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Abstract 

Nowadays, criminal offenses increased rapidly, which intended people to deploy a 

surveillance system on the premises. An effective monitoring system dealing with many 

rigorous factors might also be solved in real-time. Most of the automatic security 

measuring techniques are based on video cameras. Here the issue of privacy arises 

parallelly with security. None of these can be ignored in a civilized society. Anyone 

may oppose being exposed to a video camera. Then, how to ensure the recording of 

suspicious activities. Even safety monitoring is essential for the elderly, disabled, or 

children. Neither a video camera nor a three-dimensional sensor provides proper 

privacy in public monitoring activity. Besides, there is always a possibility of leaking 

videos. Furthermore, video cameras are also prejudiced with their capturing resolutions 

and even lighting conditions. A two-dimensional LiDAR (Light Detection And 

Ranging) sensor could be the best alternative for cameras that can deal with all these 

shortcomings. It has a wide angular range of 270-degree and a scan covering about 30 

meters. LiDAR sensors only measure the distance by timing the travel of the light pulse. 

Though there is no visual image created by it, there is no concern for privacy. Any 

lighting condition is appropriate for LiDAR scanning. On the other hand, LiDAR data 

processing is eventually straightforward, cheap, and easy to process in real-time. We 

used a 2D LiDAR sensor for our study and tried to determine a person's behavior in 

different segmentations. 

 People's behavior understanding is essential in every surveillance system. In this 

dissertation, we categorized this into four phases. The first one is person tracking. 

Following an individual in a public or private event is essential to determine meaningful 

events and suspicious activities. We grabbed the question of undisclosed people 

tracking where any recognition is deliberately omitted to maintain the privacy of 

spectators. In this study, an ankle level LiDAR positioning was a hilarious enhancement 

for sensing appropriate trajectories of persons. The time-series data Motion History 

Image (MHI) was created to plot positional values on the image and leave past images 

as afterimages. These MHI were used as input to the system. The conventional density-

based algorithm DBSCAN was used to determine the clusters for an individual moving 

in the image. Counting the number of pixels in the ankle image Kalman Filter 

determines the person's path. An in-house dataset appraises the method in different 
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gestures, but the performances are yet to be improved with prior model extension. We 

found some shortcomings in density-based algorithms in a rigorous analysis with 

LiDAR data density, especially in highly dense data and occlusion. Our modified 

algorithms: EDBSCAN and EOPTICS, effectively resolved the issues and are 

compatible with LiDAR data density. Their viable precisions triumph over traditional 

DBSCAN and OPTICS audaciously.   

Secondly, we emphasized Person Property Estimation (PPE) as a people's behavior 

using compulsive data. Identifying individual measurements of a person (Height, Age, 

etc.) is essential in recruiting and clothing or any commercial agencies. Besides cameras, 

LiDAR-based estimation is a solemnly unknown study. In this research, multiple 

LiDARs were set in Multi-Layer and Multi-Angle positions to get much sensing detail 

in LiDAR images. Discovering hidden patterns of data and ensuring supremacy in terms 

of accuracy Deep Neural Network (DNN) model were applied to find the properties. A 

composite dataset was developed to execute comprehensive experiments with the 

utmost accuracy—augmented training data, diversified trials, and cross-checking 

profoundly enhanced real-time appreciations. Thirdly, identifying an individual in 

different positions within the scope was considered in this study carefully. We analyzed 

Gait; a pattern performed by walking the individuals to facilitate it. A new modality 

with gait data analysis by ankle level 2D LiDAR shows versatile usage of the sensors. 

A comprehensive dataset KoLaSU (Kobayashi Laboratory of Saitama University), was 

developed with numerous international participants. This dataset might be a reference 

for 2D LiDAR-based behavior analysis with unbiased occurrences and multiple 

properties. Cross-validation datasets were included to enhance the diversity. A pre-

trained ResNet model was used to train the dataset and classify individuals according 

to test occurrences. Impressive identification results ensure the credibility of the model. 

Finally, our focus is on group recognition to understand the behavior of a group of 

people moving together. Various applications (i.e., museum-guided robots, tourist 

trackers, etc.) can use this system without disclosing individuals' identities. This 

dissertation introduced a novel approach to finding human behaviors using only 2D 

LiDAR sensors, which empirically established its integrity with insightful legacies. 
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Chapter 1 

Introduction 

 

 

1.1 Motivation 

Many initiatives have been taken to address security and risks in recent times. Outside of 

personal protection, automated security is becoming increasingly popular. Camera-based 

surveillance is on the rise and has become an integral part of almost every organization. 

On the other hand, people's privacy is declining. Security surveillance cameras in every 

place are complicating the lives of ordinary people. Low and ultra-light systems reduce the 

camera's ability to take pictures. In addition, the installation and operation of security 

cameras are costly. In addition, various natural disasters, such as fog, smoke, etc., are 

significant obstacles to taking pictures. Fig. 1.1 shows conventional security, privacy, and 

obstruction in a video-based surveillance system. 

 

 

 

 

 

We were looking for an alternative system that would, at the same time, ensure human 

security and protect privacy. Many sensors have already started to be used as an alternative 

Security Fog 
Privacy 

Obstacle in taking Picture 

Fig. 1. 1 Concerning issues of video surveillance system 
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to the camera. 3D LiDAR is one of them. Through this, the three-dimensional shape of an 

object emerges, which is currently being implemented through autonomous driving. But it 

is relatively expensive and does not fully protect privacy. In this study, we used a 2D 

LiDAR to guide the movement of people. Using a 2D LiDAR was a very challenging task. 

With the help of these, only two-dimensional coordinates of distance can be obtained. We 

created images from it, which we later used to track and identify the person. Its use ensures 

security as well as privacy. The LiDAR sensor can be used in any lighting or disaster also. 

 

1.2 People Behavior Understanding 

People's behavior is an activity that occurs during a person's physical, mental, and social 

engagements in his life. The way of talking, moving, walking, acting, and approaching 

everything belongs to his behavior. This study generalized our domain into four 

comprehensive activities of a person as people behave. Firstly, People Tracking is the 

activity of determining meaningful and suspicious events. Secondly, People Property 

Estimation (PPE) is another behavior that facilitates more detail of a person being tracked. 

Thirdly, analyzing Gait properties to detect individuals in different locations within the 

scope implies People Identification. Finally, we considered Group Recognition through 

ankle-level 2D LiDAR data to determine the behavior of a group of people in an event. 

This behavior understanding decoratively supports many benefits over established video-

enabled systems.  

It is essential to understand people's behavior to ensure safety and security. It is necessary 

to keep up to date with the current information on the surroundings to enable a security 

system. Security hazards and safety measurements depend on people's behaviors also. In a 

nursing home or an elderly monitoring system, even physically challenged people or child 

monitoring, etc., are startling demands nowadays. Here neither individual recognition nor 

criminal identification is required. A LiDAR-based system fits the model in these 

applications only for understanding the observers' behaviors. Service robots in museums, 

rescue robots, tourist trackers, etc., applications can be excellent for LiDAR-based 

deployments. Fig. 1.2 shows some practical usage of the monitoring system. 
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1.2.1 What is Person Tracking? 

Person Tracking is a mechanism of recognizing people in a video and interpreting them as 

a set of paths with great accuracy. The term detection is relatively changed in continuous 

identifications in image sequences. People tracking refers to locating pedestrians in 

complex road scenes and their walking ways across the entire video. Fig. 1.3(a) shows 

machine-based tracking of individuals with an ID.  

1.2.2 What is Person Property Estimation (PPE)? 

Identifying individual measurements of a person from a video refers to PPE. Many 

properties could be estimated from a person's video. Height, age, gender, region, etc., 

properties are commonly measured properties from video-based monitoring systems. In 

our study, we never dealt with direct videos from cameras. We created our image set from 

ankle-level LiDAR data and focused on estimating height and age—Fig. 1.3(b) showing 

symbolic estimations of person properties. 

1.2.3 Gait to Identify Individuals 

Many biometric features are used to identify a person in different circumstances. Most 

biometric recognition systems are designed and require close contact between the sensor 

and observer. Gait is a pattern that performs by walking by the individual to identify him 

based on his way of walking. There is no necessity for close contact with the sensor in this 

model. Nowadays, Gait is known for the valuable evidence in court. A new modality with 

gait analysis is introduced: Ankle level 2D LiDAR-based person tracking and recognition. 

Fig. 1.3(c) shows the walking style of a pedestrian.  

Fig. 1. 2 Automatic monitoring systems 
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1.2.4 Pedestrian Group Recognition 

People used to move in a group, especially when they visit. Some commonly visited places, 

i.e., museums, shopping malls, tourist spots, etc., sites provide some guided robots or 

understand an individual group's behaviors. It is primarily necessary to identify them in the 

video. Group people recognition is relatively challenging especially when only a 2D 

LiDAR sensor is used to get their moving trajectories. This study rigorously showed the 

way of recognition. Fig 1.3 (d) shows a group of people moving in front of the LiDARs 

sensor.  

 

 

 

 

 

 

 

1.3 2D LiDAR 

LiDAR refers to Light Detection and Ranging. An eye-safe technology emits laser light to 

create a demographic representation with distance values of the surveyed environment 

through machines. This technology is considered an unparallel innovation in finding the 

dimension and depth of objects and is impressively faster in capturing than cameras or even 

RADAR. Today's modern manufacturing, innovative infrastructure, industry, automotive, 

trucking, robotics, etc., widely implemented LiDAR-based applications to improve the 
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Fig. 1. 3 People Behavior Estimation 



5 
 

credibility of production or maintenance. Recent era, autonomous navigation depends on a 

LiDAR-based navigation system. There are two types of LiDAR sensors: three-

dimensional (3D) and two-dimensional (2D). In this dissertation, we considered 2D LiDAR 

sensors for our experiments. It only collects data on the X and Y axis, which is cheap and 

easy to process. For our study, we used HOKUYO UTM-30LX 2D LiDAR, whose angular 

range is 270 degree and the distance coverage range are thirty meters. Fig. 1.4 shows our 

used LiDAR and its covering ranges.  

 

 

 

 

 

 

 

 

 

1.4 Challenges of LiDAR-based Behavior Understanding 

Object detection, Person Tracking, and Person Property Estimation (PPE) are identical 

innovation areas trying to improve their accuracy in different parameters to fit various real 

applications. For many years, so much research has been done in these fields. Many 

scientists also used many more techniques and algorithms. In general, challenges come to 

comply with the basic concerns: system accuracy, computational cost, sustainability, and 

robustness. Implying this novel idea of LiDAR-based monitoring, we were enthusiastically 

impressed by its precision—later chapters show these explicitly. There is not much 

installation cost with LiDAR sensors, and even 2D LiDARs are cheap to install, which 

keeps the cost minimal. LiDARs credentials are proven in terms of capacity and processing. 

Fig. 1. 4 HOKUYO 2D LiDAR and its scanning area 
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These features ensure sustainable surveillance with LiDAR only. Wide covering range and 

distance and easy and faster-capturing ability ensure the robustness of LiDAR sensors. 

Moreover, some technical challenges also arrive when 2D LiDAR is used in our model. 

LiDAR positioning:  Finding the appropriate position of the LiDAR sensor was a 

significant concern in this study. We experimented with different experiments, found many 

ideas, and experimented with results. Finally, we placed our LiDAR sensor in ankle 

positions, ensuring accurate data acquisition and best tracking through ankle movements.  

Determining person from LiDAR data: It is easy to distinguish person and objects in a 

camera image, but LiDAR images have moderate information to decide. We applied 

various density-based clustering rather than conventional algorithms to ensure maximum 

accuracy.  

Multiple sensor combinations: This research implemented people tracking through a 

single LiDAR-based architecture. But further studies for PPE, Identification or group 

recognition applications used multi-LiDAR design. Fusing multiple LiDARs data into a 

single frame and creating its Motion History Images (MHI) was complex. We meticulously 

crafted the datasets and performed the required studies there.  

Diversified dataset creation: To heighten the diversity of the dataset, we invited different 

nationalities of people to our experiments. Twentynine participants participated, and we 

created our dataset KoLaSU (Kobayashi Laboratory of Saitama University).  

Besides these, we faced many difficulties and challenges in this research but could solve 

those by discussion, experiments, or even trial and error methods. In Fig 1.5, a comparative 

analysis of camera-based and LiDAR-based tracking shows. Here, the challenges of 

LiDAR sensors are placed.  
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1.5 Precise Objectives 

Recent advances in video camera autonomous recognition still face many technical and 

social issues. Obsessive surveillance systems have become unpopular in several societies. 

Eventually, an urgency for alternate inspection was raised. There should be some models 

that relieve privacy concerns but could maintain the surveillance issue. Other problems that 

a camera-based network should also consider are installation cost, real-time processing, 

capturing challenges, etc. This research focused on these grounds and empirically proposed 

a system that best fits the primary objective and effectively addresses similar issues. Our 

proposed 2D LiDAR-based person tracking using Gait is a novel approach to tracking and 

identifying persons without disclosing their identity. This LiDAR-based model is cheap, 

easy to process, has comprehensive range coverage, and does not affect any lighting 

conditions to get its data.  

 

1.6 Research Contribution 

This study contributed to four primary segments: Person Tracking, People Property 

Estimation, Gait Analysis for Person Identifications, and Group People Recognition. 

Person tracking was challenging for us to initiate 2D LiDAR sensors and create appropriate 

LiDAR images with meaningful information. Placing the sensor on the plane to capture 

Fig. 1. 5 Showing challenges with LiDAR-based analysis 
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accurate data was a heuristic approach, and ankle-level positioning was best. We created 

Motion History Images (MHI), the time-series data to process in the whole study. A 

background subtraction method was applied to get only ankle positions on the frame, which 

enhanced the processability of the data. In the LiDAR images, identifying persons based 

on their ankle positions was another challenge. We applied density-based clustering to 

determine a person and Kalman filter for tracking the paths where they moved. Our 

enhanced study covered the improved performance of density-based clustering by 

modifying and adding new parameters on DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) and OPTICS (Ordering Points To Identify the Clustering 

Structure), the two well-known algorithms of dense data processing. Our proposed 

enhanced DBSCAN (EDBSCAN) and enhanced OPTICS (EOPTICS) improve 

conventional algorithms' performance and solve overlapping and false clustering problems.  

 

Person Property Estimation (PPE) is another approach where we tried to find some 

characteristics of observed people. Based on LiDAR data, we estimated a person's height 

and age into two categories. This study helps the monitoring system know much 

information about pedestrians moving on the premises. We fused multiple LiDAR data in 

the images to get much information to process accurately. A deep learning model was 

applied to classify the input data into desired classes. Another impressive study of this 

study is identifying persons by evaluating Gait and deep neural network (DNN). A 

comprehensive dataset KoLaSU was developed by considering fourteen combinations of 

twenty-nine participants from different nationalities. To our knowledge, this might be a 

new benchmark of 2D LiDAR-based person recognition as no such dataset was created 

earlier. We are working on group recognition which enables us to determine a group of 

people moving together. The overall scenario of the contribution of our research is shown 

in Fig. 1.6.  
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1.7 Thesis overview 

In chapter 2, we studied many articles and found enthusiastic outcomes with these sensor 

setups to understand contemporary technology and its efficacy. We categorized these 

research articles into video camera-based studies and other sensor-based studies. This 

chapter covered most of the recent possible sensor-based studies of detection, person 

tracking, and property estimation except camera (all, RGB, RGB-D, etc.) based learning. 

Chapter 3 discussed the Person Tracking system with a LiDAR sensor. This chapter 

shows experimental setups, data capturing techniques, clustering, and tracking mechanisms. 

Our fundamental goal of this research is to replace a video camera with a device (2D 

LiDAR) that significantly preserves the user's privacy, solves the issue of the narrow field 

of view, and makes the system functional simultaneously.  

Chapter 4 shows a LiDAR-based people tracking technique based on modified clustering 

algorithms to cope with the problems and enhance the performance of our previously 

developed model. This chapter describes modified density-based algorithms EDBSCAN 

and EOPTICS for clustering 2D LiDAR data to track people. The experimented results 

confirmed that our approach significantly improves the accuracy and robustness of people 

tracking through the experiments.  

Fig. 1.6 Overview of the Research 
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Person Property Estimation is another parameter of our human behavior analysis through 

the 2D LiDAR sensor, described in chapter 5. In this chapter, we figured out a way of 

estimating a person's property, i.e., height and age, etc., based on LiDAR data. Integrated 

sensing with multiple LiDARs in multi-angle and multilayer positions enables us to get 

more detail about a person in the LiDAR images. Applying DNN for property estimation 

helped us discover hidden patterns in the data. This chapter describes the ways.  

A gait is a pattern that performs by walking the individual. All studies of gait-based person 

identifications are performed by RGB or RGB-D cameras. Very few studies were done by 

using 3D LiDAR data. This research conducted a comprehensive exhibition of 2D LiDAR 

data with a rigorous self-made dataset (KoLaSU – Kobayashi Laboratory of Saitama 

University) and customized residual neural network to identify an individual, clearly 

described in chapter 6.  

In conclusion, person tracking, property estimation, and identification are always 

challenging and sometimes crucial in different circumstances. Chapter 7 describes the 

overall summary of the research and its future opportunities.  
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Chapter 2 

LiDAR-based Detection, Tracking, and Property 

Estimation: A State-of-the-art Review  

 

 

2.1 Introduction 

Biometric measurements ensure superior authentication in practical applications [207]. 

