is the minimal resolution of an Iskovskih surface
([15, Theorem 7.2]). The following is an example of an Iskovskih surface studied by [31]:
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Example 3.2.2. Let S be the singular intersection of two quadrics in P4
Q defined by:

S := (x2 + y2 + z2 + zv = zv − w2 + 3v2 = 0) ⊆ P4
Q = Proj(Q[x, y, z, v, w]).

Then S is an Iskovskih surface such that SQ has two Du Val singular points [1 :±
√
−1:0 :0 :0]

of type A1. Let τ̃ : S̃ → S be the minimal resolution over Q, so that S is a minimal weak del
Pezzo surface of degree 4 and of (2A1)<-type over Q. In particular, there are exactly eight
(−1)-curves on S̃Q, which are proper transforms the following defining equations in P4

Q:

x±
√
−1y = z =

√
3w + u = 0, x±

√
−1y = z + w =

√
2w + u = 0,

x±
√
−1y = z =

√
3w − u = 0, x±

√
−1y = z + w =

√
2w − u = 0.

Thus, we know that S̃ is minimal over Q.

Remark 3.2.3. Note that the minimality of weak del Pezzo surfaces can not be detected by
the type only. For instance, if we change the defining equation of S in Example 3.2.2 to
x2 − y2 + z2 + zv, zv − w2 + 3v2 ∈ Q[x, y, z, w, u], then S̃ is also a weak del Pezzo surface of
degree 4 and of (2A1)<-type but not minimal over Q.

Now, letting E be any (−1)-curve on S̃k, if S̃k is minimal, then there exists a (−1)-curve
E′ on S̃k such that (E · E′) > 0 and |ME(i, j)| = |ME′(i, j)| for i = 1, 2 and j = 1, 2, where
MC(i, j) is the set defined by:

MC(i, j) := {M |M : (−i)-curve on S̃k, (C ·M) = j}

for i = 1, 2, j = 1, 2 and a projective curve C on S̃k. By noticing this observation, we shall
define a weaker version of minimality as follows:

Definition 3.2.4. Let the notation and the assumptions be the same as above. Then S̃ is
quasi-minimal if the following two conditions hold:

• S̃ is either of mA1-type or mA2-type for some positive integer m.

• For any (−1)-curve E on S̃k, there exists a (−1)-curve E′ on S̃k such that (E · E′) > 0
and |ME(i, j)| = |ME′(i, j)| for i = 1, 2 and j = 1, 2.

By definition, if S̃ is minimal, then S̃ is quasi-minimal. Furthermore, we actually see that
quasi-minimality depends only on the type by the classification of weak del Pezzo surfaces
over algebraically closed fields of characteristic zero (see also Definition 2.4.1).

Theorem 1.3.3 is a consequence of the following proposition:

Proposition 3.2.5. With the notation and the assumptions as above, the following three
conditions are equivalent:

(1) S̃ is minimal.

(2) ρk(S̃) = 2 and S̃ is quasi-minimal.

(3) ρk(S̃) = 2 and the type of S̃ is one of those in the list of Theorem 1.3.3.

Remark 3.2.6. Assume that Proposition 3.2.5 is true and there exists a weak del Pezzo surface
S̃′ with ρk(S̃

′) = 2 such that S̃ and S̃′ have the same type. Then we see that S̃ is quasi-
minimal if and only if the type of S̃ is one of those in the list of Theorem 1.3.3. Indeed, by
Proposition 3.2.5, S̃′ is quasi-minimal if and only if S̃′ is one of those in the list of Theorem
1.3.3, moreover, since quasi-minimality depends on the type, S̃′ is quasi-minimal if and only
if S̃ is quasi-minimal.
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Let us prove Proposition 3.2.5. It is clear that (1) implies (2) in Proposition 3.2.5. Let
us show that (2) implies (3) and (3) implies (1) in Proposition 3.2.5. In the case of d = 8,
it can be easily seen that these two implications hold, indeed, S̃ is always minimal since S̃ is
a k-form of the Hirzebruch surface F2 of degree two, i.e., S̃k ' F2. However, in the case of
d < 8, the proofs of these two implications are a bit long. Thus, we will give the proof for the
case of d < 8 in Subsection 3.2.2.

3.2.2 Proof of Proposition 3.2.5

In this subsection, assume further d ≤ 7. In order to prove Proposition 3.2.5, we prepare
some notation.

We shall consider the following composition of blowing-ups over k from the projective
plane P2

k
to a weak del Pezzo surface S̃d of degree d:

τ̃ : S̃d
τ̃9−d→ S̃d+1

τ̃8−d→ . . .
τ̃2→ S̃8

τ̃1→ S̃9 = P2
k

(3.2.1)

such that S̃d and S̃k have the same type as S̃k (see Definition 2.4.1), where τ̃i is a blow-up
at a closed point for i = 1, . . . , 9 − d. Notice that there exists such a birational morphism
τ̃ : S̃d → P2

k
by Lemma 2.1.3 and by the assumption d ≤ 7. In what follows, we shall take a

composite of blowing-ups (3.2.1).
Let e0 be the proper transform on S̃d of a general line on P2

k
and let ei be the total

transform on S̃d of the exceptional divisor of τ̃i for i = 1, . . . , 9 − d. Then Pic(S̃d) can be
expressed as the free Z-module Id :=

⊕9−d
i=0 Zei with a bilinear form generated by (e0)

2 = 1,
(ei)

2 = −1 for i > 0 and (ei · ej) = 0 for i, j ≥ 0 with i 6= j.

Letting M1, . . . ,Mr be all (−2)-curves on S̃d, we note that each (−2)-curve corresponds
to one of the following element in Id (see [18, Proposition 8.2.7]):

m0
i,j := ei − ej (0 < i < j ≤ 9− d, d ≤ 7);

m1
i1,i2,i3 := e0 − (ei1 + ei2 + ei3) (0 < i1 < i2 < i3 ≤ 9− d, d ≤ 6);

m2 := 2e0 − (e1 + · · ·+ e6) (d = 3);

m2
i1,...,i3−d

:= 2e0 − (ei1 + · · ·+ ei9−d
) (0 < i1 < · · · < i3−d ≤ 9− d, d ≤ 2);

m3
i := 3e0 − (e1 + · · ·+ e8)− ei (0 < i ≤ 9− d, d = 1).

(3.2.2)

Letting kd := −3e0 + e1 + · · ·+ e9−d ∈ Id, which corresponds to the canonical divisor on S̃d,
we also note that any e ∈ Id satisfying (e)2 = (e ·kd) = −1 is expressed as one of the following
(see [18, Proposition 8.2.19]):

ei (0 < i ≤ 9− d, d ≤ 7);

`i,j := e0 − (ei + ej) (0 < i < j ≤ 9− d, d ≤ 7);

2e0 − (ei1 + · · ·+ ei5) (0 < i1 < · · · < i5 ≤ 9− d, d ≤ 5);

− k2 − ei (0 < i ≤ 7, d = 2);

− k1 − ei + ej (0 < i, j ≤ 8, i 6= j, d = 1);

− k1 + e0 − (ei1 + ei2 + ei3) (0 < i1 < i2 < i3 ≤ 8, d = 1);

− k1 + 2e0 − (ei1 + · · ·+ ei6) (0 < i1 < · · · < i6 ≤ 8, d = 1);

− 2k1 − ei (0 < i ≤ 8, d = 1).

(3.2.3)
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Table 3.1: Configuration of all (−2)-curves.

d Type all (−2)-curves
4 (2A1)< m0

1,2, m1
3,4,5

2 A1 m2
1

2 A2 m1
2,3,4, m

1
5,6,7

2 (4A1)> m1
2,3,4, m

1
2,5,6, m

1
3,5,7, m

1
4,6,7

1 2A1 m2
1,2, m3

2

1 2A2 m1
2,3,7, m

1
4,5,8, m

1
6,7,8, m

2
7,8

By Lemma 2.1.4, the set of all (−1)-curves on S̃d has one-to-one correspondence to the set
of all elements in (3.2.3) which have non-negative intersection number with elements in Id
corresponding to all (−2)-curves on S̃d. Thus, we are able to see the intersection form of all
(−1)-curves and (−2)-curves on S̃k as the surfaces S̃k and S̃d have the same type. In what

follows, we will determine the quasi-minimality of S̃ by studying elements as in (3.2.3) and
(3.2.2) according to the type of S̃.

Remark 3.2.7. A (−2)-curve M , which corresponds to an element m1
i1,i2,i3

(resp. m2 or

m2
i1,...,i3−d

, m3
i1
) in Id, is a proper transform of a line (resp. an irreducible conic, an irreducible

cubic with a singular point) by a blow-up at some points on P2
k
, which may include infinitely

near points. For instance, assuming that M corresponds to m1
i1,i2,i3

, this blow-up includes

infinitely near points if and only if there exists a (−2)-curve on S̃d corresponding to m0
i1,i2

,

m0
i1,i3

or m0
i2,i3

in Id.

Proof of (3) =⇒ (1) in Proposition 3.2.5

Let us prove that (3) implies (1) in Proposition 3.2.5. Assume that ρk(S̃) = 2 and the type
of S̃ is one of those in the list of Theorem 1.3.3 other than the type of d = 8.

We shall take a composite of blowing-ups (3.2.1) in such a way that elements m1, . . . ,mr ∈
Id corresponding to all (−2)-curves on S̃d are as in Table 3.1 according to the type of S̃d (for
the notation of their elements, see (3.2.2)), where “all (−2)-curves” in Table 3.1 mean all
elements in Id corresponding to all (−2)-curves on S̃d, respectively. By construction, we see
Pic(S̃k) ' Pic(S̃d) ' Id preserving the intersection form. Then we obtain the following claim:

Claim 3.2.8. The following three assertions hold:

(1) For an arbitrary integer i with 2 ≤ i ≤ 9− d, there exist two (−1)-curves Ei,+ and Ei,−
on S̃d corresponding to elements ei and `1,i in Id, respectively.

(2) If d ≥ 2, then all (−1)-curves meeting at least one (−2)-curve on S̃d are only Ei,+ and
Ei,− for 2 ≤ i ≤ 9− d.

(3) If d = 1, then all (−1)-curves meeting at least two (−2)-curves on S̃d are only Ei,+ and
Ei,− for 2 ≤ i ≤ 9− d.

Proof. In (1), we shall check that intersection numbers (ei ·mj) and (`1,i ·mj) are non-negative
for 2 ≤ i ≤ 9− d and 1 ≤ j ≤ r, however, it is left to the reader since it can be easily shown
by explicit computing.
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In (2) and (3), let E be a (−1)-curve on S̃d, let e be an element in Id corresponding to E
and set m := m1 + · · ·+mr ∈ Id. Noting that e is one of those in the list of (3.2.3), we shall
calculate the intersection number (e ·m) according to degree d:

If d = 4, then m = e0 + e1 − (e2 + · · ·+ e5), so that we have:

(e ·m) =

{
1 if e = ei or `1,i
−1 otherwise

(2 ≤ i ≤ 5). (3.2.4)

If d = 2 and S̃ is of A1-type or A2-type (resp. (4A1)>-type), then m = 2e0− (e2+ · · ·+e7)
(resp. m = 2{2e0 − (e2 + · · ·+ e7)}), so that we have:

(e ·m) =


1 (resp. 2) if e = ei or `1,i
−1 (resp. − 2) if e = −k2 − ei or − k2 − `1,i

0 otherwise
(2 ≤ i ≤ 7), (3.2.5)

where we note −k2 − `1,i = 2e0 − (e2 + · · ·+ e7) + ei for 2 ≤ i ≤ 7.
If d = 1, then m = 5e0 − e1 − 2(e2 + · · ·+ e8) = −2k1 − (e0 − e1), so that we have:

(ei ·m) =

{
2 if i > 1
1 if i = 1

(1 ≤ i ≤ 8);

(`i,j ·m) =

{
2 if i = 1
1 if i > 1

(1 ≤ i < j ≤ 8);

(e ·m) < 2 if (e · e0) ≥ 2,

(3.2.6)

where we note (e ·m) = (e · −2k1)− (e · e0 − e1) and (e · e0 − e1) > 0 by (3.2.3) if (e · e0) ≥ 2.
Therefore, we obtain the assertions (2) and (3) of the claim. Indeed, if d ≥ 2 (resp. d = 1)

and E meets at least one (−2)-curve (resp. at least two (−2)-curves) on S̃d, then E is Ei,+
or Ei,− for some 2 ≤ i ≤ 9− d by virtue of (3.2.4) and (3.2.5) (resp. (3.2.6)). 2

Now, we shall prove that (3) implies (1) in Proposition 3.2.5. Let S̃d be the same as
above. Let D be the union of (−1)-curves on S̃k corresponding to elements ei and `1,i in Id
for 2 ≤ i ≤ 9 − d in Id. By Claim 3.2.8, we see that D is defined over k. Moreover, we have

(D)2 =
(∑9−d

i=2 (ei + `1,i)
)2

= (8− d)2{(e0)2 − (e1)
2} = 0.

Suppose on the contrary that there exists a birational morphism τ : S → V to smooth
projective surface V with ρk(V ) < ρk(S̃) defined over k. Then V is a smooth del Pezzo surface
of ρk(V ) = 1 by virtue of ρk(S̃) = 2 (see also Lemma 2.2.4). Hence, there exists a (−1)-curve
E meeting at least one (−2)-curve on S̃k such that τk is a contraction of the Gal(k/k)-orbit
of E. Notice that E is not any irreducible component of D. Otherwise, we have τ∗(D) 6= 0
and (τ∗(D))2 = 0 by Claim 3.2.8(1). This is a contradiction to the fact ρk(V ) = 1. Hence,
we see that d = 1 and E meets only one (−2)-curve on S̃k by Claim 3.2.8(2) and (3). Let

M1, . . . ,Mr be all (−2)-curves on S̃k, where r = 2 (resp. r = 4) if S̃ is of 2A1-type (resp.

2A2-type). Furthermore, let s be the number of (−1)-curves on S̃k, which meet a (−2)-curve
M1 and are contracted by τk, where we note that S̃ is constant not depending on the way to

take a (−2)-curve M1 on S̃k. Indeed, all (−2)-curves on S̃k lie on the same Gal(k/k)-orbit

since Vk does not contain any (−2)-curve. If S̃ is of 2A1-type (resp. 2A2-type), then the
degree of Vk is equal to 2s+1 (resp. 4s+1), which is not equal to 7 and is at most 9, and we
obtain 0 < (τ∗(M1 + · · ·+Mr))

2 = −4+ 2s (resp. −4+ 4s) by virtue of ρk(V ) = 1. Thus, Vk
is of degree 9, namely, Vk ' P2

k
. In particular, the self-intersection number of any irreducible
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curve on Vk is a positive square number, however, (τk,∗(M1))
2 is equal to 2 (resp. 0) if S̃ is of

2A1-type (resp. 2A2-type). It is a contradiction.
Therefore, we see that S̃ must be k-minimal.

Remark 3.2.9. Assuming ρk(S̃) = 2, we see that S̃ is minimal by the above argument. Letting
S̃d be the same as above, for any 2 ≤ i ≤ 9− d, two (−1)-curves on S̃k, which correspond to
ei and `1,i respectively, lie on the same Gal(k/k)-orbit.

Proof of (2) =⇒ (3) in Proposition 3.2.5

In order to prove that (2) implies (3) in Proposition 3.2.5, assume that the type of S̃ is one
of those in the list of Lemma 3.2.1 such that it does not appear in the list of Theorem 1.3.3.
Then we shall show that S̃ is not quasi-minimal.

At first, we deal with the case in which S̃ is of degree d = 1 and of A1-type. We can
choose a composite of blowing-ups (3.2.1) in such a way that S̃d = S̃1 contains only one
(−2)-curve corresponding to m3

1 ∈ I1 (for the notation of m3
1, see (3.2.2)). Letting e be one

of those in the list of (3.2.3), we obtain that (e · m3
1) = 2 if and only if e = e1, indeed,

(e ·m3
1) = (e · −k1)− (e · e1) = 1− (e · e1). Since S̃1 and S̃k have the same type, there exists

a unique (−1)-curve E satisfying (E ·M) = 2 on S̃k, where M is the unique (−2)-curve on

S̃k. This means that |ME(2, 2)| = 1 and there is no (−1)-curve E′ meeting E on S̃k such that

|ME′(2, 2)| = 1. Hence S̃ is not quasi-minimal.
In what follows, we deal with the remaining cases. As an example, we shall explain the

case in which S̃ is of degree d = 2 and of (3A1)>-type. Then S̃k contains exactly three (−2)-
curves. Let us put α := 2, where we notice that α is smaller than or equal to the number
of (−2)-curves on S̃k. Let β be the number of (−1)-curves on S̃k meeting exactly α-times of

(−2)-curves on S̃k. In order to determine the value of β, we shall take a composite of blowing-

ups (3.2.1) in such a way that S̃d = S̃2 contains exactly three (−2)-curves corresponding to
m1

1,2,3, m
1
1,3,4, m

2
1 ∈ I2 (see (3.2.2)). Then we see that elements in I2 corresponding to all

(−1)-curves meeting exactly α-times of (−2)-curves on S̃2 are only e1, . . . , e5 and `6,7 (see
Example 3.2.11). Hence, we obtain β = 6. Moreover, the union of β-times of (−1)-curves on
S̃2, which correspond to e1, . . . , e5 and `6,7 in I2, is disjoint. Since S̃2 and S̃k have the same

type, letting E be a (−1)-curve on S̃k corresponding to one of e1, . . . , e5 or `6,7 in I2, we see

that |ME(2, 1)| = α and there is no (−1)-curve E′ meeting E on S̃k such that |ME′(2, 1)| = α.

Thus, S̃ is not quasi-minimal.
The other cases can be shown by a similar argument, by changing the value of α and

elements in Id, which correspond to all (−2)-curves on S̃d, according to the type of S̃. We
will now explain how to do this. Let α be this as in Table 3.2 according to the type of S̃,
and let us take a composite of blowing-ups (3.2.1) in such a way that all (−2)-curves on S̃d
corresponding to elements in Id, which are these as in “all (−2)-curves” in Table 3.2 according
to the type of S̃. Then we see that elements in I2, which correspond to all (−1)-curves meeting
exactly α-times of (−2)-curves on S̃d, are only these as in “β-times of (−1)-curves” in Table
3.2 according to the type of S̃ (see Examples 3.2.11 and 3.2.12 for how to find all elements in
Id). For instance, if d = 2 and the type of S̃ is (3A1)>-type, then such these elements yield
e1, . . . , e5, `6,7 ∈ I2 as demonstrated above. Hence, β is this as in Table 3.2 according to the

type of S̃. Moreover, we see that the union of β-times of (−1)-curves, which meet exactly
α-times of (−2)-curves on S̃d, is disjoint. Since S̃d and S̃k have the same type, letting E be a

(−1)-curve on S̃k corresponding to one of β-times of (−1)-curves meeting exactly α-times of
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(−2)-curves on S̃d, we see that |ME(2, 1)| = α and there is no (−1)-curve E′ meeting E on
S̃k such that |ME′(2, 1)| = α. Thus, S̃ is not quasi-minimal.

In summary, we show that S̃ is quasi-minimal if the type of S̃ is one of those in the list of
Theorem 1.3.3.

Remark 3.2.10. In the above argument, we do not actually use the assumption ρk(S̃) = 2.

Example 3.2.11. Assume that S̃ is of degree d = 2 and of (3A1)>-type. Then S̃k contains
exactly three (−2)-curves. Let us put α := 2 and let us choose a composite of blowing-
ups (3.2.1) in such a way that S̃d = S̃2 contains exactly three (−2)-curves corresponding to
m1

1,2,3, m
1
1,4,5, m

2
1 ∈ I2 (see Table 3.2). Then we shall determine all elements in I2 corre-

sponding to all (−1)-curves meeting exactly two (−2)-curves on S̃k. At first, we can easily
check that intersection numbers (e ·m1

1,2,3), (e ·m1
1,4,5) and (e ·m2

1) are equal to 0 or 1 for any

e = e1, . . . , e5, `6,7. Next, we put m := m1
1,2,3+m1

1,4,5+m2
1 and determine any element e ∈ I2

as in (3.2.3) satisfying (e·m) = α(= 2). In consideration ofm = 4e0−2(e1+· · ·+e5)−(e6+e7),
we can calculate as follows:

• If e = ei (1 ≤ i ≤ 7), then (e ·m) = 2 if and only if 1 ≤ i ≤ 5.

• If e = `i,j (1 ≤ i < j ≤ 7), then (e ·m) = 2 if and only if (i, j) = (6, 7).

• If e = 2e0− (ei1 + · · ·+ei5) (1 ≤ i1 < · · · < i5 ≤ 7), then (e ·m) ≤ 8−2 ·1−3 ·2 = 0 < 2.

• If e = −k1 − ei (1 ≤ i ≤ 7), then (e ·m) ≤ −1 < 2.

Thus, we certainly see that all elements in I2, which correspond to all (−1)-curves meeting
exactly α(= 2)-times of (−2)-curves on S̃k, are exhausted by e1, . . . , e5 and `6,7. For the other
cases with d ≥ 2, we can calculate in a similar way.

The following deals with all cases of d = 1:

Example 3.2.12. Assume that S̃ is of degree d = 1. We shall take a composite of blowing-
ups (3.2.1) in such a way that elements m1, . . . ,mr ∈ I1 corresponding to all (−2)-curves on
S̃1 are as in Table 3.2, according to the type of S̃. Then the element m := m1 + · · · +mr is
expressed as follows depending on the types of S̃:

• 4A2 or (4A1)<: (3α− 1)e0 − α(e1 + · · ·+ e8), where α = 3, β = 8;

• 5A1: (3α−5)e0−αe1− (α−1)(e2+e3+e4)− (α−2)(e5+ · · ·+e8), where α = 4, β = 1;

• Otherwise: 3α′e0 − α(e1 + · · ·+ eβ)− α′(eβ+1 + · · ·+ e8), where α
′ < α.

Hence, letting e be one of those in the list of (3.2.3), if (e ·m) = α, then we see that (e ·e0) = 0,
i.e., e = ei for some 1 ≤ i ≤ 8. Indeed, assuming (e · e0) > 0, we have (e ·m) < (e · −αk1) = α
by noting (e · ei) ≥ 0 (1 ≤ i ≤ 8). Moreover, we see that (ei ·m) = α if and only if 1 ≤ i ≤ β.
Obviously we obtain (ei ·mj) ≥ 0 for 1 ≤ i ≤ β and 1 ≤ j ≤ r.

3.3 Proof of Theorem 1.3.4

Let the notation be the same as at the beginning of Chapter 3 and assume further that S̃ is
minimal over k and ρk(S̃) = 2. In this section, we shall prove Theorem 1.3.4. Notice that
Theorem 1.3.4 is a consequence of the following proposition:

Proposition 3.3.1. With the notation and the assumptions as above, the following three
assertions hold true:
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Table 3.2: The value of β and configuration of β-times of (−1)-curves.

d Type α all (−2)-curves β β-times of (−1)-curves
7 A1 1 m0

1,2 1 e2

6 A2 1 m0
1,2, m0

2,3 2 e3, `1,2
6 2A1 2 m0

1,2, m1
1,2,3 1 e2

6 (A1)< 1 m1
1,2,3 3 e1, e2, e3

6 (A1)> 1 m0
1,2 2 e2, `1,3

5 A2 1 m0
1,2, m1

1,3,4 3 e2, e3, e4
5 2A1 2 m0

1,2, m1
1,2,3 1 e2

5 A1 1 m1
1,2,3 3 e1, e2, e3

4 4A1 2 m0
1,2, m0

3,4, m1
1,2,5, m

1
3,4,5 4 e2, e4, e5, `1,3

4 3A1 2 m0
1,2, m0

3,4, m1
1,2,5 2 e2, `1,3

4 A2 1 m1
1,2,3, m

0
4,5 4 e1, e2, e3, `4,5

4 (2A1)> 2 m1
1,2,3, m

1
1,4,5 1 e1

4 A1 1 m1
1,2,3 4 e1, e2, e3, `4,5

3 3A2 2
m0

1,2, m1
1,3,4, m

0
3,4, m1

3,5,6, 3 e2, e4, e6
m0

5,6, m1
1,2,5

3 2A2 2 m0
1,2, m1

1,5,6, m
0
3,4, m1

1,2,3 1 e2
3 4A1 2 m1

1,2,3, m
1
1,4,5, m

1
2,4,6, m

1
3,5,6 6 e1, e2, e3, e4, e5, e6

3 3A1 2 m1
1,2,4, m

1
1,3,5, m

1
2,3,6 3 e1, e2, e3

3 A2 1 m1
1,2,3, m

1
4,5,6 6 e1, e2, e3, e4, e5, e6

3 2A1 2 m1
1,2,3, m

1
1,4,5 1 e1

3 A1 1 m2 6 e1, e2, e3, e4, e5, e6

2 3A2 2
m0

1,2, m1
1,3,4, m

0
3,4, m1

3,5,6, 6 e2, e4, e6, `1,7, `3,7, `5,7
m0

5,6, m1
1,2,5

2 6A1 3
m1

1,2,5, m
1
1,3,6, m

1
1,4,7, m

1
2,3,7, 4 e1, e2, e3, e4

m1
2,4,6, m

1
3,4,5

2 5A1 3 m1
1,2,3, m

1
1,4,5, m

1
1,6,7, m

1
2,4,6, m

1
2,5,7 2 e1, e2

2 2A2 2 m0
1,2, m1

1,3,7, m
1
1,2,6, m

1
3,4,5 2 e2, e3

2 (4A1)< 3 m1
1,2,3, m

1
1,4,5, m

1
1,6,7, m

1
2,4,6 1 e1

2 (3A1)< 3 m1
1,2,3, m

1
1,4,5, m

1
1,6,7 1 e1

2 (3A1)> 2 m1
1,2,3, m

1
1,4,5, m

2
1 6 e1, e2, e3, e4, e5, `6,7

2 2A1 2 m1
1,2,3, m

2
3 2 e1, e2

1 4A2 3
m1

1,3,4, m
1
2,5,8, m

1
1,5,6, m

1
2,4,7, 8 e1, e2, e3, e4, e5, e6, e7, e8

m1
1,7,8, m

1
2,3,6 m1

3,5,7, m
1
4,6,8

1 3A2 3
m1

1,3,4, m
1
2,5,8, m

1
1,5,6, m

1
2,4,7, 2 e1, e2

m1
1,7,8, m

1
2,3,6

1 6A1 4
m1

1,2,4, m
1
1,3,5, m

1
2,3,6, m

2
1,6, 3 e1, e2, e3

m2
2,5, m2

3,4

1 5A1 4 m1
1,3,6, m

1
1,4,5, m

1
2,3,4, m

2
3,5, m

2
4,6 1 e1

1 (4A1)< 3 m2
1,2, m2

3,4, m2
5,6, m2

7,8 8 e1, e2, e3, e4, e5, e6, e7, e8
1 (4A1)> 4 m1

1,2,3, m
1
1,4,5, m

1
1,6,7, m

3
8 1 e1

1 3A1 3 m1
1,2,3, m

1
1,4,5, m

1
1,6,7 1 e1

1 A2 2 m1
1,2,3, m

2
2,3 1 e1
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(1) If d = 8, then S̃ contains an A1
k-cylinder if and only if there exists a conic bundle

π : S̃ → B, which admits a section defined over k.

(2) If d = 8, then S̃ contains the affine plane A2
k if and only if S̃(k) 6= ∅.

(3) If d < 8, then S̃ does not contain any A1
k-cylinder.

We will prove Proposition 3.3.1 according to the degree d of S̃. More precisely, Proposition
3.3.1 (1) and (2) will be shown in Subsection 3.3.1 and Proposition 3.3.1 (3) will be shown in
Subsection 3.3.2.

3.3.1 Case of degree 8

In this subsection, we shall show Proposition 3.3.1 (1) and (2). Let us assume d = 8. Then
S̃ is a k-form of P1

k
× P1

k
or the Hirzebruch surface F2 of degree two, i.e., S̃k ' P1

k
× P1

k
or

S̃k ' F2. Moreover, S̃ is endowed with a structure of Mori conic bundle π : S̃ → B such that

the base extension of π to the algebraic closure πk : S̃k → Bk is a P1-bundle over Bk ' P1
k
by

Lemma 3.1.1.
We shall consider the following three conditions:

(A) S̃ contains an A1
k-cylinder.

(B) There exists a Mori conic bundle π : S̃ → B, which admits a section defined over k.

(C) S̃(k) 6= ∅.

Then the following three lemmas hold:

Lemma 3.3.2. (C) implies (B).

Proof. Noting S̃(k) 6= ∅ and ρk(S̃) = 2, we see that S̃ ' P1
k×P1

k or S̃ is the Hirzebruch surface

of degree two defined over k (i.e., S̃ ' P(OP1
k
⊕OP1

k
(2))) by using Lemma 2.2.2. In particular,

there exists a P1-bundle S̃ → P1
k over k, which admits a section defined over k. 2

Lemma 3.3.3. (A) implies (B).

Proof. Suppose that S̃ contains an A1
k-cylinder, say U ' A1

k × Z, and there is no Mori conic

bundle, which admits a section defined over k. The closures in S̃ of fibers of the projection
prZ : U ' A1

k × Z → Z yields a linear system, say L̃ , on S̃. Hence, we obtain the rational

map Φ
L̃

: S̃ 99K Z associated with L̃ , where Z is the smooth projective model of Z. If Φ
L̃

is a morphism, then Φ
L̃

is a Mori conic bundle, which admits a section defined over k and is

contained in S̃\U , by Lemma 3.1.2. It is a contradiction to the assumption. Hence, L̃ is not

base point-free. Then the base extension of L̃ , say L̃k, is not also base point-free. Since fibers
of the base extension prZk

: Uk ' A1
k
×Zk → Zk are isomorphic to the affine line, in particular,

having only one-place at infinity, Bs(L̃k) is composed of one point. Furthermore, this point is

defined over k. Thus, Bs(L̃ ) consists of only one k-rational point, which contradicts Lemma
3.3.2. 2

Lemma 3.3.4. (B) implies (A).
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Proof. By the assumption, we can take a Mori conic bundle π : S̃ → B, which admits a
section defined over k, and let Γ be a section of π defined over k. As π itself is defined over k,
the base curve Bk is also equipped with an action of Gal(k/k) induced from that on S̃k. The
complement, say U ′, of a divisor composed of Γ and the pull-back by πk of a Gal(k/k)-orbit
on Bk is then a smooth affine surface defined over k. The restriction ϕ := π|U ′ of π to U ′

yields a morphism over an affine curve Z ′ ⊆ B. By construction, the base extension ϕk is
an A1-bundle to conclude that so is ϕ by [34, Theorem 1], which implies that there exists an
open subset Z ⊆ Z ′ such that ϕ−1(Z) ' A1

k × Z. This completes the proof. 2

Proposition 3.3.1 (1) follows from Lemmas 3.3.3 and 3.3.4. Next, we will show Proposition
3.3.1 (2) as follows:

Proof of Proposition 3.3.1 (2). Assume that S̃ admits a k-rational point. Let π : S̃ → B be a
Mori conic bundle. Then the base B is a geometrically rational curve admitting a k-rational
point to conclude that B is isomorphic to P1

k by Lemma 2.2.2. Thus, S̃ contains the affine
plane A2

k. The converse direction is obvious. 2

3.3.2 Case of degree less than 8

In this subsection, let us assume d < 8. The purpose of this subsection is to prove Proposition
3.3.1 (3). In other words, we shall show that S̃ does not contain any A1

k-cylinder by using

Lemma 2.5.5. By Lemma 3.1.1, S̃ is endowed with a structure of Mori conic bundle π : S̃ → B
such that πk admits a singular fiber. Notice that B is isomorphic to P1

k provided that S̃ admits
a k-rational point.

Lemma 3.3.5. With a notation and the assumptions as above, then d ≤ 4.

Proof. If −K
S̃
is not ample, then it follows from Theorem 1.3.3. Hence, we may assume that

−K
S̃
is ample in what follows. Then S̃ is a smooth minimal del Pezzo surface of rank two.

Noting d 6= 7, 9, suppose that d = 5 or 6. By Proposition 2.2.4, S̃ is endowed with a structure
of Mori conic bundle defined over k, say π : S̃ → B. Any (−1)-curve on Sk, which is not an
irreducible component of any singular fiber of πk, meets all singular fibers of πk. Notice that

S̃k contains exactly (8 − d)-times of singular fibers of πk such that each one consists of two

(−1)-curves, which lying the same Gal(k/k)-orbit, on S̃k meeting transversally at a point. By

the hypothesis, it can be easily seen that any (−1)-curve on S̃k meets transversally exactly
(8 − d)-times of (−1)-curves on Sk since d ≥ 5 and there exists a birational morphism to

P2
k
, which is a composite of (9 − d)-times blow-up. Thus, the union of all (−1)-curves on S̃k,

none of which is an irreducible component of any singular fiber of πk, is defined over k and is

disjoint. It is a contradiction to the minimality of S̃. 2

Remark 3.3.6. If −K
S̃
is not ample, then we further see d 6= 3 by Theorem 1.3.3. Moreover,

d 6= 3 even if −K
S̃
is ample (see [52, Theorem 28.1]).

Suppose on the contrary that S̃ contains an A1
k-cylinder, say U ' A1

k × Z, where Z is a

smooth affine curve defined over k. The closures in S̃ of fibers of the projection prZ : U '
Z × A1

k → Z yields a linear system, say L̃ , on S̃.

Claim 3.3.7. The base locus Bs(L̃ ) consists of only one point, which is k-rational.
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Proof. Let Φ
L̃

: S̃ 99K Z be the rational map associated with L̃ , where Z is the smooth

projective model of Z. Assume that Bs(L̃ ) is base point-free. Then Φ
L̃

is a morphism, in
particular, it is a Mori conic bundle, which admits a section defined over k and is contained
in S̃\U , by Lemma 3.1.2. However, this is a contradiction to Lemma 3.1.1 (3). Thus, Bs(L̃ )

is not base point-free. By the similar argument as Lemma 3.3.3, we see that Bs(L̃ ) consists
of only one k-rational point. 2

Let us denote by p the base point of the linear system L̃ . Recall that S̃ is endowed with
a structure of a Mori conic bundle π : S̃ → B over a geometrically rational curve B defined
over k. Since p is k-rational by Claim 3.3.7, so is its image via π, in particular, B ' P1

k by

Lemma 2.2.2. Since Z is contained in a projective line P1
k on k by the similar argument, L̃

is a linear pencil on S̃. Moreover, we can easily to see Pic(S̃)Q = Q[−K
S̃
] ⊕ Q[F ], where F

is a general fiber of π, which passes through p. In particular, L̃ is Q-linearly equivalent to
a(−K

S̃
) + bF for some rational numbers a, b.

Proof of Proposition 3.3.1 (3). With the notation and the assumptions as above, we notice
d ≤ 4 by Lemma 3.3.5. In this proof, we will consider whether −K

S̃
is ample or not as follows.

At first, we shall consider the case that −K
S̃
is not ample. By the assumption, there exists

a Gal(k/k)-orbit of a (−2)-curve on S̃, say M . Then we have (M · −K
S̃
) = 0. Moreover, we

notice (M · F ) > 0 since every (−2)-curve on S̃k is not included in any singular fiber of πk.

Thus, we have b ≥ 0 by virtue of 0 ≤ (M · L̃ ) = b(M · F ). However, it is a contradiction to
Lemma 2.5.5.

Next, we shall consider the case that −K
S̃
is ample. By Lemma 2.5.5, we obtain a > 0

and b < 0. By Lemma 3.1.3, there exists a Mori conic bundle π2 : S̃ → P1
k such that a

fiber F2 of π2 passing through p is linearly equivalent to 4
d(−KS̃

) − F . Thus, we can write

L̃ ∼Q (a+ 4
db)(−KS̃

)− bF2. Then we obtain −b > 0 by Lemma 2.5.5 again. However, it is a
contradiction to b > 0.

Therefore, S̃ never contains an A1
k-cylinder for both cases. 2
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Chapter 4

Cylinders in canonical del Pezzo
fibrations

The purpose of this chapter is to prove Theorem 1.3.9. Throughout this chapter, let k be
a field of characteristic zero, let S be a Du Val del Pezzo surface defined over k such that
Sing(Sk) 6= ∅. Here, if S is smooth, then S clearly satisfies all assertions in Theorem 1.3.9
by virtue of Theorem 1.2.4. Hence, the assumption Sing(Sk) 6= ∅ is reasonable. Let d be the

degree of S, i.e., d := (−KS)
2, and let σ : S̃ → S be the minimal resolution over k. Notice

that S̃ is a weak del Pezzo surface with (−K
S̃
)2 = d.

4.1 Du Val singularities over non-closed fields

In this section, in order to state and prove Theorem 1.3.9, we prepare the notation about Du
Val singularities over algebraically non-closed fields.

4.1.1 Du Val singularities over algebraically non-closed fields

Let V be a normal algebraic surface over k and let p be a Du Val singular point on Vk,
which is k-rational. Notice that the exceptional set of the minimal resolution at p ∈ Vk is
invariant under the action of the Galois group Gal(k/k). Thus, depending on a fashion of the
Gal(k/k)-action on the exceptional set, we shall divide the type of Du Val singularities in a
more refined way as follows:

Definition 4.1.1. Let V be a normal algebraic surface over k, let p be a Du Val singular
point on Vk, which is k-rational, let σ : Ṽ → V be the minimal resolution of p over k and let

∆ be the exceptional set of σ on Ṽ .

(1) In the case that p is of typeA1 on Vk, then:

(i) p is of type A+
1 over k if ∆(k) 6= ∅.

(ii) p is of type A++
1 over k if ∆(k) = ∅.

(2) In the case that p is of type An for n ≥ 2 on Vk, then:

(i) p is of type A−
n over k if ρk(Ṽ )− ρk(V ) = n.

(ii) p is of type A+
n over k if ρk(Ṽ )− ρk(V ) < n and ∆(k) 6= ∅.

(iii) p is of type A++
n over k if ρk(Ṽ )− ρk(V ) < n and ∆(k) = ∅.
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(3) In the case that p is of type Xn on Vk, where Xn means Dn for n ≥ 4 or En for n = 6,
then:

(i) p is of type X−
n over k if ρk(Ṽ )− ρk(V ) = n.

(ii) p is of type X+
n over k if ρk(Ṽ )− ρk(V ) < n.

Remark 4.1.2. If k = R, then all types of Du Val singularities over k correspond to all types
of real Du Val singularities in [48, §9] except for type A1. Meanwhile, although [48] defines
both of Du Val singularities of type A+

1 and type A−
1 , whereas in Definition 4.1.1, we do

not prepare the notation for type A−
1 intentionally in consideration of the assertion (3)(iv) in

Theorem 1.3.9.

4.1.2 Du Val singularities on Du Val del Pezzo surfaces of low degree

Let the notation be the same as at beginning of Chapter 4, assume further that d ≤ 2.
By the classification of types of weak del Pezzo surfaces, assuming that Sk admits at least

one singular point of type A9−2d or at least two singular points, one of which is of type A7−2d

and the other of which is of type A1, the type of the weak del Pezzo surface S̃ is not uniquely
determined by only “Degree” and “Singularities” if and only if “Singularities” of S̃ is one of
the following: {

d = 2 : A5 +A1, A5, A3 + 2A1 or A3 +A1.

d = 1 : A7 or A5 +A1.
(4.1.1)

For the above mentioned cases (4.1.1) only, we shall adopt the notation found in [12, §§2.2] as
follows to make the proof more transparent. Here, to be more precise, it seems that [69] firstly
introduces their notation. We note that in (4.1.2) each of the left hand side is the notation
used in [12, §§2.2], meanwhile, each of the right hand side is the one defined in Subsection
2.4. For types in (4.1.1), we will adopt the ones at the left hand side in (4.1.2):

d = 2 : (A5 +A1)
′ = (A5 +A1)<, (A5 +A1)

′′ = (A5 +A1)>,

(A5)
′ = (A5)<, (A5)

′′ = (A5)>,

(A3 + 2A1)
′ = (A3 + 2A1)<, (A3 + 2A1)

′′ = (A3 + 2A1)>,

(A3 +A1)
′ = (A3 +A1)<, (A3 +A1)

′′ = (A3 +A1)>.

d = 1 : (A7)
′ = (A7)>, (A7)

′′ = (A7)<,

(A5 +A1)
′ = (A5 +A1)>, (A5 +A1)

′′ = (A5 +A1)<.

(4.1.2)

On the other hand, to state our main result exactly, we shall divide the types of k-rational
Du Val singularity x ∈ Sk of type A9−2d as follows by making use of their notation:

Definition 4.1.3 (cf. [69]). With the notation and the assumptions as above, let x be a Du
Val singular point of type A9−2d on Sk defined over k. Then we say that x is of type (A9−2d)

′

(resp. (A9−2d)
′′) if there exists a (−1)-curve on S̃k meeting the (−2)-curve corresponding to

the central vertex on the dual graph of the minimal resolution (resp. there does not exist
such a (−1)-curve on S̃k).

Remark 4.1.4. If Sk admits a singular point x of type A9−2d, then S̃ is of one of the following:

• d = 2: A5 +A2, A5 +A1, A5.

