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Abstract
In this thesis, we propose two deformable registration methods that can register

the sparsely textured surfaces for surgery assistance. The registration processes

of the methods are differently performed based on two approaches such as the

intensity-based approach and the feature-based approach.

Deformable registration has been one of the challenges in modern medical im-

age analysis due to multimodality imaging, unevenness of anatomical structures,

and deformation of the body or organs. In the medical Augmented Reality (AR)

field, this technology and its accuracy plays important role when preoperative

images such as tumors or vessels are superimposed with the alignment onto the

surgery scene to enhance the visualization of the internal structures during the

laparoscopic/endoscopic surgery. To track the transformation of the deformable

surface in the registration process, the texture of the surface is essential because it

can give the useful information such as spatial arrangement of color or intensity of

an image to define the objects or interest of the region. Therefore, if the surface

has no sufficient texture or minimal texture, it becomes more challenging to per-

form the registration. Although many approaches have been proposed to address

deformation registration, most of them can fail if the surface has poorly texture.

In this thesis, firstly we propose a deformable registration method to register

both texture and shape of the deformable surface of densely and sparsely textured

objects based on an intensity-based approach. We use Time-of-Flight (ToF) cam-

era to obtain the texture and shape information from the objects. To find the

transformation of the deformable surfaces, firstly we set the 2D vertex position of

the mesh on the initial image. The registration of this approach is performed by

finding the corresponding 2D vertex position. For texture registration, we define

the cost function to measure the texture similarity within the meshes between the

initial image and the input images. For shape registration, the cost function is

defined to compare the inter-vertex length of the meshes between the initial image

and input images since we assume that the deformed surfaces should not stretch

or shrink. To minimize the cost functions, the gradient descent method is per-

formed with respect to the vertices of the meshes and updated the 2D vertices of

the meshes in terms of the gradient calculation. Since the first approach is based

on the intensity-based approach, the process is iteratively performed until the cost

function is approximately converged. We confirmed the performance of our ap-

proach by comparing the methods using shape or texture information on densely

10



and sparsely textured papers and endoscopic stereo video dataset and our approach

can reconstruct 3D shape of sparsely textured surfaces. Therefore, our proposed

method can register the objects with sparse texture and little concavity/convexity.

Then, we propose a deformable registration method to register the sparsely

texture of the deformable surfaces such as human organs based on the feature-

based approach. In this approach, the most distinctive image features are used

to track the transformation of the sparsely textured surfaces. Firstly, we apply

an accelerated-KAZE (AKAZE) feature detector onto the initial image and input

images. All detected features in the initial image are divided into blocks based

on their coordinates. To define the most distinctive features among the detected

feature points, response values which are one of the properties of the AKAZE fea-

tures are applied. Therefore, the best feature point in each block of the initial

image is fetched by their response values. Then, the correspondent feature points

between the blockwise features of the initial image,and all detected features of the

input images are detected to track the transformation of the deformable surfaces.

Therefore, feature matching is performed by a brute-force matching algorithm to

find the correspondence between the initial image and input images. The regis-

tration process of this approach is finding the correspondence between blockwise

features of the initial image and all detected features of the current input image.

Based on this approach, we also demonstrate the surgery assistance by overlaying

a tumor image onto the deformable sparsely textured surfaces using the bilinear

interpolation method. We show that the effectiveness of our approach using three

endoscopic stereo video datasets that have sparsely texture.

As the results of the experiments, our approaches can track the transformation

of the sparsely textured surfaces and can be applied to human organs for surgery

assistance. In the first approach, the peak signal to noise ratio (PSNR) was calcu-

lated to evaluate the performance of registration in term of texture information.

As the results, our proposed method was as good as the method using texture

only information and the method using texture only information was better than

the method using shape-only information. Then, Mean Square Error (MSE) was

calculated to evaluate the performance of the registration in term of the shape

information. The results showed that our proposed method was better than the

method using texture-only information although it was not as good as the method

using shape-only information. Therefore, our first proposed method has good reg-

istration capability in term of texture and shape of the sparsely textured surfaces.

In the second approach, PSNR was calculated for the evaluation of the registra-
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tion performance in term of the texture information. Since we demonstrated the

effectiveness of our proposed method using three endoscopic stereo video datasets,

PSNR results of all datasets existed in the range of typical PSNR values. In the

qualitative results of superimposing a tumor image onto the organs as the demon-

stration of surgery assistance, we can see that the tumor image can move along with

the movement of the organs. Therefore, the second approach has good registration

performance on sparsely textured surfaces of the deformable medical images.
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Chapter 1
Introduction

1.1 Background

Laparoscopic / endoscopic abdominal surgery remains a challenging environment

for computer vision tasks. According to these surgical techniques, the surgical tools

with a tiny camera is inserted into the abdomen and these allow the surgeon to

see and operate the abdominal cavity that display on the monitor screen acquired

from the camera. From the surgical point of view, the visualization of the surgical

scene is complex and poor due to these facts such as large occlusion occurring

when interacting with surgical tools, illumination variations, organ bleeding, and

organ deformation due to respiration motion and heart beating. In recent years,

augmented reality (AR) technology has been proposed to enhance the visualiza-

tion of the internal structure of the organ during the surgery by superimposing

intraoperative images such as tumors or vessels that are aligned onto the surgical

scene. The relationship between intraoperative image and interoperative image

can be established by using registration technique.

Image registration, the processing of establishing the correspondences between

images at different times, and from different perceptive, is one of the key tech-

nologies in many research fields such as computer vision, medical imaging, and

remote sensing. Image registration is very challenging task due to complexity of

image similarity measurement and spatial transformation or deformation. The

most image registration methods consist of four basic steps.

1. Feature Detection The salient features like regions, line features, edges,

and corners are identified in both the initial image and input images. These fea-

tures are used for further processing and represented by their point representative

13



1.1 Background 14

Figure 1.1: Basic Steps of Image Registration Process

(line endings, and distinctive points) that are called control points.

2. Feature Matching The correspondence between the features in the initial

image and input image is established. Matching method is based on image content

or on the symbolic description of control point-set.

3. Transform Model Estimation The parameters of the mapping functions

aligning the input image with the initial image are estimated.

4. Image resampling and Transformation The input image is transformed

by means of the mapping functions.

1.1.1 Classification of Registration Techniques

There are many number of registration algorithms that are designed and developed

based on the application requirements of image registrations techniques [18, 31].

These are all presented in this section.