Most of the analyses are very much dependent on individual sensor setup and modern 

algorithms. The emergence of cameras made this mature study day after day. Most 

biometric studies rely closely on video analysis. Computer vision research focuses on the 

issue very effectively. Innovative algorithms empowered the accuracy and practical usage 

here. With the vast research area, it is tough to get all comments to contribute above the 

standard. We found some comprehensive studies performed by video cameras [11], [178]. 

We tried to figure out other contemporary studies rather than cameras. Some very notable 

research we found there. Our analysis in this article is to find out most of these.   

Early age research focused on people tracking based on video cameras. A broad study was 

done [1],[18]. They have shown some object tracking systems that are using the multi-

camera system. An adaptable classification was done on it. Other initiations also happen 

during this period. Some sensors were used to do such a tracking system, especially thermal, 

infrared, etc. Some multimodal research was also done to improve the credibility of the 

tracking system. Combining RGB and infrared sensors, a person tracking system was also 

developed [2]. Here enhanced results showed its integrity, showing that sensor-based 
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tracking is fruitful enough. Some other applications used background modeling that 

combined visual and thermal data to detect pedestrians [3],[4],[5],[6],[7]. Sometimes 

research fails due to a stand-alone dataset. Caltech Pedestrian Dataset [8] is one of the 

larger datasets that provided different dimensional data to analyze a system working on 

pedestrian detection. Most of the previous studies were done offline, but some online object 

tracking [9],[10],[12],[181],[182],[183] is a new idea that helped prospective future 

exploration in this arena. Some studies considered statistical models [15],[16],[17] rather 

than sensor explorations. Imposing new algorithms. Applying new statistical models, i.e., 

kernel [13],[14], graph optimization [19], etc., they tried to enhance the tracking credibility 

that diverse others to develop a property estimation method. 

Person detection by visual recognition system is always challenging, especially if rescue 

robots, supporting robots, or an Autobot system executes independently [125]. Here visual 

information can be low or hard to receive due to environmental inadequacies. A thermal 

imaging system can be an excellent alternative to uplift this shortcoming. But most thermal 

sensor-based studies were concurrently used with RGB cameras [23]. Only thermal sensor-

based tracking or property estimation was rarely staged [20],[21]. Two-step-based 

pedestrian detection by thermal imaging [22] was performed to subdivide the images into 

many regions where the classification step distinguishes it from non-pedestrians. Thermal 

sensor-based scanning was a primary alternative sensor setup rather than video cameras for 

person tracking. Other sensors, i.e., LiDAR, RFID, Infrared, RGB-D, 3D Range sensor, 

Laser sensor, Radio sensor, etc., were also used for person tracking in different applications. 

We will consider these studies in this article to get a clear idea of contemporary studies on 

sensor-based applications.  

It is inevitable and parallelly well established that video camera-based object detection, 

person tracking, or property estimation mechanisms are more effective and suitable. But, 

some natural calamities, lighting limitations, processing deficiencies, and environmental 

issues influenced people to think differently to find an alternative of cameras. People 

introduced parallel sensors set up with the camera to solve these constraints, even 

individual acquisition techniques rather than cameras. In this study, we will try to find these 

initiatives that were stand-alone performances besides video camera-based tracking and 
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property estimation phenomena—Fig. 2.1 shows a block diagram of the contemporary 

research hierarchy of person tracking and property estimations. We considered only data 

acquisition mechanisms in this study. Initially, these can be grouped into two classes. Our 

focus is on sensor-based approaches rather than video camera-based estimations. We 

categorized sensor-based estimations into four categories. Data acquisition using thermal 

sensors, LiDAR-based methods, depth sensor-based applications, and the other 

applications we kept into other groups. Our focus is on LiDAR-based estimations. This 

study can be subdivided into two classes: 3-dimensional (3D) LiDAR-based and another 

one is 2-dimensional (2D) LiDAR-based approaches. We will emphasize colored marked 

notations in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 2.2 Overview 

Machine-made Person identification and different property estimation is not a recent trend. 

It was started a long ago with the advert developments of the camera technology and 

applied artificial intelligence aggregated in an intelligent system that is profoundly capable 

Person Detection, 
Tracking and 

Property Estimation 

Video Camera-Based 
Approaches 

Sensor-based 
Approaches 

Thermal Sensor-
based Approaches 

LiDAR sensor-
based Approaches 

Depth Sensor-
based Approaches 

Others 
Approaches 

2D LiDAR sensor-
based Approaches 

3D LiDAR sensor-
based Approaches 

Fig. 2. 1 Block diagram of Person Identification and Property 

Estimation Research trends [207] 
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of functioning. Though this article will concentrate on modern sensor-based advancements, 

a few initial studies should describe here to recall the initial initiatives that drove us to this 

intelligent age. 

2.2.1 Video camera-based Initiations 

A video surveillance system is very demanding nowadays. Military, defense, public 

security, private organizations, etc., widely install video surveillance systems for safety 

and security. The focus of modern research on intelligent video surveillance systems lies 

in object tracking and detection [24]. Here, person tracking is most challenging in video-

based object tracking [184], [185], [186], [187], [188], [198], [199] because of different 

viewpoints in illuminations. Furthermore, this research is complex because of the 

intraclass's non-deformable shape, occlusion, pose, and size dissimilarity. Another 

drawback of video-based analysis is its limited field of view (FOV) that initiates the 

installation of multi-camera networks. Real-time person tracking is another issue that is a 

big concern of video-based tracking and property estimation. A multicamera-based 

network must deal with a lot of real-time data that is always tough to handle. 

Moreover, some cutting-edge issues: occlusion, pose variations [180], non-rigid 

deformations, etc., degrade the performance of the real-time system. Typically, person 

tracking can be categorized into two classes. One is discriminative tracking, and another is 

generative tracking.  

Person tracking algorithms [25] locate a person in every frame in discriminative tracking. 

Then track in every frame by target associative mechanisms (JPDAF, FNF, MHT, etc.) 

[26],[27],[28],[29],[30]. In the generative tracking, all persons' positions are calculated 

with iterative revising of location from preceding frames. Here, Kalman Filter (K.F.) 

[31],[32] is a very well-known tracking method. Kernel-based Tracking (KT) [33],[34], 

Particle Filtering (PF) [35],[36], etc. are other ways to do so. Most survey papers are based 

on object tracking using cameras [37],[38]. Their focus was on object tracking rather than 

a person. Hou et al. [24] contributed in a distinct way to find out the initiatives on person 

tracking over camera networks. They distinguished it into two modules: person tracking 

within a camera and tracking through a non-overlapping camera network. Occlusion is one 

of the major challenges in object tracking. It always caused misclassifications. There are 
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some research have done on it also. BY Lee et al. [39] performed a survey on it. They 

showed recent approaches on occlusion handling. To handle the occlusion overhead 

camera setup [40],[41],[42],[43] is one of the feasible solutions. Some wide-angle viewing 

facilities also can be ensured by overhead camera setup. Some analysis was done in this 

research also [44]. Person reidentification [159],[160],[163],[164],[165],[166],[167] is 

now very trendy research in computer vision. Imposing deep models and multiscale feature 

learnings make the system more authentic and exact to the original one. Furthermore, 3-D 

facial landmarks detection from video [161] is another interesting approach. A deep 

convolution network is applied for image segmentation [162],[168],[169],[173]. 

Sometimes extracting common objects from multiple images is essential. Intelligence 

surveillance is now a widespread area of research. Many more studies have been done in 

this area [170],[171],[172],[175], but we focused on sensor-based tracking systems except 

a camera. Thus, we move forward to the next step. 

2.2.2 Sensor-based Initiations 

Besides video cameras, many sensor-based applications were made to track a person in the 

real-world environment. Here we discuss these approaches with their prior technology and 

contributions. 

2.2.2.1 Infrared sensor-based approaches 

Infrared radiation was invented at the beginning of the eighteenth century by Sir FW 

Herschel, the inventor of planet Uranus. This radiation is applied for communication, 

distance measurements, etc. Now a sensor is developed to determine the properties 

foreground of it. Infrared sensor-based person tracking is new in concept and application. 

A Bayesian network-based person monitoring [45] by the infrared sensor was depicted in 

2005. This application was robust to environmental changes, and remote tracking was 

possible in close security surveillance. Some researchers used low-resolution thermal 

infrared (I.R.) sensors [2] to track a person in multimodal sensor setups. A low-cost I.R. 

sensor made the system computationally and operationally inexpensive and provided high 

accuracy. This combined system provided enhanced accuracy compared with stand-alone 

RGB camera-based tracking systems. 
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An infrared sensor setup is used to track a person, but it could extract human behaviors 

[46] by collecting long-edge data. They proposed a framework to compute persons' 

habitual behaviors from infrared sensor data. It is evident that to observe proper human 

behavior, needed long-term data. It is tough to track all the targets accurately in a low-cost 

network when targeted persons are more than one. A binary infrared sensor network [47] 

was proposed by Tao s. et al. to overcome the issue. They developed a soft tracking system 

and an algorithm for tracking multiple people simultaneously. Soft authentication by the 

infrared sensor was also used in several studies [48]. However, it is slightly different from 

complex authentication, which is strictly designed for security and applicable for many 

people tracking. Though the hard authentication is more accurate, it is relatively expensive 

(Camera) to install, and a used concern is needed before applying. The thermal infrared 

sensor was used for person tracking in many applications. Nonparametric background 

modeling combining visual and thermal spectrum data [3] pedestrian was detected earlier. 

Some neural network-based person tracking was also performed with I.R. sensors [56]. 

Several neural network models were tested for the analysis, and 1D-CNN [179] was found 

most performing over other networks.  

2.2.2.2 Thermal camera-based approaches 

Thermal images are captured by measuring reflected, transmitted, and emitted radiations 

from an object in an area. Because many sources can emit radiation, creating a thermal 

image from the environment is challenging. Thermal imaging is beneficially associated 

with point-based imaging. It can detect temperature differences in an area; thus, it is 

sometimes more applicable during some high-temperature regions. Person tracking precise 

detection using a thermal camera [49],[50],[51],[52] are now well-established mechanisms. 

Change detection or background subtraction [53] is a challenge in the thermal imaging 

system. It always needed a training period which is not existing for all purposes. There are 

two main ideas [54] of thermal imaging tracking systems. One is to track only warm objects 

against an excellent background. Another one is tracking in thermal imaging is different 

than ordinary grayscale imaging. Some research uses low-resolution thermal array sensors 

in indoor environments [55]. Apart from video cameras, it is also competent to identify 

persons' heat emissions without light. These applications are commonly used in elderly 

people support [57] division, quickly identifying them in dark rooms and tracking their 
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movements. ThermoSense [58], a thermal array sensor network, was invented to find the 

occupancy in the building. This network can track person movement, an outstanding 

initiative alternate to cameras. Thermal sensors did some other indoor sensing research. 

Basu et al. [59] used a thermal array sensor to track a group of people using the background 

subtraction method. Though many other sensor-based applications were proposed from 

time to time, we will focus on LiDAR-based research. The following section describes 

modern LiDAR-based object detection and tracking initiations. 

 

 2.3 LiDAR-based Tracking and detection approaches 

To find the moving trajectory of objects over time is known as tracking. Tracking and 

detection are always meant as two separate problems where tracking depends on detection. 

Object detection can be done individually or even combinedly. Objects or people can be 

tracked in different ways. It can be short or long-term as well as single or multi-sensor-

based tracking. Some systems can track single objects only while others cam multiple 

objects parallelly. In this study, we will try to find all types of tracking initiatives that were 

performed by LiDAR sensors. Here, LiDAR sensor types are another issue. Some 

applications that used 3D LiDAR sensors for their research used very few 2D LiDAR 

sensors. Here we first describe some contemporary studies of 3D LiDAR-based object 

tracking systems.  

2.3.1 3D LiDAR-based approaches 

Qian R. et al. [60] proposed an end-to-end framework for the pseudo-LiDAR system in a 

3D object detection mechanism. They showed a higher accuracy level in multimodal 

adjustments of LiDAR sensors with cameras in autonomous driving. Hybrid Voxel 

Network (HVNet) [61] is another point cloud-based 3D object detection method developed 

for driving. Their proposed network is one stage 3D object network that uses a 3D LiDAR 

sensor for object detection. It was evident that most of the recent LiDAR-based research is 

done for autonomous driving. A 3D LiDAR viewing [62], [177] is parallelly used with the 

camera set up to make the system more accurate. Person detection and even tracking 

systems are essential there.  
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Much recent research has been done on supervised detection. But unsupervised object 

detection is one of the vital research fields. Tian H. et al. [63] presented an unsupervised 

object detection with LiDAR clues. LiDAR-Aug [64] is a rendering-based augmentation 

framework that can detect 3D objects. Data augmentation is a fundamental issue in training 

neural networks for the expensive labeling cost. Sometimes occlusion problems badly 

influence the augmentation. To solve these drawbacks, they proposed a 3D LiDAR-based 

object detection method. This method can be used as a plug-and-play module with other 

3D object detection frameworks. Other LiDAR-based 3D detection modules, especially 

with autonomous driving research and Neural Network (N.N.) computational capabilities, 

are developed. LiDAR R-CNN [65] is a 3D object detector, a second-stage detector that 

can enhance present 3D detectors' performance. RSN: Range Sparse Net [66] is another 

3D object detector based on a LiDAR sensor, which is light in weight and computationally 

efficient. It can handle 60 frames per second on a 150 * 150 m range. To minimize the gap 

between image and LiDAR-based object detection, a model Pseudo-LiDAR from visual 

depth estimation [67] is proposed in the object detection mechanism. They artificially 

convert image-based depth maps into pseudo-LiDAR representations to create LiDAR 

signals. This overcomes the high expenses of 3D LiDAR sensors.  

Cross-modality research is always performed to improve the system's performance. Some 

research was also done to detect 3D objects and 3D point cloud data of LiDAR sensors 

[68]. A multimodal fusion for 3D Object detection by taking binocular images and 3D 

LiDAR images as an input. Some results were shown with KITTI [69] datasets and found 

sophisticated outcomes there. 3D point cloud semantic segmentation [70] was also 

introduced in a multi-projection fusion framework. It achieved enhanced segmentation 

benefits over a single projection system.  

Research focuses on person behavior analysis based on 3D LiDAR [71]. Keeping a person 

in the sensor view, they tried to follow the target person. This application is considered a 

practical application of caregiver facilities. It could automatically track older adults. Some 

applications were previously invented to detect a specific person, and some used 2D 

LiDAR and ESPAR antennas [75]. Using an antenna can see the targeted person smoothly 

even if they are occluded or out of the viewing angle of the LiDAR. Combining two 
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methods improves service robot efficiency—Fig. 2.2 shows an overview of person 

behavior tracking based on a 3D LiDAR sensor. 

 

  

 

 

 

 

 

Some other studies considered multiple 3D range sensors for person tracking in public 

spaces [76]. Overhead mounted sensor setup to get maximum coverage, and minimum 

occlusion improved the system's performance in practical use. Structured Light Cameras 

(Microsoft Kinect1 and Asus Xtion PRO2), Time-of-Flight Cameras (Panasonic D-IMager 

EKL3105), and Multilayer Laser Scanners (Velodyne HDL-32E) sensors were used in this 

experiment. Fig. 2.3 shows a practical overview of the overhead multisensory person 

tracking system. These systems can be installed in exhibitions, shopping malls, and even 

museums to track single or groups of people visiting together. A study [77] was performed 

to investigate the performance of the PointPillars [78] network, which is designed to 

interact with LiDAR data. By increasing the LiDAR sweeps, its performance was increased 

significantly in the 3D object detection mechanism.  

 

 

 

 

 

 

Fig. 2. 2 LiDAR-based person behavior tracking [207] 
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Autonomous driving is now a broad application of 3D LiDAR sensors. To model the actual 

map in 3 dimensions, LiDAR sensors, visual cameras, and depth sensors are widely used 

to model the accurate map in three dimensions. These modelings detect the images and 

track their livelihood trajectories in a 3D map. A comprehensive study was done on the 

performance of 10 contemporary 3D LiDAR sensors used for autonomous driving [79]. 

They analyzed the performance of different LiDAR sensors with detailed findings—

Velodyne HDL-64, HDL-32, Sick LMS151, Hokuyo UTM-30LX, URG-04LX, Pandar64, 

Pandar40p, etc. LiDAR sensors were considered to check their performance in different 

ways—table 2.1 shows the brief comparison of LiDAR sensors' performance [110] in 3D 

navigation.  

 

 

 

 

Fig. 2. 3 Overhead sensor setup for person tracking [207] 



21 
 

 

 Table 2. 1 Performance analysis of different LiDAR sensors used for 3D 

navigation [207] 
 

 

 

 

 

 

 

3D object detection is the primary key of different intelligent systems [81]. We analyzed 

many approaches to these. There are so many reviews that have also been done in this field. 

But LiDAR-based review was minimal, and most of the up-to-date works were not covered 

in many surveys. Wu y. et al. [80] meticulously crafted the topic and showed very modern 

methodologies in their study. A complete survey with 3D LiDAR-based object detection 

and profound neural network-based approaches was covered thoroughly. This review 

emphasizes the hardware and software revolutions over the periods. Some well-known 

datasets were analyzed in their study. There are several public datasets available for 

autonomous driving research. In table 2.2, we have shown some of these. Sometimes 

wearing acceleration sensors [82] was used for person detection in a natural environment. 