• d = 1: A7 +A1, A7.

In particular, if S̃ is of A9−2d +Ad-type, then the singular point x is of type (A9−2d)
′.
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4.2 Proof of Theorem 1.3.9 (1) and (2)

In this section, we shall prove Theorem 1.3.9 (1) and (2).

4.2.1 Configurations of Du Val del Pezzo surfaces of rank one

Let the notation be the same as at beginning of Chapter 4 and assume further that d ≥ 3.
In this subsection, we shall study the configuration of (−2)-curves and (−1)-curves on S̃k,
furthermore, we classify Du Val del Pezzo surfaces of rank one and of degree ≥ 3. Notice that
if d ≥ 4, then we completely know the configuration of (−2)-curves and (−1)-curves on S̃k
(see [15, Propositions 6.1, 8.1, 8.3 and 8.5]). On the other hand, weak del Pezzo surfaces of
degree 3 defined over an algebraically closed field is also studied (e.g., [9]) but could not find
the list of the configuration of (−2)-curves and (−1)-curves for all types of weak del Pezzo
surface of degree 3. Then, by using [18, §§9.2] and based on the notation in Subsection 3.2.2,
we consider the configuration of (−2)-curves and (−1)-curves on weak del Pezzo surfaces of
degree 3. In other words, considering a weak del Pezzo surface S̃3, which is the same type of
S̃k, and the following composition of blow-downs to P2

k
over k:

τ̃ : S̃3
τ̃6→ S̃4

τ̃5→ . . .
τ̃2→ S̃8

τ̃1→ S̃9 = P2
k

(4.2.1)

Let I3 be the free Z-module with a bilinear form such that it is generated by the proper
transform e0 of a general line by τ̃ and total transforms e1, . . . , e6 of the exceptional divisors by
τ̃1, . . . , τ̃6. Then all (−2)-curves and all (−1)-curves on S̃k correspond to elements as in (3.2.2)
and (3.2.3), respectively. For simplicity, ci denotes the element 2e0− (e1 + · · ·+ e6) + ei ∈ I3,
which is included in the list (3.2.3).

At first, we shall treat the following proposition:

Proposition 4.2.1. Let the notation and the assumptions be the same as above. If ρk(S) = 1,
then the type of S̃ is one of the following:

• d = 8: A1-type;

• d = 6: A2 +A1, A2 or (A1)<-type;

• d = 5: A4-type;

• d = 4: D5, A3 + 2A1, D4, A3 +A1, A2 + 2A1, 4A1, (A3)<, 3A1, A2, 2A1 or A1-type;

• d = 3: E6, A5 +A1, 3A2, A5, 2A2 +A1, D4, 2A2, 4A1, 3A1, A2 or A1-type.

In order to prove Proposition 4.2.1, we prepare the following two lemmas:

Lemma 4.2.2. Let the notation and the assumptions be the same as above. If there exists a
(−1)-curve E on S̃k , which does not meet any (−2)-curve on S̃k, such that either E is defined
over k or the Gal(k/k)-orbit of E is a disjoint union, then ρk(S) > 1.

Proof. Assume that there exists a (−1)-curve E satisfying the assumption of this lemma.
Then the direct image of the Gal(k/k)-orbit of E via σ is contactable in S. This implies that
ρk(S) > 1. 2

Lemma 4.2.3. Let the notation and the assumptions be the same as above. If any (−1)-
curve and (−2)-curve on S̃k are defined over k and the number of all (−2)-curves on S̃k is less
than 9− d, then ρk(S) > 1.
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Proof. By assumption we have ρk(S̃) = ρk(S̃k) = 10 − d and ρk(S̃) − ρk(S) < 9 − d. Hence,
we obtain ρk(S) > (10− d)− (9− d) = 1. 2

By explicitly using Lemmas 4.2.2 and 4.2.3, we obtain the following lemma:

Lemma 4.2.4. Let the notation and the assumptions be the same as in Proposition 4.2.1. If
the type of S̃ is one of the following, then ρk(S) > 1:

• d = 7 and A1-type.

• d = 6 and 2A1 or (A1)>-type.

• d = 5 and A3, A2 +A1, A2 or A1-type.

• d = 4 and A4 or A2 +A1-type.

• d = 3 and D5, A3 + 2A1, A4 +A1, A4, A3 +A1, A2 + 2A1, A3, A2 +A1 or 2A1-type.

Proof. At first, we deal with the case of d ≥ 4. By the list of weighted dual graphs in [15,
Propositions 6.1, 8.1, 8.3 and 8.5], if the type of S̃ is one of the following list, then the
assumption of Lemma 4.2.2 holds:

• d = 7 and A1-type.

• d = 6 and (A1)>-type.

• d = 5 and A2 +A1, A2 or A1-type.

• d = 4 and A4 or A2 +A1-type.

Similarly, if the type of S̃ is one of the following list, then the assumption of Lemma 4.2.3
holds:

• d = 6 and 2A1-type.

• d = 5 and A3-type.

Thus, this completes the proof of the case d ≥ 4.
In what follows, we deal with the case of d = 3.
Then, by using mainly [18, §§9.2] and based on the notation in Subsection 3.2.2, we

consider the configuration of (−2)-curves and (−1)-curves on weak del Pezzo surfaces of
degree 3 according to the list in this lemma.

• D5-type: By [18, p. 446], we can choose a morphism (4.2.1) such that all (−2)-curves on
S̃k correspond to m0

1,2, m
0
2,3, m

0
3,4, m

0
4,5 and m1

1,2,6 in I3 (see (3.2.2), for these notation).

Then by using Lemma 2.1.4 there exists a unique (−1)-curve E on S̃k, which corresponds
to c6 in I3 (see the beginning of this subsection, for this notation), such that it does not
meet any (−2)-curve on S̃k. Namely, E is defined over k.

◦
m0

1,2
◦

m0
2,3

◦ m1
1,2,6

◦
m0

3,4
◦

m0
4,5

•
c6
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• A3 + 2A1-type: By [17, pp. 665–666]*1, we can choose a morphism (4.2.1) such that
all (−2)-curves on S̃k correspond to m0

1,2, m
0
3,4, m

0
5,6, m

1
1,2,5 and m1

3,4,5 in I3. Then by

using Lemma 2.1.4 there exists a unique (−1)-curve E on S̃k, which corresponds to `5,6
in I3 (see (3.2.3), for this notation), such that they do not meet any (−2)-curve on S̃k.
Namely, E is defined over k.

◦
m1

1,2,5
◦

m0
5,6

◦
m1

3,4,5
◦

m0
1,2

◦
m0

3,4
•
`5,6

• A4-type: By [18, p. 446], we can choose a morphism (4.2.1) such that all (−2)-curves
on S̃k correspond to m0

1,2, m
0
2,3, m

0
3,4 and m0

4,5 in I3. Then by using Lemma 2.1.4 there

exist exactly two (−1)-curves E1 and E2 on S̃k, which correspond to e6 and c5 in I3,

such that it does not meet any (−2)-curve on S̃k. Namely, the union E1 +E2 is defined
over k and is disjoint.

◦
m0

1,2
◦

m0
2,3

◦
m0

3,4
◦

m0
4,5

•
e6

•
c6

• A3 + A1-type: By [18, p. 446], we can choose a morphism (4.2.1) such that all (−2)-
curves on S̃k correspond to m0

1,2, m
0
2,3, m

0
3,4 and m0

5,6 in I3. Then by using Lemma 2.1.4

there exists a unique (−1)-curve E on S̃k, which corresponds to `5,6 in I3, such that it

does not meet any (−2)-curve on S̃k. Namely, E is defined over k.

◦
m0

1,2
◦

m0
2,3

◦
m0

3,4
◦

m0
5,6

•
`5,6

• A2 + 2A1-type: By [18, p. 446], we can choose a morphism (4.2.1) such that all (−2)-
curves on S̃k correspond to m0

1,2, m
0
2,3, m

0
4,5 and m1

1,2,3 in I3. Then by using Lemma

2.1.4 there exists a unique (−1)-curve E on S̃k, which corresponds to e6 in I3, such that

it does not meet any (−2)-curve on S̃k. Namely, E is defined over k.

◦
m0

1,2
◦

m0
2,3

◦
m0

4,5
◦

m1
1,2,3

•
e6

• A3-type: By [18, p. 446], we can choose a morphism (4.2.1) such that all (−2)-curves
on S̃k correspond to m0

1,2, m
0
2,3 and m0

3,4 in I3. Then by using Lemma 2.1.4 there exists

a unique (−1)-curve E′ on S̃k, which corresponds to `1,2 in I3, such that it meet the

(−2)-curve corresponding to m0
2,3 ∈ I3 but does not meet the others (−2)-curves on S̃k.

Furthermore, there exists a unique (−1)-curve E on S̃k, which corresponds to `5,6 ∈ I3,
such that it meet E. Namely, E is defined over k, moreover, E does not meet any

*1Note that the way to construct τ using [18, p. 494] is wrong.
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(−2)-curve on S̃k.

◦
m0

1,2
◦

m0
2,3

◦
m0

3,4

• `1,2

• `5,6

• A2 + A1-type: By [18, p. 446], we can choose a morphism (4.2.1) such that all (−2)-
curves on S̃k correspond to m0

1,2, m
0
2,3 and m0

4,5 in I3. Then by using Lemma 2.1.4 there

exist exactly three (−1)-curves E1, E2 and E3 on S̃k, which correspond to e6, `4,5 and

c6 in I3, such that they do does not meet any (−2)-curve on S̃k. Namely, the union
E1 + E2 + E3 is defined over k and is disjoint.

◦
m0

1,2
◦

m0
2,3

◦
m0

4,5
•
e6

•
`5,6

•
c6

• 2A1-type: By [18, p. 446], we can choose a morphism (4.2.1) such that all (−2)-curves
on S̃k correspond to m0

1,2 and m0
3,4 in I3. Then by using Lemma 2.1.4 there exists a

unique (−1)-curve E′ on S̃k, which corresponds to `1,3 ∈ I3, such that it meet two (−2)-
curves on S̃k. Furthermore, there exists a unique (−1)-curve E on S̃k, which corresponds
to `5,6 ∈ I3, such that it meet E. Namely, E is defined over k, moreover, E does not

meet any (−2)-curve on S̃k.

◦
m0

1,2
•
`1,3

◦
m0

3,4

• `5,6

Thus, if S̃ is of D5, A3 + 2A1, A4, A3 +A1, A2 + 2A1, A3, A2 +A1 or 2A1-type, then the
assumption of Lemma 4.2.2 holds, so that ρk(S) > 1. On the other hand, assume that S̃ is
of A4 + A1-type. Then we know that all (−2)-curves and all (−1)-curves are defined over k
by the weighted dual graph of the union of these curves (see [14, (19◦)] or [17, p. 667]). That
is, the assumption of Lemma 4.2.3 holds, so that ρk(S) > 1. This completes the proof of the
case d = 3. 2

Meanwhile, the following lemma holds:

Lemma 4.2.5. With the notation and the assumptions as above, assume further that the
type of S̃ is of one of the following:

• d = 5: S̃ is of 2A1-type;

• d = 4: S̃ is of either (A3)> or (2A1)>-type.

Then ρk(S) > 1.
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In order to prove Lemma 4.2.5, we prepare the following lemma:

Lemma 4.2.6. With the notation as above, assume further that there exists a birational
morphism τ ′ : S̃ → S̃′ over k such that S̃′ is smooth, ρk(S̃)− ρk(S̃′) = 1 and the exceptional
locus of τ ′

k
meets only one Gal(k/k)-orbit of a (−2)-curve on S̃k. Let σ′ : S̃′ → S′ be the

contraction of all (−2)-curve, where note that σ′ is defined over k. Then ρk(S
′) = ρk(S).

Proof. By the assumption, we thus obtain ρk(S̃)− ρk(S̃′) = 1 and ρk(S̃
′)− ρk(S′) = ρk(S̃)−

ρk(S)− 1. Namely, ρk(S
′) = ρk(S). 2

Proof of Lemma 4.2.5. We shall consider three cases separately:
S̃ is of d = 5 and of 2A1-type: By [15, Proposition 8.5], there exists a unique (−1)-curve

E meeting two (−2)-curves M and M ′ on S̃k. In particular, E is defined over k. If M and

M ′ lie the same Gal(k/k)-orbit, letting τ ′ : S̃ → S̃′ be the contraction of E over k, then
τ∗(M +M ′) has self-intersection number 0. This implies that ρk(S̃

′) > 1. Moreover, by virtue
of ρk(S̃

′) = ρk(S̃)− 1 and ρk(S) = ρk(S̃)− 1, we obtain ρk(S) > 1. In what follows, assume
that M and M ′ are defined over k. By [15, Proposition 8.5] again, there exist exactly two
(−1)-curve meeting no (−2)-curve such that they are defined over k. Hence, we see ρk(S) > 1
by Lemma 4.2.2.

S̃ is of d = 4 and of (A3)>-type: By [15, Proposition 6.1], there exists a unique (−1)-curve
E on S̃k meeting the (−2)-curve corresponding to the central vertex on the dual graph of all

(−2)-curves on S̃k (see the following dual graph):

◦ ◦ ◦

• E

In particular, E is defined over k. Hence, we obtain the contraction τ ′ : S̃ → S̃′ of E over k,
so that S̃′ is a weak del Pezzo surface of degree 5 and of 2A1-type. Letting σ

′ : S̃′ → S′ be the
contraction of the (−2)-curve, noticing that σ′ is defined over k, we obtain ρk(S) = ρk(S

′) > 1
by Lemma 4.2.5 and Proposition 4.2.1.

S̃ is of d = 4 and of (2A1)>-type: By [15, Proposition 6.1], there exists a unique (−1)-
curve E meeting two (−2)-curves M and M ′ on S̃k. In particular, E is defined over k. If

M and M ′ lie the same Gal(k/k)-orbit, letting τ ′ : S̃ → S̃′ be the contraction of E over k,
then τ∗(M +M ′) has self-intersection number 0. This implies that ρk(S̃

′) > 1. Moreover, by
virtue of ρk(S̃

′) = ρk(S̃) − 1 and ρk(S) = ρk(S̃) − 1, we obtain ρk(S) > 1. In what follows,
assume that M and M ′ are defined over k. By [15, Proposition 6.1] again, there exist exactly
two (−1)-curve E1 and E2 (resp. E′

1 and E′
2) such that they meet M (resp. M ′) but does

not meet M ′ (resp. M) (see the following dual graph):

◦
M ′ •oooooo

E′
1

•
OOO

OOO

E′
2

•
E

◦
M

• OOOOOO
E1

• oo
ooo

o

E2

Hence, we obtain the contraction τ ′ : S̃ → S̃′ of E1 + E2 + E′
1 + E′

2 over k, so that S̃′ is a

smooth del Pezzo surface of degree 7. Noticing ρk(S̃
′) > 1, we obtain ρk(S) = ρk(S̃

′) > 1 by
Lemma 4.2.5. 2
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By using the classification of weak del Pezzo surfaces over an algebraically closed field,
Proposition 4.2.1 follows from Lemmas 4.2.4 and 4.2.5.

At the end of this subsection, for each type of a weak del Pezzo surface except for the list
of Proposition 4.2.1, we will fined all Du Val del Pezzo surfaces of rank one corresponding
to the above type. Moreover, assuming further ρk(S) = 1, we shall explicitly construct the
birational morphism τ : S̃ → V over a smooth k-minimal surface V according to the types of
S̃.

S̃ is of d = 8 and of A1-type: Then S̃ is a k-form of the Hirzebruch surface F2 of degree
2. In particular, S̃ is minimal over k. Hence, we set V := S̃ and τ := id.

S̃ is of d = 6 and of A2 + A1-type: By [15, Proposition 8.3], the weighted dual graph of
all (−2)-curves and all (−1)-curves is as follows:

◦
M2

◦
M1

•
E

◦
M

Let τ : S̃ → V be the compositions of successive contractions of E, that of the image of M1

and that of the image of M2. By construction, τ is defined over k and we see V ' P2
k by

Lemma 2.2.2. Moreover, the direct image τ∗(M) is a line on V ' P2
k. Meanwhile, since any

(−2)-curve on S̃k is defined over k, we obtain ρk(S̃) = ρk(S) + 3 = 4.

S̃ is of d = 6 and of A2-type: By [15, Proposition 8.3], the weighted dual graph of all
(−2)-curves and all (−1)-curves is as follows:

◦
M2

◦
M1

• OOOOOO
E1

• oo
ooo

o

E2

Let τ : S̃ → V be the contraction of E1 + E2. By construction, τ is defined over k and we
see V ' F2 by using Lemma 2.2.2. Moreover, the direct images τ∗(M1) and τ∗(M2) are the
minimal section and a closed fiber of the structure morphism F2 → P1

k over k, respectively.

Meanwhile, since any (−2)-curve on S̃k is defined over k, we obtain ρk(S̃) = ρk(S) + 2 = 3.

S̃ is of d = 6 and of (A1)<-type: By [15, Proposition 8.3], the weighted dual graph of all
(−2)-curves and all (−1)-curves is as follows:

◦ M•E2

• OOOOOO
E1

• oo
ooo

o

E3

Let τ : S̃ → V be the contraction of E1 + E2 + E3. By construction, τ is defined over k,
and V is a k-form of P2

k, furthermore, we know V ' P2
k. Indeed, since τk,∗(M) is a line on

Vk ' P2
k
defined over k, there exists a general line defined over k on Vk ' P2

k
. Hence, Vk has

a k-rational point, which is the intersection point for two general lines on Vk, so that V ' P2
k

by Lemma 2.2.2. Meanwhile, we obtain ρk(S̃) = ρk(S) + 1 = 2.
S̃ is of d = 5 and of A4-type: By [15, Proposition 8.5], the weighted dual graph of all

(−2)-curves and all (−1)-curves is as follows:

◦
M3

◦
M2

◦
M1

◦ M

•
E
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Let τ : S̃ → V be the compositions of successive contractions of E, that of the image of M1,
that of the image ofM2 and finally that of the image ofM3. By construction, τ is defined over
k and we see V ' P2

k by Lemma 2.2.2. Moreover, the direct image τ∗(M) is a line on V ' P2
k.

Meanwhile, since any (−2)-curve on S̃k is defined over k, we obtain ρk(S̃) = ρk(S) + 4 = 5.

S̃ is of d = 4 and of D5-type: By [15, Proposition 6.1], the weighted dual graph of all
(−2)-curves and all (−1)-curves is as follows:

◦
M4

◦
M3

◦
M2

◦ M

◦
M1

•
E

Let τ : S̃ → V be the compositions of successive contractions of E, that of the image of M1,
that of the image of M2, that of the image of M3 and finally that of the image of M4. By
construction, τ is defined over k and we see V ' P2

k by Lemma 2.2.2. Moreover, the direct

image τ∗(M) is a line on V ' P2
k. Meanwhile, since any (−2)-curve on S̃k is defined over k,

we obtain ρk(S̃) = ρk(S) + 5 = 6.
S̃ is of d = 4 and of A3 +2A1-type: By [15, Proposition 6.1], the weighted dual graph of

all (−2)-curves and all (−1)-curves is as follows:

◦
M ′

1
•
E1

◦
M1

◦
M

◦
M2

•
E2

◦
M ′

2

Let τ : S̃ → V be the compositions of successive contractions of E1 + E2 and that of the
images of M ′

1 +M ′
2. By construction, τ is defined over k and V is a k-form of F2. Moreover,

the direct images τ∗(M) and τ∗(M1 +M2) are k-forms of the minimal section and a disjoint
union of two closed fibers of the structure morphism F2 → P1

k
, respectively. Meanwhile, if

since any (−2)-curve on S̃k is defined over k, we obtain ρk(S̃) = ρk(S) + 5 = 6. Otherwise,

we obtain ρk(S̃) = ρk(S) + 3 = 4.
S̃ is of d = 4 and of D4-type: By [15, Proposition 6.1], the weighted dual graph of all

(−2)-curves and all (−1)-curves is as follows:

◦
M ′

◦
M

◦ OOOOOO

M1
•
E1

◦ oo
ooo

o

M2

•
E2

Let τ : S̃ → V be the compositions of successive contractions of E1 + E2 and that of the
images of M1 +M2. By construction, τ is defined over k and we see V ' F2 by using Lemma
2.2.2. Moreover, the direct images τ∗(M) and τ∗(M

′) are the minimal section and a closed
fiber of the structure morphism F2 → P1

k over k, respectively. Meanwhile, note that E1 is not

defined over k. Indeed, otherwise, by Lemma 4.2.6 the contraction τ ′ : S̃ → S̃′ of E1 provides
a Du Val del Pezzo surface of rank one and of degree 5 such that its minimal resolution is
S̃′ and of A3-type. However, this is a contradiction to Proposition 4.2.1. Hence, we obtain
ρk(S̃) = ρk(S) + 3 = 4.
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S̃ is of d = 4 and of A3 + A1-type: By [15, Proposition 6.1], the weighted dual graph of
all (−2)-curves and all (−1)-curves is as follows:

◦
M

•
E

◦
M1

◦
M2

◦
M ′ •oooooo

E1

•
OOO

OOO

E2

Let τ : S̃ → V be the compositions of successive contractions of E1 + E2, that of the image
of M1 and finally that of the image of M2. By construction, τ is defined over k and we see
V ' P2

k by Lemma 2.2.2. Moreover, the direct images τ∗(M) and τ∗(M
′) are two distinct

lines on V ' P2
k. Meanwhile, since any (−2)-curve on S̃k is defined over k, we obtain ρk(S̃) =

ρk(S) + 4 = 5.
S̃ is of d = 4 and of A2 +2A1-type: By [15, Proposition 6.1], the weighted dual graph of

all (−2)-curves and all (−1)-curves is as follows:

◦
M ′

1
•
E

• ◦
M ′

2

•
E2

◦
M2

◦
M1

•
E1

Let τ : S̃ → V be the compositions of successive contractions of E1+E2 and that of the images
of M ′

1+M
′
2. By construction, τ is defined over k and V is a k-form of P1

k
×P1

k
. Moreover, the

direct image τ∗(M1 +M2) is a k-form of a union of two irreducible curves of types (1, 0) and
(0, 1), respectively (see [28, Chap. II, Example 6.6.1], for the notation). Meanwhile, note that
M1 is not defined over k. Indeed, otherwise, since E is defined over k by the configuration,
by Lemma 4.2.6 the contraction τ ′ : S̃ → S̃′ of E over k provides a Du Val del Pezzo surface
of rank one of degree 5 such that its minimal resolution is S̃′ and of A2 +A1-type. However,
this is a contradiction to Proposition 4.2.1. Hence, we obtain ρk(S̃) = ρk(S) + 2 = 3, so that
ρk(V ) = ρk(S̃)− 2 = 1.

S̃ is of d = 4 and of 4A1-type: By [15, Proposition 6.1], the weighted dual graph of all
(−2)-curves and all (−1)-curves is as follows:

◦M2

•
E2,4

◦
M4

•
E3,4

◦ M3

•
E1,3

◦
M1

•
E1,2

If there is no singular point on Sk defined over k, then let τ : S̃ → V be the contraction
of E1,2 + E1,3 + E2,4 + E3,4. By construction, τ is defined over k and V is a k-form of
P1
k
× P1

k
. Meanwhile, if all singular points on Sk lie in the same Gal(k/k)-orbit, then we

obtain ρk(S̃) = ρk(S) + 1 = 2. Otherwise, we obtain ρk(S̃) = ρk(S) + 2 = 3.
On the other hand, if there is a singular point on Sk defined over k, assuming without loss

of generality that the (−2)-curveM1 is defined over k, then let τ : S̃ → V be the compositions
of successive contractions of E2,4+E3,4 and that of the images ofM2+M3. By construction, τ
is defined over k and V is a k-form of F2. Moreover, the direct images τ∗(M1) and τ∗(M4) are
k-forms of the minimal section and a section with self-intersection number 2 of the structure
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morphism F2 → P1
k
, respectively. Meanwhile, if any singular point on Sk is defined over k,

then we obtain ρk(S̃) = ρk(S) + 4 = 5. Otherwise, we obtain ρk(S̃) = ρk(S) + 3 = 4.
S̃ is of d = 4 and of (A3)<-type: By [15, Proposition 6.1], the weighted dual graph of all

(−2)-curves and all (−1)-curves is as follows:

◦
M1

• OOOOOO
E1

• oo
ooo

o

E′
1

◦
M

◦
M2

•oooooo
E2

•
OOO

OOO

E′
2

Let τ : S̃ → V be the contraction of E1 + E′
1 + E2 + E′

2. By construction, τ is defined over
k and V is a k-form of F2. Moreover, the direct images τ∗(M) and τ∗(M1 +M2) are k-forms
of the minimal section and a disjoint union of two closed fibers of the structure morphism
F2 → P1

k
, respectively. Meanwhile, if any (−2)-curve on S̃k is defined over k, we obtain

ρk(S̃) = ρk(S) + 3 = 4. Otherwise, we obtain ρk(S̃) = ρk(S) + 2 = 3.
S̃ is of d = 4 and of 3A1-type: By [15, Proposition 6.1], the weighted dual graph of all

(−2)-curves and (−1)-curves meeting at least one (−2)-curve is as follows:

◦
M1

• OOOOOO
E

• oo
ooo

o •
E1

◦
M

•
E2

◦
M2

•oooooo

•
OOO

OOO

Let τ : S̃ → V be the contraction of E1 + E2 and that of the images of M1 + M2. By
construction, τ is defined over k and V is a k-form of P1

k
× P1

k
. Moreover, the direct image

τ∗(M) is a k-form of an irreducible curve of type (1, 1) (see [28, Chap. II, Example 6.6.1],
for the notation). Meanwhile, note that M is clearly defined over k but M1 is not defined
over k. Indeed, otherwise, by Lemma 4.2.6 the contraction τ ′ : S̃ → S̃′ of a Gal(k/k)-orbit
of E over k provides a Du Val del Pezzo surface of rank one of degree 5 or 6 such that its
minimal resolution is S̃′ and of 2A1-type. However, for both cases, this is a contradiction to
Proposition 4.2.1. Hence, we obtain ρk(S̃) = ρk(S) + 2 = 3, so that ρk(V ) = 1.

S̃ is of d = 4 and of A2-type: By [15, Proposition 6.1], the weighted dual graph of all
(−2)-curves and (−1)-curves meeting at least one (−2)-curve is as follows:

◦
M1

• OOOOOO
E1

• oo
ooo

o

E′
1

◦
M2

•oooooo
E2

•
OOO

OOO

E′
2

Let τ : S̃ → V be the contraction of E1 +E2 +E′
1 +E′

2. By construction, τ is defined over k
and V is a k-form of P1

k
×P1

k
. Moreover, the direct image τ∗(M1 +M2) is a k-form of a union

of two irreducible curves of types (1, 0) and (0, 1), respectively (see [28, Chap. II, Example
6.6.1], for the notation). Meanwhile, note that M1 is not defined over k. Indeed, otherwise,
by Lemma 4.2.6 the contraction τ ′ : S̃ → S̃′ of a Gal(k/k)-orbit of E1 over k provides a Du
Val del Pezzo surface of rank one of degree 5 or 6 such that its minimal resolution is S̃′ and
of A1-type or (A1)>-type, respectively. However, for both cases, this is a contradiction to
Proposition 4.2.1. Hence, we obtain ρk(S̃) = ρk(S) + 1 = 2, so that ρk(V ) = 1.

S̃ is of d = 4 and of (2A1)<-type: By [15, Proposition 6.1], the weighted dual graph of
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all (−2)-curves and all (−1)-curves is as follows:

◦M

•
��������

E1 •

◦
??

??
??

??

M ′

•
??

??
??

??

E4 •

��������

•iiiiii
E2 •

UUUU
UU

•UU
UUUU E3 •

iiiiii

If there is no singular point on Sk defined over k, then ρk(S̃) = 2. Thus, S̃ is minimal

over k by Theorem 1.3.3, in other words, S̃ is the minimal resolution of an Iskovskih surface
(see [15, p. 74]). Hence, we set V := S̃ and τ := id.

On the other hand, if there is a singular point on Sk defined over k, then M is defined

over k. In particular, so is the disjoint union E1 + · · ·+E4 of (−1)-curves. Let τ : S̃ → V be
the contraction of this disjoint union. By construction, τ is defined over k and V is a k-form
of F2. Moreover, the direct images τ∗(M

′) and τ∗(M) are k-forms of the minimal section and
a section with self-intersection number 2 of the structure morphism F2 → P1

k
, respectively.

Meanwhile, we obtain ρk(S̃) = ρk(S) + 2 = 3.
S̃ is of d = 4 and of A1-type: By [15, Proposition 6.1], the weighted dual graph of all

(−2)-curves and (−1)-curves meeting at least one (−2)-curve is as follows:

◦
M

• OOOOOO
E1

• oo
ooo

o

E2

•oooooo
E3

•
OOO

OOO

E4

Let τ : S̃ → V be the contraction of E1+ · · ·+E4. By construction, τ is defined over k and V
is a k-form of P1

k
× P1

k
. Moreover, the direct image τ∗(M) is a k-form of an irreducible curve

of type (1, 1) (see [28, Chap. II, Example 6.6.1], for these notation). Meanwhile, we obtain
ρk(S̃) = ρk(S) + 1 = 2, so that ρk(V ) = 1.

S̃ is of d = 3 and of E6-type: By [18, p. 446], we can choose a morphism (4.2.1) such that
all (−2)-curves M1, M2, M3, M4, M5 and M on S̃k correspond to m0

5,6, m
0
4,5, m

0
3,4, m

0
2,3, m

0
1,2

and m1
1,2,3 in I3, respectively. Then by using Lemma 2.1.4 there exists exactly one (−1)-curve

E on S̃k corresponding to e6 in I3. Hence, we obtain the following weighted dual graph:

◦
M5

◦
M4

◦
M3

◦ M

◦
M2

◦
M1

•
E

Let τ : S̃ → V be the compositions of successive contractions of E, that of the image of M1,
that of the image of M2, that of the image of M3, that of the image of M4 and finally that of
the image of M5. By construction, τ is defined over k and we see V ' P2

k by Lemma 2.2.2.
Moreover, the direct image τ∗(M) is a line on V ' P2

k. Meanwhile, since any (−2)-curve on

S̃k is defined over k, we obtain ρk(S̃) = ρk(S) + 6 = 7.

S̃ is of d = 3 and of A5 + A1-type: By [18, p. 446], we can choose a morphism (4.2.1)
such that all (−2)-curves M1, M2, M3, M4, M and M ′ on S̃k correspond to m0

2,3, m
2, m0

3,4,
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m0
4,5, m

0
1,2 and m0

5,6 in I3, respectively. Then by using Lemma 2.1.4 there exist exactly two

(−1)-curve E and E′ on S̃k corresponding to e6 and `1,2 in I3, respectively. Hence, we obtain
the following weighted dual graph:

◦
M

◦
M1

• E

◦
M3

◦
M4

◦
M ′

•
E′

◦
M2

Let τ : S̃ → V be the compositions of successive contractions of E+E′, that of the images of
M1 +M2, that of the image of M3 and finally that of the image of M4. By construction, τ is
defined over k and we see V ' P2

k by Lemma 2.2.2. Moreover, the direct images τ∗(M1) and

τ∗(M5) are two distinct lines on V ' P2
k. Meanwhile, since any (−2)-curve on S̃k is defined

over k, we obtain ρk(S̃) = ρk(S) + 6 = 7.
S̃ is of d = 3 and of 3A2-type: By [18, p. 446], we can choose a morphism (4.2.1) such

that all (−2)-curves M1, M
′
1, M2, M

′
2, M3 and M ′

3 on S̃k correspond to m0
1,2, m

0
2,3, m

0
4,5,

m0
5,6, m

1
1,2,3 and m1

4,5,6 in I3, respectively. Then by using Lemma 2.1.4 there exist exactly

three (−1)-curves E1,2, E1,3 and E2,3 on S̃k corresponding to `1,4, e3 and e6 in I3, respectively.
Hence, we obtain the following weighted dual graph:

◦
M2

◦
M ′

2
•
E2,3

◦
M ′

3
◦
M3

•
���

E1,3

◦
M ′

1

◦
M1

•
E1,2

???

If there is no singular point on Sk defined over k and ρk(S̃) = 2, then let τ : S̃ → V be
the contraction of E1,2 +E1,3 +E2,3. By construction, τ is defined over k and V is a smooth

del Pezzo surface of degree 6 with ρk(V ) = ρk(S̃)− 1 = 1.
If there is no singular point on Sk defined over k and ρk(S̃) = 3, then M1 +M2 +M3 and

M ′
1 +M ′

2 +M ′
3 are defined over k. Hence, let τ : S̃ → V be the compositions of successive

contractions of E1,2 +E1,3 +E2,3 and that of the images of M ′
1 +M ′

2 +M ′
3. By construction,

τ is defined over k and V is a k-form of P2
k.

On the other hand, if there is a singular point on Sk defined over k, assuming without

loss of generality that M1 +M ′
1 is defined over k, then let τ : S̃ → V be the compositions

of successive contractions of E1,2 + E1,3, that of the images of M2 +M3 and finally that of
the images of M ′

2 +M ′
3. By construction, τ is defined over k and we see V ' P2

k by Lemma
2.2.2. Moreover, the direct images τ∗(M1) and τ∗(M

′
1) are two distinct lines on V ' P2

k.

Meanwhile, if M1 is defined over k, then we obtain ρk(S̃) = ρk(S) + 6 = 7. Otherwise, we
obtain ρk(S̃) = ρk(S) + 3 = 4.

S̃ is of d = 3 and of A5-type: By [18, p. 446], we can choose a morphism (4.2.1) such
that all (−2)-curves M1, M2, M3, M and M ′ on S̃k correspond to m0

2,3, m
0
3,4, m

0
4,5, m

0
1,2 and

m0
5,6 in I3, respectively. Then by using Lemma 2.1.4 there exist exactly three (−1)-curve E,

E′ and E′′ on S̃k corresponding to `1,2, e6 and c6 in I3, respectively. Hence, we obtain the
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following weighted dual graph:

◦
M

◦
M1

• E

◦
M2

◦
M3

◦
M ′ •oooooo

E′

•
OOO

OOO

E′′

Let τ : S̃ → V be the compositions of successive contractions of E + E′ + E′′, that of the
image of M1, that of the image of M2 and finally that of the image of M3. By construction, τ
is defined over k and we see V ' P2

k by Lemma 2.2.2. Moreover, the direct images τ∗(M1) and

τ∗(M5) are two distinct lines on V ' P2
k. Meanwhile, since any (−2)-curve on S̃k is defined

over k, we obtain ρk(S̃) = ρk(S) + 5 = 6.
S̃ is of d = 3 and of 2A2 + A1-type: By [18, p. 446], we can choose a morphism (4.2.1)

such that all (−2)-curves M1, M
′
1, M2, M

′
2 and M on S̃k correspond to m0

2,3, m
0
1,2, m

0
5,6, m

0
4,5

and m1
1,2,3 in I3, respectively. Notice that M is defined over k. Then by using Lemma 2.1.4

there exist exactly two (−1)-curves E1 and E2 meeting M on S̃k corresponding to e3 and `4,5
in I3, respectively. Hence, we obtain the following weighted dual graph:

◦
M ′

1
◦
M1

•
E1

◦
M

•
E2

◦
M2

◦
M ′

2

Noticing that the union E1+E2 of (−1)-curves is disjoint, let τ : S̃ → V be the compositions
of successive contractions of this disjoint union, that of the images of M1 +M2, and finally
that of the images of M ′

1 +M ′
2. By construction, τ is defined over k and V is a k-form of

P2
k, furthermore, we know V ' P2

k. Indeed, since τk,∗(M) is an irreducible conic on Vk ' P2
k

defined over k, there exists a general line defined over k on Vk ' P2
k
. Hence, Vk has a k-rational

point, which is the intersection point for two general lines on Vk, so that V ' P2
k by Lemma

2.2.2. Moreover, the direct image τ∗(M) is an irreducible conic on V ' P2
k. Meanwhile,

note that M1 is not defined over k. Indeed, otherwise, we know ρk(S̃) − ρk(V ) = 6. Thus,
ρk(S) = ρk(S̃)− 5 = ρk(V ) + 6− 5 = 2, which contradicts the assumption ρk(S) = 1. Hence,
we obtain ρk(S̃) = ρk(S) + 3 = 4.

S̃ is of d = 3 and of D4-type: By [18, p. 446], we can choose a morphism (4.2.1) such
that all (−2)-curves M1, M2, M3 and M on S̃k correspond to m0

1,2, m
0
3,4, m

0
5,6 and m1

1,3,5 in
I3, respectively. Then by using Lemma 2.1.4 there exist exactly three (−1)-curves E1, E2 and
E3 meeting at least one (−2)-curve on S̃k corresponding to e2, e4 and e6 in I3, respectively.
Hence, we obtain the following weighted dual graph:

◦M◦
M2

•
E2

◦ ????????

M1
•
E1

◦
��
��
��
��

M3
•
E3

Let τ : S̃ → V be the compositions of successive contractions of E1 + E2 + E3 and that of
the images of M1 +M2 +M3. By construction, τ is defined over k and we see V ' P2

k by
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the similar argument to the case that S̃ is of d = 6 and (3A1)<-type. Moreover, the direct
image τ∗(M) is a line on V ' P2

k. Meanwhile, M1 is not defined over k. Indeed, otherwise,

since E1 is defined over k, by Lemma 4.2.6 the contraction τ ′ : S̃ → S̃′ of E1 over k provides
a Du Val del Pezzo surface of rank one of degree 4 such that its minimal resolution is S̃′ and
of (A3)>-type. However, this is a contradiction to Proposition 4.2.1. Similarly, M2 and M3

are not defined over k. Hence, we obtain ρk(S̃) = ρk(S) + 2 = 3.
S̃ is of d = 3 and of 2A2-type: By [18, p. 446], we can choose a morphism (4.2.1) such

that all (−2)-curves M1, M2, M
′
1 and M ′

2 on S̃k correspond to m0
1,2, m

0
2,3, m

0
4,5 and m0

5,6 in
I3, respectively. Then by using Lemma 2.1.4 there exist exactly one (−1)-curve E meeting
two (−2)-curves M1 and M ′

1 on S̃k corresponding to `1,4 in I3. Moreover, there exist exactly

three (−1)-curves E1, E2 and E3 meeting only one (−2)-curve M2 on S̃k corresponding to e3,
`1,2 and c3 in I3, respectively. Hence, we obtain the following weighted dual graph:

◦
M2

•E2

•
◦
M ′

2

◦
M ′

1

•E

◦
M1

•
OOO

OOO

E3

•
ooo

ooo

• oo
ooo

o

E1

•
OOO

OOO

If there is no singular point on Sk defined over k, then let τ : S̃ → V be the contraction
of E. By construction, τ is defined over k and V is a weak del Pezzo surface of rank two and
(2A1)<-type, i.e., the minimal resolution of an Iskovskih surface (see [15, p. 74]), by Theorem
1.3.3 combined with ρk(S̃) = 3.

On the other hand, if there is a singular point on Sk defined over k, then each (−2)-curve
is defined over k. In particular, so is the union E+E1+E2+E3 of (−1)-curves. Let τ : S̃ → V
be the compositions of successive contractions of E + E1 + E2 + E3 and that of the image
of M1. By construction, τ is defined over k and we see that V ' F2 by using Lemma 2.2.2.
Moreover, the direct images τ∗(M

′
2), τ∗(M2) and τ∗(M

′
1) are the minimal section, a section

with self-intersection number 2 and a closed fiber of the structure morphism F2 → P1
k over k,

respectively. Meanwhile, we obtain ρk(S̃) = ρk(S) + 4 = 5.
S̃ is of d = 3 and of 4A1-type: By [18, p. 446], we can choose a morphism (4.2.1) such

that all (−2)-curves M1, M2, M3 and M4 on S̃k correspond to m1
1,2,3, m

1
1,4,5, m

1
2,4,6 and m1

3,5,6

in I3, respectively. Then by using Lemma 2.1.4 there exist exactly six (−1)-curves E1,2, E1,3,

E1,4, E2,3, E2,4 and E3,4 meeting exactly two (−2)-curves on S̃k corresponding to e1, . . . , e5
and e6 in I3, respectively. Hence, we obtain the following weighted dual graph:

◦
M4

•E1,4

◦
M1

•
E1,2

◦
M2

•E2,3

◦
M3

•
��
��
��
��

E1,3oo

ooo
ooo

ooo
o

•
E3,4

•
??

??
??

??

E2,4

OOO
OOO

OOO
OOO

OO

If there is no singular point on Sk defined over k, then let τ : S̃ → V be the contraction
of E1,2 + E1,3 + E1,4 + E2,3 + E2,4 + E3,4. By construction, τ is defined over k and V is
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a k-form of P2
k
, furthermore, we know V ' P2

k. Indeed, since τk,∗(M1 + · · · +M4) is four

distinct lines on Vk ' P2
k
defined over k, there exists a general line defined over k on Vk ' P2

k
.

