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Abstract

In this thesis, we aim to study the problem of learning actions from videos by

deep neural networks that are trained with less or no manual labels, which belongs

to unsupervised learning. Supervised learning methods obtained great improve-

ments in action classification by learning abundant manual and well-labeled data,

however, it is labor and time-consuming to manually make such data, and it is

also subjective and difficult to decide how exactly the annotations of action videos

should be. Therefore, incomplete or even automatically-generated supervision sig-

nals that can help with action recognition are expected.

We first propose a method to recognize fall actions from videos without fine-

grained labels, in which annotations of fall actions are not needed by utilizing

learning of abundant Activity of Daily Life (ADL) videos. The first variational

auto-encoder (VAE) of the method learns representations of ADL videos only by

compressing those videos, and the second VAE gathers representations of ADL

data and fall action data into two clusters. The experimental results showed

that our method achieved better generalization ability compared to methods using

supervised learning with well-labeled data. When the method evaluated data

that is different from training data on scenes, subjects, etc., it achieved a 10%

improvement compared to supervised learning methods.

Then, we propose a method for general action representation learning using

skeleton sequences, in which a structure-asymmetrical auto-encoder is used to learn

spatiotemporal representations under the supervision of salient skeleton motion

cues. Since the supervision signals are automatically generated by a program in

advance, our method is unsupervised and does not rely on manual annotations to

associate skeleton sequences with actions. The experimental results showed the

effectiveness of the proposed representation learning, and improvements compared

with skeleton-based generative learning methods. When the proposed network



was fine-tuned with partially labeled data, our results also outperformed some

fully-supervised methods.

Finally, we propose a method for general action representation learning which

is trained with paired videos and skeleton sequences and is evaluated using videos

only. The proposed neural network simultaneously implements the prediction of

position relationships of movements with salient pixel-value changes and multimodality-

contrastive learning between representations that are respectively extracted from

videos and skeleton sequences. In addition to not relying on manual annotations

to associate input data with actions, the method can save time and memory space

for devices, because sparse parts of videos are taken as training data instead of

entire videos, which are picked up according to probabilistic values of the size of

pixel-value changes of movements. In experiments using supervised settings, the

proposed method trained with sparse parts of videos that are picked up according

to probabilistic values obtained 30% and 18% improvements in classification per-

formance on two datasets compared to a method trained with entire videos. In

experiments using unsupervised settings, our method achieved state-of-the-art per-

formance. The experimental results demonstrate the superiority of the proposed

method, which efficiently learns discriminative features.
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Chapter 1

Introduction

1.1 Background and Motivation

With the development of deep learning, supervised learning methods obtained

excellent performance in image classification. For example, in a competition named

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015, the method

that uses a supervised deep neural network named residual network [30] surpassed

human performance for the first time. However, supervised learning methods

perform well when training with abundant, balanced, and well-labeled data. If

supervised neural networks cannot be trained with such data, they will easily

suffer from overfitting problems, and the performance underperforms, which leads

to a series of research topics such as weakly-supervised learning, self-supervised

learning, unsupervised learning, etc.

Human action recognition is a crucial topic in computer vision since it plays

a fundamental role in a wide range of applications, such as video surveillance,

human–computer interaction, video understanding for retrieval, etc. It is usually

difficult to label abundant data with precise tags as time and labor-consuming

such as taking thousands of hours of videos and annotating each frame with an

action tag like falling, sitting, drinking water, or others. Besides, it is subjective

and difficult to decide how exactly the annotations of the action of videos should

be. Therefore, in this thesis, we aim to study the problem of learning human

actions from videos by using deep neural networks with less, or even no manual
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label.

Videos are skeletons are most two data modalities that are used for action

recognition. With the rapid development of convolutional neural networks (CNN),

CNN-based methods have achieved significant success in action classification from

videos [9, 81, 75, 88, 32]. Visual cues (e.g., RGB images and depth images) pro-

vide discriminative features for action recognition, whereas learned features also

include bias from viewpoints, the appearance of actors, backgrounds, and many

other factors that can adversely affect recognition performance. In some studies,

skeletons are extracted from images, and then recurrent neural networks (RNN)

are used to model skeleton movements in the temporal dimension for extracting

more robust features of actions [39, 16, 50, 102, 74]. Not only can 3D joint coordi-

nates be acquired from low-cost human skeleton capture devices (e.g., Kinect), but

also there have been extensive studies of 3D human pose estimation algorithms

[44, 68, 49] in recent years. Therefore, we utilize videos are skeletons for studying

action recognition.

1.2 Literature Review

1.2.1 Learning Approach

Data and associated labels are utilized by supervised learning methods. Its goal

is to learn a function (i.e. a neural network) that maps input data (e.g. images,

videos, etc.) to labels. A part of the data has associated labels, and the rest has

Learning Approach
What kind of labeled data is it?

manual partial incomplete pseudo

Supervised Learning
√

Semi-supervised Learning
√ √

Weakly-supervised Learning
√ √

Self-supervised Learning × × ×
√

Unsupervised Learning × × × ×

Table 1.1: Comparison of different learning approaches with labeled data.
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not at all, which are utilized by semi-supervised learning methods [84]. Data with

incomplete (i.e. not precise) but manual labels are utilized by weakly-supervised

learning methods [101]. Data with pseudo labels which can be made by programs

are utilized by self-supervised learning methods [52]. Unsupervised learning meth-

ods utilize data only. For self-supervised learning, since pseudo labels are made

from original data, it usually is considered a type of unsupervised learning. A

comparison of different learning approaches is shown in Table. 1.1.

1.2.2 Supervised Action Recognition

Before the age of deep learning, various hand-crafted descriptors [67, 72, 92] were

proposed to represent the features of actions. In recent years, considering the

powerful convolutional neural networks (CNNs) developed for classification, many

3D-CNN-based architectures [81, 9, 88] have been used to extract spatiotemporal

features from RGB (or depth) videos for action recognition.

Deep learning methods based on recurrent neural networks (RNNs) also per-

form well for classifying sequential skeleton data. In order to better capture long-

term contextual information of skeleton sequences, the physical structure of human

skeletons was considered. Du et al. [16] and Evangelidis et al. [18] proposed a

method in which the whole human skeleton is split into several parts according

to the physical structure, these parts are fed into different neural networks, and

finally, the outputs are fused hierarchically. Shahroudy et al. [74] and Zhu et

al. [102] proposed novel network structures to capture co-occurrences of joints in

actions (i.e., joints moving together in groups) to improve recognition performance.

Originally, the neural network, Transformer [85], is an improvement of RNN

to process sequential data in the field of natural language processing, in which the

relationship of tokens (i.e. words) are captured by using self-attention mechanism

[61, 3]. Recently, the Transformer is introduced into the field of computer vision

such as Vision Transformer (ViT) [14] and Video Vision Transformer (ViViT) [2],

in which, images or videos are divided to sequences of patches and are processed

3



by Transformer-like neural networks.

1.2.3 Unsupervised Action Representation Learning

Various pretext tasks are utilized for unsupervised action representation learning.

Since supervision signals of learning with pretext tasks are automatically made

from original data by programs, it is also called self-supervised learning.

Some studies focus on using vision data, such as images and optical flow, and

mining correlations of spatial and temporal arrangements among frames. In [78]’s

study, videos were used to learn motion patterns in temporal intervals, and it

was proposed to generate missing frames, reconstruct input frames, and predict

future frames simultaneously. In [54]’s study, it was proposed to learn visual

features by predicting optical flow information from input RGB or depth videos.

In [87]’s study, it was proposed to learn visual features from videos by regressing

both motion and appearance statistics (e.g., the dominant color, the largest and

smallest color diversity locations, the dominant orientation of the largest motion,

etc.) in videos. Those methods learned features in short temporal intervals, but

long-term motion dependencies were lost. In [60]’s study, it was proposed to

learn visual features by predicting the correct order for input videos with shuffled

frames. In [35]’s study, an extended method was proposed in which videos were

given as space-time cubes, and were separated into several cuboid puzzle blocks and

shuffled, and then their correct arrangements were predicted. Those methods have

the disadvantage that the learning was strongly based on local semantic features,

and long-term temporal features were neglected.