Multiple depth sensors (3D LiDAR, etc.) were used for position tracking. Finally, 

calculating acceleration from two separate sources identifies the sensor holder. Some 

embedded systems were developed with 3D LiDAR sensors for a person or object detection 

[83]. An object tracker (IMM-UKF-JPDAF based) was designed to detect and track with 

3D LiDAR point cloud classification. Service robots are performing simultaneously with 

the scanning. So online learning framework is badly essential there. Yan z. et al. [84] 

proposed online learning with 3D LiDAR-based tracking for person detection. An online 

retaining classifier iteratively learns by robots' provided data over time.  

 

3D LiDAR Visibility Miss % Average PPE % Return Avg. S.P. K.L. 

Div. 

HDL 32 Weak 2.40 60056 83.4 1.10∙104 

HDL 64 Weak 0.81 124296 86.3 2.68∙102 

OS1-16 Very weak 0 14696 91.9 2.00∙102 

OS1-64 Weak 0 57749 90.2 1.88∙103 

Pandar40p Usual 0 67687 94.0 4.42∙104 

Pandar64 Usual 0 108556 94.2 3.86∙103 

VLP 16 Usual 6.06 25551 88.7 3.07∙104 

VLP 32 Usual 2.59 50372 87.4 2.80∙104 

VLS 128 Excellent 5.93 220668 95.8 7.10∙102 
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Table 2. 2 Comparative analysis of LiDAR-based object detection datasets [207] 

 

 

 

 

 

 

 

 

 

 

 

 

There is much more research has been conducted on object detection using 3D LiDAR 

sensors [126],[127],[128],[129]. This research obviously could detect pedestrians as it 

could detect other objects. In the meantime, 2D LiDAR-based person detection was 

successfully developed in mobile robot applications [130], [131], [132], [133], [134], [135], 

[176]. In the subsequent section, we will discuss 2D LiDAR-based approaches.  

2.3.2 2D LiDAR-based approaches 

We found very few works on 2D LiDAR base person tracking. Because 2D scanning is 

less informative and it is tough to handle the fundamental data for advanced applications 

where ultimate accuracy is highly needed, 2D LiDAR-based applications are minimal. 

Oishi, S. et al. [72] developed a robot that can adaptively assist a precise person based on 

their behavior. A Finite State Machine (FSM) recognizes a person's actions. Here they used 

sets of 2D LiDAR sensors for scanning in multiple layers. Fig. 2.4 shows a schematic 

Dataset Name Released 

Year 

Release Authority Frames Classes 

A2D2 [111] 2020 Audi 40,000 38 

ApolloScape [112] 2020 Apollo 100K 6 

Argoverse [113] 2019 ARGO AI 324,000 113 

Berkeley [114] 2020 UCB 100M 10 

CityScapes [115] 2016 CityScapes 25000 30 

Comma2k19 [116] 2019 comma.ai 280h  

Google-Landmarks [117] 2018 Google 2M 30K 

Google-Landmarks-v2 [117] 2019 Google 5M 200K 

KITTI [69] 2012 KIT 4x83,000 19 

LeddarTech PixSet [118] 2021 LeddarTech 29K 97 

Level 5 Open Data [119] 2019 Lyft 55K 4 

nuScenes [120] 2019 Motional 1.44M 23 

Oxford Radar RobotCar [121] 2016 OxfordUni  100 

PandaSet [122] 2021 Hesai and Scale AI 48K 28 

Waymo Open [123] 2019 Waymo 200000 1000 

H3D Honda 3D [ 124] 2019 Honda 27K 8 
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diagram of a multi-layer LiDAR setup. It uses 2D-LiDAR sensors in its different layers to 

get the actual view of the target person in front of it. Some research fused multisensory 

data and demonstrated their outcome with enhanced accuracy. A video camera and a 2D 

LiDAR sensor were used parallelly [73] to detect a human and track mobile service robots. 

A multi-functional algorithm using the sequential Kalman filter implementation to track a 

person in a realistic environment, a sensor-based leg and camera-based face detection 

approach was fused. Besides humans, some research was performed to detect only moving 

objects and track them in a furnished living room [74]. Using only a laser range detector 

(LiDAR), they tried to detect an object. This system was computationally inexpensive, and 

power consumption was only 2% of the total.  

 

 

 

 

 

 

 

 

There are many onboard LiDAR-based people tracking systems. Tracking only moving 

legs by a 2D LiDAR sensor is always challenging due to occlusion. On the other hand, 2D 

sensors are cheap in cost and installation, and their processing is more effortless. PeTra 

[85], a convolutional neural network (CNN) based on person tracking, was invented with 

2D LiDAR sensors only. Its performance is quite good than Leg-Detector (L.D.) [86] in 

the robot operating system (ROS) [87] environment. Some research also proposed two 

sensor fusion architectures [88] for pedestrian detection. A 2D LiDAR sensor and a camera 

were used to get the signals and blended by a trainable fusion method. This combined 

method also provided better results. Some model-free applications [89] were developed to 

detect and track moving objects in autonomous driving applications. A 2D laser scanner 

was used to get the data where most of the applications were 3D scanning related. Many 

LiDAR: Layer 2 (Head Level) 

LiDAR: Layer 1 (Ankle Level) 

Fig. 2. 4 Multi-layer LiDAR setup for person sensing [207] 
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robotics applications deal with detecting and tracking moving objects (DATMO) [90] 

problems. A core algorithm was developed to handle 2D range finding and 3D range-

finding data. This research was a milestone in object detection and tracking. It could take 

around 100 objects simultaneously. Other analyses were performed to solve practical issues 

like traffic injuries and fatality. An obstacle motion tracking [91] by 2D LiDAR scanning 

module was developed there. To ensure the mobility of robotic navigation, it is always 

needed robust software which can detect, track, and follow a person automatically. Leigh 

A. et al. [92] developed a 2D LiDAR and camera-based people following indoor and 

outdoor mechanisms.  

Most contemporary research emphasized LiDAR-based detection, but a parallel camera 

implementation was performed in most cases. Even though these fusions enhance the 

system performance, its s computational complexities can be ignored. Hasan M. et al. [93] 

developed a simple 2D LiDAR-based ankle-level person tracking system that used only 

LiDAR data. They empirically crafted the motion history images (MHI) from numeric lidar 

values and enhanced their study for gait analysis. A density-based clustering algorithm was 

used to determine the ankle and the person moving on the plane. A Kalman filter was used 

for tracking the persons' movements. Here, LiDAR senor was placed in ankle position, and 

data are plotted on a blank image with 40 frames per second (fps) rate. A boundary-

removing technique was applied to remove unwanted data. A density-based algorithm 

[174]: DBSCAN was used for clustering the data as an ankle on the image. The distance 

threshold between ankles determined the ankles as a person. 

Finally, a Kalman filter tracking was applied to monitor the person moving on the plane. 

They enhanced their study in their subsequent analysis, where they developed a tracking 

mechanism by proposing two new algorithms: EDBSCAN and EOPTICS [94]. A more 

robust person tracking was presented in this updated study. They modified two well-known 

density-based algorithms, DBSCAN and OPTICS, with a modified parameter for LiDAR 

images. Here, clustering could be performed in more sophisticated ways to handle close 

anomalies and occlusion problems efficiently. Here the overall system performance 

increased remarkably compared with the previous one. In table 2.3, the most recent 

clustering approaches are described with recent precessions [94].  
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Table 2. 3 Comparison with existing Approaches and Precisions [94] 

 

 

 

 

 

 

 

2.4 Modern Research trends along with LiDAR sensors 

2.4.1 Initiatives based on 3D LiDAR  

Much research addressed gender and age classification from video data. But the 

performance of those research was not adequate. To process much data are challenging, 

especially on the internet. Deep CNN network-based age and gender classification [95] 

methods have been introduced in recent initiatives to deal with this problem. A shallow 

network is proposed to prevent the data overfitting problem and tested on the Adience 

benchmark, which outperformed. Most of the latest research was a video camera-based 

approach. Most cameras are installed in top positions in the video surveillance system to 

get the best viewing angle. By calibrating three parameters: camera height, focal length, 

and tilting angle, human size can be easily measured by a nonlinear regression model [96]. 

Human height also could be estimated from a single image [97]. With the empirical 

developments of deep learning schemes, some research was done to find a persons' height 

from his simple photos. 

Similarly, some research was also initiated to determine a person's size from their video 

[98]. The motion footage was given as an input with the external force of gravity. Color 

deep learning and 3D depth conversion [99] was also recently applied to estimate human 

height. Some research was done with straightforward calculations. Using hand-span 

Approach Cluster 

Threshold 

Precisions 

Euclidean Clustering [107] 0.5 m 64.5% 

DBSCAN [93] Adaptive 93.7% 

Depth Clustering [108] 10o 39.2% 

Run Clustering [109] ParamsSLR 51.7% 

Online Learning [102] Adaptive 89.8% 

EDBSCAN [94] Adaptive 93.9% 

EOPTICS [94] Adaptive 96.9% 
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measurements [100] even joint ratio of fingers [101], a persons' height can be estimated 

approximately.  

Nowadays, online learning is more popular and appropriate for detecting people. Yan Z. et 

al. proposed a 3D LiDAR-based detection method was proposed by Yan Z. et al. [102]. 

Some limitations prohibit RGB or RGB-D cameras from being outdoors, where LiDAR 

must be a good alternative. On the other hand, gait recognition is a recent research field 

that enabled us to recognize a person without close contact with the sensor. Yamada H. et 

al. [103] thought differently with 3D LiDAR sensor. LiDAR data with the long short-term 

memory-based network was one of the fundamental research topics. To the best of our 

knowledge, Benedek C. and his team [104] were the first researchers who initiated gait 

analysis with LiDAR data. They demonstrated 3D LiDAR-based gait analysis and activity 

identification in the surveillance system. Tu J. et al. [105] introduced a physically realizable 

adversarial example for LiDAR-based object detection. The system accuracy was also 

impressive compared with other initiatives.  

2.4.1.1 Deep Learning approaches 

With the emergence development of deep learning algorithms and sophisticated outcomes 

with these learning techniques, today's research achieves a new milestone. 3D LiDAR-

based initiatives based on deep learning can be categorized into two classes, largely: a one-

step detector and another one is two-step detector. Based on point cloud or voxels, one-

step detector [136],[137],[138],[139] uses backbone network to process. On the other hand, 

two-step detectors [140], [141], [142] create another bounding-box step to generate 

enhanced predictions. The deep learning-based simultaneous segmentation and detection 

method (SSADNet) [143] was another new autonomous driving approach that could 

recognize driving areas and obstacles. Based on a single neural network, it could perform 

segmentation and detection simultaneously. In some prior studies, U-Net [145] or FCN 

(Fully Convolutional Network) [144] was used for semantic segmentation. Eventually, 

RetinaNet [147], Faster-RCNN [146], or even YOLOv3[148] networks were frequently 

used for object detection. With the drastic advancements in DNN research PIXOR [149], 

RangeNet++ [150] even PointSeg [151] networks were used in the point cloud of LiDAR 

in object detection scenarios. Multi-Object Tracking [190], [194], [195], [196], [197], [200], 
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[201], [202] is another recent trend. Bilinear LSTM [188], VOT2014 [189], Byte Track 

[193], Siamese CNN [191],[192], etc. deep learning approaches are frequently using in 

tracking.  

2.4.2 Initiatives based on 2D LiDAR 

All the initiatives mentioned above were based on cameras or 3D LiDAR sensors. But 

Hasan M. et al. [106] estimated person property based on a 2D LiDAR setup. They used a 

deep neural network (ResNet) to train their data and measured person height, age, etc., 

from ankle-level LiDAR data. Besides this, there are a few initiatives that were done there 

in the very early stage [152], [153], [154]. These were manually operated tracking 

performed sequential scans. Some contemporary works [155], [156] replaced manual 

operations and improved detection quality in mass. Recent advances [157], [158] rebuilt 

DNN methods on range data by one-dimensional CNNs. To improve the detection 

performance of LiDAR scan, DR-SPAAM [134] detector was introduced. All these 

initiatives focused on more sustainable developments in LiDAR-based detections. The next 

era is multimodal sensor-based research, where LiDAR will play an enormous role.  

 

2.5 Conclusion 

There are so many surveys that have been done on contemporary issues of person tracking 

and detection. In this exponential growth of the research world, everything ought to become 

accessible and accurate. LiDAR plays a significant role there. We realized a lack of 

thorough study with LiDAR sensors. We provided a comprehensive survey on LiDAR-

based person detection, tracking precise identification. We focused on LiDAR-based 

initiatives but considered some recent camera-based detection and tracking studies. We 

discussed some deep learning studies also. We expect this survey will provide a graceful 

insight into LiDAR-based object detection, tracking even in recognition.  
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Chapter 3 

Tracking People using Ankle-Level 2D LiDAR for 

Gait Analysis  

 

 

 3.1 Introduction 

Person Tracking (PT) with a machine is a salient field in Human-Computer Interaction 

(HCI) [93]. Research on person tracking reached utmost approximations in recent years. It 

involves surface mapping, pointing persons' positions and consequent movements, 

differentiating these with other properties, and finally projecting these on the desired 

surface. Time series of individual position data enables us to analyze trajectory for many 

purposes (e.g., marketing). PT with 2D and 3D cameras play a significant role in practical 

applications. Real-time PT from a live video makes it more robust and usable in different 

scenarios. Some statistical models and their efficacies make the PT well accepted by all. 

Here video camera plays the role of data acquisition, and some of these can perform 

enhancement of that captured data. Recently, with the development of deep learning-based 

image processing, people detection and tracking performance using cameras are 

dramatically improved. However, when we consider using cameras everywhere in daily 

life, privacy issues cannot be ignored. In addition, some phenomena make it challenging 
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to use cameras in a particular situation, such as smoke, fog, etc. Furthermore, though low-

cost cameras (not only RGB cameras but also RGB-D cameras) are widely used, the 

computational cost of image processing is not the least. Besides, it may go to the apex using 

deep learning techniques, especially for many cameras for broad area surveillance.  

 

This research focuses on using a sensor that will not compromise privacy but enhance 

tracking efficiency. The main issue of tracking people in this sensor setup is how to 

discriminate individuals from the isolated observation of multiple ankles of multiple 

persons. To cope with these problems, we propose a new people tracking technique using 

2D LiDAR. Cost and real-time computational facility played the key influence behind this. 

To minimize the occlusions of pedestrians each other, we put 2D LiDAR at an ankle level 

and range the target area horizontally. Here, we proposed an avant-garde method to classify 

individuals using the time series data. Individual ankle trajectories were considered for 

movement detection. The well-known Euclidean nearest neighbor technique calculated 

distances between ankles. This approach helps determine the cluster of every pair of ankles 

as a person. We identified walking and running paths even if it goes very fast. This 

approach calculates the number of frames of every moving object and finally creates a 

video based on those frames. These videos can be further used for surveillance or any other 

use. Our method provides accurate and robust tracking when the target is walking or 

running. Experimental result shows the effectiveness of our proposed method.  

 

 3.2 Proposed Method  

We introduce a tracking method based on the LiDAR sensor. Our approach works in 

different environments. We have used a 2D lidar sensor for its lower price and 

computational effectiveness. We used the HOKUYO UMT30LX Lidar sensor in a plane 

ground surface for our experiment. We placed our LiDAR at ankle level and collected data 

in 270-degree directions. When people walk within the LiDAR sensor's range, it collects 

the actual position of the moving object and its distance from its position. We plotted the 

ankle positions of persons on the plane and tracked their movements. As shown in Fig. 3.1, 

a LiDAR is placed at the ankle level of a person and provides visual information to the 
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corresponding computer. In the first frame, white lines indicate the boundaries of the 

surface, i.e., walls. We then removed the frame's borders by background subtraction and 

showed only the ankle position on the surface. The green marked lines indicate the ankle 

position of a person. If more than one person appears before the sensor, it identifies the 

person. Distances between pixels of an ankle and between two ankles are measured and 

used for deciding the number of people moving in front of a sensor. An experimented 

threshold is used for determining a person in different circumstances. Here we used the 

Euclidian distance measurement approach for tracking persons.   

𝑑𝑖𝑠𝑡((𝑥𝑎, 𝑦𝑏), (𝑥𝑏 , 𝑦𝑏)) = √(((𝑥𝑎 − 𝑥𝑏)2 +  (𝑦𝑎 − 𝑦𝑏)2))                        (3.1) 

Where dist is a function for calculating the distance between pixel (xa, ya) and (xb, yb) of 

an ankle's position then between all appeared ankles on the plane.  

        (a)                                                   (b)                                               (c) 

 

Depending on the positional relationship with the sensor, sometimes one ankle may 

occlude another one. But this situation does not influence the decision. Using cluster-based 

Fig. 3. 1 (a) Lidar sensor placed on ankle level and getting data (b) Persons’ ankle 

movements, and standing positions are showed and (c) Tracking people with a 

handler marker sign ‘|’ and shows his/her moving directions. [93] 
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techniques does not assume that both feet are visible. The system only calculates the 

distance between ankles that appeared in the LiDAR field of view. If no other ankle is 

found, the system identifies that only one person is walking on the floor. If the distance is 

larger than the threshold, our system tracks the ankles as a separate person even though 

one ankle position is found. Thus, the system overcomes the obscure disappearance of feet 

on the floor. Here Fig. 3.2 shows that our system identifies the ankles with the 

disappearance. In two frames before, it calculated the ankle distance and found that it is 

more than the maximum threshold, and there are two persons here. But in one frame, before 

the distance became smaller, it counted that this was within the range, and only one person 

was there. Finally, in the current frame, it finds that another occludes one ankle, and 

without misclassification, it shows that there is one person in the frame.  