Hence, Vk has a k-rational point, which is the intersection point for two general lines on
Vk, so that V ' P2

k by Lemma 2.2.2. Meanwhile, note that M1, . . . ,M4 lie in the same
Gal(k/k)-orbit. Indeed, otherwise, assume without loss of generality that M1 +M2 is defined
over k. Since E1,2 and E3,4 are then defined over k, we know ρk(S̃) − ρk(V ) ≥ 3. Thus,

ρk(S) = ρk(S̃)− 2 ≥ ρk(V ) + 3− 2 = 2, which contradicts the assumption ρk(S) = 1. Hence,
we obtain ρk(S̃) = ρk(S) + 2 = 3.

On the other hand, if there is a singular point on Sk defined over k, assuming without loss

of generality that M1 is defined over k, then let τ : S̃ → V be the compositions of successive
contractions of E1,2 +E1,3 +E1,4 and that of the images of M2 +M3 +M4. By construction,

τ is defined over k and we see V ' P2
k by the similar argument to the case that S̃ is of

d = 6 and (A1)<-type. Moreover, the direct image τ∗(M1) is an irreducible conic on V ' P2
k.

Meanwhile, note that M2 is not defined over k. Indeed, otherwise, since E1,3+E1,4 is defined

over k, by Lemma 4.2.6 the contraction τ ′ : S̃ → S̃′ of E1,3+E1,4 over k provides a Du Val del

Pezzo surface of rank one of degree 5 such that its minimal resolution is S̃′ and of A1-type.
However, this is a contradiction to Proposition 4.2.1. Similarly, M3 and M4 are not defined
over k. Hence, we obtain ρk(S̃) = ρk(S) + 2 = 3.

S̃ is of d = 3 and of 3A1-type: By [18, p. 446], we can choose a morphism (4.2.1)
such that all (−2)-curves M1, M2 and M3 on S̃k correspond to m0

1,2, m
0
3,4 and m0

5,6 in I3,
respectively. Then by using Lemma 2.1.4 there exist exactly three (−1)-curves E1,2, E1,3

and E2,3 meeting exactly two (−2)-curves on S̃k corresponding to `1,3, `1,5 and `3,5 in I3,
respectively. We note that there is no singular point on Sk defined over k. Otherwise, assume
without loss of generality that M1 is defined over k. Then there exist exactly two (−1)-curves
meeting only one (−2)-curve M1 on S̃k corresponding to e2 and c2 in I3. Hence, we obtain
the following weighted dual graph:

◦
M1

• E1,3

◦
M3

•
E2,3

◦
M2

•E1,2

•
OOO

OOO

• oo
ooo

o

Letting E1 be one of these (−1)-curves, by Lemma 4.2.6 the contraction τ ′ : S̃ → S̃′ of the
Gal(k/k)-orbit of E1 over k provides a Du Val del Pezzo surface of rank one of degree 4 or 5
such that its minimal resolution S̃′ is of (2A1)>-type or 2A1-type, respectively. However, this
is a contradiction to Proposition 4.2.1.

Hence, we obtain ρk(S̃) = ρk(S) + 1 = 2. Let τ : S̃ → V be the contraction of E1,2 +
E1,3+E2,3. By construction, τ is defined over k and V is a smooth del Pezzo surface of degree
6 with ρk(V ) = 1.

S̃ is of d = 3 and of A2-type: By [18, p. 446], we can choose a morphism (4.2.1)
such that all (−2)-curves M1 and M2 on S̃k correspond to m0

1,2 and m0
2,3 in I3, respectively.

Then by using Lemma 2.1.4 there exist exactly three (−1)-curves E1, E
′
1 and E′′

1 meeting M1

on S̃k corresponding to `1,4, `1,5 and `1,6 in I3, respectively. Moreover, there exist exactly

three (−1)-curves E2, E
′
2 and E′′

2 meeting M1 on S̃k corresponding to e3, `1,2 and c3 in I3,
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respectively. Hence, we obtain the following weighted dual graph:

◦
M1

•E′
1

• OOOOOO
E1

• oo
ooo

o

E′′
1

◦
M2

• E′
2

•oooooo
E2

•
OOO

OOO

E′′
2

Let τ : S̃ → V be the contraction of E1 + E′
1 + E′′

1 + E2 + E′
2 + E′′

2 . By construction, τ is
defined over k and we see V ' P2

k by Lemma 2.2.2. Meanwhile, if M1 is defined over k, we

obtain ρk(S̃) = ρk(S) + 2 = 3. Otherwise, we obtain ρk(S̃) = ρk(S) + 1 = 2.
S̃ is of d = 3 and of A1-type: By [18, p. 446], we can choose a morphism (4.2.1) such

that the (−2)-curve M on S̃k corresponds to m2 in I3. Then by using Lemma 2.1.4 there

exist exactly six (−1)-curves E1, . . . , E6 meeting M on S̃k corresponding to e1, . . . , e6 in I3,
respectively. Hence, we obtain the following weighted dual graph:

◦
M

•E2

• OOOOOO
E1

• oo
ooo

o

E3

•E5

•oooooo
E4

•
OOO

OOO

E6

Let τ : S̃ → V be the contraction of E1 + · · ·+ E6. By construction, τ is defined over k and
we see V ' P2

k by the similar argument to the case that S̃ is of d = 3 and 2A1 + A1-type.
Moreover, the direct image τ∗(M) is an irreducible conic on V ' P2

k. Meanwhile, we obtain

ρk(S̃) = ρk(S) + 1 = 2.
Thus, for all cases, this completes the construction of the birational morphism τ : S̃ → V

over k according to the type of S̃. By using this morphism τ , all Du Val del Pezzo surfaces
of rank one over k admitting a singular point defined over k can be summarized in Table 4.1
according to the type of S̃. Note that this table will play an important role in the proof of
Theorem 1.3.9 (1) and (2) in the next subsection. From now on, we shall present the notation
in Table 4.1. “ρk(S̃)” means possible values of the Picard number of S̃. “Dual graph” means
the weighted dual graph of all (−2)-curves and (−1)-curves, which contracted by τ , on S̃k.
By construction of τ , we see that the union of curves corresponding to this weighted dual
graph is defined over k, moreover, each curve on S̃ corresponds to any vertex with no label
in this dual graph contracted by τ . Finally, n◦ is the number between 1◦ and 10◦ assigned by
the kind of V and the image via τ of the union of all curves corresponding to this above dual
graph. More exactly:

• 1◦: V ' P2
k and the image via τ of the curve corresponding to the vertex with label L

is a line.

• 2◦: V ' P2
k and the images via τ of the curves corresponding to the vertices with labels

L1 and L2 are two distinct lines.

• 3◦: V ' P2
k and the image via τ of the curves corresponding to the vertex with label Q

is an irreducible conic.

• 4◦: V is a k-form of P1
k
× P1

k
and of rank one, and the images via τ of the union of two

curves corresponding to the vertices with labels F1 and F2 are a union of k-forms of two
irreducible curves of types (1, 0) and (0, 1), respectively.

• 5◦: V is a k-form of P1
k
× P1

k
and of rank one, and the image via τ of the curve corre-

sponding to the vertex with label C is a k-form of an irreducible curves of types (1, 1).
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• 6◦: V ' F2 and the images via τ of the curves corresponding to the vertices with labels
M and F are the minimal section and a closed fiber of the structure morphism F2 → P1

k

over k, respectively.

• 7◦: V ' F2 and the images via τ of the curves corresponding to the vertices with labels
M , F and C are the minimal section, a closed fiber and a section with self-intersection
number 2 of the structure morphism F2 → P1

k over k, respectively.

• 8◦: V is a k-form of F2, and the images via τ of the curves corresponding to the
vertices with labels M and C are k-forms of the minimal section and a section with
self-intersection number 2 of the structure morphism F2 → P1

k
, respectively.

• 9◦: V is a k-form of F2, and S̃ = V .

• 10◦: V is a k-form of F2, and the images via τ of the curves corresponding to the
vertices with labelsM and Fi are k-forms of the minimal section and a closed fiber of the
structure morphism F2 → P1

k
, respectively, where the union of two curves corresponding

to the vertex with label F1 and F2 is defined over k.

4.2.2 Proof of Theorems 1.3.9 (1) and (2)

Let the notation be the same as at beginning of Chapter 4 and assume further that S is of
rank one and d ≥ 3. In this subsection, we shall show Theorems 1.3.9 (1) and (2).

At first, we shall show the “only if” part in Theorem 1.3.9 (2). Assume that d is equal to
3 or 4 and S contains a cylinder U ' A1

k × Z. The closures in S of fibers of the projection
prZ : U ' A1

k×Z → Z yields a linear system, say L , on S. By Lemma 2.5.6, Bs(L ) consists
of only one singular point on S, which is k-rational, say p. In order to prove the “only if”
part in Theorem 1.3.9 (2), we shall show that p ∈ S is not of type A++

1 over k as follows:

Lemma 4.2.7. Let the notation and the assumptions be the same as above. If the singular
point p ∈ Sk is of type A1, then p ∈ S is of type A+

1 over k.

Proof. Since Uk is smooth, Ũ := σ−1(U) ' U is a cylinder on S̃. The closures in S̃ of fibers

of the projection prZ : Ũ ' A1
k × Z → Z yields a linear system, say L̃ , on S̃. Since p ∈ Sk

is of type A1, the exceptional locus over k of the minimal resolution at p consists of only one
(−2)-curve, say M . Notice that M is defined over k. By construction of L̃ , we see that a

general member of L̃k does not meet any (−2)-curve other than M on S̃k. Hence, we can

write L̃ ∼Q a(−KS̃
)− bM for some a, b ∈ Q. Noting that the degree d of S is equal to 3 or 4,

we have (L̃ )2 = da2 − 2b2 6= 0 because of a, b ∈ Q. Thus, Bs(L̃ ) 6= ∅. In particular, Bs(L̃ )
consists of one point, which is k-rational and lies on M . Thus, we obtain M(k) 6= ∅, which
implies that p ∈ S is not of type A++

1 over k. 2

By Lemma 4.2.7, this completes the proof of the “only if” part in Theorem 1.3.9 (2).
Next, we show Theorem 1.3.3 and the “if” part in Theorem 1.3.4. Assume that S has a

singular point, which is k-rational, such that it is not of type A++
1 over k if d is equal to 3 or

4. Let τ : S̃ → V be the birational morphism over k as in Subsection 4.3.1 over k according
to the type of S̃. Let D be the union of all (−2)-curves on S̃k and let E be the reduced
exceptional divisor of τ , where the support Supp(D+E) corresponds to the dual graph as in
Table 4.1 according to the type of S̃. We shall construct a cylinder Ũ on S̃ according to the
number of n◦ in Table 4.1:
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Table 4.1: Types of S̃ in Theorems 1.3.9 (1) and (2)

d
Type

n◦ Dual graph d
Type

n◦ Dual graph
ρk(S̃) ρk(S̃)

8
A1 9◦

◦
M

6
A2 +A1 1◦

◦ L

•◦◦

2 4

6
A2 6◦ ◦

F
◦
M

• OO
• oo

6
(A1)< 1◦ ◦ L

• OO
•
• oo3 2

5
A4 1◦

◦◦◦ •
◦ L

4
D5 1◦

◦◦◦ ◦ •
◦ L5 6

4
A3 + 2A1 10◦

◦
• ◦

F1
◦
M
◦
F2
•
◦

4
D4 6◦ ◦

F

◦ OO•
◦ oo•

◦
M4 or 6 4

4
A3 +A1 2◦ ◦

L1

• ◦ ◦ ◦
L2

•oo
•

OO 4
A2 + 2A1 4◦

◦ • ◦
F1

◦
F2

• ◦
5 3

4
4A1 8◦

◦
M
◦ • ◦

C
• ◦

4
(A3)< 10◦ ◦

F1

◦
M
◦
F2

•oo
•

OO
• OO
• oo4 or 5 3 or 4

4
3A1 5◦

◦ • ◦
C
• ◦

4
A2 4◦ ◦

F1

◦
F2

•oo
•

OO
• OO
• oo3 2

4
(2A1)< 8◦ ◦

M
◦
C

•oo
•

OO
• OO
• oo

4
A1 5◦ ◦

C

•oo
•

OO
• OO
• oo3 2

3
E6 1◦

◦◦◦ ◦ ◦ ◦
•◦ L

3
A5 +A1 2◦

◦◦
L1

◦ ◦ ◦
L2

•
◦•7 7

3
3A2 2◦

•◦◦
◦L1 ◦L2

• ◦ ◦
3

A5 2◦ ◦
L1

◦
•
◦ ◦ ◦

L2

•oo
•

OO
4 or 7 6

3
2A2 +A1 3◦

◦◦
• ◦

Q
•
◦ ◦

3
D4 1◦ ◦ L

◦ OO•
◦•
◦ oo•4 3

3
2A2 7◦ ◦

M
◦
F
• ◦ ◦

C
•
•

OO
•oo 3

4A1 3◦ ◦ Q
• OO◦
•◦
• oo◦5 3

3
A2 2◦ ◦

L1

◦
L2

•oo •
•

OO
• OO
•
• oo

3
A1 3◦ ◦

Q

•oo •
•

OO
• OO
•
• oo2 or 3 2
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n◦ = 1◦: In this case, we see that V ' P2
k and the image of the vertex with a label written

L via τ is a line on V ' P2
k, say L. Put Ũ := S̃\Supp(D + E). Then Ũ ' V \L ' A2

k.
n◦ = 2◦: In this case, we see that V ' P2

k and the images of the vertices with labels written

L1 and L2 via τ are distinct two lines on V ' P2
k, say L1 and L2. Put Ũ := S̃\Supp(D +E).

Then Ũ ' V \(L1 ∪ L2) ' A1
k × A1

∗,k (resp. Ũ ' V \(L1 ∪ L2) ' A1
k × C(1)) if L1 and L2 are

defined over k (resp. L1 and L2 are exchanged by the Gal(k/k)-action).
n◦ = 3◦: In this case, we see that V ' P2

k and the image of the vertex with a label
written Q via τ is an irreducible conic on V ' P2

k, say Q. Notice that Q has a k-rational
point. Indeed, the image via σ of τ−1

∗ (Q) is a singular point on S of type A+
1 over k by the

assumption. Let L be a line on V such that L and Q tangentially meet at a general k-rational
point. Noting that τ−1

∗ (L) is defined over k, put Ũ := S̃\Supp(D + E + τ−1
∗ (L)). Then

Ũ ' V \(Q ∪ L) ' A1
k × A1

∗,k.

n◦ = 4◦: In this case, V is a k-form of P1
k
× P1

k
and of rank one. Moreover, the images

of the vertices with labels written F1 and F2 via τk are k-forms of irreducible curves of types
(1, 0) and (0, 1) on Vk ' P1

k
× P1

k
, say F1 and F2, respectively. Noting that the union F1 + F2

is defined over k, put Ũ := S̃\Supp(D + E). Then Ũ ' V \(F1 ∪ F2) ' A2
k.

n◦ = 5◦: In this case, V is a k-form of P1
k
× P1

k
and of rank one. Moreover, the image

of the vertex with a label written C via τk is a k-form of irreducible curve of type (1, 1) on
Vk ' P1

k
×P1

k
, say C. Notice that C has a k-rational point. Indeed, the image via σ of τ−1

∗ (C)

is a singular point on S of type A+
1 over k by the assumption. By Lemma 2.5.1, V contains a

cylinder such that this boundary includes C. Hence, we take the pullback Ũ of this cylinder
by τ . Then Ũ is a cylinder on S̃ such that this boundary includes Supp(D + E).

n◦ = 6◦: In this case, we see that V ' F2 and the images of the vertices with labels
written M and F via τ are the minimal section and a closed fiber of the structure morphism
F2 → P1

k over k, say M and F , respectively. Noting that the union M + F is defined over k,

put Ũ := S̃\Supp(D + E). Then Ũ ' V \(M ∪ F ) ' A2
k.

n◦ = 7◦: In this case, we see that V ' F2 and the images of the vertices with labels written
M , F and C via τ are the minimal section, a closed fiber and a section with self-intersection
number 2 of the structure morphism F2 → P1

k over k, say M , F and C, respectively. Noting

that the union M + F + C is defined over k, put Ũ := S̃\Supp(D + E). Then Ũ ' V \(M ∪
F ∪ C) ' A1

k × A1
∗,k by Lemma 2.5.2.

n◦ = 8◦: In this case, V is a k-form of F2. Moreover, the images of the vertices with
labels written M and C via τ are the minimal section and a section with self-intersection
number 2 of the structure morphism F2 → P1

k over k, say M and C, respectively. Notice
that either M or C has a k-rational point. Indeed, the images via σ of τ−1

∗ (M) and τ−1
∗ (C)

are singular points on Sk of type A1. By assumption, one of these is of type A+
1 over k.

Hence, we obtain V ' F2 by using Lemma 2.2.2. Let F be a general fiber of the structure
morphism F2 → P1

k defined over k. Noting that the union M + F + C is defined over k, put

Ũ := S̃\Supp(D + E + τ−1
∗ (F )). Then Ũ ' V \(M ∪ F ∪ C) ' A1

k × A1
∗,k by Lemma 2.5.2.

n◦ = 9◦: In this case, V = S̃ and V is a k-form of F2. Hence, S̃ contains a cylinder Ũ , so
that Ũ ∩ Supp(M) = ∅ (see Lemma 3.3.4).

n◦ = 10◦: In this case, V is a k-form of F2. Moreover, the images of the vertices with labels
written M and Fi via τ are k-forms of the minimal section and a closed fiber of the structure
morphism F2 → P1

k
, say M and Fi, respectively. Then V contains a cylinder such that this

boundary includes M , F1 and F2 (see Lemma 3.3.4). Hence, we take the pullback Ũ of this
cylinder by τ . Then Ũ is a cylinder on S̃ such that this boundary includes Supp(D + E).
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For all cases, we obtain a cylinder Ũ on S̃ such that this boundary includes Supp(D).
Therefore, S contains the cylinder σ(Ũ) ' Ũ . This completes the proof of Theorem 1.3.9 (1)
and the “if” part in Theorem 1.3.9 (2).

Remark 4.2.8. We shall state some remarks on the above argument.

(1) In these cases n◦ = 1◦, 4◦ or 6◦, then S always contains the affine plane A2
k (compare

the fact that the Du Val del Pezzo surface of rank one over C with ρC(S) = 1 and of
degree d ≥ 3 contains C2 if and only if the pair of the degree and the singularities of
this surface is (8, A1), (6, A2 +A1), (5, A4), (4, D5) or (3, E6), see [56]).

(2) In these cases n◦ = 9◦ or 10◦, then S̃ does not have to admit any k-rational point.
However, S always contains a cylinder, say U ' A1

k × Z (compare the fact that any
smooth del Pezzo surface over k with ρk(S) = 1 containing a cylinder admits k-rational
points, see Theorem 1.2.4). This implies that Z is not necessarily a rational curve over
k. Moreover, we also know that V is a trivial k-form of F2 if and only if S̃k has a
k-rational point.

4.3 Properties of dvisors on weak del Pezzo surfaces

Let the notation be the same as at beginning of Chapter 4. In this section, we shall study
someQ-divisors generated by (−2)-curves on S̃k. As an application, we explicitly construct the

union of (−1)-curves on S̃k. Furthermore, we determine the condition that each irreducible
component of this union is defined over k. This argument will play an important role in
determining the existence of Du Val del Pezzo surfaces of rank one with degree ≤ 2 in Section
4.5.

4.3.1 Q-divisors composed of (−2)-curves

In this subsection, let x be a singular point of type An, D5 or E6 on Sk, which is k-rational,

let M1, . . . ,Mn be all irreducible components of the exceptional set on S̃k by the minimal
resolution at x on Sk. Assume that the dual graph of M1, . . . ,Mn is the following graph
according to the singularity type of x on Sk:

• Type An:

◦
M1

◦
M2

· · · ◦
Mn (4.3.1)

• Type D5:

◦M1

◦
OOO

OOO M3
◦
M4

◦
M5

◦ oo
ooo

o

M2

(4.3.2)

• Type E6:

◦
M1

◦
M3

◦
OOO

OOO M5
◦
M6

◦ oo
ooo

oM4
◦
M2

(4.3.3)
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Table 4.2: The value of (M)2 in Lemma 4.3.1

n\j0 1 2 3 4 5 6 7 8

1 −1
2

2 −2
3 −2

3

3 −3
4 −1 −3

4

4 −4
5 −6

5 −6
5 −4

5

5 −5
6 −4

3 −3
2 −4

3 −5
6

6 −6
7 −10

7 −12
7 −12

7 −10
7 −6

7

7 −7
8 −3

2 −15
8 −2 −15

8 −3
2 −7

8

8 −8
9 −14

9 −2 −20
9 −20

9 −2 −14
9 −8

9

Let M be a Q-divisor on S̃k, which is generated by M1, . . . ,Mn, so that:

M =

n∑
j=1

bjMj

for some b1, . . . , bn ∈ Q.

Lemma 4.3.1. With the notation as above, assume further that x is of type An on Sk. Let
j0 be an integer with 1 ≤ j0 ≤ n. If (−M ·Mj) = δj0,j , then we have:

M =
n− j0 + 1

n+ 1

j0∑
j=1

jMj +
j0

n+ 1

n−j0∑
j=1

jMn−j+1

and:

(M)2 = −(n− j0 + 1)j0
n+ 1

.

Proof. For all cases, we can easily show because it is enough to directly compute some inter-
section numbers. 2

In Lemma 4.3.1, if (−M ·Mj) = δj0,j , then the value of (M)2 is explicitly summarized in
Table 4.2 depending on the values of n and j0.

Lemma 4.3.2. With the notation as above, assume further that x is of type D5 on Sk. Then
we have the following assertions:

(1) If (−M ·Mj) = δ1,j + δ2,j , then we have:

M = 2M1 + 2M2 + 3M3 + 2M4 +M5

and (M)2 = −4.
(2) If (−M ·Mj) = δ1,j , then we have:

M =
5

4
M1 +

3

4
M2 +

3

2
M3 +M4 +

1

2
M5

and (M)2 = −5
4 .

59



(3) If (−M ·Mj) = δ3,j , then we have:

M =
3

2
M1 +

3

2
M2 + 3M3 + 2M4 +M5

and (M)2 = −3.
(4) If (−M ·Mj) = δ4,j , then we have:

M =M1 +M2 + 2M3 + 2M4 +M5

and (M)2 = −2.
(5) If (−M ·Mj) = δ5,j , then we have:

M =
1

2
M1 +

1

2
M2 +M3 +M4 +M5

and (M)2 = −1.

Proof. For all cases, we can easily show because it is enough to directly compute some inter-
section numbers. 2

Lemma 4.3.3. With the notation as above, assume further that x is of type E6 on Sk. Then
we have the following assertions:

(1) If (−M ·Mj) = δ1,j + δ2,j , then we have:

M = 2M1 + 2M2 + 3M3 + 3M4 + 4M5 +M6

and (M)2 = −4.
(2) If (−M ·Mj) = δ3,j + δ4,j , then we have:

M = 3M1 + 3M2 + 6M3 + 6M4 + 8M5 + 4M6

and (M)2 = −12.
(3) If (−M ·Mj) = δ1,j , then we have:

M =
4

3
M1 +

2

3
M2 +

5

3
M3 +

4

3
M4 + 2M5 +M6

and (M)2 = −4
3 .

(4) If (−M ·Mj) = δ3,j , then we have:

M =
5

3
M1 +

4

3
M2 +

10

3
M3 +

8

3
M4 + 4M5 + 2M6

and (M)2 = −10
3 .

(5) If (−M ·Mj) = δ5,j , then we have:

M = 2M1 + 2M2 + 4M3 + 4M4 + 6M5 + 3M6

and (M)2 = −6.
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(6) If (−M ·Mj) = δ6,j , then we have:

M =M1 +M2 + 2M3 + 2M4 + 3M5 + 2M6

and (M)2 = −2.

Proof. For all cases, we can easily show because it is enough to directly compute some inter-
section numbers. 2

Lemma 4.3.4. With the notation as above, assume further that (−K
S̃k
)2 = 1 and one of the

following conditions holds:

(1) The dual graph of M1, . . . ,Mn is the same as in (4.3.1) and M =
∑n

j=1Mj ;

(2) n = 5, the dual graph of M1, . . . ,M5 is the same as in (4.3.2) and M = M1 +M2 +
2M3 + 2M4 +M5;

(3) n = 6, the dual graph of M1, . . . ,M6 is the same as in (4.3.3) and M = M1 +M2 +
2M3 + 2M4 + 3M5 + 2M6.

Then there exists a (−1)-curve E on S̃k such that E ∼ −K
S̃k
−M and E is defined over k.

Proof. Noticing the assumption of M , we see (M)2 = −2 by the straightforward calculation.
In particular, we obtain (−K

S̃
− M)2 = −1 and (−K

S̃
− M · −K

S̃
) = 1. Moreover, for

each case, we obtain (−K
S̃
− M · Mj) ≥ 0 for any i. Indeed, in the case of (1) we have

(−K
S̃
−M ·Mj) = δj,1+δj,n (cf. Lemma 4.3.1), in the case of (2) we have (−K

S̃
−M ·Mj) = δj,4

(cf. Lemma 4.3.2 (4)), and in the case of (3) we have (−K
S̃
−M ·Mj) = δj,6 (cf. Lemma

4.3.3 (6)). Meanwhile, (−K
S̃
−M ·M ′) = 0 for every (−2)-curve M ′ on S̃k other than the

irreducible components of M . Hence, by Lemma 2.1.4, there exists a (−1)-curve E on S̃k
such that E ∼ −K

S̃
−M . Notice that E is included in Pic(S̃k)

Gal(k/k) because so are −K
S̃

and M . Thus, E is defined over k. This completes the proof. 2

Lemma 4.3.5. With the notation as above, assume further that b1, . . . , bn ∈ Z. Then the
following assertions hold:

(1) (M)2 is a non-positive even integer.

(2) If x is of type An on S and bj ≥ 1 for any j, then (M)2 ≤ −2, moreover, (M)2 = −2 if
and only if bj = 1 for any j = 1, . . . , n.

(3) If x is of type An on S with n ≥ 3, b1, bn ≥ 1 and bj ≥ 2 for any j = 2, . . . , n − 1,
then (M)2 ≤ −4, moreover, (M)2 = −4 if and only if b1, bn = 1 and bj = 2 for any
j = 2, . . . , n− 1.

(4) If x is of type An on S with n ≥ 5, b1, bn ≥ 1, b2, bn−1 ≥ 2 and bj ≥ 3 for any
j = 3, . . . , n − 2, then (M)2 ≤ −6, moreover, (M)2 = −6 if and only if b1, bn = 1,
b2, bn−1 = 2 and bj = 3 for any j = 3, . . . , n− 2.

(5) If x is of type D5 on Sk and b1, b2, b4 ≥ 2, b3 ≥ 3 and b5 ≥ 1, then (M)2 ≤ −4, moreover,
(M)2 = −4 if and only if b1, b2, b4 = 2, b3 = 3 and b5 = 1.

(6) If x is of type E6 on Sk and b1, b2, b6 ≥ 2, b3, b4 ≥ 3 and b5 ≥ 4, then (M)2 ≤ −4,
moreover, (M)2 = −4 if and only if b1, b2, b6 = 2, b3, b4 = 3 and b5 = 4.

Proof. In (1), since any irreducible component of M is a (−2)-curve and any coefficient of M
is an integer, it is clearly seen that (M)2 is an even number. We shall show that (M)2 ≤ 0
according to the singularity type of x on Sk:
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• Type An: we have:

(M)2 = −(b21 + b2n)−
n−1∑
j=1

(bj − bj+1)
2. (4.3.4)

• Type D5: we have:

(M)2 = −1

2
(2b1 − b3)2 −

1

2
(2b2 − b3)2 − (b3 − b4)2 − (b4 − b5)2 − b25. (4.3.5)

• Type E6: we have:

(M)2 = −1

2
(2b1 − b2)2 −

1

2
(2b2 − b4)2

− 1

6
(3b3 − 2b5)

2 − 1

6
(3b4 − 2b5)

2 − 1

6
(2b5 − 3b6)

2 − 1

2
b26.

(4.3.6)

Therefore, for all cases, we see that (M)2 ≤ 0. This completes the proof of (1).
In (2), (3) and (4), it is easy to show by (4.3.4).
In (5), if b5 > 1 then it is easy to see (M)2 < −4 by assumption and (4.3.5). Hence, we

assume b5 = 1 in what follows. Now, if b4 > 2, then we also see (M)2 < −4 by an argument
similar to the above. Hence, we also assume b4 = 2 in what follows. By sequentially replacing
b4 in the argument by b3, b2 and b1, we obtain the assertion.

In (6), it can be shown by an argument similar to (5) using (4.3.6) instead of (4.3.5). 2

4.3.2 Construction of (−1)-curves on weak del Pezzo surface

In this subsection, let d be the degree of S̃, let x1, . . . , xr′ be all singular points on Sk let
Mi,1, . . . ,Mi,n(i) be all irreducible components of the exceptional set σ−1(xi) for i = 1, . . . , r′.
Here, we assume that x1 ∈ Sk is of type An(1) with n(1) ≥ 2 (resp. either x1 ∈ Sk is of type
An(1) with n(1) ≥ 4 or of type D5 or E6) if d = 2 (resp. d = 1). Moreover, letting r be a

positive integer with r ≤ r′, we also assume that the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is one of

the following graphs (4.3.7), (4.3.8) and (4.3.9):

◦
Mi,1

◦
Mi,2

· · · ◦
Mi,n(i)

for i = 1, . . . , r
(4.3.7)

◦M1,1

◦
OOO

OOO M1,3
◦

M1,4
◦

M1,5
◦

M2,1
◦

M2,2
· · · ◦

M2,n

◦ oo
ooo

o

M1,2

(4.3.8)

◦
M1,1

◦
M1,3

◦
OOO

OOO M1,5
◦

M1,6
◦

M2,1
◦

M2,2
· · · ◦

M2,n

◦ oo
ooo

oM1,4
◦

M1,2

(4.3.9)
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Table 4.3: Divisor D in Subsection 4.3.2

Name d r Irreducible decomposition of D

(a) 2 2 (−K
S̃k
)−

∑2
i=1

∑n(i)
j=1Mi,j

(b) 2 1 (−K
S̃k
) + (M1,1 +M1,n(1))− 2

∑n(1)
j=1 M1,j .

(c) 1 3 2(−K
S̃k
)−

∑3
i=1

∑n(i)
j=1Mi,j

(d) 1 2 2(−K
S̃k
) + (M1,1 +M1,n(1))− 2

∑n(1)
j=1 M1,j −

∑n(2)
j=1 M2,j

(e) 1 1 2(−K
S̃k
) + (M1,1 +M1,n(1)) + 2(M1,2 +M1,n(1)−1)− 3

∑n(1)
j=1 M1,j

(f) 1 2 2(−K
S̃k
)− (2M1,1 + 2M1,2 + 3M1,3 + 2M1,4 +M1,5)−

∑n
j=1M2,j

(g) 1 2 2(−K
S̃k
)− (2M1,1 + 2M1,2 + 3M1,3 + 3M1,4 + 4M1,5 +M1,6)−

∑n
j=1M2,j

Here, in (4.3.7), we shall assume (d, r) = (2, 2), (2, 1), (1, 3), (1, 2) or (1, 1). Furthermore, in
(4.3.8) (resp. (4.3.9)), we immediately obtain n(1) = 5 (resp. n(1) = 6) by the configuration,
moreover, we shall assume (d, r) = (1, 2) and put n(2) := n.

Let D be the divisor on S̃k given by one of the lists in Table 4.3 according to the above
cases of the dual graph and the pair (d, r). Here, when D is (a), (b), (c), (d) or (e) in Table

4.3, the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.3.7). Moreover, when D is (f) and (g) in

Table 4.3, the dual graph of
∑2

i=1

∑n(i)
j=1Mi,j is as in (4.3.8) and (4.3.9), respectively. On the

other hand, we assume n(1) ≥ 4 (resp. n(1) ≥ 6) if the case of D is either (b) or (d) (resp.
(e)).

For all cases, we see (D)2 = −2 and (D · −K
S̃k
) = 2 by construction, moreover, we have

the value of (D ·Mi,j), which is the following according to the cases:

(a): (D ·Mi,j) = δj,1 + δj,n(i) for i = 1, 2.

(b): (D ·Mi,j) = δj,2 + δj,n(1)−1.

(c): (D ·Mi,j) = δj,1 + δj,n(i) for i = 1, 2, 3.

(d): (D ·Mi,j) = δi,1(δj,2 + δj,n(1)−1) + δi,2(δj,1 + δj,n(2)) for i = 1, 2.

(e): (D ·Mi,j) = δj,3 + δj,n(1)−2.

(f): (D ·Mi,j) = δi,1(δj,1 + δj,2) + δi,2(δj,1 + δj,n) for i = 1, 2.

(g): (D ·Mi,j) = δi,1(δj,1 + δj,2) + δi,2(δj,1 + δj,n) for i = 1, 2.

The purpose of this subsection is to prove Proposition 4.3.10. For the following two lemmas,
we only treat the case (a) since other cases can be shown by a similar argument.

Lemma 4.3.6. dim |D| ≥ 0.

Proof. By the Riemann-Roch theorem and (D · D − K
S̃k
) = 0, we have χ(S̃k,OS̃k

(D)) =

χ(S̃k,OS̃k
). Moreover, by the Serre duality theorem combined with (K

S̃k
− D · M1,1) =

−1 < 0, we have h2(S̃k,OS̃k
(D)) = h0(S̃k,OS̃k

(K
S̃k
− D)) = 0. Thus, we have dim |D| =

h0(S̃k,OS̃k
(D))− 1 ≥ χ(S̃k,OS̃k

(D))− 1. On the other hand, it is known that S̃k is a rational

surface by Lemma 2.1.3, we see χ(S̃k,OS̃k
) = 1. Therefore, we have dim |D| ≥ 0. 2
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By Lemma 4.3.6, we can write D ∼ D1+D2, whose D1 and D2 are effective divisors on S̃k,
such that any irreducible component C1 (resp. C2) on D1 (resp. D2) satisfies (C1 ·−KS̃k

) > 0

(resp. (C2 · −KS̃k
) = 0). Hence, (D1 · −KS̃k

) = 2 because of (D · −K
S̃k
) = 2. Meanwhile,

note that D2 is an effective divisor, which consists of (−2)-curves on S̃k, since S̃k is a weak
del Pezzo surface.

Lemma 4.3.7. (D1)
2 ≤ −2.

Proof. By D1 ∼ D −D2, we can write D1 ∼ (−K
S̃k
)−

∑2
i=1

∑n(i)
j=1 bi,jMi,j −M ′, where each

bi,j is an integer, andM ′ is an effective divisor consisting of (−2)-curves {Mi,j}r<i≤r′, 1≤j≤n(i).
By D2 ∼ D−D1, we then have D2 =

∑2
i=1

∑n(i)
j=1(bi,j − 1)Mi,j +M

′. Since D2 is effective, we

thus see bi,j ≥ 1 for i = 1, 2 and j = 1, . . . , n(i). Thus, we obtain (D1)
2 ≤ 2 + 2 · (−2) = −2

by Lemma 4.3.5 (2). 2

Remark 4.3.8. The proof of Lemma 4.3.7 uses Lemma 4.3.5 (2) since D is as in (a). On the
other hand, if D is as in (b) (resp. (d), (e), (f), (g)), we can show Lemma 4.3.7 by using
Lemma 4.3.5 (3) (resp. both (2) and (3), (4), both (2) and (5), both (2) and (6)) instead of
Lemma 4.3.5 (2).

Lemma 4.3.9. We shall consider the following formula:

−1 =
1

d
+

r∑
i=1

(Mi)
2, (4.3.10)

where each Mi is an effective Q-divisor generated by Mi,1, . . . ,Mi,n(i) such that
∑n(i)

j=1(−Mi ·
Mi,j) = 1. Then we have:

• If (d, r) = (2, 2) and the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.3.7), then {(M1)

2, (M2)
2} =

{−5
6 ,−

2
3}, {−

3
4 ,−

3
4} or {−1,−

1
2}, so that {n(1), n(2)} = {5, 2}, {3, 3} or {3, 1}, respec-

tively.

• If (d, r) = (2, 1) and the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.3.7), then (M1)

2 = −3
2 ,

so that n(1) = 5.

• If (d, r) = (1, 3) and the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.3.7), then {(M1)

2, (M2)
2, (M3)

2} =
{−5

6 ,−
2
3 ,−

1
2}, so that {n(1), n(2), n(3)} = {5, 2, 1}.

• If (d, r) = (1, 2) and the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.3.7), then {(M1)

2, (M2)
2} =

{−3
2 ,−

1
2}, {−

4
3 ,−

2
3}, {−

3
2 ,−

1
2} or {−

6
5 ,−

4
5}, so that {n(1), n(2)} = {7, 1}, {5, 2}, {5, 1}

or {4, 4}, respectively.
• If (d, r) = (1, 1) and the dual graph of

∑r
i=1

∑n(i)
j=1Mi,j is as in (4.3.7), then (M1)

2 = −2,
so that n(1) = 7.

• If (d, r) = (1, 2) and the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.3.8), then ((M1)

2, (M2)
2) =

(−5
4 ,−

3
4) or (−1,−1), so that n(2) = 3.

• If (d, r) = (1, 2) and the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.3.9), then ((M1)

2, (M2)
2) =

(−4
3 ,−

2
3), so that n(2) = 2.

Proof. Notice that the assmption
∑n(i)

j=1(−Mi ·Mi,j) = 1 implies that there uniquely exists j0
such that (−Mi, ·Mi,j) = δj,j0 . Hence, for all cases it can be easily shown by using Lemmas
4.3.1, 4.3.2 and 4.3.3 (see also Table 4.2), where we note n(1) ≥ 2 (resp. n(1) ≥ 4) if d = 2
(resp. d = 1). 2
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Now, we shall consider the following two conditions (†) and (‡) on D:

(‡): There exist two (−1)-curves E1 and E2 on S̃k satisfying D1 = E1+E2 and (E1 ·E2) = 0.

(†): There exists a (−1)-curve E on S̃k satisfying D1 = 2E.

Then we obtain the following proposition, which will play an important role in Section 4.5:

Proposition 4.3.10. With the notation as above, the following assertions hold:

(1) D satisfies either condition (‡) or (†):
(2) If D satisfies the condition (‡), then we have D ∼ D1.

(3) We write D1 ∼ 2
d(−KS̃k

)−
∑r′

i=1

∑n(i)
j=1 bi,jMi,j , where each bi,j is a non-negative integer.

Then:

• For any i ≤ r, bi,j 6= 0 for some j ∈ {1, . . . , n(i)}.

• Each i = 1, . . . , r′, if bi,j 6= 0 for some j ∈ {1, . . . , n(i)}, then
∑n(i)

j=1(E ·Mi,j) = 1.

(4) If D is of the case (f) or (g), then D satisfies the condition (‡).
(5) Assume that D satisfies (†), and write E ∼Q

1
d(−KS̃k

) −
∑r′

i=1Mi, where Mi is an

effective Q-divisor consisting of Mi,1, . . . ,Mi,n(i). Letting s be the number of Q-divisors
Mi as Mi 6= 0, then s ≤ 2. Hence, if D is of the case (c), then D satisfies the condition
(‡).

(6) Assume that D satisfies the condition (‡). If any irreducible component E of D1 is

contained in Q[−K
S̃k
] ⊕

(⊕r
i=1

⊕n(i)
j=1Q[Mi,j ]

)
, then each n(i) is one of the following

according to the case of D:

• In the case of (a), then {n(1), n(2)} = {5, 2} or {3, 3}.
• In the case of (b), then n(1) = 7.

• In the case of (c), then n(1) = 5 and {n(2), n(3)} = {2, 1}.
• In the case of (d), then (n(1), n(2)) = (7, 1), (5, 2) or (4, 4).

• In the case of (e), then n(1) = 8.

• In the case of (f), then n(2) = 3 (it is clear that n(1) = 5).

• In the case of (g), then n(2) = 2 (it is clear that n(1) = 6).

(7) Assume that D satisfies the condition (†). If the case of D is (a) or (d), i.e., r = 2, then

the irreducible component E of D1 is contained in Q[−K
S̃k
] ⊕

(⊕2
i=1

⊕n(i)
j=1Q[Mi,j ]

)
and each n(i) is as follows according to the case of D:

• In the case of (a), then (n(1), n(2)) = (3, 1).

• In the case of (d), then (n(1), n(2)) = (5, 1).

(8) Assume that D satisfies the condition (†). If the case of D is (b) or (e), i.e, r = 1, and

the irreducible component E of D1 is contained in Q[−K
S̃k
] ⊕

(⊕n(1)
j=1 Q[M1,j ]

)
, then

each n(i) is as follows according to the case of D:

• In the case of (b), then n(1) = 5.

• In the case of (e), then n(1) = 7.
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Proof. In (1), note that D1 consists of at most two irreducible components by the construction
of D1 combined with (D1 · −KS̃k

) = 2. In the case that D1 consists of exactly one irreducible

component, say E. By Lemma 4.3.7, we see (E)2 < 0. Since (E · −K
S̃k
) > 0 and S̃k is a

weak del Pezzo surface, we know that E is a (−1)-curve. In particular, we obtain D1 = 2E
by virtue of (D1 · −KS̃k

) = 2. Namely, D satisfies the condition (†). In the case that D1

consists of exactly two irreducible components, say E1 and E2. Then (Ei · −KS̃k
) = 1 and

D1 = E1 + E2, so that we have (D1)
2 = (E1)

2 + (E2)
2 + 2(E1 · E2). By the above similar

argument, E1 and E2 are (−1)-curves, in particular, we obtain (E1 ·E2) = 0 by Lemma 4.3.7.
Namely, D satisfies the condition (‡).