1. Intensity-based Methods Intensity-based methods are iterative process.

In this approach, entire images or sub-images are registered. The intensity patterns

in each image are matched and the measurement of the intensity similarity between

the initial image and input images is defined in terms of the modality of the



1.1 Background 15

F
ig
u
re

1.
2:

C
la
ss
ifi
ca
ti
on

of
R
eg
is
tr
at
io
n
T
ec
h
n
iq
u
es



1.1 Background 16

images to be aligned, and the parameters of transformation field are adjusted

until the similarity measurement is maximized or minimized in terms of similarity

measurement approaches.

AdvantagesWhen significant features are lacking in images and distinguishing

information is given by grey levels/colors rather than local forms and structure,

intensity-based methods are applied.

Disadvantages The flatness of the similarity measure maxima (due to the self-

similarity of the images) and high computational complexity are the limitations of

the intensity-based methods [18].

2. Feature-based Methods In feature-based approach, image features such

as points, lines and contours are detected for both initial image and input images by

using various feature detection approaches. After detecting the image features in

each image, the correspondence between the detected features of the initial image

and those of the current input image is detected. By means of establishing the

correspondence between the initial image and the input images, the geometrical

transformation can be determined to map the initial image to the input images.

Advantages The feature-based methods have low computational complexity,

briefness and simplicity and may be robust to illumination changes.They can per-

form multimodal registration.

Disadvantages Depending on the nature of the images, there may be only

a few feature correspondences that make it difficult to track the transformation,

especially for poorly textured images.The mismatching features (outliers) may also

grow quickly when the images contain repetitive and undistinguishable patterns.

The common drawback of the feature-based methods is that the respective features

might be hard to detect and/or unstable in time.

3. Contour-based Method Image feature point’s high statistical features

are matched by using this method. To extract the regions of interest in an image,

colour image segmentation is used. To determine the contour of an image, the

mean for the collection of colours are calculated. Each RGB pixel in an image is

classified as having a colour in a specific range. Then, the Euclidean distance is

used to determine similarity. The set of points is the sphere radius and point that

exists within the range or on the surface of the sphere meets the specified colour

requirement. A binary, segmented image is produced by coding these two set of

points in the image with black and white. To eliminate noise, a gaussian filer is

applied and the image is blurred with thresholds, and then obtain the contour of

an image [18].
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Advantages In this method, the gray values are not applied for matching

process and overcomes the limitation of the intensity-based methods. The method

filters out the redundant information.

Disadvantages Although the accuracy of the contour-based method is more

than intensity-based methods, their processing is manual and slow.

4. Multimodal Image Registration Using Mutual Information Mul-

timodal image registration can be defined as the process of the integrating infor-

mation form mulitple sources. Multimodal image registration is the difficult task,

especially in the medical imaging. The mutual information methods are a kind of

the intensity-based methods and is a measure of statistical dependency between

two data sets, and it is suitable to register the images from different modalities.

The entropy of the image does not change even though the histograms changes.

Advantages This method is well suitable for routine clinical use in the variety

of application because the maximization of mutual information of corresponding

intensities allows for fully automated registration of multimodal images without

need for segmentation or user intervention [16].

Disadvantages It can fail the registration process if the image has poor reso-

lution or contains less information.

5. Image Registration in Spatial Domain vs Frequency Domain Most

of the registration methods perform in the spatial domain, matching texture pat-

terns or features as matching criteria. Some of the feature matching algorithms are

outgrowths of traditional techniques for performing manual image registration, in

which the corresponding control points (CP) in images are chosen. When the num-

ber of control points exceeds the minimum requirements to define the appropriate

transformation model, iterative algorithms like RANSAC can be used to robustly

estimate the parameters of a particular transformation type for registration of the

images.

Frequency-domain methods find the transformation parameters for registration

of the images while working in the transform domain [31].If an acceleration of the

computation need to speed up or the images are corrupted by frequency-dependent

noise, then these methods are preferred rather than other methods.

Advantages The frequency based methods are more accurate than correlation

methods.

Disadvantages In spatial based methods, the performance of the registration

can fail when there is poorly image information. Some type of interpolation must

be used in the frequency domain.



1.2 Literature Review 18

6. Image Registration based on Transformation Models Image registra-

tion process has been classified into rigid registration and non-rigid (deformable)

registration in terms of the transformation model of an object. The rigid regis-

tration allows the mapping between the objects that need to be uniformly rotated

and translated, but it cannot change the size or shape of the objects.

By contrast, the non-rigid registration allows non-uniform transformation and

can map the correspondences between the objects that change their size and shape.

Since human organs are non-rigid, changing their size and shape with respiration

corresponding, the accuracy of deformable registration plays a crucial role in med-

ical AR. Although many approaches have been to address the deformable registra-

tion, most of them performed on CT/MRI images and they did not evaluate on

sparsely textured surfaces.

1.2 Literature Review

Many approaches has been proposed to address the deformable registration in

various perspectives. According to the registration process, these approaches are

roughly categorized into intensity-based methods and feature-based methods.

Intensity-based ApproachesQiu et al. proposed the deformable registration

algorithm based on the thin-plate spline algorithm to deal with the whole image

[20]. In [28], the image deformation on Free-Form Deformations (FFD) based

Nonuniform Rational B Spline (NURBS) in hierarchical optimization was modeled

to speed up the registration and avoid local minima. [24] presented an improved

adaptive bases non-rigid registration algorithm to improve the local optimization.

All of them performed on CT/MRI images.

Feature-based Approaches Zhang et al. [29] proposed the non-rigid regis-

tration of lung CT images based on hybrid of Harris and SIFT feature detector.

In their approach, matched feature points using their hybrid approach were less

than SIFT. [5,30] proposed non-rigid registration methods using SURF feature de-

tector. Although Haouchine et al. [5] presented good surface registration results,

their approach may fail due to the outlier in tracking process. In [30], the features

were mismatched due to SURF algorithm and their registration process performed

on CT/MR images. Kim et al. proposed a system for tracking and augmenting a

deformable surgical site by detection of image features in laparoscopic surgery [10].

In their approach, they used SIFT feature detector. Their approach can fail due to

image blurring and mismatched features. Kajihara et al. [9] presented a registra-
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tion method using accelerated-KAZE (AKAZE) feature detector. Their approach

can performed the registration using small control points, but it can fail when

there is no sufficient number of feature points.

1.3 Objectives and Contribution of the Thesis

In this thesis, we propose two deformable registration methods to register the

objects with sparsely textured surfaces and apply to human organs for surgery

assistance.