 

Fig. 3. 2 (a) Ankles are in different positions, and it goes in the overlapping 

position, (b) frame-by-frame detection [93] 
  

 3.3 Experimental Results 

There are no well-known data sets for 2D LiDAR-based person tracking and gait analysis. 

We prepared our own data sets for the experiments and appraised our method on this 

benchmark, with 35 samples with 27 female and eight male participants. The standard 

contains two scenarios: normal and highly crowded. We ensure that we evaluate the 

accomplishment of our proposals on the validation data set. We used the Kalman filter to 

predict for tracking individuals. Here our system can track a person even if only one ankle 

has appeared on the frame.  

     (a)                                                                 (b) 
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Fig. 3. 3 Kalman Filter-based movements in different circumstances; Upper Row: 

Ankle Positions on the frame; Lower Row: Direction of the movements [93] 
 

In Fig. 3.3, we see that our system can accurately predict the movements of different 

persons under different criteria. Individual walking is shown in the first upper frame, and 

the corresponding lower frame shows that person is going far from LiDAR. In the 2nd frame, 

one person is running in different directions. The 3rd, 4th, and 5th frames show other 

scenarios, and corresponding lower frames show their positions tracked by LiDAR using 

the Kalman filter technique, respectively.  
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Table 3. 1 Experimental data and its performance [93] 
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Table 3.1 shows different persons and their recorded videos for our experimental 

evaluation with different gestures. We categorized our experiments in five different ways. 

Here individual walking, running, only ankle movement, and combined walking can be 

tracked with absolute confidence. We have a few observations on a combined running 

scenario. We considered four people and their captured LiDAR videos for performance 

evaluation. For validation, we considered about 4 seconds of videos of every person in 

different gestures, where from each video, we evaluated 42-51 frames. This system 

performs relatively flat in different running situations from the above table. But compared 

with other camera-based systems, the performance is impressive. A gait analysis and 

person height estimation based on ankle movements is also performed on the dataset, and 

we interestingly found some consequences with walking and running patterns.  

 

 3.4 Conclusion  

In the cyber world, a person is being tracked every time, everywhere. But when the question 

is privacy, people want space from the eyes around them, even if it is in a real or virtual 

world. On the other hand, questions about surveillance cannot be ignored. Here LiDAR 

plays as a kernel of these issues. Without disclosing a person's identity, our approach tracks 

a person and identifies their movements. Now our system is ready for commercial use. We 

will enhance our study to estimate the property of human activities using LiDAR. We are 

walking on Gait analysis using Ankle level 2D LiDAR. We will integrate the tracking and 

analysis into one system in the future. 

 

 

 

 

 

 

 

 



34 
 

 

 

 

Chapter 4 

Person Tracking Using Ankle-Level LiDAR Based 

on Enhanced DBSCAN and OPTICS 

 

 

 

4.1 Introduction 

Nowadays, people are under surveillance in their offices, on the roads even at home [94]. 

To realize a safe and secure society protecting civilians from different offenses, we must 

keep everything under supervision. On the other hand, people claim their privacy and 

secrecy because surveillance videos are possibly leaked. Services in public places like 

airports, stations, museums, and super-shops require people trajectories to provide higher 

quality services. Our 2D LiDAR-based tracking system can track individuals robustly and 

accurately. When individual identification is not a concern but only tracking a person is 

necessary, our system plays a vital role. A wide range of views and low computational costs 

are also the benefits of 2D LiDAR-based tracking. Using video cameras, 3D LiDAR, and 

deep neural networks (DNN) makes the system pricey in cost and time. This application is 

highly applicable for emergencies, especially rescue systems in natural disasters. The 2D 

LiDAR sensor may be more worthy over RGB/RGB-D cameras in terms of the fast 

computation and robustness against occlusion. 

Video-based person tracking is a widespread technology accepted broadly in different 

applications. It is necessary to discriminate somehow data points belonging to one person 
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to track individuals. We replaced cameras with 2D LiDAR and tried to find an alternative. 

We put our 2D LiDAR at the lower leg (ankle) level and gathered distance information in 

270-degree headings. We plot the distance data on the 2D image plane like a top view (we 

call this image a "LiDAR image"). Using the background subtraction technique, the system 

can eliminate structural information such as walls or stable objects. Finally, we get only 

the position data of moving objects drawn on the LiDAR image. Generally, the method 

takes two steps: the data points are clustered for each ankle, and two ankles are paired for 

one person. In other words, we measured the distance between the pixels to create clusters 

to decide on an ankle. The distance between two ankles is then calculated to discriminate 

between individuals. In this approach, there are several difficulties. Firstly, two-step 

clustering is a time-consuming process. Processing speed is a significant factor for 

tracking; Secondly, finding multiple persons' ankles makes it challenging to recognize 

which two ankles belong to one person in the multiple-person context. In constant, our 

proposed method can identify individuals using only one-step clustering. Usually, two 

ankles belonging to one person pass each other closely while walking. Therefore, we make 

motion history images from 2D LiDAR data (time series of distance data plotted on one 

image), including the frame closely passing two ankles. 

Then we apply one-step clustering to discriminate against individuals. For this data 

clustering, we previously used traditional clustering algorithms. Here, we have used 

density-based algorithms. Density-based clustering tremendously influences finding 

clusters with random contours and easy noise cancellation techniques. Another significant 

advantage of the density-based algorithm is not to set several clusters previously. It makes 

clusters based on data density. We modified our system's two well-known density-based 

algorithms, DBSCAN and OPTICS, by considering the maxPts parameter. This 

modification makes these algorithms more robust for person tracking. Interestingly, these 

enhanced algorithms' time complexities are as previous, and performance increased with a 

considerable amount of time. 
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 Figure 4.1 depicts the block diagram of our LiDAR-based person tracking. Three 

individual sections work together to track a person. The first section is sensing. A 2D 

LiDAR sensor is used for getting distance data. These distance data of a particular time are 

plotted on an image (we call this a "frame"). We applied a boundary-removing technique 

to remove unwanted data from the sensing image. Ankles are traced from motion history 

images. After getting ankle positions in the frame, we applied our modified clustering 

algorithm to track a person accurately. Here, the Kalman filter is used for tracking the 

person. Our primary focus in this study is to find a sophisticated person tracking system 

using 2D LiDAR data. We included two density-based algorithms separately to increase 

the system accuracy and showed that enhanced algorithms provide more accurate tracking 

results. Either EDBSCAN or EOPTICS can be used for our clustering purpose. Both 

algorithms have a better effect than others, though EOPTICS performs better here. This 

study will also help find clustering algorithms in time series 2D LiDAR data processing. 

 

 

 

 

Fig. 4. 1 Block Diagram of LiDAR-based Person Tracking [94] 
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4.2 Methodology 

Tracking a person is always a difficult task. How to track and where to track is a vital 

question. Tracking based on only LiDAR sensors is more complex than using video 

cameras. But the mechanism behind LiDAR is relatively easy. Glow a little light from a 

laser beam at a surface and calculate its total travel time to return to the sender. Hence the 

distance calculation can be  

𝐷 =  
𝑇 ∗ 𝑉

2
 , 𝑊ℎ𝑒𝑟𝑒 𝑇 = 𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑇𝑟𝑎𝑣𝑒𝑙, 𝑉 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡             (4.1) 

Tracking a person is a critical decision about where to place the sensor. Hence, establishing 

a LiDAR sensor in an ankle position can be the right solution. Because LiDAR can track 

every ankle, which will help to determine walking paths. Here, it can avoid people's body 

occlusion and other applications. The mobile robot usually puts LiDAR at ankle level 

because of obstacle detection. 

It is challenging to track a person independently. When multiple people walk on a surface, 

close ankle positions may misclassify. Figure 4.2(a) shows an apparent description of 2D 

LiDAR sensing. It provides horizontal distances of moving ankles in X and Y coordinates 

relative to their position. These distance values are plotted on a frame, and we can get deals, 

as shown in figure 4.2(b). An individual clustering approach of these distance values is 

performed to decide on an ankle, and two pairwise ankles make a person chronologically. 

Figure 4.2 (b) shows that some people are walking on a plane. In figure 4.2 (c), red-marked 

circles indicate a person where two closed ankles are acted like a person. The fourth figure 

calculates the cluster differently. This is an anomaly of clustering and occurs 

misclassification.  
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Sensing data from LiDAR and its better classifications was our primary objective. We 

repeatedly placed the sensor in different positions from 10 to 200 cm. Usually, human leg 

lengths vary from 0 to 100 cm. We put our LiDAR sensor at 20 cm height to get these data 

and significant influences. We see that this height provides the most accurate data for 

tracking. We faced a deadfall in a group movement with fantastic accuracy over single 

pedestrian movements. Which ankle belongs to which circle? Taking this decision was 

troublesome indeed. We repeatedly changed cluster thresholds of traditional clustering 

approaches, but problems persisted. We introduced a state-of-the-art tracking method based 

on density-based clustering for better approximation and accuracy. Here we can solve 

wrong clustering scenarios.  

 

 

 

 

 

 

 

Fig. 4. 2 (a) Different distance values of ankles (b) LiDAR-based ankle 

positions on the frame (c) Considering close ankles as a person (d) Ankles in 

different orientations make a cluster. [94] 
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4.2.1 Sensing 

 

 

We used the HOKUYO UMT30LX LiDAR sensor for data acquisition. We keep our sensor 

static for our experiments and consider objects moving. Here objects refer to the pedestrian. 

In the above picture (Fig. 4.3), we held our sensor in an ankle position and captured time-

series video data using LiDAR. These data were being stored for further surveillance. We 

applied some preprocessing techniques to make the data more robust and accurate. In the 

second part of the picture, a LiDAR-based image is placed with a white marked surface 

boundary. Here centered white marked dots show the ankle positions of a person in a 

specific frame. We tried to remove the white background from captured images. It helped 

us handle only the frame's ankle positions without unwanted noise. We applied the 

background subtraction method to eliminate boundaries. After that, we got only the ankles 

marked frames of every particular moment. Sequences of those frames created a LiDAR-

based video.  

Feature extraction from preprocessed data is another big concern in this research. We 

considered sequential frames for feature selection. Every chronological data represents 

every ankle position on the frame. Movements of an ankle and two ankles of a person were 

considered as a person. But critical situations always appear in data sensing. Occlusion, 

very fast-moving ankles, and omnidirectional movements of a pedestrian all these 

Fig. 4. 3 Image sensing using LiDAR sensor and preprocessing [94] 
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challenges make this study more complicated and troublesome. To cope with these 

shortcomings and make the system more capable of time and calculation, we thought about 

using a second LiDAR sensor in another direction on the plane. Using another sensor 

makes the system inefficient and causes a higher installation cost. We changed our 

experimental architecture and focused on a single sensor-based diagram. Here we 

emphasized making a vigorous development of algorithms that can handle all these 

deficiencies.  

4.2.2 Clustering 

The next section of this research is to cluster the data to handle all critical scenarios. We 

consider density-based algorithms. Density-based clustering can find random-shape 

clusters and also can manage noises. In density-based clustering approaches, clusters are 

created according to dense areas distinct from sparse regions. These algorithms work on 

data density. Here no previous assumption is needed. Clusters are made based on data 

density. DBSCAN is one of the popular density-based clustering algorithms we used in our 

research. We also applied the OPTICS algorithm in this research. Both algorithms 

performed very well on person tracking. Despite the many practical benefits of these two 

algorithms, still, some constraints must be fixed. We tried to solve these issues and 

proposed modifying these two algorithms. Enhanced-DBSCAN and Enhanced-OPTICS 

algorithms are the transformation of traditional algorithms but can perform better on 

LiDAR-based tracking. 

4.2.2.1 Enhanced (E) DBSCAN 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is devised to 

locate non-sphere-shaped clusters. Two specific parameters: first, radius ϵ, a precise 

distance that defines the neighborhood, and the second one is the minimum number of 

points (minPts) that are considered as neighbor points, determine the dense neighborhood 

of DBSCAN. Figure 4.4 shows DBSCAN mechanisms. 
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Core point: Any data point is specified as a core point if this has minimum data points 

(minPts) within its radius €. 

Border point: Any point is specified as a border point if there are fewer data points than 

the minimum number but has at least one core point within the range €.  

Outliers: If a data point is neither a core point nor a border point will be considered an 

outlier. Sometimes outliers are called noise.   

DBSCAN working procedures: a) Categorize all data points as Core data points, border 

points, and outliers. b) A connectivity graph is formed according to core data points. Here, 

consecutive core points are linked if they are within the radius € of another. c). Select 

connected elements that are associated with one another within the range. d) Designate all 

border points to their corresponding components, where it fits best. e) Ignore all 

uncorrelated outliers. f) Get the Desired cluster.   

DBSCAN is an exciting development to make a cluster based on LiDAR data. But 

DBSCAN still faces some limitations that degrade tracking performance to make a robust 

tracking system. Selecting initial parameters (ϵ, minPts) is one drawback of this algorithm. 

But it has a high computational cost of O(n2), which affects real-time computations. 

Compared with other shortcomings of ordinary hierarchical algorithms, DBSCAN is a 

Fig. 4. 4 DBSCAN mechanism 
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better-performing algorithm, especially in LiDAR data processing. Here to track an ankle, 

we successfully set its initial parameters that work without disappointment in most cases. 

Furthermore, we used a LiDAR sensor and applied background subtraction, reducing data 

congestion and processing. So, our system was rated and functional with real-time 

pedestrian tracking.  

We faced another difficulty in using DBSCAN. When multiple people are walking on the 

surface, their ankles come nearer. As we described, DBSCAN creates clusters based on 

minPts and ϵ, ankles of different persons come so closer that the difference between two 

ankles of other people seems like a single person's ankle, where the difference value is 

lower than the radius. Here, DBSCAN fails. It creates a cluster with all closer ankles within 

its range, even if it belongs to different persons. Changing the thresholds of the radius may 

solve the problem. But in a practical application, the radius cannot be altered based on 

crowd size and movements. So, we must refrain from the structure of DBSCAN that best 

fits our application and solve this drawback of data overfitting.  

From the images (Fig. 4.5), we can get a clear idea about the shortcomings of DBSCAN. 

The left topmost image shows different ankle positions on the frame. The corresponding 

lowermost image creates a cluster based on DBSCAN parameter minPts and radius ϵ. Here 

we set our parameters as minPts = 20 and ϵ = 900, which means DBSCAN will create a 

cluster if it gets at least 20 points within the radius ϵ and determined as a person. We see 

four persons walking on the plane from the first image, but the corresponding lowermost 

image detects it 5. Here fifth person's two ankles distance is more significant than our 

threshold ϵ, but every ankle satisfies the condition of being a cluster that makes two clusters 

and shows as two persons. Two frames later, in the second figure of the top row, it 

recalculates the distances, creates four clusters, and shows the corresponding lowermost 

image. In the third frame of the top row, persons come closer two frames later. Here their 

ankles are occluded by one another. In this situation, the ankle distance between two or 

more persons comes lower than ϵ, which creates a single cluster, an example of data 

overfitting. The last image shows two persons' results in the second row. This is a drawback 

of the straight use of DBSCAN.  
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We set the third parameter for the DBSCAN algorithm to solve these issues. We consider 

maximum points (maxPts) and two previous parameters (minPts and ϵ). Setting this 

parameter can quickly reduce data overfitting and fixed radius problems. Suppose 10 points 

can create an ankle; then, at least 20 points will be needed to develop a cluster to be a 

person. Then minPts of DBSCAN can be 20. Again, we can set the distance ϵ between two 

points using Euclidean distance as 900 units. If four ankles of two people come closer and 

their points distance lies within 900 units, then previous DBSCAN considers these as a 

single cluster. DBSCAN thinks about minimum data by which it can create a cluster. Here 

there is no obligation for maximum data. But LiDAR-based tracking fails in this concept. 

If we set maxPts, another parameter, like 50, this DBSCAN can create a cluster of data 

points within 20 to 50. As less than 20 points will not make a cluster parallelly, it will also 

discard the cluster if it goes a maximum of 50. Adopting this parameter can solve the data 

overfitting problem. If more than two ankles come closer and their combined number of 

points exceeds maxPts, Enhanced DBSCAN (EDBSCAN) will not accept this cluster. 

Fig. 4. 5 The uppermost images show an ankle position on the 

frame—lowermost images pointing persons with the handler [94] 
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EDBSCAN discards this cluster immediately. But there is still another problem: creating 

clusters again with its overfitted data. Here EDBSCAN changes its radius ϵ immediately. 

