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Abstract 

Lung cancer has unique epidemiological characteristics due to the toxicity of indoor residential coal 

combustion (RCC) particles in Xuanwei, which suggests that there may be unique molecular mechanisms 

for the development of lung cancer in Xuanwei. However, mechanism of the high lung incidence is still 

not clear. After an extensive literature survey, we found that the risks posed by PM have been extensively 

researched, but the risk attribution of specific components of atmospheric particulate matters (APMs) is 

far from being fully understood. Observations of EPFRs in PM may provide the key to understanding 

the carcinogenic behaviour of these particles. To our knowledge, RCC and residential biomass 

combustion (RBC), and APMs are considered an important sources of EPFRs and HULIS, furthermore, 

there is few information available for personal exposure levels to inhaled EPFRs and HULIS in high lung 

cancer incidence areas of Xuanwei, China. Therefore there is a need to assess exposure to EPFRs and 

HULIS. In this study, we selected six kinds of coal and three kinds of biomass in Xuanwei, then 

conducted simulated combustion experiments, and six group of APMs using an Andersen high volume 

air sampler to explore the content and particle size distribution pattern of EPFRs and HULIS and health 

risk assessment of EPFRs and HULIS in particulate matter produced by different sources, providing new 

perspectives and evidence to reveal the high incidence of lung cancer in Xuanwei. 

Comparing the different type particulate matter, we found that the mass concentration of particulate 

matter emitted from solid fuel combustion was mainly concentrated in particle size < 2.0 μm (58.17 ± 

3.59 % for RBC particles, 67.02 ± 9.06 % for RCC particles), while the mass concentrations of 

atmospheric particulate matter were mainly concentrated in the particle size < 2.0 μm (49.74 ± 2.15 %) 

and >7.0 μm (20.28 ± 3.29 %). It indicates that the emission of fine particulate matter from raw coal 

combustion is more than that from biomass combustion, and the health risk is not negligible as the 

ambient atmosphere is dominated by fine particulate matter. We found that the mass of atmospheric 

particles showed a bimodal distribution, with the major peak in the range of particle size <1.1 µm and 

the minor peak in the range of size >7 µm. In contrast, the concentration of particulate matter emitted 

from solid fuel combustion is mainly concentrated in the range of particle size <1.1 µm. Xuanwei area, 

there are no large sources of pollution in the vicinity of the sampling site, and its pollution may be caused 

by solid fuel combustion, road transport, dust from construction sites, exhaust emissions from cars or 

mining in the county, and long-distance transport of pollution from surrounding cities. Beijing area, it is 

generally acknowledged that primary source like road dust and soil as the main emission source of coarse 

particulate matter, while fine atmospheric particulate matters are emitted from both primary source and 

secondary formation due to complex chemical processes in the atmosphere. Predominantly, high PM in 

the winter in Beijing was mainly attributed to the adverse meteorological conditions like low temperature 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/particulate-matter
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and lower boundary layer height, less precipitation and weaker wind and solid fuel (coal) combustion for 

indoor heating. another reason may be that probably due to the transport of polluted air masses from 

urban areas. The results show that the particulate matter pollution in Xuanwei is not serious and is at a 

medium level in the country, indicating that the mass concentration of particulate matter is not the main 

factor of lung cancer in Xuanwei, which may be due to the possibility that the local particulate matter in 

Xuanwei contains some special components or the content of certain pollutants exceeds the standard. 

The result are follows:  

APMs in Xuanwei: The average ratio of NO3
−/SO4

2− in all particulate were 0.22, 0.18, 0.15, 0.34 and 

0.36, it indicating that stationary industrial and combustion sources contributed to PM were more 

significant. The ANE / CAE < 1 in all particulate indicate that the APMs was alkaline. SO4
2− prefers to 

combine with NH4
+ to form (NH4)2SO4, which hinders the formation of NH4NO3, the 

remaining SO4
2− and NO3

− to neutralize the K+, KNO3 was formed at all particulate. However, K2SO4 

can only be formed in the particle size less than 3.3 μm. As and Se were identified as the most enriched 

(EF >10) WSPTMs in all PM sizes, were predominantly from anthropogenic emissions, suggesting that 

coal combustion could be the important contributor of PM-bound WSPTMs in this study area. Total 

WSPTMs exhibited high TCR values (9.98 × 10-6, 1.06 × 10-5, and 1.19 × 10-5 for girls, boys and adults, 

respectively) in the smaller particles (<1.1 μm). Se make a major contribution (63.60%) CR in PM2.0, 

furthermore decreased with the PM size increase and should be of more concern.  

RCC particulate matter：(1) HULIS-C to the PM were 2.09 %~5.65 % for PM2.0 and 2.68 %~5.62 % 

for PM2.0~7.0, respectively. HULIS-C emitted from RCC is mainly concentrated in PM2.0 

(68.48 %~79.30 %). (2) During our measurements, the concentrations of HULIS-C and WSOC were 

significantly correlated with SO4
2−, NO3

−, and NH4 
+ in RCC particles. (3) HULIS-Cx to HULIS-Ct (%) 

values in RCC particles are 68.48 %–79.30 % (average 73.95 ± 5.13%) for PM2.0 and 20.70 %~34.27 

(average 26.05 ± 5.13%) for PM2.0-7.0, respectively. The HULIS-Cx to WSOCx (%) values in RCC 

particles are 32.73 %–63.76 % (average 53.85 ± 12.12%) for PM2.0 and 33.91%~82.67% (average 57.06 

± 17.32%) for PM2.0~7.0, respectively. (4) Our result show that all PMs, the TCR was higher than 1 for 

adults and lower than 1 for children, except for PM1.1. TCR values for As, Cd and Co decreased with 

increasing PM particle size (for adults and children), indicating that As, Cd and Co had the highest in PM1.1. 

Interestingly, the TCR values for Cr (VI) were stable across PM particle sizes with no variability (for adults 

and children), and the TCR for lead was negligible. Notably, the TCR values for V showed a bimodal 

distribution, with the major peak in the particle size <1.1 µm while the minor peak in the size range of 

＞7 μm. The noncancer risk of Ba account for 91.28 %, 71.39 %, 78.74 %, 82.38 %, and 84.95 % within 

PM1.1, PM1.1–2.0, PM2.0–3.3, PM3.3–7.0, and PM>7.0. It indicates that the non-carcinogenic risk of WSPTMs 

in RCC particles, mainly Ba, followed by As and the non-carcinogenic risk is highest within PM1.1 in 
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Xuanwei. (5) The mean g factors were ranged from 2.0016 to 2.0043, 2.0039 to 2.0043 and 2.0039 to 

2.0046 for biomass combustion, coal combustion and APMs, respectively, indicating that the samples 

were mainly oxygen-centered radicals (phenoxyl and semiquinone radicals) in Xuanwei. (6) The 

potential health risks of EPFRs for adult and child in PM1.1 were equivalent to 130.31 ± 35.06, 49.52 ± 

13.32 cigarettes in coal combustion particles, 53.11 ± 6.65, 20.18 ± 2.53 cigarettes in biomass combustion 

particles, and 80.02 ± 37.37, 30.41 ± 14.20 cigarettes in APMs, respectively. The results suggest that the 

health risk of EPFRs is significantly increased when the particle size distribution of EPFRs is taken into 

account, and RCC particulate matter is more hazardous to humans than APMs, followed by RBC 

particulate matter. 

Our results can help stakeholders and policy makers recognize the characteristics of anthropogenic 

particles and their impact on air quality in the region, and initiate strategies to further control emissions 

to improve public health. We recommend continuing efforts in controlling coal burning throughout the 

year and also to include the surrounding areas. 

In the future, a comprehensive investigation of coal combustion HULIS-C and EPFRs emissions 

under different stove types, combustion conditions and combustion stages are necessary to better 

understand HULIS-C. we should pay more attention to mechanism on the ROS generated by the HULIS 

and EPFRs through the cellular matrices and tissue. Some attempts should be done in cell-free and cell-

based experiments to obtain well-characterized information about the ROS generated by the HULIS and 

EPFRs combination and to better address the health effects of HULIS and EPFRs. 
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Chapter 1 Introduction 

1.1 Purpose and significance of the study 

The ambient particulate matter pollution and household air pollution from solid fuels  from 1990 

to 2017 contributed to global premature deaths of about 2.94 and 1.64 million, respectively (Stanaway 

et al., 2018). In recent decades, with the rapid economic growth and urbanization of China, air pollutants 

have rapidly increase to become an environmental issue of public health concern in most metropolitan 

areas in China (X. Wu et al., 2020) (Lv et al., 2019). World Health Organization (WHO) estimated that 

air pollution was associated with approximately 300,000 premature deaths per year in China (J. Duan et 

al., 2014). Solid fuels such as wood, crop residues and coal are still the main sources of energy for 

cooking and heating in some rural areas of China (G. Shen et al., 2013)(F. Wu et al., 2015). China is the 

biggest coal consumer country in the world, with 4 billion tons of coal consumed each year, which 

accounted for about 60% of Chinese total primary energy or half of global coal consumption (National 

Bureau of Statistics of China (National Bureau of Statistics, 2016)).(X. Zhu et al., 2019)(Ming Zhang & 

Su, 2016)(Delmastro et al., 2015). In 2019, about 2.7 billion tons of coal were consumed in China, which 

contributed about 68.6% of the national primary energy source (http://www.stats.gov.cn/tjsj/ndsj/; 

accessed on 18 October 2021). Solid fuels are important anthropogenic sources of particulate and toxic 

and hazardous pollutants in the atmosphere (Wenhua Wang et al., 2019).  

According to the records in the scientific literature, the significant risks posed to human health by 

the inhalation of particulate matter (PM) are strongly associated with their size and physic-chemical 

characteristics (Rohra et al., 2018)(Fomba et al., 2018)(Zanobetti et al., 2014). The inefficient 

combustion of these solid fuels leads to high emissions of various air pollutants, such as CO, SO2, 

particulate matter (PM), black carbon (BC), polycyclic aromatic hydrocarbons (PAHs), Environmental 

Persistent Free Radicals (EPFRs) (Barry Dellinger et al., 2007)(Ruan et al., 2019)(Y. Huang et al., 2020), 

and potentially toxic metals (PTMs) (Jin Zhang et al., 2017), which have serious air quality impacts 

(Clark et al., 2013). The particles generated from solid fuels produce reactive oxygen species (ROS), 

especially once it enters the human body. Oxidative stress in the airways and alveoli leads to stimulation 

of alveolar macrophages and injury to the epithelial lining, which in turn attracts inflammatory cells from 

the circulation (Mehra et al., 2012). This mechanism is considered to be related to highly redox-active 

components in the particulate matter. There were evidence that exposure to PM2.5 (particulate matter with 

aerodynamic size less than 2.5 μm) and other pollutants in indoor air causes cardiovascular and 

respiratory diseases, lung cancer, premature births, neural tube defects, and many other problems 

http://www.stats.gov.cn/tjsj/ndsj/
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(Lelieveld et al., 2015)(B. Wang et al., 2015)(Pope & Dockery, 2006).Although rural residents in China 

are gradually transitioning to cleaner fuels such as natural gas, most residents cook with bituminous coal 

(bituminous coal), anthracite coal, or wood in poorly ventilated rooms in rural Xuanwei City, Yunnan 

Province, in southwestern China. Therefore, it can lead to health risks (W. Meng et al., 2019) and it is 

still one of the most important concerned by atmospheric scientists (An et al., 2019). 

Lung cancer remains the most prevalent cancer (11.6% of all cases) and the leading cause of cancer 

deaths worldwide (18.4% of all cancer deaths)(Bray et al., 2018). Smoking is the largest preventable 

cause of lung cancer and contributes to more than 80% of cases of this disease on a global scale 

(Kulhánová et al., 2020). Xuanwei has the highest incidence and mortality rate of lung cancer in China 

(Figure 1)(Seow et al., 2014)(Vermeulen et al., 2019) (Wenhua Wang et al., 2019). Specially, the women 

have the highest incidence of lung cancer among non-smokers in Xuanwei, China (W. Chen et al., 2015). 

According to the “2012 Chinese Cancer Registry Annual Report,” the average incidence rate of lung 

cancer in Xuanwei was 92 per 100,000, which is four–five times higher than the national rate (Mengyuan 

Zhang et al., 2021). The incidence of lung cancer among non-smokers is 400/100,000 (Mumford et al., 

1987)(G. Li et al., 2021), which is 20 times higher than the national average, especially among women 

in rural areas (R. Li, Liu, et al., 2019) (Y. Xiao et al., 2012) (Kim et al., 2014). The mortality of lung 

cancer in Xuanwei rural areas are 27.7/100,000 for men and 25.3/100,000 for women, almost five times 

that of China’s national average (4.97/100,000 for both sexes) (Jinhui Li, Guo, et al., 2019), it ranks 

among the top in the world for female lung cancer mortality (Hosgood et al., 2014). However, the 

etiology of lung cancer in the region remains unclear and known or suspected risk factors (such as 

tobacco (Sheng et al., 2018), potentially toxic metals (S. Lu et al., 2014)(X. Feng et al., 2020)(K. Xiao, 

Qin, et al., 2021), polycyclic aromatic hydrocarbons (PAHs) (R. Wang et al., 2021), and SiO2 (L. Tian 

et al., 2008) (S. Lu et al., 2016)) may account for only a small fraction of lung cancer cases, necessitating 

further study. 

Our research was divided into two parts:  

Part one: Xuanwei in southern China 

 Xuanwei, Yunnan Province, is rich in coal resources and is an important coal energy base in Yunnan 

Province. After field investigation and data search, we found that wild pine and poplar trees are widely 

distributed, and 1.78 million hectares of corn was planted in Yunnan, accounting for 25.61% of the crop 

area in 2019 (http://stats.yn.gov.cn/; accessed on 22 September 2021). Most residents live in poorly 

ventilated houses and use coal and biomass as daily fuels. This indicates that in Xuanwei, residential coal 

combustion (RCC) and residential biomass combustion (RBC) may be the main source of indoor air 

pollution. Due to the abnormally high levels of lung cancer and mortality in Xuanwei City, Yunnan 
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Province, it has attracted much attention. A large number of studies have shown that smoking is not 

enough to explain the high incidence of lung cancer in Xuanwei. On the contrary, solid fuel combustion 

is closely related to this lung cancer. 

After an extensive literature survey, we found that the risks posed by PM have been extensively 

researched (K. Xiao, Wang, et al., 2021) (S. Lu et al., 2017), but the risk attribution of specific 

components of atmospheric particulate matters (APMs) is far from being fully understood. Observations 

of EPFRs in PM may provide the key to understanding the carcinogenic behaviour of these particles 

(Lubick, 2008)(Gehling & Dellinger, 2013)(Gehling et al., 2014). To our knowledge, RCC particles, 

RBC particles, and APMs are considered an important sources of EPFRs (Yuqin Wang et al., 2019)(J. 

Zhao et al., 2021), furthermore, there is few information available for personal exposure levels to inhaled 

EPFRs in high lung cancer incidence areas of Xuanwei, China. Therefore there is a need to assess 

exposure to EPFRs (Y. Xu et al., 2021). In this study, we selected six kinds of coal and three kinds of 

biomass in Xuanwei, then conducted simulated combustion experiments, and six group of APMs using 

an Andersen high volume air sampler to explore the content and particle size distribution pattern of 

EPFRs and health risk assessment of EPFRs in particulate matter produced by different sources, 

providing new perspectives and evidence to reveal the high incidence of lung cancer in Xuanwei. 

 

 

Fig. 1. The lung cancer mortality rates in 1973~2013(Mumford et al., 1987)(G. Chen et al., 2015) 

 

Part two: Beijing in northern, China  

Beijing is the capital city of China with a population of approximately 21.54 million and annual 

coal consumption of 17.62 million tons in 2018 ( National Bureau of Statistics (NBS), 2019) ( Beijing 

Bureau of Statistics (NBS)2018). Beijing as one of the core cities in Beijing-Tianjin-Hebei (BTH) (high 
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elements emission areas) (C. Zhu et al., 2018), it has been troubled by air pollution. Due to heating and 

meteorological conditions, air pollution in the wintertime is typically more serious than in other seasons 

in Beijing (Yele Sun et al., 2013). In the past few decades, many studies have investigated the 

characteristics and sources of atmospheric PM in Beijing. In PM2.5 and PM10 samples from Beijing, 

different elements showed different size distributions during summer and winter (Lv et al., 2019). 13 

elements in PM2.5 in urban Beijing were measured were to investigate the concentration of elements, 

illustrate their temporal variations, and estimate the health risks (Cui et al., 2020). The concentrations of 

metals and ions, their characteristics and comparison in hazy and non-hazy days of PM10 were discussed 

(X. Wu et al., 2020). There are few studies on sources analysis and health risks of metal elements in size-

segregated PM in Beijing, many studies have assessed human health risk caused by individual sizes 

(often for either PM10 or PM2.5 ) (J. Duan et al., 2014) (Jianwei Liu et al., 2019) (Lv et al., 2019) (X. Wu 

et al., 2020). The compounds of PM are complex and have obvious seasonal and regional differences 

(Che et al., 2021). In addition, due to changes in physical and chemical composition, the toxic effects of 

particulate matter vary greatly with geographic location. Therefore, it is very important to quantify the 

chemical composition of aerosols to determine the potential deleterious effects on human health, 

especially in higher population residential area. 

Given the background discussion above, in this study, we collected atmospheric samples with a 

high-volume air sampler (Anderson Sampler, HV-RW, Shibata Science Co., Ltd., Japan) in a high 

population residential area of Beijing during the winter (December 26, 2018 to January 11, 2019). Nine 

water soluble inorganic ions (Cl-, NO3
-, NO2

- , SO4
2-, NH4

+, Na+, K+, Ca2+ and Mg2+) were analyzed by 

Ion Chromatography (IC, ICS1600, Dionex Aquion, Thermo Fisher Scientific CO, Waltham, MA, USA), 

the mass concentration of 21 metal elements was measured by inductively coupled plasma mass 

spectrometry (ICP-MS, Agilent 7700, Agilent Technologies, Inc., Santa Clara, CA, USA). The main 

objectives of this study were :1) to investigate the occurrence levels of metals elements, water soluble 

inorganic ions and their size distributions, 2) to identify the potential sources contributing to the 

enrichment of metals, 3) estimate the health risk to child and adults of several toxic trace elements (As, 

Cd, Cr (Ⅵ), V, Ni, Co and Pb).  

 

1.2 Current Status of Lung Cancer Research in Xuanwei 

Region 

Since the 1960s, lung cancer in Xuanwei Township has increasingly attracted many researchers and 

many epidemiologic and etiologic studies have been conducted. Previous etiologic and epidemiologic 
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studies have confirmed that lung cancer in Xuanwei County has its own unique characteristics (Jinhui 

Li, Guo, et al., 2019)(“Lung Cancer in Radon-Exposed Miners and Estimation of Risk from Indoor 

Exposure,” 1995)(R. Li, Liu, et al., 2019). First, the high incidence of lung cancer in the Xuanwei region 

is regional in nature, manifesting itself in higher incidence rates in rural areas than in cities. The incidence 

of human lung cancer in the region differs from other economically developed and highly developed 

areas. The high incidence of lung cancer in the Xuanwei region is mainly in rural areas, and the mortality 

rate is the highest in the country. Second, the incidence of tumors in the Xuanwei population is much 

higher in women than in men. Rural women have the highest lung cancer incidence rate in the country, 

20 times higher than in the rest of China, and their female lung cancer mortality rate is among the highest 

in the world. Most notably, lung cancer mortality rates for men and women are four and eight times 

higher than the national average, respectively (H. Lin et al., 2015). In general, men have a higher lung 

cancer mortality rate than women because smoking is more prevalent in men than in women. However, 

in the Xuanwei region, local female residents tend to be non-smokers, yet they have a much higher lung 

cancer mortality rate than men (Yang Chen et al., 2015). Third, lung cancer patients in Xuanwei County 

tend to develop and die at a younger age than in other cities and have a shorter time to onset. The 

incubation period for normal lung cancer is about 15 years, while locally, the incubation period is only 

about 10 years. The number of deaths increases sharply by age 30. The age of the sick and dying 

population is high, and the type of lung cancer is mainly adenocarcinoma, with a high degree of 

malignancy and an extremely poor prognosis (Ka Hei Lui et al., 2017). Fourth, the prevalence of lung 

cancer has significant familial aggregation, and genetic variants may play an important role in the 

development of human lung cancer (R. Li, Liu, et al., 2019). Lung cancer in Xuanwei has unique 

epidemiological characteristics due to severe air pollution and toxicity of indoor coal combustion 

particles, suggesting that there may be unique molecular mechanisms for the development of lung cancer 

in Xuanwei. 

While smoking is the most common cause of lung cancer (S. Sun et al., 2007), however, the etiology 

of lung cancer among never-smokers remains unclear and known or suspected risk factors likely account 

for only a modest proportion of lung cancer cases (Silverman et al., 2012) (Samet et al., 2009)(Barone-

Adesi et al., 2012).There was an etiologic link between domestic smoky coal burning and lung cancer in 

Xuan Wei (Mumford et al., 1987)(Kim et al., 2014)(Jinhui Li, Ran, et al., 2019). A retrospective cohort 

study (Barone-Adesi et al., 2012) showed that domestic use of bituminous coal would increase lung 

cancer mortality by up to 100-fold (hazard ratio for women: 98.8, 95% CI 36.8-276.6) compared to 

anthracite coal (stony anthracite coal available in some parts of the region) (Barone-Adesi et al., 2012). 

Recent studies suggest that Hulis in particulate matter emissions from coal combustion may also 

contribute to the high incidence of lung cancer in Xuanwei (K. Xiao, Wang, et al., 2021). Some studies 
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suspect that exposure to respirable silica from coal combustion emissions is a possible cause of the high 

lung cancer mortality rate in Xuanwei (S. Dai et al., 2008) (Large et al., 2009) (Jinhui Li, Ran, et al., 

2019). Previous studies have shown that long-term exposure to PAHs is strongly associated with the 

development and progression of various cancers (Hofmann et al., 2013), especially lung cancer 

(Downward et al., 2014) (Vermeulen et al., 2019). Yan Chen et al. demonstrated that overexpression of 

miR-34a could inhibit both tumor growth and metastasis and play an important role in tumorigenesis and 

progression of NSCLC by increasing the expression of PTEN and YY1 (Yan Chen et al., 2021). 

Although many lungs cancer-related influencing factors have been identified, the mechanisms 

underlying the high incidence of lung cancer in Xuanwei County are quite complex and still not fully 

elucidated. There is few information available for personal exposure levels to inhaled EPFRs in high 

lung cancer incidence areas of Xuanwei, China. Therefore there is a need to assess exposure to EPFRs 

(Y. Xu et al., 2021). 

 

1.3 The overview of air pollution  

Air pollution is the contamination of the indoor or outdoor environment by any chemical, physical 

or biological agent that alters the natural characteristics of the atmosphere. Household combustion 

devices, motor vehicles, industrial facilities, and forest fires are common sources of air pollution. The 

major pollutants of public health concern include particulate matter, carbon monoxide, ozone, nitrogen 

dioxide, and sulfur dioxide. Outdoor and indoor air pollution contributes to respiratory and other diseases 

and is a significant source of morbidity and mortality. From the smog that hangs over cities to the smog 

inside homes, air pollution poses a major threat to health and climate. The combined effects of 

environmental (outdoor) and household air pollution cause millions of premature deaths each year, 

primarily due to increased mortality from stroke, heart disease, chronic obstructive pulmonary disease, 

lung cancer, and acute respiratory infections (https://www.who.int/; accessed on 18 October 2021). 

Some key facts about environmental pollution are listed below: 

(1) Around 2.6 billion people cook using polluting open fires or simple stoves fueled by kerosene, 

biomass (wood, animal dung and crop waste) and coal. 

(2) Each year, close to 4 million people die prematurely from illness attributable to household air 

pollution from inefficient cooking practices using polluting stoves paired with solid fuels and kerosene. 

(3) Household air pollution causes noncommunicable diseases including stroke, ischaemic heart disease, 

chronic obstructive pulmonary disease (COPD) and lung cancer. 

https://www.who.int/
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(4) Close to half of deaths due to pneumonia among children under 5 years of age are caused by 

particulate matter (soot) inhaled from household air pollution. 

 

1.3.1 Particulate Matter 

There are many different types of particles that can be found in the atmosphere. Particulate matter 

can be divided into two categories according to the process of their formation. One category is primary 

respirable particulate matter, which are emitted directly into the atmosphere, and the other category is 

secondary particulate matter, who are primary particulate matter formed through a series of atmospheric 

physicochemical processes. On the other hand, according to aerodynamic diameter, PM can be classified 

as total suspended particulate matter (TSP with an aerodynamic diameter less than 100 μm) coarse 

particles (PM10 with an aerodynamic diameter less than 10 μm), fine particles (PM2.5 with an 

aerodynamic diameter less than 2.5 μm), and especially sub-micrometer (PM1 with an aerodynamic 

diameter less than 1 μm) and ultrafine particles (UFPs, PM0.1 with an aerodynamic diameter less than 0.1 

μm)(K. Xiao, Qin, et al., 2021). As shown in Figure 2. 

 

Fig. 2. Size distribution of Particulate Matter 

 

1.3.2 Sources of Particulate Matter 

PM can be derived from both primary sources, in which they are directly produced by a series of 

human activities (e.g., fossil fuel combustion (K. Xiao, Wang, et al., 2021), industrial metallurgical 
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processes (Dunea et al., 2016), vehicle emissions (Edgerton et al., 1999)(Agarwal et al., 2015) and waste 

incineration (F. Yan et al., 2016)) into the atmosphere, and secondary aerosol formation(Manalis et al., 

2005) (Onder & Dursun, 2006) (Yele Sun et al., 2006), released from natural sources (e.g., sea sprays 

(Steinfeld, 1998), soil dust (Vega et al., 2011), volcanism, erosion, surface winds and forest fires 

(Johnston et al., 2021)). 

 

1.3.3 Composition of Particulate Matter  

Particulate matter (PM) mixtures have different physical and chemical characteristics, which are 

associated with an array of adverse effects on human health (Radulescu et al., 2015) (Querol et al., 

2007)(Mölter et al., 2015)(Amodio et al., 2013). Understanding the spatial and temporal and qualitative 

characteristics of PM2.5 data is therefore essential to support epidemiological studies to consolidate 

knowledge about the effects of particle size and chemical composition on human health. (Baltrenaite et 

al., 2014)(Neuberger et al., 2004)(Olsen et al., 2014). The complex mix of PM can produce different 

changes in the tissues, depending on its composition, which includes a water-soluble or a water-insoluble 

fraction (Dongbin Wang et al., 2013). The smaller the particle size of the particles, the larger the specific 

surface area, the more harmful substances, viruses and fine bacteria adsorbed, etc (Smith et al., 2001) 

(Oberdörster, 2000) (Georgakakou et al., 2016) (Cao et al., 2014) (Y. R. Li et al., 2016)(K. Xiao, Wang, 

et al., 2021)(K. Xiao, Qin, et al., 2021). 

 

1.3.3.1 Water-Soluble Inorganic Ionic Species (WSIIs) 

Water-Soluble Inorganic Ionic Species are the major components of PM, occupied by 33% or more 

of fine particles (S. Kong et al., 2014)(P. S. Zhao et al., 2013), and can compose up to 50–60% of the 

mass of PM2.5 during haze period (Xingru Li et al., 2013). WSIIs can directly change the radiation balance 

by scattering or absorbing both incoming solar radiation and thermal radiation emitted from the Earth's 

surface (Bellouin et al., 2005). WSIIs also play important roles in atmospheric chemistry. SO4
2−, NO3

− 

and NH4
+, which were always regarded as secondary species in PM2.5 (Dexiang Wang et al., 2014)(Q. 

Yan et al., 2020). During regional haze events, SO4
2−, NO3

−, and NH4
+ in respirable particulate matter 

significantly contribute to the acidity and visibility reduction of aerosols (Xinghua Li et al., 2013) 

(Guenther et al., 2012)(Pathak et al., 2009). In addition, WSIIs may pose a threat to human health 

(Spengler et al., 1990). Previous researchers found a large increase in WSIIs during the winter heating 
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period in northern China (Sudheer et al., 2014). and the secondary formation of SO4
2−, NO3

−, and NH4
+  

(SNA) have been considered as the main contributors (R. Zhang et al., 2013)(S. Kong et al., 2014).  

Thus, the observation of the chemical composition of size-separated water-soluble ions is valuable 

for understanding their physical/chemical characteristics, their origin, and their behavior and formation 

mechanisms. 

 

1.3.3.2 Potentially toxic metals (PTMs) 

Potentially toxic metals (PTMs), which are cytotoxic, concealed, persistent, and biologically 

accumulated, play a decisive role in the assessment of atmospheric pollution and the hazards to human 

health (Jin Zhang et al., 2017). After breathing into the human body, they may cause various human 

dysfunctions or cause a variety of diseases: As, Cr, Ni, Pb, and Cd have certain carcinogenic ability, while 

As and Cd have potential teratogenic effects on the human body, and Pb and Hg are toxic to the fetus (X. 

Hu et al., 2012)(Z. Hu et al., 2012). Cr, Ni, Cu, Fe, Co, Mn, As, V, and Zn could support electron exchange 

(Sen et al., 2016) and induce the formation of reactive oxygen species (ROS) in the lungs (Verma et al., 

2014), causing damage of oxidative DNA and inflammation of respiratory tracts (Distefano et al., 2009). 

Lead (Pb) is a well-known toxic element that may be harmful to the nervous and hematopoietic system, 

leading to impaired growth and mental function (Shunqin Wang & Zhang, 2006). Relevant literature 

shows that about 70–80% of the metal elements in the atmosphere are adsorbed on fine particles 

(Mohanraj et al., 2004). Consequently, the presence of different PM-bound toxic compounds may pose 

severe health concerns and information about their size-distribution is of primary relevance to determine 

and quantify the potential deleterious effects on human health. 

1.3.3.3 Humic-like substances (HULIS) 

RCC are important anthropogenic sources of particulate and toxic and hazardous pollutants in the 

atmosphere (Wenhua Wang et al., 2019). The particles generated from RCC produce reactive oxygen 

species (ROS), once it enters the human body. Oxidative stress in the airways and alveoli leads to 

stimulation of alveolar macrophages and injury to the epithelial lining, which in turn attracts  

inflammatory cells from the circulation.(Mehra et al., 2012). Xuanwei has the highest incidence and 

mortality rate of lung cancer in China, (Wenhua Wang et al., 2019) which is characterized by high 

mortality, especially among women in rural areas. (R. Li, Liu, et al., 2019), (Y. Xiao et al., 2012), (Kim 

et al., 2014). Residential coal combustion have been accepted as the main cause of human lung cancer 
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(R. Li, Liu, et al., 2019) (K. H. Lui et al., 2017) (Finkelman & Tian, 2018) (X. Feng et al., 2020).  

Humic substances (HULIS) are large molecules of unresolved water-soluble organic carbon 

(WSOC) with a polycyclic ring or carboxyl, carbonyl, and hydroxyl group structure (H. Sun et al., 2021), 

consisting of 9–72% of WSOC (Tan et al., 2016). They have been widely reported in atmospheric 

aerosols in urban (Song et al., 2012), rural, forested (Zheng et al., 2013), and marine environments,  (X. 

Fan, Song, et al., 2016), rain water (Santos et al., 2012), cloud water (Kristensen et al., 2014), and fog 

(Birdwell & Valsaraj, 2010). HULIS was found to enhance catalytically the generation of ROS under 

simulated physiological conditions, thereby likely may contribute to PM caused health problems (S. Lu 

et al., 2019) (X. Xu et al., 2020)(Win et al., 2018). Many studies have shown that biomass combustion 

and secondary formation in the atmosphere are considered to be important sources of HULIS (Zheng et 

al., 2013), (Kuang et al., 2015), (Ma et al., 2018), (Srivastava et al., 2018). However, it has recently been 

suggested that RCC is a significant and major source of HULIS (H. Sun et al., 2021). 