We propose our proposed methods with the intensity-based approach and feature-

based approach among the variety approaches to perform the registration. The

reason why the intensity-based approach is chosen for the first proposed method is

that the intensity-based approach should be used when the surface has lack of the

significant information according to prior knowledge because we intend to perform

the registration on sparsely textured surfaces such as human organs and recon-

struct the deformable surfaces. Since some other approaches such as feature-based

approaches rely on high number of correct matches, they can fail when reconstruct

the sparsely textured surfaces or repetitively textured surfaces.

In the first method, we use depth and infrared (IR) images that captured

with Time-of-Flight (ToF) camera to obtain the shape information and texture

information since our proposed method intends to register the surfaces with sparse

texture and little concavity or convexity. Since a non-flat surface is used as an

initial image, our proposed method can be applied to human organs for surgery

assistance. The first method performs the registration based on intensity-based

approach because an intensity-based approach should be used to recover the 3D

shape of the sparsely textured surface since the feature-based approaches rely on

highly correct matched feature points.

We prove that the performance of our approach by comparing the methods

using only texture or shape information with videos of textured paper sheets and

endoscopic stereo video. The performance of registration in term of texture infor-

mation is verified by calculating peak signal to noise ratio (PSNR). The perfor-

mance of registration in term of shape information is evaluated by Mean Square

Error (MSE). According to the results, our approach has good registration capa-

bility in term of both texture and shape of the deformable objects.

As we intend to assist the surgeon during the surgery in real-time, the com-

putational time of the registration process is needed to reduce. Therefore, we
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propose the second method based on the feature-based approach because feature-

based approaches have briefness of their process and low computational time over

intensity-based approaches. To perform the registration on sparsely textured sur-

faces such as human organs by using feature-based approach, the tracking the most

distinctive feature points is an effective way.

In the second approach, we apply accelerated-KAZE (AKAZE) feature detector

on the initial image and the input images for feature detection. The detected

features of the initial image are divided into the blocks based on their coordinates

and pick up the best feature in each block by using the response values of the

detected features. The registration is performed by finding the correspondences

between blockwise features of the initial image and all detected features of the

input images.

We verify the performance of the second approach by using three endoscopic

stereo videos, which have sparse texture. The registration performance in term of

texture is evaluated by PSNR. According to the results, the blockwise approach

can easily perform the registration process even on sparsely textured surfaces.

Moreover, we also demonstrate for surgery assistance based on this approach by

superimposing a tumor image onto the sparse textured surfaces.

1.4 Organization of the Thesis

The background,problem formulation, objectives and contribution of this thesis are

describe in this section. Chapter 2 describes the detail about 3D registration of

deformable objects using a ToF camera. Chapter 3 presents the detail of blockwise

feature-based registration for deformable medical images and Chapter 4 describes

the comparison of two proposed methods. Finally, the conclusion and future work

of the thesis are presented in chapter 5.



Chapter 2
3D Registration of Deformable Objects
Using a Time-of-Flight Camera

2.1 Background

3D deformable object registration is an active research topic in computer vision

and its application fields. The deformable registration is to find the geometrical

transformation to align an image with a reference image. If this technology could

be applied to living human organs, it would be possible to assist the surgery by

overlaying the vessels and tumors, which were measured in advance, onto the

organs in real time.

In the medical field, non-rigid registration is mostly applied on CT or MRI

images [15,28] and it can be used for the preoperative treatment planning. On the

other hand, in the robotic research field, deformable registration is often performed

on 3D point clouds for complex-shaped objects [7].

There are some studies to recover the 3D shape of the deformable objects

from monocular images using deformable registration. Some of them use prior

deformation model to recover the shape of deformable surfaces [4, 21]. In [21],

they constructed the textured 3D model of the object to compute correspondences

between 3D surface locations and 2D image features. Salzmann et al. [22] presented

the closed-form solution to recover the shape of non-rigid inelastic surface without

any initial shape estimation. In this work, they generated the synthetic textured

image correspond to the reference image by using the recovered shape.

It becomes difficult to perform registration when the deformable surface has

sparse texture since sparse texture on the surface does not provide useful infor-

21
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mation for registration. Ngo et al. proposed a method for monocular 3D re-

construction of sparsely textured and occluded surfaces [17]. They introduced

gradient-based pixel descriptors for robust template matching and the isometric

deformation constraints enforcing that the surface should not stretch or shrink.

Although they used a Kinect camera for creating the dataset, the depth informa-

tion was used only for generating the ground truth surfaces and used only image

information for 3D reconstruction. Therefore, their method has a limitation that

template images need to be obtained from a flat surface.

Our approach is based on [17] but we use depth and IR images captured with

a ToF camera to obtain shape and texture information. The main difference is

that our proposed method can use a non-flat surface as the reference surface,

which allows our proposed method to be applied to human organs for surgery

assistance. Our proposed method can register objects with sparse texture and with

little concavity or convexity. We demonstrate the effectiveness of our approach

using videos of textured paper and an endoscopic stereo video by comparing with

the methods using only texture or shape information.

2.2 Related Work

3D deformable object registration is a challenging task in computer vision. Many

approaches have been proposed for deformable registration. Existing approaches

can be roughly categorized into shape-based registration and texture-based regis-

tration.

Shape-based Registration Many studies have been conducted on registra-

tion of deformable objects using shape information. Salzmann et al. [21] introduced

a deformation model for deformable 3D surfaces. They used a small subset of the

angles between facets to parameterize the shape of triangulated mesh and created a

representative sample of possible shapes. To produce the low-dimensional models,

they performed dimension reduction by using principal component analysis (PCA).

To recover the shape of deformable surfaces, their approach needs to create the

samples. They assume all shapes are equally probable and so similarly influence

the model deriving from these samples.

Dyke et al. [3] proposes two distinct changes to a typical non-rigid Iterative

Closet Point (N-ICP) registration pipeline for large-scale and non-isometric de-

formations. Firstly, they describe a method using the principal scaling factor to

estimate anisotropic deformations on a discrete mesh and incorporate it into N-ICP
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pipeline. Secondly, they introduce correspondence generation in non-isometrically

deformation regions and inconsistent correspondence pruning method based on

local geodesics. To effectively handle large deformations, they incorporate r-ring

as-rigid-as-possible (ARAP) formulation into their N-ICP registration pipeline.

However, if the initial correspondences are largely wrong, the performance of their

method is poor. Therefore, their method relies on the initial correspondences.

To track deformation from image to image, some existing approaches need to

estimate the initial shape. Salzmann et al. [22] proposed a close-form solution to

detect and reconstruct the 3D shape for a non-rigid inelastic surface from 3D to

2D correspondences. Their approach does not need the initial shape estimation.