It decreases its radius significantly and finds clusters with discarded points, not in the whole 

dataset. This step will continue until the overfitting problem is solved. Here minPts and 

maxPts values will remain the same; the only radius decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 4.6, within the radius ϵ, there are so many points within the circle. EDBSCAN 

will discard this cluster as it has more data points than maxPts. This method justifies the 

concept that more than one person walks in front of the LiDAR sensor whose ankles come 

closer. Here the bottleneck problem of traditional DBSCAN can be solved by our proposed 

Enhanced DBSCAN. Now another proposed portion of EDBSCAN is varied radius 

selection. As the initial radius selection creates a data overfitting problem, we can reduce 

the radius with a significant amount where minPts and maxPts parameters will be the same 

as previously. A person can be identified again in a crowded situation. In figure 4.7, radius 

ϵ is reduced to ϵ'; now, it can find a new cluster with initial minPts 20 and maxPts 50, which 

will see those clusters that can satisfy the condition. Here though, the ankles of different 

persons are so close that there is a chance of misclassification, but a reduced radius can 

quickly solve the issue. Only very close points will make a cluster.  

 

Fig. 4. 6 Enhanced DBSCAN (EDBSCAN) mechanism [94] 
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We can also handle false clustering problems by setting max point (maxPts) parameters in 

DBSCAN. Suppose there is a moving object on the plane rather than an ankle. If it creates 

with required minPts and ϵ, traditional DBSCAN will create a cluster as a person moves 

on the plane. Our proposed maxPts parameter can handle it easily. It produces clusters 

based on motion history images. It will discard all false clusters if it exceeds maxPts and 

does not appear on consecutive images. 

 

 

Fig. 4. 7 Reduced Radius of EDBSCAN [94] 

Fig. 4. 8 Anomaly in tracking without using maxPts [94] 
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Suppose in the above figure 4.8; there are four frames of a moment of a person walking in 

front of the LiDAR sensor. In the first frame, this is LiDAR data captured by the sensor. 

The second frame shows a motion history image of that moment. We see that only one 

person is walking on the frame from the previous frames. When conventional DBSCAN 

was used to track a person, an anomaly in tracking was shown in the third frame. But due 

to garbage data and false moving of objects, DBSCAN detects another two persons on the 

frame. When using the maxPts parameter with value 300, our EDBSCAN removed 

erroneous classification and showed only one person in the frame as original data. Table 

4.1 shows the modified algorithm of EDBSCAN.  

Table 4. 1 EDBSCAN Algorithm 
 

Input: Motion History Image I, Radius €, Minimum Points minPts, Maximum Points maxPts 

Output: Cluster CL 

1  Set CL:= 0 and queue Q:= 0 for the points that need to be checked 

2  ∀ points Pt on the image I, where Pti ϵ I, and i=1,2,….n; do 

3      label all points as core border and outliers.  

4      eliminate all outliers,  

5 if Pti is treated then 

6        continue 

7  end 

8     ∀ core points Ptc, those are not yet treated 

9    set a new temporary cluster Qi with point Ptc 

10         measure neighboring distance Di ((xa, ya), (xb, yb)) = √((xa − xb)2 + (ya − yb)2 )    

             from point Ptc 

11  if Di <= € then 

12   add all neighboring points Pti to Qi 

13   n:= count Pti 

14  end 

15 end    

16  if n >= minPts and n <= maxPts then 

17   add temp: Qi to clust: CLi 

18   ∀ Pti ϵ Qi do 

19    assign Pti := treated 

20   end 

21   set Q:= 0 

22  end 

23 if n>maxPts then 

24  reduce Radius € by unit amount 

25  repeat step10 to 22 

26 end 

27  end 

28  Return CL 

 

 

 

 



47 
 

4.2.2.2 Enhanced (E) OPTICS 

OPTICS (Ordering Points to Identify Cluster Structure) is close to DBSCAN but refers to 

another procedure. This new approach is based on data density to make a cluster on spatial 

data. When data density varies, DBSCAN has a weak performance on data for making 

clustering. OPTICS addresses this drawback and can create profound clusters with 

differing densities. It works like the previous one in that all points in the input data are 

ordered as core points, border points, and outliers. OPTICS also works with two input 

parameters:  maximum distance to be considered, radius ϵ, and a minimum number of 

points to create a cluster, minPts. Some definitions can be used for making clustering as: 

Core Distance: A core distance is the minimum value of radius €, which determines 

whether a point is a core point. The core distance cannot be calculated if a point is not a 

core point. Radius € and core distance are the same if any core point has exactly minPts 

data. But core distance may be less than radius € if any core point has more than minPts 

values as its neighbor and within the radius. Suppose from figure 4.9(a); a point Q needs a 

minimum of 6 minPts within its radius of € 7mm to become a core point. But within a 4mm 

distance point, Q has six minimum points as its neighbor. So, point Q is a core point with 

a core distance of 4mm and a radius of 7 mm.  

 

Reachability Distance: A distance Rd is said to be reachability distance if it calculates a 

distance between two core points Q and S. Here, the maximum value between a core 

Fig. 4. 9 (a) Core Distance, (b) Reachability Distance 



48 
 

distance of point Q and the straight distance between Q and S will be considered as a 

reachability distance. Suppose in figure 4.9(b) a point S has a plane distance of 3mm from 

core point Q. Here core distance of point Q is 4 mm. Now reachability distance Rd between 

core points Q and S will be the maximum value between a plain distance of these points 

and core distance. So, it is 4mm. The reachability distance Rd between core points Q and S 

can be measured as: 

𝑅𝑑 = max{𝐷𝑖𝑠𝑡(𝑄, 𝑆), 𝐶𝑜𝑟𝑒 𝐷𝑖𝑠𝑡(𝑄)}             (4.2)  

 

The OPTICS algorithm aims to group data into significant subclasses as part of an 

experimental process to understand data's inner relation. Furthermore, this approach can 

also be applied as a preprocessing phase of other algorithms—figure 4.10 shows the 

traditional OPTICS mechanism principle. 

 

OPTICS does not create a data set clustering. It provides cluster ordering. This is a linear 

directory of items and denotes density-based grouping of data. Here it does not provoke 

users to give a density threshold. OPTICS follows a precise ordering of objects or points 

for concurrent clustering. Based on preserving orders, OPTICS selects density-reachable 

Fig. 4. 10 Principle of Traditional OPTICS 
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objects related to the lowest radius to finish the clusters with higher density (lower radius). 

The database preserves the appropriate reachability-distance and core distance for every 

item. To produce the ordered output OPTICS, maintain a list named OrderSeeds. All items 

in OrderSeeds are preserved based on the shortest reachability distance as of their 

corresponding nearest core objects. 

OPTICS works on the same cluster, which can find sub-clusters within the cluster. This 

approach can determine the inner trends of clusters within the central cluster. We have 

proposed the development of OPTICS as Enhanced OPTICS named EOPTICS, where 

another parameter is applied as maximum data points named maxPts along with previous 

minPts and Radius ϵ. The idea is exciting and aligned with our practical application, 

LiDAR-based tracking. To make a cluster data point should be within the minPts, maxPts, 

and radius ϵ. Our approach is to create a density-based cluster that does not exceed maxPts 

with its data point. The remaining process will be the same as OPTICS. Here it will check 

cluster density. This approach is a clear development and significant modification of 

OPTICS. Here highly dense areas where more than one people's ankles come closer and 

traditional OPTICS cluster creates a single cluster with all data points that can be ignored. 

Now enhancement of OPTICS has another significant benefit. If several points exceed 

maxPts, our algorithm discards the outer cluster, which is the main cluster. The inner 

clusters based on core distances and reachability distance will be calculated here. These 

internal clusters will help to determine the ankle's positions on the plane. Our EOPTICS 

then reduces radius ϵ significantly and computes clusters again. Inner clusters will also be 

calculated to find the associativity of data within the main cluster. This approach will help 

to find correlated subclusters that imply a person on the plane. 
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In this figure 4.11, we see varied radius and clusters with different sub-clusters. Suppose 

initially Radius size was €a. It creates a density-based cluster with four inner sub-clusters, 

which means four core points have a minimum number of minPts that satisfy the EOPTICS 

criteria. If this cluster exceeds the maximum bound of the maxPts parameter, then 

EOPTICS reduces its parameter and assigns a value €b. With this new radius, EOPTICS 

tries to form a cluster with minPts and maxPts parameters. Concurrently it finds 

reachability order with inner clusters. If it fail it reduces its radius again as €c and calculates 

again. This process will continue until we get desired density cluster with minPts and 

maxPts. Internal subclusters show data affinity towards the cluster. This is an extensive 

modification over DBSCAN. In our application, misclassification can be handled with this 

concept. When many peoples are walking together, we can handle misfit data easily. Our 

imposed maxPts limit the abnormal cluster size. Then reducing the radius will allow 

finding a cluster again and again until we get the desired cluster. Here Inner subcluster 

helps to track ankle positions and their associativity corresponding to a person. Ordinary 

DBSCAN and OPTICS create a cluster based on radius and minPts parameters. Here varied 

density of data cannot be handled accurately. Highly dense data and loosely dense data 

cannot be tracked in the same way. EOPTICS nicely manages this issue. There is no 

pressure to create a single cluster with different dense data here. Our modifications give a 

sophisticated solution over these two well-known algorithms—table 4.2 shows Enhanced 

OPTICS (EOPTICS) algorithm.  

Fig. 4. 11 Sample run of EOPTICS with varied reachability plot 
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Table 4. 2 EOPTICS Algorithm 
 

Input: Motion History Image I, Radius €, Minimum Points minPts, Maximum Points maxPts 

Output: Cluster CL, Mi 

1  Set CL:= 0 and queue Q:= 0 for the points that need to be checked 

2  for all points Pt on the image I, where Pti ϵ I, and i=1,2,….n; do 

3             Pt.Reachability_dist:= Unspecified 

4        for all unprocessed points Pt on the image I, where Pti ϵ I, and i=1,2,….n; do  

5                      label all points as core, border, and outliers.  

6                       N:=count_neighbors(Pt, €) 

7                      treat Pt as processed 

8           if Pti is treated then 

9                 continue 

10           end 

11                     if  core_distance(Pt, €. minPts, maxPts) != undefined then 

12                                  OrderSeeds = empty Queue 

13                                 Update (N, Pt, OrderSeeds, €, minPts, maxPts) 

14                      end 

15             for all core points Ptc, those are not yet treated 

16               set a new temporary cluster Qi with point Ptc 

17                        measure neighboring distance from point Ptc 

18               if Di <= € then 

19        add all neighboring points Pti to Qi 

20         N:= count Pti  

21                               Mi:= count Ptc 

22               end 

23         end    

24               if N >= minPts and N <= maxPts then 

25        add temp: Qi to clust: CLi 

26         for all Pti ϵ Qi do 

27    assign Pti := treated 

28         end 

29          set Q:= 0 

30                end 

31           end 

32                          if CL:= =1 then 

33                               if Mi>1 then 

34                                   remove CL 

35                                   Set CL:=Mi 

36                               end 

37                         end 

38            if N>maxPts then 

39  reduce Radius € by unit amount 

40  repeat step1 to 42 

41            end 

42 end 

43  Return CL, Mi 
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In all cases, cluster parameters will be calculated based on some critical criteria- 

a) If the cluster radius creates only one cluster, it will calculate the core distance and 

find subclusters. If there is more than one sub-cluster, it will discard the outer main 

subcluster and consider inner sub-clusters as the main cluster. If only a few clusters 

were created with very few minPts, it will increase its radius ϵ and recalculate clusters 

again. 

b) If for n minPts EOPTICS creates m cluster where 𝑚 ≥
𝐷

2
 then discard the cluster and 

recalculate minPts as 𝑚𝑖𝑛𝑃𝑡𝑠 = 2 ∗ 𝑚𝑖𝑛𝑃𝑡𝑠 < 𝑚𝑎𝑥𝑃𝑡𝑠. The process will continue 

until 𝑚 <
𝐷

2
 Where D is data points.   

c) If there is no cluster found with the radius ϵ, EOPTICS increases ϵ and tries to 

calculate the cluster. If more than one cluster is found, then it will keep it; discard 

otherwise. 

In figure 4.12, we can see the traditional approaches of the EOPTICS algorithm. In the 

left picture, we see a certain frame where four people are moving in front of the LiDAR 

sensor. This is close to OPTICS. It gets ankle positions from the sensor and makes these 

clusters. Kalman filter-based tracking tracks all these persons based on data. Parameter 

maxPts setting is a heuristic process. It depends on crowd size and frequency on the 

surface. For our experiments, we varied this from 50 to 300 points. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 12 EOPTICS with LiDAR data; a) Ankle Positions in 

front of the sensor, b) Kalman filter-based tracking [94] 
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A moving direction is also shown in which direction they are moving. One frame later, one 

ankle of a person goes out of range of the sensor, and two people come closer than their 

ankle's distance lies within the scope of our radius. Ordinary OPTICS creates only two 

clusters here. One cluster is omitted because of a shortage of minPts parameters. Here only 

one ankle cannot fulfill minPts requirements. The second cluster was created with no 

anomalies that show ID 275 in figure 4.13 (b). The critical condition appeared in the next 

section. Here two persons come closer. In the previous frame, they have identified 

accurately with ID 267 and 278. But ordinary OPTICS created only one cluster 267 and 

showed it as a single person. This is the shortcoming of OPTICS.  

 

 

 

 

 

 

 

 

 

 

 

 

Our proposed EOPTICS plays a very significant role here with this inadequacy. In figure 

4.14, we see a very substantial enhancement over OPTICS; EOPTICS gave 3 clusters 

where the Kalman filter provides three persons on the frame. The second cluster was 

created as previously. For the same reason, OPTICS rejected one cluster here; EOPTICS 

rejected it for the same that the data points are less than one parameter minPts.  

 

 

 

 

Fig. 4. 13 OPTICS; a) one frame later, ankle positions, b) 

Corresponding Kalman based tracking [94] 
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Here the data points lie within our range greater than and less than minPts and maxPts, 

respectively. EOPTICS revised the third cluster than OPTICS. When OPTICS created only 

a single cluster with two person's ankle points, EOPTICS denied making this a single 

cluster. Here the idea is, it counts minPts as well as maxPts. In this situation, data points 

satisfy the minPts condition but have more data points than maxPts. As conditions were 

dissatisfied, EOPTICS stopped creating a cluster. It works with its next phase. It reduced 

its radius ϵ and tried to develop clusters again only with these sorted data. After reducing 

ϵ, only relevant ankle points satisfy all the conditions and create two separate clusters. In 

the right-side figure, handlers 267 and 278 show these. 

4.2.3 Tracking 

The next step of our research is tracking. The Kalman filter tracks the gravity point of the 

cluster. A forecast equation and a revised equation are the base of the Kalman Filter (KF). 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡, 𝑭(𝑛) = 𝑿𝑭(𝑛 − 1) + 𝑺(𝑛 − 1) 

 𝑅𝑒𝑣𝑖𝑠𝑒, 𝑹(𝑛) = 𝒀𝑭(𝑛) + 𝑴(𝑛)                  (4.3)        

Where F(n) and R(n) are forecasting estimation and revised measurement variables, X and 

Y are State-Transition-Matrix and Measurement matrices, respectively. S represents system 

noise, and M represents measurement noise. Input motion history images are taken as input, 

and KF tries to forecast it. If it can detect, then forward it to the revised section. If any 

revision is needed, it again feedbacks it to the forecast section. This process will continue 

until the desired tracking is found. Finally, a person is being tracked. A handler is used to 

show a person's walking path in figure 4.15. 

Fig. 4. 14 EOPTICS, a) ankle positions, b) Kalman filter-based tracking [94] 
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4.3 Result and Discussion 

As there were no well-established datasets on LiDAR-based person tracking, we prepared 

our datasets for experiments. LiDAR-based tracking always suffers from data misfits and 

low accuracy problems. We used a LiDAR sensor that suffers a lot in this situation. Initially, 

we used recorded videos for our experiments. We found significant results there. Further, 

we enhanced our system for real-time tracking. Interestingly we get comparable 

improvements with the video-based person tracking system.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 15 Flow diagram of UKF based person tracking 

Fig. 4. 16 EDBSCAN based Group Peoples tracking with LiDAR sensor [94] 
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We performed our experiments with different male and female participants. We considered 

another group of people for our experiments. We chose five substantial categories for this 

analysis: Individual Walking, Individual Running, Ankle Movements Only, Combined 

Walking, and Combined Running. We applied our developed EDBSCAN to individuals 

and groups of people tracking. Here in figure 4.16, combined walking and running are 

focused. In the first frame, we see three people walking in front of the LiDAR sensor. Our 

progressive approach tracks these people and shows them in the rightmost picture. We see 

four people running in the second picture, and our progressive approach identifies all these 

people. Here EDBSCAN plays a very significant development of traditional DBSCAN. 

When more ankles come closer, it can prevent misclassification. maxPts parameter discards 

these clusters and recalculates again.  

 

 

Fig. 4. 17 EOPTICS based individual tracking with LiDAR sensor [94] 
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We have also examined EOPTICS for our experiments. The development of OPTICS as 

EOPTICS shows significant results in our system. We applied this algorithm to our same 

data sets and found EOPTICS most effective in the frame-by-frame analysis. In figure 4.17, 

we placed three gestures together and found EOPTICS more functional than previous 

DBSCAN and OPTICS. Here, most pictures show the ankle positions in the frame, and 

corresponding rightmost pictures show their movements and tracking based on KF. If any 

misclassification occurs in an individual frame, EOPTICS solves this with its parameter 

update techniques in the next frames. This same approach also applied to the combined 

walking and running of different people.  