 

1.3.3.4 Environmental Persistent Free Radicals (EPFRs) 

Environmental Persistent Free Radicals (EPFRs) are a novel class of emerging contaminants, which 

are similar to carcinogenic tar paramagnetic species in cigarettes that can damage normal cells in the 

body, induce DNA mutations, accelerate the rate of ageing and increase the risk of disease(Y. Xu et al., 

2021). EPFRs are widespread in the environment due to the easy formation in the post-flame and cool-

zone regions of combustion systems and other thermal conversion processes (Cruz et al., 2012). In 

addition to PM, EPFRs are also found in contaminated soil (Cruz et al., 2012), waste incineration, 

automobile exhaust, Biomass combustion, coal combustion, thermal treatments of plastic and hazardous 

waste (Valavanidis et al., 2008), tar balls and pyrolysis of biodiesel at high temperatures (Mosonik et al., 

2018). Several studies have shown that the concentration of EPFRs in atmosphere were spatially and 

temporally inhomogeneous, which is mainly caused by different contributions of emission sources, such 

as residential fuel, vehicles, and industrial activities (Q. Chen, Sun, Wang, et al., 2019) (C. Wang et al., 

2020). They are more environmentally persistent than short-lived radicals and can persist in the medium 

for long periods of time without even disappearing(Qian et al., 2020).  

The g-factor and peak width (referred to as ΔHp-p, Gauss) were important parameter for identifying 

the type of free radicals (Shaltout et al., 2015) (Arangio et al., 2016), the average ΔHp-p is calculated 

was finding the distance between the maximum and minimum y-axis values on the x-axis (Runberg et 

al., 2020). According to previous reports, carbon-centered radicals is generally less than 2.003, oxygen-

centered radicals is generally greater than 2.0040, and g factors in the range of 2.0030–2.0040 are 

https://www.sciencedirect.com/topics/engineering/combustion-system
https://www.sciencedirect.com/topics/engineering/thermal-conversion
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermal-treatment
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hazardous-waste
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hazardous-waste
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pyrolysis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/biodiesel
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believed to correspond to a mixture of carbon- and oxygen-centered radicals (Barry Dellinger et al., 

2007)(Ruan et al., 2019)(Y. Huang et al., 2020). The most possible mechanisms of EPFRs are formed at 

transition metal centers that can be easily reduced when an organic compound chemisorbs (Ruan et al., 

2019), can be seen in Figure 3. Subsequently, an elimination of water or hydrogen chloride results in 

chemisorption of the organic molecular adsorbate, and then a single electron transfer from the organic 

molecule to the transition metal (such as Al2O3, Fe2O3, Fe3O4, CuO, ZnO, MnO, and NiO) center, which 

leads to the simultaneous reduction of metal and the formation of EPFRs (Barry Dellinger et al., 2007).  

 

Fig. 3. Proposed mechanisms of EPFR formation (Ruan et al., 2019) 

 

Scientists have recently begun to assume that environmentally persistent free radicals within PM, 

which are a class of strongly oxidizing substances, are possible factors that may be responsible for human 

acute or chronic pneumonia and lung cancer (Pöschl & Shiraiwa, 2015) (Balakrishna et al., 2011). The 

toxicity of EPFRs stems from their persistence in the environment coupled with their ability to generate 

•OH, which may lead to the downstream generation of other reactive oxygen species (ROS) (Kelley et 

al., 2013) including peroxyl (RO2•) and alkoxyl (RO•) radicals. APM–bound EPFRs may directly result 

in oxidative stress in the lung when exposed to APMs (Guo et al., 2020). One possible mechanism for 

this type of health damage is the continuous conversion of O2 molecules into reactive oxygen species 

(ROS) by EPFRs (Gehling et al., 2014).  

 

1.3.3.5 Humic-like substances (HULIS) 

RCC are important anthropogenic sources of particulate and toxic and hazardous pollutants in the 

atmosphere (Wenhua Wang et al., 2019). The particles generated from RCC produce reactive oxygen 

species (ROS), once it enters the human body. Oxidative stress in the airways and alveoli leads to 

stimulation of alveolar macrophages and injury to the epithelial lining, which in turn attracts  

inflammatory cells from the circulation.(Mehra et al., 2012). Xuanwei has the highest incidence and 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reactive-oxygen-species
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mortality rate of lung cancer in China, (Wenhua Wang et al., 2019) which is characterized by high 

mortality, especially among women in rural areas. (R. Li, Liu, et al., 2019), (Y. Xiao et al., 2012), (Kim 

et al., 2014). Residential coal combustion have been accepted as the main cause of human lung cancer 

(R. Li, Liu, et al., 2019) (K. H. Lui et al., 2017) (Finkelman & Tian, 2018) (X. Feng et al., 2020).  

Humic substances (HULIS) are large molecules of unresolved water-soluble organic carbon 

(WSOC) with a polycyclic ring or carboxyl, carbonyl, and hydroxyl group structure (H. Sun et al., 2021), 

consisting of 9–72% of WSOC (Tan et al., 2016). They have been widely reported in atmospheric 

aerosols in urban (Song et al., 2012), rural, forested (Zheng et al., 2013), and marine environments,  (X. 

Fan, Song, et al., 2016), rain water (Santos et al., 2012), cloud water (Kristensen et al., 2014), and fog 

(Birdwell & Valsaraj, 2010). HULIS was found to enhance catalytically the generation of ROS under 

simulated physiological conditions, thereby likely may contribute to PM caused health problems (S. Lu 

et al., 2019) (X. Xu et al., 2020)(Win et al., 2018). Many studies have shown that biomass combustion 

and secondary formation in the atmosphere are considered to be important sources of HULIS (Zheng et 

al., 2013), (Kuang et al., 2015), (Ma et al., 2018), (Srivastava et al., 2018). However, it has recently been 

suggested that RCC is a significant and major source of HULIS (H. Sun et al., 2021). 

 

1.3.4 Health Effects of Oxidative Stress Generated by 

Particulate Matter 

PM has been identified as group I carcinogen by the International Agency for Research on Cancer 

(Gou et al., 2016). Epidemiological and experimental studies have shown that coarse particles, in general, 

remain in the upper respiratory system and stay there for a long time whereas fine particles penetrate 

deep respiratory system and deposit in the alveolar region, entering the blood circulation system more 

easily, and translocating to extrapulmonary organs including the liver, spleen, heart, and even brain 

threatening human health (Y. C. Lin et al., 2020). In the last decade, many residential areas throughout 

the world have been affected by fine particulate matter with an aerodynamic diameter below 2.5 μm, 

which disturbs air quality and favors the propagation of higher respiratory morbidity levels and numerous 

clinical symptoms, especially in infants and small children (Henschel et al., 2012) (Pope & Dockery, 

2006)(Ward & Ayres, 2004). Exposure to haze consisting of high concentrations of PM leads to increased 

morbidity and mortality from cardiovascular disease, respiratory disease, and lung cancer (Cao et al., 

2014)(C. Xu et al., 2017). Among the most significant effects on humans are fine and ultrafine particulate 

matter, as it adsorbs toxic and carcinogenic substances and can be deposited in the lungs and cross the 

alveoli into the blood system. Exposure to fine or ultrafine particles induces reactive oxygen species 
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(ROS) -mediated oxidative stress, altering cellular permeability in epithelial cells due to their organic or 

inorganic content (Bodlet et al., 2013). A primary form of ROS is the hydroxyl radical formed by 

hydrogen peroxide after exposure to PM (T. Shi et al., 2003). Also, PM2.5 can produce superoxide leading 

to the formation of hydrogen peroxide (B. Dellinger et al., 2001). H2O2 is a main free radical in the lung; 

it can produce cell damage by oxidant stress. Alveolar macrophages and epithelial cells generate oxidants 

(Bonner, 2007). The water-soluble fraction can produce cell signaling, expression of inflammatory 

mediators, oxidative stress (Ghio et al., 1999) that generates DNA damage via a transition metal-

dependent OH formation, implicating an important role of H2O2 (Knaapen et al., 2002). Oxidative stress 

in the airways and alveoli leads to stimulation of alveolar macrophages and injury to the epithelial lining, 

which in turn attracts inflammatory cells from the circulation (Mehra et al., 2012). 

 

1.4 Main Research Content and Technical Route 

The research in this thesis focuses on the following aspects, the technical route is shown in Figure 

4. 

(1) The selection of sampling sites and the collection of samples. 

 Xuanei, northern of China: Three kinds of raw biomass (Pine, Corncob, Poplar) from Zhongan 

Town, and six kinds of residential raw coal from Bole Town (Luomu coal [LM] and Bole coal [BL]), 

Houshou Town (Lijiawu coal [LJW]), Laochang Town (Shunfa coal [SF]), Laibin Town (Guangming 

coal [GM] and Zongfan coal [ZF]), and six group of APMs (Houshou Town) were collected. In addition 

to the above, six sample groups of APMs (A-H) were conducted by a high-volume air sampler (Shibata 

Science Co., Ltd., Saitama., Japan) at a flow rate of 566 L/min in Xuanwei local rural residents on 

February and March in 2017.  

Beijing, southern of China: The aerosol sampling was conducted by a high-volume air sampler at a 

flow rate of 566 L/min in Beijing from 26 December 2018 to 11 January 2019. 

(2) Collection of simulated combustion particulate matter 

 Collection and mass concentration detection of coal combustion emissions of particulate matter. 

The combustion conditions of coal and biomass used by local residents were simulated in the laboratory, 

and the particulate matter emitted from coal combustion and biomass was collected by particle size and 

the mass concentration of different particle sizes was calculated. 

(3) Main work 

Xuanei, northern of China: Electron spin resonance (ESR) spectroscopy was used to determine 
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EPFRs. The concentrations of four anions (Chlorine ion, Cl−; Nitrate ion, NO3
−; Nitrite ion, NO2

−; Sulfate 

ion, SO4
2−) and five cations (Ammonium ion, NH4

+; Sodium ion, Na+; Potassium ion, K+; Calcium ion, 

Ca2+; and Magnesium ion, Mg2+) were analyzed by ion chromatography (IC). Meanwhile, WSPTMs was 

analyzed by inductively coupled plasma mass spectrometer (ICP-MS). HULIS and WSOC were analyzed 

by a total organic carbon analyzer.  

Beijing, southern of China: 

The concentrations of four anions (Chlorine ion, Cl−; Nitrate ion, NO3
−; Nitrite ion, NO2

−; Sulfate 

ion, SO4
2−) and five cations (Ammonium ion, NH4

+; Sodium ion, Na+; Potassium ion, K+; Calcium ion, 

Ca2+; and Magnesium ion, Mg2+) were analyzed by ion chromatography (IC). Meanwhile, WSPTMs was 

analyzed by inductively coupled plasma mass spectrometer (ICP-MS). 

(4) To study and compare the occurrence levels of metal elements, water-soluble inorganic ions and 

their size distribution in atmospheric particulate matter in Beijing, China. 

(5) To estimate and compare the health risk to child and adults of several toxic trace elements (As, 

Cd, Cr (Ⅵ), V, Ni, Co and Pb) in northern and southern, China. 

(6) To explore the content and particle size distribution pattern of EPFRs, HULIS and health risk 

assessment of EPFRs in particulate matter produced by different sources, providing new perspectives 

and evidence to reveal the high incidence of lung cancer in Xuanwei.  
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Fig. 4. The technical route 
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Chapter 2 Study area and sample 

collection 

 

2.1 Location and Weather condition of the sampling site 

Xuanwei, located in the northeastern part of Yunnan Province, is a county-level city under the 

jurisdiction of Qujing City, Yunnan Province. Geographic location between E103°35'30"-104°40'50", 

N25°53'30"-26°44'50", adjacent to Panzhou City in Guizhou Province in the east, adjacent to Zanyi 

District in this city in the south, looking at Huizhe County across the Niuguan River in the west, bordering 

with Weining County in Guizhou in the north, 260 km from the provincial capital Kunming City. The 

land area is 6069.88 km2, with the highest altitude of 2868 m and the lowest altitude of 920 m. At the 

end of 2015, there were 28 townships (towns and streets) under the jurisdiction of Xuanwei, and the total 

household population of Xuanwei reached 1,528,500, with a sex ratio of 111.96 (with women as 100). 

Xuanwei is mainly influenced by oceanic air masses in summer and autumn and continental air 

masses in winter and spring, forming a low-latitude plateau monsoon climate with multiple climate zones 

in the northern subtropical, southern temperate, and middle temperate zones coexisting. The main 

characteristics of the climate are no cool summer, no severe winter, large daily temperature difference, 

however, the annual temperature difference is small, the four seasons are not very distinct; winter and 

spring are relatively dry, while summer and autumn are relatively wet, precipitation is relatively 

concentrated, the rate of change of the four seasons is relatively large; the multi-year average temperature 

is about 13.4 ℃, the highest annual average temperature is 14.6 ℃, the lowest annual average 

temperature is 12.7 ℃, and the interannual average temperature difference is 1.9 ℃. 

As the capital of China, Beijing is the political, economic, and cultural center of China. Beijing is 

located at the northwestern edge (39.4‐41.6 N。,115.7‐117.4 E。) of the North China Plain, adjacent to 

Tianjin to the east, and the other adjacent to Hebei Province, surrounded by the Taihang and Yanshan 

Mountains in the west, north and northeast. Moreover, it is one of the most crowded cities in the world 

(Men et al., 2018). The resident population of Beijing city is 21.54 million and car ownership of 6.36 

million vehicles in 2018 (National Bureau of Statistics (NBS), 2019) ( Beijing Bureau of Statistics 

(NBS)2018). This area experiences a monsoon-influenced humid continental climate, which is 
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characterized by hot, humid summers, and cold, dry winters (L. Yao et al., 2020). The mean temperature 

over the year is -2.18 ± -2.55 °C, with annual precipitation of 400-500 mm (W. Xu et al., 2020).    

 

2.2 Civil houses and solid fuels at sampling sites 

Xuanwei residents living fuel is mainly bituminous coal and wood (pine, poplar, etc.) or straw (corn 

cobs, etc.), especially in remote mountainous areas of the township, due to the inconvenience of 

transportation, more near the habit of taking materials, according to the characteristics of the 

geographical distribution of small coal kilns, the natural formation of the central part of the city, including 

the nearby Hu Tou Village to burn bituminous coal, remote areas, including Xize Township burn wood 

more, a small number of areas have anthracite coal kilns to burn anthracite coal is the main.  

Rural houses in the Xuanwei area are mainly two-story civil structures (Figure 5a). The first half of 

the first floor of this type of house is the living room or kitchen, which is the place where the family often 

stays. Due to the small windows installed, the air circulation is not smooth. As a result, smoke is 

generated when residents use local coal for heating or cooking. As shown in Figure 5b, the stove is 

directly discharged indoors without any treatment, so the concentration of particulate matter is very high. 

The link between the high incidence of lung cancer and harmful pollutants emitted from local solid fuel 

combustion has been a hot topic and focus of research since the 1980s in Xuanwei, Yunnan Province, 

China (Mumford et al., 1987).  

 

 

Fig. 5. The stove (a) and building structure (b) in rural Xuanwei, China. 
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2.3 Sample collection 

2.3.1 Sample Collection in Xuanwei 

2.3.1.1 Collection of Raw Coal and Biomass  

After the field investigation, three kinds of raw biomass (Pine, Corncob, Poplar) from Zhongan 

Town, and six kinds of residential raw coal from Bole Town (Luomu coal [LM] and Bole coal [BL]), 

Houshou Town (Lijiawu coal [LJW]), Laochang Town (Shunfa coal [SF]), Laibin Town (Guangming 

coal [GM] and Zongfan coal [ZF]), and six group of APMs (Houshou Town) were collected. The detail 

information of raw coal, and biomass as shown in Table 1 and Figure 7. 

 

2.3.1.2 Collection of Atmospheric Particulate Matters in 

Xuanwei 

Six sample groups of APMs (A-F) were conducted by a high-volume air sampler (Shibata Science 

Co., Ltd., Saitama., Japan) at a flow rate of 566 L/min in Xuanwei local rural residents on February and 

March in 2017, and the aerodynamic diameters were <1.1 μm, 1.1–2.0 μm, 2.0–3.3 μm, 3.3–7.0 μm, and 

>7.0 μm, respectively. The detail information of raw coal, biomass, and APMs, as shown in Figure 6 and 

Table 1. The records of APMs collected in Yunnan residential areas in 2017 was list in Table 2. 

 

 

Fig. 6. Sampling sites in Xuanwei  

 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/particulate-matter
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Table 1. The detail information of Raw coal, biomass and APMs from Xuanwei 

Types Mine 
Sample 

groups 
Location Altitude / m Latitude Longitude 

Coal 

Luomu LM Bole Town 1793 26°29′34.09″ 103°46′9.17″ 

Bole BL Bole Town 2104 25°47′15.32″ 104°07′32.32″ 

Zongfan ZF Laibin Town 2024 26°17′58.25″ 104°05′42.49″ 

Guangming GM Laibin Town 1987 26°19′46.55″ 104°09′36.43″ 

Shunfa SF Laochang Town 1994 25°13′31.13″ 104°31′22.42″ 

Lijiawu LJW Housuo Town 2078 25°79′99.21″ 104°28′60.06″ 

Biomass 

 Corncob Zhongan Town 1831 25°39′58.85″ 104°15′8.20″ 

 Pine Zhongan Town 1831 25°39′58.85″ 104°15′8.20″ 

 Poplar Zhongan Town 1812 25°40′38.06″ 104°15′9.59″ 

APMs 
 A~D Housuo Town 2023 25°50′59″ 104°23′22″ 

 E~F Housuo Town 2267 25°49′37″ 104°14′15″ 

 

 

Table 2. The records of APMs collected in Yunnan residential areas in 2017 

Group Date Period 
Duration 

/h 

Volume 

L/min 
Weather Temperature 

A 

2.18 9:40 

48 566 

Sunny 9-17℃ 

2.19  Sunny 9-22℃ 

2.20 9:40 Cloudy-Sunny 9-21℃ 

B 

2.20 10:20 

48 566 

Cloudy-Sunny 9-21℃ 

2.21  Cloudy-Sunny 8-20℃ 

2.22 10:20 Cloudy 9-20℃ 

C 

2.22 11:30 

48 566 

Cloudy 9-20℃ 

2.23  Light rain 8-19℃ 

2.24 11:30 Light rain 3-6℃ 

D 
2.24 11:50 

24 566 
Light rain 3-6℃ 

2.25 11:50 Light rain -1-2℃ 

E 
2.25 13:40 

48 566 
Light rain -1-2℃ 

2.26 13:40 Light rain 0-2℃ 

F 

2.27 14:20 

43 566 

Light rain 3-8℃ 

2.28 
Power outage 

for 5 hours 
Light rain 3-14℃ 

3.01 14:20 Light rain 1-8℃ 

 

2.3.2 Collection of Atmospheric Particulate Matters in Beijing 

Our sampling site is in a high population residential area (Fig.7), with about 600,000 people, and 

the traffic volume is very heavy in the morning and evening rush hours. Residents living in this area are 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/particulate-matter
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potential receptors for metals in the air. 

 

 

Fig. 7. Map of the sampling area (left), the map (right) indicates the sampling site in Beijing. 

 

The aerosol sampling was conducted by a high-volume air sampler at a flow rate of 566 L/min in 

Beijing from 26 December 2018 to 11 January 2019. The sampler (Anderson Sampler, equipped with 5 

cut size :1.1, 1.1‐ 2.0, 2.0‐3.3, 3.3‐7.0, 7.0 μm) can collect the particulate matter in the flue gas on five 

quartz filter membranes according to the aerodynamic diameter. The quartz filter used for collecting PM 

was baked in a muffle furnace (450 ℃) for 6 hours before sampling and placed in a constant temperature 

and humidity chamber at 25 ℃ and 45 % humidity for 24 hours and then wrapped in clean aluminum 

foil paper and placed in a refrigerator at −45 ° C until use. After sampling, the membranes were 

equilibrated and weighed again using the same procedure. To ensure accuracy, each filter was weighed 

at least three times before and after sampling, and the results were averaged. After weighing, store the 

filter at −45 ° C until analysis. The sampling duration was 47 h and were changed new quartz filter at 

about 12:00 am. During the sampling period, the temperature (T; ℃), relative humidity (RH; %), wind 

speed (WS; km/h) and wind direction (WD) and other atmospheric pollutants (SO2, CO, NO2 and O3) 

were collected from the website of Air quality online monitoring and analysis platform 

(https://www.aqistudy.cn; accessed on 20 August 2020) and Ventusky-Weather Maps 

(https://www.ventusky.com; accessed on 20 August 2020 ). The details information about the 

meteorological parameters during the sapling period as shown in Table 3. Each group about time 

series of average ambient temperature (AT; ℃), relative humidity (RH; %), wind speed (WS; km/h) 

and wind direction (WD) in Beijing as shown in Table 4. 

 

 

https://www.aqistudy.cn/
https://www.ventusky.com/
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Table 3. The meteorological parameters during the sapling period 

 

 

 

 

 

Date Weather 
PM2.5 

μg/m3 

PM10 

μg/m3 

SO2  

μg/m3 

CO 

mg/m3 

NO2 

μg/m3 

O3_8h 

μg/m3 

2018/12/26 Sunny~cloudy 9 26 4 0.4 26 50 

2018/12/27 Sunny~cloudy 7 52 4 0.3 10 54 

2018/12/28 Sunny 9 39 4 0.4 19 50 

2018/12/29 Sunny 10 28 5 0.4 26 52 

2018/12/30 Sunny~cloudy 15 32 4 0.5 37 42 

2018/12/31 Cloudy 38 59 10 0.9 56 20 

2019/1/1 Sunny~cloudy 28 45 8 0.7 34 47 

2019/1/2 Cloudy 57 75 12 1 56 28 

2019/1/3 Haze 123 136 21 1.9 82 12 

2019/1/4 Sunny 18 40 5 0.5 26 61 

2019/1/5 Cloudy 17 34 7 0.5 37 49 

2019/1/6 Cloudy 64 95 12 1.4 70 13 

2019/1/7 Cloudy 34 54 9 0.9 44 52 

2019/1/8 Sunny 10 29 4 0.5 28 62 

2019/1/9 Sunny 41 66 12 0.9 59 26 

2019/1/10 Sunny~cloudy 75 113 14 1.5 79 17 

2019/1/11 Haze 103 130 15 1.7 80 21 

Average - 38.71 61.94 8.82 0.85 45.24 38.59 

SD - 33.91 34.87 4.82 0.49 22.14 16.89 
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Table 4. Each group about time series of average ambient temperature (AT; ℃), relative humidity 

(RH; %), wind speed (WS; km/h) and wind direction (WD) in Beijing 

 

Date T℃ RH% WS km/h Wind direction 

12/26-12/28 -5.33 13.33 6.00 Northwest 

12/28-12/30 -5.00 10.00 5.00 Northwest, Northeast 

12/30-12/1 -5.33 13.33 6.00 Northwest, Northeast 

1/1-1/3 -1.33 26.67 3.00 Northwest, Northeast 

1/3-1/5 -1.67 20.00 2.33 Northwest, Northeast 

1/5-1/7 -0.67 16.67 3.33 Southeast, Northwest 

1/7-1/9 -0.67 16.67 4.00 Southeast, Northwest 

1/9-1/11 -0.67 16.67 3.33 Southeast, Northwest 

 

2.4 Sample processing and collection of simulated combustion 

particulate matter 

2.4.1 Instrument and materials 

Instrument: Muffle furnace, Thermometer, Electronic balance (LA130 S-F), Blower, Yunnan civil 

coal furnace, Combustion device, Andersen high-flow five-stage sampler (Shibata Science Co., Ltd., 

Japan). 

Materials: Raw coal, Biomass, Solid alcohol. 

Others: Tweezers, Nitrile Sterile, Dust-free gloves, Tin foil, Self-sealing bags, Lighter. 

 

2.4.2 Combustion devices 

Sampling is performed in a closed and ventilated laboratory with ventilation fans. The flue gas 

collection system consists of a laboratory-designed flue unit and sampler. The flue unit consists of an 

enclosed flared fume hood, two bends (1 m long, 20 cm diameter), a long straight pipe (5 m long, 20 cm 
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diameter), and a cooling water sleeve (2 m long, 30 cm diameter). In addition, a closed flue gas holding 

chamber is connected at the end of the flue, where an Andersen high-flow five-stage sampler (Shibata 

Science Co., Ltd., Japan) is placed. Several parts of the sampling system are removable for easy cleaning 

and are connected by flanges. To avoid contamination of the flue gas by the flue material, the complete 

flue unit is made of stainless steel and the gaskets used in the connections are made of Teflon (Figure 8). 

The entire unit can be considered as a completely closed and pure system, which minimizes background 

contamination during sampling and facilitates experimental analysis. The experimental process ensures 

that there are no flue gas leaks throughout the coal combustion process and no visible particle deposits 

in the piping. 

The Andersen sampler (Figure 9) is placed horizontally in the flue gas holding chamber. The 

particles in five sizes were collected, with a flow rate at 566 L/min, and the aerodynamic diameter are 

<1.1 μm, 1.1-2.0 μm, 2.0-3.3 μm, 3.3-7.0 μm, and >7.0 μm, respectively. 

 

 

Fig. 8. Sketch of sampling system.  

 

 

Fig. 9. The Andersen high volume five-stage sampler 
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2.4.3 Sampling experiments 

Before simulating coal combustion, all parts of the sampling system were carefully cleaned (the 

quartz film used for solid fuel combustion particulate collection was roasted in a muffle furnace (450 °C) 

for 6 hr before sampling), placed in a constant temperature and humidity chamber at 25 °C and 45 % 

humidity for 48 hr, weighed accurately with an electronic balance (LA130 S-F) and numbered, then 

wrapped tightly in clean aluminum foil and placed in a - 4 °C refrigerator for storage. The 500 g raw coal 

or biomass was ignited using solid alcohol, and to avoid the effect of alcohol combustion on particulate 

matter emissions, the coal stove was moved outdoors during the ignition stage, and when the fuel was 

seen to begin to glow red and have a slight flame, the stove was then carefully placed in a closed flared 

fume hood directly below the flared fume hood, and clean air was introduced through the blower (50 

m3/min-1), and the flue gas was passed through the sampler's pump as well as The flue gas is fully mixed 

through the flue device by the action of the blower and cooled at the cooling water casing before entering 

the flue gas retention chamber, where the flue gas temperature at the chamber is around 40 °C. This 

experiment uses the actual air as the oxygen source, and the corresponding background concentration in 

the atmosphere may cause errors in the final actual results. To ensure the reliability of the experimental 

data, the particulate matter in the air is filtered with a 200-purpose filter cloth at the inlet of the blower, 

which can minimize the background pollution during sampling. The whole sampling process of coal 

combustion lasts for 2 hr, including the ignition stage, combustion stage and combustion stage. However, 

the combustion rate of biomass varies greatly depending on the material, with poplar and pine sampled 

for 1 hr and corn cob sampled for 30 min. 

 

2.5 Calculation of particulate matter concentration 

After sampling, the quartz filter membrane was carefully removed and wrapped with the original 

aluminum foil, and the filter membrane samples were weighed after 48 hr of constant temperature and 

humidity (25 °C, 45 % humidity). The mass concentration of different particle sizes was calculated based 

on the sample weight, sampling time and flow rate. The mass concentration of particulate matter was 

calculated according to the following equation (1). 

TL

WW
C



−
=

)( 12
                  (1) 

Where: C -mass concentration (μg/m-3) 
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      W1 -mass of the filter membrane before sampling (μg) 

W2 - the mass of the filter membrane before sampling (μg) 

L -sampling flow rate (m3/h-1) 

T--sampling time (hr) 

 

2.6 Mass concentration of size-segregated particulate matters  

Respirable particulate matter is a common proxy indicator of air pollution. It affects more people 

than any other pollutant. The main components of PM are sulfate, nitrate, ammonia, sodium chloride, 

black carbon, mineral dust and water. It consists of a complex mixture of solid and liquid particles of 

organic and inorganic substances suspended in the air. Routine air quality measurements typically 

describe such PM concentrations in terms of micrograms per cubic meter (μg/m3). WHO Air quality 

guideline (AQG) values (24-hour mean) are 15 μg/m3 and 45 μg/m3 for PM2.5 and PM10, respectively 

(https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health; accessed 

on 22 September 2021 ). Chinese national ambient air quality standards (CNAAQS) Grade I(GB3095-

2012), in which the Grade I standard (24-hour mean) for PM2.5 of 35 μg m−3, and PM10 of 50 μg m−3 

(https://www. transportpolicy.net/standard/china-air-quality-standards/ ; accessed on 22 September 

2021). 

Generally, PM can be classified as coarse particles (PM10 with an aerodynamic diameter less than 

10 μm), fine particles (PM2.5) (Jingjing Zhang et al., 2018)(Do et al., 2021). In our research, Anderson 

sampler used that does not have cut-off sizes of 2.5 and 10 μm, in order to facilitate statistical analysis, 

we regard particles <1.1 μm and 1.1 ‐ 2.0 μm as fine particles (with an aerodynamic diameter less than 

2.0 μm), and others as coarse particles PM>2.0 including (2.0 ‐ 3.0 μm, 3.3 ‐ 7.0 μm, >7.0 μm). The sum 

of all particles is called total suspended particles (TSP). 

2.6.1 Mass concentration of size-segregated in APMs in 

Xuanwei  

The mass concentration of size-segregated in APMs of Xuanwei residential area were show in 

Figure 10 and Table 5. The mass concentrations of atmospheric particulate matter in groups A, and B 

were higher than those in the other four groups, probably due to light rainfall during the sampling period 

in the other groups. The mean concentration of PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 and TSP were  

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
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Fig. 10. The average mass concentration of PM within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 

during the sampling. (HT and LT represent the highest temperature and lowest temperature on the 

sampling day, respectively) 
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Fig. 11. The relative portions of average mass concentration within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, 

and PM>7.0 during the sampling period. 
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ranged from 27.73 to 69.69 μg/m3 with an average value of 42.92 ± 16.50 μg/m3, from 26.33 to 37.48 

μg/m3 with an average value of 26.33 ± 5.66 μg/m3, from 15.64 to 23.62 μg/m3 with an average value of 

20.42 ± 2.68 μg/m3, from 12.58 to 29.95 μg/m3 with an average value of 20.90 ± 5.34 μg/m3, from 19.08 

to 50.43 μg/m3 with an average value of 29.22 ± 11.72 μg/m3, and from 99.50 to 197.75 μg/m3 with an 

average value of 139.79 ± 33.41 μg/m3, respectively. 