Haung et al. [7] presents pairwise non-rigid registration algorithm for partially

overlapped point cloud surface. They define non-rigid registration as an opti-

mization problem. Therefore, deformation optimization is solved by alternating

correspondences computation. In their approach, geodesic distance between a set

of correspondences is preserved to be stable correspondences. Due to the topology

changing, geodesic consistency preservation is invalid. Therefore, their method will

fail in this condition.

In medical field, tracking organs deformation due to our respiration system is

a challenging task. Lu et al. [14] proposed a non-rigid registration method based

on linear elastic model. In their approach, the image region of interest was divided

in triangular grid. Extracted image feature point are used to form the irregular

triangular grid. For similarity measure, the minimum potential energy was used

to achieve their registration. They validated the robustness of their method on 2D

CT heart image time series dataset. Due to the large number of triangular and

small shape of the triangular, their method still needs many iterations to converge.

Kajihara et al. [9] proposed a feature-based non-rigid registration method that

establishes the transformation field and estimates the rigid transform in local region

and then blends them to interpolate the transform at every pixel. Since their

approach is feature-based, their method may not work well if sufficient number of

feature points are not extracted.

Texture-based Registration Some studies uses texture information for reg-

istration of deformable objects. Sidorov et al. [25] proposed groupwise non-rigid

registration for textured surfaces such as human faces that were obtained using a

3D scanner. Their method finds correspondences between meshes and build high

quality 3D appearance models.

Savran et al. [23] presented an automated non-linear elasticity surface regis-
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tration method by using both attraction forces originating from geometrical and

textural similarities. To avoid the loss of information during mapping between

2D and 3D, they use mesh parameterization approach instead of using projection.

Although their approach handles the large deformation, if human surface topology

changes such as open mouth expression, their approach cannot solve such kind of

changes.

In texture-based registration, less texture and occlusions on surface are more

challenging problems. Ngo et al. [17] addressed these problems by proposing a

template-matching approach. Moreover, they added the additional constraint for

3D shape of the surface that does not stretch or shrink. In their work, they used

gradient-based pixel descriptors for robust template matching and compute the

relevancy score for each pixel to handle surface occlusions. Their approach can

track well-textured and sparsely textured deforming surfaces in monocular video

dataset with presence of occlusion or without occlusion. However, their method

has a limitation that template images need to be obtained from a flat surface.

2.3 Proposed Framework

We propose a framework that uses a ToF camera for 3D registration of deformable

objects. We use IR images for texture registration and depth images for shape

registration.

2.3.1 Time-of-Flight (ToF) Camera

Figure 2.1: Time-of-Flight Principle

Time-of-Flight (ToF) camera is used to produce the range images that are

also referred to as depth images, depth maps, xyz maps, surface profiles and 2.5D
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Figure 2.2: Overview of our proposed method. The cost function is defined using
texture and shape differences between the initial frame and the input frame. The
gradient of the cost function is calculated to minimize the function with respect
to the 2D positions of the mesh vertices.

images. It emits the infrared signal that cannot be seen by human eyes to determine

the depth information.

ToF is a method that measure the distance between an object and the sensor

using the time that it takes that the sensor emits the light signal to the object and

bounce it back to the sensor. Then, it produces the depth information.

ToF camera can be used to measure distance and volume, as well as for object

scanning, indoor navigation, obstacle avoidance, gesture recognition, and object

tracking. It can measure both intensity and distance for each pixel of the object

simultaneously. It can also help with 3D imaging and improving augmented reality

experiences.

2.3.2 Methodology

Assume that the IR image in the initial frame I0(x) and the IR image of the current

frame Ik(x) are given, where x = (x, y) is the pixel coordinates. We set the 2D

vertex positions of the triangular meshes for the initial frame, v0
i,j, on a regular

grid. We perform registration by finding the corresponding 2D vertex positions,

vi,j.
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Input Image(Ik)Initial Image (I0)

W(x;V)

Figure 2.3: The warping function W(x;V ) is determined from the 2D positions
of the mesh vertices vi,j. Using this function, a pixel in the initial frame image is
mapped to a pixel in the current frame image.

For texture registration, the texture patterns in each mesh between the initial

IR image and the current IR image are compared. The warping function W(x;V )

is determined from the 2D positions of the mesh vertices V = {v0,0,v1,0, . . . }.
Using the warping function, a pixel in the initial frame image is mapped to a pixel

in the current frame image as illustrated in Fig. 2.3. We define the cost for texture

registration:

Eimg =
∑
x

{I(W(x;V ))− I0(x)}2 (2.1)

For shape registration, we assume that the deformed surface should not stretch or

shrink as in [16]. Therefore, the lengths in 3D space between two adjacent vertices

before and after deformation are compared. The 3D positions of the vertices are

obtained using the depth images. We define the cost for shape registration:

Elen =
∑
i,j

{(||Xi,j −Xi+1,j|| − ||X0
i,j −X0

i+1,j||)2

+ (||Xi,j −Xi,j+1|| − ||X0
i,j −X0

i,j+1||)2}
(2.2)

where X0
i,j are the 3D positions of the vertices in the initial frame, v0

i,j, and Xi,j

are the 3D positions of the vertices in the current frame, vi,j. By combining these

costs, we obtain the total cost function considering both texture and shape:

E = λ1Eimg + λ2Elen (2.3)

where λ1 and λ2 are the weights for texture and shape costs, respectively. To

minimize the cost function for texture and shape, we use the gradient descent
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method with respect to V [2]. The gradient of the texture cost is calculated as

∂Eimg

∂vi,j
= 2

∑
x

{∇I
∂W

∂p
}T{I(W(x;V ))− I0(x)} (2.4)

The gradient of the shape cost is calculated as

∂Elen

∂vi,j
= 2

∑
i,j

{(||Xi,j −Xi+1,j|| − ||X0
i,j −X0

i+1,j||)
∂

∂p
||Xi,j −Xi+1,j||

+ (||Xi,j −Xi,j+1|| − ||X0
i,j −X0

i,j+1||)
∂

∂p
||Xi,j −Xi,j+1||}

(2.5)

The 2D vertex positions of the meshes are updated according to the gradient

calculation as below:

vi,j = vi,j − w

(
λ1

∂Eimg

∂vi,j
+ λ2

∂Elen

∂vi,j

)
(2.6)

where w is a weight for the gradient descent method.

This is iteratively performed until the cost function is approximately converged.

The overview of our proposed method is shown in Fig. 2.2.

2.4 Experimental Results

We implemented our proposed method and conducted experiments using two types

of datasets. Our proposed method was compared with the methods using only

texture and only shape information.