We solved occlusion problems also. It occurs when one ankle comes in front of another, 

and due to obstacles, LiDAR cannot get a signal from the next one. In a person tracking 

system, this occlusion problem creates a problem, and sometimes it is impossible to track 

a person accurately for this scenario. Our proposed LiDAR-based tracking system can 

handle this problem. In figure 4.18, suppose two frames ago, our proposed algorithms 

calculated the distance between ankles and found this more than the acceptance threshold. 

This will decide it as two persons. In one frame back, both frames come closer, and their 

distance becomes less than our radius, and here it is updated as one person. This is the 

continuous up-gradation of tracking. If any anomalies occurred in any frame, they could 

be modified in consecutive frames. These tracking anomalies can be accepted in an 

individual frame or very few frames for a person tracking. 

 

Fig. 4. 18 Tracking and occlusion handling, a frame-by-frame analysis [94] 
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Similarly, in the current frame, one ankle is occluded by another, and ankle distance cannot 

be calculated. It happened because of a lower gap between ankles or occlusion. There is no 

problem if the radius is less than the threshold. It satisfies the condition. If data points are 

less than the maxPts parameter, it will create a cluster and identify it as a person. If multiple 

people come so close that their ankle distance cannot be measured and the number of points 

goes over the maxPts, it will discard the cluster, recalculate the radius, and form a cluster 

again. 

In Table 4.3, we have shown some experimental results of different gestures. Here five 

motions were considered. Another group of people participated in our experiments for a 

couple of minutes. We took random frames here for validation and verification. Suppose 

in the table below for individual walking and running 3 and 4 people have participated. We 

took 44 and 49 consecutive frames randomly. We got almost correct recognition based on 

our developed EDBSCAN and EOPTICS algorithms. 

Similarly, we got considerably better results for only ankle movements with 52 and 53 

frames accurate recognitions out of 56. For combined walking and running, we took nine 

people in our experiments. In the case of the group walking here, EOPTICS performs better 

than EDBSCAN. But compared with previously developed algorithms, it is also impressive 

development. We have a good scope to improve our system for a combined running 

situation. If a group of people runs fast to and fro, it is not easy to trace with utmost accuracy. 

We considered 136 frames for our experiment where EOPTICS recognized 106 frames and 

EDBSCAN could 101 frames accurately with a total elapsed time of the algorithms are 

32.41 seconds and 27.63 seconds, respectively. Our used LiDAR sensor (UTM-30LX) took 

25 milliseconds per scan.  

Table 4. 3 Experimented results for EDBSCAN and EOPTICS [94] 
Gestures Persons Frames Correctly Identified 

by EDBSCAN 

Correctly Identified 

by EOPTICS 

Individual Walking 3 44 44 44 

Individual Running 4 49 48 48 

Ankle Movement 5 56 52 53 

Combined Walking 9 131 123 127 

Combined Running 9 136 101 106 
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We compared our improved algorithms with traditional DBSCAN and OPTICS. In Table 

4.4, we have shown these performances and accuracy for better understanding. For 

individual walking, all four conventional and improved algorithms performed well. This 

scenario is the same for individuals running also. For only ankle movements, EOPTICS 

plays sizable improvements here. It can handle some misclassifications more than others. 

These developments also persist in group walking and running. Almost in all cases, 

EOPTICS plays better results. EDBSCAN also performs well compared with previously 

applied density-based algorithms. 

Table 4. 4 Comparison of EDBSCAN and EOPTICS with DBSCAN and OPTICS 94] 

 

 

 

It is admissible that typical hardcore clustering algorithms are not well suited to LiDAR-

based person tracking. We previously performed and have shown here some experiments 

regarding this issue. Both EDBSCAN and EOPTICS apply to these types of data sets. 

Furthermore, improvements in DBSCAN and OPTICS do not heighten algorithm 

complexity. The worst-case complexity persists in O(n2); without matrix completion, it 

requires only O(n) memory. 

Table 4. 5 Comparison with existing Approaches and Precisions [94] 
Approach Cluster Threshold Precisions 

Euclidean Clustering [107] 0.5 m 64.5% 

DBSCAN [93] Adaptive 93.7% 

Depth Clustering [108] 10o 39.2% 

Run Clustering [109] ParamsSLR 51.7% 

Online Learning [102] Adaptive 89.8% 

Our (EDBSCAN) Adaptive 93.9% 

Our (EOPTICS) Adaptive 96.9% 

 

We compared our approaches with present advanced precisions (Table 4.5). Different 

people used different clustering approaches and datasets for person tracking, but we wanted 

to show our improved EDBSCAN and EOPTICS precisions. In 2011, Rusu et al. [107] 

Gestures Accuracy with 

DBSCAN 

Accuracy 

with OPTICS 

Accuracy with 

EDBSCAN 

Accuracy with 

EOPTICS 

Individual Walking 99% 99.5% 100% 100% 

Individual Running 98.01% 97.86% 97.96% 97.96% 

Ankle Movement 92.07% 92.02% 92.86% 94.64% 

Combined Walking 93.71% 93.81% 93.89% 96.95% 

Combined Running 71.87% 72.11% 74.26% 77.94% 
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stated a strategy for tracking with Euclidean Clustering. They got 64.5% accuracy with a 

cluster threshold of 0.5m. In 2016, Depth Clustering [18] approach was applied for the 

same and found incredible 39.2% precision with a 10o entry. Another technique Run 

Clustering [19], was considered in 2017 and found 51.7% accuracy in 3D tracking. Online 

Learning [20] proposed an adaptive threshold selection method in 2020 and found 89.8% 

accuracy. Our previous approach used only DBSCAN and got 93.7% accuracy in in-person 

tracking during walking. This research proposed two novel techniques, EDBSCAN and 

EOPTICS, with an adaptive threshold selection mechanism and found a maximum of 

93.3% and 96.9% accuracy, respectively, with the same datasets. 

 

4.4. Conclusion 

This research introduced an augmented comprehension for person tracking with a LiDAR 

sensor through the exclusive introduction of density-based clustering with its prior 

modifications. We were applying new parameters and its collaborative expansions made 

these algorithms sophisticated, especially for LiDAR data. While video and multi-sensor-

based human tracking were improved in the time being, they have a precautious 

consideration of privacy. Eventually, these improved tracking systems need higher 

computations and costs to be implemented. We considered all these constraints and 

compared our method with other state-of-the-art technologies. Low installation and 

computational costs, runtime processing, and adaptive parameter selection of algorithms 

made our system robust. A well-prepared own dataset made our system more accessible to 

others. 

We intend to apply this to a mobile robot that can detect a person independently in real-

time. Some commercial applications can also be made with this approach and the 

caregiving facility. We intend to develop a LiDAR-based gait recognition system. In the 

future, a deep neural network architecture can be applied to overcome the shortcomings of 

many samples' learning and training. 
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Chapter 5 

Person Property Estimation based on 2D LiDAR 

Data using Deep Neural Network 

 

 5.1 Introduction 

From the beginning of artificial intelligence, accurately identifying persons and their 

different properties was always challenging [106]. How a human think, memorizes and 

makes decisions, these techniques were tried to imitate a machine. Over the period, 

developments of new designs, machine learning algorithms, and increased computational 

capabilities help us find some sustainable and reliable models for different property 

estimations of a person. All these developments come to real momentum after the 

innovation of deep neural networks. Massive data can be processed with a brain-like model 

using deep learning. Our study also finds a breakthrough after using DNN models.  

Video-based surveillance and analysis played a vital role in human property estimation. 

Introducing new video cameras made the analysis more accurate and sophisticated day by 

day. Depth, night vision, RGB, and wide-angle architectures helped us capture high-

definition images and videos in different circumstances. Using machine learning 

algorithms and DNN architectures, it is relatively easier to process these data for any 

further enhancements. Above all these benefits, video cameras are not error-free and well 

accepted in all conditions. Some natural and privacy issues arise while using surveillance 

cameras in all situations. Some regulations and confidentiality policies also prevent us from 

using video cameras in all areas. Our study aims to focus on all these issues and find a well-

fit alternative of cameras to identify a person's property accurately. Here we emphasize 

height and age for recognition. A very well-suited application of this property estimation 
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is museum guided robot. Analyzing a person's walking data can predict their height and 

age appropriately. Adults and a child can also be accurately identified and guided. Though 

walking speed and patterns vary during watching and working, our proposed system can 

handle these issues very well. It continuously scans the person and can update its previous 

data simultaneously. Some other applications, i.e., childcare agents, elderly support robots, 

aircraft assistance, etc., can easily support their clients with this application.  

This research has used a 2D LiDAR sensor as an alternative to a video camera for data 

acquisition. As LiDAR sensors provide distance data of a moving object's territory, we 

collected these data, placed them at a particular time on a frame, and created motion history 

images. We considered human walking places' general situation and tried to gather their 

data from different analysis angles. We used our network's images of different persons as 

training and test data. We further validated the model with these data, which increased the 

model's efficiency. For our research, we used Residual Network (ResNet) as the backbone 

of our network. We used twenty-nine-person data for our analysis and got a significant 

performance. We categorized our study differently to find the person's various properties 

with multiple considerations. Our study covered the analysis of predicting a person's height 

in two and three categories. We also extended our research to indicate a person's age with 

these data. Even though LiDAR-based applications have a bottleneck of accuracy, we 

expanded our study with different neural network models and tried to find an optimal 

model with various disjoint data. 

In Fig. 5.1, we can see a block diagram of our proposed system. We collected LiDAR data 

by sensing the sensors continuously. For our experiments, we placed LiDAR sensors at the 

ankle level. We evaluated four different sensor data for our investigations and showed 

significant results with all the data. We processed these LiDAR data and created motion 

history images with varying frames per second (FPS). These images are used as input of 

the deep neural network (DNN) for analysis. A pre-trained ResNet is used as modeled 

network and analyzed for two specific person properties: height and age, as a research 

domain. Our study shows very substantial results in different conditions. We varied our 
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datasets in various patterns and performed our experiments for fault tolerance and the 

model's sustainability. 

 

This study emphasizes the use of a 2D LiDAR sensor as an alternative to video cameras. 

We enhanced our research to find the persons' different properties using LiDAR sensor as 

cameras are less performing in some vulnerable situations. Interestingly our model most 

accurately identified our test set data with disjoint train and validation data.  

 

5.2 Proposed Method 

5.2.1 Dataset Preparation 

We prepared our dataset for this research. We considered 29 users in this experiment of 

different ages and gender. In our study, various geographical peoples also participated. 

Most of the people wore shoes, but few of them wore sandals. In our research, people of 

different heights and ages also attended. Sixteen persons were below 170 cm in height, and 

others were above the threshold. The age limit was between 22 to 36 years old. Thirteen 

persons were greater or equivalent to 30 years old, and others were below 30 years. We 

considered four different LiDAR sensors at different altitudes and angles. Then captured 

all these LiDAR data through ROS (Robot Operating System) environment to a '.bag file.' 

Individual LiDAR data of every person was stored in a separate bag file.  

Fig. 5. 1 Block Diagram of the Proposed System [106] 
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All bag files generate LiDAR motion history images (MHI). These images were used as an 

input to our proposed method. Fig. 5.2(a) shows motion history images of LiDAR data. 

Here different colors (i.e., red, green, and yellow) indicate different LiDAR data captured 

from different layers and/or different angles. The corresponding grayscale plot of these 

data shows the same data. All these lines are for a specific moment of a single person's 

ankle movement. We accumulated 0.5sec (20frames) of data from all LiDARs for 

generating MHI. These images are being used as input for our system. Figure 5.2(b) shows 

the image dataset of different participants. We categorize these datasets for height 

estimation and age measurements. Based on height, there are two classes of data we 

prepared: tall and short.  Sometimes we incorporated another type as the medium. For age 

estimation, we grouped these data as young and elder. These categories help us accurately 

identify a person's class based on their walking data.  

5.2.2 Person Property Estimation 

For a human, the different properties can be estimated for various purposes. Here we 

considered height and age in this circumstance. Estimating a person's height is a vital 

property in other applications. Clothing, defense recruitment, safety and security agencies, 

rescue measurements, live programs, event management, etc., applications are closely 

related to human height. Some cases are restricted from disclosing a person's identity. Here 

no video cameras are allowed. Our LiDAR-based property estimation technique is an 

excellent alternative to these applications. 

Fig. 5. 2 (a) Motion history images (Color Image and grayscale) (b) Image Dataset [106] 
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Moreover, LiDAR data are independent of bias by light, motion, and natural calamities. 

We placed our LiDARs in four positions. Two LiDARs are at the same angle but at 

different heights, and another two sensors were 2 meters apart from the first and at different 

heights and angles. These positionings are described here as multi-layer and multi-angle in 

this study. In Fig. 5.3, our experimental setup is shown. Four LiDAR sensors are placed in 

multi-layer and multi-angle positions. Persons are walking in front of these sensors, and 

they collect data. We used different LiDAR images in our experiments for training, testing, 

and validation. 

For person property estimation, we placed LiDAR sensors at ankle level height. Peoples 

come in front of these sensors, and it collects their data. A rosbag package is used for 

hardware interface with LiDAR sensor and computer. Raw data of LiDAR sensors were 

stored as a bag file. We considered a batch program to make a motion history image 

(LiDAR image) from a bag file by combining different LiDAR data. These images are used 

as input for our application. We considered PyTorchLightning to train these images. With 

the developments of deep learning architectures, possibly deep Residual Network is the 

most revolutionary invention in Computer Vision and deep neural networks peoples in the 

last couple of years. ResNet enabled us to train top layers, even thousands, with 

encouraging performances and precise constraints. We used ResNet 18 and ResNet 50 in 

different conditions in our application and found a significant improvement in accuracy 

with all disjoint datasets.  

Fig. 5. 3 Experimental setup and person walking in front of LiDAR sensors [106] 
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5.2.2.1 Height Estimation 

In this research, we considered two properties of a person to estimate by LiDAR data. The 

first one is height. Accurate height estimation is essential in different geometric estimations 

and scientific research. Some applications are susceptible to accurate height estimation. 

Even though very well-established research has been done on the topic, this is still a thrust 

sector. Some recent studies proposed human height estimation based on depth and color 

information [99]. The human body and head were extracted from color images and 

predicted their height based on depth information. Mask R-CNN [203] was used for 

extracting data from individual frames. Here, height estimation through LiDAR data makes 

this invention eventually excepted by all. It convinced most of the shortcomings of 

traditional RGB and RBD-D-based applications efficiently.  In Fig. 5.4, multi-angle ankle-

level LiDAR sensors are used for data acquisition. A motion history image based on the 

LiDAR sensor's distance data is used as an input to our system. We resized all the images 

as our application that its processing goes unique. A pre-trained ResNet18 model was used 

for training our model especially binary classification of LiDAR images. It requires a 

224*224*3 size input image, and 71 deep layers were used for analysis. For cross-

validation, we used resnet34 and resnet50 also.  

 

Fig. 5. 4 DNN based height estimation through 2D LiDAR [106] 
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A prevalent query about using the residual network is what the benefits are. Significantly 

faster convergence, easy optimization, and significant precision improvements over 

increased depth make ResNet well accepted by all computer vision researchers. ResNet18 

is the best dealing model compared to performance among all other models. We discuss 

this model in detail here. In Fig. 5.5, a detailed explanation of ResNet18 architecture is 

explained. We first resize the input images gathered from the rosbag file. A very well-

known image size (224*224*3) is produced from given images. There are different 

convolutional layers are responsible for filtering the input image. The first convolutional 

layer (Conv: 1) is accountable for providing low-level features, i.e., edge, gradient, color, 

etc. 

The deeper layer provides relatively high-level features. Finally, a feature map is created 

by convolutional layers to predict the class probability for all gained feature maps. The 

pooling layer lessens the spatial volume of the convolution elements. The influential details, 

i.e., rotational, and positional invariants, are also found in the pooling layer. The fully 

Connected Layer (FC Layer) receives flatten output from the pooling layer and acts as a 

feedforward network. The SoftMax layer is responsible for a binary outcome. It limits the 

range within [0,1]. Here in our application, the results will remain tall and short or aged 

and young. When we changed binary output into three categories (tall, medium, and short), 

we changed the SoftMax layer. The promising efficacy of ResNet to incorporate the 

property of skipping connection to add the output of the previous layer to the next ensures 

proficiency from beginning to end in deep layers. 

Fig. 5. 5 ResNet structure for the application [106] 
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5.2.2.2 Age Estimation 

A standalone application to estimate a person's age from LiDAR images is unique and 

might be interesting in different applications. A caregiver company, various public dealings 

organizations, and transport agencies may need to know the person's age before offering 

any amenities to its customers. Video-based applications always suffer false identification 

due to facial expressions and makeup. Our proposed LiDAR-based application can handle 

these issues effectively. The process of age estimation is relative to height estimation. We 

prepared our datasets as per the parameter of age. Here we categorize all 29 users into two 

classes. Age below 30 is considered as young and over, and equal to 30 is elder. These 

values have been taken heuristically. Other's thresholds also could be taken, and similar 

results could be found. The same disjoint datasets are prepared for training, testing, and 

validation. Individual testing sets make the application more robust and accurate. We also 

performed cross-validation to check the system performance with all data types.  

 

5.3 Results and Discussion 

We implemented our experiments on PyTorch Lightning environments where NVIDIA 

GeForce GTX 1060 GPU system. Other system requirements include an Intel Core i7 

processor with 3.8 GHz clock speed, 6GB graphics memory, 64-bit ubuntu 18.04 release, 

16GB RAM, and 1TB SSD.  