 

Table 5. Mass concentration of size-segregated in APMs in Xuanwei (μg/m3) 

Groups <1.1 μm 1.1-2.0 μm <2.0 μm 2.0-3.3 μm 3.0-7.0 μm <7.0 μm >7.0 μm TSP 

A 62.08 23.25 85.33 19.94 22.94 128.21 39.88 168.09 

B 69.69 24.06 93.75 23.62 29.95 147.32 50.43 197.75 

C 31.41 20.80 52.21 15.64 12.58 80.43 19.08 99.50 

D 34.23 22.82 57.05 22.58 20.61 100.24 22.45 122.69 

E 32.39 37.48 69.87 21.96 22.15 113.98 21.53 135.51 

F 27.73 29.57 57.30 18.77 17.18 93.25 21.96 115.21 

Mean 42.92 26.33 69.25 20.42 20.90 110.57 29.22 139.79 

Max 69.69 37.48 93.75 23.62 29.95 147.32 50.43 197.75 

Min 27.73 20.80 52.21 15.64 12.58 80.43 19.08 99.50 

STD 16.50 5.66 15.50 2.68 5.34 22.32 11.72 33.41 

STD: Standard Deviation, Max: Maximum, Min: minimum 

 

Table 6. Percentage distribution of mass concentration to TSP (%) and international standard ratio for 

APMs in Xuanwei 

Percentage distribution of mass concentration (%) 
International standard ratio 

CNAAQS CNAAQS AQG AQG 

Gro 

ups 
PM1.1 PM1.1-2.0 PM2.0 PM2.0-3.3 PM3.3-7.0 PM7.0 PM>7.0 

PM2.0/ 

PM2.5 

PM7.0/ 

PM10 

PM2.0/ 

PM2.5 

PM7.0/ 

PM10 

A 36.93  13.83  50.77  11.86  13.65  76.28  23.72  2.44  2.56  5.69  2.85  

B 35.24  12.17  47.41  11.94  15.14  74.50  25.50  2.68  2.95  6.25  3.27  

C 31.57  20.90  52.47  15.72  12.64  80.83  19.17  1.49  1.61  3.48  1.79  

D 27.90  18.60  46.50  18.40  16.80  81.70  18.30  1.63  2.00  3.80  2.23  

E 23.90  27.66  51.56  16.21  16.34  84.11  15.89  2.00  2.28  4.66  2.53  

F 24.07  25.66  49.74  16.29  14.91  80.94  19.06  1.64  1.87  3.82  2.07  

Mean 29.94  19.80  49.74  15.07  14.91  79.72  20.28  1.98  2.21  4.62  2.46  

Max 36.93  27.66  52.47  18.40  16.80  84.11  25.50  2.68  2.95  6.25  3.27  

Min 23.90  12.17  46.50  11.86  12.64  74.50  15.89  1.49  1.61  3.48  1.79  

STD 5.08  5.67  2.15  2.39  1.44  3.29  3.29  0.44  0.45  1.03  0.50  

STD: Standard Deviation, Max: Maximum, Min: minimum 

 

The PM2.0 mean concentration were ranged from 52.21 to 93.75 μg/m3, which were 1.98 ± 044 times 
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of average limit of 35 μg/m3 for PM2.5 (24-hour mean) set by Chinese national ambient air quality 

standards (CNAAQS) Grade I (GB3095-2012), and 4.62 ± 1.03 times than the PM2.5 concentration of 15 

μg/m3 in the air quality guidelines (AQG) standard put forth by the WHO. The PM7.0 mean concentration 

were ranged from 80.40 to 147.32 μg/m3, which were 2.21 ± 0.45 times of average limit of 50 μg/m3 for 

PM10 (24-hour mean) set by Chinese national ambient air quality standards (CNAAQS) Grade I(GB3095-

2012), and 2.46 ± 0.50 times than the PM10 concentration of 45 μg/m3 in the air quality guidelines (AQG) 

standard put forth by the WHO (Table 5 and Table 6). 

Percentage distribution of mass concentration (%) and international standard ratio for APMs are 

listed in Figure 11 and Table 6. Percentage distribution of mass concentration to TSP of PM1.1, PM1.1-2.0, 

PM2.0-3.3, PM3.3-7.0, and PM>7.0 were ranged from 23.90 to 36.93 %, 12.17 to 27.66 %, 11.86 to 18.40 %, 

12.64 to 16.80 % and 15.89 to 25.50 % in Xuanwei residential area, respectively. It is worth noting that 

the mass concentration of fine particulate matter with particle size < 2.0 μm to TSP mass concentration 

ranged from 46.50 to 52.47 %, indicating that the ambient atmosphere in the region is dominated by fine 

particulate matter. There is no large pollution source in the sampling site, the main source of pollution is 

residential solid fuel combustion. 

 Actually, there is no any large pollution source in the county. The reasons are attributed to 

scattered coal combustion for living and heating, dust pollution caused by the road transportation, 

construction site and uncovered ground, vehicle emissions and cook fume in the county, as well as air 

pollution transported from the surrounding cities. 

 

2.6.2 Mass concentration of size-segregated in RBC particles  

The mass concentration of size-segregated in RBC particles were show in Figure 12 and Table 7. 

The mean PM concentration were in the order of Corncob > Poplar > Pine. The mean concentration of 

PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 and TSP were ranged from 1781.82 to 4975.61 μg/m3 with an 

average value of 2948.77 ± 1438.66 μg/m3, from 840.40 to 2420.05 μg/m3 with an average value of 

1415.44 ± 712.85 μg/m3, from 648.84 to 1794.04 μg/m3 with an average value of 1087.57 ± 504.44 μg/m3, 

from 725.25 to 1486.45 μg/m3 with an average value of 1085.38 ± 3121.10 μg/m3, from 531.31 to 

1178.86 μg/m3 with an average value of 804.40 ± 273.91 μg/m3, and from 500.06 to 11855.01 μg/m3 

with an average value of 7341.57 ± 3192.13 μg/m3, respectively. 

The PM2.0 mean concentration were ranged from 2767.68 to 7395.66 μg/m3, which were 124.69 ± 

61.27 times of average limit of 35 μg/m3 for PM2.5 (24-hour mean) set by Chinese national ambient air 

quality standards (CNAAQS) Grade I(GB3095-2012), and 290.95 ± 142.97 times than the PM2.5 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pollutant-source
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pollutant-source
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/coal-combustion
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concentration of 15 μg/m3 in the air quality guidelines (AQG) standard put forth by the WHO. The PM7.0  

 

Fig. 12. Mass concentration of size-segregated in RBC particles 

 

 

Fig. 13. Percentage of size-segregated in RBC particles  
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average limit of 50 μg/m3 for PM10 (24-hour mean) set by Chinese national ambient air quality standards 

(CNAAQS) Grade I (GB3095-2012), and 145.27 ± 65.11 times than the PM10 concentration of 45 μg/m3 

in the air quality guidelines (AQG) standard put forth by the WHO (Table 7 and Table 8). 

Percentage distribution of mass concentration (%) and international standard ratio for RBC particles 

are listed in Figure 13 and Table 8. Percentage distribution of mass concentration to TSP of PM1.1, PM1.1-

2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 were ranged from 34.51 to 41.97 %, 16.79 to 20.41 %, 12.95 to 15.88 %, 

12.54 to 20.23 % and 9.94 to 14.04 % in Xuanwei residential area, respectively. Compared to APMs, the 

mass concentration of fine particulate matter with particle size < 2.0 μm to TSP mass concentration were 

higher, ranged from 53.60 to 62.38 % with an average value of 58.17 ± 3.59 %.In winter, strong 

correlations of PM2.5 with PM10, SO2, and CO (r = 0.53–0.98, p < 0.001) were identified, most likely 

linked to fossil fuel combustion for domestic heating (Hao et al., 2020). 

 

Table 7. Mass concentration of size-segregated in RBC particles (μg/m3) 

Groups <1.1 μm 1.1-2.0 μm <2.0 μm 2.0-3.3 μm 3.0-7.0 μm <7.0 μm >7.0 μm TSP 

Corncob 4975.61  2420.05  7395.66  1794.04  1486.45  10676.15  1178.86  11855.01  

Pine 2088.89  840.40  2929.29  648.48  725.25  4303.03  703.03  5006.06  

Poplar 1781.82  985.86  2767.68  820.20  1044.44  4632.32  531.31  5163.64  

Average 2948.77  1415.44  4364.21  1087.57  1085.38  6537.17  804.40  7341.57  

Max 4975.61  2420.05  7395.66  1794.04  1486.45  10676.15  1178.86  11855.01  

Min 1781.82  840.40  2767.68  648.48  725.25  4303.03  531.31  5006.06  

STD 1438.66  712.85  2144.58  504.44  312.10  2929.79  273.91  3192.13  

STD: Standard Deviation, Max: Maximum, Min: minimum 

 

Table 8. Percentage distribution of mass concentration to TSP (%) and international standard ratio for 

RBC particles 

Percentage distribution of mass concentration (%) 
International standard ratio 

CNAAQS CNAAQS AQG AQG 

Gro 

ups 
PM

1.1
 PM

1.1-2.0
 PM

2.0
 PM

2.0-3.3
 PM

3.3-7.0
 PM

7.0
 PM

>7.0
 

PM
2.0

/ 

PM
2.5

 

PM
7.0

/ 

PM
10

 

PM
2.0

/ 

PM
2.5

 

PM
7.0

/ 

PM
10

 

Corncob 41.97  20.41  62.38  15.13  12.54  90.06  9.94  211.30  213.52  493.04  237.25  

Pine 41.73  16.79  58.51  12.95  14.49  85.96  14.04  83.69  86.06  195.29  95.62  

Poplar 34.51  19.09  53.60  15.88  20.23  89.71  10.29  79.08  92.65  184.51  102.94  

Average 39.40  18.76  58.17  14.66  15.75  88.57  11.43  124.69  130.74  290.95  145.27  

Max 41.97  20.41  62.38  15.88  20.23  90.06  14.04  211.30  213.52  493.04  237.25  

Min 34.51  16.79  53.60  12.95  12.54  85.96  9.94  79.08  86.06  184.51  95.62  

STD 3.46  1.50  3.59  1.24  3.26  1.86  1.86  61.27  58.60  142.97  65.11  

STD: Standard Deviation, Max: Maximum, Min: minimum 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/fuel-combustion
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2.6.2 Mass concentration of size-segregated particles in RCC 

particles  

 

Fig. 14. Mass concentration of size-segregated in RCC particles 

 

Fig. 15. Percentage of size-segregated in RCC particles  

 

The mass concentration of size-segregated RCC particles was show in Figure 14 and Table 8. The 
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mean PM concentration were in the order of LJW > SF > LM > BL > ZF > GM. The mean concentration 

of PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 and TSP were ranged from 1008.54 to 6606.30 μg/m3 with 

an average value of 3575.85 ± 2106.00 μg/m3, from 802.41 to 5555.06 μg/m3 with an average value of 

2608.53 ± 1620.04 μg/m3, from 577.15 to 2497.06 μg/m3 with an average value of 1465.08 ± 672.75 

μg/m3, from 566.84 to 995.29 μg/m3 with an average value of 768.34 ± 150.85 μg/m3, from 262.07 to 

734.69 μg/m3 with an average value of 522.25 ± 169.78 μg/m3, and from 3452.59 to 16026.21 μg/m3 

with an average value of 9363.22 ± 4434.46 μg/m3, respectively. 

The PM2.0 mean concentration were ranged from 1810.95 to 11833.04 μg/m3, which were 188.76 ± 

104.41 times of average limit of 35 μg/m3 for PM2.5 (24-hour mean) set by Chinese national ambient air 

quality standards (CNAAQS) Grade I(GB3095-2012), and 440.44 ± 243.63 times than the PM2.5 

concentration of 15 μg/m3 in the air quality guidelines (AQG) standard put forth by the WHO. The PM7.0 

mean concentration were ranged from 2388.10 to 14330.09 μg/m3, which were 132.13 ± 73.09 times of 

average limit of 50 μg/m3 for PM10 (24-hour mean) set by Chinese national ambient air quality standards 

(CNAAQS) Grade I (GB3095-2012), and 178.03 ±92.51 times than the PM10 concentration of 45 μg/m3 

in the air quality guidelines (AQG) standard put forth by the WHO (Table 9 and Table 10). 

 

Table 9. Mass concentration of size-segregated in RCC particles (μg/m3) 

Groups <1.1 μm 1.1-2.0 μm <2.0 μm 2.0-3.3 μm 3.0-7.0 μm <7.0 μm >7.0 μm TSP 

BL 2193.76  1457.60  3651.35  1833.04  659.60  5484.39  262.07  6406.07  

LM 4340.40  3514.43  7854.83  1487.04  904.00  9341.87  715.55  10961.43  

SF 6606.30  3697.00  10303.30  1432.57  881.92  11735.87  734.69  13352.47  

LJW 6277.97  5555.06  11833.04  2497.06  995.29  14330.09  700.82  16026.21  

GM 1008.54  802.41  1810.95  577.15  566.84  2388.10  497.64  3452.59  

ZF 2410.19  1775.62  4185.81  600.71  711.13  4786.51  482.92  5980.57  

Average 3575.85  2608.53  6184.38  1465.80  768.34  7650.18  522.25  9363.22  

Max 6606.30  5555.06  11833.04  2497.06  995.29  14330.09  734.69  16026.21  

Min 1008.54  802.41  1810.95  577.15  566.84  2388.10  262.07  3452.59  

STD 2106.00  1620.04  3654.48  672.75  150.85  4162.83  169.78  4434.46  

STD: Standard Deviation, Max: Maximum, Min: minimum 

 

Percentage distribution of mass concentration (%) and international standard ratio for RCC particles 

are listed in Figure 15 and Table 9. Percentage distribution of mass concentration to TSP of PM1.1, PM1.1-

2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 were ranged from 29.21 to 49.48 %, 22.75 to 34.66 %, 10.04 to 28.61 %, 
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6.21 to 16.42 % and 4.09 to 14.41% in Xuanwei residential area, respectively. Compared to APMs, the 

mass concentration of fine particulate matter with particle size < 2.0 μm to TSP mass concentration were 

higher, ranged from 52.45 to 77.16 % with an average value of 67.02 ± 9.06. Compared to the previous 

results (Q. Yan et al., 2020), the particulate matters emitted from RCC (Huaibei, Xinjiang, Inner 

Mongolia, and Guizhou in China ) were major concentrated in the size range of 0.43–2.1μm, which 

accounted for 39.2%–62.8% of total particulate matter, indicating that fine particulate matters emitted 

from RCC in Xuanwei area is higher than other areas of China. 

 

Table 10. Percentage distribution of mass concentration to TSP (%) and international standard ratio for 

RCC particles 

Percentage distribution of mass concentration (%) 
International standard ratio 

CNAAQS CNAAQS AQG AQG 

Gro 

ups 
PM

1.1
 PM

1.1-2.0
 PM

2.0
 PM

2.0-3.3
 PM

3.3-7.0
 PM

7.0
 PM

>7.0
 

PM
2.0

/ 

PM
2.5

 

PM
7.0

/ 

PM
10

 

PM
2.0

/ 

PM
2.5

 

PM
7.0

/ 

PM
10

 

BL 34.25  22.75  57.00  28.61  10.30  85.61  4.09  104.32  73.03  243.42  121.88  

LM 39.60  32.06  71.66  13.57  8.25  85.22  6.53  224.42  157.10  523.66  207.60  

SF 49.48  27.69  77.16  10.73  6.60  87.89  5.50  294.38  206.07  686.89  260.80  

LJW 39.17  34.66  73.84  15.58  6.21  89.42  4.37  338.09  236.66  788.87  318.45  

GM 29.21  23.24  52.45  16.72  16.42  69.17  14.41  51.74  36.22  120.73  53.07  

ZF 40.30  29.69  69.99  10.04  11.89  80.03  8.07  119.59  83.72  279.05  106.37  

Average 38.67  28.35  67.02  15.88  9.94  82.89  7.16  188.76  132.13  440.44  178.03  

Max 49.48  34.66  77.16  28.61  16.42  89.42  14.41  338.09  236.66  788.87  318.45  

Min 29.21  22.75  52.45  10.04  6.21  69.17  4.09  51.74  36.22  120.73  53.07  

STD 6.19  4.35  9.06  6.18  3.51  6.79  3.51  104.41  73.09  243.63  92.51  

STD: Standard Deviation, Max: Maximum, Min: minimum 

 

2.6.3 Comparison of mass concentrations of particulate 

matter from different sources in Xuanwei 

Comparing the different type particulate matter, we found that the mass concentration of particulate 

matter emitted from solid fuel combustion was mainly concentrated in particle size < 2.0 μm (58.17 ± 

3.59 % for RBC particles, 67.02 ± 9.06 % for RCC particles), while the mass concentrations of 

atmospheric particulate matter were mainly concentrated in the particle size < 2.0 μm (49.74 ± 2.15 %) 

and >7.0 μm (20.28 ± 3.29 %). It indicates that the emission of fine particulate matter from raw coal 
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combustion is more than that from biomass combustion, and the health risk is not negligible as the 

ambient atmosphere is dominated by fine particulate matter. 

From this study, it can be obtained that the concentrations of RCC particles and RBC particles are 

much higher than the APMs concentrations, not only because biomass and coal combustion are 

generated in a sealed environment for simulated combustion, without dilution of them and even less 

conditions for diffusion. In general, particulate matter released into the atmosphere from solid fuel 

combustion is diluted, transported over long distances, and subject to primary and secondary chemical 

reactions, so that the concentration of particulate matter in the atmosphere is much lower than the mass 

concentration of particulate matter produced by direct emission sources. Unlike general atmospheric 

particulate sampling, we collect high concentrations of RCC and RBC particulate matter directly with 

our sampling system. In the future, a comprehensive investigation different RCC and RBC under 

different stove types, combustion conditions and combustion stages are necessary to better understand 

the distribution pattern of PM. 

 

2.6.4 Mass concentration of size-segregated particles in APMs 

in Beijing  

2.6.4.1 Weather conditions during the Beijing sampling 

Many studies have reported that the mass concentration of size distribution varies in different 

conditions (Q. Yao et al., 2020) (Do et al., 2021).The characteristics of atmospheric aerosols can be 

investigated based on the weather conditions (Do et al., 2021)（AT, RH, WS and WD and atmospheric 

pollutants (SO2, CO, NO2 and O3) (Weiqian Wang et al., 2020). 

The detailed information about the meteorological parameters, weather conditions and atmospheric 

pollutants was provided in Table 3, Table 4. During the sampling period, the temperature varied from -

8 ℃ to 3 ℃ with a mean value of 2.18 ± 2.55 ℃; the ambient RH was in a range of 10 ‐ 30 % and 

averaged at 18.24 ± 7.06 %; the average wind speed of 4.12 ± 2.40 km/h. Table 1 and Fig.2 show that the 

lowest PM+2.0 and PM>2.0 (38.52 and 111.41 µg/m3, respectively), which was collected between 28-30 

December, during this sampling period, the ambient temperature ( -5 ℃) and relative humidity (10 %) 

was lower than other groups, and wind speed was higher than other sampling time. Meanwhile, PM2.0 

and PM>2.0 was highest (75.95 and 207.23 µg/m3, respectively), which was collected between 1‐ 3 

January, during the sampling period, the ambient temperature (-1.33 ℃) and relative humidity (26.67 %) 
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are relatively higher, while the wind speed (3.00 km/h) is lower than most other sampling groups. Pearson 

correlation coefficients between the meteorological parameters and atmospheric pollutants in size-

segregated PM was presented in Table 11. Pearson correlation coefficients show that the mass 

concentration PM2.0 and PM>2.0 both had an apparent correlation (p<0.01) with AT(r=0.55), 

RH(r=0.46) ,WS(r=-0.43) and AT(r=0.70), RH(r=0.80) ,WS(r=-0.61), respectively; in addition, the mass 

concentration PM2.0 and PM>2.0 also presented an apparent correlation with atmospheric pollutants 

(PM2.0, SO2, r = 0.68, CO, r = 0.71, NO2, r = 0.66, O3, r = -0.67, p < 0.01;PM>2.0 SO2, r = 0.86, CO, r = 

0.85, NO2, r = 0.76 p < 0.01, O3, r = -0.76, p < 0.01 ). This result was consistent with the study (Weiqian 

Wang et al., 2020) . 

 

Table 11. Pearson correlation coefficients between the meteorological parameters (temperature, wind 

speed and humidity) and atmospheric pollutants (SO2, CO, NO2 and O3) in the different size range of 

particles 

Size range 

T  

℃ 

RH  

% 

WS 

km/h 

SO2 

μg/m3 

CO 

mg/m3 

NO2  

μg/m3 

O3-8h  

μg/m3 

＜1.1 µm 0.43  0.34  -0.37  0.58  0.63  0.58  -0.60  

1.1-2.0 µm 0.64  0.58  -0.40  0.72  0.74  0.71  -0.67  

2.0-3.3 µm 0.31  0.85  -0.37  0.58  0.49  0.36  -0.44  

3.3-7.0 µm 0.85  0.52  -0.65  0.75  0.79  0.76  -0.61  

>7.0 µm 0.59  0.32  -0.41  0.66  0.74  0.76  -0.74  

<2.0 µm 0.55  0.46  -0.43  0.68  0.71  0.66  -0.67  

>2.0µm 0.70  0.83  -0.61  0.86  0.85  0.76  -0.76  

 

2.6.4.2 The size distribution of APMs in Beijing 

The size distribution of APMs in Beijing was show in Figure 16 and Table 12. The mean 

concentration of PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 and TSP were ranged from 21.61 to 57.87 

μg/m3 with an average value of 39.67 ± 10.66 μg/m3, from 16.91 to 41.89 μg/m3 with an average value 

of 32.25 ± 6.78 μg/m3, from 38.52 to 99.75 μg/m3 with an average value of 71.92 ± 16.47 μg/m3, from 

23.92 to 82.81 μg/m3 with an average value of 36.54 ± 17.70 μg/m3, from 47.63 to 79.34 μg/m3 with an 

average value of 39.86 ± 77.51 μg/m3, and from 149.93 to 289.84 μg/m3 with an average value of 230.65 

± 42.29 μg/m3, respectively. 
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Fig. 16. The meteorological factors and mass concentrations in different size-resolved PM in Beijing  

 

0  

Fig. 17. Percentage of size-segregated in APMs particles in Beijing 

 

The PM2.0 mean concentration were ranged from 38.52 to 99.75 μg/m3, which were 2.05 ± 0.47 

times of average limit of 35 μg/m3 for PM2.5 (24-hour mean) set by Chinese national ambient air quality 

standards (CNAAQS) Grade I(GB3095-2012), and 4.79 ± 1.10 times than the PM2.5 concentration of 15 

μg/m3 in the air quality guidelines (AQG) standard put forth by the WHO. The PM7.0 mean concentration 

were ranged from 62.45 to 158.75 μg/m3, which were 2.17 ± 0.54 times of average limit of 50 μg/m3 for 
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PM10 (24-hour mean) set by Chinese national ambient air quality standards (CNAAQS) Grade I 

(GB3095-2012), and 2.41 ± 0.60 times than the PM10 concentration of 45 μg/m3 in the air quality 

guidelines (AQG) standard put forth by the WHO (Table 12 and Table 13). 

Percentage distribution of mass concentration (%) and international standard ratio for APMs are 

listed in Figure 17 and Table 13. Percentage distribution of mass concentration to TSP of PM1.1, PM1.1-

2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 were ranged from 13.33 to 20.08 %, 11.28 to 15.79 %, 11.47 to 29.94 %, 

23.37 to 31.77 % and 20.57 to 28.84 % in Beijing, respectively. which indicates that fine particles  

 

Table 12. Mass concentration of size-segregated of APM in Beijing (μg/m3) 

Groups <1.1 μm 1.1-2.0 μm <2.0 μm 2.0-3.3 μm 3.0-7.0 μm <7.0 μm >7.0 μm TSP 

12/26-12/28 44.19 32.35 76.55 32.25 60.20 108.80 54.79 223.78 

12/28-12/30 21.61 16.91 38.52 23.92 47.63 62.45 39.86 149.93 

12/30-1/1 34.26 30.59 64.86 27.94 51.84 92.80 58.62 203.26 

1/1-1/3 38.95 37.00 75.95 82.81 66.17 158.75 58.25 283.17 

1/3-1/5 45.90 30.34 76.24 30.48 64.21 106.72 57.68 228.62 

1/5-1/7 46.00 35.08 81.08 30.71 68.72 111.79 71.72 252.22 

1/7-1/9 28.59 33.85 62.44 30.94 67.83 93.38 53.18 214.39 

1/9-1/11 57.87 41.89 99.75 33.24 79.34 132.99 77.51 289.84 

Average 39.67 32.25 71.92 36.54 63.24 108.46 58.95 230.65 

Max 57.87 41.89 99.75 82.81 79.34 158.75 77.51 289.84 

Min 21.61 16.91 38.52 23.92 47.63 62.45 39.86 149.93 

STD 10.66 6.78 16.47 17.70 9.37 26.78 10.75 42.29 

STD: Standard Deviation, Max: Maximum, Min: minimum 

 

significantly contribute to atmospheric particulate matter pollution in winter in Beijing. It was also 

observed in previous studies (Yele Sun et al., 2006)(J. Duan et al., 2014). There is no large pollution 

source in the sampling site. But both PM2.0 and PM7.0 average concentrations in winter are similar to 

previous research in Beijing in winter( PM2.5 85.47 μg/m3 ,PM10  107.20 μg/m3) and higher in summer 

( PM2.5 60.20 μg/m3 ,PM10 46.3 μg/m3) (Lv et al., 2019), which are attributable to the on transported from 

Tianjin-Hebei-Shandong province. These activities in the province are the frequent occurrence of 

unfavorable atmospheric diffusion conditions, resulting in increased air pollutant emissions (Lv et al., 

2019) (Gao, Jiajia, et al., 2015).  

It is generally acknowledged that primary source like road dust and soil as the main emission source 

of coarse particulate matter, while fine atmospheric particulate matters are emitted from both primary 

source and secondary formation due to complex chemical processes in the atmosphere (Lv et al., 2019). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pollutant-source
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pollutant-source
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Predominantly, high PM in the winter in Beijing was mainly attributed to the adverse meteorological 

conditions like low temperature and lower boundary layer height, less precipitation and weaker wind and 

solid fuel (coal) combustion for indoor heating (Z. Liu et al., 2019), Another reason may be that probably 

due to the transport of polluted air masses from urban areas (Hao et al., 2020). 

 

Table 13. Percentage distribution of mass concentration to TSP (%) and international standard ratio for 

APM particles in Beijing 

Percentage distribution of mass concentration (%) 

International standard ratio 

CAN 

AQS 

CAN 

AQS 
AQG AQG 

Gro 

ups 

PM 

1.1
 

PM 

1.1-2.0
 

PM 

2.0
 

PM 

2.0-3.3
 

PM 

3.3-7.0
 

PM 

7.0
 

PM 

>7.0
 

PM
2.0

/ 

PM
2.5

 

PM
7.0

/ 

PM
10

 

PM
2.0

/ 

PM
2.5

 

PM
7.0

/ 

PM
10

 

12/26-12/28 19.75  14.46  34.21  14.41  26.90  48.62  24.48  2.19  2.18  5.10  2.42  

12/28-12/30 14.42  11.28  25.69  15.95  31.77  41.65  26.58  1.10  1.25  2.57  1.39  

12/30-1/1 16.86  15.05  31.91  13.75  25.51  45.66  28.84  1.85  1.86  4.32  2.06  

1/1-1/3 13.76  13.06  26.82  29.24  23.37  56.06  20.57  2.17  3.18  5.06  3.53  

1/3-1/5 20.08  13.27  33.35  13.33  28.09  46.68  25.23  2.18  2.13  5.08  2.37  

1/5-1/7 18.24  13.91  32.15  12.18  27.24  44.32  28.43  2.32  2.24  5.41  2.48  

1/7-1/9 13.33  15.79  29.12  14.43  31.64  43.55  24.80  1.78  1.87  4.16  2.08  

1/9-1/11 19.96  14.45  34.42  11.47  27.37  45.88  26.74  2.85  2.66  6.65  2.96  

Average 17.05  13.91  30.96  15.60  27.74  46.55  25.71  2.05  2.17  4.79  2.41  

Max 20.08  15.79  34.42  29.24  31.77  56.06  28.84  2.85  3.18  6.65  3.53  

Min 13.33  11.28  25.69  11.47  23.37  41.65  20.57  1.10  1.25  2.57  1.39  

STD 2.69  1.30  3.14  5.32  2.66  4.09  2.45  0.47  0.54  1.10  0.60  

STD: Standard Deviation, Max: Maximum, Min: minimum 

 

2.6.5 Differences in atmospheric particulate matter between 

Xuanwei and Yunnan 

According to the conclusions of 2.4.1 and 2.4.4.2 we find that the mass of atmospheric particles 

shows a bimodal distribution, with the major peak in the particle size <1.1 µm range while the minor 

peak in the size range of ＞7 μm, respectively, it were consistent with previous studies (Q. Yan et al., 

2020) (G. Shen et al., 2010). 

The PM2.0 mean concentration at Xuanwei and Beijing in winter were ranged from 52.21 to 93.75 

μg/m3 and ranged from 38.52 to 99.75 μg/m3, respectively, which were 1.98 ± 044 times, 2.05 ± 0.47 

times of average limit of 35 μg/m3 for PM2.5 (24-hour mean) set by Chinese national ambient air quality 
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standards (CNAAQS) Grade I(GB3095-2012). The levels of PM2.0 in Xuanwei were lower than those in 

Chinese cities like Shijiazhuang (139 μg/m3)(Y. Xie et al., 2019), Xi’an (108 μg/m3)(Q. Dai et al., 2018), 

Xinxiang (94 μg/m3)(K. Yang et al., 2019), and Beijing (83 μg/m3)(Ji et al., 2019), while it was higher 

than Fuzhou (27 μg/m3), Nanjing (55 μg/m3)(Nie et al., 2018), and Chengdu (57 μg/m3)(H. Qiu et al., 

2019). The PM7.0 mean concentration at Xuanwei and Beijing in winter were 2.21 ± 0.45 times and 2.17 

± 0.54 times of average limit of 50 μg/m3 for PM10 (24-hour mean) set by Chinese national ambient air 

quality standards (CNAAQS) Grade I (GB3095-2012).  

Numerous studies have been conducted to analyze the mass concentration, particle size distribution, 

and composition of atmospheric particulate matter. The annual mean concentrations of PM2.5 at Luoyang 

and Pingdingshan sites were 128 ± 66 (range 43 to 315 μg/m3) and 119 ± 71 μg/m3 (range 27 to 

448 μg/m3), respectively, which were 3.6 and 3.4 times of annual average limit of 35 μg/m3 set by 

Chinese National Ambient Air Quality Standard of grade 2 (NAAQS II) (Q. Wang et al., 2020). The 

average outdoor PM2.5 mass concentration was 41.7 ± 25.1 μg/m3 , which were collected from December 

2018 to September 2020, a total of 171 indoor-outdoor pairs of samples in Nanjing (F. Yang et al., 2021). 

The results show that the particulate matter pollution in Xuanwei is not serious and is at a medium 

level in the country, indicating that the mass concentration of particulate matter is not a major factor of 

lung cancer in Xuanwei, but it is possible that the local particulate matter in Xuanwei contains some 

special components or the content of certain pollutants exceeds the standard. 

 

2.7. Brief summary 

1) We collected six groups of atmospheric particulate matter, three types of biomasses, and six types 

of raw coal in Xuanwei, Yunnan, an area with a high incidence of lung cancer and eight sets of 

atmospheric particulate matter samples were collected in Beijing 

2) Simulated combustion of biomass and raw coal. 

3) Comparing the different type particulate matter, we found that the mass concentration of 

particulate matter emitted from solid fuel combustion was mainly concentrated in particle size < 2.0 μm 

(58.17 ± 3.59 % for RBC particles, 67.02 ± 9.06 % for RCC particles), while the mass concentrations of 

atmospheric particulate matter were mainly concentrated in the particle size < 2.0 μm (49.74 ± 2.15 %) 

and >7.0 μm (20.28 ± 3.29 %). It indicates that the emission of fine particulate matter from raw coal 

combustion is more than that from biomass combustion, and the health risk is not negligible as the 

ambient atmosphere is dominated by fine particulate matter. 
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4) We found that the mass of atmospheric particles showed a bimodal distribution, with the major 

peak in the range of particle size <1.1 µm and the minor peak in the range of size >7 µm. In contrast, the 

concentration of particulate matter emitted from solid fuel combustion is mainly concentrated in the 

range of particle size <1.1 µm. 

5) Xuanwei area, there are no large sources of pollution in the vicinity of the sampling site, and its 

pollution may be caused by solid fuel combustion, road transport, dust from construction sites, exhaust 

emissions from cars or mining in the county, and long-distance transport of pollution from surrounding 

cities. 

6) Beijing area, it is generally acknowledged that primary source like road dust and soil as the main 

emission source of coarse particulate matter, while fine atmospheric particulate matters are emitted from 

both primary source and secondary formation due to complex chemical processes in the atmosphere. 