Some studies focus on using skeleton data, and mining correlations of spa-

tiotemporal arrangements among joints. In [100, 79]’s studies, encoder-decoder-

based networks were proposed to reconstruct skeleton data, where an encoder

learns to compress skeleton data to latent representations, and a decoder learns to

generate original skeleton data from the learned representations. In [47]’s study, a

method with a multi-task training strategy was proposed, where the network recon-
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structed input skeletons, and simultaneously, the network also generated masked

input skeletons and predicted the correct order of shuffled skeletons.

1.3 Objectives and Contribution

In this thesis, we propose three methods for the purpose of learning human actions

by using deep neural networks that are trained with fewer or no manual labels. A

comparison of the three proposed methods is shown in Fig. 1.1.

In the first method, we propose a framework for detecting fall actions from

videos to solve the problem of imbalance between fall action data and Activity of

Daily Life (ADL) data by utilizing weakly-supervised learning and unsupervised

clustering learning. Since surveillance videos contain abundant activities of the

daily life of the elderly, we utilize learning ADL data to recognize fall actions. The

first variational auto-encoder (VAE) in the framework learns representations of

ADL data by compressing videos, and the second VAE gathers representations of

ADL data and fall action data into two clusters. The experimental results showed

that our method achieved a promising level of accuracy and better generalization

ability compared to methods using supervised learning with well-labeled data. This

method utilizes supervised information of ADL data which are manually labeled,

and its application is limited to binary classification tasks. Therefore, we proposed

the second method to further reduce the use of manual labels which can be applied

to multi-class classification tasks.

In the second method, we propose a framework for unsupervised representation

learning of skeleton sequences by using a structure-asymmetrical auto-encoder that

learns spatiotemporal representations under the supervision of salient skeleton mo-

tion cues. The supervision signals are automatically generated by a program. The

structure-asymmetrical auto-encoder captures not only correlations of adjacent

joints but also long-term motion dependencies by using the proposed unsuper-

vised training, which leads to the advantage that similar movements are gathered

5
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around the same cluster, whereas different movements are gathered around dis-

tinct clusters. The experimental results showed the effectiveness of the proposed

representation learning, and improvements compared with skeleton-based genera-

tive learning methods. When the proposed network was fine-tuned with partially

labeled data, our results also outperformed some fully-supervised methods. Since

skeleton coordinates are not the only important thing for action recognition, and

the appearance of objects and subjects are also important, we proposed the third

method which utilizes both skeletons and videos.

In the third method, we propose a neural network for action representation

learning which is learned from spatiotemporal signals of salient pixel-value changes

and salient skeleton motion cues using both videos and skeleton sequences. The

network simultaneously implements the prediction of position relationships of

movements with salient pixel-value changes using a vision transformer and multimodality-

contrastive learning between representations respectively learned from videos and

skeleton sequences. In experiments using supervised settings, our proposed net-

work obtained remarkable generalization ability and higher accuracies. In exper-

iments using unsupervised settings, our method achieved state-of-the-art perfor-

mance. The experimental results demonstrate the superiority of the proposed

method which efficiently learns discriminative features.
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Chapter 2

Detecting Fall Actions of Videos
by using Weakly-supervised
Learning and Unsupervised
Clustering Learning

2.1 Introduction

Population aging is a widespread problem across the world and is very severe in

highly developed countries. Since solitary elderly people are more likely to fall

indoors and cannot obtain assistance in time, demands for stable fall-detecting

systems are increasing. However, it is challenging to detect whether a person falls

by using computer vision due to complicated real-life situations.

Until the age of deep learning, hand-crafted features were extracted from im-

ages and were used to detect fall actions. However, they are not sufficient to

discriminate fall actions due to complicated human behaviors, viewpoints of cam-

eras, and other factors. Recently, deep learning methods using supervised neural

networks have proposed to detect fall actions. In those methods [22, 66], neural

networks were used to classify input data as fall actions or normal actions by train-

ing with manually labeled data. If supervised neural networks are trained with

enough, balanced and well-labeled data, they perform well. However, there is a

problem in the field of fall detection that well-labeled data is not abundant, since

it is labor-consuming to label each frame of hours of videos with tags of falling,
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sitting, drinking water, and other actions in daily life. There is another problem

that quantities Activity of Daily Life (ADL) data and fall action data are imbal-

anced. In most videos, fall actions do not happed or happen only within several

seconds, and the rest is about activities of daily life. Those problems can adversely

affect performance of supervised neural networks.

Therefore, some researchers proposed utilizing the idea of anomaly detection

[37] for fall detection, since there is sometimes imbalance between regular events

and anomalous events like ADL data and fall action data. Some methods using

unsupervised neural networks [99, 12] were proposed to overcome the imbalance

between anomalous data and regular data. In these methods, auto-encoders (AE)

that are a kind of unsupervised neural network and do not depend on well-labeled

data were used to detect abnormal events. First, AE-based networks learn a

distribution of regular videos by compressing and reconstructing regular videos.

When training is finished, an abnormal sample is input to the networks, and still

is reconstructed to be normal, which makes reconstruction errors large, and the

sample is classified as an anomaly. Those methods belong to weakly supervised

learning, which uses data with imprecise labels, since training data has imprecise

labels, namely training data only contains regular videos.

In this study, we propose a framework for fall detection where a Variational

Auto-encoder (VAE) [36] with 3D-convolutional residual blocks [29] learns a dis-

tribution of ADL videos, and another AE with fully connected layers learns to

cluster representations that belong to the distribution of ADL videos or the other

one of fall action videos into two distinct clusters. Besides, a region extraction

technique for enhancing accuracy is proposed to make the VAE focus on human

actions. In comparison with the study [65], the difference is our finding that a low

ratio of a motion region to the entire image can adversely affect the performance of

the neural network when using RGB images instead of depth and thermal images.

Therefore, we use a region extraction technique to increase the ratio so that the

neural network can focus on learning human motions. We also verify that a com-
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bination of weakly supervised learning and unsupervised cluster learning can be

used to ease the lack of well-labeled data, and abundant ADL data can be taken

good use of to overcome the adverse effect of imbalanced data. The proposed

framework is expected to obtain better accuracies and generalization ability than

methods using supervised learning with well-labeled data.

2.2 Related Research

2.2.1 Fall Detection

Until the age of deep learning, handcrafted features were used to detect fall actions,

such as fitting an ellipse to a body [63, 46]. In these methods, whether a fall action

happens or not is detected depending on variations of the short and long axis, the

area, etc. of the fitted ellipse in videos. For example, if a vertical and thin ellipse

becomes horizontal, it may indicate that a fall action happened. Such hand-crafted

features are not sufficient to discriminate fall actions.

In some studies, handcrafted features were used as inputs to neural networks

for for fall detection. For example, skeleton information is extracted by using

Microsoft Kinect, treated as biomechanical features, and then are used as inputs

to a recurrent neural network with long short-term memory units [95]. Since visual

information is lost when extracting skeleton information, and the performance

may become unstable, it would be more appropriate to directly use pixel-level

information to training neural networks. Due to complicated human behaviors,

viewpoints of cameras, and other factors, it is more reasonable to automatically

extract features by using deep neural networks.

Recently, supervised learning methods using deep neural networks have been

proposed to detect fall actions [22, 66, 1]. In these methods, a neural network

is trained with manually labeled data to classify input data as a fall action or a

normal action. Well-labeled data usually is precious since it is tiresome to label

tags on a large amount of data, and lacking well-labeled data will lead to overfitting

10



of supervised neural networks. Moreover, the amount of fall action data and the

amount of ADL data are imbalanced. Therefore, a large amount of ADL data

is abandoned to keep the balance and allow supervised neural networks to work

normally, which further aggravates the lack of well-labeled data.

2.2.2 Weakly Supervised Learning

Since there is an imbalance between fall action data and ADL data like anomalous

videos and regular videos, the idea of anomaly detection [37] was proposed to detect

fall actions. Anomaly detection is a kind of weakly supervised learning method

since training data with imprecise labels is used. In the case of fall detection, all

training data is from ADL videos.

Zhao et al. [99] and Chong et al. [12] proposed a spatiotemporal auto-encoder

to detect abnormal events. In these methods, AE-based networks were used to

model regular video data, and the networks learn how to reconstruct regular videos.