In (2), assuming that D satisfies the condition (‡), we have (D1)
2 = −2. Hence, we see

that this assertion follows from Lemma 4.3.5 according to the case of D (cf. Remark 4.3.8).
In (3), this proof is a bit long and is needed a technical argument. Hence, we will present

this proof in the next Subsection 4.3.3.
In what follows, we present the proof under the assumption that (3) is valid.
In (4), we only treat the case where D is of (f), the other cases are similar and left to the

reader. Suppose on the contrary that D satisfies the condition (†). In other words, there exists
a (−1)-curve E on S̃k such that D1 = 2E. Then by (3) there uniquely exists j′ ∈ {1, . . . , 5}
and j′′ ∈ {1, . . . , n(2)} such that (E ·M1,j) = δj,j′ and (E ·M2,j) = δj,j′′ , respectively. Since D1

is a Z-divisor, j′ 6= 1, 2 by Lemma 4.3.2. (Note that we shall use Lemma 4.3.3, when we treat

the case (g) instead of the case (f). ) On the other hand, we write E ∼Q (−K
S̃k
)−

∑r′

i=1Mi,

where Mi is an effective Q-divisor consisting of Mi,1, . . . ,Mi,n(i). Then (Mi)
2 ≤ 0 by using

Lemma 4.3.5 (1), moreover, (M1)
2 ≤ −2 and (M2)

2 < 0 by Lemmas 4.3.1 and 4.3.2. Hence,
we have −1 = (E)2 < 1 + (−2) = −1, which is absurd.

In (5), by the assumption of E, we have:

−1 = (E)2 =
1

d
+

r′∑
i=1

(Mi)
2 (4.3.11)

Here, if Mi 6= 0, we see (Mi)
2 ≤ −1

2 by (3) and Lemmas 4.3.1 4.3.2 and 4.3.3 (see also Table
4.2). Furthermore, (M1)

2 ≤ −2
3 by virtue of n(1) > 1. Hence, we have:

1

d
+

r′∑
i=1

(Mi)
2 ≤ 1

d
− 2

3
− (s− 1) · 1

2
(4.3.12)

Two formulas (4.3.11) and (4.3.12) imply s ≤ 2
d + 5

3 . Since s is an integer, we thus obtain
s ≤ 2 and s ≤ 3 if d = 2 and d = 1, respectively. In what follows, we consider the case
d = 1 and suppose s = 3. Then we may assume Mi 6= 0 for i = 1, 2, 3. Notice that each

singularity on Sk corresponding to
∑n(i)

j=1Mi,j is of type An(i) for i = 1, 2, 3 by virtue of

(1) and (4), moreover, note n(1) ≥ 4. By looking for the triplet {(M1)
2, (M2)

2, (M3)
2} with

(M1)
2+(M2)

2+(M3)
2 = −2 in Table 4.2, the triplet is only {−5

6 ,−
2
3 ,−

1
2}, moreover, n(1) = 5

and {n(2), n(3)} = {2, 1}. Hence, we may assume:

E ∼Q (−K
S̃k
)−

5∑
j=1

6− j
6

M1,j −
2∑
j=1

3− j
3

M2,j −
1

2
M3,1.

However, this contradicts that D1 = 2E is a Z-divisor.
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In (6), assume thatD satisfies the condition (‡) and E ∈ Q[−K
S̃k
]⊕

(⊕r
i=1

⊕n(i)
j=1Q[Mi,j ]

)
.

Hence, we can write E ∼Q
1
2(−KS̃k

)−
∑r

i=1Mi by noticing (E · −K
S̃k
) = 1, where Mi is an

effective Q-divisor generated by Mi,1, . . . ,Mi,n(i). By (E)2 = −1, we then have the formula
(4.3.10). We shall look for the combination of the values of (M1)

2, . . . , (Mr)
2 such that the

equality (4.3.10) holds according to each case. As an example, we will explain the case of
(a). Note that the equality (4.3.10) implies (M1)

2 + (M2)
2 = −3

2 by d = 2 and r = 2. Since
(D ·Mi,j) = δj,1 + δj,n(i), we may assume that (E1 ·Mi,j) = δj,1 for i = 1, 2 by virtue of (2)
and (3). By using Lemma 4.3.9 and looking at the row of j0 = 1 in Table 4.2, we obtain
{(M1)

2, (M2)
2} = {−5

6 ,−
2
3} or {−

3
4 ,−

3
4}. This implies that {n(1), n(2)} = {5, 2} or {3, 3}.

The other cases are left to the reader because these can be shown by a similar argument
above.

In (7), assume that D satisfies the condition (†), in other words, there exists a (−1)-
curve E on S̃k such that D1 = 2E. Then E ∈ Q[−K

S̃k
] ⊕

(⊕2
i=1

⊕n(i)
j=1Q[Mi,j ]

)
by virtue

of (3) and (5). In particular, we write E ∼Q (−K
S̃k
) −

∑2
i=1Mi, where Mi is an effective

Q-divisor generated by Mi,1, . . . ,Mi,n(i). Hence, we then have the formula (4.3.10) as r = 2.
We shall look for the combination of the values of (M1)

2 and (M2)
2 such that the equality

(4.3.10) holds and 2E ∼ D − D2 according to each case. As an example, we will explain
the case of (a). Note that the equality (4.3.10) implies (M1)

2 + (M2)
2 = −3

2 by d = 2
and r = 2. By Lemma 4.3.9, {(M1)

2, (M2)
2} = {−5

6 ,−
2
3}, {−

3
4 ,−

3
4} or {−1

2 ,−1}, so that
{n(1), n(2)} = {5, 2}, {3, 3} or {3, 1}. However, we note {n(1), n(2)} 6= {5, 2}. Indeed,
otherwise, by Lemma 4.3.1 (see also Table 4.2), we see that 2E is a Q-divisor but not a Z-
divisor (cf. the proof of (5)). This contradicts that 2E = D1 is a Z-divisor. By the similar
argument, we also see {n(1), n(2)} 6= {3, 3}. Thus, we obtain {n(1), n(2)} = {3, 1}. Namely,
E ∼Q

1
2(−KS̃k

)− (M1,1+2M1,2+M1,3)−M2,1. The other cases are left to the reader because

these can be shown by a similar argument above.
In (8), this proof can be shown by an argument similar to (7) and is left to the reader. 2

Now, we shall present the following example about the application of Proposition 4.3.10:

Example 4.3.11. With the notation as above, assume further that d = 2 and S̃ is of A5+A2-
type. Let M1,1, . . . ,M1,5, M2,1 and M2,2 be all (−2)-curves on S̃k with the configuration as

in (4.3.7). Then we shall consider two divisors D(1,5) and D(3) on S̃k given by:

D(1,5) := −K
S̃k
−

5∑
j=1

M1,j −
2∑
j=1

M2,j ,

D(3) := −K
S̃k
−M1,1 − 2(M1,2 +M1,3 +M1,4)−M1,5.

Notice that D(1,5) and D(3) are divisors as in (a) and (b) in Table 4.3, respectively. Hence,
since D(1,5) satisfies the condition (‡) by Proposition 4.3.10 (1),(2) and (7), there exist two
(−1)-curves E1 and E5 on S̃k such thatD(1,5) ∼ E1+E5. Moreover, D(3) satisfies the condition
either (†) or (‡). However, D(3) does not satisfy the condition (‡). Indeed, otherwise, since
there exist two (−1)-curves E2 and E3 on S̃k such that D(3) ∼ E2 + E4. Hence, we obtain

the compositions τ : S̃k → V of successive contractions of E2 + E4, that of the images of
M1,2 +M1,4 and finally that of the images of M1,1 +M1,5 over k, so that the weighted dual
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graphs of
∑5

j=1M1,j +
∑2

j′=1M2,j′ + E1 + E2 + E4 + E5 and its image via τ are as follows:

•
E1

◦
M1,1

◦
M1,2

•E2

◦
M1,3

◦
M1,4

•E4

◦
M1,5

•
E5◦ jjj

jjjj
jj

M2,2

◦
M2,1

◦ TTTTTTTTT
τ−→ �

τ∗(E1)

◦ggggggggggggg

τ∗(M1,3)

2 �WWW
WWWWW

WWWWW

τ∗(E5)◦ jjj
jjjj

jj

τ∗(M2,2)
◦

τ∗(M2,1)

TTTTTTTTTT

Then (−KV )
2 = 8 and V contains two (−2)-curves τ∗(M2,1) and τ∗(M2,2). This is a contra-

diction. Thus, D(3) satisfies the condition (†). In other words, there exists a (−1)-curve E3

on S̃k such that D
(3)
1 = 2E3. In particular, we know (E3 ·Mi,j) = δ1,iδ3,j . Since E1 +E5 and

E3 are defined over k, we see that S̃k contains a union defined over k corresponding to the
following weighted dual graph:

•E1

◦ JJJJ

M1,1
◦

M1,2
◦

M1,3

•E3

◦
M1,4

◦
M1,5

• t
ttt

E5

◦
JJJ

J

M2,1 ◦ M2,2

◦tttt

4.3.3 Proof of Proposition 4.3.10 (3)

In this subsection, we shall prove Proposition 4.3.10 (3). With the notation as in Proposition
4.3.10 (3), notice that E is a (−1)-curve on S̃k by Proposition 4.3.10 (1). Since D1 ∼ D−D2,

we can write E ∼Q
1
d(−KS̃k

) −
∑r′

i=1Mi, where each Mi is an effective Q-divisor generated

by Mi,1, . . . ,Mi,n(i). In particular, we note Mi 6= 0 for every i = 1, . . . , r.

Lemma 4.3.12. Let D(1) and D(2) be two Q-divisors on S̃k generated by Mi,1, . . . ,Mi,n(i).

If (D(1) ·Mi,j) = (D(2) ·Mi,j) for any j = 1, . . . , n(i), then D(1) = D(2).

Proof. It is enough to show when we assume D(2) = 0. We shall write D(1) =
∑n(i)

j=1 bi,jMi,j

for some bi,j ∈ Q. By assumption, we have the following linear simultaneous equation: (D(1) ·Mi,1)
...

(D(1) ·Mi,n(i))

 = A

 bi,1
...

bi,n(i)

 =

 0
...
0

 ,
whereA is the intersection matrix with respect toMi,1, . . . ,Mi,n(i), i.e., A = ((Mi,j ·Mi,j′))1≤j, j′≤n(i).
It is well known that intersection matrix is negative definite ([58]), so that bi,j = 0 for any
j = 1, . . . , n(i). Namely, we obtain D(1) = 0. 2

Lemma 4.3.13. With the notation as above,
∑n(i)

j=1(E ·Mi,j) ≤ 1 for i = 1, . . . , r.

Proof. Let ∆i,j be the Q-divisor generated by Mi,1, . . . ,Mi,n(i) such that (∆i,j ·Mi,j′) = δj,j′

for j, j′ = 1, . . . , n(i) on S̃k. Note that such a Q-divisor ∆i,j is uniquely exists by using
Lemmas 4.3.1, 4.3.2 and 4.3.3. In particular, any coefficient of ∆i,j is less than or equal to
−1

2 . Hence, we have (∆i,j ·∆i,j′) ≤ −1
2 for any j, j′ = 1, . . . , n(i), where the equal sign holds

if and only if n(i) = 1. On the other hand, by Lemma 4.3.12, we obtain:

Mi = (Mi ·Mi,j)∆i,j = (E ·Mi,j)∆i,j
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for any j by virtue of (E −Mi ·Mi,j) = 0. Meanwhile, by using Lemma 4.3.5 (1), we note

(Mi)
2 < 0 if Mi 6= 0. Suppose that

∑n(i)
j=1(E ·Mi,j) ≥ 2. Notice (E ·Mi,j) ≥ 0 for any j. If

there exists j0 such that (E ·Mi,j0) ≥ 2, then we have:

−1 = (E)2 ≤ 1

d
+ (E ·Mi,j0)

2(∆i,j0)
2 ≤ 1− 2 = −1,

furthermore, we see (E)2 < −1 by virtue of n(i) ≥ 2 or both n(i) = 1 and i > 1. This is
absurd. Otherwise, by hypothesis there exist two integers j1 and j2 such that (E ·Mi,j1) =
(E ·Mi,j2) = 1. By virtue of n(i) ≥ 2, we have:

−1 = (E)2 ≤ 1

d
+ (∆i,j1)

2 + (∆i,j2)
2 + 2(∆i,j1 ·∆i,j2) < 1− 1

2
− 1

2
− 1 = −1,

which is absurd. 2

Lemma 4.3.14. With the notation as above, assume further that D satisfies the condition

(†). For i = 1, . . . , r′, then
∑n(i)

j=1(E ·Mi,j) ≥ 1 if Mi 6= 0.

Proof. Suppose
∑n(i)

j=1(E ·Mi,j) = 0 for some i ∈ {1, . . . , r′}. Then we note (E ·Mi,j) = 0 for
any j = 1, . . . , n(i). Hence, we obtain Mi = 0 by Lemma 4.3.12. 2

Proposition 4.3.10 (3) can be shown by using Lemmas 4.3.13 and 4.3.14 as follows:

Proof of Proposition 4.3.10 (3). The first assertion of Proposition 4.3.10 (3) follows immedi-
ately from the beginning of Subsection 4.3.3. Hence, we shall prove the second assertion of
this in what follows. In this proof, we will consider two cases separately:

In the case that D satisfies the condition (†). In other words, we can write D1 = 2E.

Hence, we obtain
∑n(i)

j=1(E ·Mi,j) = 1 for i = 1, . . . , r by Lemmas 4.3.13 and 4.3.14.
In the case that D satisfies the condition (‡). In other words, there exists a (−1)-curve E′

on S̃k such that D1 = E+E′ and E 6= E′. Notice that
∑n(i)

j=1(E
′ ·Mi,j) ≤ 1 by Lemma 4.3.13.

On the other hand, we see D ∼ E + E′ by Proposition 4.3.10 (2) and
∑n(i)

j=1(D ·Mi,j) = 2.

Hence, we see
∑n(i)

j=1(E ·Mi,j) =
∑n(i)

j=1(E
′ ·Mi,j) = 1. 2

4.4 Proof of Theorem 1.3.9 (3)

Let the notation be the same as at beginning of Chapter 4 and assume further that S is of
rank one and d ≤ 2. In this section, we shall show Theorem 1.3.9 (3).

4.4.1 Base locus with respect to cylinder

In this subsection, assuming that S contains a cylinder, say U ' A1
k×Z, where Z is a smooth

affine curve defined over k, the closures in S of fibers of the projection prZ : U ' A1
k×Z → Z

yields a linear system, say L , on S. By Lemma 2.5.6 we see that Bs(L ) consists of exactly
one k-rational point, say p, which is a singular point on Sk. Hence, L is especially a linear

pencil on S. On the other hand, Ũ := σ−1(U) ' U is a cylinder on S̃ since Uk is smooth. The

closures in S̃ of fibers of the projection prZ : Ũ ' A1
k ×Z → Z yields a linear system, say L̃ ,

on S̃. The purpose of this subsection is to show the following proposition:
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Proposition 4.4.1. With the notation and the assumptions as above, assume further that
one of the following conditions holds:

(1) d = 2 and p is of type An on Sk but not type A−
n over k for some n = 1, . . . , 6.

(2) d = 1 and p is of type An on Sk but not type A−
n over k for some n = 1, . . . , 8.

(3) d = 1 and p is of type D+
5 on Sk.

(4) d = 1 and p is of type E+
6 on Sk.

Then Bs(L̃ ) consists of only one k-rational point. In particular, the singular point p ∈ S is
not of type A++

n over k except for only one case (d, n) = (2, 7).

In what follows, we shall prove Proposition 4.4.1. Let M1, . . . ,Mn be all irreducible
components of the exceptional divisor of σk at p such that the dual graph of M1, . . . ,Mn is
that as in (4.3.1), (4.3.2) or (4.3.3) according to the singularity type of p on Sk. Now, the
following two lemmas hold:

Lemma 4.4.2. With the notation and the assumptions as above, assume further that p ∈ Sk
is of type An. Then we obtain the following assertion:

(1) If d = 2, then there exists a curve C on S̃k such that C ∼ (−K
S̃k
) − (M1 + · · · +Mn).

Hence, M1 + · · ·+Mn + C is a cycle.

(2) If d = 1 and n ≥ 3, then there exists a curve C on S̃ such that C ∼ 2(−K
S̃k
)− 2(M1 +

· · ·+Mn) + (M1 +Mn). Hence, M2 + · · ·+Mn−1 + C is a cycle.

Proof. In (1), we take the divisor D := (−K
S̃k
)− (M1+ · · ·+Mn) on S̃k. By construction, we

have (D)2 = 0 and (D ·−K
S̃k
) = 2. Hence, we see dim |D| ≥ 1 by the Riemann-Roch theorem.

Thus, there exists a curve C on S̃k such that C ∼ D. Namely, (C ·Mj) = (D ·Mj) = δj,1+δj,n.
This completes the proof of (1).

In (2), it can be shown by the argument similar to (1). 2

Lemma 4.4.3. With the notation and the assumptions as above, assume further that p ∈ Sk
is of type D5. Then there exists a curve C on S̃k such that C ∼ 2(−K

S̃k
) − (2M1 + 2M2 +

3M3 + 2M4 +M5). Hence, M1 +M2 +M3 + C is a cycle.

Proof. This lemma can be shown by the argument similar to Lemma 4.4.2. 2

Proof of Proposition 4.4.1. Let L̃ be a general member of L̃ . Since Bs(L ) = {p}, we see that
L̃ meets Mi for some 1 ≤ i ≤ n. By construction of L̃ , if L̃ meets two distinct irreducible
components Mi and Mj , then Bs(L̃ ) = Mi ∩Mj 6= ∅. In what follows, we thus assume that

L̃ meets exactly one irreducible component, say Mi0 . Notice that Mi0 is defined over k. Let

a and b be two positive rational numbers such that da = (L̃ · −K
S̃
) and 2b = (L̃ ·Mi0).

Now, we notice that Bs(L̃ ) 6= ∅ provided that (L̃ )2 6= 0. Hence, we shall show (L̃ )2 6= 0
according to the cases (1)–(4) in Proposition 4.4.1 in what follows:

In (1) or (2), by the configuration of a dual graph of M1 + · · ·+Mn, we see that n is odd
and i0 is equal to m, where m := dn2 e for simplicity. In particular, Mm corresponds to the

central vertex in this graph. Thus, by Lemma 4.3.1, we have L̃ ∼Q a(−K
S̃
) − bM , where

M =
∑m−1

j=1 j(Mj +Mn−j+1) + mMm. Moreover, we obtain (L̃ )2 = da2 − 2mb2. Suppose

that (L̃ )2 = 0. Note that m ≤ 4 because of n ≤ 8. Hence, we obtain (d,m) = (1, 2) or (2, 1)
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since a, b are rational numbers. In particular, we have a = (3 − d)b. However, the curve C

on S̃k, which is that as in Lemma 4.4.2, then satisfies (L̃ · C) = 0. This implies that C is

included in the boundary of Ũk. Moreover, so is Mi for i = 1, . . . , n. Hence, the boundary of

Ũk includes a cycle M1 + C (resp. M2 + C) if d = 2 (resp. d = 1). However, this contradicts

Lemma 2.5.3. Therefore, we see (L̃ )2 6= 0.
In (3), since p ∈ S is a singular point of type D+

5 over k, note that M1 and M2 lie in
the same Gal(k/k)-orbit, on the other hand, M3,M4 and M5 are defined over k, respectively.

Hence, i0 is equal to 3, 4 or 5. Thus, by Lemma 4.3.2, we have L̃ ∼Q a(−K
S̃
) − bM and

(L̃ )2 = a2 + (M)2b2, where M is that as in Lemma 4.3.2 (3), (4) or (5) according to the
number of i0. In particular, (M)2 = −3, −2 and −1 if i0 = 3, 4 and 5, respectively. Suppose

that (L̃ )2 = 0. Then (M)2 = −1 since a, b are rational numbers. Hence, we see i0 = 5
and a = b. However, the curve C on S̃, which is that as in Lemma 4.4.3(1), then satisfies

(L̃ · C) = 0. This implies that the boundary of Ũk includes a cycle M1 +M2 + C, which

contradicts Lemma 2.5.3. Therefore, we see (L̃ )2 6= 0.
In (4), since p ∈ S is a singular point of type E+

6 over k, note that M1 and M2 (resp. M3

and M4) lie in the same Gal(k/k)-orbit, on the other hand, M5 and M6 are defined over k,

respectively. Hence, i0 is equal to 5 or 6. Thus, by Lemma 4.3.3, we have L̃ ∼Q a(−KS̃
)−bM

and (L̃ )2 = a2 + (M)2b2, where M is that as in Lemma 4.3.3 (5) or (6) according to the
number of i0. In particular, (M)2 = −6 and −2 if i0 = 5 and 6, respectively. Thus, we see

(L̃ )2 6= 0 since a, b are rational numbers. 2

4.4.2 Proof of Theorem 1.3.9 (3)(i)–(iii)

In this subsection, we shall show the assertions (i), (ii) and (iii) in Theorem 1.3.9 (3). In
order to prove Theorem 1.3.9 (3)(i) and (ii), we will use Table 4.4. In fact, in this proof, we
mainly consider the two morphisms over k. One is the minimal resolution σ : S̃ → S over k
and the other is the contraction τ : S̃ → Wd′ over k of the union of some (−1)-curves, which
can be determined by the weighted dual graph in Table 4.4 according to the type of S̃ (the
detailed configuration of τ will be treated in the following Lemmas 4.4.4, 4.4.5 and 4.4.7). By
construction of τ , we will know that Wd′ contains a cylinder such that the boundary of this
pullback via τ includes the union of all (−2)-curves, which is clearly defined over k. Thus,
this image via σ is a cylinder in S, namely, we see that S certainly contains a cylinder.

Now, we shall state the notation in Table 4.4. Letting τ : S̃ → Wd′ be the morphism as
above depending on the type of S̃, we then see that Wd′ is a weak del Pezzo surface. Then
“d′” and “Type of Wd′” in Table 4.4 mean the degree and the type of Wd′ according to the
type of S̃, respectively. On the other hand, “ρk(S̃)” in Table 4.4 means the Picard number of
S̃ according to the type of S̃. Notice that this can be obtained by the Picard number of Wd′ ,
which is explicitly given (see Table 4.1), and the construction of τ . Moreover, “Dual graph”

in Table 4.4 means a weighted dual graph on S̃k according to the type of S̃, where “
⊙

”

means either “ • ◦ ” or “
•iii
•UU

U ”, which can be determined according to the type of S̃.

Note that the union of curves on S̃k corresponding to all vertices on this graph is certainly
defined over k by the configuration of Wd′ (see Table 4.1) and the construction of τ .

Proof of Theorem 1.3.9 (3)(i)

We consider the following two lemmas separately:
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Table 4.4: Types of S̃ in Theorem 1.3.9 (3) (i) and (ii)

d Type of S̃ ρk(S̃) Dual graph d′ Type of Wd′

2 D4 3, 4 or 5

◦
◦ ???

⊙
◦

⊙
◦
���⊙ 8 A1

2 D4 +A1 5 or 6
2 D4 + 2A1 5 or 7
2 D4 + 3A1 4, 6 or 8

2 A6 4
◦◦ ◦ ◦ ◦

•
◦

•
4 A2 + 2A1

2 A7 5 or 8
◦◦ ◦ ◦ ◦ ◦

•
◦

•
4 A3 + 2A1

2 D5 5 ◦ ◦ ◦
⊙◦ OO•

◦ oo•
4 (A3)<

2 D5 +A1 6 4 A3 +A1

2 D6 7 ◦ ◦ ◦ ◦
⊙◦ OO•

◦ oo
3 A5

2 D6 +A1 8 3 A5 +A1

2 E6 5 ◦ ◦
◦ OO◦•
◦ oo◦•

4 D4

2 E7 8
◦◦◦ ◦ ◦ ◦

•◦
3 E6

1 A8 5 or 9
◦◦◦ ◦ ◦ ◦

•
◦ ◦

•
3 3A2

1 D6 6 or 7

◦
◦ ???◦

•
◦

◦
⊙
◦
���⊙

2 D4 +A1

1 D6 +A1 8 2 D4 + 2A1

1 D6 + 2A1 7 or 9 2 D4 + 3A1

1 D7 7 ◦ ◦ ◦ ◦
◦oo
•

OO
◦ OO
◦ oo

2 D5 +A1

1 D8 9 ◦ ◦ ◦ ◦ ◦
◦oo
•

OO
◦ OO
◦ oo

2 D6 +A1

1 E7 8 ◦ ◦ ◦◦
⊙◦ OO◦•

◦ oo
2 D6

1 E7 +A1 9 2 D6 +A1

1 E8 9
◦◦◦ ◦ ◦ ◦ ◦

•◦
2 E7

2 (A5)
′′ 4

◦◦ ◦ ◦
•
◦

•
4 3A1

1 (A7)
′′ 5

◦◦◦ ◦ ◦
•
◦ ◦

•
3 2A2 +A1

2 (A5 +A1)
′′ 5

◦◦◦ ◦ ◦
•
◦

•
4 4A1
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Lemma 4.4.4. Let the notation and the assumptions be the same as above. If d = 2 and Sk
has a singular point of type D4, then S contains a cylinder.

Proof. Let x be a singular point of type D4 on Sk. Note that x is k-rational on Sk by Lemma

2.1.5. Moreover, we see that S̃ is of D4 + nA1-type for n = 0, 1, 2, 3 and S̃(k) 6= ∅ by the
configuration of S̃k (see Table 4.4). Let Ẽ be the union of reduced curves corresponding

to three subgraphs
⊙

◦ in the weighted dual graph in Table 4.4. Then we obtain the

birational morphism τ : S̃ → W8 over k such that W8 is a k-form of the Hirzebruch surface
F2 of degree 2 and the direct image τk,∗(Ẽ) is the disjoint union of three closed fibers, say

F1, F2 and F3, of the P1-bundle W8,k ' F2 → P1
k
. In particular, we see W8 ' F2 because of

S̃(k) 6= ∅ by using Proposition 2.2.2. Hence, Ũ := S̃\Ẽ is certainly the cylinder on S̃ since
Ũ ' F2\(M ∪F1 ∪F2 ∪F3) ' A1

k ×C(2), where M is the (−2)-curve on F2. Therefore, we see

that S contains a cylinder σ(Ũ) ' Ũ . 2

Lemma 4.4.5. Let the notation and the assumptions be the same as above. If d = 2 (resp.
d = 1) and Sk has a singular point of type A6, A7, D5, D6, E6 or E7 (resp. type A8, D6, D7,
D8, E7 or E8), then S contains a cylinder.

Proof. Let x be a singular point of the type of the one of the above list on Sk. Note that x

is k-rational on Sk by Lemma 2.1.5. Let Ẽ be the union of the (−1)-curves corresponding

to all vertices • in the Table 4.4 according to the type of S̃. Notice that Ẽ is defined over
k and Ẽk is either irreducible or disjoint. Hence, we obtain the contraction τ : S̃ → Wd′ of

Ẽ defined over k, so that Wd′ is a weak del Pezzo surface of degree d′ ∈ {2, 3, 4}, where d′ is
determined according to the type of S̃. If d′ ∈ {3, 4}, then Wd′ contains a cylinder such that
this boundary includes τ(Ẽ) by the argument in Subsection 4.2.2 (see also Table 4.1). Thus,
this pullback, say Ũ , via τ is a cylinder in S̃ such that this boundary includes the union of
all (−2)-curves on S̃k, which is defined over k. Therefore, we see that S contains a cylinder

σ(Ũ) ' Ũ . If d′ = 2, then Wd′ is one of the lists in Table 4.4 and contains a cylinder such
that this boundary includes τ(Ẽ) by the above argument. Namely, the above argument can
work as well even if d′ = 2. This completes the proof. 2

Remark 4.4.6. We shall state some remarks on Lemma 4.4.5. Let x be the same as in Lemma
4.4.5 and assume d = 2. Then:

(1) If x is of type A6, E6 or E7 on Sk, then S always contains the affine plane A2
k (compare

the fact that the Du Val del Pezzo surface of rank one and of degree 2 over C contains
C2 if and only if this surface has a singular point of type E7, see [56]).

(2) If x is of type A7 on Sk, then S̃ does not have to admit a k-rational point but always
contains a cylinder (compare the fact in Theorem 1.2.4).

Theorem 1.3.9 (3)(i) follows from Lemmas 4.4.4 and 4.4.5.

Proof of Theorem 1.3.9 (3)(ii)

Assume that S̃k has a singular point x of type (A9−2d)
′′ (see Definition 4.1.3, for the definition).

Note that x is k-rational on Sk by Lemma 2.1.5. Notice that S̃ is only of (A5)
′′ or (A5+A1)

′′-
type (resp. (A7)

′′-type) if d = 2 (resp. d = 1). We consider the following two lemmas
separately:
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Lemma 4.4.7. With the notation and the assumptions as above, assume further that S̃ is
of (A9−2d)

′′-type. Then S contains a cylinder if and only if x ∈ S not of type A++
9−2d over k.

Proof. Assume that S contains a cylinder U ' A1
k × Z, where Z is a smooth affine curve

defined over k. Then S̃ contains a cylinder Ũ := σ−1(U) ' U . The closures in S̃ of fibers of

the projection prZ : Ũ ' A1
k × Z → Z yields a linear system, say L̃ , on S̃. By Proposition

4.4.1, we see Bs(L̃ ) 6= ∅. Thus, x ∈ S is not of type A++
9−2d over k by the assumption and

Lemma 2.5.6.
Conversely, assume that x ∈ S is not of type A++

9−2d over k. Let M be the (−2)-curve on

S̃k corresponding to the central vertex on the dual graph with the minimal resolution at x.
Notice that M is defined over k, moreover, M has a k-rational point by the assumption. Let
Ẽ be the union of the (−1)-curves corresponding to two vertices • in the Table 4.4 according
to the type of S̃. Notice that Ẽ is defined over k and Ẽk is disjoint. Hence, we obtain the

contraction τ : S̃ → Wd+2 of Ẽ defined over k, so that Wd+2 is a weak del Pezzo surface of
degree d + 2 and τk(M) is a (−2)-curve. Moreover, since M has a k-rational point, so does
the image via τ . Hence, Wd+2,k contains a (−2)-curve with a k-rational point. This implies
that Wd+2 contains a cylinder by using Theorem 1.3.9 (2) such that this boundary includes
τ(Ẽ) (see also Table 4.1). Thus, this pullback, say Ũ , via τ is a cylinder in S̃ such that this
boundary includes the union of all (−2)-curves on S̃k, which is defined over k. Therefore, we

see that S contains a cylinder σ(Ũ) ' Ũ . 2

Lemma 4.4.8. With the notation and the assumptions as above, assume further that d = 2
and S̃ is of (A5 +A1)

′′-type. Then S contains a cylinder if and only if x ∈ S not of type A++
5

over k.

Proof. Let M1,1, . . . ,M1,5 and M2,1 be the (−2)-curves on S̃k with the configuration as in
(4.3.7). By the configuration, M1,3 and M2,1 are defined over k. By using Proposition 4.3.10,

there exist two (−1)-curves E2 and E4 on S̃k such that (Ei ·M1,j) = δi,j and (Ei ·M2,1) = 0
for i = 2, 4 and j = 1, . . . , 5, moreover, the union E2 + E4 is defined over k (cf. Example
4.3.11). Let τ : S̃ → W8 be the compositions of successive contractions of a disjoint union
E2 +E4, that of the images of M1,2 +M1,4 and finally that of the images of M1,1 +M1,5. By
construction, τ is defined over k and W8 is a k-form of the Hirzebruch surface F2 of degree 2.

From now on, we prove this lemma. Assume that S contains a cylinder. Let y ∈ Sk be the
singular point of type A1 over k. Then we know that either x is not of type A++

5 over k or y
is not of type A++

1 over k by the similar argument to Lemma 4.4.7. In what follows, we may
assume that y ∈ S is not of type A++

1 over k. In other words, M2,1 has a k-rational point,
hence, so does τk(M2,1). Namely, W8 ' F2. Hence, there exists uniquely closed fiber of the
P1-bundle F2 → P1

k passing through this k-rational point. Let F be the pullback of this fiber
by τ . Note that the configuration of the weighted dual graph of

∑5
j=1M1,j+M2,1+E2+E4+F

is as follows:

�F

◦M2,1

◦
M1,3

◦
M1,2

◦
M1,1

•E2

◦
M1,4

◦
M1,5

•E4

In particular, the intersection point of M1,3 and F is k-rational, namely, M1,3(k) 6= ∅. This
implies that x ∈ S is not of type A++

5 over k.

74



Conversely, assume that x is not of type A++
5 over k. By putting M :=M1,3, the proof of

this assertion is similar as Lemma 4.4.7 and left to the reader. 2

Theorem 1.3.9 (3)(ii) follows from Lemmas 4.4.7 and 4.4.8.

Proof of Theorem 1.3.9 (3)(iii)

The assertion (iii) in Theorem 1.3.9 (3) can be shown by an argument similar to [19, Remark
10] as follows:

Proof of Theorem 1.3.9 (3)(iii). Assume that either d = 2 and Sk allows only singular points
of type A1 or d = 1 and Sk allows only singular points of types A1, A2, A3, D4. Suppose that
S contains a cylinder U . Then we see that Sk admits an (−KSk

)-polar cylinder Uk because
of ρk(S) = 1 (see Definition 1.1.1, for the definition), which contradicts Theorem 1.1.4. 2

As a corollary, we have the following:

Corollary 4.4.9. With the notation and the assumptions as above, assume further that d = 1
and Sk has a singular point of type D4. Then S does not contain any cylinder.

Proof. Assume that Sk has a singular point of type D4. Then S̃ is only of 2D4, D4 + A3,
D4+3A1, D4+A2, D4+2A1, D4+A1 or D4-type. Therefore, we see that S does not contain
any cylinder by Theorem 1.3.9 (3)(iii). 2

4.4.3 Proof for the “only if” part of Theorem 1.3.9 (3)(iv)

In this subsection, we shall show the “only if” part of Theorem 1.3.9 (3)(iv). Assume that
S does not satisfy any condition on singularities of (i), (ii) or (iii) in Theorem 1.3.9 (3)
and contains a cylinder, say U ' A1

k × Z. The closures in S of fibers of the projection
prZ : U ' A1

k×Z → Z yields a linear system, say L , on S. By Lemma 2.5.6 we then see that
Bs(L ) = {p} such that p is a singular point on Sk defined over k. In order to show the “only

if” part of Theorem 1.3.9 (3)(iv), we shall prove that p is of type A−
n , D

−
n or E−

n . Letting Ũ
be the cylinder in S̃ defined by Ũ := σ−1(U) ' U , the closures in S̃ of fibers of the projection

prZ : Ũ ' A1
k ×Z → Z yields a linear system, say L̃ , on S̃. By Proposition 4.4.1 we then see

that Bs(L̃ ) = {p̃} such that p̃ is k-rational. In other words, the singular point p ∈ S is not of
type A++

n over k for any n. In what follows, suppose that the singularity type of p ∈ S over
k is one of the following according to the degree d:

• d = 2: type A+
1 , A

+
2 , A

+
3 , A

+
4 or (A+

5 )
′;

• d = 1: type A+
1 , A

+
2 , A

+
3 , A

+
4 , A

+
5 , A

+
6 , (A

+
7 )

′, D+
5 or E+

6 .

Meanwhile, we will prove Lemmas 4.4.12, 4.4.14 and 4.4.15, which contradict the above hy-
pothesis. Now, we shall treat the following Lemmas 4.4.10 and 4.4.11, which will play a crucial
role to show Lemmas 4.4.12 and 4.4.14:

Lemma 4.4.10. With the notation and the assumptions as above, assume further that L̃ ∼Q
a(−K

S̃
)− bM for some positive rational numbers a and b, where M is an effective Q-divisor

on S̃ and consists of some irreducible components of exceptional set of σ. Let α, β and γ be
three positive rational numbers satisfying a ≥ αb, β = −(M ·M0) and γ = −(M)2, where M0

is an irreducible component of Mk passing through p̃. Then the following hold:
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(1) If d = 2, then the following four inequalities do not hold simultaneously:
α− u > 0

α− u− v ≥ 0

2αu+ βv − γ ≥ 0

4u2 + 4uv + 2v2 − γ ≤ 0

(4.4.1)

for any rational numbers u, v with u ≥ 0.

(2) If d = 1, then the following four inequalities do not hold simultaneously:
α− u > 0

α− u− v ≥ 0

αu+ βv − γ ≥ 0

4u2 + 4uv + 4v2 − 3γ ≤ 0

(4.4.2)

for any rational numbers u, v with u ≥ 0.

Proof. We only show (1), because (2) can be shown by the argument similar to (1).
Suppose that there exist u ∈ Q≥0 and v ∈ Q such that the all inequalities (4.4.1) hold

simultaneously. By virtue of α−u > 0, α−u−v ≥ 0, b > 0 and a ≥ αb, we then see a−ub > 0
and 1− vb

a−ub ≥ 0. Hence, we have:(
L̃ ·K

S̃
+

vb

a− ub
M0 +

1

a− ub
L̃

)
=

1

a− ub
{
−2a(a− ub) + βvb2 + (2a2 − γb2)

}
=

b

a− ub
(2ua+ βvb− γb).

(4.4.3)

By virtue of au ≥ αub and 2αu+ βv − γ ≥ 0, we have:

b

a− ub
(2ua+ βvb− γb) ≥ b2

a− ub
(2αu+ βv − γ) ≥ 0. (4.4.4)

Notice that the rational map Φ
L̃

: S̃ 99K Z is not a morphism since Bs(L̃ ) = {p̃}, where
Z is the smooth projective model of Z*2. Let ψ : S̄ → S̃ be the shortest succession of blow-ups
of p̃ and its infinitely near points such that the proper transform L̄ := ψ−1

∗ (L̃ ) of L̃ is free

of base points. Note that, p̃ ∈ M0 and (L̄ · M̄0) = 0 by construction of L̃ , where M̄0 is the
proper transform ψ−1

∗ (M0) of M0. Letting {Ēi}1≤i≤n be the exceptional divisors of ψ with
Ēn the last exceptional one, which is a section of ϕ̄ := Φ

L̃
◦ ψ, we have:

KS̄ +
vb

a− ub
M̄0 +

1

a− ub
L̄ = ψ∗

(
K
S̃
+

vb

a− ub
M0 +

1

a− ub
L̃

)
+

n∑
i=1

ciĒi (4.4.5)

and

(L̄ · Ēi) =
{

0 (1 ≤ i ≤ n− 1)
1 (i = n)

(4.4.6)

*2Actually, we further know that Z ≃ P1
k by using [19, Lemma 7].
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for some rational numbers c1, . . . , cn. Note that the general member of L̄ is a general fiber
of the P1-fibration ϕ̄. Hence, we have:

−2 = (L̄ ·KS̄)

=

(
L̄ ·KS̄ +

vb

a− ub
M̄0 +

1

a− ub
L̄

)
=

(4.4.5)

(
L̄ · ψ∗

(
K
S̃
+

vb

a− ub
M0 +

1

a− ub
L̃

))
+

n∑
i=1

ci(L̄ · Ēi)

=
(4.4.6)

(
L̃ ·K

S̃
+

vb

a− ub
M0 +

1

a− ub
L̃

)
+ cn

Thus, (S̃, vb
a−ubM0 +

1
a−ubL̃ ) is not log canonical by (4.4.3) and (4.4.4) (see Definition 2.3.2,

for this definition). Furthermore, since 1 − vb
a−ub ≥ 0 and 1

a−ub > 0, by the variant of Corti’s
inequality (see Lemma 2.5.3) we have:

i(L1, L2; p) > 4

(
1− vb

a− ub

)
(a− ub)2 = 4{a− (u+ v)b}(a− ub),

where L1 and L2 are general members of L . Meanwhile, since L1 and L2 meet at only p, we
see i(L1, L2; p) = (L̃ )2. Hence, we have:

(L̃ )2 > 4{a− (u+ v)b}(a− ub) ⇐⇒ 0 > 2a2 − 4(2u+ v)ab+ {4u(u+ v) + γ} b2. (4.4.7)

On the other hand, we have:

2a2 − 4(2u+ v)ab+ {4u(u+ v) + γ} b2 = 2 {a− (2u+ v)b}2 − (4u2 + 4uv + 2v2 − γ)b2 ≥ 0,

by 4u2 + 4uv + 2v2 − γ ≤ 0. It is a contradiction to (4.4.7). 2

Note that the following Lemma 4.4.11 is the special case of Lemma 4.4.10:

Lemma 4.4.11. With the notation and the assumptions as in Lemma 4.4.10, the following
two assertions hold:

(1) If d = 2, then we obtain α2 < γ.