Predominantly, high PM in the winter in Beijing was mainly attributed to the adverse meteorological 

conditions like low temperature and lower boundary layer height, less precipitation and weaker wind and 

solid fuel (coal) combustion for indoor heating. another reason may be that probably due to the transport 

of polluted air masses from urban areas. 

7) The results show that the particulate matter pollution in Xuanwei is not serious and is at a medium 

level in the country, indicating that the mass concentration of particulate matter is not the main factor of 

lung cancer in Xuanwei, which may be due to the possibility that the local particulate matter in Xuanwei 

contains some special components or the content of certain pollutants exceeds the standard. 
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Chapter 3 Materials and methods 

3.1 Ion Chromatography (IC) 

3.1.1 Principle of IC 

Ion chromatography (IC) is a liquid chromatography method used to analyze anions and cations. 

According to the principle of separation, ion chromatography can be grouped into ion exchange 

chromatography, ion exclusion chromatography, ion pair chromatography. Ion chromatography is 

capable of measuring concentrations of major anions, such as fluoride, chloride, nitrate, nitrite and sulfate, 

and major cations, such as lithium, sodium, ammonium, potassium, calcium and magnesium, in the parts 

per billion (ppb) range. Ion chromatography is a form of liquid chromatography in which ionic species 

are separated based on their interaction with a resin to measure their concentration. The ionic species are 

separated in different ways, depending on the type and size of the species. The sample solution is passed 

through a pressurized column and the ions are absorbed by the components on the column. The absorbed 

ions begin to separate from the column as the ion extract, called the eluent, flows through the column. 

The retention time of different species determines the concentration of ions in the sample. 

 

 

Fig. 18. The anion concentrations 
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Each peak represents an individual ion from the sample solution. The elution time, i.e., the time 

required for an ion to pass through the column, varies for each ionic species separately from the column 

as the pH and/or ionic strength of the eluent increases. The concentration of ions passing through the 

column at a particular time is indicated by the height and width of the peak and can be correlated with 

the concentration of a particular species in the sample solution (Fig 18 and Fig 19).  Ion concentrations 

can be calculated using the area under each peak, where a larger area correlates with a higher 

concentration of a particular ion species. Most ion chromatography machines provide software that 

calculates this area, which users can convert to ppm or other quantity using calibration standard solutions. 

 

 

Fig. 19. The cation concentrations 

Fig 18 shows anion concentrations and the Fig 19 depicts cation concentrations from this research 

samples.  

 

3.1.2 The advantages of IC 

The main impetus for the early development of ion chromatography was the analysis of anions, 

which became the first choice for anion analysis due to its ability to separate a wide range of inorganic 

anions in a short period of time. Currently, ion chromatography has many advantages in ion analysis, 

such as high sensitivity and selectivity, fast separation, simultaneous analysis of multiple ionic 
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compounds, good stability of separation columns, and high capacity. Compared with chemical analysis, 

chromatography is not limited by the chemical properties of compounds and can be used to separate and 

determine homologues and optical isomers with the same chemical properties (X. Liu et al., 2021).  

 

3.1.3 Applications of IC 

Currently, ion chromatography has been widely used in environmental monitoring (H. Feng et al., 

2020), power and energy industry (Marocco et al., 2021), electronics industry (Y. Lu et al., 2019), food 

industry (Gasparini et al., 2020) and beverage industry (Ye et al., 2021), chemical industry (Cai et al., 

2016), pharmaceutical industry (Jenke, 2011), and other fields (M. Shen et al., 2020). Meanwhile, due to 

the wide application of ion chromatography, the diversity and complexity of the samples to be measured 

have put higher demands on the separation performance of ion chromatography. 

3.1.4 Ion balance calculation 

The acidity of aerosols is an effective method for assessing the pH of atmospheric PM, which 

promotes heterogeneous reactions of particulate matter on surfaces and the formation of secondary 

inorganic ions (J. Fan et al., 2020). In this study, the acidity of PM, which is calculated by converting the 

concentrations of anions and cations (μg m-3) into micro-equivalents (μeq·m−3) by the following 

equations (C. C. Meng et al., 2016) (Qiao et al., 2019)(Zhan et al., 2021)(2-3): 

 

ANE= [SO4
2-]/48 + [NO3

-]/62 + [Cl-]/35.5+ [NO2
-]/46                   (2) 

CAE= [Na2-+]/23 + [NH4
+]/18 + [K+]/ 39+ [Mg2+]/12 + [Ca2+]/20          (3) 

 

where [SO4
2-], [NO3

-], [Cl-], [NO2
-], [Na2-+], [NH4

+], [K+], [Mg2+], and [Ca2+] represent the mass 

concentration of detected WSIIs. Generally, the value of ANE / CAE = 1 indicates that the anions and 

cations are in equilibrium; ANE / CAE  > 1 indicates that PM is acidic; and ANE / CAE  < 1 indicates 

that PM is alkaline (Zhan et al., 2021)(Jingyi Li et al., 2020)(Qiao et al., 2019). 

 

https://www.sciencedirect.com/science/article/pii/S0013935121013591#fd1
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3.1.5 Pre-treatment and analysis of Water-Soluble Inorganic 

Ionic Species (WSIIs) of samples 

An ultrasonic method was used to extract water-soluble inorganic ions from portions of the PM 

filter samples, and normally over 98 % of sulfate, nitrate, and ammonium can be extracted. The filter 

was submerged in a vial with 10 mL ultrapure water (resistivity > 18 MΩcm-1), sealed and subjected to 

ultrasound for 10 min for each extraction. The extraction was repeated 3 times. Extract solution were 

filtered with a pore size of 0.20 μm polytetrafluoroethylene and then the concentration of water-soluble 

inorganic ions (Cl-, NO3
-, NO2

- , SO4
2-, NH4

+, Na+, K+, Ca2+ and Mg2+) were analyzed by Ion 

Chromatography to determine the concentrations of water-soluble inorganic ions. The analysis includes 

6 groups of atmospheric samples, 3 groups of biomasses simulated combustion samples and 6 sets of raw 

coal simulated combustion samples in Xuanwei area, and 8 groups of atmospheric samples in Beijing 

area.  

 

3.1.6 Required Instruments and Chemical Reagents in 

Experiment 

The required experimental instruments include 

(1) Ultrasonic cleaner (USD-3R, 1-4592-33, Monota RO Co., Ltd. Japan) 

(2) 0.20 μm polytetrafluoroethylene (PTFE; DISMIC-13HP, Toyo Roshi Kaisha, Ltd. Japan) 

(3) Ion Chromatography (IC, ICS1600, Dionex Aquion, Thermo Fisher Scientific CO, Waltham, MA, 

USA) 

 

The main standard solutions and chemical reagents in the experiment are 

(1) Multianion standard solution Ⅱ for Iron chromatography (Wako pure chemical industries Co. Ltd. 

Japan) 

(2) Multication standard solution Ⅱ for Iron chromatography (Wako pure chemical industries Co. Ltd. 

Japan) 

(3) Sodium carbonate (Wako pure chemical industries Co. Ltd. Japan) 

(4) Sodium hydrogen carbonate (Wako pure chemical industries Co. Ltd. Japan) 

(5) Methanesulfonic acid Sodium hydrogen carbonate (Wako Special Grade, Wako pure chemical 

industries Co. Ltd. Japan) 

 

https://www.monotaro.com/g/00258520/
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3.2 Inductively coupled plasma mass spectrometer (ICP-MS) 

3.2.1 Principle of ICP-MS   

Inductively coupled plasma mass spectrometry (ICP-MS) is a mass spectrometry method that uses 

an inductively coupled plasma to ionize the sample. It atomizes the sample and produces atoms and small 

polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several 

non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same 

element, which makes it a versatile tool for isotope labeling. 

Plasma is the ionization source for ICP, while positively charged ions are the mass analyzer for mass 

spectrometry (MS). Generally, argon is used to generate plasma at high frequencies (30 MHz) with 

energies between 1000 and 2000 W, since most elements in the periodic table are excited and ionized in 

the plasma temperature range of 6000-10,000 K. The torch is made of quartz and consists of three 

concentric tubes through which the argon gas flows. When a sample is introduced into the plasma, it goes 

through desolation, vaporization, atomization and ionization before entering the mass analyzer (Thomas, 

2002). 

 

Fig. 20. A schematic diagram of the working functions of ICP-MS. 

How ICP-MS works: The sample, which must usually be in liquid form, is pumped at a rate of 1 ml/min, 

usually with a peristaltic pump, into an atomizer where it is converted into fine aerosols with argon gas 

at a rate of about 1 l/min. The fine droplets of aerosol make up only 1-2% of the sample and are separated 

from the larger droplets by a spray chamber. The fine aerosol then exits the outlet tube of the spray 

chamber and is delivered to the plasma torch via a sample injector. The schematic diagram of the working 

functions of ICP-MS was shown in Fig 20. 
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3.2.2 The advantages of ICP-MS 

CP-MS has some distinct advantages, including the ability to perform simultaneous multi-element 

measurements and very low detection limits; therefore, this technique is suitable for biomonitoring 

studies and occupational exposure monitoring. In addition, ICP-MS offers lower detection limits and 

simpler spectral interpretation than inductively coupled plasma atomic (optical) emission spectrometry 

(ICP-OES); it also provides isotopic information (Parsons & Barbosa, 2007). 

 

3.2.3 Applications of ICP-MS 

Inductively coupled plasma mass spectrometry (ICP-MS) is increasingly used for trace analysis in 

a number of industries and types of laboratories. developed in the late 1980s, ICP-MS combines the 

simple sample introduction and rapid analysis of ICP technology with the precision and low detection 

limits of mass spectrometry. The instrument can perform trace multi-element analysis, typically at the 

parts-per-trillion or parts-per-trillion level. ICP-MS is used in many different fields, including drinking 

water, wastewater, environmental chemistry (Hirner, 2006), geology and soil science, mining/metallurgy, 

food science, and medicine (J. Huang et al., 2006). 

 

3.2.4 Analysis of Potentially Toxic Metals (PTMs) and Water-

Soluble Potentially Toxic Metals (WSPTMs) by ICP-MS  

Potentially Toxic Metals (PTMs): Inductively coupled plasma mass spectrometer was used to 

identify 21 elemental species (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, 

Ba, Pb) concentration For Beijing samples. After weighting, a certain amount of filter was cut and placed 

in polytetrafluoroethylene (PTFE) reaction tubes, then each filter was digested with a 5：2：1 mixture 

of HNO3-H2O2-HF in PTFE vessels and heated in a microwave system (ETHOS UP, MAXI-44). There 

were six heating steps for microwave digestion of filter: 1) the temperature was increased from room 

temperature to 90 °C and was maintained for 3 mins; 2) the temperature was increased from 90 to 150 °C 

and was maintained for 5 mins; 3) the temperature was increased from 150 to 175 °C and was maintained 

for 17 mins; 4) the temperature was increased from 175 to 200 °C and was maintained for 30 mins; 5) 

after cooling for 30 minutes, remove the polypropylene reaction vessel from the microwave sample 
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pretreatment device, and put the decomposition solution in the PTFE reaction vessel into the 

polypropylene digestion tube ; 6) place the polypropylene digestion tube in the acid decomposition 

system and heat it at 100°C for about 5 hours to remove hydrofluoric acid until the solution is about 0.1 

mL . The digested solution was then diluted to 10 mL with 2 % HNO3 and stored at room temperature 

until analysis. Three blank filters were treated and analyzed with the same methods as for and metals to 

obtain background values. Potential toxic metals were analyzed by ICP-MS at the Center for 

Environmental Science in Saitama (CESS) in Japan (K. Xiao, Wang, et al., 2021)(K. Xiao, Qin, et al., 

2021). 

Water-Soluble Potentially Toxic Metals (WSPTMs): In brief, normally the extraction rate of sulfate, 

nitrate and ammonium can reach more than 98 %. After weighing, portions of the sample filters (include 

three blank filters) were submerged in a vial were ultrasonically extracted with 10 mL ultrapure water 

(resistivity > 18 MΩcm-1) and repeated three times, each time for 10 min. The aqueous extract solution 

was filtered with a pore size of 0.20 μm polytetrafluoroethylene (PTFE; DISMIC-13HP) membranes. 

Then, the solution after filtration, WSPTMs (V, Cr, Mn, Co, Ni, Zn, As, Cd, Ba, and Pb) were analyzed 

by inductively coupled plasma mass spectrometer (ICP-MS) to determine the concentrations at the 

Center for Environmental Science in Saitama (CESS) in Japan. 

 

3.2.5 Required Instruments and Chemical Reagents in 

Experiment 

The required instruments in the experiment are:  

(1) Ultrasonic cleaner (USD-3R, 1-4592-33, Monota RO Co., Ltd. Japan) 

(3) Microwave digester 

(4) Inductively coupled plasma-mass spectrometry (ICP-MS, Agilent770, Agilent Co. Ltd., USA) 

The main chemical reagents are: 

(1) Nitric acid (Wako pure chemical industries Co. Ltd. Japan) 

(2) Hydrofluoric acid (Wako pure chemical industries Co. Ltd. Japan) 

(3) Hydrogen peroxide (Wako pure chemical industries Co. Ltd. Japan) 

(4) Indium (Wako pure chemical industries Co. Ltd. Japan) 

 

https://www.monotaro.com/g/00258520/
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3.3 Total Organic Carbon Analyzer (TOC) 

3.3.1 Principle of Total Organic Carbon Analyzer (TOC) 

The TOC analyzer identifies total organic carbon by using non-dispersive methods of infrared 

absorption and high-temperature combustion, which are suitable for a wide variety of wastewater tests. 

Essentially, the TOC analyzer has a special low-temperature reaction tube and a high-temperature 

combustion tube in which high-purity oxygen is introduced into the wastewater sample. Under the strong 

influence of high-temperature oxidation, the wastewater sample is rapidly oxidized, which significantly 

converts carbon dioxide, inorganic carbonates and other organic substances. At the same time, the low 

temperature reaction tube can also be used to generate high purity carbon dioxide, using a mixture of 

inorganic carbonates and organics to achieve the above chemically generated treatment. 

Total Organic Carbon TOC is a valuable analytical technique for measuring organic contamination 

levels or the organic content of an analyte matrix. The basic function of a TOC analyzer is to first oxidize 

organic carbon in an aqueous solution to carbon dioxide and then measure the resulting carbon dioxide. 

In the measurement principle, the organic carbon compounds present in the aqueous solution in question 

are first oxidized to carbon dioxide in a catalytic combustion at 680ºC. The carbon dioxide is then 

transported by a carrier gas, which is cooled and dehumidified, and finally passes through a halogen 

scrubber into the NDIR (non-dispersive infrared) unit, where the carbon dioxide is detected. The 

detection signal of the non-dispersive infrared will produce a peak. The peak region can be used for 

integration. The use of low combustion temperatures (680ºC) minimizes catalyst deactivation and 

combustion tube corrosion. By using a platinum catalyst, complete oxidation of all organic compounds 

can be obtained.  

What is measured when calculating Total Organic Carbon? 

When completing TOC analysis, the following is measured: 

• TC – Total Carbon 

• TIC – Total Inorganic Carbon 

• POC – Purgeable Organic Carbon 

• NPOC – Non-Purgeable Organic Carbon 

• DOC – Dissolved Organic Carbon 

• NDOC – Non-Dissolved Organic Carbon 
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To calculate TOC, you can subtract the total amount of inorganic carbon from total carbon found. 

Alternatively, you can add Purgeable and Non-Purgeable Organic Carbon, or Dissolved and Non-

Dissolved Organic Carbon. As sums, they look like: 

TOC = TC - TIC 

TOC = POC + NPOC 

TOC = DOC + NDOC 

 

3.3.2 The advantages of TOC Analyzer 

(1) Total organic carbon analyzers can objectively help to eliminate errors and avoid confusion about 

critical processes. 

(2) TOC techniques should be among the most convenient and controllable types of detection 

measures. Specifically in the detection of TOC, this method allows for the rapid identification of toxic 

residues, which involves sample selection and online detection without significant contamination. 

(3) The TOC method addresses avoid certain errors caused by human operations, and also better 

reproducibility and a higher level of sensitivity. 

 

The combustion catalytic oxidation method with 680 °C achieves both high organic matter detection 

capacity and high measurement sensitivity. The ultrawide range from 4 μg/L to 30,000 mg/L permits 

measurements from purified water to highly-polluted water. The combustion catalytic oxidation method 

analyzes TOC by burning the sample and using an infrared gas analyzer to detect the carbon dioxide 

generated from the carbon contained in the organic matter. The high oxidation decomposition capacity 

permits the efficient detection of insoluble organic matter and covers a wide range from low 

concentrations to high concentrations. 

 

3.3.3 Analysis of Humic Like Substances (HULIS) and Water-

Soluble Organic Carbon (WSOC)  

In this study, only coal-fired particulate matter was analyzed for HULIS and WSOC(Tiede et al., 

2009). Many published studies have shown that HULIS is usually isolated by solid phase extraction (SPE) 

(X. Fan, Wei, et al., 2016)(Park & Yu, 2016)(Win et al., 2020)(Huo et al., 2021). The flow chart of 
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HULIS-C (black arow) and WSOC (blue arow) isolation and measurement are illustrated in Figure 21. 

In order to obtain the water-soluble fraction of PMs (a, b), as described in Section 2.3. The water extracts 

were filtered through a syringe PTFE filter with a 0.20 μm PTFE to avoid any interference (insoluble 

suspensions, filter debris) from residual quartz filters (S. Lu et al., 2019). Then, 10 mL of the aqueous 

extract was acidified to pH=2 with 1 M hydrochloric acid and loaded onto a pretreated C-18 solid phase 

extraction column (octadecyl carbon chain bonded silica gel; 200 mg, 3 mL) to separate into HULIS and 

hydrophilic fractions. Subsequently, C-18 was rinsed with two portions of 1 mL ultrapure water before 

elution with 4.5 mL of high-performance liquid chromatography grade methanol containing 2 % 

ammonia (w/w). Finally, the eluate was dried under a gentle nitrogen stream for 5~7 hours and re-

redissolved in 10 mL of ultrapure water and then was analyzed by a total organic carbon analyzer (Multi 

N/C 3100 TOC, Analytik Jena，Germany). The details of WSOC were described in previous study (a ~ 

c, h) (Yanrong Yang et al., 2020)(Xiang et al., 2017). WSOC were measured by a by a total organic 

carbon analyzer. In this study, HULIS-C refers to HULIS with carbon content, and the OC/Organic 

Matter (OM) conversion factor was not used to convert the quality of HULIS due to the uncertainty of 

the OC/OM conversion factor method and the lack of OC/OM conversion factors for RCC particles. 

Therefore, the generic term "HULIS" is used to interpret some results and discussions (K. Xiao, Wang, 

et al., 2021) 

. 

 

Fig. 21. The flow chart of HULIS-C (black arow) and WSOC (blue arow) isolation and measurement. 

 



51 

 

3.4 Electron Spin Resonance (ESR) 

3.4.1 Principle of Electron Spin Resonance (ESR) 

Electron spin resonance (ESR) is a powerful analytical method to detect, analyze and characterize 

unpaired electrons in matter. Electron spin resonance spectroscopy, it is a branch of absorption 

spectroscopy in which radiation having frequency in microwave region is absorbed by paramagnetic 

substance to induce transition between magnetic energy level of electron with unpaired spins. The 

composition of ESR is shown in the figure 22.  

In ESR the energy levels are produced by the interaction of magnetic moment of an unpaired 

electron in a molecule or ion with an applied magnetic field. Required frequency of radiation dependent 

upon strength of magnetic field. The ESR spectrum results due to the transitions between these energy 

levels by absorbing radiations of microwave frequency (Tingming Shi et al., 2003). 

 

 

Fig. 22. The composition of ESR  

 

3.4.2 Applications of ESR 

Electron paramagnetic resonance is used in a wide range of applications in chemistry, physics, 

materials, semiconductors, organic chemistry, complex chemistry, radiation chemistry, chemical 

engineering, marine chemistry, catalysts, biology, biomedicine, environment, life sciences, etc., without 

destroying the structure of the object of study or affecting the ongoing chemical and physical processes. 
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3.4.3 Detection of EPFRs 

   Electron spin resonance (ESR) spectroscopy was used to determine EPFRs. To determine EPFRs, 

quartz fiber filters were cut into strips of 3-4 mm, then added to a quartz EPR tube and measured on the 

corresponding instrument. The relevant parameters were as follows: Sweep time,120 s; Center field 

324.74 mT; sweep width, 25 mT; modulation frequency, 100 kHz; modulation Width, 0.05 mT; 

microwave frequency 9105.26 MHz; and microwave power, 0.998 mW.  

 

3.4.4 Data processing and calculation of the absolute number 

of spins 

 

ESR tests were performed on standards containing Mn (Ⅱ) to calibrate the absolute number of spins 

and, then, characteristic parameters such as the g factor, and ΔHp-p of the EPFRs were obtained. The 

formula used to calculate the spin numbers and g factors are shown in equation (2-3) (X. Tian et al., 2019) 

(P. Qiu et al., 2021) (Runberg et al., 2020): 

 

g = 0.07145 × ƛ (MHz) / H (mT)                                               (2) 

Spinssample (spins/g) = 3.02*1014 (spins/g) × Integralsample / Integralstandard                         (3) 

 

Where g is the electron spin g-factor of the particle, ƛ (MHz) represents the microwave frequency, 

H (mT) is the resonance magnetic field strength during the measurements. 3.02*1014 is is the total spins 

of the standard Mn, Spinssample is the spin concentration of the unknown sample, Integralsample and 

Integralstandard represent the signal integration areas of the sample and Mn (Ⅱ) standard, respectively 

(Runberg et al., 2020). The sample atmospheric spin concentrations of EPFRs (spins/m3) were calculated 

as the total spin divided by the total sample volume. The EPFR spin concentrations in PM masses (spins/g) 

were determined as the total spin divided by the collected PM mass. 

 

 

 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/frequency-modulation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/frequency-modulation
https://www.sciencedirect.com/science/article/pii/S0269749118326538#fd1
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Chapter 4 Result and Discussions 

 

4.1 Water-Soluble Inorganic Ionic Species (WSIIs) 

4.1.1 The Levels of Water-Soluble Inorganic Ionic Species 

(WSIIs) in APMs  
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Fig.23. The anion and cation of average mass concentration within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, 

and PM>7.0 during the sampling period. (HT and LT represent the highest temperature and lowest 

temperature on the sampling day, respectively) 

 

Fig. 23 and Fig. 24 illustrates the intra-groups variations in particulate-bound ion concentration. 

The total WSIIs concentration mainly concentrated in PM1.1. Fine particulates PM2.0 were enriched in 

SO4
2−, NO3

−and NH4
+ accounting 10.99 ± 2.48% of PM2.0 mass concentration (Table.14), which was 

lower (PM2.1, 16%) than in urban environment over central Indo-Gangetic Plain (Singh et al., 2021); 

while rest of the ions (like Cl−, NO2
−, Na+, K+, Ca2+, and Mg2+) altogether contribute 1.54 ± 0.60%. The 

mean mass concentration of SO4
2−, NO3

−and NH4
+ were 2.13 ± 0.78 μg m˗3, 0.84 ± 0.240.36 ± 0.15 μg 

m˗3 and 0.36 ± 0.15 μg m˗3 in PM2.0, respectively.  

 

 

https://www.sciencedirect.com/science/article/pii/S0045653520322256#fig6
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Fig.24. The cation average mass concentration within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 

during the sampling period. (HT and LT represent the highest temperature and lowest temperature on 

the sampling day, respectively) 

 

Table 14. Contribution of ions to APMs mass concentration 

 

The mass concentration of total WSIIs shows a strong correlation with the mass concentration of 

particulate matter (r = 0.76), HT (r = 0.79) and LT (r = 0.84) (Fig 25), indicates that temperature is an 

important factor affecting the mass concentration of atmospheric particulate matter and the mass 

concentration of ionic WSIIs. The concentration of WSIIs in the group of 2.18-2.20 and 2.20-2.22 were 

higher than the other group of samples, which can be explained the former has better weather conditions 

(sunny days) during the sampling period, where strong photochemical reactions occur in favor of aerosol 

formation, and the latter has light rain during the sampling period, resulting in wet deposition. 

 

Groups 

Mass concentration (μg/m3) Percentage (%) 

TSP PM2.0 
TSP PM2.0 TSP PM2.0 PM2.0/TSP 

WSIIs SNA WSIIs SNA WSII/PM SNA/PM WSII/PM SNA/PM WSIIs/WSIIs 

2.18-2.20 168.0899 85.33 16.02 12.75 12.29 10.66 9.53 7.59 14.40 12.49 66.56 

2.20-2.22 197.7504 93.75 17.56 12.68 13.92 10.76 8.88 6.41 14.85 11.48 61.29 

2.22-2.24 99.50432 52.21 8.54 7.57 6.77 6.22 8.58 7.60 12.98 11.92 72.84 

2.24-2.25 122.6934 57.05 5.33 4.47 4.46 3.68 4.35 3.64 7.81 6.45 69.02 

2.25-2.27 135.5148 69.87 10.71 8.91 7.83 6.56 7.90 6.58 11.20 9.40 61.32 

2.27-3.01 115.2148 57.30 13.98 11.85 9.50 8.15 12.13 10.29 16.58 14.22 58.29 

Mean 139.79 69.25 12.02 9.71  9.13 7.67 8.56 7.02 12.97 10.99 64.88  

Max 197.75 93.75 17.56 12.75 13.92 10.76 12.13 10.29 16.58 14.22 72.84  

Min 99.50 52.21 5.33 4.47 4.46 3.68 4.35 3.64 7.81 6.45 58.29  

STD 33.41 15.50 4.26 3.04 3.22 2.52 2.31 1.97 2.84 2.48 5.04  
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Fig. 25. The Pearson correlation coefficients between APMs average mass concentration and WSIIs 

average mass concentration, HT and LT. 

 

4.1.2 The Levels of Water-Soluble Inorganic Ionic Species 

(WSIIs) in APMs  

The size distribution of water-soluble inorganic ionic species can be used to infer the chemical 

properties and origin of aerosols ,which affect their transport through the atmosphere (X. Huang et al., 

2016). Size distributions of the water-soluble inorganic ionic species within PM1.1, PM1.1-2.0, PM2.0-3.3, 

PM3.3-7.0, and PM>7.0 are shown in Fig. 26. The average concentration of Cl−, NO2
−, SO4

2−, and K+ 

presented unimodal distributions with major peaks in the fine mode at PM1.1, accounting for 67.12%, 

78.33 %, 53.44 %, and 73.35% (Table 15), which is consistent with previous studies (X. Wu et al., 

2020)(Jianwei Liu et al., 2018). As with SO4
2−, the size distribution of NO3

− and NH4
+ were unimodal, 

peaking at <1.1 μm with 54.05% and 55.89 % found in PM1.1, respectively. This suggests that gas-to-

particle condensation reactions may be the dominant process in NH4
+ formation. NOx, SO2, and NH3 are 

the gaseous precursors of NO3
−, SO4

2−, and NH4
+ , respectively (Xin Zhang et al., 2021), therefore, the 

ratio of NO3
−/SO4

2− could be used to judge the relative contributions of transportation (such as motor 

vehicle exhausts) and stationary sources (such as coal burning) (K. Xiao, Qin, et al., 2021). In developed 

countries, NO3
−/SO4

2− is between 1.33 and 2.20. Since coal accounts for more than 70% of total energy 
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in China and car ownership is lower than in developed countries, NO3
−/SO4

2− is usually less than 1, 

mainly 0.13-0.67 (X. Wu et al., 2020). The average ratio of NO3
−/SO4

2− within in PM1.1, PM1.1-2.0, PM2.0-

3.3, PM3.3-7.0, and PM>7.0 were 0.22, 0.18, 0.15, 0.34 and 0.36, it indicating that stationary industrial and 

combustion sources contributed to PM were more significant. In fine particles, NO3
− exists mainly in the 

form of NH4NO3 (X. Huang et al., 2016). NH4
+ and K+ are important tracer of biomass burning emissions 

(Xin Zhang et al., 2021), was highly enriched in fine particulate (PM2.0), both of them has also sources 

like agricultural practices and livestock emissions. Generally, Cl− is also to be the marker for coal 

combustion and biomass burning (X. Wu et al., 2020). During the sampling period, coal, corn cobs, and 

pine wood were widely used by residents for heating and cooking. Therefore, Cl−, NO3
−, NO2

−, SO4
2−, 

and NH4
+ mainly emitted from solid fuel combustion in our research. Na+, Mg2+ and Ca2+

 were bimodal, 

with major peaking at >7.0 μm and the minor peak at <1.1 μm. In our research, Ca2+, Mg2+were mainly 

from road dust, no construction dust during our sampling (K. Xiao, Qin, et al., 2021). The distribution 

patterns of Na+, Mg2+, Ca2+, and K+ are consistent with those of the corresponding WSPTMs and are 

explained in detail in section 4.2.1. 

 

Fig.26. Size distribution of individual water-soluble inorganic ionic species during the sampling period 
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Table 15. Percentage (%) of individual water-soluble inorganic ionic species to WSIIs during the 

sampling period. 

 

Ionic Species Na+ NH4
+ K+ Mg2+ Ca2+ Cl- NO2

- NO3
- SO4

2- 

PM
1.1

 19.83 55.89 73.35 20.96 28.47 67.12 78.33 54.05 53.44 

PM
1.1-2.0

 26.10 20.93 15.97 7.72 0.75 11.73 9.38 20.60 24.71 

PM
2.0

 45.93 76.82 89.33 28.67 29.22 78.85 87.72 74.65 78.16 

PM
2.0-3.3

 16.65 12.76 5.19 4.62 1.53 5.94 6.54 7.87 11.14 

PM
3.3-7.0

 4.04 6.06 2.25 20.74 10.03 5.12 3.58 7.60 4.83 

PM
>7.0

 33.38 4.36 3.23 45.97 59.21 10.10 2.17 9.88 5.87 

4.1.3 Ionic balance and neutralization of particulate acidity  

 

Fig. 27. Ionic balance and within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 during the sampling 

period. ((a-e) are the ionic balance for different Group samples within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-

7.0, and PM>7.0, respectively; (f) is the average ionic balance within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, 

and PM>7.0, respectively; (g) is the Ionic equivalence of total anions against total cations.) 
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Table 16 shows the Pearson correlation coefficients between the major cations and anions within 

PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 during the sampling period. NH4
+ has a very strong 

correlation with SO4
2−, higher than NO3

−, suggesting that NH4NO3 and (NH4)2SO4 were major chemical 

fraction of ions in PM2.0. NH4NO3 is formed under high concentrations of NH3 and gaseous nitric acid, 

high humidity and low temperature (Che et al., 2021). But at low NH3 concentrations, the neutralization 

of acidic sulfate by NH3 is favored over the formation of SO4
2− (Squizzato et al., 2013). When SO4

2−, 

NO3
−, and Cl− co-exist, NH4

+ usually first combines with SO4
2−, since (NH4)2SO4 is more stable (Q. Yao 

et al., 2020). According to sections 3.2.2 and 3.2.1, the mass concentration of SO4
2− are 4.5 and 4.0 times 

higher than the concentration of the NH4
+ and NO3

− in PM>2.0, respectively, and there is no correlation 

between NH4
+ and NO3

−, which illustrated that SNA was in the form of (NH4)2SO4. In addition, while 

fresh smoke from biomass burning contains more KCl particles, aged smoke had more KNO3 and 

K2SO4 particles(Jia Li et al., 2003). During the aging process, Cl− was replaced by NO3
− and SO4

2−, 

yielding KNO3 particles and HCl gases (C. Li et al., 2015). Regardless, only K+ and NO3
− exhibited 

strong correlation ((r=0.72 for PM1.1), (r=0.63 for PM1.1-2.0), (r=0.77 for PM2.0-3.3), (r=0.69 for PM3.3-7.0), 

and (r=0.99 for PM>7.0)) while those of K+ and SO4
2− were ((r=0.96 for PM1.1), (r=0.96 for PM1.1-2.0), 

(r=0.84 for PM2.0-3.3), (r=0.31 PM3.3-7.0), and (r=0.03 for PM>7.0)). This means that KNO3 was formed at 

all sizes, however, K2SO4 can only be formed in the particle size less than 3.3 μm. 