When training is finished, if an abnormal sample is input, the networks still try

to reconstruct it to be a regular video, which makes reconstruction errors large,

and the sample is classified as an anomaly. The higher the reconstruction error is,

the more possibly an abnormal event happens. Nogas et al. [65] also proposed an

AE for fall detection and conducted experiments using a fall dataset consisting of

thermal and depth images.

2.2.3 Unsupervised Clustering Learning

Using handcrafted thresholds of reconstruction errors cannot detect fall actions

well in various situations, but metrics learned for different situations such as clus-

tering learning can overcome that weakness.

Some classical clustering methods such as k-means [56] and Gaussian Mixture

Models [7] tend to suffer from the curse of dimensionality [5] when high-dimensional

data such as videos are input. Various clustering methods such as spectral clus-

tering [55], density-based clustering [17], etc., are proposed to take good used of
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more flexible distance metrics to process high-dimensional data. However, they

lead to other problems such as memory and time-consuming.

With the development of deep learning, some methods assembled both repre-

sentation learning and clustering learning. Xie et al. [93] proposed Deep Embed-

ding Clustering (DEC) in which an auto-encoder compresses the dimensionality of

input data, and minimized the KL divergence between predictions and auxiliary

target distribution. DEC achieved progressive performance on clustering tasks.

Jiang et al. [31] and Nat et al. [13] assumed that low-dimensional latent space

of compressed input data follows a mixture of gaussian distribution and proposed

Variational Deep Embedding (VaDE) and Gaussian Mixture VAE (GMVAE) re-

spectively. We refer to [59] for a comprehensive literature study of clustering with

deep learning.

2.3 Method

We propose a 3D-convolutional VAE as shown in the orange part of Fig. 2.1 that

learns representations of ADL actions by reconstructing ADL videos since videos

include lots of redundant information and should be reduced to lower dimensional-

ity. Many previous studies simply used reconstruction errors of the VAE to detect

fall actions. However, handcrafted thresholds of reconstruction errors are not scal-

able to new data that is different from training data, which means generalization

ability is weak. Therefore, we propose another AE with fully connected laters as

shown in the blue part of Fig. 2.1 to classify those action representations by using

clustering learning.

2.3.1 Weakly Supervised Representation Learning

We adopt a VAE with 3D-convolutional residual blocks (omitted to ResVAE for

short) as shown in the orange part of Fig.2.1 to model ADL videos and trained it

by minimizing reconstruction errors, which are the mean square error between an

input samples and reconstructed samples. A VAE is a kind of unsupervised deep

12



 

E
x
tr

a
c
ti
n

g
 h

u
m

a
n
 r

e
g

io
n

s

&
 A

lig
n
in

g
 h

u
m

a
n
 m

o
ti
o

n
s
 b

y

u
s
in

g
 t

h
e
 l
e
ft

-s
h
o

u
ld

e
r 

p
o

in
t

E
n

co
d

e
r

  
!

D
e

co
d

e
r

"

#"

$
%
,$

!

& %
& !

'
%
'
!

E
n

co
d

e
r

(  
!

D
e

co
d

e
r

co
d

e
r

"

#"

$
%
,$

!

& %
& !!

'
%
'
!

)
*
+
+
-.
/

A
u

to
-e

n
co

d
e

r 
fo

r 
C

lu
st

e
ri

n
g

A
u

to
-e

n
co

d
e

r 
fo

r 
R

e
p

re
se

n
ta

ti
o

n
 L

e
a

rn
in

g

F
ig

u
re

2.
1:

O
ve

rv
ie

w
of

th
e

p
ro

p
os

ed
m

et
h
o
d

th
at

h
as

th
re

e
p
ar

ts
,

p
re

-p
ro

ce
ss

in
g,

th
e

fi
rs

t
au

to
-e

n
co

d
er

an
d

th
e

se
co

n
d

au
to

-
en

co
d
er

.
In

th
e

p
ar

t
of

p
re

-p
ro

ce
ss

in
g,

h
u
m

an
re

gi
on

s
ar

e
ex

tr
ac

te
d
,

an
d

h
u
m

an
m

ot
io

n
s

ar
e

al
ig

n
ed

b
y

u
si

n
g

a
jo

in
t

p
oi

n
t

(e
.g

.
th

e
le

ft
-s

h
ou

ld
er

).
In

th
e

fi
rs

t
au

to
-e

n
co

d
er

,
re

p
re

se
n
ta

ti
on

s
ar

e
le

ar
n
ed

b
y

co
m

p
re

ss
in

g
an

d
re

co
n
st

ru
ct

in
g

v
id

eo
s.

In
th

e
se

co
n
d

au
to

-e
n
co

d
er

,
re

p
re

se
n
ta

ti
on

s
ar

e
ga

th
er

ed
in

to
tw

o
cl

u
st

er
s.

13



learning architecture and is suitable for modeling training data without labels.

However, the VAE is weakly supervised in this study, since we limit all training

data to be ADL videos. To compare with AEs, which learn compressed represen-

tations of training data, VAEs learn the parameters of a probability distribution

of latent variables. Using residual blocks in deep neural networks can avoid the

problem of vanishing gradients when using deeper layers. In recent years, neural

networks with 3D-convolution have been demonstrated as an effective model for

learning local motion features from videos. We therefore combine a VAE, resid-

ual blocks, and 3D-convolution in our proposed method. Since the network is

trained to reconstruct ADL videos, it learns a distribution of ADL actions in low-

dimensional latent space. After training is finished, reconstruction errors of ADL

samples are limited within a certain range. In contrast, the reconstruction error

of an abnormal sample should be greater than that range.

2.3.2 Unsupervised Clustering Learning

Handcrafted thresholds of reconstruction errors are usually used to distinguish

fall actions since fall action data is reconstructed worse than ADL data by the

VAE in previous research [99, 12, 65]. However, it is more reasonable to directly

cluster features in the high-dimensional latent space using a deep neural network.

Therefore, we propose to use another VAE with fully connected layers (omitted

to FCVAE for short) to learn cluster centers of distributions of ADL data and

fall action data as shown in Fig. 2.1. Representations {x1, x2, ..., xi, ...}, xi ∈

RD, where D denotes dimensionality, are extracted by the trained encoder of 3D-

convolutional VAE from both ADL data and fall action data and are taken as a

set. Then, the FCVAE learns to distinguish between ADL data and fall action

data by simultaneously learning two cluster centers denoted by γ1, γ2 ∈ RD and

reconstructing input data.

In the branch of clustering learning, cluster centers are firstly initialized by us-

ing k-means, and similarity sij between representation embeddings {µ1, µ2, ..., µi, ...},
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µi ∈ RD and cluster centers in the high-dimensional latent space is calculated using

Student’s t-distribution following [93, 83]:

sij =
(1 + ∥µi − γj∥2)−1∑
j′(1 + ∥µi − γj′∥2)−1

,

where i = 1, 2, ..., N, j = 1, 2. Those values of similarities are normalized between

0 and 1 using

sij ←
sij∑
j′ sij′

and compose a distribution (si1, si2) which represents label assignment possibility.

We additionally apply a sharpening function to obtain pseudo ground truth [6, 26]

qij = fsharpen(sij) =
s2ij∑
j′ s

2
ij′

which can reduce the entropy of assignment distribution, namely encouraging the

network to make an assignment as certain as possible. We use a KL divergence

loss between predicted assignment distribution (si1, si2) and the pseudo ground

truth (qi1, qi2) to gradually reduce the entropy as follows:

Lassign =
N∑
i=1

2∑
j=1

sijlog
sij
qij

.

Clustering learning and reconstruction learning are conducted simultaneously.

Reconstruction learning of xi is needed since it implicitly makes middle represen-

tation embeddings be assigned based on input data. We use a mean squared error

(MSE) loss during the reconstruction learning as follows:

Lrecon =
N∑
i=1

∥xi − x̂i∥2 .

Finally, the optimization objective is L = αLassign + βLrecon. The larger α is, the

more obvious the clustering effect is. It is reasonable if α is much bigger than β.

We test different α and β and use the best one.