2.4.1 Densely and Sparsely Textured Paper Sheets

The videos of densely and sparsely textured paper sheets were used in the experi-

ment. These videos were captured by DepthSense 325 ToF camera. These paper

sheets were pushed and pulled from both sides by hand to be deformed. The cam-

era was about 0.3 m away from the sheets. The number of frames were 32 for each

video. We made shading correction to compensate unequal lighting on the sheets.

The resolution of both IR images and depth images was 320×240 pixels.

We set the number of mesh vertices to 7×6. We used the following parameter

values: λ1= 1, λ2= 105 and w= 10−7. We set λ1 or λ2 to be zero for the methods

using only shape or texture information.
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Figure 2.4: Apparatus of Our approach
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To evaluate the quality of registration, the input images were warped back into

those in the coordinate system of the initial frame image, which we call restored

images. The registration and restoration results for densely and sparsely textured

paper sheets are shown in Fig. 2.5 and Fig. 2.6, respectively. For both densely and

sparsely textured paper sheets, we can see the texture in the restored images is

similar to that of the initial frame image. Although the registration using texture

only was able to register the texture well, the meshes were distorted a little because

the shape of the meshes is not considered in the texture-based registration. The

3D shapes of the densely and sparsely textured paper sheets and meshes are shown

in Fig. 2.7 and Fig. 2.8, respectively. In the registration using shape, we can see

that the shape of the meshes were more stationary than registration using shape

only.

To evaluate the registration performance in terms of texture, we calculated

peak signal to noise ratio (PSNR) between the restored images and the initial

frame image. To evaluate the registration performance in terms of shape, we

calculated Mean Square Error (MSE) between the inter-vertex lengths of the ini-

tial mesh and those of the registered mesh. The PSNR results for densely and

sparsely textured paper sheets are shown in Fig. 2.9.The MSE results for densely

and sparsely textured paper sheets are shown in Fig. 2.10.The results showed that

the proposed method was as good as the texture-only method and was better than

the shape-only method. MSE results showed that the proposed method was better

than the texture-only method but was worse than the shape-only method. These

results showed that our proposed method has good registration capability in terms

of both texture and shape.

2.4.2 Endoscopic Stereo Videos

We also applied our proposed method to publicly available endoscopic stereo videos

that contained deforming heart-1, heart-2 and liver from the Hamlyn Center La-

paroscopic / Endoscopic Dataset [13]. To reconstruct the 3D shapes from the stereo

video, we estimated the disparity maps by using the semi-global block matching

(SGBM) algorithm. The estimated disparity maps are converted into depth images

by using the following equation:

z = f
b

d
(2.7)

where z is the depth, f is the focal length, b is the baseline, d is the disparity.
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(a) (b) (c)

Figure 2.5: The registration and restoration results for densely textured paper
sheet: (a) registration using both texture and shape, (b) registration using texture
only, and (c) registration using shape only.

(a) (b) (c)

Figure 2.6: The registration and restoration results for sparsely textured paper
sheet: (a) registration using both texture and shape, (b) registration using texture
only, and (c) registration using shape only.
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(a)

(b)

(c)

Figure 2.7: The registration of the deformed surface of the densely textured paper
sheet: (a) registration using both texture and shape, (b) registration using texture
only and (c) registration using shape only.
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(a)

(b)

(c)

Figure 2.8: The registration of the deformed surface of the sparsely textured paper
sheet: (a) registration using both texture and shape, (b) registration using texture
only, and (c) registration using shape only.
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Figure 2.9: PSNR results for densely and sparsely textured papers per frame num-
ber: (a) PSNR results for densely textured paper, (b) PSNR results for sparsely
textured paper.
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Figure 2.10: MSE results for densely and sparsely textured papers per frame num-
ber: (a) MSE results for densely textured paper, (b) MSE results for sparsely
textured paper.
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(a) (b) (c)

Figure 2.11: The registration and restoration results for the endoscopic stereo
video: (a) registration using both texture and shape, (b) registration using texture
only, and (c) registration using shape only.

We used 194 frame images in the heart-1 video. The number of mesh vertices

was 5×4. For this dataset, we used the parameters λ1=4 and λ2= 103 for both

texture and shape information, λ1= 1, λ2= 0 for texture only information, and

λ1= 0, λ2= 105 for shape only information. The qualitative results for stereo video

dataset are shown in Fig. 2.11.

We used 100 frame images in the heart-2 video and 49 frame images in liver

video. The number of mesh vertices was 5×4 for heart-2 and 6×5. For the heart-2

dataset, we used the parameters λ1=3 and λ2= 105 for both texture and shape

information, λ1= 2, λ2= 0 for texture only information, and λ1= 0, λ2= 105 for

shape only information. The qualitative results for stereo video dataset are shown

in Fig. 2.12. For the liver dataset, we used the parameters λ1=1 and λ2= 105 for

both texture and shape information, λ1= 1, λ2= 0 for texture only information,

and λ1= 0, λ2= 105 for shape only information. The qualitative results for stereo

video dataset are shown in Fig. 2.13. We can see the texture in the restored images

were similar to that in the initial image for all datasets. Since all videos have less

texture, they were more challenging to register.
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(a) (b) (c)

Figure 2.12: The registration and restoration results for Heart-2: (a) registration
using both texture and shape, (b) registration using texture only, and (c) registra-
tion using shape only.

(a) (b) (c)

Figure 2.13: The registration and restoration results for Liver: (a) registration us-
ing both texture and shape, (b) registration using texture only, and (c) registration
using shape only.
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2.5 Discussion

We proved that the effectiveness of our approach by comparing the methods using

texture or shape information.

For the method using texture information, only the comparison between the

texture patterns in the mesh between the initial image and the current input

image was considered. Therefore, the PSNR result of the method using texture

information was better than shape only method.

For the method using the shape information, we compared only the lengths in

3D space between two adjacent vertices before and after deformation. The texture

patterns in the mesh were not considered. Therefore, the shape of the meshes

before and after deformation was more stationary than the other two methods in

terms of the results of MSE.

For our approach, we consider both conditions. Therefore, PSNR result was

as good as the texture-only method and was better than the shape-only method.

According to MSE results, our approach was not as good as the shape-only method,

but it was better than the texture-only method.

2.6 Summary

We proposed a framework for 3D deformable objects registration using both tex-

ture and shape information obtained using a ToF camera. We demonstrated the

effectiveness of our proposed method by using videos of textured paper sheets cap-

tured with a ToF camera and an endoscopic stereo video. The experimental results

showed that our proposed method has good registration capability in terms of both

texture and shape.