(2) If d = 1, then we obtain 3α2 < 4γ.

Proof. In (1), suppose that α2 ≥ γ. Then we can easily see that the four inequalities (4.4.1)
hold for (u, v) = ( γ2α , 0), which contradicts Lemma 4.4.10 (1).

In (2), suppose that 3α2 ≥ 4γ. Then we can easily see that the four inequalities (4.4.2)
hold for (u, v) = ( γα , 0), which contradicts Lemma 4.4.10 (2). 2

Now, we show Lemmas 4.4.12, 4.4.14 and 4.4.15. For these lemmas, let M1, . . . ,Mn be all
irreducible components of the exceptional set over k of σk at p such that the weighted dual
graph of M1, . . . ,Mn is as in (4.3.1), (4.3.2) or (4.3.3) according to the singularities of p on
Sk.

Lemma 4.4.12. With the notation and the assumptions as above, the following assertions
hold:

(1) If d = 2, then the singular point p ∈ S is not of type A+
1 , A

+
3 , A

+
4 nor (A+

5 )
′ over k.

77



(2) If d = 1, then the singular point p ∈ S is not of type A+
1 , A

+
2 , A

+
3 , A

+
5 , A

+
6 nor (A+

7 )
′

over k.

Proof. Suppose that the singularity type of p on S is one of the lists in Lemma 4.4.12. We
shall write m := dn2 e for simplicity. By noting Bs(L̃ ) = {p̃}, we see (L̃ ·Mi) = 0 for any i
other than i = m (resp. i = m, m+1) if n is odd (resp. even). Indeed, if n is odd (resp. even),

then p̃ lies onMm (resp. the intersection point ofMm andMm+1). Hence, we can write L̃ ∼Q
a(−K

S̃
)−bM for some a, b ∈ Q>0, whereM =

∑m−1
j=1 j(Mj+Mn−j+1)+m(Mm+· · ·+Mn−m+1)

by Lemma 4.3.1.
Let β and γ be two rational numbers defined by β := −(M · Mm) and γ := −(M)2.

Moreover, let α be the positive number defined by α := (M · E), where E is the (−1)-curve
on S̃k according to the degree d and the singularity type of p on Sk as follows:

• (d, Singularity) = (2, A3), (2, A4), (1, A5), (1, A6): By using Proposition 4.3.10, we take
a (−1)-curve E on S̃k such that (Mj · E) = δm,j (see also Example 4.3.11).

• (d, Singularity) = (2, A1), (1, A3): Notice that Sk allows a singular point other than p
by the assumption of Theorem 1.3.9 (3)(iv). If Sk admits a cyclic singular point other

than p, then we take a (−1)-curve E on S̃k such that (Mj · E) = δm,j by an argument

similar to the above. Otherwise, since d = 1 and S̃ is of D5+A3-type by the assumption
of Theorem 1.3.9 (3)(iv), it is known that there exists a (−1)-curve E on S̃k such that
(Mj · E) = δ2,j (see, e.g., [56, Figure 1]), so that we take such a (−1)-curve E.

• (d, Singularity) = (2, (A5)
′), (1, (A7)

′): By the configuration of singularity of p, we can
take the (−1)-curve E such that (Mj · E) = δm,j .

• (d, Singularity) = (1, A1), (1, A2): We take the (−1)-curve E as in Lemma 4.3.4(1).
Namely, (M1 ·E) = 2 (resp. (M1 ·E) = (M2 ·E) = 1) if p ∈ S is of type A+

1 (resp. type
A+

2 ) over k.

By construction of α, we see that a ≥ αb because of 0 ≤ (L̃ · E) = a− αb. Here, the values
of α, β and γ are summarized in Table 4.5 according to the degree d and the singularity
type of p on Sk. For all cases except for (d, Singularity) = (2, A1), (1, A3), we thus obtain
a contradiction to Lemma 4.4.11 (1) or (2) according to the degree d. In what follows, we
consider the remaining cases. In the case of (d, Singularity) = (2, A1), setting (u, v) := (0, 1),
the inequalities (4.4.1) hold simultaneously, which contradicts Lemma 4.4.10 (1). In the case of
(d, Singularity) = (1, A3), setting (u, v) := (1, 1), the inequalities (4.4.2) hold simultaneously,
which contradicts Lemma 4.4.10 (2). 2

Remark 4.4.13. If the pair of the degree d and the singularity type of p on Sk is (2, A2) (resp.
(1, A4)), there is actually no rational numbers pair (u, v) such that the inequalities (4.4.1)
(resp. (4.4.2)) hold simultaneously. We will deal with these cases later (see Lemma 4.4.15).

Lemma 4.4.14. With the notation and the assumptions as above, if d = 1 then the singular
point p ∈ S is not of type D+

5 nor E+
6 over k.

Proof. Suppose that p ∈ S is of type D+
5 or E+

6 over k. By Proposition 4.4.1, Bs(L̃ ) consists
of only one k-rational point, say p̃. Note that p̃ ∈ M3 ∪M4 ∪M5 but p̃ 6∈ M1 ∪M2 (resp.
p̃ ∈M5 ∪M6 but p̃ 6∈M1 ∪M2 ∪M3 ∪M4) provided that p ∈ S is of type D+

5 (resp. type E+
6 )

over k. Thus, we can write L̃ ∼Q a(−K
S̃
) − bM for some a, b ∈ Q>0 by Lemmas 4.3.2 and

4.3.3, where M is the effective Q-divisor and is given as in the Table 4.6 depending on one
parameter t and according to both the singularity type of p on Sk and the position of p̃. Let
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Table 4.5: Values of α, β and γ in Lemma 4.4.12
d Singularity Irreducible decomposition of M α β γ

2 A1 M1 1 2 2

2 A3 M1 + 2M2 +M3 2 2 4

2 A4 M1 + 2M2 + 2M3 +M4 2 1 4

2 (A5)
′ M1 + 2M2 + 3M3 + 2M4 +M5 3 2 6

1 A1 M1 2 2 2

1 A2 M1 +M2 2 1 2

1 A3 M1 + 2M2 +M3 2 2 4

1 A5 M1 + 2M2 + 3M3 + 2M4 +M5 3 2 6

1 A6 M1 + 2M2 + 3M3 + 3M4 + 2M5 +M6 3 1 6

1 (A7)
′ M1 + 2M2 + 3M3 + 4M4 + 3M5 + 2M6 +M7 4 2 8

γ be the positive rational number defined by γ := −(M)2. The value of γ and its range are
summarized in Table 4.7 depending on one parameter t and according to both the singularity
type of p on Sk and the position of p̃. Let E be the (−1)-curve on S̃ that as in Lemma 4.3.4

(2) or (3) according to the singularity type of p on Sk. Noting that 0 ≤ (L̃ ·E) = a− 2b, we
shall put α = 2.

If γ ≤ 3, then we have 3α2 = 12 ≥ 4γ, which contradicts Lemma 4.4.11 (2). Hence,
we suppose γ > 3 in what follows. Then p ∈ Sk is of type D5 and lies on M5 by Table
4.7. In particular, we see 1 ≤ t ≤ 2. We shall put β := −(M ·M5) = 2t − 2 and (u, v) :=
(−t2 + 3t− 1, 2t− 3). Noting u = −t2 + 3t− 1 > 0, we have:

α− u = 2− (−t2 + 3t− 1) =

(
t− 3

2

)2

+
3

4
> 0,

α− u− v = 2− (−t2 + 3t− 1)− (2t− 3) = (t− 2)(t− 3) ≥ 0,

αu+ βv − γ = 2(−t2 + 3t− 1) + (2t− 2)(2t− 3)− (2t2 − 4t+ 4) = 0

and

4u2 + 4uv + 4v2 − 3γ = 4(−t2 + 3t− 1)2 + 4(−t2 + 3t− 1)(2t− 3) + 4(2t− 3)2 − 3(2t2 − 4t+ 4)

= 2(t− 2)2(2t2 − 8t+ 5)

≤ 2(t− 2)2{2t2 − 8t+ 5 + (2t− 1)}
= 4(t− 2)3(t− 1)

≤ 0.

This implies that the inequalities (4.4.2) hold simultaneously, which contradicts Lemma 4.4.10
(2). 2

Finally, we treat the case that p is of type A+
6−2d over k. If the singular point p ∈ Sk is of

A6−2d over k, then the type of S̃ is one of the following:

• d = 2 and A5 + A2, A4 + A2, A3 + A2 + A1, 3A2, A3 + A2, 2A2 + A1, A2 + 3A1, 2A2,
A2 + 2A1, A2 +A1 or A2-type.
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Table 4.6: Effective Q-divisor M in Lemma 4.4.14
Singularity Position of p̃ Irreducible decomposition of M Range of t

D5 M3 ∪M4 tM1 + tM2 + 2tM3 + 2M4 +M5 1 ≤ t ≤ 3
2

D5 M5 M1 +M2 + 2M3 + 2M4 + tM5 1 ≤ t ≤ 2

E6 M5 ∪M6 tM1 + tM2 + 2tM3 + 2tM4 + 3tM5 + 2M6 1 ≤ t ≤ 4
3

Table 4.7: Value and range of γ in Lemma 4.4.14
Singularity Position of p̃ Range of t γ Range of γ

D5 M3 ∪M4 1 ≤ t ≤ 3
2 4t2 − 8t+ 6 2 ≤ γ ≤ 3

D5 M5 1 ≤ t ≤ 2 2t2 − 4t+ 4 2 ≤ γ ≤ 4

E6 M5 ∪M6 1 ≤ t ≤ 4
3 6t2 − 12t+ 8 2 ≤ γ ≤ 8

3

• d = 1 and 2A4, A4 + A3, A4 + A2 + A1, A4 + 3A1, A4 + A2, A4 + 2A1, A4 + A1 or
A4-type.

In particular, we see that Sk has only cyclic singular points. Noting the above argument, we
obtain the following lemma:

Lemma 4.4.15. With the notation and the assumptions as above, then the singular point
p ∈ S is not of type A+

6−2d over k.

Proof. Suppose that p ∈ S is of type A+
6−2d over k. If d = 2 and S̃ is of A2-type, then

S̃ is a weak del Pezzo surface of degree 2 with ρk(S̃) = 2. Hence, S̃ is minimal over k by
Theorem 1.3.3. However, by construction S̃ contains the cylinder Ũ , which is a contradiction
to Theorem 1.3.4. In what follows, we shall treat other cases and consider the cases of d = 2
and d = 1 separately.

In case of d = 2: Let x1, . . . , xr be all singular points on Sk other than p, and let

Mi,1, . . . ,Mi,n(i) be the irreducible components of the exceptional set on S̃ of the minimal

resolution at xi for i = 1, . . . , r such that the weighted dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in

(4.3.7). By using Proposition 4.3.10, for i = 1, . . . , r, there exist two (−1)-curves Ei,1 and Ei,2
on Sk such that the weighted dual graph of M1 +M2 + Ei,1 + Ei,2 +

∑n(i)
j=1Mi,j is as follows

(cf. Example 4.3.11):

•Ei,1

◦jjjjjjjjj

M1
◦
M2

•T
TTTT

TTTT

Ei,2◦
Mi,1

· · · ◦
Mi,n(i)

◦

for i = 1, . . . , r. Notice that:

(Ei,1 + Ei,2 · Ei′,1 + Ei′,2) =

−K
S̃
−M1 −M2 −

n(i)∑
j=1

Mi,j · −KS̃
−M1 −M2 −

n(i′)∑
j′=1

Mi′,j′


= (−K

S̃
−M1 −M2)

2 +

n(i)∑
j=1

Mi,j ·
n(i′)∑
j′=1

Mi′,j′


= −2δi,i.
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Write m(i) := dn(i)2 e for simplicity. Let τ : S̃ → V be the sequence of contractions of (−1)-
curves

∑r
i=1(Ei,1+Ei,2) and subsequently (smoothly) contractible curves in Supp

(∑r
i=1

∑n(i)
i=1 Mi,j

)
such that for each i = 1, . . . , r, unions Mi,1 +Mi,n(i), . . . ,Mi,m(i)−1 +Mi,n(i)−m(i)+2 are con-
tracted if m(i) > 1. By construction, τ is defined over k and V is a smooth del Pezzo surface
with ρk(V ) = 2 endowed with a structure of Mori conic bundle π : V → B over k such that
each τk(Mi,m(i)) is included in a union of some closed fibers of πk. Moreover, p̃ is a k-rational

point on S̃, so is its image via τ . Thus, B ' P1
k by Lemma 2.2.2. In particular, we obtain

Pic(V )Q = Q[−KV ]⊕Q[F ], where F is a general fiber of π. Let {ei,j}1≤i≤r, 1≤j≤m(i)−1 be the
total transforms of all irreducible components on the exceptional set satisfying (ei,j ·Mi,j) < 0
by τ for i = 1, . . . , r and j = 1, . . . ,m(i)−1, moreover, we set ei,0 := Ei,1+Ei,2. By identifying

Pic(S̃)Q with Pic(S̃k)
Gal(k/k)
Q , we thus obtain:

Pic(S̃)Q ⊆ Q[−K
S̃
]⊕Q[F̃ ]⊕

 r⊕
i=1

m(i)−1⊕
j=0

Q[ei,j ]

 ⊆ Pic(S̃k)Q,

where F̃ is a total transform of F by τ . In particular, we can write:

L̃ ∼Q a(−KS̃
) + bF̃ +

r∑
i=1

m(i)−1∑
j=0

ci,jei,j

for some a, b, ci,j ∈ Q. By construction, we obtain that Mi,j +Mi,m(i)−j+1 ∼ ei,j − ei,j−1 for

j = 1, . . . ,m(i)−1 andMi,m(i) (resp. Mi,m(i)+Mi,m(i)+1) is linearly equivalent to F̃−ei,m(i)−1

if n(i) is odd (resp. even). Moreover, we notice (F̃ )2 = (ei,j · F̃ ) = 0 for any i, j. Hence, we

have ci,j = 0 by virtue of (L̃ ·Mi,j) = 0 for any i, j. On the other hand, since Ei,1+Ei,2 ∼ ei,0,
we have a > 0 by virtue of 0 ≤ (L̃ · ei,0) = 2a and 0 < (L̃ )2 = 2a(a+2b). Moreover, we have

b > 0 by virtue of 0 < (L̃ ·M1 +M2) = b(F̃ ·M1 +M2). Thus, we see L̃ ∼Q a(−K
S̃
) + bF̃

as a, b > 0, however, we obtain a contradiction to Lemma 2.5.5.
In case of d = 1: By Lemma 4.3.4 (1), there exists a (−1)-curve E0 on S̃ such that

(E0 ·Mi) = δ1,i + δ4,i. Hence, we have the contraction τ0 : S̃ →W2 of E0 defined over k such
that W2 is a weak del Pezzo surface of degree 2, moreover, this condition is as the above case
of d = 2. Thus, by an argument similar to the above case with d = 2, there exists a 0-curve
F̃ on S̃ such that we can write:

L̃ ∼Q a(−KS̃
) + bF̃ + c0E0

for some a, b, c0 ∈ Q. By the configuration of τ0, we see (F̃ ·E0) = 0 and M1+M4 ∼ F̃ −2E0.

Hence, we have c0 = 0 by virtue of 0 = (L̃ ·M1 +M4) = 2c0. Moreover, by an argument
similar to the above case with d = 2 we see a, b > 0, which is a contradiction to Lemma 2.5.5.
2

As we already mentioned, the “only if” part in Theorem 1.3.9 (3)(iv) follows from Lemmas
4.4.12, 4.4.14 and 4.4.15.

4.4.4 Assumption for the “if” part of Theorem 1.3.9 (3)(iv)

In this subsection, in order to prove the “if” part in Theorem 1.3.9 (3)(iv), we shall observe
the assumption of this precisely. In other words, the purpose of this subsection is to show the
following proposition:
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Proposition 4.4.16. Let the notation be the same as at beginning Section 4.4, and assume
that S does not satisfy any condition of (i), (ii) or (iii) in Theorem 1.3.9 (3). If Sk has a

singular point defined over k of type A−
n , D

−
n or E−

n over k, then the type of S̃ is one of the
following:

• d = 2: A5+A2, 2A3+A1, 2A3, A3+3A1, 3A2, (A5)
′, (A3+2A1)

′′, A2+3A1, (A3+A1)
′,

A3 or A2-type.

• d = 1: A7 + A1, E6 + A2, D5 + A3, A5 + A2 + A1, 2A4, (A7)
′, D5 + 2A1, A5 + A2, E6,

(A5 +A1)
′, D5, A5 or A4-type.

In what follows, we will prove Proposition 4.4.16. Let the notation and assumptions be
the same as in Proposition 4.4.16. Then we can take a singular point x0 on Sk, which is
k-rational, of type A−

n , D
−
n or E−

n . Let r be the number of all singular points other than x0
on Sk, which are k-rational, and let x1, . . . , xr be the singular points other than x0 on Sk,
which are k-rational. We shall consider two cases according to the degree d of S separately.

At first, we shall treat the case of d = 2. Then x0 ∈ S is of type A−
n over k for some

2 ≤ n ≤ 5, since S does not satisfy any condition of (i) nor (iii) in Theorem 1.3.9 (3). Then
all singular points of Sk other than x0 are also necessarily of type A, i.e., cyclic quotient
singularities. We obtain the following two lemmas:

Lemma 4.4.17. Let the notation and the assumptions be the same as above. If r > 0, then
S̃ is of A5 +A2, 2A3 +A1, 2A3, A3 + 3A1 or (A3 +A1)

′-type.

Proof. Let n(i) be the number such that xi ∈ Sk is of type An(i) for i = 1, . . . , r. Here, we
may assume n(1) ≥ n(2) ≥ · · · ≥ n(r) by replacing the subscripts i = 1, . . . , r as needed. Let
{Mi,j}1≤j≤n(i) be all irreducible components of the exceptional set of the minimal resolution
at xi for i = 0, 1, . . . , r with the configuration as in (4.3.7), where n(0) := n, and let D be the

divisor on S̃k defined by D := (−K
S̃k
)−

∑1
i=0

∑n(i)
j=1Mi,j . Since the divisor D is as in (a) in

Table 4.3, we see that D satisfies the condition on divisors of either (†) or (‡) by Proposition
4.3.10 (1).

Assume that D satisfies the condition (†). Then the pair (n, n(1)) is (3, 1), by Proposition
4.3.10 (7). In particular, we see r = 1. Otherwise, supposing r ≥ 2 and taking the divisor

(−K
S̃k
)−

∑2
i=1

∑n(i)
j=1Mi,j on S̃k, which is the divisor as in (a) in Table 4.3, we have n(2) = 3

by the argument similar to the above, however, it is a contradiction to n(1) ≥ n(2). Hence, if
there exists a singular point on Sk other than x0 and x1, then there exist exactly two singular
points of type A1 on Sk, which lie in the same Gal(k/k)-orbit. Indeed, there is no A3 +mA1-

type of S̃ for m ≥ 4 by the classification of types of weak del Pezzo surfaces. Namely, S̃ is
then of A3 +A1 or A3 + 3A1-type.

Assume that D satisfies the condition (‡). In other words, there exist two (−1)-curves E1

and E2 on S̃k such that D ∼ E1 + E2 (see Proposition 4.3.10 (2)). Hence, the configuration

of the weighted dual graph of
∑1

i=0

∑n(i)
j=1Mi,j + E1 + E2 is as follows:

•E1

◦oooooo

M0,1
· · · ◦

M0,n

•
OOO

OOO

E2

◦
OOO

OOO

M1,1

· · · ◦
M1,n(1)

◦oooooo
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Since x0 ∈ S is of type A−
n over k with n ≥ 2, we see that E1 and E2 are defined over k,

respectively. This implies that the two Q-divisors E1 and E2 are included in Q[−K
S̃k
] ⊕(⊕1

i=0

⊕n(i)
j=1Q[Mi,j ]

)
since ρk(S) = 1. Hence, the pair (n, n(1)) is (5, 2), (2, 5) or (3, 3) by

Proposition 4.3.10 (6). If (n, n(1)) = (5, 2) or (2, 5), then all singular points on Sk are only

x0 and x1 since there are at most seven (−2)-curves on S̃k by Lemma 2.1.5. Namely, S̃ is of
A5 + A2-type. If (n, n(1)) = (3, 3), then there exists at most a singular point of type A1 on
Sk other than x0 and x1 by a similar argument using Lemma 2.1.5. Namely, S̃ is then of 2A3

or 2A3 +A1-type. 2

Lemma 4.4.18. Let the notation and the assumptions be the same as above. If r = 0, then
the following assertions hold:

(1) x ∈ Sk is not of type A4. Namely, n = 2, 3 or 5.

(2) S̃ is not of A2 + 2A1-type.

(3) S̃ is of (A5)
′, (A3 + 2A1)

′′, A3, 3A2, A2 + 3A1 or A2-type.

Proof. In (1), supposing that n = 4, let {Mj}1≤j≤4 be all irreducible components of the
exceptional set of the minimal resolution at x0 with the configuration as in (4.3.7) and let
D be the divisor on S̃k defined by D := (−K

S̃k
) − (M1 + 2M2 + 2M3 +M4), which is the

divisor as in (b) in Table 4.3. By Proposition 4.3.10 (1) and (6), we see that D satisfies the
condition (‡). In particular, by Proposition 4.3.10 (2), there exist two (−1)-curves E2 and
E3 on S̃k such that D ∼ E2 + E3. Hence, the configuration of the weighted dual graph of∑4

j=1Mj + E1 + E2 is as follows:

◦
M1

◦
M2

• oo
ooo

o

E2

◦
M3

•
OOO

OOO

E3

◦
M4

Since x0 ∈ S is of type A−
4 over k by assumption, E2 and E3 are defined over k, respectively.

This implies that the two Q-divisors E1 and E2 are included in Q[−K
S̃k
] ⊕

(⊕4
j=1Q[Mj ]

)
since ρk(S) = 1. However it is a contradiction to Proposition 4.3.10 (6).

In (2), supposing that S̃ is of A2+2A1-type, let y1 and y2 be two singular points of type A1

on Sk, let M0,1 and M0,2 (resp. M1,1, M2,1) be all irreducible components of the exceptional
set of the minimal resolution at x0 (resp. y1, y2) with the configuration as in (4.3.7) and
let Di be the divisor on S̃k defined by Di := (−K

S̃k
) − (M0,1 +M0,2) −Mi,1, which is the

divisor as in (a) in Table 4.3 for i = 1, 2. By Proposition 4.3.10 (1) and (7), we see that Di

satisfies the condition (‡) for i = 1, 2. In particular, by Proposition 4.3.10 (2), there exist two
(−1)-curves Ei,1 and Ei,2 on S̃k such that Di ∼ Ei,1 + Ei,2. Hence, the configuration of the

weighted dual graph of M0,1 +M0,2 +M1,1 +M2,1 +
∑2

i=1

∑2
j=1Ei,j is as follows:

◦M1,1

•oooooo

E1,1
◦

M0,1

◦
M0,2

•
E2,1

◦
OOO

OOO

M2,1

•
OOO

OOO

E1,2

◦ •
E2,2

◦oooooo
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Since x0 ∈ S is of type A−
2 over k by assumption, M0,1 is defined over k. Hence, so is the

union E1,1 + E2,1. This implies that the Q-divisor E1,1 + E2,1 is contained in Q[−K
S̃
] ⊕(⊕2

j=1Q[M0,j ]
)
⊕
(⊕2

i=1Q[Mi,1]
)
since ρk(S) = 1. Hence, we have:

E2,1 + E3,1 ∼Q (−K
S̃
)− 1

3
(2M1,1 +M1,2)−

1

2
M2,1 −

1

2
M3,1

by Lemma 4.3.1 combined with the above graph, however, by the above formula, we then
obtain:

−2 = (E2,1 + E3,1)
2 =

(
(−K

S̃
)− 1

3
(2M1,1 +M1,2)−

1

2
M2,1 −

1

2
M3,1

)2

= −5

3
,

which is absurd.
In (3), if x0 is the only singular point of Sk, then we clearly see that S̃ is of (A5)

′, A3

or A2-type by the assumptions and (1). In what follows, assume that there exists a singular
point y on Sk other than x0. Since r = 0, there exists a singular point y′ other than y on
Sk such that y and y′ are included in the same Gal(k/k)-orbit. Moreover, since there are at

most seven (−2)-curves on S̃k by Lemma 2.1.5, the singular point y is of type A1 or A2 on
Sk. If singular point y is of type A2 on Sk, then we see that all singular points on Sk are

only x0, y and y′, namely, S̃ is then of 3A2-type. In what follows, we can thus assume that
any singular point on S̃k other than x0 is of type A1. Then S̃ is of An + sA1-type for some

integer s. In particular, we precisely see that S̃ is then of (A3 + 2A1)
′′ or A2 + 3A1-type by

the classification of types of weak del Pezzo surfaces (see [69]) combined with (2). 2

Next, we shall treat the case of d = 1. Notice that x0 ∈ S is of type D−
5 , E

−
6 or A−

n over k
for some 2 ≤ n ≤ 7, since S does not satisfy any condition of (i) or (iii) in Theorem 1.3.9 (3).
If x0 ∈ S is of type D−

5 or E−
6 over k, then we obtain the following lemma by the argument

similar to Lemma 4.4.17:

Lemma 4.4.19. With the notation and the assumptions as above, assume further that Sk
has a singular point, which is k-rational, of type D−

5 or E−
6 over k, then the type of S̃ is one

of the following according to the number of r:

(1) r > 0: D5 +A3 or E6 +A2-type.

(2) r = 0: D5 + 2A1, D5 or E6-type.

Proof. By assumption of this lemma, we may assume that x0 ∈ S is of type D−
5 or E−

6 over
k. We only treat the case where the singularity x0 is of type D−

5 over k, the other cases are
similar and left to the reader.

In (1), let {Mi,j}1≤j≤n(i) be all irreducible components of the exceptional set of the minimal
resolution at xi for i = 0, 1 with the configuration as in (4.3.8), where n(0) := 5, and let D be

the divisor on S̃k defined byD := 2(−K
S̃k
)−(M0,1+2M0,2+3M0,3+2M0,4+M0,5)−

∑n(1)
j=1 M1,j ,

which is the divisor as in (f) in Table 4.3. By the argument similar to Lemma 4.4.17, we see
that n(1) = 3. In particular, all singular points on Sk are only x0 and x1 since there are at

most eight (−2)-curves on S̃k by Lemma 2.1.5. Namely, S̃ is then of D5 +A3-type.
In (2), if there exists a singular point other than x0 on Sk, then there exist exactly two

singular points of type A1 on Sk, which lie in the same Gal(k/k)-orbit, by a similar argument

using Lemma 2.1.5. Namely, S̃ is then of D5 or D5+2A1-type. Indeed, there is no D5+3A1-
type of S̃ (see [69]). (We also note that there is no E6 + 2A1-type of S̃ (see [69]). ) 2
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In what follows, we shall treat the case that S allows only cyclic singular points by noting
Lemma 2.1.5. Thus, the singular point x0 ∈ S is of type A−

n over k for some 2 ≤ n ≤ 7. By
the argument similar to Lemmas 4.4.17 and 4.4.18, we obtain the following two lemmas:

Lemma 4.4.20. Let the notation and the assumptions be the same as above. If r > 0, then
the type of S̃ is one of the following according to the number of r:

(1) r ≥ 2: A5 +A2 +A1-type.

(2) r = 1: (A5 +A1)
′, A7 +A1, A5 +A2 or 2A4-type.

Proof. Let {Mi,j}1≤j≤n(i) be all irreducible components of the exceptional set of the minimal
resolution at xi for i = 0, 1, . . . , r with the configuration as in (4.3.7), where n(0) := n.

In (1), let D be the divisor on S̃k defined by D := 2(−K
S̃k
) −

∑2
i=0

∑n(i)
j=1Mi,j , which

is the divisor as in (c) in Table 4.3. By the argument similar to Lemma 4.4.17, we see that
(n, n(1), n(2)) = (5, 2, 1) or (2, 5, 1). In particular, all singular points on Sk are only x0, x1
and x2 since there are at most eight (−2)-curves on S̃k by Lemma 2.1.5. Namely, S̃ is then
of A5 +A2 +A1-type.

In (2), at first we assume that n ≥ 4. Let D be the divisor on S̃k defined by D :=

2(−K
S̃k
) + (M0,1 +M0,n)− 2

∑n
j=1M0,j −

∑n(1)
j=1 M1,j , which is the divisor as in (d) in Table

4.3. By the argument similar to Lemma 4.4.17, we see that (n, n(1)) = (5, 1) (resp. (7, 1),
(5, 2) or (4, 4)) if D satisfies the condition (†) (resp. (‡)). In particular, all singular points on
Sk defined over k are only x0 and x1 by a similar argument using Lemma 2.1.5. Namely, S̃ is
then of (A5 +A1)

′, A7 +A1, A5 +A2 or 2A4-type. Here, note that there is no A5 +3A1-type
of S̃ (see [69]).

On the other hand, if n < 4, then we have n(1) ≥ 4 since S does not satisfy the condition
on singularities of (iii) in Theorem 1.3.9 (3). The same argument as above applies with the
role of i = 0 and i = 1 exchanged. 2

Lemma 4.4.21. Let the notation and the assumptions be the same as above. If r = 0, then
the following assertions hold:

(1) x ∈ Sk is not of type A2, A3 nor A6. Namely, n = 4, 5 or 7.

(2) S̃ is not of A5 + 2A1 nor A4 + 2A1-type.

(3) S̃ is of (A7)
′, A5 or A4-type.

Proof. In (1), since r = 0, for any singular point y other than x0 on Sk, there exists a singular
point y′ other than y on Sk such that y and y′ are included in the same Gal(k/k)-orbit.

Moreover, since there are at most eight (−2)-curves on S̃k by Lemma 2.1.5, the singular point
y ∈ Sk is of type A1, A2 or A3. Hence, we see that n ≥ 4 since S does not satisfy the condition
of (iii) in Theorem 1.3.9 (3).

Supposing that x0 ∈ Sk is of type A6, let {Mj}1≤j≤6 be all irreducible components of the
exceptional set of the minimal resolution at x0 with the configuration as in (4.3.7). Letting
D be the divisor on S̃k defined by D := 2(−K

S̃k
)− (M1 + 2M2 + 3M3 + 3M4 + 2M5 +M6),

which is the divisor as in (e) in Table 4.3, we obtain a contradiction by the argument similar
to Lemma 4.4.18 (1).

In (2), otherwise, let y1 and y2 be two singular points of type A1 on Sk, let {M0,j}1≤j≤n
(resp. M2,1, M3,1) be all irreducible components of the exceptional set of the minimal resolu-

tion at x0 (resp. y1, y2) with the configuration as in (4.3.7). Letting D be the divisor on S̃k
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defined by D := 2(−K
S̃k
)−

∑n
j=1M0,j −M1,1 −M2,1, which is the divisor as in (c) in Table

4.3, we obtain a contradiction by the argument similar to Lemma 4.4.18 (1).
In (3), by the classification of types of weak del Pezzo surfaces (see [69]) combined with

the assumption that n ≥ 4, S̃ is of An + sA1-type for some integer s = 0 or 2. Moreover,
we precisely see that S̃ is then of (A7)

′′, A5 or A4-type by (2) and a similar argument using
Lemma 2.1.5. 2

Proposition 4.4.16 follows from Lemmas 4.4.17, 4.4.18, 4.4.19, 4.4.20 and 4.4.21.
Conversely, for each type of weak del Pezzo surface in the list of Proposition 4.4.16, there

exists certainly a Du Val del Pezzo surface S of rank one over k admitting a singular point of
type A−

n , D
−
n or E−

n over k such that its minimal resolution S̃ is of this type. Indeed, for each
type of weak del Pezzo surface in the list of Proposition 4.4.16, we can explicitly construct
a birational morphism τ : S̃ → F2 over k and the contraction σ : S̃ → S of all (−2)-curves
over k such that S̃ is of this type and S is the Du Val del Pezzo surface of rank one (see also
Subsection 4.4.5, for detailed constructions of such morphism τ). Here, the Picard number
of S̃ is the number, which is summarized in “ρk(S̃)” in Table 4.8 according to the type of
S̃. Furthermore, the singularity types of all singular points on Sk, which are k-rational, are

summarized in “k-rat. sing. ” in Table 4.8 according to the type of S̃. As an example, in the
case d = 2 and 3A2-type, Sk has three singular points of type A2. If ρk(S) = 1, then one is
k-rational and of type A−

2 over k, however, the others lie in the same Gal(k/k)-orbit, namely

ρk(S̃) = ρk(S) + 4 = 5.
At the end of this subsection, we shall present the notation in Table 4.8. The meanings of

“k-rat. sing. ” and “ρk(S̃)” have already been presented. “Dual graph” in Table 4.8 means the
weighted dual graph corresponding to the union of all (−2)-curves and some (−1)-curves on
S̃. For all types of S̃ in the list of Table 4.8, the union of the (−1)-curves on S̃ corresponding
to all vertices • in Table 4.8 certainly exists and is further defined over k. The existence of
these curves can be shown by using Proposition 4.3.10 with suitable choices of divisors on S
except for the case d = 2 and S̃ is of A2-type. Moreover, the other case also follows that S̃
admits a Mori conic bundle with exactly six singular fibers by Theorem 1.3.3 combined with
[50, Exercise 3.13]. These dual graphs will be used for the construction of cylinders on the
surfaces S in Subsection 4.4.5.

4.4.5 Proof for the “if” part of Theorem 1.3.9 (3)(iv)

Let the notation and assumptions be the same as in Proposition 4.4.16. Then the type of S̃
is one of those in Table 4.8. In this subsection, we shall show the “if” part of Theorem 1.3.9
(3)(iv). In other words, we will explicitly construct a cylinder on S according to the type in
the list of Table 4.8.

Lemma 4.4.22. Let the notation and assumptions be the same as in Proposition 4.4.16. If
d = 2 or both d = 1 and S̃ is of A7 +A1, D5 + 2A1, (A7)

′, D5 + 2A1, E6 or D5-type. Then S
contains a cylinder.

Proof. In the case of d = 2, let D be the union of all (−2)-curves on S̃. At first, we shall deal
with the cases in which S̃ is of (A5)

′, (A3 +A1)
′ and A3-type. For these cases, we can take a

birational morphism τ : S̃ → W4, which is the compositions of the successive contractions of
the (−1)-curves corresponding to the vertices • in the weighted dual graph in Table 4.8 and
that of the proper transform of the branch components such that all curves corresponding to
vertices with no label in the weighted dual graph in Table 4.8 are contracted by τ , according
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Table 4.8: Types of S̃ in the “if” part of Theorem 1.3.9 (3)(iv)

d
Type

Dual graph d
Type

Dual graph(k-rat. sing.) (k-rat. sing.)

ρk(S̃) ρk(S̃)

2
A5 +A2 ◦

M
◦
C3

• ◦ · · ·︸ ︷︷ ︸
5-vertices

◦
2

2A3 +A1

◦
F

◦
M

◦
C2

• ◦ ◦ ◦
•◦

(A−
5 , A

−
2 ) (A−

3 , A
−
3 , A

+
1 )

8 8

2
2A3

◦
M
◦
F
◦
C2

• ◦ ◦ ◦
• OO •oo

2
A3 + 3A1

◦
F

◦
M

◦
C2

•oo ◦
•

OO
◦

•◦
(A−

3 , A
−
3 ) (A−

3 , A
+
1 )

7 6

2
3A2

◦
M
◦
C3

•oo ◦ ◦
•

OO
◦ ◦ 2

(A5)
′

◦
M1

◦
Γ1

◦
•
◦
Γ2

◦
M2

(A−
2 ) (A−

5 )

5 6

2
(A3 + 2A1)

′′

◦
M
◦
F
◦
C2

•oo ◦
•

OO
◦

• OO •oo
2

A2 + 3A1
◦
C3

•oo ◦
• ◦
•

OO
◦

◦
M

(A−
3 ) (A−

2 )

5 4

2
(A3 +A1)

′

◦
Γ

◦
M1

◦
M2

•◦
2

A3
◦
M1

◦
Γ
◦
M2

• OO •oo
(A−

3 , A
+
1 ) (A−

3 )

5 4

2
A2

◦
M
◦
C3

• oo· · ·︸ ︷︷ ︸
6-vertices

••
OO 1

A7 +A1

◦ ◦ ◦ ◦◦◦◦
•◦ • Ẽ

(A−
2 ) (A−

7 , A
+
1 )

3 9

1
E6 +A2

◦
5○

◦
4○
◦
3○
◦
L3

◦
2○

◦
L1

•
9○
◦
8○
◦
7○

1
D5 +A3

◦◦ ◦ • ◦ ◦ ◦
◦◦ • Ẽ

(E−
6 , A

−
2 ) (D−

5 , A
−
3 )

9 9

1
A5 +A2 +A1 •

10○
◦
9○
◦
8○

◦
7○
◦
6○

◦
3○

◦
2○

◦
1○

•
5○

◦
4○

1
2A4 ◦

8○
◦
1○

◦
7○
◦
6○

•
13○
◦
12○
◦
11○
◦
10○
◦
9○

(A−
5 , A

−
2 , A

+
1 ) (A−

4 , A
−
4 )

9 9

1
(A7)

′

◦ ◦ ◦ ◦◦◦◦
• Ẽ 1

D5 + 2A1

◦
F

◦
M

◦
C2

•oo ◦
•

OO
◦

◦◦ •Ẽ
(A−

7 ) (D−
5 )

8 7

1
A5 +A2 •

10○
◦
9○
◦
8○

◦
7○
◦
6○

◦
3○

◦
2○

◦
1○

• ???
5○

•
���

4○

1
E6

◦ ◦ ◦◦◦
◦ • Ẽ

(A−
5 , A

−
2 ) (E−

6 )

8 7

1
(A5 +A1)

′

•
5○

◦
4○

◦
3○

◦
7○
◦
6○

◦
2○

◦
1○

1
D5

◦ ◦◦
◦◦ • Ẽ

(A−
5 , A

+
1 ) (D−

5 )

7 6

1
A5

•
��

4○

◦
���

3○

•
???

5○

◦
7○
◦
6○

◦
2○

◦
1○

1
A4

◦
1○

◦
8○
◦
7○
◦
6○(A−

5 ) (A−
4 )

6 5
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to the type of S̃, where W4 is a weak del Pezzo surface of degree 4 and (2A1)<-type over
k. Note that, by construction, τ is defined over k. Moreover, the image of the reduced
curves corresponding to all vertices of this weighted dual graph via τ is the union of either
M1+M2+Γ or M1+M2+Γ1+Γ2, where M1 and M2 are (−2)-curves on W4,k, Γ is a 0-curve
on W4,k and Γ1 and Γ2 are (−1)-curves on W4,k meeting transversally at a point. Notice that
these curves on W4,k are in one-to-one correspondence to these vertices with a label of this
weighted dual graph. Since two (−2)-curves on W4,k admit a k-rational point respectively,
W4 contains a cylinder, which contains τ(D) in this boundary (see also Subsection 4.2.2).
Thus, S̃ contains a cylinder Ũ , which contains D in this boundary. Therefore, we see that S
contains a cylinder σ(Ũ) ' Ũ .

In what follows, we shall deal with the remaining cases. For all remaining cases, we
can take a birational morphism τ : S̃ → F2, which is the compositions of the successive
contractions of the (−1)-curves corresponding to the vertices • in the weighted dual graph
in Table 4.8 and that of the proper transform of the branch components such that all curves
corresponding to vertices with no label in the weighted dual graph in Table 4.8 are contracted
by τ , according to the type of S̃. Note that, by construction, τ is defined over k. Moreover,
the image of the reduced curves corresponding to all vertices of this weighted dual graph via
τ is the union of either M +F +C2 or M +C3, where M and F are the minimal section and
a closed fiber of the structure morphism F2 → P1

k over k, respectively, and Cn is a rational
curve on F2 with Cn ∼M +nF for n = 2, 3. Notice that these curves on F2 are in one-to-one
correspondence to these vertices with a label of this weighted dual graph. For all cases, F2

contains a cylinder, whose boundary includes the above union of curves, by Lemma 2.5.2.
Thus, we see that S contains a cylinder by an argument similar to the above.

In (2), for all cases, the weighted dual graph in Table 4.8 corresponding to the type of
S̃ contains a vertex with a label written Ẽ. This vertex corresponds to a (−1)-curve on S̃k,

which is defined over k. Letting Ẽ be this (−1)-curve on S̃, we can take the contraction
τ : S̃ →W2 of Ẽ over k, so that W2 is a weak del Pezzo surface of degree 2, whose type is one
of those in the list of Table 4.8, moreover, the point τ(Ẽ) lies on a curve, which corresponds
to a vertex with no label in the weighted dual graph in Table 4.8 according to the type of W2.
Thus, we see that S contains a cylinder by using (1). 2

In order to deal with all remaining cases, we shall recall how to construct cylinders in del
Pezzo surfaces with Du Val singularities found in [12, §§4.2–4.3]. More precisely, we construct
two birational morphisms g : Š → S̃k and h : Š → P2

k
over k (but not necessarily defined over

k) in such a way that there exists a suitable cylinder U in P2
k
, which would be preserved via

g◦h−1 : P2
k
99K S̃k and (g◦h−1)(U)∩Supp(N) = ∅, where N is the union of all (−2)-curves on

S̃k. In particular, Sk contains the cylinder (σ ◦g ◦h−1)(U). In the following lemmas (Lemmas
4.4.23, 4.4.25 and 4.4.26), in order to show that above argument is still working well over k,
we shall prove that g and h are defined over k. In the proofs for Lemmas 4.4.25 and 4.4.26,
we look at the corresponding to weighted dual graphs in Table 4.8 and [12, Table 1]. We note
that the numbering something like i○ in Table 4.8 corresponds to that in [12, Table 1].