2.3.3 Region Extraction for Focusing on Learning Human
Motions

In our experience, neural networks will neglect motion information if entire images

are used as training data. Since the ratio of the human region to the entire image
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is too low, the neural networks cannot sufficiently learn motion information. Thus,

we decided to extract the human region from an entire image so that the neural

network can focus on learning human motion, not the background. In a previous

study [65], the researchers proposed an approach that does not extract a region of

interest. A possible reason why they did not use region extraction is that most of

the details of the background are fuzzy, or even disappear in thermal and depth

images, and the details of the background did not adversely affect the learning

of motion information. In the case of using RGB images, we need to extract the

region of human motion to increase the ratio of the motion region to the entire

image, so that the neural network can focus on learning human motion.

To extract the region of human motion, we adopted the AlphaPose estimator

[23] to estimate key points of a human. As shown in Fig. 2.2, a minimal bounding

rectangle that includes all estimated keypoint positions is obtained, and the human

region is cut out using an appropriate rectangle that is a little larger than the

minimal bounding rectangle according to those positions. Then we align motion

regions based on the same point, namely, the left shoulder point, and place them

on a square with a black background. It is necessary to align motion regions since

quivering motions give a negative effect on the performance of neural networks for

fall detection.

2.4 Experiment

We conducted experiments using a PC having a 4.2 GHz i7-7700K CPU, 16 GB

RAM, and a GTX 1070 GPU. As shown in Table 3.1, we compared supervised

learning networks and weakly supervised learning networks, using the same archi-

tecture with different numbers of layers, for training and evaluating on different

datasets, original images, and cropped images.

TPR denotes the true positive rate, which is a measure of how many falling

samples were classified correctly. TNR denotes the true negative rate, which is a
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Figure 2.2: A example of human regions are extracted from an entire image by
using a pose estimator.

measure of how many ADL samples are classified correctly. ACC denotes average

accuracy. F1 denotes the F1-score, which is the harmonic average of the precision

and recall. MCC denotes the Matthews correlation, coefficient which is a balanced

measure of the quality of binary classifications. The closer an MCC value is to a

positive one, the better the prediction is.

2.4.1 Dataset

We used the High Quality Simulated Fall Dataset (HQFD) [4] and the Le2i Fall

Dataset (Le2i) [10]. ADL data was separated into several segments. Each segment

included 16 frames which were uniformly sampled from 64 frames. The region

of human motion was extracted from an entire image by using the AlphaPose

estimator and was resized to 96 by 96 pixels. Regarding fall action data for eval-

uation, we manually trimmed each video to exactly include one fall action at first

and then applied the same preprocessing operations as those on the ADL data.

The data structure was in the form of (3, 16, 96, 96), which denotes 3 channels

(RGB), 16 frames, a height of 96, and a width of 96. As training sets for weakly

supervised learning, all samples were ADL data. As evaluation sets for weakly
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(a) An example of ADL data from Le2i dataset.

(b) An example of fall action data from Le2i dataset.

Figure 2.3: Examples including input images (top), reconstructed images (middle),
and heatmaps of reconstruction errors (bottom). For better showing, 16 frames
are resampled to 8 frames, and best viewed in color.

supervised learning, besides all fall samples, there was also a moderate amount of

ADL samples. Some examples of ADL data and fall action data are shown in Fig.

2.3.

HQFD. The HQFD dataset contains 275 fall videos and 85 ADL videos which

range from 50 s to 35.5 min in duration. They were captured by RGB cameras

from 5 different viewpoints. After preprocessing, there were 12266 ADL samples

and 282 fall samples. An evaluation set for weakly supervised learning consisted

of 282 fall samples and 300 ADL samples.

Le2i. The Le2i dataset contains 192 fall videos and 57 ADL videos which were

captured by a single RGB camera and range from 10 s to 45 s in duration. After

preprocessing, there were 834 ADL samples and 130 fall samples. Some videos
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after preprocessing with too few frames were abandoned. An evaluation set for

weakly supervised learning consisted of 130 fall samples and 200 ADL samples.

2.4.2 Implementation

The encoder and decoder of the 3D-convolutional VAE respectively consisted of 8

residual blocks named ResVAE-18 or 16 residual blocks named ResVAE-34. Each

residual block comprised two batch normalization layers, two activation layers,

and two convolution layers (or transposed convolution layers). The networks were

optimized using an Adam optimizer with a learning rate of 0.0001. The batch size

was 32 in ResVAE-18 and 24 in ResVAE-34.

The encoder of the full-connected VAE (i.e. FCVAE) consisted of two full-

connected layers with ReLU activation layers and another two full-connected layers

with following dimensions: Input data (dim=512)→ FC(dim=2048)→ FC(dim=2048)

→ FC-µ(dim=512) & FC-σ2(dim=512). The decoder consisted of two full-connected

layers with ReLU activation layers and another full-connected layer with fol-

lowing dimensions: z = µ + σ × ϵ ∼ N(0, I) (dim=512) → FC(dim=2048) →

FC(dim=2048) → FC(dim=512). Cluster centers were also regarded as parame-

ters and were jointly optimized with the FCVAE using an Adam optimizer with a

learning rate of 0.0001 and a batch size of 64.

We chose an appropriate rectangle that was extended by 20 pixels in all di-

rections from the minimal bounding rectangle to extract human regions. For the

training of ResVAEs, networks were trained for 500 epochs. For the training of

FCVAEs, networks were trained for 100 epochs. For training of standard ResNets,

training was stopped if the value of the loss function was consecutively less than

0.00001 for ten epochs.

For evaluation using a threshold of reconstruction errors, the mean and variance

of reconstructed errors of ADL samples in the evaluation dataset are calculated,

and reconstruction errors of all samples are normalized using the mean and variance

of training samples. The threshold was determined so that 85% of the ADL samples
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Table 2.1: Experimental results of different networks by using evaluation of recon-
struction error thresholds.

Method
Training Set

(#Fall / #ADL)
Evaluation Set

(#Fall / #ADL)
TPR
(%)

TNR
(%)

ACC
(%)

F1
(%)

MCC

ResVAE-18 (proposed)
(Weakly supervised, Cropped, Clustering)

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

90
97.5

87.9
96

88.9
96.6

88.7
95.5

0.778
0.928

ResVAE-18 (proposed)
(Weakly supervised, Cropped)

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

94
92.3

83.7
84

88.7
87.3

88.9
85.1

0.778
0.748

ResVAE-34
(Weakly supervised, Cropped)

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

80.5
92.3

83.3
84.5

82
87.6

81.2
85.4

0.639
0.753

ResVAE-18
(Weakly supervised, Non-cropped)

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

13.5
10.8

83.7
81.5

49.7
53.6

20.6
15.5

-0.04
-0.105

ResVAE-34
(Weakly supervised, Non-cropped)

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

58.9
10

83.7
84

71.6
54.8

66.8
14.9

0.44
-0.085

ResNet-18
(Supervised, Cropped)

HQFD (225/9812)
HQFD (225/240)
HQFD (282/12266)
HQFD (282/300)

HQFD (57/2454)
HQFD (57/60)
Le2i (130/200)
Le2i (130/200)

5.3
75.4
0.8
93.8

100
96.7
100
79.5

97.8
86.3
60.9
85.2

10
84.3
1.5
83.3

0.227
0.741
0.68
0.717

ResNet-34
(Supervised, Cropped)

HQFD (225/9812)
HQFD (225/240)
HQFD (282/12266)
HQFD (282/300)

HQFD (57/2454)
HQFD (57/60)
Le2i (130/200)
Le2i (130/200)

17.5
47.5
2.3
70.8

100
98.3
100
79.5

98.1
73.5
61.5
76.1

29.9
63.5
4.5
70

0.415
0.535
0.119
0.501

are always classified as normal samples. An unknown sample is classified as falling

if its normalized reconstructed error is larger than a threshold.

For evaluation using clustering learning, we used unsupervised classification

accuracy:

ACC = max
m

1

n

n∑
i=1

1{li = m(ci)} ,

where li denotes the ground-truth label, ci denotes the cluster assignment, and m

denotes possible bijection functions between clusters and labels. Since there are

only two classes, fall action data, and ADL data, there are two bijection functions.