 

Table 16. Pearson correlation coefficients between the major cations and anions within PM1.1, PM1.1-2.0, 

PM2.0-3.3, PM3.3-7.0, and PM>7.0 during the sampling period. 

Dp (μm) Species Na+ NH4
+ K+ Mg2+ Ca2+ 

<1.1 

Cl- -0.17 0.07 -0.27 -0.64 -0.67 

NO3
- 0.74 0.72 0.72 0.82 0.81 

SO4
2- 0.71 0.90 0.96 0.89 0.74 

1.1-2.0 

Cl- 0.55 0.31 -0.02 -0.51 -0.42 

NO3
- 0.81 0.75 0.63 0.55 0.58 

SO4
2- 0.85 0.92 0.96 0.84 0.77 

2.0-3.3 
Cl- 0.71 0.78 0.76 0.10 0.18 

NO3
- 0.32 0.12 0.77 0.72 0.83 

 SO4
2- 0.86 0.92 0.84 0.10 0.09 

3.0-7.0 
Cl- 0.57 -0.44 0.67 0.70 0.95 

NO3
- 0.79 -0.44 0.69 0.89 0.97 

 SO4
2- -0.08 0.86 0.31 0.09 -0.32 

>7.0 
Cl- 0.71 -0.24 0.82 0.71 0.76 

NO3
- 0.71 -0.10 0.99 0.91 0.94 

 SO4
2- 0.52 0.98 0.03 0.20 0.07 

From the above discussions, SO4
2− prefers to combine with NH4

+ to form (NH4)2SO4, which hinders 

https://www.sciencedirect.com/science/article/pii/S0169809520311327#t0010
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the formation of NH4NO3 (G. Wang et al., 2016)(He et al., 2014), the remaining SO4
2− and NO3

− to 

neutralize the K+, Ca2+ and Mg2+ in PM2.0. Based on the Pearson correlation coefficients between NO3
− 

and Ca2+ and Mg2+, it was suggested that K+, Ca2+ and Mg2+ were mainly neutralized by NO3
−. Our 

findings correspond well with the current situation in the rural areas of Xuanwei, Yunnan, where residents 

mainly use coal and biomass for heating and cooking, and where the economy is relatively backward and 

almost unaffected by mobile emission sources. 

 

4.1.4 Water-Soluble Inorganic Ionic Species (WSIIs) in RCC 

particles 

Sources and size distribution characteristics of ions species are better known and can serve as 

valuable references for the less known aerosol constituents.  

Fig 28 shows the mass concentrations (μg m-3) and standard deviation (SD) of ion species (coal, 

N=6). Five size-segregated PM filters in each RCC samples were analyzed for mass concentrations and 

therefore we showed the mass concentrations of ion species with five various size ranges. As can be seen 

from the Fig 28, coal combustion emits more NH4
+ and SO4

2− (Shuxiao Wang et al., 2010), the average 

concentrations of individual ions were in the order of SO4
2− > Cl- > NO3

− > NH4
+ > NO2

− > Na+ > Mg2+ > 

K+ > Ca2+, respectively. The size distribution of nine water-soluble inorganic ions (WSIIs) were major 

concentrated in fine particles. Secondary inorganic aerosol (SIA, SO4
2−, NO3

−, and NH4 
+) are the major 

components of water-soluble inorganic ions (WSIIs), contributed to 59.08 ± 9.48 % of total WSIIs, which 

was provided in the Table 17. Compared with previous studies, WSIIs/PM2.0 is 2.22 ± 2.36 % lower than 

atmospheric particulate matter occupied by 33-41% or more of fine particles (Shuxiao Wang et al., 

2010)(Zhou et al., 2016). SO4
2− dominated SIA in the extremely high and RCC was a candidate of high 

SO4
2− concentrations (Dao et al., 2019)(Y. C. Lin et al., 2020), which is consistent with our research (as 

Fig 6 a ).On the other hand, the average charge of the anion in each particle size segment is 2.72 ± 1.17 

times than the cation (Table 18), indicating that the aqueous solution of the particulate matter emitted by 

the residential coal burning is acidic in Xuanwei area.  

 

https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0005
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0005
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Fig. 28. Mass concentration (μg m-3) and standard deviation (STD) of ion species (Coal, N=6, (a): 

cation mass concentration; (b): anion mass concentrations). (Bole coal [BL], Luomu coal [LM], Shunfa 

coal [SF], Lijiawu coal [LJW], Guangming coal [GM], and Zongfan coal [ZF]). 

 

 

Fig. 29. The correlation coefficients between NH4
+ and SO4

2− 
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Table 17. The mass concentration of ion species (μg m-3) and percentage of SIA/WSIIs (%) 

Sam

ples 
Size (μm) Cl

-
 NO2

-
 NO3

-
 SO4

2-
 Na

+
 NH4

+
 K

+
 Mg

2+
 Ca

2+
 Total SIA/WSIIs 

BL 

<1.1 11.07  3.65  6.14  29.16  3.66  1.20  1.50  2.10  1.03  59.52  0.61  

1.1-2.0 1.60  1.40  1.15  5.94  0.00  1.03  0.13  0.20  0.00  11.47  0.71  

2.0-3.3 1.37  0.56  0.86  4.83  0.00  0.53  0.10  0.15  0.00  8.39  0.74  

3.0-7.0 0.72  0.42  0.54  1.68  0.00  0.00  0.06  0.21  0.00  3.62  0.61  

>7.0 0.94  0.06  0.60  1.87  0.00  0.00  0.08  0.31  0.09  3.96  0.62  

LM 

<1.1 24.59  3.50  8.71  32.62  8.68  0.00  0.68  1.58  0.05  80.41  0.51  

1.1-2.0 3.09  0.37  2.62  3.45  0.32  0.00  0.27  0.30  0.15  10.56  0.57  

2.0-3.3 1.59  0.43  0.99  2.25  0.00  0.00  0.27  0.20  0.00  5.72  0.57  

3.0-7.0 0.47  0.36  0.85  1.09  0.00  0.00  0.02  0.21  0.00  3.00  0.65  

>7.0 1.09  0.07  1.57  1.58  0.00  0.00  0.00  0.26  0.28  4.85  0.65  

SF 

<1.1 25.13  2.17  6.56  61.07  12.92  11.38  2.28  1.17  0.00  122.67  0.64  

1.1-2.0 3.95  0.33  1.43  5.54  0.53  0.84  0.23  0.28  0.40  13.54  0.58  

2.0-3.3 1.41  0.42  0.96  2.91  0.36  0.00  0.00  0.24  0.00  6.29  0.61  

3.0-7.0 1.52  0.25  1.16  2.56  0.68  0.00  0.27  0.38  0.44  7.26  0.51  

>7.0 1.32  0.22  1.00  1.88  0.00  0.00  0.06  0.27  0.15  4.92  0.59  

LJW 

<1.1 11.43  6.04  5.44  16.75  0.00  0.00  0.52  1.41  0.00  41.58  0.53  

1.1-2.0 1.59  0.87  0.92  2.32  0.77  0.00  0.17  0.20  0.00  6.84  0.47  

2.0-3.3 2.12  0.35  0.84  2.63  0.80  0.00  0.19  0.42  0.65  8.01  0.43  

3.0-7.0 0.67  0.51  0.47  0.87  0.00  0.00  0.20  0.17  0.00  2.89  0.46  

>7.0 0.69  0.27  0.46  0.86  0.00  0.00  0.07  0.25  0.49  3.10  0.43  

GM 

<1.1 3.91  1.52  3.65  22.92  0.00  5.42  0.66  0.73  0.00  38.81  0.82  

1.1-2.0 1.34  0.39  0.87  3.61  0.00  0.51  0.24  0.30  0.03  7.29  0.69  

2.0-3.3 0.56  0.64  0.57  1.46  0.00  0.00  0.21  0.22  0.00  3.65  0.56  

3.0-7.0 0.39  0.07  0.44  0.89  0.00  0.00  0.09  0.15  0.00  2.03  0.65  

>7.0 1.15  0.22  0.69  1.09  0.28  0.00  0.30  0.20  0.00  3.92  0.45  

ZF 

<1.1 15.55  2.52  7.51  63.76  8.64  19.00  2.56  1.13  1.13  121.78  0.74  

1.1-2.0 2.45  1.50  1.79  5.02  0.15  0.69  0.17  0.26  0.26  12.29  0.61  

2.0-3.3 0.78  0.33  0.67  2.18  0.00  0.00  0.11  0.24  0.24  4.54  0.63  

3.0-7.0 0.34  0.30  0.57  0.93  0.00  0.00  0.10  0.19  0.19  2.62  0.58  

>7.0 0.84  0.70  0.82  1.04  0.00  0.00  0.04  0.19  0.19  3.82  0.49  

AG            0.59  

SD                       0.09  

AG: Average 

 

This experiment was carried out in a laboratory. As we all know, there is a big difference between 

laboratory experiments and field measurements. In this study, there is no obvious relationship between 

temperature and humidity with WSIIs. Air supply and combustion conditions are parameters that affect  



62 

 

Table 18. Charge balance of ions 

Sample Size (μm) cation Anion Anion/cation 

BL <1.1 0.49  1.11  2.25  

1.1-2.0 0.08  0.22  2.83  

2.0-3.3 0.04  0.17  3.74  

3.0-7.0 0.02  0.07  3.80  

>7.0 0.03  0.08  2.36  

LM <1.1 0.53  1.60  3.02  

1.1-2.0 0.05  0.21  3.99  

2.0-3.3 0.02  0.12  5.05  

3.0-7.0 0.02  0.06  3.26  

>7.0 0.04  0.09  2.58  

SF <1.1 1.35  2.14  1.59  

1.1-2.0 0.12  0.26  2.17  

2.0-3.3 0.04  0.13  3.57  

3.0-7.0 0.09  0.12  1.35  

>7.0 0.03  0.10  3.10  

LJW <1.1 0.13  0.90  6.85  

1.1-2.0 0.05  0.13  2.35  

2.0-3.3 0.11  0.14  1.28  

3.0-7.0 0.02  0.06  2.96  

>7.0 0.05  0.05  1.09  

GM <1.1 0.38  0.68  1.81  

1.1-2.0 0.06  0.14  2.24  

2.0-3.3 0.02  0.07  2.96  

3.0-7.0 0.02  0.04  2.58  

>7.0 0.04  0.07  1.97  

ZF <1.1 1.65  1.95  1.18  

1.1-2.0 0.08  0.24  2.82  

2.0-3.3 0.03  0.09  2.48  

3.0-7.0 0.03  0.05  1.66  

>7.0 0.03  0.07  2.79  

AG 

   

2.72  

SD    1.18  

AG: Average 

 

the emission of pollutants from RCC (Oros & Simoneit, 2000). NH4
+ is closely correlated with 

SO4
2− was provided in the Fig 29, which may indicate the complete neutralization of SO4

2− by NH4
+ in 

particulate matter. It can be inferred that the combustion of residential coal can result in the formation of 

considerable particulate sulfate compounds (H. Zhang et al., 2012), which can change the radiation 
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balance by scattering or absorbing solar radiation and thermal radiation from the earth's surface (Andreae 

& Crutzen, 1997). 

4.1.5 The mass concentration of water-soluble inorganic ionic 

species size distribution and sources in Beijing 

 

Detected ion water-soluble inorganic ionic species (WSIIs), an important of atmospheric particulate 

matters, which can be used to infer the chemical properties and origin of aerosols (Weiqian Wang et al., 

2020) (Jingjing Zhang et al., 2018). Fig 30 illustrated the size distribution of Cl-, NO3
-, NO2

- , SO4
2-, 

NH4
+, Na+, K+, Ca2+ and Mg2+ detected in winter. The percentage（%）of water-soluble inorganic ionic 

species for size fraction mass concentrations in Beijing were provided in Fig 31. The ratio of NO3
-/ SO4

2-, 

Cl-/Na+, Cl-/ K+ and Cl-/NO3
- in different size- that secondary pollution in the atmosphere in winter was 

strong. SO4
2- showed a slightly bimodal size distribution, with fine＜1.1 μm, thus demonstrating a 

unimodal distribution of fine particles. Most of the SO4
2-, NO3

-and NH4
+ mass concentration were 

concentrated in fine particles (＜1.1 μm) ,which is consistent with previous studies (Do et al., 2021) (X. 

Wu et al., 2020) (Q. Yao et al., 2020). The average mass concentration of NO3
- in the fine particles 

accounted for 74.94% of the total nitrate mass, while that for NH4
+ was 71.85 % and that for SO4

2- was 

61.70 % in winter in Beijing. Na+ and Mg2+ were bimodal, the major peak in the size range of ＜1.1 μm 

while the minor peak in the size range of ＞7 μm, meanwhile Ca2+ was unimodal, peaking at ＞7 μm. 

The size distribution of K+, Cl- and NO2
- were bimodal, with fine particles peaking at ＜1.1 μm and 

coarse particles peaking at ＞7 μm.  

It was well known that that SO2 and NO2, which are the gaseous precursors of SO4
2- and NO3

-,so 

the ratio of NO3
-/ SO4

2- could be used to compare the contribution of stationary (such as coal burning) 

and mobile source (such as motor vehicle exhausts) of SO2 and NO2  (Lv et al., 2019). NO2
- concentration 

is very low, and it is unstable due to being easily oxidized by ozone, hydroxyl radicals, and hydrogen 

peroxide, so put NO2
- and NO3

- together to discuss. According to the previous studies show that the higher 

(NO2
- + NO3

-) / SO4
2- values to mobile source over the stationary source of atmospheric pollutants. The 

average mass ration of (NO2
- + NO3

-) / SO4
2- was 1.68. Compared to the previous results, which reported 

the measured ratio of 0.71 during 2001‐ 2003 (Ying Wang et al., 2005) ,1.03 in 2012 (Yongjie Yang et 

al., 2015), between 1.31‐1.16 during 2014‐2015 (X. Wu et al., 2020) 3.12 in 2017 (Che et al., 

2021) ,indicating that air pollution during the research period was mainly from the mobile source in 

Beijing in winter. 

Most of Na+, Ca2+ and Mg2+ in coarse particles were found to be high, which are mainly from crustal 

source, such as re-suspended road dust, soil dust and building dust (Weiqian Wang et al., 2020). K+ in 
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fine particles is known as an inorganic tracer of biomass burning emissions (Do et al., 2021). The results 

show that the distribution of mass concentration of Na+, Ca2+ and Mg2+ were consistent with the 

distribution of mass concentration of Na, Mg and Ca. The dominant source of Cl- was generally 

considered from coal burning, biomass burning and vehicle exhaustion fine fraction and from sea water 

in coarse fraction (X. Wu et al., 2020). The linear relationship between K+ and Cl- was strong (R>0.98), 

meanwhile, the liner relationship between Na+ and Cl- was weak (R<0.20). The average mass ratio of Cl-

/Na+, Cl-/ K+ and Cl- / (NO2
- + NO3

-) were 6.58 ,6.18 and 0.57, respectively. From the above discussion, 

which indicated that the major contributor of Cl- was coal burning and the minor contributor of Cl- was 

biomass burning and vehicle exhaustion in Beijing during the winter. 

  

                   

Fig. 30. Size distribution of water-soluble inorganic ionic species in Beijing 
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Fig. 31. The percentage（%）of water-soluble inorganic ionic species for size fraction mass 

concentrations in Beijing. 

 

4.2 Water-Soluble Potentially Toxic Metals  

Generally, PM is produced due to weathering and soil suspension, construction, coal, oil burning 

and resuspension of industrial dust (Shanshan Wang et al., 2019) (Y. Hu & Cheng, 2016). Potential toxic 

metals are considered to be an important ingredient in inducing respiratory diseases and cancer due to 

their toxicity (G. Shi et al., 2011) (Jin Zhang et al., 2017) (Al-Humour et al., 2019) (WHO, 2017). Thus，

determining the types and sources of heavy metals is a direct and effective way to control potential toxic 

metals pollution. 

 

 

4.2.1 The mass concentration of potential toxic metals size 

distribution APMs in Xuanwei 

 

Size distributions of the WSPTMs within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 are shown 

in Fig. 32 , Fig. 33 and Table 19. In this study, 19 WSPTMs were detected (Al, As, Ba, Ca, Cr, Cu, Fe, 

K, Li, Mg, Mn, Na, Ni, Pb, Ti, V and Zn), of which Al, Ca, Na, and Mg are the most abundant chemical 

components and altogether account for more than 93.93% of the total WSPTMs. The highest 

concentrations of WSPTMs were generally located within the coarse PM (>7.0 μm) and fine (< 1.1 μm), 
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respectively.  

 

 

Fig.32. Water soluble potentially toxic metals with particle size-bimodal distribution during the 

sampling period in Xuanwei. 
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the major peak in the size range sizes of < 1.1μm, the minor peak in the size range of >7.0 μm, except 
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sizes of >7.0 μm. (The corresponding percentage of TSP were 50.45%, 53.00%, 67.41%, 50.44%,71.07%, 

49.53%, 43.19%, 31.33%, 47.79%, 48.69%, 36.25%, 56.39% vs. 7.32%, 25.01%, 13.33%, 7.32%, 6.25%, 

12.92%, 27.35%, 23.74%, 16.13%, 34.61%, 16.45%). Na, Zn, Ba, Fe, As, Se, Cr, and Pb were unimodal, 

the major peak in the size range sizes of <1.1μm, the concentration increased with the decrease of particle 

size (Fig.33 and Table 19). (The corresponding percentage of TSP were 48.93%, 73.58%, 52.78%, 

48.80%, 65.82%, 90.96%, 68.73%, and 59.04%). In summary, the mass concentrations of WSPTMs in 

APMs in the Xuanwei area were mainly concentrated within PM1.1, especially Se (90.96%). This 

indicates that fine particulate matter in Xuanwei is potentially the most harmful to humans. 

 

 

Fig.33. Water soluble potentially toxic metals with particle size-unimodal distribution during the 

sampling period in Xuanwei. 
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Table 19. Mass concentration of size-segregated in WSPTMs (μg/m3) and Percentage distribution of 

mass concentration to TSP (%) during the sampling period.  

WSP

TMs 

Mass concentration (μg/m3) Percentage distribution (%) 

<1.1 1.1-2.0 2.0-3.3 3.3-7.0 >7.0 <1.1 1.1-2.0 2.0-3.3 3.3-7.0 >7.0 

Na 235.29  65.03  62.70  56.87  60.92  48.94  13.52  13.04  11.83  12.67  

Mg 92.57  8.65  7.93  9.85  18.31  67.42  6.30  5.78  7.17  13.33  

K 15.15  7.45  3.70  1.54  2.20  50.44  24.81  12.31  5.12  7.32  

Ca 254.35  25.36  29.43  50.66  120.04  53.01  5.29  6.13  10.56  25.02  

Zn 29.31  5.23  2.92  1.28  1.09  73.58  13.14  7.33  3.22  2.73  

Al 363.50  178.65  88.72  36.91  52.72  50.45  24.80  12.31  5.12  7.32  

Ti 0.48  0.23  0.05  0.30  0.05  43.19  20.33  4.37  27.35  4.76  

V 0.32  0.07  0.05  0.07  0.16  47.78  10.82  7.98  9.68  23.74  

Cr 1.84  0.24  0.19  0.20  0.20  68.74  9.01  7.24  7.39  7.62  

Mn 3.43  1.03  0.80  0.77  0.90  49.54  14.91  11.54  11.08  12.93  

Fe 3.92  1.84  0.78  0.82  0.66  48.81  22.99  9.69  10.28  8.24  

Co 0.05  0.01  0.01  0.01  0.01  56.40  9.61  8.25  9.28  16.47  

Ni 0.13  0.04  0.04  0.03  0.13  34.61  10.93  10.91  7.31  36.25  

Cu 1.68  0.29  0.16  0.09  0.15  71.08  12.19  6.84  3.64  6.25  

As 3.40  0.86  0.41  0.31  0.18  65.82  16.63  8.01  6.09  3.44  

Se 2.35  0.14  0.05  0.02  0.02  90.96  5.46  2.09  0.89  0.60  

Cd 0.26  0.08  0.06  0.05  0.09  48.69  14.66  10.43  10.09  16.13  

Ba 8.05  2.69  1.62  1.44  1.45  52.78  17.64  10.59  9.47  9.52  

Pb 1.12  0.54  0.16  0.06  0.02  59.04  28.38  8.31  3.16  1.12  

 

4.2.2 The mass concentration of potential toxic metals size 

distribution in Beijing 

Mass concentrations of the total 21 elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, 

As, Se, Sr, Cd, Sb, Ba, Pb) in multi-size PM samples were determined by using ICP-MS. Although the 

mass concentration of some potential toxic metals is very low, some of these potential toxic metals 

adsorbed on PM are harmful to public health and therefore cannot be ignored. The size distribution of 

potential toxic metals for Beijing samples during the winter were illustrated in Figure 34, Figure 35, and 

Figure 36.  

According to their mean mass size distribution, 21 elements could be divided into three 

groups: bimodal, unimodal, irregular. Group Ⅰ were classified into two situations (Fig.34), the first case 

Ⅰ a: Na, Mg, Ca, Al, Ti, Fe, Ni, Cu, Mn, Sr and V were bimodal, the highest peak in the size range of ＞

7 μm, however, the lowest peak in the size range of ＜1.1 μm. (The corresponding mass concentration 
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ratio of aggregate particle size were 50.45 %, 48.56 %, 47.12 %, 46.59 %, 49.38 %, 45.20 %, 34.61 %, 

31.33 %, 37.44 %, 48.76 %, 51.70 % VS 26.57 %, 17.42 %, 16.41 %, 22.53 %, 17.80 %, 15.77 %, 

23.31 %, 20.75 %, 24.53 %,18.18 %,16.25 %). Another case Ⅰ b: Sb Zn and K were also bimodal, hoverer, 

the maximum average mass concentration aggregate particle size and the minimum aggregate particle 

size are opposite to the first case. (The corresponding mass concentration ratio of aggregate particle size 

were 38.07 %, 39.02 %, 38.10 % VS 19.24 %, 33.99 %, 21.84 %). Fig 35 is show that the potential toxic 

metals with particle size- unimodal distribution. Metals in group Ⅱ a: the mean mass concentration of Ba, 

Co showed an unimodal size distribution, with coarse particles peaking at＞7 μm while Cd, As, Se and 

Pb (group Ⅱ b) were accumulated on ＜1.1 μm. The elements of Ba, Co appeared to have most of their 

mass portion in the coarser size-range ＞7 μm, with more than 44% of the TSP. The mean mass 

concentration of Cd, As, Se and Pb in ＜1.1 μm contributed about 67.98 % ,52.15%,78.73%,70.95% to 

the total corresponding metal in TSP, respectively. Fig 36 shows that the metal elements with particle 

size- irregular distribution Group Ⅲ: the major of Cr was localized on＞7 μm, the minor was 

accumulated on 2.0‐3.3 μm. Total concentrations of Na, Mg, Al, Ca and Fe in winter contributed about 

80.24 % and 69.15 % to the total TSP and PM2.0 element concentrations respectively, indicating that Na, 

Mg, Al, Ca and Fe would be more likely originated from dusts storm and road dust related sources and 

occurred mostly in coarse particles. While the total mass concentrations of As, Cd, Pb and Se were 

accounted for 0.69 % and 1.95 % of the whole element’s concentrations for TSP and PM2.0, respectively, 

which indicated that As, Cd, Pb, and Se could be mainly associated with fuel combustion sources and 

existed largely in fine particles. This is in well accordance with the previous study (H. Tian et al., 2012), 

indicating that coal consumption of residential and other sectors for supplying heat in winter would 

increase emissions of Cd, Cr and Pb. The northern, west and southwest of our study area were surrounded 

by mountains and largely covered by forest and scenery protection zone. while the southern plain east 

regions were not only densely populated, but also were vulnerable affected by the pollutant’s diffusion 

and trans-boundary transportation from surrounding regions, such as Tianjin, Hebei, Shandong. 
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Fig. 34. Potential toxic metals with particle size-bimodal distribution. Group Ⅰ a is the mass concentration 

mainly concentrated in PM>7.0. Group Ⅰ a is the mass concentration mainly concentrated in PM<1.1. 
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Fig. 35. Potential toxic metals with particle size-unimodal distribution. Group Ⅱ a is the mass 

concentration mainly concentrated in PM>7.0; Group Ⅱ b is the mass concentration mainly concentrated 

in PM<1.1. 

 

 

Fig. 36. Potential toxic metals with particle size- irregular distribution.  
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multi-size PM. In this study, the crustal enrichment factors (CEFs) of all elements were calculated by 
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crust. (CEFs) were calculated by equation (4):(Rovelli et al., 2020)  

CEFs=（Eatm / Ratm）/（Ecrust / Rcrust）                                  (4) 

Where E and R represent the investigated element and reference element for crust material, 

respectively.（Eatm/Ratm） is the concentration ratio of E to R in PM sample while（Ecrust /Rcrust） is 

the concentration ratio of E to R from earth upper continental crust (Rudnick & Gao, 2013).  

4.3.1 Source-apportionment of heavy metals by crustal enrichment 

factors of APMs in Xuanwei  

The higher CEFs, the more it is influenced by anthropogenic sources, conversely, the less it is 

influenced by natural sources. It is generally accepted that if CEF value below 2, it is indicating 

significant contributions from earth crust; while CEF value between 2 and 10 reveals the elements are 

slightly enriched , meanwhile ,mainly affected by anthropogenic emissions and slightly come from the 

earth crust; whereas CEF value above 10 reveals the elements severely enriched and obviously affected 

by anthropogenic emissions (Y. C. Lin et al., 2016) (Tsai et al., 2020). The average CEFs of each 

WSPTMs calculated for PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 during the sampling period using 

Al as the reference element are depicted in Fig 37. 
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Fig.37. Water soluble potentially toxic metals with particle size-unimodal distribution during the 

sampling period. 

 

As our sampling sites were in more remote rural areas, traffic pollution is almost negligible. Ni, V 

and Co are widely used as markers, mainly related to the combustion of fuel oil (Becagli et al., 2012) 

(Rovelli et al., 2020). Fe and Ti are typical crustal elements (Rovelli et al., 2020) and As and Se have 
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been widely used as tracers of coal combustion (Y. C. Lin et al., 2020). The lowest CEF values were 

calculated for Fe, Ti, K, Ni, V, and Co always near or below unity within PM2.0, which were typically 

characterized as originating from crustal source (X. Duan et al., 2020). Mg, Ca, Ba, Cr, Na, Cu, and Pb 

had the CEF values between 2 and 10, suggesting mainly affected by anthropogenic emissions and 

slightly come from the earth crust. Coarse PM are much more influenced by Human activities. while Zn, 

As, Se and Cd were identified as the most enriched (CEF >10) WSPTMs in all PM sizes, were 

predominantly from anthropogenic emissions (Jianwei Liu et al., 2018)(Q. L. Dai et al., 2015), 

suggesting that coal combustion could be the important contributor of PM-bound WSPTMs in this study 

area. 

 

4.3.2 Source-apportionment of heavy metals by crustal enrichment 

factors of APMs in Beijing 

To facilitate interpretation, classification of EF follows: similar to crust(CEFs < 1),the elements 

almost all originated from the crust ; low enrichment (CEFs 1‐10) ,the element mainly contributed by 

natural sources while slightly contributed by anthropogenic emissions; moderate enrichment (CEFs 10‐

100), the elements released from human activities and highly enrichment (CEFs > 100 ),the elements 

affected by human activities in most of the studies (Fomba et al., 2018)(Malandrino et al., 

2016)(Gharaibeh et al., 2010).  In the present study Al, high abundance in the Earth’s crust composition, 

was selected as the reference element (Weiqian Wang et al., 2020). 

The crustal enrichment factors (CEFs) of each element of size-segregated particles in Beijing were 

illustrated in Fig 33. In this study, the CEFs values of Na, Ti, V, Ca in five stages of all PM size and K in 

the range of particle size <3.3 μm were close to 1,fine PM suggested that these elements would be more 

likely originated from natural sources (including re-suspended road dust, soil dust and building dust) 

(Dall’Osto et al., 2013)(Tao et al., 2014) and had no obvious enrichment in aerosols.  

Most elements in PM1.1 and PM1.1‐2.0 revealed higher CEFs than those in PM＞7 , when the CEFs 

values between 1 and 10 ,reflecting that the metals in the smaller particles were significantly contributed 

by anthropogenic emissions, well consistent with previous research results (Shao et al., 2018). The CEFs 

values of Mg, Ba, Co, Mn, Sr and Fe in all particle size ranges were between 1 and 10, low enrichment, 

indicate a mixed contribution of metals majorly from natural sources and minorly from anthropogenic 

sources. Fe and Mn were speculated to be released from lubricating oil (Mugica-Álvarez et al., 

2012)(Taghvaee et al., 2018). Fe, Mn, Ba can be released from the wear of rails or braking systems, or 

from diesel engines from vehicles (Amato et al., 2011), while it is an important part of the crustal 
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elements. Here, the mean CEFs of Cu, Ni, Pb, Cr and As were normally below 100, indicating these 

elements originated mainly from anthropogenic sources and had moderate enrichment in the PM. Cu was 

the metal with the moderate enrichment (17.48‐80.05), major emitted from exhaust emissions and tire 

wear. The crustal enrichment factors for As and Pb were 8.39‐123.39 and 13.37‐551.65, respectively, 

they mainly came from coal combustion in metallurgy, thermal power and other industries (Xia Zhang 

et al., 2020). Leaded gasoline was eliminated more than ten years ago, but as this research shows, lead 

is still ubiquitous in the environment. Cr is widely used in the electroplating and leather tanning industries 

(Jianwei Liu et al., 2019), and a large number of leather industries and metal electroplating industries 

were found near Beijing (Jianwei Liu et al., 2018), which verified that the interpretation of this source 

was reasonable. The CEFs values of Sb, Se, Zn ,Cd were greater than 100 in all PM size, suggested that 

these elements were highly enrichment and significantly affected by vehicle emissions and industrial 

sources or coal combustion, including metal smelting and incineration emissions (Taghvaee et al., 

2018)(Christian et al., 2010). From Figure 38, we conclude that when CEFs>10, the CEFs values 

increased with increasing aerosol particle size, reflecting those metals in coarse particles were mainly 

contributed by human activities. 
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Fig. 38. The crustal enrichment factors (CEFs) of each element of size-segregated particles in Beijing 

(The blue dashed line indicates that CEFs are less than 1; the black dashed line indicates that CEFs are 

less than 10; the green dashed line indicates that CEFs are less than 100.) 

 

4.4 Health Risk Assessment of Water-Soluble Potentially 

Toxic Metals  

In this study, based on the US-EPA Integrated Risk Information System (IRIS) and International 



75 

 

Agency for Research on Cancer (IARC), the metals can be divided into carcinogens and non-

carcinogens. Group 1 (carcinogenic to humans): As, Cd, Cr(Ⅵ) and Ni; Group 2A (probably 

carcinogenic to humans); Group 2B (possibly carcinogenic to humans): Co, V, and Pb. The concentration 

of Cr(Ⅵ) was presumed to be 1/7 of the total concentration of Cr when calculating the Cr health risk. 

According to US-EPA Region RSL (Regional Screening Levels), the Cr(Ⅵ) to Cr(Ⅲ) ratio is 1:6 (C. R. 

Chen et al., 2021)(X. Duan et al., 2020). We analyzed the health risks of these seven toxic metal elements

（As, Cd, Cr(Ⅵ), Ni, Co, V and Pb）. 