Our approach does not need to estimate the initial shape for the shape recon-

struction of the objects. Since the non-flat surface was used as the reference surface,

our proposed method can be applied to human organs for surgery assistance. Our

approach can register both texture and shape of the deformable surfaces simul-

taneously. Moreover, it can reconstruct the 3D shape of the deformable surfaces.

There is a limitation that the performance of our approach depends on the initial

parameters.



Chapter 3
Blockwise Feature-based Registration of
Deformable Medical Images

3.1 Background

Registration methods can be divided into two categories: intensity-based meth-

ods and feature-based methods. Since feature-based methods are simpler and

have lower computational complexity than intensity-based methods, feature-based

methods are widely used in medical image registration. On the other hand, the

performance of registration can fail when a sufficient number of feature points are

not detected [9] or when the number of matched features is small [29,30].

Some feature-based registration approaches have been proposed to reduce the

mismatched features, but they do not evaluate their approaches on the sparse

texture surfaces [6,11]. Some feature matching approaches have been presented [19,

26] to improve the existing methods by finding a large number of correct matched

features on deformable surfaces at an increased speed and accuracy. In [19], their

method can recover and track the features that were lost due to occlusion and

eliminate the mismatched features, but their approach has a limitation on poorly

textured surfaces and there is a computational limitation in [26], which also cannot

retrieve a sufficient set of accurate matches.

In this thesis, we propose a blockwise approach for feature-based registration

of deformable medical images. We apply the accelerated-KAZE (AKAZE) feature

detector on both of initial image frame and input image frames. In the initial

image frame, the detected feature points are divided into blocks based on their

coordinates and fetch the best feature of each block in terms of the response values

38
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of the detected features. Tracking of feature points is performed by finding the

correspondences between the blockwise features of the initial image and all the

detected features of the input image. Our approach can register the sparsely tex-

tured surfaces including human organs. We show the effectiveness of our approach

using three stereo endoscopic videos.

3.2 Related Work

Feature-based Registration on CT/MR and Histological Serial Section

Images Kajihara et al. [9] described a feature-based non-rigid registration method

with a small number of control points for histological serial section images. In

their approach, feature detection is performed by accelerated-KAZE (AKAZE),

and brute-force matching using the Hamming distance is adopted for the feature

matching process. The keypoints are clustered by using their coordinates to de-

termine the local region. Rigid transformation in each cluster is estimated using

RANSAC. Then, rigid transformations are blended to interpolate the transforma-

tions at each pixel. Although their method can represent the complex deformation

with a small number of control points, it could not perform registration in the

image without a sufficient number of feature points. Zhang et al. [29] proposed

a hybrid feature detection method for non-rigid registration of lung CT images

based on tissue features. The vessel crossing points, vascular endpoints, and tissue

boundary points which have high gradients were enough to track the motion of the

lung and can be detected by Harris. In this approach, they combined Harris and

SIFT to detect blob features since they also used those feature points. Although

detected features points by using their hybrid method were more than those by

SIFT, matched feature point pairs by using their method were less than those by

SIFT.

Lu et al. [14] improved a linear elastic model for non-rigid medical image regis-

tration using the elasticity of the minimum energy as a similarity measure, estab-

lishing partial differential equations to describe the image deformation, and using

the finite element method to solve partial differential equations. Their approach is

based on the global registration and extracted the feature points of global image

registration to generate the irregular triangle grid for defining the region of inter-

est. They showed the robustness of their approach using the 2D CT heart image

time series dataset. Although their method can improve the accuracy of registra-

tion and enhance image robustness, their method still needs many iterations to
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converge due to the small shape of the triangle and a large number of triangles.

Zheng et al. [30] proposed a coarse-to-fine registration method based on progres-

sive images and SURF algorithm (PI-SURF). For generating multiple progressive

images, the reference image and the floating image are fused. These two images

are registered for coarse registration results based on the SURF algorithm and

the coarse registration result and the reference image are registered to get the

fine image registration. They demonstrated their approach using MR-MR and

CT/MR images. In their approach, there are some limitations such as there is

time-consuming when the intermediate progressive images are generated and there

are mismatching features due to the SURF algorithm.

Feature-based Registration for Surgery Assistance Puerto et al. [19] pre-

sented a feature matching algorithm called hierarchical multi-affine (HMA) which

finds similarities between laparoscopic views. In their method, the detected fea-

tures are iteratively partitioned into clusters and estimated an affine transformation

for each cluster to eliminate incorrect matches from the initial matches. Although

the tracked features that were lost are recovered by using affine mapping due to a

completed or continuous occlusion or fast camera motion, there are some limita-

tions in their method when the organ or object has poorly textured or when the

number of correct matches is very small.

Stoyanov et al. [27] proposed a framework for tissue deformation tracking using

a monocular endoscope. Their method was performed by sparse salient features

combined with geometric surface parameterization and applied to a phantom heart

video sequence to track the motion of an observed fiducial. To compare with ground

truth data, the estimated motion of video is compared with the coordinates of the

fiducial trajectory of the CT image that was reprojected back into camera space.

Their proposed method can estimate the motion of the fiducial, but it cannot han-

dle that their mesh coordinates form with misalignment due to occurring feature

matching errors and noise.

Kim et al. [10] proposed a framework for tracking and augmenting a deformable

surgical site using shape from shading to recover the 3D shape of the surface and the

shape was flattened by using conformal mapping. Feature detection was performed

by using SIFT on that flatten shape and matched the features using Pizarro and

Bartoli’s feature matching algorithm.

For outlier removal, RANSAC was used. Then, pseudo-huber norm cost func-

tion was used for optimization. Their aim for augmentation is to determine and

visualize the boundary regions in the current input frame by matching the features
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between planer surfaces. Therefore, the boundary of the organ in the planer sur-

face was estimated and the vertices of the boundary are mapped into 3D space by

using barycentric interpolation. By using the camera’s projection function, these

3D vertices were projected onto the current laparoscopic image for the boundary of

the organ. To determine the surgical target, the inlier matches were transformed

from planer surface to laparoscopic image, and affine-MLS was used for smoothly

warping the target positions located on the reference image to the current image

by feature correspondences. Then, the locations of the surgical target were marked

and overlaid on the top of the original input frame. According to their approach,

they can retrieve the surface deformation, but their tracking can fail sometimes

due to image blurring and matched features were not found.

Haouchine et al. [5] presented a method for the real-time augmented reality of

internal liver structures during surgery. Their approach can locate the in-depth

position of the tumors based on partial three-dimensional liver tissue motion using

a real-time biomechanical model. To recover the 3D information from the liver

surface, they used a stereo endoscope. In their work, Speed-Up Robust Features

(SURF) was used to detect salient landmarks in each image pair and tracked by

using Lucas-Kanade optical flow since their registration method was a point-to-

point registration method. Their method showed good results in terms of surface

registration and internal tumors localization. However, their tracking process may

fail due to the outliers.