2.4.3 Results and Analysis for Learning of ResVAE

Reconstructed data learned by the ResVAE and difference heatmaps between input

data and reconstructed data were shown in Fig. 2.3. In heatmap images of ADL

data shown in Fig. 2.3(a), it was seen that pixels of the subject and block edges

are reconstructed well since motion changes smoothly, and blobs of reconstruction

errors were rare. However, in heatmap images of Fig. 2.3(b), at the falling moment,

many blobs of large reconstruction errors were produced, since the pose of falling

down was a rare case in the training data, and ResVAE cannot reconstruct it well.

As shown in Table 2.1, in the experiments using imbalanced data, supervised
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ResNets performed badly, which showed that imbalanced data was fatal for super-

vised learning. To maintain the balance, a lot of ADL data must be abandoned.

The accuracy of supervised learning methods with balanced data sharply increased

compared with those with imbalanced data. Since abandoning ADL data was un-

necessary for weakly supervised learning methods, ResVAEs with cropped data

had better performance than standard ResNets with cropped data.

For training and evaluation on different datasets with different persons and

situations, the performance of ResVAEs with cropped data was still better than

that of standard ResNets with cropped data. The ResVAEs showed good gener-

alization ability since the proposed method adopts a kind of weakly supervised

learning architecture.

Besides, the result of ResVAE-34 was worse than that of ResVAE-18 when

training and evaluating on the same dataset. A possible reason was that ResVAE-

34 may need more training for obtaining stable and better performance. Another

possible reason was that overfitting happens in ResVAE-34 due to deeper layers.

Figure 2.4: F1 scores by training the network with a loss function using different
α and β.
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2.4.4 Results and Analysis for Learning of FCVAE

F1 scores by training the network with a loss function using different α and β are

shown in Fig. 2.4. The network obtained a lowest F1 score when a reconstruction

loss was excluded, namely β was set to zero, which indicates reconstruction is

necessary to keep a sample being gathered to a correct cluster.

Visualization results of representation embeddings learned by FCVAE during

clustering learning are shown in Fig. 2.5. At the beginning (e.g. the first epoch),

the boundary of ADL data and fall action data was unclear, and a part of sample

points were mixed up. With training going on, similar representations were contin-

uously gathered, and discrepant representations were continuously made distant.

Finally, sample points formed two clear clusters, and classification results were

obtained by using a metric of unsupervised classification accuracy.

As shown in Table 2.1, the proposed network with clustering learning that was

trained on the HQFD dataset and evaluated on the Le2i dataset obtained a large

improvement on the aspect of generalization ability It was shown that measure-

ments learned by deep neural networks was superior to handcrafted thresholds of

reconstrction errors.
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Figure 2.5: Two-dimensional visualization results of 500-dimensional latent repre-
sentations during unsupervised clustering learning period. Best viewed in color.
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2.5 Discussion

2.5.1 Weakly Supervised Learning vs. Supervised Learn-
ing

First, in the case of weakly supervised learning, abundant ADL data is an advan-

tage because networks can be optimized better by using abundant data, and the

performance can be improved. The accuracies of standard ResNet decrease when

the networks detect fall actions with different persons and different situations,

namely, evaluating networks on a different dataset. In contrast, our proposed

method, which is based on a weakly supervised learning architecture, has advan-

tages in dealing with such situations. After training, the encoder of the VAE

encoded ADL data close to each other, and encoded the most of fall action data

far away from ADL data, though fall action data were not included in the training

set. When the network was evaluated on a different dataset (i.e., Le2i), we can

find the same tendency that latent variables of ADL data and fall action data form

clusters, which shows an advantage of using weakly supervised learning, i.e. good

generalization ability.

Moreover, when standard ResNets with deeper layers were used, the perfor-

mance decreased instead, which shows that the performance of supervised learning

was not stable since less training data leads to overfitting. In contrast, our pro-

posed method showed robustness and obtained a more stable performance. Thus,

it is more appropriate to use a weakly supervised learning architecture for fall

detection.
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Figure 2.6: Normalized reconstructed errors that are evaluated on the HQFD
dataset of ResVAE-18 with learning of cropped data and non-cropped data. Best
viewed in color.
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2.5.2 Cropped Image vs. Entire Image

The MCC value of ResVAE-18 with non-cropped data showed that its performance

was no better than random prediction. Although adding up to 34 layers improved

the performance, it was still much worse than that of ResVAEs with cropped

data. This demonstrates that too little motion information in input images can

adversely affect the performance of the networks, and therefore, the networks

cannot sufficiently learn human motions. As shown in Fig. 2.6, the distribution

of normalized reconstruction errors of ResVAE-18 with cropped data was more

well-organized than that with non-cropped data. Thus, it is necessary to use a

region extracting technique and align motions, which is more efficient than simply

adding layers.

In heatmaps of reconstruction error of fall action data shown in Fig. 2.3, some

areas with very high reconstruction errors (colored in red) appeared in edges of

extracted human regions. We infer that since normal actions were generally not

intense, the network learned reconstruction from the regular context of videos.

However, fall actions were turbulent, which made it difficult for the network to

reconstruct them.

2.6 Conclusion and Future Work

2.6.1 Conclusion

We proposed a method for detecting fall actions by using a 3D-convolutional VAE

to learn a distribution of ADL data and use a fully-connected VAE of clustering

learning to detect fall actions. We also proposed a technique for extracting a region

of human motion from an entire image and aligning motions based on the same

joint point so that the network can focus on learning human motions.

The results of experiments showed that our method, which is a type of weakly

supervised learning, achieved a competitive level of accuracy and better gener-

alization ability compared with supervised learning with well-labeled data. We
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demonstrated that the technique of extracting human regions and aligning motion

had enhanced the accuracy of fall detection. We also discussed the advantages of

using weakly supervised learning and region extraction. Weakly supervised learn-

ing methods can overcome imbalance between ADL data and fall action data,

and obtain good generalization ability when the network is evaluated on differ-

ent datasets. Using region extraction and motion aligning can make the networks

focus on learning human motions.

2.6.2 Future Work

Our method has a limitation that the performance decreases when skeleton infor-

mation is not extracted completely and accurately. In the future, more complex

networks will have to be designed to extract features from non-preprocessed images

so that the method will be less sensitive to extracted skeleton information.
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Chapter 3

An Asymmetrical-Structure
Auto-encoder for Unsupervised
Representation Learning of
Skeleton Sequences

3.1 Introduction

Human action recognition is a crucial topic in computer vision since it plays a fun-

damental role in a wide range of applications, such as video surveillance, human–

computer interaction, video understanding for retrieval, etc. With the rapid de-

velopment of convolutional neural networks (CNN), CNN-based methods have

achieved significant success in action classification from videos [9, 81, 75, 88, 32].

Visual cues (e.g., RGB images and depth images) provide discriminative features

for action recognition, whereas learned features also include bias from viewpoints,

the appearance of actors, backgrounds, and many other factors that can adversely

affect the recognition performance. In some studies, skeletons are extracted from

images, and then recurrent neural networks (RNN) are used to model skeleton

movements in the temporal dimension for extracting more robust features of ac-

tions [39, 16, 50, 102, 74]. Not only can 3D joint coordinates be acquired from

low-cost human skeleton capture devices (e.g., Kinect), but also there have been

extensive studies of 3D human pose estimation algorithms [44, 68, 49] in recent

years. Hence, here we explore action representation learning based on 3D skeleton
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data.

Existing supervised learning methods have achieved excellent classification per-

formance owing to strong supervision using a large amount of well-labeled data.

Manually labeled data is extremely precious since it is laborious to annotate con-

tinuously generated data with tags. Neural networks easily suffer from overfitting

if well-labeled data is lacked in training. Moreover, it is subjective and difficult

to decide how exact the annotations of action videos should be. Therefore, it

is worth studying to learn representations of motion dynamics from data itself.

Some studies proposed using an encoder to learn representations from input skele-

ton sequences, and then using a decoder to reconstruct coordinates of skeleton

sequences from given learned representations [57, 78, 79]. Classifying actions by

given learned representations has been shown to be a valid approach, however,

which easily allows networks to be made naive to reduce the dimensionality of

input data so that similar skeleton movements are not clustered together.