To determine the probability of non-carcinogenic and carcinogenic risks (CR) to the public due to 

PM-bound metals, the risk to human health should be assessed.  Fine particles matter through inhalation 

would deposit into the alveolar region. However, the alveolar region does not have protective mucus 

layers, particles deposited into this region are difficult to eliminate, causing considerable health risks for 

humans (L. C. Chen & Lippmann, 2009). Moreover, the alveolar area is difficult to eliminate particles 

deposited in this area, it can be posing a considerable health risk to the human body (Y. C. Lin et al., 

2020).Thus, particles deposited in the alveolar region via inhalation route are considered to play the most 

important role in threatening human health (Betha et al., 2014).  

The methodology has been used in previous studies (Men et al., 2018) (K. Xiao, Qin, et al., 2021). 

Sensitive local residents were divided into two groups (i.e., children and adults). Thus, inhalation 

exposure concentration (EC), hazard quotient (HQ) for non-carcinogenic risk, and carcinogenic risks 

(CR) of WSPTMs in RCC PM were calculated following Eqs (5-10): 

 

ECn=
Ci×ET×EF×ED

ATn
                        5) 

ECc=
Ci×ET×EF×ED

ATc
                        6) 

HQi=
ECn

RfC×1000 μg mg-1
                       7)     (i= As, Cd, Co, Cr (VI), Mn, Ni , V, Zn, Ba and, 

Ba ) 

CRi=IUR×ECc                          8)     (i= V, As, Cd, Cr (VI), Ni, Co, and Pb) 

TCR=ΣCRi                             9) 

HI=ΣHQi                               10)  

 

The exposure concentration (EC) is each element through inhalation (μg m−3). where Ci is the 

average concentration of individual WSPTMs of PM size i, where ECn is used to calculated the values 

of HQ, where ECc is used to calculated the values of CR, TCR is the total carcinogenic risks of all the 

WSPTMs, HI is the total hazard quotient of all the WSPTMs, where AT, ED, EF and ET are average 

lifetime (hours), exposure duration (year), exposure frequency (days year−1), and exposure time (h day−1). 
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The values of all the parameters and explanations are listed in Table 21. The parameter of Inhalation unit 

risk (IUR) and Inhalation reference dose (RfC) value of Water-Soluble Potentially Toxic Metals are 

shown in Table 20. The CR value between 1×10-6 and 1×10-4 indicates acceptable or tolerable 

carcinogenic risk. If the value is higher than 11×10-4, it means the risk is unacceptable. CR value lower 

than 1×10-6 indicates no significant health hazards. 

 

Table 20. RfCi and IUR values for different Water-Soluble Potentially Toxic Metals. (Jianwei Liu et 

al., 2018) 

WSPTMs Inhalation Unit Risk (IUR) (mg m-3) 

-1 

References RfC (mg m-3) 

V 8.3×10-3 PPRTVs a 1.0 × 10-4 

Cr(VI) 1.2×10-2 RAIS b 1.0 × 10-4 

Co 9.0 × 10-3 PPRTVs a 6.0×10-6 

Ni 2.4 × 10-4 RAIS b 1.4 × 10-5 

As 4.3 × 10-3 RAIS b 1.5 × 10-5 

Cd 1.8 × 10-3 RAIS b 1.0 × 10-5 

Pb 1.2× 10-5 CALEPAc  

Se 2.0× 10-2 USEPAe  

Zn  (Xiao et al., 2021) (Fu et al., 

2021) 

 

3.01× 10-1 

Ba  (Xiao et al., 2021) (Fu et al., 

2021) 

 

5.00× 10-4 

Mn  (Xiao et al., 2021) (Fu et al., 

2021) 

 

5.00 × 10-5 

Al  (Fu et al., 2021) 

 

5.00 × 10-3 

a PPRTVs: Provisional Peer-Reviewed Toxicity Values (n.d.). Accessed 15 August 2020, from 

  https://www.epa.gov/pprtv/provisional-peer-reviewed-toxicity-values-pprtvs-assessments.  

b RAIS: The Risk Assessment Information System. (n.d.). Accessed 15 August 2020, from  
https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox.  

c CALEPA: California Environmental Protection Agency. (n.d.). Accessed 15 August 2020, from    

https://calepa.ca.gov/. 

d USEPA : United States Environmental Protection Agency. (n.d.). Accessed 15 August 2020, from  

https://www.epa.gov/iris.   

e USEPA. 2021. User's guide/technical background document for US EPA region 9's RSLs tables.  

Accessed 15 August 2020, from https://www.epa.gov/risk/regional-screening-levels-rsls-generic-

tables  

 

https://www.mdpi.com/2227-9717/9/3/552/htm#table_body_display_processes-09-00552-t001
https://www.mdpi.com/2227-9717/9/3/552/htm#table_body_display_processes-09-00552-t002
https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
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Table 21. Exposure parameters of health risk assessment (J. J. Xie et al., 2020) 

Exposure parameter Value for children Vale for adults 

EF (exposure frequency) 350 day˖year-1 350 day˖year-1 

ET (exposure time) 24h˖day-1 24h˖day-1 

ED (exposure duration) 6 years 24 years 

ATn (average time for non-

carcinogenic) 
ED×365days˖year-1×24h˖day-1 ED×365days˖year-1×24h˖day-1 

ATc (average time for 

carcinogenic) 

74.83 year×365 days˖year-1×24 

h˖day-1 

74.83 year×365 days˖year-1×24 

h˖day-1 

China's Sixth National Census Shows Average Life Expectancy Reaches 74.83 Years. (National Bureau 

of Statistics of the People’s Republic of China; http://www.stats.gov.cn/tjsj/ndsj/ ; accessed on 13 Jun 

2021) 

 

4.4.1 Health Risk Assessment of Water-Soluble Potentially 

Toxic Metals in APMs in Xuanwei 

We divided the participants into three groups: boys (age: < 12), girls (age: < 12) (Xing Li et al., 

2022), and adult (average 30) (USEPA, 2004). For carcinogenic risk of WSPTMs via inhalation exposure 

for boys, girls and adults, the CR and TCR within PM1.1, PM1.1–2.0, PM2.0–3.3, PM3.3–7.0, and PM>7.0 during 

the sampling period were list in the Table 22. As expected, the total WSPTMs exhibited high TCR values 

(9.98 × 10-6, 1.06 × 10-5 ,and 1.19 × 10-5 for girls, Boys and adults, respectively ) in the smaller particles 

(<1.1 μm) because of their high deposition efficiencies (U.S. EPA, 2015). 

We compared the difference of carcinogenic risk of WSPTMs for boys, girls and adults, and found 

that the TCR caused via inhalation of PM2.0 in order: adults > girls > boys. Compared with the results of 

other cities in China, the carcinogenic values for children (boys and girls) were higher than Ningbo 

(6.24 × 10−6) (Y. Wu et al., 2019), Wuhan (5.94 × 10−6) (Weiqian Wang et al., 2020), but for adults were 

lower than that of Chengdu (5.76 × 10−4) (Y. Li et al., 2016), Tanshan (1.48 × 10−4) (Fang et al., 2021), 

Linfen City (7.75 × 10−5) (Y. C. Lin et al., 2020), Ningbo (2.50 × 10−5) (Y. Wu et al., 2019), Wuhan 

(4.65 × 10−5) (Weiqian Wang et al., 2020). 

The order of carcinogenic risk by the ingestion route for boys, girls and adults were Se > Cr (VI) > 

As > Cd > Co > V > Ni > Pb, with Se and Cr (VI) values were lower than 1 × 10-4 but higher than 1 × 10-

6 for boys, girls and adults having the greater effect. The indicated that the carcinogenic risk of Se and 

Cr (VI) via inhalation is tolerable, indicating that we should pay more attention to these toxic elements 

(Do et al., 2021). This implied that control of Cr (VI) and Se emissions were a crucial way to decrease 

http://www.stats.gov.cn/tjsj/ndsj/
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the cancer risk in Xuanwei.  

 

Table 22. The carcinogenic risk of WSPTMs for boys, girls and adults in Xuanwei 

Groups 
 

Carcinogenic risk（CR） 

Dp(μm) 

WSPTMs <1.1  1.1-2.0  2.0-3.3  3.3-7.0  >7.0  <2.0  >2.0  

Boys 

V 5.34 × 10
˗8
 1.21 × 10

˗8
 8.91 × 10

˗9
 1.08 × 10

˗8
 2.68 × 10

˗8
 6.54 × 10

˗8
 4.62 × 10

˗8
 

Cr(VI) 3.07 × 10
˗6
 4.03 × 10

˗7
 3.24 × 10

˗7
 3.30 × 10

˗7
 3.40 × 10

˗7
 3.47 × 10

˗6
 9.94 × 10

˗7
 

Co 5.83 × 10
˗8
 9.94 × 10

˗9
 8.53 × 10

˗9
 9.59 × 10

˗9
 1.70 × 10

˗8
 6.82 × 10

˗8
 3.51 × 10

˗8
 

Ni 4.29 × 10
˗9
 1.34 × 10

˗9
 1.34 × 10

˗9
 8.98 × 10

˗10
 4.45 × 10

˗9
 5.60 × 10

˗9
 6.69 × 10

˗9
 

As 2.03 × 10
˗7
 5.13 × 10

˗8
 2.47 × 10

˗8
 1.88 × 10

˗8
 1.06 × 10

˗8
 2.54 × 10

˗7
 5.41 × 10

˗8
 

Se 6.52 × 10
˗6
 3.91 × 10

˗7
 1.50 × 10

˗7
 6.37 × 10

˗8
 4.28 × 10

˗8
 6.91 × 10

˗6
 2.56 × 10

˗7
 

Cd 6.61 × 10
˗8
 1.99 × 10

˗8
 1.42 × 10

˗8
 1.37 × 10

˗8
 2.19 × 10

˗8
 8.60 × 10

˗8
 4.98 × 10

˗8
 

Pb 1.87 × 10
˗9
 9.00 × 10

˗10
 2.64 × 10

˗10
 1.00 × 10

˗10
 3.55 × 10

˗11
 2.77 × 10

˗9
 3.99 ×10

˗10
 

TCR 9.98 × 10
˗6
 8.90 × 10

˗7
 5.31 × 10

˗7
 4.48 × 10

˗7
 4.64 × 10

˗7
 1.09 × 10

˗5
 1.44 × 10

˗6
 

Girls 

V 5.65 × 10
˗8
 1.23 × 10

˗8
 9.44 × 10

˗9
 1.15 × 10

˗8
 2.81 × 10

˗8
 6.93 × 10

˗8
 4.90 × 10

˗8
 

Cr(VI) 3.25 × 10
˗6
 4.27 × 10

˗7
 3.43 × 10

˗7
 3.50 × 10

˗7
 3.61 × 10

˗7
 3.68 × 10

˗6
 1.05 × 10

˗6
 

Co 6.18 × 10
˗8
 1.05 × 10

˗8
 9.03 × 10

˗9
 1.01 × 10

˗8
 1.80 × 10

˗8
 7.23 × 10

˗8
 3.72 × 10

˗8
 

Ni 4.51 × 10
˗9
 1.42 × 10

˗9
 1.42 × 10

˗9
 9.51 × 10

˗10
 4.72 × 10

˗9
 5.93 × 10

˗9
 7.09 × 10

˗9
 

As 2.15 × 10
˗7
 5.43 × 10

˗8
 2.62 × 10

˗8
 1.99 × 10

˗8
 1.12 × 10

˗8
 2.69 × 10

˗7
 5.73 × 10

˗8
 

Se 6.91 × 10
˗6
 4.15 × 10

˗7
 1.59 × 10

˗7
 6.75 × 10

˗8
 4.53 × 10

˗8
 7.32 × 10

˗6
 2.72 × 10

˗7
 

Cd 7.01 × 10
˗8
 2.11 × 10

˗8
 1.50 × 10

˗8
 1.45 × 10

˗8
 2.32 × 10

˗8
 9.12 × 10

˗8
 5.27 × 10

˗8
 

Pb 1.98 × 10
˗9
 9.54 × 10

˗10
 2.79 × 10

˗10
 1.06 × 10

˗10
 3.76 × 10

˗11
 2.94 × 10

˗9
 4.23 ×10

˗10
 

TCR 1.06 × 10
˗5
 9.43 × 10

˗7
 5.63 × 10

˗7
 4.74 × 10

˗7
 4.91 × 10

˗7
 1.51 × 10

˗5
 1.53 × 10

˗6
 

Adults 

V 6.35 × 10
˗8
 1.44 × 10

˗8
 1.06 × 10

˗8
 1.29 × 10

˗8
 3.16 × 10

˗8
 7.79 × 10

˗8
 5.50 × 10

˗8
 

Cr(VI) 3.66 × 10
˗6
 4.79 × 10

˗7
 3.85 × 10

˗7
 3.93 × 10

˗7
 4.05 × 10

˗7
 4.13 × 10

˗6
 1.18 × 10

˗6
 

Co 6.94 × 10
˗8
 1.18 × 10

˗8
 1.02 × 10

˗8
 1.14 × 10

˗8
 2.03 × 10

˗8
 8.12 × 10

˗8
 4.18 × 10

˗8
 

Ni 5.06 × 10
˗9
 1.60 × 10

˗9
 1.60 × 10

˗9
 1.07 × 10

˗9
 5.30 × 10

˗9
 6.66 × 10

˗9
 7.97 × 10

˗9
 

As 2.42 × 10
˗7
 6.11 × 10

˗8
 2.94 × 10

˗8
 2.24 × 10

˗8
 1.26 × 10

˗8
 3.03 × 10

˗7
 6.44 × 10

˗8
 

Se 7.76 × 10
˗6
 4.66 × 10

˗7
 1.78 × 10

˗7
 7.59 × 10

˗8
 5.09 × 10

˗8
 8.23 × 10

˗6
 3.05 × 10

˗7
 

Cd 7.87 × 10
˗8
 2.37 × 10

˗8
 1.69 × 10

˗8
 1.63 × 10

˗8
 2.61 × 10

˗8
 1.02 × 10

˗7
 5.92 × 10

˗8
 

Pb 2.23 × 10
˗9
 1.07 × 10

˗9
 3.14 × 10

˗10
 1.19 × 10

˗10
 2.42 × 10

˗11
 3.30 × 10

˗9
 4.75 ×10

˗10
 

TCR 1.19 × 10
˗5
 1.06 × 10

˗6
 6.33 × 10

˗7
 5.33 × 10

˗7
 5.52 × 10

˗7
 1.29 × 10

˗5
 1.72 × 10

˗6
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Fig.39. The relative portions of CR and HQ of WSPTMs within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and 

PM>7.0 fraction in Xuanwei during the sampling period. 

 

Our data indicated the HI (Table 23) values for boys, girls and adults were all lower than the safe 

level (=1) (USEPA, 1989). indicating no non-carcinogenic risk from inhalation for people living in the 

rural areas of Xuanwei. Fig.39 shows the relative portions of CR and HQ of WSPTMs within PM1.1, 

PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 fraction in Xuanwei during the sampling period. Se make a major 

contribution (63.60%), followed by Cr (VI) (31.96%) of CR in PM2.0, Cr (VI) make a major contribution 

(68.90%), followed by Se (17.77%) of CR in PM2.0. According our result, the contribution of V, Cr (VI), 

Co, Ni, and Cd for CR, were increased with the PM size increase, while the contribution of Se for CR, 

were decreased with the PM size increase. This result is cross-validated with section 4.3.1.1, Se was 

identified as the most enriched WSPTMs. As, Mn and Al were the major contributor for non-carcinogenic 

risk. 
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Table 23. The non-carcinogenic risk of WSPTMs for boys, girls and adults in Xuanwei. 

Groups 

Non carcinogenic risk (HQ) 

      

Dp(μm) 

WSPTMs 

<1.1  1.1-2.0  2.0-3.3  3.3-7.0  >7.0  <2.0  >2.0  

Boys 

Zn 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 

Al 0.0586 0.0288 0.0143 0.0059 0.0085 0.0873 0.0287 

V 0.0026 0.0006 0.0004 0.0005 0.0013 0.0032 0.0023 

Cr(VI) 0.0021 0.0003 0.0002 0.0002 0.0002 0.0024 0.0007 

Mn 0.0553 0.0166 0.0129 0.0124 0.0144 0.0719 0.0397 

Co 0.0063 0.0011 0.0009 0.0010 0.0018 0.0073 0.0038 

Ni 0.0007 0.0002 0.0002 0.0002 0.0008 0.0010 0.0012 

As 0.1824 0.0461 0.0222 0.0169 0.0095 0.2285 0.0486 

Cd 0.0213 0.0064 0.0046 0.0044 0.0071 0.0277 0.0160 

Ba 0.0130 0.0043 0.0026 0.0023 0.0023 0.0173 0.0073 

HI 0.3423 0.1044 0.0584 0.0439 0.0460 0.4467 0.1482 

Girls 

Zn 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 

Al 0.0620 0.0305 0.0151 0.0063 0.0090 0.0925 0.0304 

V 0.0028 0.0006 0.0005 0.0006 0.0014 0.0034 0.0024 

Cr(VI) 0.0022 0.0003 0.0002 0.0002 0.0002 0.0025 0.0007 

Mn 0.0586 0.0176 0.0136 0.0131 0.0153 0.0762 0.0420 

Co 0.0066 0.0011 0.0010 0.0011 0.0019 0.0078 0.0040 

Ni 0.0008 0.0002 0.0002 0.0002 0.0008 0.0010 0.0012 

As 0.1933 0.0488 0.0235 0.0179 0.0101 0.2421 0.0515 

Cd 0.0226 0.0068 0.0048 0.0047 0.0075 0.0293 0.0170 

Ba 0.0137 0.0046 0.0028 0.0025 0.0025 0.0183 0.0077 

HI 0.3627 0.1106 0.0618 0.0465 0.0487 0.4733 0.1570 

Adults 

Zn 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 

Al 0.0697 0.0343 0.0170 0.0071 0.0101 0.1040 0.0342 

V 0.0031 0.0007 0.0005 0.0006 0.0015 0.0038 0.0027 

Cr(VI) 0.0025 0.0003 0.0003 0.0003 0.0003 0.0029 0.0008 

Mn 0.0658 0.0198 0.0153 0.0147 0.0172 0.0856 0.0472 

Co 0.0074 0.0013 0.0011 0.0012 0.0022 0.0087 0.0045 

Ni 0.0009 0.0003 0.0003 0.0002 0.0009 0.0011 0.0014 

As 0.2172 0.0549 0.0264 0.0201 0.0114 0.2720 0.0579 

Cd 0.0253 0.0076 0.0054 0.0052 0.0084 0.0330 0.0191 

Ba 0.0154 0.0052 0.0031 0.0028 0.0028 0.0206 0.0087 

HI 0.4075 0.1243 0.0695 0.0522 0.0547 0.5318 0.1764 
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4.4.2 Health Risk Assessment of Water-Soluble Potentially 

Toxic Metals in APMs in Beijing  

Our sampling site is the largest residential area in Asia, with about 600,000 people, and the traffic 

volume is very heavy in the morning and evening rush hours. Residents living in this area are potential 

receptors for metals in the air. Fine and coarse atmospheric particulate matter has an important impact 

on human health and inhalation is the typical main route of direct exposure of toxic elements bound to 

PM in the atmosphere (Rovelli et al., 2020). 
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Fig. 40. The carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 in 

Beijing for children during the sampling period. 

 

Figure 40, Figure 41, Figure 42, and Figure 43 show the carcinogenic and non- carcinogenic risks 

of each toxic elements for children and adults within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0 and PM>7.0 in 

Beijing during the sampling period. As expected, most of the toxic metals exhibited high CR values in 

the smaller particles (<1.1 μm) because of their high deposition efficiencies (Y. C. Lin et al., 2020) .The 

total CR values (reached 2.42× 10−6 for children and 66.71× 10−6 for adults , respectively ) were exceeded 

the acceptable level (1 × 10− 6), indicating that we should pay more attention to these toxic elements 

(USEPA, 1989). Compared with previous studies, carcinogenic risks for children and adults is lower than 

those carcinogenic risks in Nanjing (2.57× 10−5 for children and 4.59 × 10−5 for adults) (Yuanyuan Sun 

et al., 2014), in Linfen (2.91× 10−5 for children and 7.75 × 10−5 for adults) (Y. C. Lin et al., 2020), In  

https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
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Fig. 41. The carcinogenic and non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, 

PM3.3-7.0, PM>7.0 in Beijing for adults during the sampling period. 
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Fig. 42. The non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 in 

Beijing for children during the sampling period. 
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Fig. 43. The non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 in 

Beijing for adults during the sampling period. 

Changzhi (2.58× 10−6 for children and 10.31 × 10−6 for adults) (X. Duan et al., 2020), in Kanpur 

(1.60× 10−5 for children and 3.99 × 10−6 for adults) (Can-Terzi et al., 2021) , in Ningbo (6.24× 10−6 for 

children and 2.50 × 10−5 for adults) (Y. Wu et al., 2019). 

Figure 44, Figure 45, Figure 46, and Figure 47 show that the relative portions of carcinogenic and 

non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0 and PM>7.0 in Beijing 

during the sampling period. PM1.1 was the major contributor of Pb, Cd and As for CR and HQ (Table 24), 

it was indicated that PM1.1 is more harmful than coarse PM. The toxic elements of Cr6+ (1.12 × 10−6), V 

(0.69 × 10−6) and As (0.41 × 10−6) were caused higher CR for children than Ni, Cd, Co, Pb, meanwhile, 

Pb (35.30 × 10−6) and Ni (21.07 × 10−6) caused higher CR for adults than As, Cr6+, V, Co, Cd, especially 

PM1.1 (Table 25). It was indicated that V, Cr6+ and As may be more dangerous for children, Pb and Ni 

may be more dangerous for adults. The toxic element of Ni had the highest HQ for children and adults. 

 With respect to children and adults non-carcinogenic risk, the corresponding contributions of 

elements to the HQ were ranked in the following order: Cr(Ⅵ) (46.06 %) ＞  V (28.42 %) > As 

(16.71 %) > Ni (6.28 %) > Co (1.05 %) > Cd (0.95 %) > Pb (0.53 %) and Pb (52.92 %) ＞  V 

(31.59 %) > As (4.69 %) > Cr(Ⅵ) (4.63 %) > V (4.13 %) > Co (1.41 %) > Cd (0.63 %). The HQ values 

for As, Cd, Co, Cr(Ⅵ), Ni and V via inhalation exposure for both children and adults were all lower than 

the safe level (= 1), indicating no non-carcinogenic risks from the inhalation exposure for each toxic 

elements (USEPA, 1989).  

PM1.1 was the major contributor of Pb, Cd and As for CR and HQ in APMs in Beijing. The potential 

toxic metals of Cr(Ⅵ), V and As caused higher CR for children than Ni, Cd, Co, Pb, meanwhile, Pb and 

Ni were cause higher CR for adults than As, Cr(Ⅵ), V, Co, Cd, especially in PM1.1 in APMs in Beijing. 

 

https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
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TCR values were exceeded the acceptable level (1×10-6), indicating that we should pay more attention 

to these PTMs in APMs particles. Both children and adults, the CR of As were the highest followed by 

Cr (VI) and Pb had the lowest CR in APMs. 

 

Table 24. The non- carcinogenic risks of toxic elements for children and adult by inhalation route 

CH: Children, AD: Adult 

 

Table. 25. The carcinogenic risks of toxic elements for children and adult by inhalation route in Beijing 

Elem

ent  

CR 

PM1.1 PM1.1-2.0 PM2.0-3.3 PM3.3-7.0 PM>7.0 

CH AD CH AD CH AD CH AD CH AD 

V 
1.12

E-07 

4.4804

5E-07 

3.4683

4E-08 

1.38734

E-07 

6.004

E-08 

2.4E

-07 

1.2606

6E-07 

5.043

E-07 

3.562

9E-07 

1.4251

7E-06 

Cr6+ 
1.98

E-07 

5.4879

E-07 

6.9561

7E-08 

1.92454

E-07 

2.274

E-07 

6.29

E-07 

1.4330

4E-07 

3.965

E-07 

4.780

7E-07 

1.3226

5E-06 

Co 
3.52

E-09 

1.2994

7E-07 

2.1312

2E-09 

7.86185

E-08 

2.865

E-09 

1.06

E-07 

4.9274

9E-09 

1.818

E-07 

1.196

9E-08 

4.4151

5E-07 

Ni 
3.55

E-08 

4.9121

E-06 

1.5368

6E-08 

2.12599

E-06 

2.447

E-08 

3.39

E-06 

2.4257

5E-08 

3.356

E-06 

5.273

2E-08 

7.2946

E-06 

As 
2.11

E-07 

1.6315

6E-06 

5.3007

6E-08 

4.09268

E-07 

4.006

E-08 

3.09

E-07 

4.7323

6E-08 

3.654

E-07 

5.348

1E-08 

4.1292

2E-07 

Cd 
1.56

E-08 

2.8739

2E-07 

3.3845

7E-09 

6.24264

E-08 

1.586

E-09 

2.93

E-08 

1.0932

7E-09 

2.016

E-08 

1.275

1E-09 

2.3518

5E-08 

Pb 
9.05

E-09 

2.5044

3E-05 

1.6054

1E-09 

4.44163

E-06 

7.772

E-10 

2.15

E-06 

4.8162

1E-10 

1.332

E-06 

8.422

5E-10 

2.3302

2E-06 

WSP

TMs 

HQ 

PM1.1 PM1.1-2.0 PM2.0-3.3 PM3.3-7.0 PM>7.0 

CH AD CH AD CH AD CH AD CH AD 

V 
1.80E 

-03 

1.8E 

-03 

5.57E 

-04 

5.5E 

-04 

9.64E 

-04 

9.6E 

-04 

2.03E 

-03 

2.03E 

-03 

5.7E 

-03 

5.7E 

-03 

Cr 

(VI) 

2.20E-

03 

2.20E

-03 

7.73E

-04 

7.73E

-04 

2.53E

-03 

2.53E

-03 

1.59E

-03 

1.59E

-03 

5.31E

-03 

5.31E

-03 

Co 
8.70E-

03 

8.70E

-02 

5.26E

-03 

5.26E

-02 

7.07E

-03 

7.07E

-02 

1.22E

-02 

1.22E

-02 

2.96E

-02 

2.96E

-01 

Ni 
1.41E-

01 

1.41E

-01 

6.10E

-02 

6.10E

-02 

9.71E

-02 

9.71E

-02 

9.63E

-02 

9.63E

-02 

2.09E

-01 

2.09E

-01 

As 
4.37E-

02 

4.37E

-02 

1.10E

-02 

1.10E

-02 

8.28E

-03 

8.28E

-03 

9.78E

-03 

9.78E

-03 

1.11E

-02 

1.11E

-02 

Cd 
1.15E-

01 

1.15E

-02 

2.51E

-02 

2.51E

-03 

1.18E

-02 

1.18E

-03 

8.10E

-03 

8.10E

-03 

9.45E

-03 

9.45E

-04 

Pb 
1.01E-

01 

1.01E

-01 

1.78E

-02 

1.78E

-02 

8.64E

-03 

8.64E

-03 

5.35E

-03 

5.35E

-03 

9.36E

-03 

9.36E

-03 
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Fig. 44. The relative portions of carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, 

PM3.3-7.0 and PM>7.0 in Beijing for children during the sampling period. 
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Fig. 45. The relative portions of carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, 

PM3.3-7.0 and PM>7.0 in Beijing for adults during the sampling period. 
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Fig. 46. The relative portions of non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, 

PM2.0-3.3, PM3.3-7.0 and PM>7.0 in Beijing for children during the sampling period. 
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Fig. 47. The relative portions of non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, 

PM2.0-3.3, PM3.3-7.0 and PM>7.0 in Beijing for adults during the sampling period. 
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4.4.3 Health Risk Assessment of Water-Soluble Potentially 

Toxic Metals in RCC Particles 

HULIS chelates transition metals in atmospheric particulate matter and participates in the redox 

cycle (S. Lu et al., 2019), such as Copper (Cu) and Iron (Fe)) may cause oxidation potential in lung fluid 

(M. Lin & Yu, 2021). In the HULIS-Fe (II) system, the ROS generation capacity depends on the mixing 

time of HULIS-C with Fe (II), and the Fe (II)-induced Fenton reaction plays a role in cell mortality(S. 

Lu et al., 2019). Cu, Ni, Fe, Cr (VI), Co, As, Mn, V, and Zn could support electron exchange (Sen et al., 

2016) and induce the formation of reactive oxygen species in the lungs (Verma et al., 2014), causing 

damage of oxidative DNA and inflammation of respiratory tracts (Distefano et al., 2009). 

The HQ of V Cr (VI) Co As Cd Zn Mn and Ba within PM1.1, PM1.1–2.0, PM2.0–3.3, PM3.3–7.0, and PM>7.0 

in RCC particles were estimated (Table 26). Among these WSPTMs Ba, As, and Mn had the greatest 

contributions to HI, with risk (contributions) of 3.66×100 ± 3.28×100 (78.39 ± 19.53%), 2.34×10-2 

±2.34×10-2 ± 8.61×10-2 (11.89 ± 10.20%), and 6.38×10-2 ± 1.84×10-2 (2.57 ± 1.39%) in TSP, respectively. 

The HI of PTMs in descending order was Ba > As > Mn > Ni > Co > Cd > V > Cr (VI) in PM1.1. The HQ 

values of WSPTMs were all below 1 within PM1.1–2.0, PM2.0–3.3, PM3.3–7.0, and PM>7.0, were higher than 1 

in PM1.1, indicating that there were noncancer risk in PM1.1 of RCC particles (USEPA, 1989). The 

noncancer risk of Ba account for 91.28 %, 71.39 %, 78.74 %, 82.38 %, and 84.95 % within PM1.1, PM1.1–

2.0, PM2.0–3.3, PM3.3–7.0, and PM>7.0. It indicates that the non-carcinogenic risk of WSPTMs in RCC 

particles, mainly Ba, followed by As and the non-carcinogenic risk is highest within PM1.1. 

Figure 48, Figure 49, Figure 50, and Figure 51 show the carcinogenic and non-carcinogenic risks 

of each toxic elements for children and adults within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0 and PM>7.0 in 

RCC particles. The CR of V Cr (VI) Co As Cd and Pb for children and adults within PM1.1, PM1.1–2.0, 

PM2.0–3.3, PM3.3–7.0, and PM>7.0 in RCC particles were estimated (Table 27). TCR values for As, Cd and 

Co decreased with increasing PM particle size (for adults and children), indicating that As, Cd and Co had 

the highest in PM1.1. Interestingly, the TCR values for Cr (VI) were stable across PM particle sizes with no 

variability (adults and children), and the TCR for lead was negligible. Notably, the TCR values for V 

showed a bimodal distribution, with the major peak in the particle size <1.1 µm while the minor peak in 

the size range of ＞7 μm. The TCR of PTMs for adults and children in the smaller particles (<1.1 μm) 

contributed 42.95 ± 8.49% and 42.01 ± 8.72% to the TSP, respectively. Among both children and adults, 

the CR of As were the highest (1.40×10-6 ± 5.16×10-7 for children, 5.60×10-6 ± 2.06×10-6 for adults), 

followed by Cr (VI) (1.40×10-6 ± 3.53×10-6 for children, 5.60×10-6 ± 1.41×10-6 for adults) in TSP. Pb had  

 

https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720321677#f0025
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Table 26. Non-carcinogenic health risk of WSPTMs in RCC particles 
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Table 27. Carcinogenic health risk of WSPTMs in RCC particles 
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Fig. 48. The carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 for 

children in RCC particles. 
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Fig. 49. The carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 for 

adults in RCC particles. 
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Fig. 50. The non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 

for children in RCC particles. 
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Fig. 51. The non- carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, PM>7.0 

for adults in RCC particles. 