3.3 Proposed Method

In our approach, we apply the AKAZE feature detector for detecting the feature

points in the initial image frame and current input image frame. The best feature

points among the detected features of the initial image are fetched by using the

blockwise approach. Our deformable registration process is performed by tracking

the corresponding points between the initial image and the current input image.

3.3.1 Feature Detection and Blockwise Features

Although there are many methods for feature detection and description, we adopt

an accelerated-KAZE(AKAZE) feature detector. Feature detection and descrip-

tion in non-linear scale space are time-consuming due to the high computational

load to build the non-linear scale spaces. In the AKAZE feature detector, Fast
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Explicit Diffusion (FED) scheme embedded in a pyramidal approach can speed up

non-linear scale-space construction and its Modified-Local Difference Binary(M-

LDB) descriptor that is invariant in rotation and scale can utilize gradient and

intensity information from non-linear scale spaces [1]. Therefore, AKAZE fea-

tures have low computational and descriptor storage demand. The structure of

the AKAZE feature contains 2D coordinate positions, a response that describes

the strength of the feature, size, class-id, octave that describes the level of scale

space, and angle. We use AKAZE in OpenCV with default parameters except for

the threshold value. Threshold, one of AKAZE feature detector parameters, allows

accepting the feature points. The less the threshold value we set, the more feature

points we can get as shown in Fig. 3.1.

Assume that the initial image frame I0 and the current image frame Ik are

given. Firstly, we apply AKAZE on the initial image frame and divide the detected

features into blocks B = {b0, b1, b2, . . . bn−1} in terms of their coordinates. Then,

the advantage of the response field of the AKAZE feature is taken to define the

best feature among the detected features in each block of the initial image frame,

which we call blockwise features as illustrated in Fig. 3.2. The higher value of the

response field of a feature, the stronger feature is. We also apply AKAZE on the

current image frame for feature detection and description.

Figure 3.1: Detected features with various threshold values.

3.3.2 Feature Matching and Registration

To track the detected feature points in each input image frame, the correspond-

ing points are detected between the initial image frame and input image frames.

Therefore, feature matching is performed by brute-force matching algorithm using

Hamming distance to find the correspondence between blockwise features of the

initial frame and the detected features of the current image frame.
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(a) (b)

Figure 3.2: Blockwise Features Approach: (a) features in the initial image I0 are
detected by using AKAZE with threshold=0.000001. The detected features are
divided into blocks based on their coordinates and find the best feature in each
block using response value of the feature, (b) the best feature in each block of the
initial image I0.

To eliminate the outlier features from matched results, brute-force matching

is combined with the k-Nearest Neighbors (KNN) algorithm and Lowe’s ratio test

[12]. Lowe’s ratio test has simple criteria that determine a good match if the

distance ratio of the first closest one and the second closest one is smaller than the

threshold value (the default value is 0.5). For outlier removal, we set the threshold

value=0.7 for our cases. The good match that satisfies the threshold value for each

image pair contains a feature in a block of the initial image and a corresponding

feature of the current frame.

The coordinates of blockwise features are set as 2D vertex positions of the tri-

angular meshes for the initial image frame while defining the coordinates of the

features that correspond to blockwise features as 2D vertex positions of the meshes

for the current image frame. We perform the registration by finding features cor-

responding to blockwise features as shown in Fig. 3.3. If there is no corresponding

feature, we use the corresponding feature of the previous frame image.

To superimpose an image onto the deformable surface in AR, each pixel of the

superimposing image in terms of the coordinate system of the initial image frame

is mapped onto the current deformed surface by using the bilinear interpolation

method.

3.4 Experimental Results

We conducted an experiment using three endoscopic stereo videos that contained

deforming heart and liver from the Hamlyn Centre Laparoscopic / Endoscopic
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Figure 3.3: Finding the corresponding points in the current input image Ik in terms
of blockwise features of the initial image I0.

Dataset [13].

We used 194 frame images of Heart-1 video, 100 frames of Heart-2 video, and

49 frames of Liver video. For all videos, ratio test=0.7 was used to remove the

outlier after matching the features from the initial frame image to the input frame

images. For the evaluation of registration, the input images were localized onto

those in the coordinates of the blockwise features of the initial frame, which we

call restored images. The registration and restoration results of Heart-1, Heart-2,

and Liver are shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6, respectively. For all videos,

we can see the texture in the restored images is similar to that of the initial image.

To evaluate the registration performance in term of texture, we calculated the

peak signal to noise ratio (PSNR) between the restored images and the initial

image. The PSNR results for all videos are shown in Fig. 3.7. PSNR results of all

videos exist in the good performance range. The mean PSNR values of Heart-1,

Heart-2, and Liver are 36.6, 36.8, and 36.9, respectively.

As a demonstration for surgery assistance, a hand-drawn tumor image is su-

perimposed onto the deformable surface of each image frame. Fig. 3.8 shows the

results of superimposing a tumor image onto an organ. Since our approach can

perform on sparsely textured surfaces, we can successfully superimpose a tumor

image onto the organs. We can see that the tumor moves along with the movement

of the organs.

Our proposed method includes five processes. The processing time of each

process for 194 image frames is described in Table 3.1. The registration process

is from process 1 to process 3. The process 4, superimposing process, describes

only for demonstration of surgery assistance. The process 5, restoration process, is

performed for the evaluation of registration performance. Therefore, the processing

time of our registration process for 194 frames takes only 4.918 seconds.
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(a)

(b)

Figure 3.4: The registration and restoration results in each frame of Heart-1: (a)
the registration results, (b) the restoration results.

(a)

(b)

Figure 3.5: The registration and restoration results in each frame of Heart-2: (a)
the registration results, (b) the restoration results.
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(a)

(b)

Figure 3.6: The registration and restoration results in each frame of Liver: (a) the
registration results, (b) the restoration results.