Lemma 4.4.23. Let the notation and assumptions be the same as in Proposition 4.4.16. If
d = 1 and S̃ is of E6 +A2, A5 +A2 +A1, 2A4 or A5 +A2-type, then S contains a cylinder.

Proof. For all cases, we see that any (−2)-curve on S̃k is defined over k by the configuration
of singular points on Sk (see also Table 4.8). In particular, any point meeting two (−2)-curves
on S̃k is also defined over k. Then we can construct a birational morphism g : Š → S̃k, whose
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Š is that as in [12, §§4.2] according to the type of S̃, defined over k. Indeed, we shall consider
a sequence of some blow-ups at some k-rational points starting at an intersection point of two
(−2)-curves on S̃k (according to the type of S̃) and including infinitely near points such that

we obtain the configuration of “Construction” in [12, Table 1] according to the types of S̃.
Moreover, we immediately have a birational morphism h : Šk → P2

k
, which plays same role as

h in [12, §§4.2]. This h is clearly defined over k. Therefore, we see that S contains a cylinder.
2

Remark 4.4.24. In Lemma 4.4.23, if S̃ is of E6 + A2, A5 + A2 + A1 or 2A4-type, then we
could have also inferred the same result from the fact that g : Š → S̃k and h : Š → P2

k
are

clearly defined over k, where g and h are those as in [12, §§4.2]. Indeed, for these types, all
(−1)-curves and (−2)-curves on S̃k are defined over k since ρk(S̃) = ρk(S̃k) = 9.

Lemma 4.4.25. Let the notation and assumptions be the same as in Proposition 4.4.16. If
d = 1 and S̃ is of (A5 +A1)

′ or A5-type, then S contains a cylinder.

Proof. Let Mi be the smooth rational curve on S̃k corresponding to the vertex with a label

written i○ in the weighted dual graph of Table 4.8. There exists a (−1)-curve Ẽ on S̃k, which

is defined over k, such that (Ẽ ·Mi) = δ1,i + δ6,i by Lemma 4.3.4 (1). Hence, we obtain the

birational morphism τ : S̃ → W4 over k with the reduced exceptional divisor M4 +M5 + Ẽ,
so that W4 is a weak del Pezzo surface of degree 4 and (2A1)<-type. Notice that τ∗(M2)
and τ∗(M7) (resp. τ∗(M1) and τ∗(M6)) are (−2)-curves (resp. (−1)-curves) on W4,k. By the
configuration of W4,k, we know that τ∗(M7)k meets exactly four (−1)-curves such that one is
τ∗(M6)k. Let E be the union of three (−1)-curves meeting τ∗(M7)k other than τ∗(M6)k on
W4,k. Noting that E is defined over k, so is τ−1

∗ (E). Moreover, all irreducible components

of τ−1
∗ (E) consist of three (−1)-curve on S̃k corresponding to curves with a label written 8○,

9○, 10○ in [12, Table 1]. Thus, we can construct two birational morphisms g : Š → S̃k and
h : Š → P2

k
, which play same role as in g and h in [12, §§4.2], defined over k (see the following

weighted dual graph):

(A5 +A1)
′-type : ◦

M1

◦
M2

◦
M3

•
M5

◦
M4

◦
M7

•
��
•
22

•︸ ︷︷ ︸
τ−1
∗ (E)

◦
M6 g←− ◦

1○
◦
2○
◦−3

3○

•
5○

◦
4○

◦
L1

•
L2

◦−4

7○

•
��

8○
•
22

10○
•
9○

◦
6○ h−→ ◦

1

h∗(L1)
◦
1

h∗(L2)

A5-type : ◦
M1

◦
M2

◦
M3

•
��

M4

•
22

M5

◦
M7

•
��
•
22

•︸ ︷︷ ︸
τ−1
∗ (E)

◦
M6 g←− ◦

1○
◦
2○
◦−3

3○

•
��

4○
•
22

5○

◦
L1

•
L2

◦−4

7○

•
��

8○
•
22

10○
•
9○

◦
6○ h−→ ◦

1

h∗(L1)
◦
1

h∗(L2)

Here, the numbering something like i○ in the above graph corresponds to that in [12, Table
1]. Therefore, we see that S contains a cylinder. 2

Lemma 4.4.26. Let the notation and assumptions be the same as in Proposition 4.4.16. If
d = 1 and S̃ is of A4-type, then S contains a cylinder.

Proof. Let Mi be the (−2)-curve on S̃k corresponding to the vertex with a label written i○
in the weighted dual graph of Table 4.8. There exists a (−1)-curve Ẽ on S̃k, which is defined
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over k, such that (Ẽ ·Mi) = δ1,i + δ6,i by Lemma 4.3.4 (1). Hence, we have the contraction

τ1 : S̃ →W2 of Ẽ over k, so thatW2 is a weak del Pezzo surface of degree 2 and A2-type. Notice
that τ1,∗(M7) and τ1,∗(M8) (resp. τ1,∗(M1) and τ1,∗(M6)) are (−2)-curves (resp. (−1)-curves)
on W2,k. By the configuration of W2,k, we know that τ1,∗(M8) meets exactly six (−1)-curves
such that one is the τ1,∗(M1). Let E be the union of five (−1)-curves meeting τ1,∗(M8)k
other than τ1,∗(M1)k on W2,k. Noting that E is defined over k, so is τ−1

1,∗ (E). Moreover, all

irreducible components of τ−1
1,∗ (E) consist of five (−1)-curves on S̃k corresponding to curves

with a label written 9○– 13○ in [12, Table 1]. On the other hand, we have the contraction
τ2 : W2 → F2 of τ1,∗(M1) + E over k. Set M := τ∗(M7), F0 := τ∗(M6) and C3 := τ∗(M8),

where τ := τ2 ◦ τ1 : S̃ → W2 → F2. Then M and F0 are the minimal section and a closed
fiber of the structure morphism F2 → P1

k over k, moreover, C3 is a rational curve on F2 with
C3 ∼M + 3F0 (cf. Lemma 4.4.22 (1)). Since (F0 ·C3) = 1, F0 and C3 meet transversely at a
point, say p, which is k-rational. Moreover, we see that there exists a unique rational curve C2

on F2 such that C2 ∼M +2F and i(C2, C3; p) = 3, where i(C2, C3; p) is the local intersection
multiplicity at p of C2 and C3. Notice that C2 is defined over k. Moreover, τ−1

∗ (C2), which is
also defined over k, corresponds to the curve with a label written 5○ in [12, Table 1]. Thus,
we can construct two birational morphisms g : Š → S̃k and h : Š → P2

k
, which play same role

as in g and h in [12, §§4.2], defined over k (see the following weighted dual graph):

◦
M1

◦
M8

•
��
•
22

• z
zz

•
DD

D

•︸ ︷︷ ︸
τ−1
1,∗ (E)

◦
M7

◦
M6 g←− ◦

1○

−3
◦
3○
◦
4○

•
5○

◦
2○

−3
•
L1

◦
L2

◦−6

8○

•
��

10○
•
22

12○
• z

zz

9○
•

DD
D

13○
•
11○

◦
7○
◦
6○ h−→ ◦

1

h∗(L1)
◦
1

h∗(L2)

Here, the numbering something like i○ in the above graph corresponds to that in [12, Table
1]. Therefore, we see that S contains a cylinder. 2

The “if” part of Theorem 1.3.9 (3)(iv) follows from Proposition 4.4.16 and Lemmas 4.4.22,
4.4.23, 4.4.25 and 4.4.26.

4.5 Examples

In this section, we shall present some examples of Du Val del Pezzo surfaces of Picard rank
one and canonical del Pezzo fibrations.

Example 4.5.1. Put ζ := −1+
√
−3

2 and let S be the cubic surface over Q defined by:

S :=
(
12z2w − 2x3 − y3 − 4w3 + 6xyw = 0

)
⊆ P3

Q = Proj(Q[x, y, z, w])

Then SQ has exactly three singular points [ 3
√
2ζi : 3
√
4ζ2i : 0 : 1] ∈ P3

Q of type A1 for i = 0, 1, 2

(see also Remark 4.5.2). Let σ : S̃ → S be the minimal resolution over Q. Then there exists
the birational morphism τ : S̃ → S6 over Q such that S6 is a smooth del Pezzo surface of
degree 6. Hence, S6,Q has six (−1)-curves, say {Ei}1≤i≤6. Moreover, the proper transform of

these (−1)-curve by τ ◦ σ−1 are defined by the following equations:

3
√
2ζix = y, x = ±

3
√
2

3
ζi(ζ − 1)z +

3
√
2ζiw

90



for i = 0, 1, 2. Since all (−1)-curves on S6,Q lie in the same Gal(Q/Q)-orbit, S6 is Q-minimal,
in particular, we obtain ρQ(S6) = 1. By construction of σ and τ , we also obtain ρQ(S) = 1.
Thus, S does not contain any cylinder by Theorem 1.3.9 (2). Indeed, SQ does not allow any
singular point which is Q-rational (see also Table 4.1). On the other hand, we know that SQ
contains a cylinder by Theorem 1.1.4. This implies that any cylinder on SQ is not defined
over Q.

Remark 4.5.2. Let S and ζ be those as in Example 4.5.1 and let A be the square matrix of
order 4 defined by:

A :=


3
√
2 3
√
2ζ 3

√
2ζ2 0

3
√
4 3
√
4ζ2 3

√
4ζ 0

0 0 0 3
1 1 1 0

 ∈ GL(4;Q).

Then we obtain the projective transformation ϕA : P3
Q

∼→ P3
Q associated to A and we see:

ϕ−1
A (SQ) =

(
w2(x+ y + z) + xyz = 0

)
⊆ P3

Q = Proj(Q[x, y, z, w]).

It is easily to see that ϕ−1
A (SQ) has exactly three singular points [1 :0 :0 :0], [0 :1 :0 :0], [0 :0 :1 :

0] ∈ P3
Q, which are of type A1.

Example 4.5.3. Let S be the complete intersection of two quadrics over R in P4
R as follows:

S :=
(
x2 + y2 + wv = zw + wv + vz = 0

)
⊆ P4

R = Proj(R[x, y, z, w, v]).

Then S is a Du Val del Pezzo surface of degree 4 such that SC has exactly three singular
points p± := [1 :±

√
−1 : 0 : 0 : 0] and p := [0 : 0 : 1 : 0 : 0] in P4

C, which are of type A1. Since
p+ and p− lie in the same Gal(C/R)-orbit, we see ρR(S) = 1 (see Subsection 4.3.1). Hence, S
contains a cylinder if and only if p ∈ S is of type A+

1 over k, by Theorem 1.3.9 (2). However,
p ∈ S is actually of type A++

1 over k, that is, S does not contain any cylinder. Indeed, the
exceptional set by the minimal resolution at p does not have any R-rational point since it can
be written locally as follows:

(u2 + v2 + 1 = 0) ⊆ A2
R = Spec(R[u, v])

for some two parameters u and v.

In what follows, we treat three examples of generically canonical del Pezzo fibrations.

Example 4.5.4. Let f : X → Y be a generically canonical del Pezzo fibration of degree 3
or 4 over a curve Y and let Xη be the generic fiber of f . For simplicity, we put S := Xη

and k := C(Y ). Assuming that Sk has a singular point x of type A1 defined over k, and let

σ : S̃ → S be the minimal resolution at x. Since x is defined over k, so is the exceptional
curve E := σ−1(x). Note that Ek is a (−2)-curve. Now, we see that E has a k-rational point
since k = C(Y ) is a C1-field by the Tsen’s theorem (see also [29, Theorem 3.12]). In other
words, the singular point x ∈ S is always of type A+

1 over k (compare the example in Example
4.5.3). Therefore, by Theorem 1.3.9 (2) combined with the above observation, we obtain that
f admits a vertical cylinder if and only if X

η,C(Y )
has a singular point defined over C(Y ).
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Example 4.5.5. Note that there exists a Du Val del Pezzo surface of Picard rank one with
degree 1, . . . , 6 or 8 such that Sing(S) 6= ∅ (see, e.g., [56]). Let S be a Du Val del Pezzo surface
of Picard rank one with degree d ∈ {1, . . . , 6, 8} over C such that Sing(S) 6= ∅, let Y be an
algebraic variety over C and let X be the direct product S × Y . Then the second projection
f : X → Y is a generically canonical del Pezzo fibration of degree d. Let Xη be the generic
fiber of f . For simplicity, put k := C(Y ). Then all (−1)-curves and (−2)-curves on Xη,k are
defined over k. Therefore, f does not admit any vertical cylinder if and only if d = 1 and
Xη,k allows only singular points of types A1, A2, A3, D4 by Theorem 1.3.9. This condition
is actually equivalent to the condition that S does not contain any cylinder (see [5, Theorem
1.6]).

Example 4.5.6. Let O be a discrete valuation ring of the rational function field C(t) such
that the maximal ideal of O is generated by t, and let X be the 3-fold variety over C defined
by:

X := (tnw2 + x2y2 + xz3 = 0) ⊆ PO(1, 1, 1, 2) = Proj(O[x, y, z, w]).

Then we obtain the structure morphism f : X → Spec(O) as an O-scheme. Letting η be the
generic point on Spec(O), the generic fiber Xη of f can be written as follows:

Xη = (tnw2 + x2y2 + xz3 = 0) ⊆ PC(t)(1, 1, 1, 2) = Proj(C(t)[x, y, z, w]).

By Example 1.3.10, Xη is a Du Val del Pezzo surface of rank one defined over C(Y ) and of
degree 2, moreover, Xη contains a cylinder if and only if n is even. Hence, f is a generically
canonical del Pezzo fibration of degree 2, furthermore, f admits a vertical cylinder if and only
if n is even.
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Chapter 5

Compactifications of the affine
plane over non-closed fields

In this chapter, we will prove Theorem 1.3.12. Moreover, we will consider the application of
this theorem. Throughout this chapter except for Section 5.2, let k be a field of characteristic
zero.

5.1 Compactifications of the affine plane

Let V be a normal projective surface defined over k and let D be a reduced effective divi-
sor on V . Then we say that the pair (V,D) is a compactification of the affine plane A2

k if
V \Supp(D) ' A2

k. Moreover, for a compactification (V,D) of A2
k, we say that D is called the

boundary divisor. In this section, we prepare some facts about compactifications of the affine
plane. For any compactification (V,D) of A2

k, we notice that D has no cycle by Lemma 2.5.3
since V \Supp(D) is the cylinder in V . Furthermore, we obtain the following lemma:

Lemma 5.1.1. For any compactification (V,D) of A2
k over k, we have ]D = ρk(V ).

Proof. Let us put n := ]D and U := V \Supp(D). Let C1, . . . , Cn be all irreducible compo-
nents of D, let G be a free abelian group generated by C1, . . . , Cn, and let f : G → Cl(V )
be the group homomorphism defined by f(Ci) := [Ci]. Then f is surjective by virtue of
Cl(U) ' Pic(U) = 0 (cf. [40, Lemma 4.6]). In what follows, we shall show that f is injective.
Assume that a Weil divisor a1C1+ · · ·+anCn is a principal divisor div(f) for some f ∈ k(V )×.
Since C1, . . . , Cn are included in Supp(D), we have a1C1+· · ·+anCn|U = 0. Hence, f |U ∈ R×,
where R is the coordinate ring of U . Moreover, we see f ∈ k× by virtue of R× = k×. Namely,
div(f) = 0. This implies that f is injective. Thus, we have a group isomorphism G ' Cl(V ).
In particular, n = ρk(V ). 2

In this paper, we will mainly deal with the following special kinds of compactifications of
the affine plane:

Definition 5.1.2. Let (S,∆) be a compactification of the affine plane A2
k over k. We say

that the pair (S,∆) is an lc compactification of the affine plane A2
k over k if S is an lc del

Pezzo surface of rank one over k such that Sing(Sk) 6= ∅.

The following lemma will be used in Subsection 5.2.3:
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Lemma 5.1.3. Assume that k is algebraically closed. For any lc compactification (S,∆) of
the affine plane A2

k over k, then ]Sing(S) ≤ 2.

Proof. See [45, Lemma 4.2]. 2

In what follows, we recall minimal normal compactifications of the affine plane.

Definition 5.1.4. Assume that k is algebraically closed. Let (V,D) be a compactification
of the affine plane A2

k over k such that V is smooth. Then this pair (V,D) is a minimal
normal compactification of the affine plane A2

k if D is an SNC-divisor and any (−1)-curve E
in Supp(D) satisfies (E ·D − E) ≥ 3.

Morrow classified the minimal normal compactifications of the affine plane when the base
field is C ([57]). In this paper, we will mainly use the following facts:

Lemma 5.1.5. Assume that k is algebraically closed. Let (V,D) be a minimal normal
compactification of the affine plane A2

k over k. Then the following assertions hold:

(1) Any irreducible component of D is a smooth rational curve and the dual graph of D is
a linear chain. In particular, Supp(D) does not contain any (−1)-curve on V .

(2) If ]D = 1, then (D)2 = 1.

(3) If ]D = 2, thenD contains at least one irreducible component, say Γ, satisfying (Γ)2 = 0.

(4) If ]D ≥ 3, thenD contains exactly two irreducible components, say Γ0 and Γ+, satisfying
(Γ0)

2 = 0, (Γ+)
2 > 0 and (Γ0 · Γ+) = 1.

Proof. See [57]. 2

Furthermore, [36, Theorem 1.2] proves that the converse of Morrow’s result is true. More
precisely, the following result holds:

Lemma 5.1.6. Assume that k is algebraically closed. Let V be a smooth protective surface
defined over k and let D be a reduced divisor on V such that V \Supp(D) is affine and each
irreducible component of D is a rational curve. If the weighted dual graph of D is the same
as that of the boundary divisor of a minimal normal compactification of the affine plane A2

k,
then (V,D) is a minimal normal compactification of A2

k.

Proof. See [36]. 2

5.2 Properties of twigs

Throughout this section, we always assume that all varieties are defined over an algebraically
closed field of characteristic zero.

5.2.1 Some definitions of twigs

Let D be an SNC-divisor on a smooth projective surface. Let A be the weighted dual graph
of D. If A is given by the following graph, then A is called the twig and we write this weighted
dual graph [m1, . . . ,mr] as A:

◦
−m1

◦
−m2

· · · ◦
−mr

In this subsection, we will present some definitions for the twig. The following two definitions
are based on [24] (see also [42]):
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Definition 5.2.1. Let A = [m1, . . . ,mr] be a twig. Then the twig [mr,mr−1, . . . ,m1] is
called the transposal of A and denoted by tA. We define also A := [m2, . . . ,mr] and A :=
[m1, . . . ,mr−1], where we put A = A = ∅ if r = 1. We say that A is admissible if mi ≥ 2 for
any i = 1, . . . , r. In what follows, we assume that A is admissible. Then d(A) denotes the
absolute value of the determinant of the intersection matrix corresponding to A and is simply
called the determinant of A, where we put d(∅) = 1. We say that e(A) := d(A)/d(A) is the
inductance of A. By [24, Corollary (3.8)], e defines a one-to-one correspondence from the set
of all admissible twigs to the set of rational numbers in the interval (0, 1). Hence, there exists
uniquely an admissible twig A∗, whose inductance is equal to 1 − e(tA), so that we call the
admissible twig A∗ the adjoint of A.

Example 5.2.2. Consider two admissible twigs A := [2, 4] and B := [2, 2, 3]. Then d(tA) =
d(A) = 7 and d(tA) = 2, so that e(tA) = 2

7 . Moreover, d(B) = 7 and d(B) = 5, namely,
e(B) = 5

7 = 1− e(tA). Hence, B = A∗.

Furthermore, we will use the following notation in this article:

Definition 5.2.3. (1) Letting A1, . . . , As be twigs given by Ai = [mi,1, . . . ,mi,ri ] for i =
1, . . . , s, we write [A1, . . . , As] := [m1,1, . . . ,m1,r1 , . . . . . . ,ms,1, . . . ,ms,rs ].

(2) For a positive integer t, we write [t× 2] := [2, . . . , 2︸ ︷︷ ︸
t-times

].

(3) For a positive integer m and a non-negative integer t, we write two twigs L(m; t) and
R(m; t) respectively as follows:

L(m; t) :=

{
[[t× 2], [m]] if t > 0
[m] if t = 0

, R(m; t) :=

{
[[m], [t× 2]] if t > 0
[m] if t = 0

.

5.2.2 Twigs contracted to single smooth rational curves

Let D be an SNC-divisor on a smooth projective surface such that any irreducible component
of D is a rational curve. We recall the following proposition for later use in Subsection 5.2.3.

Proposition 5.2.4. Let D be the same as above. Assume that the weighted dual graph of
D is the twig [A, [1], B] for some admissible twigs A and B. Then D can be contracted to a
0-curve if and only if B = A∗.

Proof. See, [24, Proposition (4.7)]. 2

In Proposition 5.2.4, since the adjoint of any admissible twig is unique, note that B is
uniquely determined according to A. By applying Proposition 5.2.4, we obtain the following
proposition:

Proposition 5.2.5. Let D be the same as above. Assume that the weighted dual graph of
D is the twig [[m], A, [1], B] for some integer m and admissible twigs A and B. Then D can
be contracted to the twig [m, 1] if and only if B = A∗.

Proof. Since A is admissible, notice that A can be uniquely denoted by [L(mr; tr), . . . , L(m1; t1)]
for some m1 ≥ 2, mi ≥ 3 (i > 1) and tj ≥ 0 (1 ≤ j ≤ r). By the induction on r, we see that
D can be contracted to the twig [m, 1] if and only if B can be written as follows:

B =

{
[(m1 − 2)× 2] if r = 1
[[(m1 − 2)× 2], R(t1 + 3;m2 − 3), . . . , R(tr−1 + 3;mr − 3)] if r > 1

. (5.2.1)
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Let D′ be an SNC-divisor on a smooth projective surface such that the weighted dual graph
of D′ is the twig [A, [1], B′], where B′ is the admissible twig defined by:

B′ :=

{
[[(m1 − 2)× 2], [t1 − 2]] if r = 1
[[(m1 − 2)× 2], R(t1 + 3;m2 − 3), . . . , R(tr−1;mr − 3), [tr − 2]] if r > 1

.

Then we easily see that D′ can be contracted to a 0-curve by induction on r. Hence, we
have B′ = A∗ by Proposition 5.2.4. In particular, we see that B is as in (5.2.1) if and only if
B = B′ = A∗. 2

Definition 5.2.6. Let A = [L(mr; tr), . . . , L(m1; t1)] be an admissible twig, m1 ≥ 2, mi ≥ 3
(i > 1) and tj ≥ 0 (1 ≤ j ≤ r). In this article, we then put mA := tr + 3.

Remark 5.2.7. Let A be an admissible twig. By definition of mA and Lemma 5.2.5, the twig
[[m], A, [1], A∗, [mA]] can be contracted to the twig [m, 1, 2] for an arbitrary integer m.

Example 5.2.8. Consider the admissible twig A := [2, 4]. By definition, we know mA = 4.
Meanwhile, since A∗ = [2, 2, 3], we obtain A∗ = [2, 2]. For an arbitrary integer m, the twig
[[m], A, [1], A∗, [mA]] = [m, 2, 4, 1, 2, 2, 4] is then contracted to [m, 1, 2] as follows:

[m, 2, 4, 1, 2, 2, 4]→ [m, 2, 3, 1, 2, 4]→ [m, 2, 2, 1, 4]→ [m, 2, 1, 3]→ [m, 1, 2].

5.2.3 Twigs as boundary divisors of the affine plane

In this subsection, let (Ṽ , D̃) be a compactification of the affine plane A2 such that Ṽ is a
smooth projective surface over k and the weighted dual graph of D̃ is the twig [m1, . . . ,mr]
with mi ≥ 1 for any i = 1, . . . , r. By Lemma 5.1.5, D̃ consists of irreducible components
{C̃i}1≤i≤r such that C̃i is a (−mi)-curve for i = 1, . . . , r, moreover, we see that (Ṽ , D̃) is

not a minimal normal compactification of A2. Let ν : (Ṽ , D̃) → (V̌ , Ď) be a sequence of
contractions of (−1)-curves and subsequently (smoothly) contractible curves in Supp(D̃) such
that the pair (V̌ , Ď) is a minimal normal compactification of A2, where Ď := ν∗(D̃).

Lemma 5.2.9. With the notation as above, then the following three assertions hold:

(1) r ≥ 3.

(2) There exists at least one integer e with 2 ≤ e ≤ r − 1 such that me = 1.

(3) If r = 3, then we obtain m1 = 1 or m3 = 1.

Proof. In (1), supposing n ≤ 2, we can easily obtain a contradiction by Lemma 5.1.5.
In (2), noticing r ≥ 3 by (1), suppose mi ≥ 2 for any i = 2, . . . , r − 1. Since (Ṽ , D̃)

is not a minimal normal compactification of A2, we obtain m1 = 1 or mr = 1. Then D̃
can be contracted to the twig [m] for some non-negative integer m or an admissible twig by
straightforward calculation. It contradicts Lemma 5.1.5.

In (3), we note m2 = 1 by (2). Hence, D̃ can be contacted to the twig [m1 − 1,m3 − 1].
By Lemma 5.1.5 (2) and (3), we see m1 − 1 = 0 or m3 − 1 = 0. This completes the proof. 2

Lemma 5.2.10. With the notation as above, then the following two assertions hold:

(1) Assume that there exists exactly one integer e with 1 ≤ e ≤ r − 1 such that mi = 1 if
and only if i = e or e+ 1. Then we obtain r = 3.
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(2) Assume that r ≥ 4, mi = mr+1−i for any i and there exists exactly one integer e with
1 ≤ e < r

2 such that mi = 1 if and only if i = e, e+1, r− e or r+1− e. Then we obtain

r = 4. Namely, the weighted dual graph of D̃ is [1, 1, 1, 1].

Proof. In (1), notice that r ≥ 3 by Lemma 5.2.9 (1). We may assume e+1 < r by symmetry.
Moreover, we can assume that ν starts with the contraction of C̃e. Then we see that ]Ď ≥ 2,
and any irreducible component of Ď with self-intersection number ≥ 0 is only Č := ν∗(C̃e+1).
Thus, we have ]Ď = 2 and (Č)2 = 0 by Lemma 5.1.5. This implies r = 3 by virtue of
]D̃ − ]Ď = (Č)2 − (C̃e+1)

2 = 1.
In (2), we can assume that ν starts with the contraction of C̃e + C̃r+1−e. Then we see

that ]Ď ≥ 2, and any irreducible component of Ď with self-intersection number ≥ 0 is only
Č1 := ν∗(C̃e+1) or Č2 := ν∗(C̃r−e). Moreover, by me+1 = mr−e and construction of ν, we
obtain (Č1)

2 = (Č2)
2. Thus, we have ]Ď = 2 and (Č1)

2 = (Č2)
2 = 0 by Lemma 5.1.5. This

implies r = 4 by virtue of ]D̃ − ]Ď = (Č1)
2 − (C̃e+1)

2 + (Č2)
2 − (C̃r−e)

2 = 2. 2

Lemma 5.2.10 (1) can be generalized as follows:

Lemma 5.2.11. Let (Ṽ ′, D̃′) be a compactification of the affine plane A2 such that Ṽ ′ is a
smooth projective surface and D̃′ is an SNC-divisor. Assume that any irreducible component
of D̃′ has self-intersection number ≤ −2 except for exactly two irreducible components E1

and E2 such that (E1)
2 = (E2)

2 = −1 and (E1 · E2) = 1. Then the weighted dual graph of
D̃′ is the twig [1, 1,m] for some integer m ≥ 2.

Proof. By Lemma 5.1.5 (1), we note (Ei ·D̃′−Ei) ≤ 2 for i = 1, 2. Let ν ′ : (Ṽ ′, D̃′)→ (V̌ ′, Ď′)
be a sequence of contractions of (−1)-curves and subsequently (smoothly) contractible curves
in Supp(D̃′) such that the pair (V̌ ′, Ď′) is a minimal normal compactification of A2, where
Ď′ := ν ′∗(D̃

′). By Lemma 5.1.5 (1), we note (Ei · D̃′ − Ei) ≤ 2 for i = 1, 2. Noting that D̃′

is connected and has no cycle by Lemma 2.5.3, the divisor D̃′ − E can be decomposed into
connected components D̃′

1 + D̃′
2 such that (D̃′

i · Ej) = 0 for i, j = 1, 2 with i 6= j, where it is

not necessarily D̃′
i 6= 0 for i = 1, 2. Since we can assume that ν ′ starts with the contraction of

E1 (resp. E2), the weighted dual graph of ν ′∗(D̃
′
2 +E2) (resp. ν

′
∗(D̃

′
1 +E1)) is then a twig by

Lemma 5.1.5 (1). In particular, the weighted dual graph of D̃′ is a twig. Hence, this assertion
follows from Lemma 5.2.10 (1). 2

Lemma 5.2.12. With the notation as above, assume that r = ]D is odd, mi = mr+1−i for
any i, and there exists exactly one integer e with 1 ≤ e ≤ r′ such that mi = 1 if and only if
i = e or r + 1− e, where r′ := r+1

2 . Then the following assertions hold:

(1) e 6= r′.

(2) If e = r′−1, then we obtain mr′ = r−2 and mi = 2 for any i = 1, . . . , r with |r′− i| > 1,
namely, the weighted dual graph of D̃ can be denoted by [L(1; r′−2), [r−2], R(1; r′−2)].

Proof. In (1), suppose e = r′. Noting r ≥ 5 by Lemma 5.2.9, the weighted dual graph of the
contraction of C̃r′ is the twig [m1, . . . ,mr′−2,mr′−1 − 1,mr′+1 − 1,mr′+2, . . . ,mr], which is
not admissible by Lemma 5.1.5. Hence, we obtain mr′±1 − 1 = 1, which contradicts Lemma
5.2.10 (1).

In (2), it is proved by the induction on r, where we note r ≥ 5 by Lemma 5.2.9. Assume
r = 5. By assumption, we have m2 = m4 = 1. Hence, we obtain m1 = m5 = 2 and m3 = 3
by Lemma 5.2.9 (3) since D̃ can be contracted to the twig [m1 − 1,m3 − 2,m5 − 1]. Assume
r > 5. Then the weighted dual graph of the contraction of C̃r′−1 + C̃r′+1 on D̃ is the twig

97



[m1, . . . ,mr′−3,mr′−2 − 1,mr′ − 2,mr′+2 − 1,mr′+3, . . . ,mr]. Then we obtain mr′±2 − 1 = 1
by virtue of (1) and Lemma 5.1.5 (4). Moreover, we obtain mr′ − 2 > 1. Indeed, otherwise,
by contracting further the direct image of C̃r′ , we have [m1, . . . ,mr′−3,mr′−2 − 2,mr′+2 −
2,mr′+3, . . . ,mr], where mr′±2 − 2 = 0. However, this contradicts Lemma 5.1.5 (4). By the
inductive hypothesis, we thus obtain mr′ − 2 = r − 2 and mi = 2 for any i = 1, . . . , r with
|r′ − i| > 2. This completes the proof. 2

Finally, we shall prepare the following proposition, which will play an important role in
Section 5.4:

Proposition 5.2.13. With the notation as above, then the following assertions hold:

(1) Assume that there exists exactly one integer e satisfying me = 1. Then the weighted
dual graph of D̃ can be denoted by [A, [1], A∗, [m]] for some admissible twig A.

(2) Assume that r = ]D̃ is even, mi = mr+1−i for any i, and there exists exactly one integer
e with 1 ≤ e ≤ r

2 such that mi = 1 if and only if i = e or r + 1− e. Then the weighted

dual graph of D̃ can be denoted by [t(A∗), [1], tA,A, [1], A∗] for some admissible twig A.

(3) Assume that r = ]D̃ is odd, mi = mr+1−i for any i, and there exist exactly one integer
e with 1 ≤ e ≤ r′ such that mi = 1 if and only if i = e or r + 1 − e, where r′ := r+1

2 .

Then the weighted dual graph of D̃ can be denoted by one of the following:

• [L(1; r′ − 2), [r − 2], R(1; r′ − 2)].

• [L(mA; t),
t(A∗), [1], tA, [2t + 3], A, [1], A∗, R(mA; t)] for some admissible twig A,

where mA is as in Definition 5.2.6 and t is a non-negative integer.

Proof. For each case, we shall prove this proposition by the induction on r.
In (1), notice r ≥ 4 by Lemma 5.2.9. Assume r = 4. We may assumem2 = 1 by symmetry.

Since D̃ can be contracted to the twig [m1−1,m3−1,m4], we obtain m1 = m3 = 2 by Lemma
5.2.9 (3). Thus, [m1, . . . ,m4] = [2, 1, 2,m4] = [[2], [1], [2]∗, [m4]], where note [2]

∗ = [2]. Assume
r > 4. Noting 1 < e < r by Lemma 5.2.9 (2), the weighted dual graph of the contraction of
C̃e on D̃ is the twig B′ := [m1, . . . ,me−2,me−1 − 1,me+1 − 1,me+2, . . . ,mr]. Then we obtain
me−1 − 1 = 1 or me+1 − 1 = 1 since B′ is not admissible by Lemma 5.1.5. Moreover, we also
obtain me−1 − 1 > 1 or me+1 − 1 > 1 by Lemma 5.2.10 (1). By the inductive hypothesis, B′

can denote [A′, [1], (A′)∗, [m]] for some an admissible twig A′. We may assume mr = m by
symmetry. Since the twig [A′, [1], (A′)∗] can be contracted to the twig [0] by Lemma 5.2.4, so
is [m1, . . . ,mr−1]. Hence, [m1, . . . ,mr] = [A, [1], A∗, [mr]], where A := [m1, . . . ,me−1].

In (2), notice r ≥ 6 by Lemmas 5.2.9 (2) and 5.2.10 (1). Assume r = 6. Then we
have m2 = m5 = 1 by Lemmas 5.2.9 (2) and 5.2.10 (1). Since D̃ can be contracted to the
twig [m1 − 1,m3 − 1,m4 − 1,m6 − 1], which is not admissible by Lemma 5.1.5, we obtain
m1 = m3 = m4 = m6 = 2 by Lemmas 5.2.9 (2) and 5.2.10 (1). Thus, [m1, . . . ,m6] =
[2, 1, 2, 2, 1, 2] = [t([2]∗), [1], t[2], [2], [1], [2]∗]. Assume r > 6. We put e′ := r + 1 − e for
simplicity. Note 1 < e and e′ − e > 1 by Lemmas 5.2.9 (2) and 5.2.10 (1). Since the weighted
dual graph of the contraction of C̃e+ C̃e′ on D̃ is a non-admissible twig, say B′, by the similar
argument to (1), we obtain me−1 − 1 = 1 or me+1 − 1 = 1. Furthermore, we also obtain
me−1 − 1 > 1 or me+1 − 1 > 1 by Lemma 5.2.10 (2). Meanwhile, we note the assumption
mi = mr+1−i for any i = 1, . . . , r, so that B′ satisfies the hypothesis of (2). Thus, we can
show this assertion by the inductive hypothesis combined with a similar argument to (1).

In (3), notice r ≥ 5 by Lemma 5.2.9 (3). Assume r = 5. Then we obtain m2 = m4 = 1
by Lemmas 5.2.9 (2) and 5.2.12 (1). Hence, it follows from Lemma 5.2.12 (2). Assume r = 7.
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Then we have either m2 = 1 or m3 = 1 by Lemmas 5.2.9 (2) and 5.2.12 (1). If m3 = 1, then
it follows from Lemma 5.2.12 (2). Thus, it is enough to consider the case of m2 = 1. Since D̃
can be contracted to the twig [m1 − 1,m3 − 1,m4,m5 − 1,m7 − 1], we obtain m1 = m7 = 3,
m3 = m5 = 2 and m4 = 3 by Lemmas 5.2.9 (2) and 5.2.10 (2) combined with the result of r =
5. Namely, [m1, . . . ,m7] = [3, 1, 2, 3, 2, 1, 3] = [L(3; 0), t([2]∗), [1], t[2], [3], [2], [1], [2]∗, R(3; 0)],
where note [2]∗ = ∅ and m[2] = 3 (see Definition 5.2.6). Assume r > 7. We put e′ := r+1− e
for simplicity. If e = r′ − 1, then it follows from Lemma 5.2.12 (2). Thus, it is enough to
consider the case of e < r′−1. Namely, e′−e > 1. Letting B′ be the weighted dual graph of the
contraction of C̃e+C̃e′ on D̃ is a non-admissible twig, we see that B′ satisfies the hypothesis of
(3) by a similar argument to (2). If B′ = [L(1; r′−3), [r−4], R(1; r′−3)], then [m1, . . . ,mr] =
[L(3; r′ − 4), [1], [2], [r − 4], [2], [1], R(3; r′ − 4)] by the assumption e < r′ − 1, where we note
r − 4 = 2(r′ − 4) + 3. In what follows, we assume that B′ = [L(mA′ ; t), t(A′∗), [1], tA′, [2t +
3], A′, [1], A′∗, R(mA′ ; t)] for some admissible twig A′, where t is a non-negative integer. Hence,
the twig [mr′ , . . . ,mr−t−1] can be contracted to [[2t+3], A′, [1], A′∗]. Since [[2t+3], A′, [1], A′∗]
can be contracted to [2t+3, 1] by Lemma 5.2.5, so is [mr′ , . . . ,mr−t−1]. Hence, by using Lemma
5.2.5 again, we obtain [mr′ , . . . ,mr−t−1] = [[2t+3], A, [1], A∗], where A := [mr′+1, . . . ,me′−1].
Meanwhile, since the twig [mr′ , . . . ,mr] = [[2t+3], A, [1], A∗, [mr−t, . . . ,mr]] can be contracted
to [[2t+ 3, 1], R(2; t)], we know [mr−t, . . . ,mr] = R(mA; t) (cf. Remark 5.2.7). By symmetry,
we thus obtain [m1, . . . ,mr] = [L(mA; t),

t(A∗), [1], tA, [2t+ 3], A, [1], A∗, R(mA; t)]. 2

By Proposition 5.2.13 combined with Propositions 5.2.4 and 5.2.5, if D̃ satisfies the as-
sumptions of Proposition 5.2.13 (1) (resp. (2), (3)), then we can take the birational morphism
ν : Ṽ → V̌ with Ṽ \Supp(D̃) ' V̌ \Supp(Ď) ' A2

k
such that V̌ ' Fm for some m ≥ 2 (resp.

V̌ ' P1
k
×P1

k
, V̌ ' P2

k
) and the weighted dual graph of Ď is the twig [0,m] (resp. [0, 0], [−1]),

where Ď := ν∗(D̃).

5.3 Proof of Theorem 1.3.12 (1) and (2)

Let (S,∆) be an lc compactification of the affine plane A2
k over k (see Definition 5.1.2, for

this definition). Let {Ci}1≤i≤n be all irreducible components of the divisor ∆k on Sk. By
Lemma 5.1.1, we see that n = ρk(Sk), and C1, . . . , Cn lie in the same Gal(k/k)-orbit. Let

σ : S̃ → S be the minimal resolution defined over k, let ∆̃ be the divisor on S̃ defined by
∆̃ := σ∗(∆)red. and let C̃i be the proper transform of Ci by σk for i = 1, . . . , n. Let µ : Ŝ → S̃

be the composite of the shortest sequence of blow-ups such that ∆̂k is an SNC-divisor (see

also [45, Lemma 4.1]), where ∆̂ := µ∗(∆̃)red.. Notice that µ is defined over k. Indeed, µ is
a composite of some blow-ups of a Gal(k/k)-orbit of one point. Hence, the compactification
(Ŝ, ∆̂) of the affine plane is defined over k. Now, let ∆̂µ be the reduced exceptional divisor of
µk, let ∆̂σ be the proper transform of the reduced exceptional divisor of σk by µk, and let Ĉi
be the proper transform of C̃i by µk for i = 1, . . . , n. Namely, ∆̂k = ∆̂µ + ∆̂σ +

∑n
i=1 Ĉi.

With the same notation as above, the purpose of this section is to prove Theorem 1.3.12
(1) and (2). For these assertions, the case of n = 1 is mostly based on the argument of [42, 45],
on the other hand, in order to deal with the case of n ≥ 2, we need to observe the behavior
of the Galois group Gal(k/k) acting naturally on Ŝk. Hence, we shall treat such observations
in Subsection 5.3.1, and we shall show Theorem 1.3.12 (1) and (2) in Subsections 5.3.2 and
5.3.3, respectively.
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5.3.1 Some observations in case of n ≥ 2

Let the notation be the same as at beginning Section 5.3, assume further that n ≥ 2.
By using Lemma 5.1.5 and construction of µ, the following lemma is obvious:

Lemma 5.3.1. With the notation and assumptions as above, the following two assertions
hold:

(1) Any irreducible component of ∆̂σ (resp. ∆̂µ) has self-intersection number ≤ −2 (resp.
≤ −1).