 

the lowest CR, which was approximately 1.47×10-2 times for children and 7.21×10-1 for adults of that of 

As in TSP. The TCR values (reached 4.04×10-7 ± 8.18×10-6 for children and 1.52×10-5 ± 2.99×10-6 for 

adults) were exceeded the acceptable level (1×10-6), indicating that we should pay more attention to these 

WSPTMs.  
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Fig. 52. The relative portions of carcinogenic of toxic elements within PM1.1, PM1.1-2.0, PM2.0-3.3, 

PM3.3-7.0 and PM>7.0 for adults in RCC particles. 
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Fig. 53. The relative portions of carcinogenic risks of toxic elements within PM1.1, PM1.1-2.0, PM2.0-

3.3, PM3.3-7.0 and PM>7.0 for children in RCC particles. 

Figure 52 and 53 show that the relative portions of carcinogenic risks of toxic elements within PM1.1, 

PM1.1-2.0, PM2.0-3.3, PM3.3-7.0 and PM>7.0 in RCC particles. With respect to children and adults non-

carcinogenic risk, the corresponding contributions of elements to the HQ were ranked in the following 

order: Ba (81.75 %) ＞ As (8.14 %) > Cd (3.52 %) > Co (2.86 %) > Mn (3.20 %) > Cr(Ⅵ) (0.30 %) > V 

(0.21 %) and Zn (0.01 %) ). The HQ values for As, Cd, Co, Cr(Ⅵ), Ni and V via inhalation exposure for 

both children and adults were all lower than the safe level (= 1), indicating no non-carcinogenic risks 

from the inhalation exposure for each toxic elements (USEPA, 1989).  
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The of WSPTMs for both children and adults were exceeded the acceptable level (1×10-6) in PM1.1, 

indicating that we should pay more attention to these WSPTMs. Compare with the TCR of RCC particles 

in Xuanwei and APMs, we find that CR of Water-Soluble Potentially Toxic Metals in APMs particles is 

higher than RCC. This indicates that the carcinogenic risk of Water-Soluble Potentially Toxic Metals in 

APMs is much greater than the carcinogenic risk of Water-Soluble Potentially Toxic Metals in RCC 

particulate matter. Our results suggest that WSPTMs contained in particulate matter emitted from coal 

combustion are an important component of Xuanwei APMs, but there are other sources that require 

further investigation. Potentially toxic metals are not the main cause of the high incidence of lung cancer 

in Xuanwei, so we have studied them in depth. 

 

4.3.4 Briefly Summary  

 In Xuanwei:  

APMs: The order of carcinogenic risk by the ingestion route for boys, girls and adults were Se > Cr 

(VI) > As > Cd > Co > V > Ni > Pb, with Se and Cr (VI) values were lower than 1 × 10-4 but higher than 

1 × 10-6 for boys, girls and adults having the greater effect. The contribution of V, Cr (VI), Co, Ni, and 

Cd for CR, were increased with the PM size increase, while the contribution of Se for CR, were decreased 

with the PM size increase. Se was identified as the most enriched WSPTMs. As, Mn and Al were the 

major contributor for non-carcinogenic risk. 

RBC: Our result show that all PMs, the TCR was higher than 1 for adults and lower than 1 for children, 

except for PM1.1. TCR values for As, Cd and Co decreased with increasing PM particle size (for adults and 

children), indicating that As, Cd and Co had the highest in PM1.1. Interestingly, the TCR values for Cr (VI) 

were stable across PM particle sizes with no variability (adults and children), and the TCR for lead was 

negligible. Notably, the TCR values for V showed a bimodal distribution, with the major peak in the 

particle size <1.1 µm while the minor peak in the size range of ＞7 μm. The noncancer risk of Ba account 

for 91.28 %, 71.39 %, 78.74 %, 82.38 %, and 84.95 % within PM1.1, PM1.1–2.0, PM2.0–3.3, PM3.3–7.0, and 

PM>7.0. It indicates that the non-carcinogenic risk of WSPTMs in RCC particles, mainly Ba, followed by 

As and the non-carcinogenic risk is highest within PM1.1. 

In Beijing: PM1.1 was the major contributor of Pb, Cd and As for CR and HQ in APMs in Beijing. 

The potential toxic metals of Cr(Ⅵ), V and As caused higher CR for children than Ni, Cd, Co, Pb, 

meanwhile, Pb and Ni were cause higher CR for adults than As, Cr(Ⅵ), V, Co, Cd, especially in PM1.1 

in APMs in Beijing. TCR values were exceeded the acceptable level (1×10-6), indicating that we should 

pay more attention to these PTMs in RCC particles. Both children and adults, the CR of As were the 

highest followed by Cr (VI) and Pb had the lowest CR in RCC particles. 
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Compare with the TCR of RCC particles in Xuanwei and APMs, we find that CR of Water-Soluble 

Potentially Toxic Metals in APMs particles is higher than RCC. This indicates that the carcinogenic risk 

of Water-Soluble Potentially Toxic Metals in APMs is much greater than the carcinogenic risk of Water-

Soluble Potentially Toxic Metals in RCC particulate matter. Our results suggest that WSPTMs contained 

in particulate matter emitted from coal combustion are an important component of Xuanwei APMs, but 

there are other sources that require further investigation. Potentially toxic metals are not the main cause 

of the high incidence of lung cancer in Xuanwei, so we have studied them in depth. 

 

4.5 The characteristics of EC, OC, WSOC, and HULIS-C in 

RCC particles 

WSOC is a significant portion of OC, which account for 10~90 %, depending on source location, 

source, and meteorological conditions(Wen et al., 2018). HULIS-C are important hydrophobic 

compound of WSOC in ambient aerosols. 

4.5.1 Abundance of EC, OC, WSOC, and HULIS-C in RCC 

particles.  

Researcher based on Community Multiscale Air Quality (CMAQ) model (version 5.0.1) shows 

that RCC was the important sources of HULIS, accounting for 15.1 % in Beijing (Xinghua Li, Han, et 

al., 2019). Mass concentrations of OCx, ECx, WSOCx and HULIS-C in coarse and fine PM from RCC 

particles are shown in Table 28. The average values of WSOC, HULIS-C, OC, and EC were 234.72 ± 

149.04 µg·m-3, 117.65 ± 53.90 μg C m− 3, 3250.99 ± 2126.65 µg·m-3, and 643.19 ± 263.94 µg·m-3 in 

PM2.0, while, were 82.37 ± 46.82 µg·m-3, 40.23 ± 19.17 μg C m− 3, 822.86 ± 522.48 µg·m-3, and 30.11 

± 35.62 µg·m-3 in PM2.0~7.0. There has similar contribution of HULIS-C to the PM were 2.09 %~5.65 % 

for PM2.0 and 2.68%~5.62% for PM2.0~7.0, respectively. This result was consistent with previous research 

HULIS account for 3.5 ± 0.4 % of PM2.5 emitted from coal combustion (X. Fan, Wei, et al., 2016), but 

lower than the reported WSOC results (14%~56%) for biomass burning PM2.5, which was significantly 

lower than that (22.6 ± 3.7 %) in ambient PM2.5 (X. Fan, Wei, et al., 2016). 
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Table 28. Mass concentrations of OCx, WSOCx and HULIS-C in PM2.0 and PM2.0~7.0 from RCC 

particles 

Samples 
Size 

 μm 
OC EC TC PM HULIS-C WSOC 

BL 

PM2.0 

1556.00  749.35  2305.35  3651.35  137.78  206.40  

LM 2385.33  851.68  3237.01  7854.83  168.63  275.95  

SF 4490.54  353.95  4844.49  10303.30  137.19  215.44  

LJW 6983.05  1056.47  8039.52  11833.04  174.01  531.67  

GM 3649.02  503.15  4152.17  4185.81  38.76  90.00  

ZF 442.01  344.56  786.57  1810.95  49.52  88.85  

Average  3250.99  643.19  3894.18  6606.55  117.65  234.72  

TSD  2126.65  263.94  2264.47  3654.48  53.90  149.04  

BL 

PM2.0-7.0 

1000.09  108.73  1108.82  2492.64  71.85  108.53  

LM 1023.89  18.13  1042.02  2391.05  44.02  72.80  

SF 959.05  22.78  981.82  2314.49  45.92  135.41  

LJW 1632.95  16.60  1649.55  3492.34  46.40  131.92  

GM 244.74  6.04  250.78  1311.84  17.84  21.69  

ZF 76.47  8.35  84.82  1143.99  15.35  23.86  

Average  822.86  30.11  852.97  2191.06  40.23  82.37  

TSD  522.48  35.62  533.08  786.23  19.17  46.82  

 

Fig. 54 show the mass concentration (μg m-3) and standard deviation (STD) of OC, EC, WSOC, and 

HULIS-C (Coal, N=6) in RCC particles. The mass concentrations of HULIS are in the following order: 

1.1 μm > 1.1~2.0 μm > 2.0~3.3 μm > 3.3~7.0 μm. The mass concentration of HULIS-C in our research 

far exceeded HULIS-C in the ambient is in the average range of 0.8~15.9 µg·m-3 (M. Zhao et al., 2016) 

(M. Zhao et al., 2015)(Win et al., 2018)(Zheng et al., 2013)(X. Fan, Song, et al., 2016)(Win et al., 2020). 

The variability in mass concentration can be explained by the independent and closed sampling 

system. It is also related to the type and maturity of the coal. Relatively little water-soluble brown carbon 

was found in particles produced by burning middle-maturity coal in residential stoves, while significant 

amounts were found in low maturity bituminous coal and anthracite (M. Li, Fan, et al., 2019). Unlike 

general atmospheric particulate sampling, we collect high concentrations of RCC particulate matter 

directly with our sampling system. In the future, a comprehensive investigation of coal combustion 

HULIS-C emissions under different stove types, combustion conditions and combustion stages are 

necessary to better understand the distribution pattern of HULIS-C. 
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Fig. 54. Mass concentration (μg m-3) and standard deviation (STD) of OC, EC, WSOC, and HULIS-C 

(Coal, N=6) in RCC particles. 

 

4.5.2 Size distribution of HULIS-C in RCC particles.  

HULIS-C accounts for a large proportion of WSOC in RCC particles and have received much 

attention in recent years (M. Li, Fan, et al., 2019). The percentage of OCx, ECx, WSOCx to WSOC and 

HULIS-C in coarse and fine PM from RCC particles is show in Table 29. In our study, the HULIS-Cx 

/WSOCx (%) values in RCC particles are 32.73 %~63.76 % (Average 53.85 ± 12.12 %) for PM2.0 and 

33.91%~82.67 % (Average 57.06 ± 17.32 %) for PM2.0~7.0, respectively.  
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Table 29. The percentage of OCx, ECx, WSOCx to WSOC and HULIS-C in PM2.0 and PM2.0~7.0 from 

RCC particles 

Sampl

es 
Size μm 

HULIS-

Cx/WSOCx 

OCx/ 

PMx 

ECx/ 

PMx 

WSOCx/ 

TCx 

HULIS-

Cx/TCx 

OCx 

/ECx 

HULIS-

Cx/PMx 

WSOCx/ 

PMx 

HULIS-

Cx/HULIS-Ct 

BL 

PM2.0 

66.76  42.61  20.52  8.95  5.98  2.08  3.77  5.65  65.73  

LM 61.11  30.37  10.84  8.52  5.21  2.80  2.15  3.51  79.30  

SF 63.68  43.58  3.44  4.45  2.83  12.69  1.33  2.09  74.92  

LJW 32.73  59.01  8.93  6.61  2.16  6.61  1.47  4.49  78.95  

GM 43.07  87.18  12.02  2.17  0.93  7.25  0.93  2.15  68.48  

ZF 55.73  24.41  19.03  11.30  6.30  1.28  2.73  4.91  76.34  

Average 53.85  47.86  12.46  7.00  3.90  5.45  2.06  3.80  73.95  

TSD  12.12  20.70  5.84  3.02  2.03  3.93  0.96  1.35  5.13  

BL 

PM2.0~7.0 

66.20  40.12  4.36  9.79  6.48  9.20  2.88  4.35  34.27  

LM 60.47  42.82  0.76  6.99  4.22  56.46  1.84  3.04  20.70  

SF 33.91  41.44  0.98  13.79  4.68  42.11  1.98  5.85  25.08  

LJW 35.17  46.76  0.48  8.00  2.81  98.36  1.33  3.78  21.05  

GM 82.27  18.66  0.46  8.65  7.12  40.53  1.36  1.65  31.52  

ZF 64.35  6.68  0.73  28.13  18.10  9.16  1.34  2.09  23.66  

Average 57.06  32.75  1.30  12.56  7.23  42.64  1.79  3.46  26.05  

TSD  17.32  14.75  1.38  7.29  5.06  30.39  0.55  1.41  5.13  

 

This suggests that HULIS-C is the main component of WSOC in RCC particles. Despite the large 

variance of HULIS-C concentrations, the abundance of HULIS-C in WSOC was relatively stable. 

Interestingly, the HULIS-Cx/HULIS-Ct (%) values in RCC particles are 68.48 %~79.30 % (average 

73.95 ± 5.13%) for PM2.0 and 20.70 %~34.27 (average 26.05 ± 5.13 %) for PM2.0~7.0, respectively. The 

first study about HULIS percentage contributions in particles in the Pearl River Delta region in China 

report the similar results that HULIS made the highest percentage contribution (81 %) in PM0.63~0.87, and 

the lowest percentage contribution (7 %) in PM4.0~5.7 during biomass burning seasons (P. Lin et al., 2010). 

Our conclusion indicated that the HULIS-C emitted from RCC is mainly concentrated in fine particles, 

and the mass concentration of HULIS-C and WSOC are inversely proportional to the particle size 

(Pearson correlation coefficients 0.92 ± 0.16) in our research (Table 30).  

OC to EC ratio is commonly regarded as secondary organic aerosol indicator, when the OC/EC ratio 

exceeds 2.8 (Renjian Zhang et al., 2009). The OC/EC ratio decreases gradually with increasing particle 

size in the range of >1.1 μm particle size. However, when the particle size <1.1 μm, the OC/EC ratio 

suddenly decreases to a minimum of 0.68. This phenomenon can be explained by the fact that due to 

insufficient combustion of coal in the initial stage of combustion  (Wen et al., 2018), a large amount of 

black smoke is released, resulting in a lower ratio of OC/EC in <1.1 μm particles smaller than other 
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particle sizes. The average contribution of WSOC and HULIS-C to the TC of RCC particles were 

2.54 %~12.93 % and 1.29 %~7.44 % in PM7.0.  

 

Table 30. Pearson correlation coefficients between HULIS-C and WSOC 

Samples 
Size 

(μm) 

WSOC 

(μg m-3) 

HULIS-C 

(C μg m-3) Pearson correlation coefficients 

BL 

<1.1 129.93  92.02  0.99  

1.1-2.0 76.47  45.76   

2.0-3.3 81.08  54.33   

3.3-7.0 27.44  17.52   

LM 

<1.1 224.58  136.86  1.00  

1.1-2.0 51.37  31.77   

2.0-3.3 48.88  26.50   

3.3-7.0 23.91  17.52   

SF 

<1.1 137.40  90.78  0.98  

1.1-2.0 78.04  46.41   

2.0-3.3 67.17  21.86   

3.3-7.0 68.24  24.06   

LJW 

<1.1 408.91  123.02  0.99  

1.1-2.0 122.76  50.99   

2.0-3.3 70.75  28.36   

3.3-7.0 61.18  18.04   

GM 

<1.1 31.96  22.42  0.57  

1.1-2.0 58.04  16.34   

2.0-3.3 13.74  14.58   

3.3-7.0 7.95  3.27   

ZF 

<1.1 68.07  34.94  0.99  

1.1-2.0 20.78  14.58   

2.0-3.3 13.11  9.01   

3.3-7.0 10.75  6.34   

   Average 0.92  

   TSD 0.16  

 

4.5.3 Correlation of HULIS-C and WSOC with other species 

in RCC particles  

HULIS-C and WSOC can be produced from both primary emissions and secondary formation. Table 

31 shows the correlation between HULIS-C and WSOC with water-soluble ion species. During our 

measurements, the concentrations of HULIS-C and WSOC were significantly correlated with SIA (SO4
2−, 

https://www.sciencedirect.com/science/article/pii/S1352231020307160#tbl1
https://www.sciencedirect.com/science/article/pii/S1352231020307160#tbl1
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NO3
−, and NH4 

+), K+ and, Mg2+ in RCC particles.   

NO3
−, SO4

2 – and, NH4
+ are usually referred to as secondary water-soluble ions (X. Fan, Song, et al., 

2016). In this study, both HULIS-C and WSOC were strongly correlated with secondary water-soluble 

ions such as NH4
+ (r = 0.89 ± 0.10), NO3

− (r = 0.88 ± 0.14), and SO4
2 – (r = 0.86 ± 0.11) for HULIS-C 

and NH4
+ (r = 0.80 ± 0.30), NO3

− (r = 0.81 ± 0.33), and SO4
2 – (r = 0.83 ± 0.18) for WSOC were observed 

as shown in Table 31. Cl-, NO2
-, Na+, and Ca2+ exhibited a relatively weak link with HULIS-C and WSOC. 

During simulated RCC with high relative humidity (79 ± 2.09 %) (Table 32), in this situation, 

heterogeneous reactions of SO2 and NOx were more easily happened (S. F. Kong et al., 2015).  

This finding may indicate that HULIS-C and WSOC was subject to a similar formation process as 

SIA through secondary formation processes (Ni et al., 2021)(An et al., 2019). Relevant studies have 

shown that HULIS may result from primary emission sources and secondary formation involving newly 

formed sulfate particles. (Song et al., 2012) (N. Wang & Yu, 2017). 

Our result show that HULIS-C to the PM were 2.09%~5.65% for PM2.0 and 2.68%~5.62% for  

PM2.0-7.0, respectively. HULIS-C emitted from RCC is mainly concentrated in PM2.0 (68.48 %~79.30 %). 

During our measurements, the concentrations of HULIS-C and WSOC were significantly correlated with 

SO4
2−, NO3

−, and NH4 
+ in RCC particles.  

 

Table 31. The correlation between HULIS-C and WSOC and water-soluble ions in RCC particles 

size  

Samples 

BL LM SF LJW GM ZF 

HUL 

IS-C 

WS 

OC 

HUL 

IS-C 

WS 

OC 

HUL 

IS-C 

WS 

OC 

HUL 

IS-C 

WS 

OC 

HUL 

IS-C 

WS 

OC 

HUL 

IS-C 

WS 

OC 

Cl- 0.66 0.71 0.42 0.44 0.06 0.14 0.76 0.80 -0.74 -0.77 0.13 0.19 

NO2
- 0.06 0.14 0.15 0.20 0.94 0.99 0.63 0.72 -0.19 -0.72 -0.26 -0.21 

NO3
- 0.84 0.83 1.00 0.99 0.94 0.99 0.95 0.99 0.58 0.07 0.94 0.98 

SO4
2- 0.74 0.72 0.97 0.97 0.81 0.85 0.95 0.99 0.72 0.49 0.98 0.99 

Na+ 0.89 0.80  0.99 0.96 0.99  -0.28 0.73 -0.29 0.97 0.99 

NH4
+ 0.89 0.92   0.96 1.00   0.73 0.27 0.97 0.99 

K+ 0.83 0.82 0.90 0.89 0.95 0.99 0.93 0.95 0.69 0.30 0.97 0.99 

Mg2+ 0.78 0.76 1.00 0.99 0.93 0.98 0.93 0.96 0.80 0.38 0.98 0.99 

Ca2+ 0.78 0.76 -0.14 -0.09 -0.34 -0.46 -0.49 -0.48 0.29 0.90 0.98 0.99 
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  Table 32. Simulated combustion conditions 

Samples Date period 
Volume 

L/min 

Pump, Volume 

m3/min 
Temperature℃ Humidity% 

BL 2017.8.08 
9：52-

11:52 
566 50 25.7 75 

LM 2017.8.15 
10:10-12：

10 
566 50 33 81 

SF 2017.8.16 
16：36-

18：36 
566 50 36 78 

LJW 2017.8.16 
10:12-

12:12 
566 50 35 79 

GM 2017.8.20 
14：10-

16:10 
566 50 28 81 

ZF 2017.8.20 
16：55-

18:55 
566 50 38 80 

Average     32.62  79.00  

SD     4.39  2.08  

 

In the future, a comprehensive investigation of coal combustion HULIS-C emissions under 

different stove types, combustion conditions and combustion stages are necessary to better understand 

HULIS-C. Unfortunately, HULIS-C as a powerful sequestering agent in atmospheric particulate matter, 

there is a lack of information on the ROS generated (P. Lin & Yu, 2011) (Win et al., 2018) by the 

HULIS-metal combination through the cellular matrices and tissue. Some attempts should be done in 

cell-free and cell-based experiments to obtain well-characterized information about the ROS generated 

by the HULIS-metal combination and to better address the health effects of HULIS-C. 

 

4.6 The characteristics of EPFRs in RCC particles 

4.6.1 EPFRs exposure evaluation 

To date, there is no internationally accepted method to assess the health risk of EPFRs in PM. 

According to my knowledge, several methods have been used to assess the health risks of EPFRs (Q. 

Chen, Sun, Mu, et al., 2019) (Q. Chen et al., 2020) (Y. Xu et al., 2020) (J. Zhao et al., 2021), however, 

all of them evaluate EPFRs inhalation risk for adult except child. In our study, the equivalent number of 

cigarettes to evaluate the potential health risks of EPFRs in PM for Xunawei residents (Gehling & 

Dellinger, 2013).The EPFRs exposure level is given in equation (11-12) : 

 

https://www.sciencedirect.com/science/article/pii/S0269749118326538#fd1
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InhPM = RCPM×F×Fr×PCPM×Rinhalation                                       (11) 

Ncig = 365×InhPM/ RCcig ×Ctar                                                (12) 

 

where InhPM is the daily EPFRs exposure from inhaled PM (spins/g/day); F is the conversion 

from g to micrograms (1 × 10-6) (Gehling & Dellinger, 2013), Fr is the alveolar fraction retained in the 

lung (0.75). PCPM is the concentration of PM (μg/m3) and R inhalation represents the daily amount of air 

inhaled (20 m3/day for adult (Grevatt, 1998), 7.6 m3 / day for child) (https://www.epa.gov/risk/risk-

assessment-guidance-superfund-rags-part; accessed on 24 September 2021). Ncig represents the number 

of cigarettes (person/year), 30 represents 30 days per monthly. RCcig (4.75 × 1016 spins/g) (Q. Chen, Sun, 

Mu, et al., 2019) indicates the concentration of free radicals in cigarette tar, and Ctar (0.013 g/cig) 

indicates the amount of tar per cigarette (Gehling & Dellinger, 2013).  

 

4.6.2 EPFRs and PM concentrations in atmospheric 

particulate matter and solid fuel combustion particles 

4.6.2.1 EPFRs and PM concentrations in biomass combustion particles 

The concentration distributions of EPFRs and PM in simulated particulate matter emitted from 

biomass combustion (corncobs, pine, poplar) were given in Fig 55 and Table 33. The concentrations of 

EPFEs and PM emitted from the three-biomass combustion were significantly different in the particle 

size ranges <1.1, 1.1-2.0 and 2.0-3.3. Both the EPFRs and the PM concentration reach their maximum at 

<1.1 μm, while the lowest concentration is found at particle size 2.0-3.3 μm. The atmospheric 

concentrations of EPFRs percentage mean value of PM1.1, PM1.1–2.0, and PM2.0–3.3 were 76.25 ± 4.14%, 

13.69 ± 3.95%, and 10.06 ± 0.23%, which corresponded to PM mass concentrations were 2948.77 ± 

1438.66 μg/m3, 1415.44 ± 712.85 μg/m3 and 1087.57 ± 504.44 μg/m3, respectively (Table 34).  

 

Table 33. EPFRs and PM concentrations in biomass combustion particles. 
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Table 34. Size distribution of EPFRs and PM in simulated biomass combustion particles from Xuanwei 

(%) 

Sample 

groups 

PM1.1/PM3.3 (%) PM1.1-2.0/PM3.3 (%) PM2.0-3.3/PM3.3 (%) 

Spins/m3 Spins/g μg/m3 Spins/m3 Spins/g μg/m3 Spins/m3 Spins/g μg/m3 

Corncob 73.11  58.26  49.66  16.86  24.35  27.48  10.03  17.38  22.86  

Pine 82.10  61.40  58.39  8.11  15.10  23.49  9.79  23.50  18.13  

Poplar 73.56  54.33  54.14  16.09  24.45  26.33  10.36  21.23  19.52  

Average 76.25  57.99  54.06  13.69  21.30  25.77  10.06  20.70  20.17  

Min 73.11  54.33  49.66  8.11  15.10  23.49  9.79  17.38  18.13  

Max 82.10  61.40  58.39  16.86  24.45  27.48  10.36  23.50  22.86  

STD 4.14  2.89  3.56  3.95  4.38  1.68  0.23  2.52  1.99  
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Fig. 55. EPFRs and PM concentrations in biomass combustion particles from Xuanwei. (The left: the 

atmospheric EPFRs concentrations; the right: EPFRs concentrations in PM) 

 

The atmospheric concentrations of EPFRs in the PM1.1 were 4.51 × 1017, 4.27 × 1017 and 

3.26 × 1017 spins/m3 for corncob, pine and poplar, respectively, while the mean atmospheric 

concentrations in PM1.1 were found to be several times than PM1.1-2.0 (6.34 ± 2.67) and PM2.0-3.3 (7.60±  

0.57). The EPFR concentrations in the PM1.1 at the three sites were 3.11 × 1015, 3.37 × 1015 and 

1.08× 1015 spins/g for corncob, pine and poplar, respectively (shown in Table 33). It has been reported 

that the EPFR concentrations in PM2.5 from the corn straw, rice straw, jujube wood, and pine wood (four 

biomass, purchased from Jiangsu province) were in the range of 0.9 × 1019 spins/g to 6.1 × 1019 spins/g  

(J. Zhao et al., 2021), the average radical intensities in PM emissions from fatwood, pine wood were 1.2 

× 1018, and 9.1 × 1017 spins/gram, respectively (L. Tian et al., 2009). Compared with previous studies, 

the EPFR concentrations in PM3.3 (the range of 1.99 × 1015 spins/g to 5.50 × 1015 spins/g) which were 2-

4 orders of magnitude lower than those reported in a previous study. EPFRs were mainly concentrated 

in the size range of <1.1 μm, which accounted for 76.25 ± 4.15% of PM3.3, indicating that the PM1.1 

emitted biomass combustion is more harmful to human body than PM2.0-3.3 and PM2.0-3.3, therefore, 

deserves more in-depth study. 
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4.6.2.2 EPFRs and PM concentrations in coal combustion particles 

Table 35  lists the size distribution of EPFRs and PM in simulated coal combustion particles 

(%).  Fig 56 shows the EPFRs and PM concentrations in coal combustion particles. The atmospheric 

EPFRs concentrations in PM1.1, PM2.0-3.3 and PM2.0-3.3 make the contribution to PM3.3 were 74.85± 

10.76%, 13.10 ± 7.66%, and 12.05 ± 7.25%, respectively. The average atmospheric concentrations in 

PM1.1 were found to be several times than PM1.1-2.0 (8.81 ± 6.70) and PM2.0-3.3 (8.07 ± 3.68). The 

concentration distribution of EPFRs and PM in coal combustion emission particulate matter is similar to 

that of biomass combustion particulate matter, both mainly concentrated in the <1.1um particle size.  

 

Table 35. Size distribution of EPFRs and PM in simulated coal combustion particles from Xuanwei (%) 

Sample 

groups 

PM1.1/PM3.3 (%) PM1.1-2.0/PM3.3 (%) PM2.0-3.3/PM3.3 (%) 

Spins/m3 Spins/g μg/m3 Spins/m3 Spins/g μg/m3 Spins/m3 Spins/g μg/m3 

BL 58.15  51.66  40.00  14.00  18.72  26.58  27.85  29.61  33.42  

LM 63.74  52.12  46.46  28.09  28.37  37.62  8.17  19.51  15.92  

SF 81.77  56.06  56.29  7.07  8.66  31.50  11.16  35.27  12.21  

LJW 89.86  81.85  43.81  4.03  4.14  38.77  6.12  14.01  17.43  

GM 78.85  71.34  42.23  10.76  12.24  33.60  10.39  16.42  24.17  

ZF 76.76  58.53  50.35  14.64  15.16  37.10  8.60  26.31  12.55  

Average 74.85  61.93  46.52  13.10  14.55  34.19  12.05  23.52  19.28  

Min 58.15  51.66  40.00  4.03  4.14  26.58  6.12  14.01  12.21  

Max 89.86  81.85  56.29  28.09  28.37  38.77  27.85  35.27  33.42  

STD 10.76  11.05  5.45  7.66  7.71  4.22  7.25  7.53  7.46  

STD: Standard Deviation 

 

https://www.sciencedirect.com/science/article/pii/S1352231020305434#tbl1
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Fig. 56. EPFRs and PM concentrations in coal combustion particles from Xuanwei. (The left: the 

atmospheric EPFRs concentrations; the right: EPFRs concentrations in PM) 

 

The mean atmospheric concentrations of EPFRs in the PM1.1, PM2.0-3.3 and PM2.0-3.3 were 2.16 × 1017 

± 5.82 × 1016 spins/m3, 3.70 × 1016 ± 2.32× 1016 spins/m3 and 3.67 × 1016 ± 2.89 × 1016 spins/m3, which 

corresponded to PM mass concentrations were 3806.19 ± 2105.99 μg/m3, 1537.84 ± 565.64 μg/m3 and 

1404.60 ± 672.75 μg/m3, respectively (shown in Table 36). Compared with previous studies, the EPFR 

concentrations in PM3.3 (the range of 4.13 × 1015 spins/g to 1.78 × 1016 spins/g) which were 1-4 orders of 
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magnitude lower than those reported in a previous study for the total particular matter from bituminous 

coal (4.4 × 1017 spins/g)，anthracite (2.3 × 1017 spins/g) (L. Tian et al., 2009) and bituminous (1019 spins/g) 

which purchased from Henan province than those reported in a previous studies. 

 

Table 36. EPFRs and PM concentrations in coal combustion particles. 

 

4.6.2.3 EPFRs and PM concentrations in atmospheric particulate 

matters 

The mass concentrations of three PM fractions classified as PM<1.1 , PM1.1–2.0, and PM2.0–3.3, were 

42.92 ± 16.50 μg/m3, 26.33 ± 5.66 μg/m3, and 20.42 ± 2.68μg/m3, respectively (shown in Figure 57 and 

Table 37). As shown in Table 38, the PM1.1 fraction contributed 46.56% ± 9.67% of the PM3.3 mass, 

which indicated that much more PM in the atmosphere was present in smaller size fractions. 

Table 37. EPFRs and PM concentrations in atmospheric particulate matters. 

 

 

The mean atmospheric concentrations of EPFRs in PM1.1, PM1.1–2.0, and PM2.0–3.3 were 7.03 × 1015 ± 

5.29 × 1015 spins/m3, 9.05 × 1014 ± 2.50 × 1014 spins/m3, and 8.35 × 1015 ± 3.06 × 1015 spins/m3, 

respectively, while the mean concentrations in PM were in the range of 2.16 × 1017 ± 9.73× 1016 spins/g, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/particulate-matter
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/particulate-matter
https://pubs.acs.org/doi/full/10.1021/acs.est.7b01929#fig1
https://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01929/suppl_file/es7b01929_si_001.pdf
https://pubs.acs.org/doi/full/10.1021/acs.est.7b01929#fig1
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/particulate-matter
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5.38 × 1016± 1.72 × 1016 spins/m3, and 8.35 × 1014 ± to 3.06 × 1014 spins/m3, respectively.  