Table 3.1: Processing Time of Our Proposed Method

Process (for 194 frames) Processing Time for
Each Process (second)

Processing Time by
Binding Each Process
(second)

1. Feature Detection and
Feature Matching

3.123 3.123

2. Taking the previous
point if there is no corre-
sponding point with block-
wise features after feature
matching and draw key-
points on each image

0.0073 (1+2) 3.196

3. Overlaying Mesh and
Saving Original images and
Results

1.722 (1+2+3) 4.918

4. Superimposing 856.734 (1+2+3+4) 861.652
5. Restoration and Saving
restoration results

410.988 (1+2+3+4+5)
1272.640
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Figure 3.7: PSNR results for stereo endoscopic videos in each frame: (a) PSNR
results for Heart-1, (b) PSNR results for Heart-2, and (c) PSNR results for Liver.
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(a)

(b)

(c)

Figure 3.8: Superimposing a tumor image on an organ: (a) superimposing a tumor
image on each frame of Heart-1, (b) superimposing a tumor image on each frame
of Heart-2, and (c) superimposing a tumor image on each frame of Liver
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3.5 Summary

We proposed a blockwise feature-based registration framework for deformable med-

ical images. In our approach, the detected feature points in the initial image frame

are divided into blocks based on their coordinates and the blockwise feature points

are picked up by using response values of the detected feature points. Tracking of

feature points is performed by finding the corresponding feature points between

the blockwise feature points of the initial image frame and all the detected feature

points of the current image frame. We presented the effectiveness of our framework

by using sparsely textured endoscopic stereo video datasets. Since the best feature

points are used to find the corresponding points between the initial image and

input images, the registration can be effectively performed on sparsely textured

surfaces. The experimental result showed that our framework can be applied even

to sparsely textured medical images.

Although sometimes there are no corresponding feature points in some frames,

it is compensated by using the corresponding feature points of the previous frame.

We consider only for the 2D registration of the deformable surfaces.



Chapter 4
Comparison of the Two Proposed
Methods

We proposed two methods for the deformable registration of sparsely textured

surfaces.

4.1 The First Proposed Method

In the first method, the registration is performed by using an intensity-based ap-

proach. In this approach, the registration is performed by finding the corresponding

2D vertex position of the mesh between the initial image and the input images.

Since we performed the registration of both texture and shape of the deformable

surfaces, we define two cost functions for texture registration and shape registra-

tion. Therefore, we define the weights, λ1 and λ2 for these cost functions. Then,

the total cost function was defined by combining these costs. Since the total cost

function is approximately minimized by using the gradient descent method, the

weight, w is defined for gradient calculation. Therefore, all weights are impor-

tant for good registration performance and the balance between λ1 and λ2 is also

important for the registration of both texture and shape.

Advantages

Our first proposed method can perform the registration on densely and sparsely

textured surfaces and register for both texture and shape of deformable surfaces,

and reconstruct the 3D shape of the deformable surfaces. It can be also applied

on sparsely textured surfaces such as human organs.

Limitations

50
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The registration performance depends on all initial weight values and the bal-

ance between λ1 and λ2 for both texture and shape registration. Assuming the

deformable surface should not stretch or shrink is also a limitation of our approach.

It cannot well perform the registration on deformable surfaces that have very less

texture and higher illumination.

4.2 The Second Proposed Method

In second method, the registration process is performed by a feature-based ap-

proach. By means of AKAZE feature detector, the feature points are detected on

both initial image and input images. Since the second proposed method is a block-

wise approach, it is important to exist the detected feature points throughout the

surfaces to divide all detected features into blocks and to pick up the best feature

in each block. Therefore, the threshold parameter of the AKAZE feature detector

is also important for this condition. The registration is performed by finding the

correspondence between blockwise features of the initial image and all detected

features of the input images. For outlier removal, KNN and Lowe’s ratio test are

applied.

Advantages

Since the processing time of the registration is 4.918 seconds for 194 image

frames, this approach can be used for real-time registration. The second proposed

method can be applied on very less textured surfaces.

Limitations

For outlier removal, since KNN and Lowe’s ratio test are applied, good matches

are determined if the distance ratio of the first closest one and the second closest

one is smaller than the threshold value. Theoretically, the smaller the threshold

value, the fewer matches we get. If the image provides rich feature points, the

smaller threshold value of the ratio test can provide a sufficient number of reliable

matches. Although a larger threshold value of the ratio test can provide sufficient

matches if the images have poor feature points, the outliers can contain among the

matches. On the other hand, good matches can be excluded due to the smaller

threshold value. Therefore, the performance of the registration also depends on

the threshold value of the ratio test.
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4.3 Comparison of Two Proposed Methods

The two proposed methods are compared based on the registration performance

in terms of texture information. Therefore, by mean of PSNR results, the two

method are evaluated.

4.3.1 Heart-1

The comparison of PSNR results between the first approach and the second ap-

proach is shown in Fig. 4.1. The result shows that the second approach is better

than the first approach because some of the areas of the Heart-1 dataset have very

less texture.
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Figure 4.1: PSNR Results of Intensity-based Approach vs Feature-based Approach
for Heart-1 Dataset

4.3.2 Heart-2

Fig. 4.2 shows the PSNR results comparison of two proposed methods. Although

most of the results of the first proposed are better than those of the second proposed

method while some of the results of the second proposed are better than the first

method according to the graph. The mesh cannot well track the deformation of

the organ because the movement of the organ is upward and downward movement.

4.3.3 Liver

According to the Liver dataset, most of the PSNR results of the second proposed

method is better than the first proposed method as shown in Fig. 4.3. Since the
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Figure 4.2: PSNR Results of Intensity-based Approach vs Feature-based Approach
for Heart-2 Dataset

texture in the Liver video has very smooth, with less texture, and illumination,

the first proposed method cannot track the movement of the organ.
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Figure 4.3: PSNR Results of Intensity-based Approach vs Feature-based Approach
for Liver Dataset



Chapter 5
Conclusion and Future Work

This chapter concludes our thesis works and shows the future work of our thesis.

5.1 Conclusion

In this thesis, we addressed the problem of registration on sparse texture surfaces

of the deformable objects.

We proposed two registration methods, which can be used to register on sparsely

textured surfaces such as human organs. The first approach can perform the reg-

istration in terms of both texture and shape of the deformable objects with sparse

texture. It was confirmed that the first approach has good capability of the regis-

tration in term of both texture and shape of densely and sparsely textured objects

by comparing three methods using texture or shape information.

In the second approach, the registration can perform even on sparsely tex-

tured surfaces such as human organs by using the small set of the best feature

points. Moreover, we showed that the demonstration of the surgery assistance by

superimposing the tumor onto the deformable surfaces. For demonstration of our

approaches, we conducted the experiments using videos of densely and sparsely

textured papers, and endoscopic stereo video datasets.

5.2 Future Work

Although our approaches are intended for surgery assistance,there are some limita-

tion that we do not consider occlusion due to the surgical instruments, the organs

bleeding, and large deformation due to respiration motion. In future, we will con-

54



5.2 Future Work 55

sider superimposing in depth (3D virtual objects) to enhance the visualization of

the internal organs more.
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