Therefore, we propose a novel unsupervised action representation learning

method that exploits a structure-asymmetrical auto-encoder to learn action rep-

resentations from unlabeled data, and the learned representations are utilized for

other tasks such as action recognition. In detail, a CNN-based encoder is trained to

extract spatiotemporal features from pixelated images which are made from skele-

ton trajectories, and then extracted features are fed into an RNN-based decoder

to generate salient skeleton motion cues. Not only does the CNN-based encoder

naturally encode correlations of adjacent joints, but also long-term motion depen-

dencies are implicitly encoded in the representation due to the supervision of salient

skeleton motion cues in the RNN-based decoder. Thus, those learned representa-

tions are made separable in low-dimensional feature space, and are discriminated

for action classification.

We also propose a type of feature to effectively represent motion dynamics,

namely, salient skeleton motion cues, in which the 3D motion of each joint is

normalized (i.e., direction is retained and magnitude is removed), and only joints
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and frames with salient motion are retained. Since the capability of the network

is to focus on predicting salient information that mainly affects the recognition

results, the proposed network can capture more essential motion dependencies.

The contributions of our study are as follows:

i) We propose a novel unsupervised network, a structure-asymmetrical auto-

encoder, to effectively learn action representations. A CNN-based encoder is

used to explicitly extract local motion features, and an RNN-based decoder

is used to implicitly encode long-term motion features. We show that our

network gathers similar movements around the same cluster, and gathers

different movements around distinct clusters in a low-dimensional feature

space by using the unsupervised training of information transformation from

images (spatial) to sequences (temporal).

ii) We propose a type of cue, salient skeleton motion cues, to effectively rep-

resent motion dynamics and serve the function of supervision signals in the

proposed network. We show that our network captures more essential motion

dependencies, since the network capability is made to focus on generating

salient information by using the proposed supervision.

iii) We conducted experiments on the NTU RGB+D and NW-UCLA datasets.

The experimental results showed the effectiveness of the proposed method

for unsupervised representation learning. When training under unsupervised

learning settings, Our method outperformed most previous methods. When

the proposed network was fine-tuned with partial labeled data, our results

still outperformed some fully supervised methods.

3.2 Related Work

3.2.1 Supervised Action Recognition

Except for CNN-based deep learning methods, RNN-based deep learning methods

also perform well for classifying sequential skeleton data. In order to better cap-
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ture long-term contextual information of skeleton sequences, physical structure of

human skeletons were considered. A number of studies [102, 34, 51, 89, 15, 40]

mentioned that the spatial structure of the human skeleton is an important clue

for action recognition. Some authors attempted to convert skeleton sequences to

images and used CNNs to classify actions. Du et al. [15] and Li et al. [40] pro-

posed regarding 3D coordinates values on the x, y and z axes as three channels

in an image with frame indices or joint indices corresponding to columns or rows,

respectively. Ke et al. [34] proposed leveraging relative positions between four

reference joints and other joints to obtain images instead of using absolute coor-

dinate values. In addition, a view-invariant transformation Lee et al. [39] and Su

et al. [79] was implemented on skeleton coordinates to improve the performance

of detecting the same action captured by different viewpoints.

Recently, point cloud-based 3D action recognition methods have been devel-

oped and have shown good performance. Point cloud-based 3D methods are

roughly divided into two categories, those using voxelated points [91] and those

using raw points [21, 20, 45]. Wang et al. [91] proposed to convert point motions

to a voxel set, and a PointNet++ was used to extract spatiotemporal feature from

the voxel set. Fan et al. [20] proposed to use 4D convolution to features in point

cloud videos, and a Transformer was used to learn the relationship of those spa-

tiotemporal features. Fan et al. [21] and Li et al. [45] proposed methods that

hierarchically present point clouds, where time (1D) and space (3D) of point cloud

videos were decomposed as sequences of 3D point clouds.

3.2.2 Unsupervised Action Representation Learning

Although supervised learning methods show continuous improvement on recogni-

tion performance, unsupervised learning methods deserve to be studied since they

do not rely on well-labeled training data. Some studies focus on unsupervised vi-

sual representation learning using RGB video or video with additional information,

such as depth or optical flow.
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Those methods and ours make a generative pretext task to guide the action

representation learning, but the difference is asymmetrical architecture of the pro-

posed networks, a CNN-based encoder followed with a RNN-based decoder. CNNs

do not explicitly aggregate sequential information from extracted features, and we,

therefore, take sequential data as supervision signals to enhance CNNs, and to

guide the action representation learning. Those proposals were valid only for vi-

sual features in short temporal intervals; however, long-term motion dependencies

were lost. Luo et al. [54] proposed an improved method in which a convolutional

LSTM predicts optical flow information of future frames from input RGB or depth

videos. Li et al. [41] showed that adding a camera-view discriminator in networks

can improve performance since it helps networks to learn view-invariant represen-

tations. In addition, Fan et al. [19] proposed a vision-based mechanism that learns

motion representation by eliminating content from videos, which makes represen-

tations of the same actions with different appearances can be gathered nearly in

latent space.

Nowadays, coordinate positions of joints can be obtained efficiently thanks

to the development of deep learning and convolutional neural networks [44, 68,

49]. Our method therefore focuses on learning action representations by using 3D

skeleton sequences. Recently, some studies of unsupervised action recognition have

focused on making networks reconstruct data including motion information. Zheng

et al. [100] proposed an adversarial auto-encoder to reconstruct skeleton sequences,

where an encoder learns to compress skeleton sequences to latent representations,

and a decoder attempts to generate skeleton sequences from the representations,

and a discriminator learns to distinguish the original inputs from the reconstructed

skeleton sequences. Su et al. [79] proposed an RNN-based auto-encoder with novel

training strategies to reconstruct skeleton sequences.

32



……

P
ix

el
at

e 
Im

ag
e

…

S
u

p
er

v
is

io
n

R
ep

re
se

n
ta

ti
o
n

P
ix

el
at

e
T

ra
n

sf
o

rm
at

io
n

S
al

ie
n

t 
S

k
el

et
o

n
 M

o
ti

o
n

 C
u

es

…

C
N

N
-b

as
ed

 E
n

co
d

er
R

N
N

-b
as

ed
 D

ec
o

d
er

..
.

1
2

 
!

1
 

In
p
u

t 
S

k
el

et
o
n

 S
eq

u
en

ce
s

1
2

 
!

1
 

…

F
ig

u
re

3.
1:

O
ve

rv
ie

w
of

th
e

p
ro

p
os

ed
m

et
h
o
d
.

B
ot

h
in

p
u
t

d
at

a
(i

.e
.

p
ix

el
at

ed
im

ag
es

)
an

d
su

p
er

v
is

io
n

si
gn

al
s

(i
.e

.
sa

li
en

t
sk

el
et

on
m

ot
io

n
cu

es
)

ar
e

cr
ea

te
d

fr
om

sk
el

et
on

se
q
u
en

ce
s.

P
ix

el
at

ed
im

ag
es

ar
e

cr
ea

te
d

b
y

ta
k
in

g
co

or
d
in

at
es

as
p
ix

el
s

in
m

u
lt

ip
le

ch
an

n
el

s,
ta

k
in

g
jo

in
t

in
d
ic

es
as

a
h
or

iz
on

ta
l

ax
is

,
an

d
ta

k
in

g
fr

am
e

in
d
ic

es
as

a
ve

rt
ic

al
ax

is
.

S
al

ie
n
t

sk
el

et
on

m
ot

io
n

cu
es

ar
e

cr
ea

te
d

b
y

ex
tr

ac
ti

n
g

sa
li
en

t
p
ar

ts
of

sk
el

et
on

se
q
u
en

ce
s

b
y

u
si

n
g

a
cl

u
st

er
in

g
m

et
h
o
d
.