(2) Assume that µ 6= id. Then, ∆̂µ contains at least one (−1)-curve. Moreover, any (−1)-
curve Ê on ∆̂µ does not meet any (−1)-curve on ∆̂µ, and satisfies both (Ê · ∆̂− Ê) ≥ 3
and

∑n
i=1(Ê · Ĉi) > 0.

By considering the behavior of the Gal(k/k)-action, we obtain the following lemma:

Lemma 5.3.2. With the notation and assumptions as above, (Ŝk, ∆̂k) is not a minimal

normal compactification of A2
k
. In particular, Ĉi is a (−1)-curve with (Ĉi · ∆̂ − Ĉi) ≤ 2 for

i = 1, . . . , n.

Proof. Suppose that (Ŝk, ∆̂k) is a minimal normal compactification of the affine plane. By

virtue of n ≥ 2 and Sing(Sk) 6= ∅, we have ]∆̂k ≥ 3. By Lemma 5.1.5 (4), there exist two

irreducible components Γ0 and Γ+ on ∆̂k such that (Γ0)
2 = 0 and (Γ+)

2 > 0. By Lemma

5.3.1 (1), Γ0 and Γ+ are contained in
∑n

i=1 Ĉi. However, we see (Ĉ1)
2 = · · · = (Ĉn)

2 since

Ĉ1, . . . , Ĉn lie in the same Gal(k/k)-orbit. It is a contradiction. 2

Since ∆k has no cycle by Lemma 2.5.3, C1, . . . , Cn meet only one point, say p0. Then we
obtain the following lemma:

Lemma 5.3.3. Let the notation and the assumptions be the same as above. If n = 2, then
p0 is a singular point on Sk.

Proof. Suppose that p0 is a non-singular point on Sk. Then we obtain ]∆̂ ≥ 4 since Sk has

at least two singular points by Lemma 2.5.3. Moreover, we see (Ĉ1 · Ĉ2) = 1. On the other
hand, Ĉ1 and Ĉ2 are (−1)-curves by Lemma 5.3.2. It is a contradiction to Lemma 5.2.11. 2

5.3.2 Properties of boundary divisors

Let the notation be the same as at beginning Section 5.3. In this subsection, we prove Theorem
1.3.12 (1). Since the case of n = 1 follows from [42, 45], we shall only treat case of n ≥ 2.

Now, we prepare the following lemma:

Lemma 5.3.4. Let (V̂ , D̂) be a compactification of the affine plane A2
k
over k such that V̂ is

a smooth projective surface over k and D̂ is an SNC-divisor on V̂ , and let Ê0, Ê1, . . . , Êr be
all (−1)-curves in Supp(D̂). Assume that r ≥ 1, (Ê0 · Êi) = 1 for i = 1, . . . , r and the union∑r

i=1 Êi is disjoint. Then (Ê0 · D̂ − Ê0) ≤ 2.

Proof. Suppose that (Ê0 ·D̂− Ê0) ≥ 3. Let ν : (V̂ , D̂)→ (V̌ , Ď) be a sequence of contractions
of (−1)-curves and subsequently (smoothly) contractible curves in Supp(D̂), starting with the
contraction of

∑r
i=1 Êi, such that the pair (V̌ , Ď) is a minimal normal compactification of

A2
k
, where Ď := ν∗(D̂). Putting Ě := ν∗(Ê0), we notice Ě 6= 0, moreover, (Ě · Ď − Ě) ≤ 2
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and (Ě)2 ≥ 0 by Lemma 5.1.5 (1). Since D̂ has no cycle by Lemma 2.5.3, we know that any
irreducible component of Ď − Ě has self-intersection number ≤ −1 (if it exists at all). Thus,
we have ]Ď ≤ 2 by Lemma 5.1.5 (4). If ]Ď = 2, we obtain (Ě)2 = 0 by Lemma 5.1.5 (3) and
r+1 ≥ (Ê0 ·D̂−Ê0) ≥ 3 by the assumption. However, we then have 0 = (Ě)2 ≥ (Ê0)

2+r ≥ 1,
which is absurd. If ]Ď = 1, we obtain (Ě)2 = 1 by Lemma 5.1.5 (2) and r = (Ê0 · D̂− Ê0) ≥ 3
by the assumption. However, we then have 1 = (Ě)2 ≥ (Ê0)

2 + r ≥ 2, which is absurd. 2

In order to prove Theorem 1.3.12 (1), suppose on the contrary that µ 6= id. Then we have:

Claim 5.3.5. The union
∑n

i=1 Ĉi is disjoint.

Proof. Suppose that Ĉi and Ĉj meet at a point, say q̂, for some i and j with i 6= j. Since
∆̂k is an SNC-divisor, any irreducible component of ∆̂k passing through q̂ is only Ĉi or Ĉj .
Hence, q := (σk ◦ µk)(q̂) is a smooth point on Sk, moreover, Ci and Cj pass through q. Let
p0 be the intersection point of C1, . . . , Cn on Sk. By noting Lemma 5.3.3, we see p0 6= q.
However, since Ci and Cj also pass through p0, we see that Ci + Cj is a cycle on ∆k. It is a
contradiction to Lemma 2.5.3. 2

Proof of Theorem 1.3.12 (1). By Lemma 5.3.2 and Claim 5.3.5, we see that
∑n

i=1 Ĉi can be

contracted. Let ν : (Ŝk, ∆̂k) → (Š, ∆̌) be a sequence of contractions of (−1)-curves and

subsequently (smoothly) contractible curves in Supp(∆̂) over k, starting with the contraction
of

∑n
i=1 Ĉi, such that the pair (Š, ∆̌) is a minimal normal compactification of A2

k
, where

∆̌ := ν∗(∆̂). For any (−1)-curve Ê on ∆̂µ, we have (Ê · D̂ − Ê) ≥ 3 by Lemma 5.3.1 (2), in
particular, ν∗(Ê) 6= 0 and (ν∗(Ê))2 ≥ 0. Hence, there exist at most two (−1)-curves on ∆̂µ

by Lemma 5.1.5. By Lemma 5.3.4, we further see that there exist exactly two (−1)-curves Ê1

and Ê2 on ∆̂µ, where we note that Ê1 and Ê2 lie in the same Gal(k/k)-orbit. We may assume
that Êi meets Ĉi for i = 1, 2. Let D be the connected component of the reduced exceptional
divisor of ν containing Ĉ1. Letting Ěi := ν∗(Êi) for i = 1, 2, we obtain (Ê1 · Ê2) = 0 and
(Ě1 · Ě2) = 1 by Lemmas 5.3.1 (2) and 5.1.5, so that (Ê2 · D) > 0. Hence, Ĉ2 is included
in Supp(D), where we recall the assumption n ≥ 2. Indeed otherwise, letting Gal(k/k) · D
be the Gal(k/k)-orbit of D, then Ê1 + Ê2 + Gal(k/k) · D has a cycle. However, this is a
contradiction to Lemma 2.5.3. Moreover, we know n = 2 by the similar argument. This
implies (Ě1 · ∆̌− Ě1) = (Ê1 · ∆̂− Ê1) ≥ 3, which is a contradiction to Lemma 5.1.5 (1). 2

Example 5.3.6. Note that the assertion of Theorem 1.3.12 (1) is not always true unless
ρk(S) = 1. We shall construct an example of the lc compactification (S,∆) of A2

k such that

ρk(S) > 1 and ∆̃k is not an SNC-divisor. Let C be a cubic curve with a cusp o on P2
k and let

L be the Zariski tangent line to C at o, i.e., Ck ∩ Lk = {o}. By construction, L ' P1
k. Let x1

be a k-rational point on Ck\{o} and let x2, x3, x4 be three points, whose union x1+x2+x3 is

defined over k, on Lk\{o}. Letting ν : S̃ → P2
k be a blow-up at four points x1, . . . , x4 defined

over k, then S̃ is a weak del Pezzo surface of degree 5 such that S̃k contains exactly one (−2)-
curve ν−1

∗ (Lk), which is clearly defined over k. Hence, we obtain a contraction σ : S̃ → S of
the (−2)-curve over k, so that S is a Du Val del Pezzo surface with ρk(S) > 1 over k. Now, ν
can be factorized ν ′ : S̃ → S̃′ and ν ′′ : S̃′ → P2

k defined over k such that ν ′′ is a blow-up at a

point x1. Let ∆̃
′ be the proper transform of C + L by ν ′′, and let ∆̃ be the reduced effective

divisor on S̃ defined by ∆̃ := ν ′∗(∆̃′)red.. Since (S̃
′, ∆̃′) is a compactification of A2

k ([7]), so are

(S̃, ∆̃) and (S,∆), where ∆ := σ∗(∆̃). However, ∆̃k is not an SNC-divisor by construction.
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5.3.3 Properties of singularities

In this subsection, we prove Theorem 1.3.12 (2) by using results in Subsections 5.2.1 and
5.2.2. Let the notation be the same as above.

Proof of Theorem 1.3.12 (2)(i). We shall consider two cases whether n = 1 or not separately.
In the case of n = 1, then ∆ is geometrically irreducible on S. Namely, ∆k = C1.

Hence, we see ]Sing(Sk) ≤ 2 by Lemma 5.1.3. If ]Sing(Sk) = 1, then the assertion is clearly
true. If ]Sing(Sk) = 2, then two weighted dual graphs given by the minimal resolution at
these singular points on Sk are different (see [42, 45]). Hence, two singular points on Sk are
k-rational.

In the case of n ≥ 2, let p0 be the intersection point of C1, . . . , Cn on Sk, so that p0 is
k-rational. If n = 2, then p0 is a singular point on Sk by Lemma 5.3.3. Moreover, p0 is also a

singular point on Sk even if n ≥ 3. Indeed, otherwise, the divisor ∆̃k is not normal crossing
at the point p̃0 := σ−1(p0), which is a contradiction to Theorem 1.3.12 (1). 2

Proof of Theorem 1.3.12 (2)(iii). If n = 1, then it follows from Lemma 5.1.3. Indeed, n =
ρk(Sk) by Lemma 5.1.1. Hence, we assume n ≥ 2 in what follows. Let p0 be the intersection
point of C1, . . . , Cn on Sk. Then we notice that p0 is k-rational and singular on Sk (see Proof
of Theorem 1.3.12 (2)(i)). Suppose ]Sing(Sk) > 1. Noting Lemma 2.5.3, there exist n-times of
singular points p1, . . . , pn on Sk, which lie in the same Gal(k/k)-orbit, such that pi ∈ Ci\{p0}
for i = 1, . . . , n. For each i = 1, . . . , n, there exist two irreducible components meeting C̃i on

∆̃k −
(∑n

i=1 C̃i

)
such that the images of these via σk are two points p0 and pi, respectively.

On the other hand, (C̃i · ∆̃− C̃i) ≤ 2 by Lemma 5.3.2, so that (C̃i · ∆̃− C̃i) = 2, which implies
Sing(Sk) ∩ Ci = {p0, pi}. Therefore, ]Sing(Sk) = n + 1 = ρk(Sk) + 1 by Lemma 5.1.1. This
completes the proof. 2

Proof of Theorem 1.3.12 (2)(ii). By Theorem 1.3.12 (2)(i), we can take a singular point on
Sk, which is k-rational, say p0. If ]Sing(Sk) ≤ 2, we see ]Sing(Sk) = ]Sing(S). In what follows,
we shall treat the case of ]Sing(Sk) ≥ 3. Then we know that all singular points except for p0
on Sk lie in the same Gal(k/k)-orbit (see Proof of Theorem 1.3.12 (2)(iii)). This implies that
Sing(S) = {p0}. This completes the proof. 2

5.4 Proof of Theorem 1.3.12 (3)

In this section, we will prove Theorem 1.3.12 (3). In other words, we shall classify the weighted
dual graphs corresponding to lc compactifications of the affine plane whose boundary divisor
is not geometrically irreducible. In fact, if this boundary divisor is geometrically irreducible,
the weighted dual graph corresponding to this lc compactification of the affine plane was
already classified by [42, 45]. The argument for proving this theorem is similar to [42, 45],
however, we need to consider a little technical argument. We firstly prepare the following
lemma generalizing Lemma 5.2.10 (2):

Lemma 5.4.1. Let (Ṽ ′, D̃′) be a compactification of the affine plane A2
k over k such that

Ṽ ′ is a smooth projective surface over k, D̃′
k
is an SNC-divisor. Assume that any irreducible

component of D̃′
k
has self-intersection number ≤ −2 except for exactly four irreducible com-

ponents E′
1, E

′
2, E

′
3 and E′

4 such that (E′
i)
2 = −1 for i = 1, . . . , 4, (E′

1 · E′
2) = (E′

3 · E′
4) = 1,
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and E′
1 and E′

4 lie in the same Gal(k/k)-orbit. Then the weighted dual graph of D̃′ is the
twig [1, 1, 1, 1] (for this notation, see Section 5.2).

Proof. Let ν ′ : (Ṽ ′
k
, D̃′

k
) → (V̌ ′, Ď′) be a sequence of contractions of (−1)-curves and subse-

quently (smoothly) contractible curves in Supp(D̃′
k
) such that the pair (V̌ ′, Ď′) is a minimal

normal compactification of A2
k
, where Ď′ := ν ′∗(D̃

′
k
). Since Supp(D̃′

k
) contains a (−1)-curve,

we notice ν ′ 6= id by Lemma 5.1.5 (1). Hence, we may assume (E′
1 · D̃′ − E′

1) ≤ 2.
Now, we suppose (E′

1 · E′
4) = 1. Then (E′

2 · E′
3) = 0 by Lemma 2.5.3, furthermore,

(E′
2 · D̃′ − E′

2) ≤ 2 and (E′
3 · D̃′ − E′

3) ≤ 2. Indeed, we can assume that ν ′ starts with E′
1

(resp. E′
4), so that ν ′∗(E

′
2) and ν ′∗(E

′
4) (resp. ν ′∗(E

′
3) and ν ′∗(E

′
1)) are curves on V̌ ′, which

transverselly meet each other. By Lemma 2.5.3, we then see that E′
2 (resp. E′

3) meets at

most one irreducible component on D̃′ − (E′
1 + E′

2) (resp. D̃
′ − (E′

3 + E′
4)) by Lemma 5.1.5

(1), namely, (E′
2 · D̃′ − E′

2) ≤ 2 and (E′
3 · D̃′ − E′

3) ≤ 2.
Hence, we may assume (E′

1 ·E′
4) = 0 in what follows. Indeed, if (E′

1 ·E′
4) = 1, we swap the

roles of the pairs (E′
1, E

′
2) and (E′

4, E
′
3). Moreover, since D̃′

k
is connected and has no cycle, we

may assume that E′
2 and E

′
3 are included in the same connected component of D̃′

k
−(E′

1+E
′
4).

Then we can assume that ν ′ starts with E′
1 +E′

4, so that ν ′∗(E
′
2) and ν

′
∗(E

′
3) are curves on V̌ ′

with self-intersection number ≥ 0. Hence, (ν ′∗(E
′
2) · ν ′∗(E′

3)) = 1 by Lemma 5.1.5 (3) and (4).
Meanwhile, by Lemma 2.5.3, we obtain (E′

2 ·E′
3) = 1 by the above assumption. Moreover, by

symmetry of the weighted dual graph of D̃′
k
, we can assume further (ν ′∗(E

′
2))

2 = (ν ′∗(E
′
3))

2.

By Lemma 5.1.5 (3) and (4), we then obtain ]Ď′ = 2 and (ν ′∗(E
′
2))

2 = (ν ′∗(E
′
3))

2 = 0. This

implies that the weighted dual graph of D̃′
k
is the twig [1, 1, 1, 1]. 2

The following result will play an important role in the proof of Theorem 1.3.12 (3):

Lemma 5.4.2. Let (Ṽ , D̃) be a compactification of the affine plane A2
k over k such that

Ṽ is smooth and D̃k is an SNC-divisor. Assume that (Ṽk, D̃k) is not a minimal normal

compactification of A2
k
. Moreover, letting Ẽ1, . . . , Ẽr be all (−1)-curves on Supp(D̃k), assume

further that they lie in the same Gal(k/k)-orbit and the union Ẽ :=
∑r

i=1 Ẽi is disjoint.

Hence, we obtain the contraction ν ′ : (Ṽ , D̃)→ (Ṽ ′, D̃′) of Ẽ defined over k by Lemma 5.1.5
(1). Then one of the following three situations holds:

(1) (Ṽ ′
k
, D̃′

k
) is a minimal normal compactification of A2

k
.

(2) The weighted dual graph of D̃′
k
is the twig either [1, 1,m] for some m ≥ 1 or [1, 1, 1, 1].

(3) Letting Ẽ′
1, . . . , Ẽ

′
r′ be all (−1)-curves on Supp(D̃′

k
), they lie in the same Gal(k/k)-orbit

and the union
∑r′

i=1 Ẽ
′
i is disjoint.

Proof. Letting xi := ν ′
k
(Ei) for i = 1, . . . , r, we see that x1, . . . , xr lie in the same Gal(k/k)-

orbit by the assumption. Moreover, x1 lies in at most two (−1)-curves in Supp(D̃′
k
) because

of (Ẽ1 · D̃ − Ẽ1) ≤ 2.
Assume that x1 lies in no (−1)-curve in Supp(D̃′

k
). Then Supp(D̃′

k
) contains no (−1)-

curve. Hence, (Ṽ ′
k
, D̃′

k
) is a minimal normal compactification of A2

k
.

Assume that x1 lies in exactly two (−1)-curves, say Ẽ′
1 and Ẽ′

2, in Supp(D̃′
k
). At first, we

consider the case that Ẽ′
1 is defined over k. Then we see x1, . . . , xr ∈ Ẽ′

1 since these points

lie in the same Gal(k/k)-orbit. Thus, we obtain (Ẽ′
1 · D̃′ − Ẽ′

1) ≤ 2 by Lemma 5.3.4. In

particular, r ≤ 2. If r = 1, then Supp(D̃′
k
) contains only two (−1)-curves Ẽ′

1 and Ẽ′
2. Hence,
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the weighted dual graph of D̃′
k
is the twig [1, 1,m] for some m ≥ 2 by Lemma 5.2.11. If

r = 2, letting ν ′′ : Ṽ ′
k
→ Ṽ ′′ be the contraction of Ẽ′

1 over k, then (Ṽ ′′, D̃′′) is a minimal

normal compactification of A2
k
. Moreover, Supp(D̃′′) contains exactly two 0-curves, so that

the weighted dual graph of D̃′′ is the twig [0, 0] by Lemma 5.1.5 (4). This implies that the
weighted dual graph of D̃′

k
is the twig [1, 1, 1]. Next, we consider the case that Ẽ′

1 and Ẽ′
2 are

not defined over k. Since (Ṽ ′
k
, D̃′

k
) is not a minimal normal compactification of A2

k
, we have

either (Ẽ′
1 · D̃′ − Ẽ′

1) ≤ 2 or (Ẽ′
2 · D̃′ − Ẽ′

2) ≤ 2. Moreover, each (−1)-curve on Supp(D̃′
k
) is

included in the Gal(k/k)-orbit of either Ẽ′
1 or Ẽ′

2 since x1, . . . , xr lie in the same Gal(k/k)-

orbit. Suppose that x2 ∈ Ẽ′
1. Then there exists a (−1)-curve Ẽ′

3 other than Ẽ′
2 in Supp(D̃′

k
)

meeting Ẽ′
1 such that Ẽ′

2 and Ẽ′
3 lie in the same Gal(k/k)-orbit. Since Ẽ′

1 is not defined over

k, there exists a (−1)-curve Ẽ′
4 other than Ẽ′

1 in Supp(D̃′
k
) lying in the Gal(k/k)-orbit of Ẽ′

1.

Moreover, there exists a (−1)-curves Ẽ′
5 in Supp(D̃′

k
) lying in the Gal(k/k)-orbit of Ẽ′

2 such

that (Ẽ′
4 · Ẽ′

5) = 1 and Ẽ′
5 6= Ẽ′

2, Ẽ
′
3. If (Ẽ

′
1 · Ẽ′

4) = 0, then the direct images of Ẽ′
2, Ẽ

′
3 and Ẽ′

5

by the contraction of Ẽ′
1 + Ẽ′

4 have self-intersection number ≥ 0. It contradicts Lemma 5.1.5

(4). If (Ẽ′
1 · Ẽ′

4) = 1, since (Ẽ′
2 · D̃′

k
− Ẽ′

2) ≤ 2 and D̃k has no cycle, there exists a (−1)-curve
Ẽ′

6 other than Ẽ′
5 meeting Ẽ′

4 in Supp(D̃′
k
) and lying in the Gal(k/k)-orbit of Ẽ′

2, moreover,

Ẽ′
6 6= Ẽ′

2, Ẽ
′
3 and the union Ẽ′

2 + Ẽ′
3 + Ẽ′

5 + Ẽ′
6 is disjoint. Then the direct images of Ẽ′

1 and

Ẽ′
4 by the contraction of Ẽ′

2 + Ẽ′
3 + Ẽ′

5 + Ẽ′
6 are two 1-curves. It contradicts Lemma 5.1.5

(3) and (4). Hence, Supp(D̃′
k
) contains exactly 2r-times of (−1)-curves Ẽ′

1, . . . , Ẽ
′
2r such that

xi lies on Ẽ′
2i−1 and Ẽ′

2i for i = 1, . . . , r. Then we note r 6= 1. Otherwise, Ẽ′
1 and Ẽ′

2 lie in

the same Gal(k/k)-orbit, however, this is impossible by Lemma 5.2.11. Meanwhile, suppose
r ≥ 3. Then we may assume (Ẽ′

1 · D̃′
k
− Ẽ′

1) ≤ 2, and Ẽ′
1, Ẽ

′
3 and Ẽ′

5 lie in the same Gal(k/k)-

orbit. If the union Ẽ′
1 + Ẽ′

3 + Ẽ′
5 is disjoint, then the direct image of D̃′

k
by the contraction

of Ẽ′
1 + Ẽ′

3 + Ẽ′
5 contains three 0-curves. It contradicts Lemma 5.1.5 (4). Otherwise, we may

assume (Ẽ′
1 ·Ẽ′

3) = 1. Then (Ẽ′
1 ·Ẽ′

5) = 0 since Ẽ′
1 meets only Ẽ′

2 and Ẽ
′
3 on Supp(D̃′

k
), so that

the direct image of D̃′
k
by the contraction of Ẽ′

1 + Ẽ′
5 contains three 0-curves. It contradicts

Lemma 5.1.5 (4). Hence, we obtain r = 2. Thus, the weighted dual graph of D̃′
k
is the twig

[1, 1, 1, 1] by Lemma 5.4.1.
Assume that x1 lies in exactly one (−1)-curve in Supp(D̃′

k
). Let Ẽ′

1, . . . , Ẽ
′
r′ be all (−1)-

curves on Supp(D̃′
k
). Then each xi lies in exactly one (−1)-curve in Supp(D̃′

k
) for i = 1, . . . , r,

so that Ẽ′
1, . . . , Ẽ

′
r′ lie the same Gal(k/k)-orbit. In what follows, we will show that the union∑r′

i=1 Ẽ
′
i is disjoint. Suppose on the contrary that Ẽ′

1 and Ẽ
′
2 transversely meet at a point, say

x. By the assumption, we obtain x 6= xi for any i = 1, . . . , r. On the other hand, we obtain
r′ > 2. Indeed, otherwise the weighted dual graph of D̃′

k
is the twig [1, 1,m] for some m ≥ 2

by Lemma 5.2.11, however, it contradicts that Ẽ′
1 and Ẽ′

2 lie in the same Gal(k/k)-orbit.

Noticing that the Gal(k/k)-orbit of Ẽ′
1+ Ẽ

′
2 has no cycle by Lemma 2.5.3, we thus have r′ ≥ 4

and the union
∑r′

i=1 Ẽ
′
i is not connected. Hence, we may assume (Ẽ′

3 · Ẽ′
4) = 1. Now, note

(Ẽ′
1+ Ẽ

′
2 · Ẽ′

3+ Ẽ
′
4) = 0. On the other hand, since D̃′

k
is connected, we may assume that there

exists a connected divisor D̃′
1,3 on Ṽ ′

k
such that Supp(Ẽ′

1 + Ẽ′
3) ⊆ Supp(D̃′

1,3) ⊆ Supp(D̃′
k
).

Moreover, since Ẽ′
1+ Ẽ′

2 and Ẽ′
3+ Ẽ′

4 lie in the same Gal(k/k)-orbit, there exists a connected

divisor D̃′
2,4 lying the Gal(k/k)-orbit of D̃′

1,3 such that Supp(Ẽ′
2 + Ẽ′

4) ⊆ Supp(D̃′
2,4) ⊆
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Supp(D̃′
k
). Then D̃′

1,3 + D̃′
2,4 has a cycle by construction. This contradicts Lemma 2.5.3.

Thus,
∑r′

i=1 Ẽ
′
i is a disjoint union.

This completes the proof. 2

Now, let (S,∆) be an lc compactification of the affine plane A2
k over k (see Definition 5.1.2,

for this definition) such that ρk(Sk) > 1, and let {Ci}1≤i≤n be all irreducible components of
the divisor ∆k on Sk. By Lemma 5.1.1, note that n = ]∆k, and C1, . . . , Cn lie in the same

Gal(k/k)-orbit. Hence, n ≥ 2 by the assumption. Let σ : S̃ → S be the minimal resolution
over k and let ∆̃ be the divisor on S̃ defined by ∆̃ := σ∗(∆)red.. Notice that ∆̃k is an
SNC-divisor by Theorem 1.3.12 (1).

Let C̃i be the proper transform of Ci by σk. By Lemma 5.3.2, any C̃i is a (−1)-curve
on S̃k, furthermore, we obtain a contraction contE1 : (S̃1, ∆̃1) := (S̃k, ∆̃k) → (S̃2, ∆̃2 :=

contE1,∗(∆̃1)) of E1 :=
∑n

i=1 C̃i. If (S̃2,k, ∆̃2,k) satisfies the situation (1) in Lemma 5.4.2, then

we put ν := contE1 . If (S̃2,k, ∆̃2,k) satisfies the situation (2) in Lemma 5.4.2, let E2 be the

union of (−1)-curves, which are all terminal component of ∆̃2,k, and let contE2 : (S̃2, ∆̃2) →
(S̃3, ∆̃3 := contE2,∗(∆̃2)) be the contraction of E2, which is defined over k, hence, we put
ν := contE1◦contE2 . Otherwise, by using Lemma 5.4.2 repeatably, we can construct a sequence
of contractions contEi ◦ · · · ◦ contE1 : (S̃k, ∆̃k) = (S̃1, ∆̃1)→ (S̃2, ∆̃2 = contE1,∗(∆̃1))→ · · · →
(S̃i+1, ∆̃i+1 := contEi,∗(∆̃i)) of Gal(k/k)-orbits of (−1)-curves over k such that (S̃i+1,k, ∆̃i+1,k)
satisfies either situation (1) or (2) in Lemma 5.4.2, where Ej is the disjoint union of all

(−1)-curves in Supp(∆̃j,k) defined over k for j = 1, . . . , i. Hence, we obtain a sequence

ν = contEℓ
◦ · · · ◦ contE1 : (S̃k, ∆̃k) = (S̃1, ∆̃1) → (S̃2, ∆̃2) → · · · → (S̃ℓ+1, ∆̃ℓ+1) =: (Š, ∆̌)

of contractions of Gal(k/k)-orbit of (−1)-curves and subsequently (smoothly) contractible
curves in Supp(∆̃k) such that the pair (Š, ∆̌) is a minimal normal compactification of A2

k
.

Notice that ν is defined over k since each contEi is defined over k.
By construction of ν, we obtain the following lemma:

Lemma 5.4.3 (cf. [45, Lemma 4.5]). With the notation and assumptions as above, then we
obtain ]∆̌k ≤ 2. Hence, (Šk, ∆̌k) is either (P2

k
, L) or (Fm,Mm + F ) for some non-negative

integer m 6= 1, where L is a line on P2
k
and Mm (resp. F ) is the minimal section (resp. a

fiber) of the structure morphism Fm → P1
k
.

Proof. Suppose that ]∆̌k ≥ 3. Since (Šk, ∆̌k) is a minimal normal compactification of A2
k
,

we see that ∆̌k contains two components Γ0 and Γ+ such that (Γ0)
2 = 0, (Γ+)

2 > 0 and
(Γ0 ·Γ+) = 1 by Lemma 5.1.5 (4). Moreover, Γ0 and Γ+ are defined over k, respectively. Since

ν is defined over k, so is ν
(∑n

i=1 C̃i

)
. Hence, we know that (ν−1

∗ (Γ0))
2 ≥ −1 or (ν−1

∗ (Γ+))
2 ≥

−1. However, this is a contradiction since any irreducible component of ∆̃k −
∑n

i=1 C̃i has
self-intersection number ≤ −2. 2

Let us put νi := contEℓ
◦ · · · ◦ contEi for i = 1, . . . , `. By Lemma 5.4.3, we see that

(Ei,j · ν∗i (∆̌)red. − Ei,j) is equal to 1 or 2 for any irreducible component Ei,j of Ei.
By Theorem 1.3.12 (2)(ii) and Lemma 5.1.1, Sk contains exactly one singular point p0,

which is k-rational. Moreover, noticing ]Sing(Sk) = n + 1 or 1 by Theorem 1.3.12 (2)(iii),
let p1, . . . , pn be singular points other than p0 on Sk such that pi ∈ Ci for i = 1, . . . , n (if it

exists) and let ∆̃(i) be the reduced exceptional divisor of the minimal resolution at pi on Sk for

i = 0, . . . , n, where we define ∆̃(i) := 0 if pi does not exist. Namely, ∆̃k =
∑n

i=0 ∆̃
(i)+

∑n
i=1 C̃i.

By the above argument, we obtain the following lemma:

105



Lemma 5.4.4 (cf. [45, Lemma 4.6]). Let the notation and the assumptions be the same as
above. For any i = 1, . . . , n, the following three assertions hold:

(1) If ]Sing(Sk) = n+ 1, then the dual graph of ∆̃(i) is a linear chain.

(2) If ]Sing(Sk) = n+ 1, then C̃i meets a terminal component of ∆̃(i).

(3) Any irreducible component Γ̃0 of ∆̃(0) with (Γ̃0 · ∆̃(0) − Γ̃0) ≥ 3 does not meet C̃i.

Now, the singular point p0 has the following three possibilities:

(I) p0 is a cyclic quotient singular point;

(II) p0 is a non-cyclic quotient singular point;

(III) p0 is a log canonical but not a quotient singular.

In order to determine the weighted dual graph of ∆̃k, we will consider the above three cases
(I)–(III) separately according to the following Subsections 5.4.1–5.4.3.

5.4.1 Case (I): p0 is a cyclic quotient singularity

Assume that p0 is a cyclic quotient singular point. Then we will consider the following three
Subcases separately:

(I-1) ∆̃k is not a linear chain and any irreducible component of ∆̃(0) is defined over k;

(I-2) ∆̃k is not a linear chain and there exists an irreducible component of ∆̃(0), which is not
defined over k;

(I-3) ∆̃k is a linear chain.

Subcase (I-1)

Assume that ∆̃k is not a linear chain and any irreducible component of ∆̃(0) is defined over

k. Then notice that there exists exactly one irreducible component Γ̃ of ∆̃(0) such that∑n
i=1(Γ̃·C̃i) = n. In particular, we see (Γ̃·∆̃−Γ̃) ≥ 3. Thus, ν must first repeat the contraction

until all irreducible components in Supp
(∑n

i=1 ∆̃
(i)
)
for i = 1, . . . , n are contracted. In other

words, ∆̃(i) is a linear chain consisting entirely of (−2)-curves for i = 1, . . . , n (see also Lemma
5.4.4). By the above argument combined with Lemma 5.1.5 and Proposition 5.2.13 (1), we
see that the weighted dual graph of ∆̃k is given as (i) (i = 1, 2, 3) in Appendix A.2, where
n ≥ 3 in the case of (1).

Subcase (I-2)

Assume that ∆̃k is not a linear chain and there exists an irreducible component of ∆̃(0) not

defined over k. Then there exist exactly two irreducible components Γ̃1 and Γ̃2 of ∆̃(0) such
that (Γ̃i · ∆̃ − Γ̃i) ≥ 3 for i = 1, 2 by noting Lemma 5.2.12 (1), in particular, Γ̃1 and Γ̃2 lie
in the same Gal(k/k)-orbit. By a similar argument to Subcase (I-1), ∆̃(i) is a linear chain
consisting entirely of (−2)-curves for i = 1, . . . , n. Hence, by Lemma 5.1.5 and Proposition
5.2.13 (2) and (3), we see that the weighted dual graph of ∆̃k is given as (i) (i = 4, 5, 6, 7) in
Appendix A.2, where n′ := n

2 ≥ 2 in the case of (4).
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Subcase (I-3)

Assume that ∆̃k is a linear chain. Then we immediately see that n = 2 and both C̃1 and C̃2

meet a distinct terminal component in ∆̃(0), respectively. Thus, by Proposition 5.2.13 (2) and
(3), we see that the weighted dual graph of ∆̃k is given as (i) (i = 8, 9, 10) in Appendix A.2.

5.4.2 Case (II): p0 is a non-cyclic quotient singularity

Assume that p0 is a non-cyclic quotient singular point. In this case, Lemma 5.4.4 and the
following lemma play a useful role:

Lemma 5.4.5. Let the notation and the assumptions be the same as above. For any irre-
ducible component Γ̃ of ∆̃(0) satisfying n′ := (Γ̃ · C̃1+ · · ·+ C̃n) > 0, then we have (Γ̃)2 < −n′.

Proof. Suppose that (Γ̃)2 ≥ −n′. By the construction of contE1 , we have (contE1,∗(Γ̃))
2 ≥

−n′ +n′ = 0. This means that any irreducible component of ∆̃(0) is not contract by ν. Thus,
∆̌ is not a linear chain, which is a contradiction to Lemma 5.1.5 (1). 2

Note that the classification of quotient singularities of dimension two is well-known (see
Lemma 2.3.9).

By the assumption, ∆̃(0) is not a linear chain, in particular, there is exactly one irreducible
component Γ̃0 of ∆̃(0) such that (Γ̃0 · ∆̃(0) − Γ̃0) = 3. On the other hand, since ∆̌ is a linear
chain by Lemma 5.1.5 (1), ν is factorized ν ′′ ◦ ν ′ such that Γ̃′

0 6= 0 and (Γ̃′
0 · ∆̃′ − Γ̃′

0) ≤ 2,

where Γ̃′
0 := ν ′∗(Γ̃0) and ∆̃′ := ν ′∗(∆̃k). We can assume that ν ′ is defined over k since ν is

a sequence of contractions of the Gal(k/k)-orbit consisting of (−1)-curves and subsequently
Gal(k/k)-orbits consisting of (smoothly) contractible curves in Supp(∆̃k). In other words,

any irreducible component ∆̃′ except for Γ̃′
0 has self-intersection number ≤ −2. Hence, ν ′

is uniquely determined. Now, we will consider the following three Subcases (II-1)–(II-3)
separately:

(II-1) (Γ̃′
0 · ∆̃′ − Γ̃′

0) = 2 holds;

(II-2) (Γ̃′
0 · ∆̃′ − Γ̃′

0) = 1 holds;

(II-3) (Γ̃′
0 · ∆̃′ − Γ̃′

0) = 0 holds.

Subcase (II-1)

At first, we shall treat the case of (Γ̃′
0 · ∆̃′ − Γ̃′

0) = 2. By virtue of ]∆̃′ ≥ 3 combined with

Lemma 5.1.5 (4), we see that Γ̃′
0 is a (−1)-curve. Thus, by Proposition 5.2.13 (1) and Lemmas

5.4.4 and 5.4.5 combined with the classification of quotient singularities of dimension two, we
see that the weighted dual graph of ∆̃k is given as (i) (i = 11, . . . , 17) in Appendix A.2.

Subcase (II-2)

Next, we shall treat the case of (Γ̃′
0 · ∆̃′ − Γ̃′

0) = 1. By using the classification of quotient

singularities of dimension two, the weighted dual graph of ∆̃(0) is then one of the following
three weighted dual graphs, where mi and m are integers such that mi ≥ 2 and m ≥ 2:

◦
◦

OOO
OOO

−m1◦ oo
ooo

o ◦
−m2

· · · ◦
−mr

◦−3
◦

OOO
OOO

−m◦ oo
ooo

o

−3
◦

◦ ◦
◦

OOO
OOO

O

−m◦ oo
ooo

o

◦
◦
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Note that Γ̃′
0 is not a (−1)-curve by Lemma 5.2.9 (2). Hence, we obtain ν ′ = ν. Moreover, we

see that ]∆̃′ = 2 and Γ̃′
0 is a 0-curve by Lemma 5.1.5 (3) and (4). Thus, by Lemmas 5.4.4 and

5.4.5, we see that the weighted dual graph of ∆̃k is given as (i) (i = 18, . . . , 25) in Appendix
A.2.

Subcase (II-3)

Finally, we shall treat the case of (Γ̃′
0 · ∆̃′ − Γ̃′

0) = 0. By using the classification of quotient

singularities of dimension two, the weighted dual graph of ∆̃(0) is then as follows, where m is
an integer with m ≥ 2:

◦ −m◦
◦ OOOOOO

◦ oo
ooo

o

By the assumption, we see ν = ν ′ and ]∆̃′ = 1. In particular, Γ̃′
0 is a 1-curve by Lemma 5.1.5

(2). Thus, by Lemmas 5.4.4 and 5.4.5, we see that the weighted dual graph of ∆̃k is given as
(26) or (27) in Appendix A.2.

5.4.3 Case (III): p0 is a log canonical but not a quotient singularity

Assume that p0 is a log canonical but not a quotient singular point. Note that the classification
of log canonical singularities of dimension two is known (see Theorem 2.3.11), where it is
enough to treat only the rational singularities (cf. [45, Theorem 1.1(2)]). By the classification
of rational log canonical but not quotient singularities of dimension two, there exists at least
one irreducible component Γ̃0 of ∆̃(0) satisfying (Γ̃0 · ∆̃(0) − Γ̃0) ≥ 3. More precisely, one of
the following three Subcases holds:

(III-1) There exists exactly one irreducible component Γ̃0 of ∆̃
(0) satisfying (Γ̃0 ·∆̃(0)− Γ̃0) = 4.

(III-2) There exist exactly two irreducible components Γ̃0,1 and Γ̃0,2 satisfying (Γ̃0,i · ∆̃(0) −
Γ̃0,i) = 3 for i = 1, 2.

(III-3) There exists exactly one irreducible component Γ̃0 of ∆̃
(0) satisfying (Γ̃0 ·∆̃(0)− Γ̃0) = 3.

Notice that Lemma 5.4.5 works verbatim for Subcases (III-1)–(III-3). In what follows, we will
consider Subcases (III-1)–(III-3) separately.

Subcase (III-1)

Assume that there exists exactly one irreducible component Γ̃0 of ∆̃(0) satisfying (Γ̃0 · ∆̃(0) −
Γ̃0) = 4. Then the weighted dual graph of ∆̃(0) is as follows, where m is an integer with
m > 2:

◦
−m

◦ OOOOOO

◦ oo
ooo

o

◦oooooo

◦
OOO

OOO

By the similar argument to Subsection 5.4.2, ν is factorized ν ′′ ◦ ν ′ such that ν ′ is as in
Subsection 5.4.2. In particular, we can assume that any irreducible component ∆̃′ except for
Γ̃′
0 has self-intersection number ≤ −2, where ∆̃′ := ν ′∗(∆̃k) and Γ̃′

0 := ν ′∗(Γ̃0). By Lemma
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5.4.4 (3), C̃i meets a terminal component of ∆̃(0) for any i = 1, . . . , n. Moreover, n ≤ 4 by
Lemma 5.4.5, in particular, n 6= 2 by Lemmas 5.1.5 and 5.2.12 (1). In what follows, we shall
consider the two cases of n = 3 and n = 4 separately.

If n = 3, then we see ν ′ = ν and ]∆̃′ = 2. Moreover, Γ̃′
0 is a 0-curve by Lemma 5.1.5 (3).

Therefore, we see that the weighted dual graph of ∆̃k is given as (28) or (29) in Appendix
A.2.

If n = 4, then we see ν ′ = ν and ]∆̃′ = 1. Moreover, Γ̃′
0 is a 1-curve by Lemma 5.1.5 (2).

Therefore, we see that the weighted dual graph of ∆̃k is given as (30) or (31) in Appendix
A.2.