Our dataset consists of different sizes. We used four various LiDAR sensors to collect our 

data. We plotted different LiDAR data on the image and prepared our motion history image. 

We were considering different scenarios: two LiDARs data with the same height, two 

LiDARs data with two layers, etc. In the two-layer dataset, we considered 1,76,678 LiDAR 

images. We categorized all images into two main subgroups with a threshold of height of 

170 cm. Some other subgroups and entries could be taken, and here we categorize them 

this way. Persons above the size are considered tall, and equal or below are short. In this 

dataset, we have 89304 images for short people and 87374 images for tall people. 

We measured almost 80% of the total images for training our model as a total of 141309 

images. Here 71411 images are for short people, and 69898 images are for tall people. We 
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kept almost 10% of the total images as 17681 for testing our model. Here 8964 images 

were from short people, and 8717 images were from tall people. Around 10% of disjoint 

images were considered as validation datasets. Here 8929 images were from short people 

and 8759 images from tall people. With rigorous training with the ResNet18 model, we 

found very impressive accuracy there. In Table 5.1, a confusion matrix shows the detail of 

the system with all disjoint datasets. This matrix is formatted from test data and 

significantly found its efficacy here. Among all 8717 images of testing-tall data, our system 

accurately identified 8658 images as tall, and only 59 were misclassified. The same 

scenario was found for the short dataset also. Here only 62 images were falsely identified 

out of 8964 images. The accuracy of 99% relieved the cumbersome of previous estimations. 

Again, we considered two LiDAR sensors at the same height where the only angle is 

different. In this condition, we considered 226241 images as a total dataset, with 121244 

images for short persons and 104997 images from tall persons.  The same 80 percent 

(181016) of total images were kept as test data. The remaining 20 percent (22632 and 

22593) data were almost considered test and validation data equally. All data was disjoint 

here also, where the same persons were assessed in all three groups (train, test, and 

validation). We considered the same residual network, ResNet18, for analysis. The right 

side of Table 1 shows the confusion matrix of test data. Among 10498 images of tall people, 

our model can accurately identify 10411 images, and for 12134 images of short persons, 

this can detect 12027 images ideally.  The system accuracy is near about 99 percent in total. 

Both Multi-Layer and Multi-Angle show almost the same precision but combining these 

two will increase the overall system performance in a complex environment.  

 

 

 

 

Confusion Matrix (Test) 

   Tall 10411 107 

Short 87 12027 

 Tall Short 
Height Estimation (Multi-Angle) 

 

Confusion Matrix (Test) 

   Tall 8658 62 

Short 59 8902 

 Tall Short 
Height Estimation (Multi Layer) 

 

Table 5. 1 Confusion Matrix of resnet18 based height estimation [106] 
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Further, we enhanced our study of height estimation for three categories. Here another class, 

'medium,' was introduced. People over 175 cm are considered tall. Between 170 cm to 175 

cm was medium, and below 170 cm was short. In our study, we assessed 216474 images 

of two-layer LiDAR data. 80% of the total (173180) images were considered training data, 

and the remaining (43294) images were equally split into the test and validation set. We 

segmentize all images as tall, medium, and short with 59327, 99656, and 57491images, 

respectively. The overall accuracy was reduced by a little 4 percent in total by adding a 

new category. In Table 5.2, We placed all test data in this confusion matrix. Among 5932 

images of tall persons, our system accurately identified 5676 images. Some photos were 

misclassified as tall, but there is no short classification here. The same scenario is in short-

type classification. Only 268 images were grouped as medium but not tall. Two types of 

data bias are the middle class. Among 9966 images, 9523 were accurately categorized, but 

330 were identified as tall, and 113 were short.  

 

 

 

 

 

 

 

Another property of humans is the age that we estimated through 2D LiDAR data. For this 

purpose, we considered 216474 images as an 'Age Dataset.'  In this research, people over 

or equal to 30 years were considered elder aged, and below 30 years were deemed to be 

young—a total of 96295 images for older people and remaining images for young people. 

As the previous ratio total of 80 percent of images was set for training, the remaining 20 

percent were equally distributed as training and validation. On the right side of Table 2. we 

see that among 12018 images of young people in the test dataset, 11535 images could be 

correctly identified by our model. For older people, 9217 images have been correctly 

Confusion Matrix (Test) 

   Tall 5676 330 0 

Medium 256 9523 268 

Short 0 113 5481 

 Tall Medium Short 

Height Estimation 

 

Confusion Matrix (Test) 

   Young 11535 412 

Elder 483 9217 

 Young Elder 

Age Estimation 

 

Table 5. 2 Confusion matrix of three classes of height estimation and age 

estimation [106] 
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identified, while only 412 were misclassified. The overall precision of this model is 

approximately 95 percent.  

 

Table 5.3 describes the overall properties of the experiments that we have performed in 

this research. We considered different batch sizes and ten epochs for all cases for our 

investigation. Here train, test, and validate accuracies showing system performances. On 

the other hand, different loss functions show system integrity and robustness with the 

datasets. This research emphasizes the best use of 2D LiDAR data for person property 

estimation, which could be an excellent alternative to RGB and RGB-D cameras.  

 

 

 

 

 

 5.4 Conclusion 

Person property estimation is always challenging and sometimes crucial in different 

circumstances. Many efforts have been initiated on this topic from the beginning of 

computer vision. Simultaneously some applications were developed with the help of the 

LiDAR sensor. We concentrated on the amalgamation of these two phenomena. To find a 

suitable alternative of a video camera and improve the property estimation accuracy bring 

we out to do so. Our LiDAR-based person property estimation, especially introducing a 

 

Data 
Experiments 

Type 
Batch 
Size 

Epoch GPU Model 
Train 

Accuracy 
Train 
Loss 

Test 
Accuracy 

Test 
Loss 

Validation 
Accuracy 

Validation 
Loss 

New data 
2 Layer 
LiDAR 

Height 
3 Category 

24 10 Yes Resnet18 0.963 0.0921 0.9599 0.1063 0.9593 0.1028 

New Data 
2 Layer 
LiDAR 

Age 
2 Category 

34 10 Yes Resnet18 0.959 0.0971 0.9575 0.1032 0.9546 0.1107 

New Data 
2 Layer 
LiDAR 

Height 
2 Category, 
Complete 
Random 

34 10 Yes Resnet18 0.9939 0.0173 0.9937 0.0178 0.99382 0.01776 

New Data 
2 Angle 
LiDAR 

Height 
2 Category, 
Complete 
Random 

34 10 Yes Resnet18 0.997 0.00976 0.9958 0.0125 0.99552 0.01187 

Table 5. 3 Overall system performance with ResNet18 network [106] 
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deep residual network, gives a well-accepted benchmark. Preparing a new dataset and 

finding its individual properties makes this study abundant. This dataset can be used for 

other 2D LiDAR-based research. In the future, we will try to enhance our study to find 

more properties of a person that he/she can be accurately traced. We will combine our 

previous tracking system with this property estimation technique to develop a LiDAR-

based autonomous system. Our impending focus is on group recognition and predicting 

their behavior without compromising individual identity.   
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Chapter 6 

Person Identification by Evaluating Gait using 2D 

LiDAR and Deep Neural Network 

 

 

6.1 Introduction 

Person identification is a vast and ancient research field. Various techniques have been 

invented in this arena. Diversified biometric [204,205,206] characteristics enhanced the 

accuracy of this vital space. Camera-based applications eventually led to this research. 

Sophisticated innovations, modernized features, and computational capabilities make this 

exact day by day. But privacy, Lighting issues of a camera, disasters, etc., are a big concern 

for video-based processing. The emergence of new biometric features meticulously crafted 

the credibility of human recognition in different delicate applications. Analogously, the 

urgency of close contact with the devices down worth the performance of biometric 

identifications in some cases. Hence gait recognition is an apt alternative to person 

identification where subjects are not supposed to be nearer to devices. In all these 

innovations, video cameras [205] were used as key identifiers to demonstrate individuals' 

states and distinctiveness.  

Gait is a way of walking, and gait recognition refers to identifying a person based on their 

walking style. Some crucial circumstances and feasible benefits over traditional camera-

based applications make Gait more popular nowadays. A very plausive gain 'remote access' 

over close camera contact is well accepted. Furthermore, without the cooperation of the 

subject, it can be recognized. Even if some biometric features (i.e., face, fingerprint, iris, 
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etc.) are absent or cannot be identified, Gait plays a vital role in identification. It is tough 

to impersonate the gait features, making it essential in crime analysis. However, video-

based recognition suffers from low-resolution capturing, disasters, computational 

complexities, etc. In disasters, typical video-based applications fail to capture images due 

to darkness, smoke, fog, or obstacles. LiDAR sensors are free from these difficulties. This 

research proposes a new modality: ankle level 2D LiDAR-based person identification with 

gait data analysis. Recent enhancements in computational capabilities and a deep learning 

approach make this research more precise than ever.  

Our previous study demonstrated a person tracking [93] system using 2D LiDAR at ankle 

level for gait analysis. Determining moving objects in front of the LiDAR sensor as a 

person was a challenging job. We fastidiously made the way of tracking by imposing 

density-based clustering over conventional approaches. This research started using 

multivariate density-based algorithms to fit the model best. A visualized tracking based on 

LiDAR data was undoubtedly challenging, and we prudently did the same. Developing 

density-based algorithms to augment the tracking performance was another challenge in 

this experiment. Our proposed two new algorithms [94]: Enhanced Density Based Scan 

(EDBSCAN) and Enhanced Ordering Points to Identify the Clustering Structure 

(EOPTICS) to create the best cluster to determine an individuals' ankle positions and 

identify their way of walking. This approach enhanced the performance of our previous 

tracking system and showed a new person tracking system based on only 2D LiDAR data. 

This method also helped us find an alternative to surveillance cameras for which people 

were worried about their privacy and secrecy. Here, the necessity of tracking and 

confidentiality intent meets a unique solution. Hence, some influential features (i.e., age, 

height, etc.) can be measured by only ankle movement data, especially tracking data. We 

have broadened our study with person property estimation by a 2D LiDAR sensor [106]. 

Here a deep neural network was used for training and testing the model. A detailed dataset 

of the experiments with different ethnicities, gender, and height were prepared to conduct 

all experiments. A parametric formulation was performed to do the experiments, and the 

results were distinctly identified. The outcomes of the trials were remarkable and 

trustworthy compared with the actual ones.  
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Some practical instincts suffer from RGB/RGB-D cameras for illusion, illumination, 

smoky or foggy conditions, and even real-time computational inaccuracies. LiDAR-based 

person identification is our new research goal that comprehensively deals with all 

inadequacies of visual imaging. Placing multiple 2D LiDAR sensors at the ankle level to 

acquire data enhances data detail to analyze studies further. LiDARs emanate pulsed light 

on the surrounding objects and compute the distance it travelled to receive the sensor again. 

An experimental model was set, where different LiDAR sensors were placed in the 

grounded tripods, and persons were let to walk in front of the sensors. A Robot Operating 

System (ROS) was used to capture the time series data in a bag file. Those distance data 

were plotted in images with a specific rate to create motion history images (MHI). These 

MHI were key inputs of our DNN model to identify an individual in a video. Continuous 

ankle movements on a surface develop a path of walking, which determines the tracking 

system efficiently. As all persons have distinct gestures and ways of walking, especially 

activities of ankles are significantly unique, diverse us to develop a gait-based person 

recognition system.  

In figure 6.1, a block diagram is shown that clarifies the system overview in brief. A 

sensing module collects data from the LiDAR sensor and passes these distance data to 

create Motion History Images. These are our input datasets. These Image datasets were 

used to estimate the person property [106] through a residual neural network. The key 

foundation of this research was a previously developed tracking system [93] based on 

modified density-based clustering approaches EDBSCAN and EOPTICS [94] and a 

property estimation technique. Now it is the step-up of the recognition system to identify a 

person through gait analysis.  
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Fig. 6. 1 A system overview of 2D Lidar-based Estimation 



76 
 

6.2 Proposed Method 

The fundamental concept of this research is to introduce 2D LiDAR sensors as an 

alternative to 3D Lidar sensors that comprehensively minimize the intrinsic and 

computational costs and enhance the system integrity on a big scale. Our previous proposed 

methods were a step-by-step enhancement of LiDAR-based individual following and 

property estimation. We were sensible to use video cameras, often liable for compromising 

privacy issues. Moreover, some natural and environmental shortcomings depleted the 

performance of RGB/RGB-D cameras.  

6.2.1 Integrated System Overview 

In figure 6.3, an overall system diagram is presented here. 2D LiDAR sensor is placed at 

ankle level to acquire the data. All time-series data are plotted on blank images at 40 frames 

per second rate, named 'Motion History Image (MHI).' The main benefit of MHI is to 

encode a range of time data in a single frame. Thus, human gestures and movements can 

be represented by MHI spans [33]. An update function µ (x, y, ti ) could calculate the MHI 

M£ (x, y, ti): 

M£ (x, y, t𝑖) =  {
£,                                         if  µ(x, y, t𝑖) = 1

max(0, M£ (x, y, t𝑖−1) − 𝜑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          (6.1)
 

Here, (x, y) is the position and t𝑖 is the time; µ (x, y, ti ) shows ankle position or motion in 

the current frame. The temporal extent of the movement is decided by the duration £, where  

𝜑 indicates decay in the images. Leaving past images as afterimages makes it easy to 

understand the time series data, thus creating the Motion History Image shown in figure 

6.2.  
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Fig. 6. 2 Creation of Motion History Image 
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These MHI are considered as input of our system. Besides traditional clustering 

approaches, we used modified density-based clustering techniques to determine an ankle 

of a person. Similarly, the same clustering approaches were used to determine a person 

based on closely moving two ankles on the plane. This heuristic approach was analyzed 

repeatedly until it came to tolerable accuracy. This study describes a gait-based 

identification based on 2D LiDAR only. Identifying a person using only a 2D LiDAR 

sensor is a novel approach and can be effectively applied to privacy issues.  

 

 

 

 

 

 

 

 

 

6.2.2 Gait-based Person Identification 

Person identification deals with much research over so many years. Other biometric 

features-based identification made this research more authentic and accurate. Various types 

of cameras and sensors were used to make this perfect. With the invention of the deep 

neural network, this research got a new dimension. Our focus on this research is to 

contribute differently to the sense of sensor and calculation.  

6.2.2.1 Experimental Setup 

Figure 6.4 shows the experimental setup for the research. We put four LiDAR sensors in 

the two stands at different angles and heights so everyone's data could be easily collected. 

Two LiDAR stands are placed at a two-meter distance, and the angled gap is 90 degrees. 

The LiDARs position was ankle-level, where one was six-inch up from the ground, and 

another was ten-inch up. We named two LiDARs in the same tripod as a multi-layer and 

LiDARs in a separate tripod named multi-angle. Participants were allowed to walk freely, 

with their typical style and motion. All the experiments were conducted indoors and in the 

Tracking Clustering Property 
estimation 

Time series 

Data  

Time series 

Data  Gait based 
Identification 

Fig. 6. 3 LiDAR-based Person Tracking, Property Estimation, and Recognition 
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same season. Participants walked back and forth, round, and 0.5 to 25 meters range from 

the LiDARs. We considered LiDARs positions stationery, and participants are moving. 

Individual walking and group walking were considered in the experiments. For the 

analysis, we used different sensors' data in different ways. For this experiment, we used 

HOKUYO UTM-30LX 2D LiDAR sensors. It has a 30-meter and 270-degree scanning 

range. This sensor is lightweight and very suitable to use outdoors. We varied the room's 

lighting conditions and allowed participants to walk to and fro at different speeds. On 

average, 10 minutes of all pedestrians were asked to walk, move, or run to make the data 

more informative and detailed to analyze.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2.2 Dataset Preparation 

In this research, we used our developed dataset. No 2D LiDAR-based identification 

systems were previously found, so no public dataset is available. 2D LiDAR sensors only 

provide distance values of objects in front of it. Thus, making our image dataset 

challenging. We created different datasets based on enormous parameters and named these 

KoLaSU (Kobayashi Laboratory of Saitama University). Twenty-nine independent 

observers participated in our study, and all were unbiasedly allowed to walk in front of the 
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Fig. 6. 4 Experimental setup for Person Identification 



79 
 

LiDAR sensors. Further, this well-structured dataset considers different international 

audiences perfectly diversified in height, age, gender, and ethnicity. In this study, 18 

Bangladeshi, 10 Japanese, and 1 Filipino participated, where seven were female and 19 

were male. Of 29 participants, three walked in sandals, and the rest of the participants with 

shoes. To make the data uniform, we skipped sandals data. For the cross-validation of the 

performance, those data are also used in rigorous analysis. We created one aggregated 

dataset considering all four LiDAR sensors even with individual four sensors' data. After 

that, we created a multi-layer and multi-angle dataset considering all possible conditions, 

i.e., multi-layer-13, multi-layer-24, multi-angle-12, multi-angle-14, etc. Here 1,2,3, and 4 

indicate LiDAR position as per figure 4.  