T
h
e

n
et

w
or

k
p
re

d
ic

ts
sa

li
en

t
sk

el
et

on
m

ot
io

n
cu

es
b
y

gi
ve

n
re

p
re

se
n
ta

ti
on

s,
in

w
h
ic

h
a

C
N

N
-b

as
ed

en
co

d
er

is
u
se

d
to

le
ar

n
re

p
re

se
n
ta

ti
on

s
fr

om
p
ix

el
at

ed
im

ag
es

,
an

d
a

R
N

N
-b

as
ed

d
ec

o
d
er

is
u
se

d
to

ge
n
er

at
e

sa
li
en

t
sk

el
et

on
m

ot
io

n
cu

es
b
y

gi
ve

n
th

e
re

p
re

se
n
ta

ti
on

s.

33



3.3 Method

The goal of our unsupervised learning framework is to learn action representations

without human-labeled annotations, which allows the capture of both correlations

of adjacent joints and long-term motion dependencies, and is sufficiently discrim-

inative for classification. To achieve this, we propose a structure-asymmetrical

auto-encoder, as shown in Fig. 3.1. In the network, a CNN-based encoder learns

to extract features from skeleton trajectories which are treated as 3-channel im-

ages. After features are extracted, they are fed into an RNN-based decoder to

generate salient skeleton motion cues. Therefore, not only does the CNN-based

encoder naturally encode correlations of adjacent joints (i.e., spatial features) into

the representations, but it also implicitly encodes long-term motion dependencies

(i.e., temporal features) into the representations due to the supervision of salient

skeleton motion cues. The representations will be used for action recognition.

3.3.1 Network Architecture

We propose a structure-asymmetrical auto-encoder to learn action representations

from unlabeled data. The encoder, denoted as fθ, is a CNN-based neural network

with seven weight layers, as shown in Fig. 3.2. It is composed of three VGG-

style blocks [76], two max pooling layers, an adaptive average pooling layer and a

fully-connected layer. Each VGG-style block consists of two convolutional layers

followed by a batch normalization layer and a ReLU activation layer. Each 3D

skeleton sequence S with T frames and J joints and 3 axes is formulated as

S = {s1, s2, ..., sT}, st ∈ RJ×3

before being input to the encoder needs to be transformed to a 3-channel image

X where 3 axes are taken as 3 channels, and T frame indices and J joint indices

correspond to H rows and W columns. Since CNNs have a strong capability

for modeling correlations of neighboring pixels in images, we apply a pixelated

transformation to skeleton sequences, and use a CNN-based neural network to
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(64, 48, 25)

(128, 23, 12)

(256, 11, 5)
(256, 4, 2) (512)

Conv

+ BatchNorm

+ ReLU

MaxPool

AdaptiveAvgPool Linear

Figure 3.2: Detailed configuration of the CNN-based encoder. The size of the
middle outputs is denoted as C ×H ×W , where C is the number of channels, H
is the height, and W is the width. Finally, the encoder outputs a vector with a
size of (512). Best viewed in color.

model the correlations of adjacent joints. Features extracted by the encoder fθ,

denoted as fθ(X), will be taken as initial hidden states h0, and are fed into the

decoder.

The decoder, denoted as fϕ, is an RNN-based neural network with two weight

layers, as shown in Fig. 3.3. It is composed of a gated recurrent unit, a fully

connected layer and a Tanh activation layer. Since RNNs can naturally deal with

the order of elements in a long sequence, we enable the decoder generate salient

skeleton motion cues from a given initial hidden state h0 so that long-term motion

dependencies should be implicitly encoded in the given initial hidden states. The

inputs of the decoder, denoted as xt, are initialized to zeros. The decoder outputs

are denoted by Ô = fϕ(h0), where each output has a variable length L that is

Ô = {ô1, ô2, ..., ôL}, ôl ∈ RJ×3.

Length L is always less than length T . As the training loss, we adopt mean square

errors (MSE) between outputs Ô and the ground truth O, that is,

L =
1

L

L∑
l=1

∥ol − ôl∥2.
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Salient Skeleton Motion Cues

(L, 25, 3)

…

0

 !  "

0
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Supervision

 !

(512d)

Figure 3.3: Detailed configuration of the RNN-based decoder, where ht are hidden
states, xt are initial inputs, and xt are outputs. The size of the initial hidden states
is denoted as (512). The outputs and the supervision signals have a size with a
variable length L, 25 joints and coordinates on 3 axes.

3.3.2 Salient Skeleton Motion Cues

We propose to take salient skeleton motion cues as supervision signals during

training so that the network is made to capture essential motion dependencies.

First, joints and frames with salient motion need to be identified. Most of the

frames are redundant and are not clear enough to represent motion dynamics,

which would adversely affect the representation learning if they played a role in

supervision. Thus, frames without salient motion need to be removed.

Firstly, the variance of coordinates of each joint among all frames are calcu-

lated, and then those variance values of 25 joints are clustered by k-Means where

n clusters is set to two. The set of joints with larger variance values is retained,

and the rest is dropped. An example skeleton sequence of a person drinking water

is shown in Fig. 3.4, where only four frames have salient motions. Furthermore,

the movements of most joints are meaningless, as shown in Fig. 3.5. Coordinate

values are set to zero if they are less than a threshold. In this study, the threshold

is a mean of the center of large values and the center of small values. Similarly, a

summation of variances of retained joints for each frame are calculated, and then

variance values of T frames are clustered by k-Means too, and the set of frames
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6 – right elbow

7 – right wrist

8 – right hand

22 – tip of the right hand

23 – right thumb
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Joint Index (1~25)

Figure 3.5: Coordinate variance of each joint for an example of drinking water.
The sum of the coordinate variances of joints 6, 7, 8, 22 and 23 accounts for over
92% of the total.

with larger variance values is retained and have a length of L.

It is necessary to eliminate noise since some motions are too noisy to be mean-

ingful for representation learning, and the capabilities of the neural network are

wasted in predicting those motions. After that, motion features are obtained by

ol = xl+1 − xl, l ∈ {1, 2, ..., L− 1}.

Then magnitude information in the motion features is eliminated by using

ol,j ←
ol,j
∥ol,j∥2

, if ol,j ̸= 0;

that is, only direction information is retained. The magnitude information varies

irregularly according to the viewpoint of the camera and the diversity of ac-

tors, which hinders accurate predictions and will adversely affect the performance.

Therefore, it is also necessary to eliminate them.

There is another advantage of the proposed salient motion cues, namely, that

the retained direction information is naturally rescaled within the range −1 to 1,
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which helps to make training stable. Since salient skeleton motion cues are filtered

from primal coordinate positions, we expect that the proposed network can capture

more essential motion dependencies and perform better than an auto-encoder in

the reconstruction of primal coordinate positions [79].

3.4 Experimental Results

We conducted experiments on the NTU RGBD 60 and NW-UCLA datasets to

evaluate our method. KNN classification was utilized to demonstrate that the

learned representations are separable and discriminate for downstream tasks such

as classification. We tested the proposed network with various configurations to

show the advantages of our method. We also present a visualization result showing

how the representations are distributed in low-dimensional feature space. We fine-

tuned the proposed network with different percentages of labeled data to show

that our method still performs well in a situation where human-labeled data was

lacking. We also compared our method with prior state-of-the-art methods.

3.4.1 Dataset

NTU RGBD 60 [74]. This is a large-scale human action dataset that con-

tains about 56000 samples for 60 action classes captured from 40 subjects and

3 viewpoints, such as clapping, drinking water, handshaking, etc. We only used

sequential data in this dataset, in which each skeleton was 3-dimensional and had

25 joints. We used two evaluation protocols: Cross View and Cross Subject. In

the Cross View protocol, samples belonging to cameras 2 and 3 were used for

training, and samples belonging to camera 1 were used for testing. In other words,

the training set included a front view and two side views of actions, whereas the

test set included left and right 45-degree views of actions. In the Cross Subject

protocol, 40 subjects were split into training and test groups so that each group

included 20 subjects. We evaluated our method using both protocols.

Northwestern-UCLA (NW-UCLA) [86]. This dataset contains 1494 sam-
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ples for 10 action classes where each skeleton has 20 joints captured from 10 sub-

jects and 3 viewpoints. The training set consists of samples from viewpoints 1 and

2, and the test set consists of samples from viewpoints 3.