 

Table 38. Size distribution of EPFRs and PM in atmospheric particulate matters from Xuanwei (%) 

Sample 

groups 

PM1.1/PM3.3 (%) PM1.1-2.0/PM3.3 (%) PM2.0-3.3/PM3.3 (%) 

Spins/m3 Spins/g μg/m3 Spins/m3 Spins/g μg/m3 Spins/m3 Spins/g μg/m3 

A 76.71  53.07  58.97  11.19  20.75  22.09  12.09  26.18  18.94  

B 80.72  58.98  59.38  10.64  22.45  20.50  8.65  18.57  20.12  

C 70.31  58.26  46.29  18.61  23.30  30.66  11.08  18.44  23.05  

D 89.67  85.22  42.99  4.51  6.44  28.66  5.81  8.34  28.36  

E 66.54  63.16  35.27  17.19  14.08  40.81  16.26  22.76  23.91  

F 67.43  64.23  36.45  19.66  17.58  38.87  12.91  18.20  24.67  

Average 75.23  63.82  46.56  13.63  17.43  30.26  11.14  18.75  23.18  

Min 66.54  53.07  35.27  4.51  6.44  20.50  5.81  8.34  18.94  

Max 89.67  85.22  59.38  19.66  23.30  40.81  16.26  26.18  28.36  

STD 8.18  10.23  9.67  5.35  5.81  7.64  3.29  5.48  3.08  

STD: Standard Deviation 

Several other studies have reported EPFR concentrations in atmospheric particulate matter, in PM2.5 

in Taif, Saudi Arabia, Saudi Arabia ranged from 1.6 × 1016 to 5.8 × 1016 spins/m3 (Shaltout et al., 2015), 

and in PM2.5 in Xuanwei, China ranged from 3.20 × 1017 to 3.10 × 1019 spins/g (P. Wang et al., 2018), in 

PM2.5 in Xi'an ranged from 9.8 × 1011 to 6.9 × 1014 spins/m3 (Q. Chen, Sun, Mu, et al., 2019),  in 

PM2.5 samples from Baton Rouge, ranged from 2.46 × 1016  to 2.79 × 1017 spins/g (Gehling & Dellinger, 

2013), respectively. The concentrations of EPFRs were lower. The level of EPFR concentration in PM 

in Xuanwei is several times smaller than that in previous studies. However, in our study, the levels of 

EPFRs in the PM were dozens of times lower than previous reported EPFR concentrations. EPFRs were 

mostly present in the PM1.1 fraction, in which the EPFR concentration was 3.43–19.85 times higher than 

that in PM1.1–2.0 and 4.09–15.47 times higher than that in PM2.0-3.3, which were in agreement with previous 

research (L. Yang et al., 2017). In addition, it is worth noting that PM2.0 can enter the lungs and even the 

bloodstream more deeply than coarse particles, which may induce harmful reactive oxygen species (ROS) 

and DNA damage (Valavanidis et al., 2006). 

In our study, the simulated combustion experiments with raw coal and biomass were carried out in 

a relatively closed room, so the mass concentrations of collected particulate matter were much higher 

than those collected in open areas. Our results indicate that EPFRs attach more readily to fine particles, 

which may be due to the fact that fine particles have larger surface areas and more porous surfaces, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/particulate-matter
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Fig .57. EPFRs and PM concentrations in atmospheric particulate matters from Xuanwei. (The left: the 

atmospheric EPFRs concentrations; the right: EPFRs concentrations in PM) 

 

to higher adsorption and retention of EPFRs (B. Dellinger et al., 2001) (Arangio et al., 2016)(L. Yang et 

al., 2017). The distribution pattern in Figure 55, Figure 56, and Figure 57 showed that EPFR 

concentrations in each PM fraction increased as the particle size decreased. The main reason for the low 

concentration of EPFRs in our samples may be that our samples have been stored for too long, resulting 
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in partial degradation. The above results suggest that the concentration of EPFRs in atmospheric 

particulate matter varies across regions and different combustion sources. However, to the best of our 

knowledge, the current studies on the concentrations of EPFRs in atmospheric particulate matter are still 

limited to a few regions and a limited number of samples. In addition, more studies on EPFRs 

concentrations in atmospheric particulate matter samples from different regions, particle sizes, and 

sources are still needed. 

 

4.6.3 EPFRs species characteristics 

Table 39. g- values and ΔHp–p of the EPFRs produced by different PM from Xuanwei 

Sample 

type 

Sample 

groups 

<1.1 (μm) 1.1-2.0 (μm) 2.0-3.3 (μm) 

g-factors 
 

ΔHp-p 

(Gauss) 
g-factors 

 

ΔHp-p 

(Gauss) 
g-factors 

 

ΔHp-p 

(Gauss) 

Coal 

BL 2.0041 5.6404 2.0039 5.6647 2.0039 5.8357 

LM 2.0041 5.5670 2.0039 5.4205 2.0039 5.5670 

SF 2.0041 6.2996 2.0039 6.5193 2.0040 5.9333 

LJW 2.0038 5.4694 2.0039 5.9089 2.0039 5.9333 

GM 2.0041 6.5193 2.0043 6.2996 2.0041 6.5682 

ZF 2.0041 5.6648 2.0016 5.5182 2.0041 5.2741 

Average 2.0040 5.8601 2.0036 5.8885 2.0040 5.8519 

STD 0.0001 0.3985 0.0009 0.4028 0.0001 0.3962 

Biomass 

Poplar 2.0042 3.8335 2.0043 2.2219 2.0042 6.1043 

Pine 2.0039 8.4239 2.0040 4.8590 2.0039 8.6680 

Corncob 2.0039 6.0554 2.0041 4.2730 2.0039 6.0798 

Average 2.0040 6.1043 2.0041 3.7846 2.0040 6.9507 

STD 0.0001 1.8743 0.0001 1.1306 0.0001 1.2144 

APMs 

A 2.0046 6.8612 2.0048 4.6148 2.0046 9.0098 

B 2.0044 8.1064 2.0041 6.0554 2.0044 9.3517 

C 2.0039 4.8834 2.0043 5.3474 2.0041 1.7581 

D 2.0039 16.0420 2.0039 6.7635 2.0039 9.3029 

E 2.0042 11.0853 2.0042 6.1042 2.0044 9.4738 

F 2.0042 5.5915 2.0044 4.9811 2.0042 3.4672 

Average 2.0042 8.7616 2.0043 5.6444 2.0043 7.0606 

STD 0.0002 3.8196 0.0003 0.7327 0.0002 3.1867 

STD: Standard Deviation 

 

The g-factor and peak width (referred to as ΔHp-p, Gauss) were important parameter for identifying 
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the type of free radicals (Shaltout et al., 2015) (Arangio et al., 2016), the average ΔHp-p is calculated 

was finding the distance between the maximum and minimum y-axis values on the x-axis (Runberg et 

al., 2020). According to previous reports, carbon-centered radicals is generally less than 2.003, oxygen-

centered radicals is generally greater than 2.0040, and g factors in the range of 2.0030–2.0040 are 

believed to correspond to a mixture of carbon- and oxygen-centered radicals (Barry Dellinger et al., 

2007)(Ruan et al., 2019)(Y. Huang et al., 2020).  

Comparison of the EPR spectra of EPFRs in different PMs (as shown in Fig. 58) indicates that the 

g-factors in PMs were different and the signal intensity of EPFRs is also different. The mean g factor and 

ΔHp-p of the EPFRs (Table 39) were ranged from 2.0036 to 2.0040 and 5.8519 to 5.8885 G for PM from 

coal combustion, ranged from 2.0040 to 2.0041 and 3.7846 to 6.9807 G for PM from biomass combustion, 

and ranged from 2.0042 to 2.0043 and 5.6444 to 8.7616 G for APMs, indicating that the samples were 

mainly oxygen-centered radicals (phenoxyl and semiquinone radicals) in Xuanwei. In addition, the small 

ΔH p-p variability of EPFRs in biomass combustion particulate matter, raw coal combustion particulate 

matter, and APMs also indicates that EPFRs are of the same type, but contains various organic species 

or organometallic combinations (Feld-Cook et al., 2017)(Gehling et al., 2014).  
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Fig. 58. The mean g factor and ΔHp-p of the EPFRs. 
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oxygen-centered radicals tend to adhere to fine particles, while carbon-centered radicals mostly adhere 

to coarse particles. For fine particles, more of the porous structure is exposed, thus providing more 

available active and adsorption sites for EPFRs (Jiaxun Liu et al., 2015). 

Moreover, the presence of semiquinone and phenoxy radicals may lead to activated species in fine 

particulate matter in the environment (Lyu et al., 2018)(McFerrin et al., 2008).Thus, oxygen-centered 

radicals appear to be more toxic with fine particles because of their direct effects on the human body; 

carbon-centered radicals on coarse particles should also be emphasized because of their environmental 

impact(L. Yang et al., 2017)(Jiaxun Liu et al., 2015). 

 

4.6.4 Potential health risk of EPFRs 

In our study, the main types of EPFRs in PM were phenoxyl and semiquinone radicals. The spectral 

characteristics of EPFRs compared to that of cigarette tar, both of them were similar to semiquinone 

radicals, and identified as semiquinone radicals (Church & Pryor, 1985)(Dugas et al., 2016), which 

associated with a quinone/hydroquinone redox cycle capable of producing reactive oxygen species 

(ROS), to be involved in the carcinogenicity (Y. Xu et al., 2020). 

In this study, to assess the potential health risk of EPFRs in biomass combustion particulate matter, 

coal combustion particulate matter and APMs for Xuanwei residents, we used the equivalent of cigarettes 

to represent the potential health risk of EPFRs for adults and child per person per year (Table 40).  

Our results showed that the average amount of EPFRs exposure were equivalent to 130.31 ± 35.06 

cigarettes for adult, 49.52 ± 13.32 cigarettes for child in PM1.1, 42.97 ± 43.51 cigarettes for adult, 16.33 

± 16.54 cigarettes for child in PM1.1-2.0, and 22.09 ± 17.40 cigarettes for adult, 8.39 ± 6.61 cigarettes for 

child in PM2.0-3.3 from coal combustion, respectively. The exposure levels in PM1.1 were 1.00-22.32 times 

higher than in PM1.1-2.0, and 2.09-14.69 times higher than in PM2.0-3.3 for both adult and child, which 

indicates that EPFRs in PM1.1 are the most harmful to humans. Meanwhile, the estimated results of 

EPFRs emission biomass combustion showed that the average EPFRs exposure were equivalent to 53.11 

± 6.65 cigarettes for adult, 20.18 ± 2.53 cigarettes for child in PM1.1, 9.33 ± 2.26 cigarettes for adult, 3.54 

± 0.86 cigarettes for child in PM1.1-2.0, and 6.97 ± 0.34 cigarettes for adult, 2.65 ± 0.13 cigarettes for child 

in PM2.0-3.3 per year, respectively. In contrast, the average EPFRs exposure in APMs were equivalent to 

80.02 ± 37.37 cigarettes for adult, 30.41 ± 14.20 cigarettes for child in PM1.1, 31.57 ± 31.27 cigarettes 

for adult, 12.00 ± 11.88 cigarettes for child in PM1.1-2.0, and 11.44 ± 4.06 cigarettes for adult, 4.35 ± 1.54 

cigarettes for child in PM2.0-3.3 per day, respectively. Previous studies have shown that EPFRs inhaled 

from PM2.5 can cause human health risk comparable to 0.4–0.9 cigarettes per day (Gehling & Dellinger, 
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2013), 5.0 cigarettes in PM2.5 per person per day in Xi'an in 2017 (Q. Chen, Sun, Mu, et al., 2019), 46 

cigarettes in PM2.5 per day in airborne particulate matter in Beijing (Y. Xu et al., 2021), 2.3˗6.8 cigarettes 

per capita per day in Wanzhou, China (Qian et al., 2020). The above results indicate that the potential 

health risks of EPFRs in PM varies from region to region and from one combustion source to another. 

 

Table 40. The potential health risk of EPFRs for adults and child per year 

Sample 

type 

Sample 

groups 

 <1.1 (μm)  1.1-2.0 (μm)  2.0-3.3 (μm) 3.3 (μm) 

EQ(Adult) EQ(child) EQ(Adult) EQ(child) EQ(Adult) EQ(child) EQ(Adult) EQ(child) 

Coal 

BL 126.57  48.10  30.48  11.58  60.62  23.04  217.68  82.72  

LM 112.90  42.90  49.75  18.91  14.48  5.50  177.13  67.31  

SF 135.69  51.56  135.69  51.56  18.51  7.03  165.94  63.06  

LJW 202.37  76.90  9.07  3.45  13.78  5.24  225.21  85.58  

GM 113.39  43.09  15.47  5.88  14.94  5.68  143.80  54.64  

ZF 90.91  34.55  17.35  6.59  10.18  3.87  118.44  45.01  

Average 130.31  49.52  42.97  16.33  22.09  8.39  174.70  66.39  

Min 90.91  34.55  9.07  3.45  10.18  3.87  118.44  45.01  

Max 202.37  76.90  135.69  51.56  60.62  23.04  225.21  85.58  

STD 35.06  13.32  43.51  16.54  17.40  6.61  37.86  14.39  

Biomass 

Poplar 49.15  18.68  11.37  4.32  6.75  2.57  67.27  25.56  

Pine 62.48  23.74  6.18  2.35  7.44  2.83  76.10  28.92  

Corncob 47.71  18.13  10.44  3.97  6.71  2.55  64.86  24.65  

Average 53.11  20.18  9.33  3.54  6.97  2.65  69.41  26.37  

Min 47.71  18.13  6.18  2.35  6.71  2.55  64.86  24.65  

Max 62.48  23.74  11.37  4.32  7.44  2.83  76.10  28.92  

STD 6.65  2.53  2.26  0.86  0.34  0.13  4.83  1.84  

APMs 

A 122.91  46.70  17.97  6.83  19.44  7.39  160.31  60.92  

B 95.56  36.31  95.56  36.31  10.23  3.89  118.38  44.98  

C 45.34  17.23  45.34  17.23  7.16  2.72  64.52  24.52  

D 129.24  49.11  6.51  2.47  8.35  3.17  144.11  54.76  

E 41.33  15.70  10.68  4.06  10.10  3.84  62.11  23.60  

F 45.76  17.39  13.35  5.07  13.35  5.07  67.88  25.79  

Average 80.02  30.41  31.57  12.00  11.44  4.35  102.88  39.10  

Min 41.33  15.70  6.51  2.47  7.16  2.72  62.11  23.60  

Max 129.24  49.11  95.56  36.31  19.44  7.39  160.31  60.92  

STD 37.37  14.20  31.27  11.88  4.06  1.54  39.99  15.20  

Min: Minimum value, Max: Maximum value, STD: Standard Deviation 

 

The results of this study suggest that the health risk of EPFRs is significantly increased when the 

particle size distribution of EPFRs is taken into account, and RCC particulate matter is more hazardous 
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to humans than APMs, followed by RBC particulate matter. 

 

4.6.5 Brief summary 

To the best of our knowledge, coal combustion, biomass burning and APMs are considered to be 

important sources of EPFRs (Y. Wang et al., 2019) (Zhao et al., 2021), and in addition, there is little 

information on individual exposure levels of inhaled EPFRs in the high lung cancer prevalence area of 

Xuanwei, China. However, the most important thing is that the mechanism of the high lung incidence is 

still not clear. In this study, we conducted simulated combustion experiments (six kinds of coal, three 

kinds of biomass), and six groups of atmospheric particulate matter were collected to explore the content 

and particle size distribution pattern of EPFRs and potential health risk of EPFRs for adult and child, 

providing new perspectives and evidence to reveal the high incidence of lung cancer in Xuanwei.  

 

(1) The contribution of EPFRs for biomass combustion, coal combustion and APMs were mainly 

distributed in the size range of <1.1 μm, which accounted for 76.15 ± 4.14%, 74.85 ± 10.76%, and 75.23 

± 8.18 % of PM3.3, respectively.  

(2) The mean g factors were ranged from 2.0016 to 2.0043, 2.0039 to 2.0043 and 2.0039 to 2.0046 

for biomass combustion, coal combustion and APMs, respectively，indicating that the samples were 

mainly oxygen-centered radicals (phenoxyl and semiquinone radicals) in Xuanwei 

(3) The potential health risks of EPFRs for adult and child in PM1.1 were equivalent to 130.31 ± 35.06, 

49.52 ± 13.32 cigarettes in coal combustion particles, 53.11 ± 6.65, 20.18 ± 2.53 cigarettes in biomass 

combustion particles, and 80.02 ± 37.37, 30.41 ± 14.20 cigarettes in APMs, respectively.The results 

suggest that the health risk of EPFRs is significantly increased when the particle size distribution of 

EPFRs is taken into account, and RCC particulate matter is more hazardous to humans than APMs, 

followed by RBC particulate matter. 
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Chapter 5 Summary, limitation and 

future work 

5.1 Summary of PM Concentration  

We collected six groups of atmospheric particulate matter, three types of biomasses, and six types 

of raw coal in Xuanwei, Yunnan, an area with a high incidence of lung cancer and eight sets of 

atmospheric particulate matter samples were collected in Beijing. Comparing the different type 

particulate matter, we found that the mass concentration of particulate matter emitted from solid fuel 

combustion was mainly concentrated in particle size < 2.0 μm (58.17 ± 3.59 % for RBC particles, 67.02 

± 9.06 % for RCC particles), while the mass concentrations of atmospheric particulate matter were 

mainly concentrated in the particle size < 2.0 μm (49.74 ± 2.15 %) and >7.0 μm (20.28 ± 3.29 %). It 

indicates that the emission of fine particulate matter from raw coal combustion is more than that from 

biomass combustion, and the health risk is not negligible as the ambient atmosphere is dominated by fine 

particulate matter. We found that the mass of atmospheric particles showed a bimodal distribution, with 

the major peak in the range of particle size <1.1 µm and the minor peak in the range of size >7 µm. In 

contrast, the concentration of particulate matter emitted from solid fuel combustion is mainly 

concentrated in the range of particle size <1.1 µm. Xuanwei area, there are no large sources of pollution 

in the vicinity of the sampling site, and its pollution may be caused by solid fuel combustion, road 

transport, dust from construction sites, exhaust emissions from cars or mining in the county, and long-

distance transport of pollution from surrounding cities. Beijing area, it is generally acknowledged that 

primary source like road dust and soil as the main emission source of coarse particulate matter, while 

fine atmospheric particulate matters are emitted from both primary source and secondary formation due 

to complex chemical processes in the atmosphere. Predominantly, high PM in the winter in Beijing was 

mainly attributed to the adverse meteorological conditions like low temperature and lower boundary 

layer height, less precipitation and weaker wind and solid fuel (coal) combustion for indoor heating. 

another reason may be that probably due to the transport of polluted air masses from urban areas. 

 The results show that the particulate matter pollution in Xuanwei is not serious and is at a medium 

level in the country, indicating that the mass concentration of particulate matter is not the main factor of 

lung cancer in Xuanwei, which may be due to the possibility that the local particulate matter in Xuanwei 

contains some special components or the content of certain pollutants exceeds the standard. 
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5.2 Summary of APMs  

5.2.1 Summary of APMs in Beijing: 

Airborne particulate matter (APM) pollution often occurs in the wintertime in northern China, 

posing a potential threat to human health. To date, there are limited studies about the metals and inorganic 

ions to link source apportionments and health risk assessments in the different size-segregated PM 

samples. In this study our samples were collected by a high-volume air sampler from December 26, 2018 

to January 11, 2019 in a high population residential area (Beijing). Water-soluble inorganic ions, metal 

elements in the different size-segregated PM samples were determined for health risk assessments by 

inhalation of PM.   

(1), The mass concentration of SO4
2- and NO3

-, NH4
+ have demonstrated a unimodal distribution of 

fine particles (＜1.1 μm). The average mass ratio of (NO3
- + NO2

-) / SO4
2- , Cl-/Na+, Cl-/ K+ and Cl- / 

(NO3
- + NO2

- ) were1.68 6.58 ,6.18 and 0.57, respectively. Combined with higher CEFs, it showed that 

coal combustion and vehicle emissions were the main anthropogenic sources of PM in Beijing in winter. 

(2), PM1.1 was the major contributor of Pb, Cd and As for CR and HQ. The potential toxic metals of 

Cr(Ⅵ), V and As caused higher CR for children than Ni, Cd, Co, Pb, meanwhile, Pb and Ni were cause 

higher CR for adults than As, Cr(Ⅵ), V, Co , Cd , especially in PM1.1。 

Our results can help stakeholders and policy makers recognize the characteristics of anthropogenic 

particles and their impact on air quality in the region, and initiate strategies to further control emissions 

to improve public health. We recommend continuing efforts in controlling coal burning throughout the 

year and also to include the surrounding areas. 

 

5.2.2 Summary of APMs in Xuamwei: 

In the current work, the results show that the particulate matter pollution in Xuanwei is not serious 

and is at a medium level in the country, indicating that the mass concentration of particulate matter is not 

a major factor of lung cancer in Xuanwei, but it is possible that the local particulate matter in Xuanwei 

contains some special components or the contents of certain pollutants, which are significant health risks 

to the human body. For example, in our previous study (K. Xiao, Yichun L, et al., 2021), we selected six 

groups of coal in Xuanwei rural areas, then conducted simulated combustion experiments to explore the 

environmentally persistent free radicals, the result show that the average amount of environmentally 

persistent free radicals exposure were equivalent to 130.31 ± 35.06 cigarettes for an adult, 49.52 ± 13.32 
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cigarettes for children in PM1.1.  

The average ratio of NO3
−/SO4

2− in all particulate were 0.22, 0.18, 0.15, 0.34 and 0.36, it indicating 

that stationary industrial and combustion sources contributed to PM were more significant. The ANE / 

CAE < 1 in all particulate indicate that the APMs was alkaline. SO4
2− prefers to combine with NH4

+ to 

form (NH4)2SO4, which hinders the formation of NH4NO3, the remaining SO4
2− and NO3

− to neutralize 

the K+, KNO3 was formed at all particulate. However, K2SO4 can only be formed in the particle size less 

than 3.3 μm. As and Se were identified as the most enriched (EF >10) WSPTMs in all PM sizes, were 

predominantly from anthropogenic emissions, suggesting that coal combustion could be the important 

contributor of PM-bound WSPTMs in this study area. Total WSPTMs exhibited high TCR values 

(9.98 × 10-6, 1.06 × 10-5, and 1.19 × 10-5 for girls, boys and adults, respectively) in the smaller particles 

(<1.1 μm). Se make a major contribution (63.60%) CR in PM2.0, furthermore decreased with the PM size 

increase and should be of more concern.  

 

5.3 Xuanwei: 

5.3.1 Summary of WSPTMs 

Our result show that all PMs, the TCR was higher than 1 for adults and lower than 1 for children, 

except for PM1.1. TCR values for As, Cd and Co decreased with increasing PM particle size (for adults and 

children), indicating that As, Cd and Co had the highest in PM1.1. Interestingly, the TCR values for Cr (VI) 

were stable across PM particle sizes with no variability (adults and children), and the TCR for lead was 

negligible. Notably, the TCR values for V showed a bimodal distribution, with the major peak in the 

particle size <1.1 µm while the minor peak in the size range of ＞7 μm. The noncancer risk of Ba account 

for 91.28 %, 71.39 %, 78.74 %, 82.38 %, and 84.95 % within PM1.1, PM1.1–2.0, PM2.0–3.3, PM3.3–7.0, and 

PM>7.0. It indicates that the non-carcinogenic risk of WSPTMs in RCC particles, mainly Ba, followed by 

As and the non-carcinogenic risk is highest within PM1.1. 

Compare with the TCR of RCC particles in Xuanwei and APMs in Beijing, we find that CR of 

Water-Soluble Potentially Toxic Metals in RCC particles is higher than APMs. This indicates that the 

carcinogenic risk of Water-Soluble Potentially Toxic Metals in particulate matter emitted from coal 

combustion is much greater than the carcinogenic risk of Water-Soluble Potentially Toxic Metals in 

atmospheric particulate matter. 
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5.3.2 Summary of HULIS: 

Lung cancer has unique epidemiological characteristics due to the toxicity of indoor RCC particles 

in Xuanwei, which suggests that there may be unique molecular mechanisms for the development of lung 

cancer in Xuanwei. However, mechanism of the high lung incidence is still not clear. In this study, we 

selected six types of coal and conducted simulated combustion experiments to explore the content and 

particle size distribution pattern of HULIS-C in particulate matter produced by RCC, providing new 

perspectives and evidence to reveal the high incidence of lung cancer in Xuanwei 

(1) HULIS-C to the PM were 2.09 %~5.65 % for PM2.0 and 2.68 %~5.62 % for PM2.0~7.0, respectively. 

HULIS-C emitted from RCC is mainly concentrated in PM2.0 (68.48 %~79.30 %) 

(2) During our measurements, the concentrations of HULIS-C and WSOC were significantly 

correlated with SO4
2−, NO3

−, and NH4 
+ in RCC particles.  

(3) HULIS-Cx to HULIS-Ct (%) values in RCC particles are 68.48 %–79.30 % (average 73.95 ± 

5.13%) for PM2.0 and 20.70 %~34.27 (average 26.05 ± 5.13%) for PM2.0-7.0, respectively. The HULIS-

Cx to WSOCx (%) values in RCC particles are 32.73 %–63.76 % (average 53.85 ± 12.12%) for PM2.0 

and 33.91%~82.67% (average 57.06 ± 17.32%) for PM2.0~7.0, respectively. 

 

5.3.3 Summary of EPFRs: 

To the best of our knowledge, coal combustion, biomass burning and APMs are considered to be 

important sources of EPFRs (Y. Wang et al., 2019) (Zhao et al., 2021), and in addition, there is little 

information on individual exposure levels of inhaled EPFRs in the high lung cancer prevalence area of 

Xuanwei, China. However, the most important thing is that the mechanism of the high lung incidence is 

still not clear. In this study, we conducted simulated combustion experiments (six kinds of coal, three 

kinds of biomass), and six groups of atmospheric particulate matter were collected to explore the content 

and particle size distribution pattern of EPFRs and potential health risk of EPFRs for adult and child, 

providing new perspectives and evidence to reveal the high incidence of lung cancer in Xuanwei. 

(1) The mean g factors were ranged from 2.0016 to 2.0043, 2.0039 to 2.0043 and 2.0039 to 2.0046 

for biomass combustion, coal combustion and APMs, respectively，indicating that the samples were 

mainly oxygen-centered radicals (phenoxyl and semiquinone radicals) in Xuanwei 

(2) The potential health risks of EPFRs for adult and child in PM1.1 were equivalent to 130.31 ± 

35.06, 49.52 ± 13.32 cigarettes in coal combustion particles, 53.11 ± 6.65, 20.18 ± 2.53 cigarettes in 
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biomass combustion particles, and 80.02 ± 37.37, 30.41 ± 14.20 cigarettes in APMs, respectively. The 

results suggest that the health risk of EPFRs is significantly increased when the particle size distribution 

of EPFRs is taken into account, and RCC particulate matter is more hazardous to humans than APMs, 

followed by RBC particulate matter. 

 

5.4 Limitations of the study 

There is a lack of information on the ROS generated by the EPFRs (and HULIS-C)- transition metal 

oxide combination through the cellular matrices and tissue. Some attempts should be done in cell-free 

and cell-based experiments to obtain well-characterized information about the ROS generated by the 

EPFRs (and HULIS-C)- transition metal oxide combination and to better address the health effects of 

EPFRs and HULIS-C. 

5.5 Policy Implications 

The following policy suggestions can be drawn based on the findings in our study. 

(a) The government should increase awareness of environmental protection in rural areas, for example 

installation air purifier with a filter membrane that reduces PM1.1 in the kitchen or bedroom. 

(b) The government should improve the structure of houses and fireplaces in the area. 

(c) In order to effectively mitigate the severe PM1.1 pollution and promote environmental equity, a 

differentiated carbon policy should be considered. The local government should better adjust the 

structure of domestic energy, reduce the use of coal and biomass, and promote the use of environmentally 

friendly sources in Xuanwei area. 

5.6 Future work 

EPFRs are emerging and ubiquitous contaminants in the environment, and they have significant 

toxic effects. Therefore, systematic work is needed to assess and predict their fate and risk. Due to the 

mixing of various EPFRs in the environment, the first challenge in investigating the fate of EPFRs is to 

identify their sources. For this purpose, additional parameters should be included in addition to the 

apparent g-value and bandwidth. Therefore, the first challenge is the need to incorporate analytical 

methods from EPFR studies. Unlike common pollutants, where multimedia behavior can be described 

by their physiochemical properties, there is no theory to quantify the interfacial and kinetic behavior of 

EPFR. Combining certain colloid-based techniques or theories may greatly facilitate the study of the fate 
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of these particle-associated EPFRs. 

Based on the current studies, EPFRs may or may not form with the help of transition metals. What 

properties of the transition metals determine the formation of EPFRs (including strength and stability) 

are inconclusive at this time. At this stage of EPFR studies, we suggest a systematic consideration of the 

properties of particles (e.g., particle size and surface area) and transition metals (e.g., electron transfer 

and redox activity).  

Frequently reported precursor molecules for EPFRs include quinones, phenols, 

chlorinated/hydroxybenzenes, and polycyclic aromatic hydrocarbons. However, no relationship linking 

the properties of precursors and EPFRs has been proposed. It is common for various radicals to coexist 

in a single system. However, except for mathematical peak splitting and deconvolution, no in situ 

measurements were performed to examine the type and structure of the stable radicals. Apart from the 

EPR intensity, the lifetime and activity of EPFRs related to the properties of the precursors have not been 

investigated. Environmental factors, such as oxygen, light, humidity, and humic substances, play an 

important role in the production and stabilization of EPFRs. All these factors are environmentally 

relevant, so this line of research will provide valuable information for understanding the mechanism of 

EPFRs generation and their fate. 

EPFR-embedded particles have been reported to have significant toxicity. However, no well-

designed experiments have been conducted to separate the toxicity caused by the precursor chemicals, 

their degradation by-products and EPFRs. More importantly, the relationship between EPFR signal 

intensity and their activity is unclear. Any indirect measurement of EPFR activity and thus of their 

toxicity will contribute to their risk assessment. 

For precursor chemicals interacting with transition metals, the production of EPFRs may alter their 

degradation pathways. In addition, other co-occurring organic pollutants may interact with EPFRs or 

their active species. Both processes are important in the behavior of organic pollutants, but have not been 

properly considered in previous studies on their multimedia environmental fate. 

In the future, a comprehensive investigation of coal combustion HULIS-C and EPFRs emissions 

under different stove types, combustion conditions and combustion stages are necessary to better 

understand HULIS-C. we should pay more attention to mechanism on the ROS generated by the HULIS 

and EPFRs through the cellular matrices and tissue. Some attempts should be done in cell-free and cell-

based experiments to obtain well-characterized information about the ROS generated by the HULIS and 

EPFRs combination and to better address the health effects of HULIS and EPFRs. 
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Abbreviations and symbols 

Atmospheric Particulate Matters  APMs 

An Aerodynamic Diameter Less Than 0.1 ΜM PM0.1 

An Aerodynamic Diameter Less Than 10 ΜM PM1 

An Aerodynamic Diameter Less Than 2.5 ΜM PM1.1 

An Aerodynamic Diameter Between 1.1 And 2.0 ΜM PM1.1-2.0 

An Aerodynamic Diameter Less Than 2.5 ΜM PM2.5 

An Aerodynamic Diameter Between 2.0 And 3.3 ΜM PM2.0-3.3 

An Aerodynamic Diameter Between 3.3 And 7.0 ΜM PM3.3-7.0 

An Aerodynamic Diameter More 7.0 ΜM PM7.0 

An Aerodynamic Diameter Between 2.0 And 3.3 ΜM PM2.0-3.3 

An Aerodynamic Diameter Less Than 10 ΜM PM10 

Alkoxyl  RO• 

Air Quality Guideline AQG 

Average Time for Non-Carcinogenic ATn 

Average Time for Carcinogenic ATc 

Beijing-Tianjin-Hebei  BTH 

Black Carbon  BC 

Bole Coal  BL 

Carcinogenic Risks  CR 

Chinese National Ambient Air Quality Standards  CNAAQS 

Center For Environmental Science in Saitama  CESS 

Chronic Obstructive Pulmonary Disease  COPD 
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