Among 26 participants, 12 people were above or equal to 170 centimetres, and the rest 

were below 170 cm. 17 people were below or equivalent to 30 years, and others were above 

30 years. Figure 6.5 shows a brief description of our prepared dataset. Here seven 

chronological movements of two participants are shown with our created images. Different 

colours in the MHI indicate various LiDAR sensors' data in the images. Different colours 

lines in the images show ankle positions captured by different LiDAR sensors. In this 

datatype, three LiDARs data were fused into a single LiDAR image. All individuals' 

records were created at an average walking speed at a 40-fps rate in the MHI. But we 

considered a 100 FPS rate for running and fast movement pedestrians, which applies to 

coping with various data. A common query may arise of using multiple sensor setups and 

a combination of data. It is always challenging to get much information using 2D LiDAR 

only. When a single LiDAR is used to scan the person, it may not be well suited to 

occlusion or fast-moving. 

Furthermore, it isn't easy to distinguish individuals from a single LiDAR view. If the multi 

LiDARs data were plated in a single image, data variety increased, providing much 

accuracy in the system. We try to fuse different combinations in our study to examine the 

system's best performance, and literally, it enhanced the system's performance 

significantly.  
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6.2.2.3: ResNet based identification 

Figure 6.6 shows detail of gait-based identification. As mentioned, motion history images 

(MHI) were created from LiDAR data as a neural network input. We categorized different 

ways and trained our model for the experiments. A pre-trained residual neural network 

(ResNet-18) was applied to validate and test the system. A pre-trained version of the 

network was loaded to train this KoLaSU dataset that was previously trained with more 

than one million images of ImageNet datasets. The benefit of using a pre-trained network 

is that it learned much feature representation with a huge set of diversified images. Identity 

mapping vectors and residual learning extract convolutional features by training a ResNet. 

In a ResNet architecture, residual can be defined by 

Y= f(x) + x  

Here, x is the input vector, Y is the output vector, and f(x) is the residual mapping function. 

In this article, we used 18 layers and 50-layer ResNet to extract the convolutional features 

of KoLaSU datasets. The second layer of the network is Max pooling comes after the first 

convolutional layer is used to minimize the data overfitting problem. A Fully Connected 

(FC) layer combined with Average Pooling and SoftMax layers provides features of human 

detection based on gait data. Without raising the training error rate, a substantial number 

Fig. 6. 5 KoLaSU, Two Persons' data: Upper one is MHI and lowers one 

is the corresponding pose 
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of layers can be trained by ResNet easily. ResNet is also competent in nullifying the 

vanishing gradient problem, giving it an extra advantage over other traditional neural 

networks. Finally, a consistent gait-based classification was done with meaningful 

accuracy.  

 

 

 

 

6.3 Experiments and Discussion  

6.3.1: Gait-based person identification  

We thought of the different data combinations during acquisition to make the application-

wide in range and reliability. A homogeneous and heterogeneous LiDAR setup was 

considered for the collection of data. Though a single LiDAR is sufficient to get a 

pedestrian's desired data, critically distributed and overlapped data always dilute system 

performance. Ankle-level LiDAR setup was our primary focus to track and identify a 

pedestrian. We substantially found numerous walking styles based on their properties. 

Plotting LiDAR data on an image was our primary challenge, but we cautiously did the 

experiments and found excellent accuracy there. Our proposed KoLaSU dataset consists of 

fourteen outdoor sequences where twenty-nine participants attended with five to ten 

minutes of walking with the experiment setup. We considered a standard forty fps rate to 

write the data. For cross-validation, we considered the 100-fps rate also. In all our 

experiments, we kept our datasets into three groups. Sixty percent of the data were 

considered train data, while the remaining 40 percent were split equally into test and 
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validation sets. Different phases of data segmentations also were experimented. In another 

experiment, 80 percent of the total data was kept in the training group, where the remaining 

twenty percent were tested and validated equally. We cross-validated the data in different 

phases and augmented the train data to enhance the system's cumulative performance. The 

experiments in Figure 6.7 show the results mentioned above.  

Table 6.1 shows an overall experimental result of gait-based recognition. There are 14 

different conditions data in the KoLaSU person tracking dataset; nine were considered 

here. We split out all four LiDAR data individually as we kept four top rows in table 1. 

Similarly, in the table, we merged different LiDAR data as the number assigned (i.e., 

LiDAR 12, merged LiDAR 1 and LiDAR 2's data in MHI with 40 fps). It is highly needed 

to make a dataset versatile to combine multifaceted data. In our previous studies, we used 

only single LiDAR for data acquisition. But dealing with occluded data and handling group 

people is not easy to get accurate outcomes from there. Furthermore, data from different 

angles and layers enhance the dataset's credibility. It covers all wide angles, and every 

individual can be traced accurately. It also ensures that it does not necessarily deploy all 

these four LiDAR senores in a practical application. To make an original dataset, we 

focused on credibility rather than cost. We used the GIGABYTE BRIX GPU machine for 

this research to analyze our data. The batch size was considered 38, and the number of 

epochs periodically varied from 25 to 50. We used a deep neural network to train our 

model. Here a pre-trained ResNet 18 network was used to train the dataset, especially for 

binary classification of LiDAR images. It requires a 224*224*3 size input image, and 71 

deep layers were used for analysis. 

Here, ResNet 50 was also used for cross-checking the system performance. Usually, the 

deeper model performs better but computational time is an issue that cannot be ignored. 

We used different-sized ResNet models to justify the system's credibility in the cross-

validation section. We placed some results of these in the next section. We randomly 

selected our train, test, and validation datasets among all machine-generated data, where 

all segments were utterly disjoint. Initially, we kept every person's data in three parts: train, 

test, and validation group. Further, we enhanced our study for unknown test data sets. 

Without prior information, man or machine cannot identify a new individual; thus, the 

system reacts. From table 6.1, we see that accuracy in three different segments is very 
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impressive and near about 99 percent correctly identified. Though some data are not 

accurately captured due to congestion problems (i.e., KoLaSU LiDAR 3 and KoLaSU 

LiDAR 4), their performance in the test case did not go below 93 percent.  

Here, height is the congestion problem that affects performance. Because this system 

performs well at a 6-inch height, the data detail decreases with an increase in the LiDAR 

height. Moreover, their combined dataset (KoLaSU LiDAR 34) performed significantly 

well with 99 percent precession. This is the initial step of introducing only 2D LiDAR for 

person identification. This study emphasized accuracy as performance, though previous 

studies applied other precisions. We used a pre-trained model (ImageNet) to classify our 

model with the best precisions. The accuracy above 90 percent was considered accurate in 

our analysis. 

Table 6. 1 Gait-based person identification on different parameters 
 

Data 
 

Experiments Type 
Train 

Accuracy 
Test 

\Accuracy 
Validation 
Accuracy 

KoLaSU LiDAR 1 
26 Persons Individual 

(60%,20%,20%) 
0.99421 0.9843 0.9851 

KoLaSU LiDAR 2 
26 Persons Individual 

(60%,20%,20%) 
0.99324 0.9846 0.98502 

KoLaSU LiDAR 3 
26 Persons Individual 

(60%,20%,20%) 
0.97721 0.9336 0.93478 

KoLaSU LiDAR 4 
26 Persons Individual 

(60%,20%,20%) 
0.98038 0.9479 0.94711 

KoLaSU LiDAR 
13 

26 Persons Individual 
(60%,20%,20%) 

0.9982 0.9962 0.996 

KoLaSU LiDAR 
24 

26 Persons Individual 
(60%,20%,20%) 

0.99831 0.99622 0.99611 

KoLaSU LiDAR 
12 

26 Persons Individual 
(60%,20%,20%) 

0.99719 0.9934 0.99305 

KoLaSU LiDAR 
34 

26 Persons Individual 
(60%,20%,20%) 

0.99821 0.99343 0.9942 

KoLaSU LiDAR 
1234 

26 Persons Individual 
(60%,20%,20%) 

0.99869 0.99658 0.99713 
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6.3.2 Comparison of different data types 

To reduce the overfitting, we validated the network, and here its accuracy is impressive, 

and none of the datasets goes below 93 percent. The test accuracy also goes through with 

validation accuracy and follows its footstep. Accuracies and losses are inversely 

proportional in a system. Our system is also showing this trend. This designed network and 

its performances instinctively develop a logical ground for using two-dimensional LiDAR 

sensors for individual identification in broad.  

 

We performed rigorous testing with different datasets to test the system's performance. All 

fourteen datasets were considered for this cross-testing. We analyzed the results and found 

an essential symmetry in the performance analysis phase, and those wholly aligned with 

our theoretical expectations—figure 6.7 shows these results in detail. Suppose the top four 

datasets in the figure are KoLaSU LiDAR 24 and 13, respectively. We trained and 

validated the system with the same dataset but changed the test data only in four cases. 

LiDAR 24 and LiDAR 13 are created by merging sensors 2 and 4 and 1 and 3, respectively. 

For testing, we used only LiDAR 4 and 2 and LiDAR 3 and LiDAR 1 separately. Though 

training and validation accuracy is nearly absolute, the bar chart shows that test accuracy 

goes below 20 percent. We considered unbiased disjoint data for all cases. As the figure 

shows, the system performance will degrade if a person is accurately trained by the neural 

network and tested differently. The same performance persists for all the cases except the 

combined dataset LiDAR 1234 is tried with test data 24 and 13. Here the performance 

reached up to 38 percent but was not impressive. So here, we can conclude that to achieve 

the system's best performance of the system; it should be trained and tested with the same 

types of data; any other bias is not necessary there. 
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Table 6. 2 Performance test with different DNN model 
 

 

 

 

 

 

Data 
KoLaSU LiDAR 1234  

TestCross24 

KoLaSU LiDAR 1234 

TestCross24 

Experiments Type 
26 Persons Individual 

(60%,20%,20%) 

26 Persons Individual 

(60%,20%,20%) 

Batch Size 38 38 

Epoch 25 40 

GPU Yes Yes 

Model ResNet 18 ResNet 50_2 

Train Accuracy 0.99864 0.99999 

Train Loss 0.00589 0.000354 

Test Accuracy 0.379 0.4007 

Test Loss 4.2741 3.5852 

Validation 

Accuracy 
0.99721 0.99956 

Validation Loss 0.00589 0.001578 

0 0.2 0.4 0.6 0.8 1

KoLaSU LiDAR 13 TestCross24

KoLaSU LiDAR 24 TestCross13

KoLaSU LiDAR 34 TestCross12

KoLaSU LiDAR 12 TestCross34

KoLaSU LiDAR 1234 TestCross13

KoLaSU LiDAR 1234  TestCross24

KoLaSU LiDAR 1234 TestCross12

KoLaSU LiDAR 1234 TestCross34

KoLaSU LiDAR 1234 TestCross123

KoLaSU LiDAR 1234 TestCross124

KoLaSU LiDAR 13 TestCross1

KoLaSU LiDAR 13 TestCross3

KoLaSU LiDAR 24 TestCross2
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Fig. 6. 7 Cross Validation: Gait Performance test with Cross-Data 
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Besides ResNet 18, we analyzed different neural networks to test our data's system 

performance and effectiveness. We show one such type of analysis in table 6.2. For the 

same dataset KoLaSU LiDAR 1234, we trained and validated it by ResNet 18 and ResNet 

50. The rest of the parameters remained the same except for epoch size. We tested the 

system with different datasets KoLaSU LiDAR 24 and tried to analyze the performance of 

two separate networks. ResNet 18 gave almost 38 percent accuracy, whereas ResNet 50 

performed with 40 percent accuracy. But the network size of ResNet 50 (Layer 50) is more 

abruptly huge than ResNet 18 (Layer 18), and computation time is highly excessive (app. 

four times) in these experiments. Thus, this study decided to consider ResNet 18 rather 

than ResNet 50 even though its performance is little improved. 

 

To test the system performance differently, we combined different datasets and trained and 

validated our system. Our achieved accuracies were impressive in all cases. In figure 6.8, 

we placed some experiments based on combined datasets. Here we put system accuracy 

and loss together. Six datasets related to their aligned ones. Suppose LiDAR 24 data was 

combined with LiDAR 2 and 4 data for training and validation of the system. Further, we 

tested the system individually with LiDAR 24, 2, and 4 data. The same scenarios were 

performed with LiDAR 1234, 13, and 24. Though the system was trained with multiple 

groups of data and tested with individual ones, it was previously performed as a regular 

system. Figure 8 shows that test accuracy lies around 99 percent, whereas its loss remains 

minor as below 20 percent. Here, accuracy and loss curves also follow asymmetry, which 

indicates network performance. 
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6.3.3 Comparison with contemporary studies 

To the best of our knowledge, no such research was performed with 2D LiDAR sensors to 

identify a person based on gait analysis. There were some great initiatives conducted with 

a 3D LiDAR sensor. All the sensor setups, experimental complexities, methods, and even 

datasets were different, so an accurate comparison cannot be made with actual precisions. 

A conceptual description is given in figure 6.9. Benedek et al. [104] initiated the research 

for lidar-based gait analysis. They prepared their dataset, SZTAK-LGA, with 28 

participants. They used CNN (convolutional neural network) and MLP (multi-layer 

perceptron) for training and testing the system. They used different people in their 

experiments; an increased number of people degraded the system performance from 92 

percent (for five people) to 75 percent (for 28 people). Yamada et al. [103] performed a 

thorough experiment on lidar-based gait analysis. This research was also conducted with a 

3D LiDAR sensor. They also prepared their dataset, PCG (point cloud gait), with 30 

participants. A CNN and LSTM (long short-term memory) neural network model was 

applied for training and testing the system. Though they get different accuracies in different 

input patterns, here, l=1:8 gave a maximum of 72 percent in general. As datasets and 

scenarios are entirely different, even sensors and methods are separate, so the accuracies 
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cannot be compared eventually. We randomly used utterly unbiased datasets categorized 

into three classes (train, test, and validation). The average system performance is greater 

than 98 percent of expected training data, emphasizing a wide use of 2D sensors in different 

applications.  

 

 

 

 

 

 

 

 

 

6.4: Conclusion 

This paper presents a way of person identification with a LiDAR sensor. Very little 

research has been done in this arena those were used only in this sensor setup. We tried to 

elaborate the use of 2D LiDAR sensors with real-time calculations and enhanced 

accuracies. A pre-trained deep neural network, ResNet effectively fit the data and found its 

losses for gait recognition. The overall precision of the system is awe-inspiring. A 

combined application of person tracking and identification with this sensor could be 

applied in autonomous robot movements.   
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Yamada et. al [3] PCG (30 People) 3D LiDAR CNN+LSTM
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Fig. 6. 9 Contemporary studies with state-of-the-art technologies 
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Chapter 7 

Conclusion and Future Work 

 

7.1 Conclusion 

This thesis demonstrates a comprehensive understanding of people's behavior apart from 

traditional sensor-based applications. When recent studies have bottleneck understanding 

of privacy and security, our LiDAR-based solution carefully addresses the shortcomings 

and the possibilities. A generous surveillance system could handle all its necessities 

effectively, but privacy remains unhampered. This dissertation showed the multifaceted 

functions of a 2D LiDAR-based monitoring system. 

We rigorously exhibited the tracking system that could be a showcase for privacy-

measured ideal people tracking system. Ankles scan with 2D LiDAR effectively 

understands people's behavior with reasonable accuracy. Besides conventional hierarchical 

clustering algorithms, density-based algorithms ensure the best classifications, especially 

in LiDAR-dense data. Real-time processing, low installation cost, and impartial sensing 

make the model authentic and applicable. Though its precisions were impressive, some 

constraints downgrade the tracking performances in occlusion, over-dense, or under-dense 

areas. We proposed two density-based clustering algorithms (EDBSCNA and EOPTICS) 

that could be applied independently to classify the LiDAR data. These two algorithms 

nicely deal with data overfitting and underfitting.  

To enhance the usability of the LiDAR-based applications, we improved our study to 

estimate the properties of pedestrians. This study could distinguish people based on height 

(tall and short) and age (elder and young). Dataset of 2D LiDAR with newly developed 
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scanning system shows feasibility for Property estimation. We additionally required a next-

stage solution for subcategory classification with new data collection. These property 

estimations are also essential in defense recruitment, clothing, and age-based sports. People 

identification is another integral research domain in recent person Re-ID. We extended our 

study for individual identification through Gait estimation with our new scan data. We 

considered people identification based on 2D LiDAR data, which must not confuse with 

specific identity disclosure. We emphasized identifying a person moving different 

positions on the premises. A multi-LiDAR sensor setup was considered to get different 

angular data that enhanced the reachability of the dataset. We are trying to summarize the 

study with group pedestrian recognition, which efficiently solves most camera issues and 

can be used in support robot applications. 

Finally, we can conclude that with the emergence of video camera-based applications in 

surveillance systems, its drawbacks also should be optimized. Besides privacy, disasters 

and even lighting restrains could be solved by LiDAR-based applications. Our proposed 

2D Lidar-based monitoring system is a promising novel innovation in people recognition, 

a parallel or standalone application.  

 

7.2 Future Work 

This research covered four main properties of a person's behavior understanding through 

LiDAR. Video or 3D LiDAR-based applications deal with more detailed data, quickly 

determining people's properties. We faced some limitations in continuing our study. In the 

future, we will try to overcome the following issues.  

• In the future, we will try to enhance our study to find more properties of a person 

so that he/she can be more accurately traced. 

• Our impending focus is on group recognition and predicting their behavior without 

compromising individual identity. 

Finally, we want to enhance our dataset and make those accessible so that this 2D LiDAR-

based behavior understanding research will proceed next. 
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