Subcase (III-2)

Assume that there exist exactly two irreducible components Γ̃0,1 and Γ̃0,2 of ∆̃(0) satisfying

(Γ̃0,i · ∆̃(0) − Γ̃0,i) = 3 for i = 1, 2. Then the weighted dual graph of ∆̃(0) is as follows, where
each mi is an integer with mi ≥ 2 (furthermore, at least one mi is strictly more than 2 and
r > 1):

◦
−m1

◦ OOOOOO

◦ oo
ooo

o · · · ◦
−mr

◦oooooo

◦
OOO

OOO

Since ∆̌ is a linear chain by Lemma 5.1.5 (1), ν is factorized ν ′′ ◦ ν ′ such that Γ̃′
0,i 6= 0 for

i = 1, 2 and (Γ̃′
0,1 · ∆̃′ − Γ̃′

0,1) ≤ 2 by replacing Γ̃0,1 and Γ̃0,2 as needed, where Γ̃′
0,i := ν ′∗(Γ̃0,i)

for i = 1, 2 and ∆̃′ := ν ′∗(∆̃k). For the same reason as in Subsection 5.4.2, we can assume

that ν ′ is defined over k. Then ν ′ is uniquely determined, and any irreducible component ∆̃′

except for Γ̃′
0,i for i = 1, 2 has self-intersection number ≤ −2. By noticing Γ̃0,i 6= 0 for i = 1, 2

combined with Lemma 5.4.4(3), C̃i meets a terminal component of ∆̃(0) for any i = 1, . . . , n.
Moreover, n ≤ 4 by Lemma 5.4.5, in particular, n 6= 3 by considering the symmetry of the
weighted dual graph of ∆̃(0). In what follows, we shall consider the two cases of n = 2 and
n = 4 separately.

In the case of n = 2, suppose that the weighted dual graph of ∆̃(0)+
∑2

i=1 C̃i is as follows:

◦
−m1

◦ OOOOOO
•

◦ oo
ooo

o

•
· · · ◦

−mr

◦oooooo

◦
OOO

OOO

Then we see that (Γ̃′
0,1 ·∆̃′− Γ̃′

0,1) = 1 and ∆̃′ is not a linear chain, so that Γ̃′
0,1 is a (−1)-curve.

Moreover, r > 2 by Lemma 5.2.9 (3). Namely, the weighted dual graph of ∆̃′ is as follows:

• ◦
−m2

· · · ◦
−mr

◦oooooo

◦
OOO

OOO

By contracting of ∆̃′−Γ̃′
0,1 over k, we have a log del Pezzo surface of rank one with exactly one

quotient singular point of type D, which is a contradiction to [41, Theorem 3.1(1)]. Hence,
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the weighted dual graph of ∆̃(0) +
∑2

i=1 C̃i is as follows:

◦
−m1

◦ OOOOOO
•

◦ oo
ooo

o · · · ◦
−mr

◦oooooo
•

◦
OOO

OOO

Then we see that ]∆̃′ ≥ 4 and ∆̃′ is a linear chain. Moreover, Γ̃′
0,i is a (−1)-curve for i = 1, 2

by noting Lemma 5.1.5 (4). Thus, the weighted dual graph of ∆̃′ satisfies the condition of
Proposition 5.2.13 (2) or (3). In particular, by Proposition 5.2.13 (2) and (3) and Lemma
5.4.4 we see that the weighted dual graph of ∆̃k is given as (i) (i = 32, 33, 34) in Appendix
A.2.

In the case of n = 4, note that Γ̃′
0,i is not a (−1)-curve for i = 1, 2 by Lemma 5.2.9 (2).

Hence, we obtain ν ′ = ν. Moreover, we see that ]∆̃′ = 2 and Γ̃′
0,i is a 0-curve for i = 1, 2 by

Lemma 5.1.5 (3) and (4). Therefore, by Lemma 5.4.4 we see that the weighted dual graph of
∆̃k is given as (35) in Appendix A.2.

Subcase (III-3)

Assume that there exists exactly one irreducible component Γ̃0 of ∆̃(0) satisfying (Γ̃0 · ∆̃(0) −
Γ̃0) = 3. By the similar argument as in Subsection 5.4.2 combined with the classification of
rational log canonical singularities of dimension two, we see that the weighted dual graph of
∆̃k is given as (i) (i = 36, . . . , 52) in Appendix A.2.

The argument in Subsections 5.4.1–5.4.3 completes the proof of Theorem 1.3.12 (3).

5.5 Applications of Theorem 1.3.12

5.5.1 Existing conditions for the affine plane in lc del Pezzo surfaces of
rank one

In this subsection, we shall prove Theorems 1.3.14 and 1.3.15 by applying Theorem 1.3.12.
Let S be an lc del Pezzo surface of rank one defined over k such that Sing(Sk) 6= ∅, and let

σ : S̃ → S be the minimal resolution over k.
At first, Theorem 1.3.14 can be shown as follows:

Proof of Theorem 1.3.14. Notice that (A) implies (B) in Theorem 1.3.14 is obvious by Theo-
rem 1.3.12 (3). Hence, we shall prove the converse of this. Assume that there exists a reduced
effective divisor ∆̃ on S̃ as in Theorem 1.3.14 (B). By the configuration of the weighted
dual graph of ∆̃, we can construct the birational morphism ν : S̃ → Š over k such that
S̃\Supp(∆̃) ' Š\Supp(∆̌) and the weighted dual graph of ∆̌ is either:

◦
1

or ◦
0

◦
m

(m 6= −1)

(see also Example 5.5.2, for an example on the construction of ν), where ∆̌ := ν∗(∆̃). Mean-
while, letting ∆ := σ∗(∆̃), we see S̃\Supp(∆̃) ' S\Supp(∆) since the exceptional locus of σ
is included in Supp(∆̃). Moreover, since ∆ is Q-ample because of ρk(S) = 1, we know that
S\Supp(∆) is affine by [27, Theorem 1]. By Lemma 5.1.6, we thus obtain Šk\Supp(∆̌k) ' A2

k
.

Since there is no non-trivial k-form of A2
k
([33]), we then have Š\Supp(∆̌) ' A2

k. Therefore,
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S contains the affine plane S\Supp(∆) ' A2
k. This implies that the assertion (A) in Theorem

1.3.14 holds. 2

Remark 5.5.1. Notice that each weighted dual graph in [42, Appendix C] (except for (1)),
[45, Fig. 1] or Appendix A.2 includes at least one vertex corresponding to a (−1)-curve.
Hence, it is quite subtle to determine whether S contains the affine plane or not by using only
singularities on Sk. In fact, we can construct some examples that two lc del Pezzo surfaces
of rank one with the same singularities such that one contains the affine plane but the other
does not (see Subsection 5.6.3).

Example 5.5.2. With the notation as above, we shall consider a case that there exists a
reduced effective divisor ∆̃ on S̃ such that the exceptional locus of σ is included in Supp(∆̃)
and the weighted dual graph of ∆̃ is as (21) in Appendix A.2. Let C̃1, . . . , C̃8 be all irreducible
component of ∆̃k named as follows:

◦̃
C8

◦̃
C7

◦ GGGGGGG

C̃5

−3
•̃
C3

◦̃
C1

◦ w
www

www

−3

C̃6

•̃
C4

◦̃
C2

By the symmetry of the above graph, C̃1 + C̃2, C̃3 + C̃4, C̃5 + C̃6, C̃7 and C̃8 are defined over
k, respectively. Then we construct the compositions of successive contractions ν : S̃ → Š of a
disjoint union C̃3+ C̃4, that of the images of C̃1+ C̃2 and finally that of the images of C̃5+ C̃6.
By construction, ν is defined over k. Moreover, putting ∆̌ := ν∗(∆̃), then ∆̌k consists of two

irreducible components Č7 := ν∗(C̃7) and Č8 := ν∗(C̃8) such that Č7 and Č8 are a 0-curve
and a (−2)-curve, respectively. Since Š\(Č7 ∪ Č8) is affine by [27, Theorem 1] combined with
Š\(Č7 ∪ Č8) ' S\σ∗(∆̃), we obtain Šk ' F2 and Šk\(Č7,k ∪ Č8,k) ' A2

k
by Lemma 5.1.6.

Furthermore, we see Š ' F2 and Š\(Č7 ∪ Č8) ' A2
k by [33]. Namely, S\Supp(σ∗(∆̃)) ' A2

k.

From now on, we shall prove Theorem 1.3.15 by using Theorem 1.3.14. Thus, assume that
S has at most Du Val singularities, and let d be the degree of S, i.e., d := (−KS)

2. Then
Theorem 1.3.15 can be shown as follows:

Proof of Theorem 1.3.15. We shall consider the two cases of ρk(Sk) = 1 or ρk(Sk) > 1 sepa-
rately.

In the case of ρk(Sk) = 1, then looking for all weighted dual graphs in [42, Appendix C]
such that each vertex corresponds to either a (−1)-curve or a (−2)-curve, we know that such
the graphs are summarized in (1), (14), (2), (3), (5), (7) and (12) in [42, Appendix C], where
we assume n = 2 for graphs (1), (14), (2) and (3), and that the subgraph A consists of only one
vertex corresponding to a (−2)-curve for graphs of (14) and (2). Notice that the these graphs
correspond to the pair of the degree and singularity type of Sk (8, A1), (6, A2 + A1), (5, A4),
(4, D5), (3, E6), (2, E7) and (1, E8), respectively. Moreover, for each graph except for (1), the
union of (−1)-curves corresponding to all vertices • is always defined over k. Meanwhile, for
the graph (1), a curve corresponding to the vertex with the weight zero is defined over k if
and only if the singularity type of S is type A+

1 over k, which is equivalent to S ' P(1, 1, 2).
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In the case of ρk(Sk) > 1, then looking for all weighted dual graphs in Appendix A.2 such
that each vertex corresponds to either a (−1)-curve or a (−2)-curve, we know that such the
graphs are summarized in (1), (2), (4), (5), (8), (18), (24) and (26) in Appendix A.2, where
we assume (t, n) = (0, 3) (resp. (t, n,m) = (0, 2, 2), (t, n′) = (0, 2), (t, n′) = (0, 1), m = 2)
for graphs of (1) (resp. (2), (4), (5), (18)) and that the subgraph A consists of only one
vertex corresponding to a (−2)-curve for graphs of (5) and (8). Notice that the these graphs
correspond to the pair of the degree and singularity type of Sk (6, A1) (with 3 lines), (6, A2),
(4, A2), (2, A6), (4, A2 + 2A1), (4, D4), (2, E6) and (3, D4), respectively. Moreover, for each
graph, the union of (−1)-curves corresponding to all vertices • is always defined over k.

By the argument in Subsection 4.2.2 (see also Table 4.1), we then note that the pair of
the degree and singularity type of Sk is (8, A1), (6, A2 + A1), (6, A2), (6, (A1)<) or (5, A4)
provided that d ≥ 5. Thus, by using Theorem 1.3.14 we obtain this assertion of Theorem
1.3.15. 2

Remark 5.5.3. Let S be a Du Val del Pezzo surface of rank one over k. If k is algebraically
closed, we can determine whether S contains the affine plane or not by using only the singular
type on Sk ([56, Theorem 1]). However, in general, it seems to need the singularity type on
Sk and further the degree. See also Example 5.6.4.

5.5.2 Application to singular del Pezzo fibrations

Let f : X → Y be a generically canonical del Pezzo fibration defined over C (see Definition
1.3.1) and let Xη be the generic fiber of f . By Lemma 1.2.2, recall that f admits a vertical
A2
C-cylinder (see Definition 1.2.1) if and only if Xη contains the affine plane A2

C(Y ). Hence, by
Theorem 1.3.15 we then obtain the following corollary:

Corollary 5.5.4. Let f : X → Y be a generically canonical del Pezzo fibration of degree
d ∈ {1, . . . , 6, 8} and let Xη be the generic fiber of f such that Sing(X

η,C(Y )
) 6= ∅. Then we

have the following:

(1) If d = 8, then f admits a vertical A2
C-cylinder if and only if the singularity type of

X
η,C(Y )

is A+
1 . (see Section 4.1, for this definition)

(2) If d = 5, 6, then f always admits a vertical A2
C-cylinder.

(3) If d ≤ 4, f admits a vertical A2
C-cylinder if and only if the pair of the degree d and the

singularity type of X
η,C(Y )

is one of the following:

(4, D5), (4, D4), (4, A2 + 2A1), (4, A2), (3, E6), (3, D4), (2, E7), (2, E6), (2, A6), (1, E8).

Remark 5.5.5. If a generically canonical del Pezzo fibration f : X → Y of degree d, whose
generic fiber Xη of f satisfies Sing(X

η,C(Y )
) = ∅, then by Theorem 1.2.4 we know that f

admits a vertical A2
C-cylinder if and only if d ≥ 8 and Xη has a C(Y )-rational point.

Example 5.5.6. Let O be a DVR of C(t) such that the maximal ideal of O is generated by
t and let X be the three-dimensional algebraic variety over C defined by:

X := (tw2 + xy3 + z4 + yzw = 0) ⊆ PO(1, 1, 1, 2) = Proj(O[x, y, z, w]).

Let f : X → Spec(O) be the structure morphism as an O-scheme and let η be the generic
point of Spec(O). Then the generic fiber Xη of f is an irreducible quartic hypersurface of the
weighted projective space given by:

Xη = (tw2 + xy3 + z4 + yzw = 0) ⊆ PC(t)(1, 1, 1, 2) = Proj(C(t)[x, y, z, w]).
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Then X
η,C(t) is a Du Val del Pezzo surface of degree 2 with exactly one singular point p :=

[1 : 0 :0 :0] of type E6. Note that the weighted dual graph of all (−1)-curves and (−2)-curves
on the minimal resolution of X

η,C(Y )
is as (11o) in [14, p. 349]. Hence, we see that Xη is of

rank one by straightforward calculation. Thus, f is a generically canonical del Pezzo fibration
of degree 2. Moreover, it admits a vertical A2

C-cylinder by Corollary 5.5.4 (see also Lemma
4.4.5).

Similarly, notice that Theorem 1.3.14 also provides a way to determine whether generically
lt del Pezzo fibrations and generically lc del Pezzo fibrations admit vertical A2

C-cylinders or
not.

5.6 Remarks on Theorem 1.3.12

5.6.1 Existence of lc compactifications of the affine plane

In this subsection, we shall discuss whether there exists indeed an lc compactification of
the affine plane corresponding to the weighted dual graph (i) in Appendix A.2 for each i =
1, . . . , 52.

At first, we consider the situation that an affine line ` defined over k meeting transversely
at exactly n-times of curves lying in the same Gal(k/k)-orbit. Letting a1, . . . , an be these
intersection points, we know that they lie in the same Gal(k/k)-orbit. This implies that the
minimal polynomial of a1 over k is of degree n.

Now, we prepare the following condition (∗) with respect to the base field k:

For any n ∈ Z>0, there exist an, bn ∈ k, which are not Galois conjugate over k, (∗)
such that their minimal polynomials over k are of degree 2 and n, respectively.

Letting A be one of the graphs in Appendix A.2, assume that there exists an lc compact-
ification (S,∆) of the affine plane A2

k corresponding to this graph A. In other words, letting

σ : S̃ → S be the minimal resolution and letting ∆̃ := σ∗(∆)red., then the weighted dual
graph of ∆̃k is the same as A. By Lemmas 5.1.1 and 5.3.2, we notice that all (−1)-curves,
which are included in Supp(∆̃k), lie in the same Gal(k/k)-orbit. Hence, we can completely

see the configuration of Gal(k/k)-orbits of each irreducible component of ∆̃k. More precisely,
one of the following four situations holds:

Situation 1: There exist connecting two vertices, which lie in the same Gal(k/k)-orbit.
Moreover, there exist exactly two vertices v1 and v2 such that these two vertices are con-
nected to n2-times of vertices respectively, in which 2n2-times of curves corresponding to
these vertices lie in the same Gal(k/k)-orbit, where n2 ≥ 2. Note that the following graphs
in Appendix A.2 show this situation:

• (4), (5), where n2 := n′ with n′ ≥ 2;

• (35), where n2 := 2.

Situation 2: There exist connecting two vertices, which lie in the same Gal(k/k)-orbit.
However, there is no vertices v1 and v2 as in Situation 1. Note that graphs (5) with n′ = 1,
(8) and (32) in Appendix A.2 show this situation.

Situation 3: There exists a unique vertex, which corresponds to a curve defined over k,
connecting n1-times of vertices corresponding to curves, which lie in the same Gal(k/k)-orbit,
where n1 ≥ 2. Moreover, there exist exactly n1-times of vertices v1, . . . , vn1 such that these
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n1-times of vertices are connected to n2-times of vertices respectively, in which n1n2-times of
curves corresponding to these vertices lie in the same Gal(k/k)-orbit, where n2 ≥ 2. Note
that the following graphs in Appendix A.2 show this situation:

• (6), (7), where (n1, n2) := (2, n′) with n′ ≥ 2;

• (20), (35), (45), where (n1, n2) := (2, 2);

• (37), where (n1, n2) := (2, 3);

• (48), where (n1, n2) := (3, 2).

Situation 4: There exists a unique vertex, which corresponds to a curve defined over k,
connecting n1-times of vertices corresponding to curves, which lie in the same Gal(k/k)-orbit,
where n1 ≥ 2. However, there is no vertices v1, . . . , vn1 as in Situation 3. Note that the
following graphs in Appendix A.2 show this situation:

• (1) (resp. (2), (3)), where n1 := n with n ≥ 3 (resp. n ≥ 2);

• (36), where n1 := 5;

• (14), (30), (31), where n1 := 4;

• (13), (26), (27), (28), (29), (49), (50), (51), (52), where n1 := 3;

• Otherwise, where n1 := 2.

Thus, if for any graph A one of those as in Appendix A.2 there exists an lc compactification
(S,∆) of the affine plane A2

k corresponding to this graph A, then the base field k satisfies the
condition (∗).

Example 5.6.1. Let (S,∆) be an lc comapctification of the affine plane A2
R over the real

number field R, let σ : S̃ → S be the minimal resolution over R and let us put ∆̃ := σ∗(∆)red..
Notice that R does not satisfy the condition (∗) because of Gal(C/R) ' Z/2Z. In particular,
the weighted dual graph of ∆̃C does not appear in the list of Situations 1 or 3. If the weighted
dual graph of ∆̃C occurs Situation 2, then this graph is one of (5) with n′ = 1, (8) and (32)
in Appendix A.2. If the weighted dual graph of ∆̃C occurs Situation 4, then this graph is one
of (5) with n′ = 1, (2)–(3) with n = 2, (6)–(7) with n′ = 1, (9)–(12), (15)–(19), (21)–(25),
(33)–(34), (38)–(44), (46) or (47) in Appendix A.2.

Conversely, assuming that k satisfies the condition (∗), let A be one of the graphs in
Appendix A.2. Then we can explicitly construct an lc compactification (S,∆) of the affine
plane A2

k. We shall explain the method of this construction. Let (Š, ∆̌) be a minimal normal
compactification of the affine plane A2

k over k according to the configuration of A as follows:

• If A is as the graph (1), (6), (7), (9), (10), (26), (27), (30), (31), (33), (34), (48), (49),
(50), (51) or (52) in Appendix A.2, then (Š, ∆̌) := (P2

k, L), where L is a general line on
Š ' P2

k;

• If A is as the graph (4), (5), (8), (32) or (35) in Appendix A.2, then Š is a k-form of
P1
k
× P1

k
of rank one and ∆̌ := F1 + F2, where F1 and F2 is a k-form of an irreducible

curve of type (1, 0) and (0, 1), respectively. Notice that ∆̌ is defined over k;

• If A is as the graph (11), (13), (14), (15), (16), (17), (20), (21), (22), (23), (24), (25), (28),
(29), (36), (37), (38), (39), (43) or (44) in Appendix A.2, then (Š, ∆̌) := (F2,M + F ),
where M and F is the minimal section and a general fiber of the structure morphism
F2 → P1

k over k;
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• If A is as the graph (12), (40), (41), (42), (45), (46) or (47) in Appendix A.2, then
(Š, ∆̌) := (F3,M +F ), where M and F is the minimal section and a general fiber of the
structure morphism F3 → P1

k over k;

• If A is as the graph (2), (3), (18) or (19) in Appendix A.2, then (Š, ∆̌) := (Fm,M +F ),
where M and F is the minimal section and a general fiber of the structure morphism
Fm → P1

k over k.

Then we can construct two birational morphisms ν : S̃ → Š and σ : S̃ → S over k such that
the weighted dual graph of ∆̃k is the same as A and (S,∆) is an lc compactification of the

affine plane A2
k, where ∆̃ := ν∗(∆̌)red. and ∆ := σ∗(∆̃). As for how to construct the above

two birational morphisms for concrete examples, see the following example (notice that we
can construct by the similar way for other cases):

Example 5.6.2. Assume that the base field k satisfies the condition (∗), and let A be the
weighted dual graph of ∆̃ is as (37) in Appendix A.2. Since (∗) holds, there exist two elements
a3, b3 ∈ k, which are not Galois conjugate over k, such that there are exactly two (resp. three)

elements a
(1)
3 , a

(2)
3 ∈ k (resp. b

(1)
3 , b

(2)
3 , b

(3)
3 ∈ k), which are Galois conjugates of a3 (resp. b3)

over k, where a
(1)
3 := a3 and b

(1)
3 := b3. Let P (t) ∈ k[t] be the minimal polynomial for a3

over k. Now, put Š := F2, and let F and M be a fiber and the minimal section of the
structure morphism Š ' F2 → P1

k over k, respectively. Then we shall take an affine open
neighborhood U ' Spec(k[x, y]) such that ` := F ∩ U ' (x = 0) ⊆ A2

k. Let ν ′ : Š′ → Šk be

the blow-up at two points (0, a
(i)
3 ) ∈ A2

k
for i = 1, 2. Note that ν ′ is defined over k. Then the

pullback ν ′−1(`) and the exceptional set E of ν ′ can be written by (u = 0) and (P (y) = 0) in
A1
k×P1

k = Spec(k[y])×Proj(k[u, v]). Hence, we can construct the blow-up ν ′′ : S̃ → Š′
k
at six

points a
(i)
3 × [1 :b

(j)
3 ] ∈ A1

k
× P1

k
for i = 1, 2 and j = 1, 2, 3. Noticing ν ′′ is defined over k, so is

ν := ν ′ ◦ ν ′′. Now, let Ẽ be the reduced exceptional divisor of ν, and put F̃ := ν−1
∗ (F ) and

M̃ := ν−1
∗ (M). Then the weighted dual graph of the reduced divisor ∆̃ := Ẽ + F̃ + M̃ on S̃

is as in A. Moreover, we know that ν ′′−1
∗ (E) + F̃ + M̃ can be contracted, hence, we obtain

this contraction σ : S̃ → S over k. By construction, letting ∆ := σ∗(∆̃), we see that (S,∆) is
certainly an lc compactification of A2

k.

5.6.2 Maximal number of singular points on lc compactifications of the
affine plane

Let (S,∆) be an lc compactification of the affine plane over k. If k = C, then ]Sing(Sk) ≤ 2
by Lemma 5.1.3. Meanwhile, by Theorem 1.3.12 (2)(iii) we see ]Sing(Sk) ≤ ρk(Sk)+1, which
can be regarded as a generalization of the case of k = k. In particular, assuming that k
satisfies (∗), for any positive integer n, there exists a log del Pezzo surface Sn of rank one
defined over k containing A2

k such that ]Sing(Sn,k) = n+1. Indeed, it follows from [42] (resp.
the weighted dual graph (2) in Appendix A.2) if n = 1 (resp. n ≥ 2). On the other hand, we
see ]Sing(Sk) ≤ 4 (resp. ]Sing(Sk) ≤ 5) if Sk has a non-cyclic quotient singular point (resp.
log canonical but not a quotient singular point) by Theorem 1.3.12 (3) (see also Appendix
A.2).

5.6.3 Converse of Theorem 1.3.12 (3)

Let S be an lc del Pezzo surface of rank one over k such that ρk(Sk) > 1, and let σ : S̃ → S
be the minimal resolution over k. By Theorem 1.3.12 (3), if S contains the affine plane A2

k,
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then there exists a reduced divisor ∆̃ on S̃ such that the weighted dual graph of ∆̃k is one
of the lists (1)–(52) in Appendix A.2. Now, we shall consider this converse. According to
Theorem 1.3.14, if there exists a reduced divisor ∆̃ on S̃ such that the exceptional set of σ is
included in Supp(∆̃), each irreducible component of ∆̃k is a rational curve and the weighted

dual graph of ∆̃k is one of the lists (1)–(52) in Appendix A.2, then S contains the affine plane
A2
k. Furthermore, we shall the following problem:

Problem 5.6.3 (cf. [42, Problem 1]). Let S be an lc del Pezzo surface of rank one over k.
Assume that the singularity type of Sk is given as one of the graphs in [42, Appendix C], [45,
Fig. 1] or Appendix A.2. Does then S contain the affine plane A2

k?

In the case of k = k, Problem 5.6.3 is not true in general ([42, §4]) but is true if S has
a singular point, which is not a cyclic quotient singularity, ([45, 46]) or S is a log del Pezzo
surface of the Gorenstein index ≤ 3 ([56, 44, 42]). On the other hand, in the case of k 6= k,
we find some counter-examples of Problem 5.6.3 as follows:

Example 5.6.4. Let S be a Du Val del Pezzo surface of rank one, let σ : S̃ → S be the
minimal resolution. Assume that Sk has only one singular point p of type E+

6 over k (see
Section 4.1, for this notation). Then the degree d := (−KS)

2 of S is equal to 1 or 2. If
d = 2, then S contains the affine plane A2

k since S̃k includes a reduced effective divisor with a
weighted dual graph as (24) in Appendix A.2. If d = 1, then S does not contain A2

k since it
does not contain any cylinder by Theorem 1.3.9 (3)(iv).

Example 5.6.5. Assume that there exist two elements in k such that their minimal polyno-
mials over k are of degree 2 and 4, respectively. Let us fix the Hirzebruch surface F3 of degree
3 defined over k, let M be the minimal section of the structure morphism π : F3 → P1

k. Let
F1, . . . , F4 be four fibers of π and let {xi,j}1≤i≤4, 1≤j≤2 be eight points on F3, which lie in the
same Gal(k/k)-orbit, such that xi,1 and xi,2 lie on the fiber Fi of π for i = 1, . . . , 4. Letting ν :

S̃ → F3 be a blow-up at {xi,j}1≤i≤4, 1≤j≤2, the weighted dual graph of ν∗(M+F1+· · ·+F4)red.
is as follows:

◦
−3

◦ TTTTTT
• ZZZZZ
• ddddd

◦ jjj
jjj• ZZZZZ

• ddddd

◦jjjjjj
•ddddd
•ZZZZ

Z

◦TT
TTTT •ddddd

•ZZZZ
Z

Let σ : S̃ → S be the contraction of ν−1
∗ (M + F1 + · · · + F4). By construction, S is then an

lc del Pezzo surface of rank one, which has a log canonical but not a quotient singular point.
In particular, the singularity type of Sk is the same singularity type as (30) in Appendix A.2,
however, S does not contain the affine plane A2

k by Theorem 1.3.12 (3).

Example 5.6.6. Assuming k = Q, let m be a positive integer, let C be the plane conic over
Q defined by (xz = y2) ⊆ P2

Q = Proj(Q[x, y, z]) and let x1, . . . , x2m+4 be points on CQ given

by xi := [1 : 2m+4
√
2ζi : m+2

√
2ζ2i] ∈ P2

Q for i = 1, . . . , 2m+ 4, where ζ := exp
(
π
√
−1

m+2

)
. Noticing

that the union
∑2m+4

i=1 xi is defined over Q, let ν : S̃ → P2
Q be a blow-up at x1, . . . , x2m+4

over Q. By construction, C̃ := ν−1
∗ (C) is a Q-form of (−2m)-curve. Hence, we obtain the

contraction σ : S̃ → S of C̃, so that S is a log del Pezzo surface of rank one over Q. Since
SQ has exactly one singular point, whose singularity type is the same as the singular point on

the weighted projective space P(1, 1, 2m) over Q, we see that S is of the Gorenstein index m.
However, S does not contain the affine plane A2

Q by Theorem 1.3.12 (3). On the other hand,
the weighted projective space P(1, 1, 2m) over Q is a log del Pezzo surface of rank one and of
the Gorenstein index m, and contains A2

Q.
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Appendix A

Classification lists

A.1 Types of weak del Pezzo surfaces

This Appendix summarizes all types of weak del Pezzo surfaces over algebraically closed fields
of characteristic zero (see Subsection 2.4.2, for the definition). We mainly refer to [18, 15, 69].

Degree 8 Degree 7
Singularities #Lines Singularities #Lines

A1 0 A1 2

Degree 6

Singularities #Lines Singularities #Lines Singularities #Lines

A2 +A1 1 A2 2 2A1 2

(A1)< 3 (A1)> 4

Degree 5

Singularities #Lines Singularities #Lines Singularities #Lines

A4 1 A3 2 A2 +A1 3

A2 4 2A1 5 A1 7

Degree 4

Singularities #Lines Singularities #Lines Singularities #Lines

D5 1 A3 + 2A1 2 D4 2

A4 3 A3 +A1 3 A2 + 2A1 4

4A1 4 (A3)< 4 (A3)> 5

A2 +A1 6 3A1 6 A2 8

(2A1)< 8 (2A1)> 9 A1 12

Degree 3

Singularities #Lines Singularities #Lines Singularities #Lines

E6 1 A5 +A1 2 3A2 3

D5 3 A5 3 A4 +A1 4

A3 + 2A1 5 2A2 +A1 5 D4 6

A4 6 A3 +A1 7 2A2 7

A2 + 2A1 8 4A1 9 A3 10

A2 +A1 11 3A1 12 A2 15

2A1 16 A1 21
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Degree 2

Singularities #Lines Singularities #Lines Singularities #Lines

E7 1 A7 2 D6 +A1 2

A5 +A2 3 D4 + 3A1 4 2A3 +A1 4

E6 4 D6 3 A6 4

D5 +A1 5 (A5 +A1)< 5 (A5 +A1)> 6

D4 + 2A1 6 A4 +A2 6 2A3 6

A3 +A2 +A1 7 A3 + 3A1 8 3A2 8

6A1 10 D5 8 (A5)< 7

(A5)> 8 D4 +A1 9 A4 +A1 10

A3 +A2 10 (A3 + 2A1)< 11 (A3 + 2A1)> 12

2A2 +A1 12 A2 + 3A1 13 5A1 14

D4 14 A4 14 (A3 +A1)< 15

(A3 +A1)> 16 2A2 16 A2 + 2A1 18

(4A1)< 19 (4A1)> 20 A3 22

A2 +A1 24 (3A1)< 25 (3A1)> 26

A2 32 2A1 34 A1 44

Degree 1

Singularities #Lines Singularities #Lines Singularities #Lines

E8 1 D8 2 A8 3

E7 +A1 3 A7 +A1 5 E6 +A2 4

D6 + 2A1 5 D5 +A3 5 A5 +A2 +A1 8

2D4 5 2A4 6 2A3 + 2A1 11

4A2 12 E7 5 D7 5

(A7)< 7 (A7)> 8 E6 +A1 8

D6 +A1 9 A6 +A1 10 D5 +A2 10

D5 + 2A1 12 A5 +A2 12 A5 + 2A1 14

D4 +A3 11 D4 + 3A1 17 A4 +A3 12

A4 +A2 +A1 15 2A3 +A1 16 A3 +A2 + 2A1 19

A3 + 4A1 22 3A2 +A1 20 E6 13

D6 13 A6 15 D5 +A1 18

(A5 +A1)< 20 (A5 +A1)> 21 D4 +A2 20

D4 + 2A1 24 A4 +A2 22 A4 + 2A1 25

(2A3)< 22 (2A3)> 23 A3 +A2 +A1 27

A3 + 3A1 31 3A2 29 2A2 + 2A1 32

A2 + 4A1 36 6A1 41 D5 27

A5 29 D4 +A1 34 A4 +A1 36

A3 +A2 38 (A3 + 2A1)< 43 (A3 + 2A1)> 44

2A2 +A1 45 A2 + 3A1 50 5A1 56

D4 49 A4 51 A3 +A1 60

2A2 62 A2 + 2A1 69 (4A1)< 76

(4A1)> 77 A3 83 A2 +A1 94

3A1 103 A2 127 2A1 138

A1 183
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A.2 Lc compactifications of the affine plane

Letting the notation and the assumptions be the same as in Theorem 1.3.12 (3), this Appendix
summarizes the list of configurations of all weighted dual graphs of ∆̃k, where we employ the
following notation:

• For the following all weighted dual graphs, t, t′ and m are arbitrary integers with t ≥ 0,
t′ ≥ 0 and m ≥ 2.

• In (4), (5), (6) or (7), assume that n is even and let n′ be the integer with 2n′ = n.

• The subgraph U(t) means t-vertices



◦

...

◦

.

• The subgraph L(m; t) means ◦
−m

◦· · ·︸ ︷︷ ︸
t-vertices

◦ .

• The subgraph R(m; t) means ◦
−m

◦ · · ·︸ ︷︷ ︸
t-vertices

◦ .

• In (3), (5), (7), (8) or (10), the subgraph A means an arbitrary admissible twig, and
mA means the integer as in Definition 5.2.6. Moreover, the subgraph tA means the
transposal of A, and A∗ means the adjoint of A (see Definition 5.2.1). On the other
hand, if A can be denoted by ◦

−m1

◦
−m2

· · · ◦
−mr

, then the subgraph A means

◦
−m1

◦
−m2

· · · ◦
−mr−1

.

Noting that Sk contains exactly one singular point p0, which is k-rational, by Theorem 1.3.12
(2)(ii) and (iii), the list is divided into three case about the singularity of p0 (cf. Section 5.4):

Case of admitting only cyclic quotient singularities

In this case, there are 10 cases (1)–(10):

(1) ◦
−(t+ 1)n+ 1

• ???

· · ·
U(t)

n-times︷ ︸︸ ︷
•

���

U(t)

(n ≥ 3) (2) ◦
−(t+ 1)n

• ???

· · ·
U(t)

n-times︷ ︸︸ ︷
•

���

U(t)

◦
−m

(n ≥ 2)
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(3) ◦
−(t+ 1)n− 1

• ???

· · ·
U(t)

n-times︷ ︸︸ ︷
•

���

U(t)

A A∗ ◦
−m

(n ≥ 2) (4) ◦
−(t+ 1)n′

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

◦
−(t+ 1)n′

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

(n′ ≥ 2)

(5) ◦
−(t+ 1)n′ − 1

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

t(A∗) tA A ◦
−(t+ 1)n′ − 1

A∗

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

(6) ◦
−(t+ 1)n′ − 1

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

L(2; t′) ◦
−2t′ − 3

◦
−(t+ 1)n′ − 1

R(2; t′)

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

(7) ◦
−(t+ 1)n′ − 1

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

t(A∗)L(mA; t
′) tA ◦

−2t′ − 3
A ◦
−(t+ 1)n′ − 1

A∗ R(mA; t
′)

• ???

· · ·
U(t)

n′-times︷ ︸︸ ︷
•

���

U(t)

(8) t(A∗) • tA A • A∗

(9) L(2; t) • ◦
−2t− 3

• R(2; t)

(10) L(mA; t) t(A∗) • tA ◦
−2t− 3

A • A∗ R(mA; t)

Case of admitting non-cyclic quotient singularities

In this case, there are 17 cases (11)–(27):

(11) ◦◦◦

◦

◦
−3

• OOOOOO

• oo
ooo

o (12) ◦
−3

◦◦

◦

◦
−3

• OOOOOO

• oo
ooo

o

(13) ◦◦◦

◦

◦
−4

•
• OOOOOO

• oo
ooo

o (14) ◦◦◦

◦

◦
−5

• YYYYY
• eeee

e

• OOOOOO

• oo
ooo

o
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(15) ◦◦◦

◦

◦
−5

• OOOOOO
◦

• oo
ooo

o

◦
(16) ◦◦◦

◦

◦◦
−3

• OOOOOO

• oo
ooo

o

(17) ◦◦◦
−3

◦

◦
−3

◦
• OOOOOO

• oo
ooo

o (18) ◦
−m

◦
◦ OOOOOO

•

◦ oo
ooo

o

•

(19) ◦
−m

◦
−(2t+ 4)

◦ OOOOOO
•L(3; t)

◦ oo
ooo

o

•L(3; t)

(20) ◦◦
◦ OOOOOO−3

• YYYYY
• eeee

e

◦ oo
ooo

o

−3
• YYYYY
• eeee

e

(21) ◦◦
◦ OOOOOO−3

•◦

◦ oo
ooo

o

−3
•◦

(22) ◦◦
−(2t+ 4)

◦ OOOOOO−3
•◦L(3; t)

◦ oo
ooo

o

−3
•◦L(3; t)

(23) ◦◦
−4

◦ OOOOOO
◦ YYYYY
• eeee

e

◦ oo
ooo

o
◦ YYYYY
• eeee

e

(24) ◦◦
◦ OOOOOO

◦•

◦ oo
ooo

o

◦•

(25) ◦◦
−(2t+ 4)

◦ OOOOOO
◦•L(4; t)

◦ oo
ooo

o

◦•L(4; t)

(26) ◦◦•

◦ GGGGGGG
•

◦ w
www

www

•

(27) ◦
−(3t+ 5)

◦•L(3; t)

◦ GGGGGGG
•L(3; t)

◦ w
www

www

•L(3; t)

Case of admitting log canonical but not quotient singularities

In this case, there are 25 cases (28)–(52):

(28) ◦
−3

◦◦•

◦ GGGGGGG
•

◦ w
www

www

•

(29) ◦
−(3t+ 6)

◦◦•L(3; t)

◦ GGGGGGG
•L(3; t)

◦ w
www

www

•L(3; t)

(30) ◦
−3

◦ OOOOOO
•

◦ oo
ooo

o

•

◦oooooo
•

◦
OOO

OOO

•
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(31) ◦
−(4t+ 7)

◦ RRRRRRRR
•L(3; t)

◦ ll
llll

ll

•L(3; t)

◦llllllll
• R(3; t)

◦R
RRRR

RRR

• R(3; t)

(32) ◦
−(t+ 3)

◦ OOOOOO
•L(3; t)

◦ oo
ooo

o ◦ ◦ ◦
−(t+ 3)

◦oooooo
• R(3; t)

◦
OOO

OOO

(33) ◦
◦ OOOOOO

•

◦ oo
ooo

o ◦
−3

◦
◦oooooo

•

◦
OOO

OOO

(34) ◦
−(t+ 3)

◦ OOOOOO
•L(3; t)

◦ oo
ooo

o ◦
−3

◦
−(t+ 3)

◦oooooo
• R(3; t)

◦
OOO

OOO

(35) ◦
−(2t+ 4)

◦ OOOOOO
•L(3; t)

◦ oo
ooo

o

•L(3; t)

◦
−(2t+ 4)

◦oooooo
• R(3; t)

◦
OOO

OOO

• R(3; t)

(36) ◦◦◦

◦

◦
−6

•
• OOOOOO
• gggg

gg
• WWWWWW

• oo
ooo

o (37) ◦◦
◦ OOOOOO−4

••
YYYYY
• eeee

e

◦ oo
ooo

o

−4
••
YYYYY
• eeee

e

(38) ◦◦
◦ OOOOOO−4

•◦◦

◦ oo
ooo

o

−4
•◦◦

(39) ◦◦
−(2t+ 4)

◦ OOOOOO−4
•◦◦L(3; t)

◦ oo
ooo

o

−4
•◦◦L(3; t)

(40) ◦
−3

◦
−4

◦ OOOOOO
◦ YYYYY
• eeee

e

◦ oo
ooo

o
◦ YYYYY
• eeee

e

(41) ◦
−3

◦
◦ OOOOOO

◦•

◦ oo
ooo

o

◦•

(42) ◦
−3

◦
−(2t+ 4)

◦ OOOOOO
◦•L(4; t)

◦ oo
ooo

o

◦•L(4; t)

(43) ◦◦
−6

◦ OOOOOO
◦ YYYYY◦
• eeee

e

◦ oo
ooo

o
◦ YYYYY◦
• eeee

e

(44) ◦◦
−(2t+ 4)

◦ OOOOOO
◦◦•L(5; t)

◦ oo
ooo

o

◦◦•L(5; t)
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(45) ◦
−3

◦
◦ OOOOOO−3

• YYYYY
• eeee

e

◦ oo
ooo

o

−3
• YYYYY
• eeee

e

(46) ◦
−3

◦
◦ OOOOOO−3

•◦

◦ oo
ooo

o

−3
•◦

(47) ◦
−3

◦
−(2t+ 4)

◦ OOOOOO−3
•◦L(3; t)

◦ oo
ooo

o

−3
•◦L(3; t)

(48) ◦◦
−3

• YYYYY
• eeee

e

◦ ????????
−3

• YYYYY
• eeee

e

◦
��
��
��
��

−3
• YYYYY
• eeee

e

(49) ◦◦
−3

•◦

◦ GGGGGGG−3
•◦

◦ w
www

www

−3
•◦

(50) ◦
−(3t+ 5)

◦
−3

•◦L(3; t)

◦ GGGGGGG−3
•◦L(3; t)

◦ w
www

www

−3
•◦L(3; t)

(51) ◦
−5

◦◦ YYYYY
• eeee

e

◦ ????????

◦ YYYYY
• eeee

e

◦
��
��
��
��

◦ YYYYY
• eeee

e

(52) ◦
−(3t+ 5)

◦◦•L(4; t)

◦ GGGGGGG
◦•L(4; t)

◦ w
www

www

◦•L(4; t)
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