3.4.2 Implementation

Pre-processing. Before training the network, all skeleton coordinates were pre-

processed with a view-invariant transformation, as described in [79] and [39]. Since

CNNs cannot deal with sequential data with a variable length, skeleton sequences

were down-sampled to have 48 frames. Finally, the input data was changed to

images with a size of 3× T × J , where values on three axes were assigned to three

channels and were permuted before T and J . T denotes 48 frames corresponding

to different columns, and J denotes 20 or 25 joints corresponding to different rows.

L had a range from 4 to 22.

Training. During unsupervised training, we used an Adam optimizer with a

learning rate of 0.0003 and a batch size of 128. The network was trained for 1000

epochs. The encoder output vectors with 512 elements, which were taken as final

representations and were used for action recognition.

KNN Evaluation. We applied a KNN classifier with k = 1 (i.e. 1-nearest

neighbor) on the learned representations output by the encoder to evaluate the

action recognition performance of the proposed method. All sequences in the

training dataset were used to assign classes similarly to another study reported in

the literature [79]. Specifically, we used related code in the scikit-learn package [69]

to assign classes and make predictions. Note that KNN classifiers do not require

to learn extra weights for classification.

Fine-tuning Evaluation. It is usual practice to pre-train the system on a

large-scale dataset and then fine-tune it with a few items of labeled data. To

make predictions, we used a linear classifier (i.e., a fully-connected layer) attached

after the frozen encoder. Parameters of the linear classifier were initialized using

a uniform distribution and were jointly upgraded with pre-trained parameters of
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the encoder during fine-tuning. The encoder with a classifier was trained for 155

epochs using an AdamW optimizer [53] with a learning rate of 0.0003, a weight

decay of 0.004, a batch size of 128, and a cyclic learning rate scheduler [77] with

restarts including a restart period of 5, a multiplier of 2 and a cosine policy.

In total, the network was trained ten times to calculate the average values and

variance values. For training data each time, 16, 32, 64, 128 and 256 samples were

randomly picked up form 60 classes and were fixed for epochs, which accounted

for about 2.5%, 5%, 10%, 20% and 40% of the total, respectively.
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 = 15  = 19  = 23  = 27

 = 31  = 35  = 39

Fall Down
Throw

 = 15  = 17  = 19  = 21  = 23  = 25  = 27 = 29  = 31  = 33  = 35

Kick
 = 17  = 21 = 13  = 25  = 29  = 33  = 37  = 41  = 45  = 49

 = 25  = 29  = 33  = 41 = 37  = 45  = 49  = 53  = 57  = 61  = 65

 = 13  = 17  = 21  = 25  = 29  = 33  = 37
 = 41  = 45

Jump Up
Sit Down

Figure 3.6: t-SNE visualization for the learned representations on NTU RGB+D
dataset (60 classes) with the cross-view protocol. Different colors represent differ-
ent classes, and best viewed in color.

3.4.3 Result

We first show a t-SNE visualization result of the learned representations in Fig.

3.6, where 512-dimensional vectors were embedded in 2D space. It is seen that

some actions were clustered together in the feature space, such as throw (blue

star), fall down (cyan dot), kick (red hexagon), jump up (yellow dot), sit down

(blue hexagon), etc. Moreover, two similar actions, fall down (cyan dot) and sit

down (blue hexagon), were clustered into distinct but near clusters, which shows
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Amount of Training Labels
Baseline - Avg. ± Var. Proposed - Avg. ± Var. (↑)

Cross View Cross Subject Cross View Cross Subject

2.5% (16×60 classes) 47.69%± 1.10 44.15%± 0.28 56.03%± 0.23 (+8.34) 51.45%± 0.31 (+7.30)
5% (32×60 classes) 57.45%± 0.59 52.61%± 0.64 63.51%± 0.22 (+6.06) 58.75%± 0.10 (+6.14)
10% (64×60 classes) 66.16%± 0.10 59.88%± 0.35 70.10%± 0.04 (+3.94) 63.70%± 0.11 (+3.82)
20% (128×60 classes) 73.48%± 0.05 66.41%± 0.14 75.68%± 0.08 (+2.20) 68.20%± 0.09 (+1.79)
40% (256×60 classes) 79.85%± 0.07 71.63%± 0.10 80.55%± 0.04 (+0.70) 72.14%± 0.02 (+0.51)
100% (all labels∗) 86.45%± 0.02 76.98%± 0.03 86.53%± 0.03 (+0.08) 76.52%± 0.02 (−0.46)

Table 3.1: Experimental results of training with partial labeled data. “Avg. ±
Var. (↑)” means the average and variance of accuracies for ten iterations of training
and improvements compared with baselines. ∗In total, there were 37113 training
samples in the cross-view protocol, and 39649 samples in cross-subject protocol.

the effectiveness of the learned representations. However, in some cases at the top

right corner, representations were mixed. It may be a possible reason that objects

cannot be recognized since we did not use RGB images for training, and some

actions based on recognizing objects cannot be represented well, such as putting

on or taking off jackets, brushing or flicking hair, etc.

We also show results of the KNN classification in Table 3.2. On the first

line, a symmetrical network using RNN-based encoder and decoder was trained

to reconstruct skeleton coordinates, and it was taken as a baseline. When salient

skeleton motion cues were taken as supervision signals, the performance was not

significantly improved as shown on the second line. When using the proposed

CNN-based encoder, the accuracies were improved as shown on the third line,

and it was shown that the proposed structure-asymmetrical structure is effective

to improve the performance. When using both proposals, our method obtained

the best results as shown on the fourth line. CNNs do not explicitly aggregate

Method
CNN-based

Encoder
Salient Skeleton

Motion Cues
Cross
View

Cross
Subject

RNN-to-RNN 69.51% 48.17%
RNN-to-RNN

√
67.91% 50.27%

CNN-to-RNN
√

76.39% 52.75%
CNN-to-RNN

√ √
77.50% 56.42%

Table 3.2: Comparison of methods with different configurations using KNN clas-
sifiers. Network structures are denoted as ⟨encoder⟩-to-⟨decoder⟩.
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Method Modality Unsupervised Learning Type
NTU RGBD 60

NW-UCLA
Cross View Cross Subject

3s-CrosSCLR (LSTM) [43] Skeleton Contrastive Learning 62.8% 69.2% -
3s-CrosSCLR (ST-GCN) [43] Skeleton Contrastive Learning 77.8% 83.4% -
Skeleton Contrast [80] Skeleton Contrastive Learning 76.3% 85.2% -

TS Colorization [97] Point Cloud Pretext Task 71.6% 79.9% 90.1%
TS+SS Colorization [97] Point Cloud Pretext Task 74.6% 82.6% 91.1%
TS+SS+PS Colorization [97] Point Cloud Pretext Task 75.2% 83.1% -

LongT GAN [100] Skeleton Pretext Task 39.1% 52.1% 74.3%
P&C FW-AEC [79] Skeleton Pretext Task 50.7% 76.1% 84.9%
MS2L [47] Skeleton Pretext Task 52.6% - 76.8%
MCAE-MP [96] Skeleton Pretext Task 74.7% 65.6% 83.6%
Ours Skeleton Pretext Task 70.3% 78.3% 87.4%

Table 3.3: Comparison with state-of-the-art unsupervised methods on NTU RGBD
60 and NW-UCLA.

sequential information from extracted features, and we thought sequential data are

good supervision signals to enhance CNNs. For this reason, more discriminative

features can be extracted to represent actions. Therefore, it would be efficient to

extract sequential features using an asymmetrical auto-encoder instead of labels.

We then evaluated our method by training with partial labeled data. The per-

formance is shown in Table 3.1. The baseline methods used general supervised

learning, and they suffer from overfitting when well-labeled data is not abundant.

Our methods always performed better than the baselines when training with par-

tial labeled data since the proposed network succeeded in learning motion patterns

and associating skeleton sequences with actions. However, when labeled data was

abundant, namely, when using 100% labeled data of the NTU RGB+D dataset,

our method did not perform better than the baselines.

3.4.4 Comparison with State-of-the-art Methods

As shown in the third part of Table 3.3, our method learned better representations

from unlabeled data than others on both datasets. A similar point of LongT

GAN [100], P&C FW-AEC [79], MS2L [47] and our method was to compress

skeleton data to middle representations and then generate entire or partial skeleton

data from these representations. However, we replaced skeleton data with salient

skeleton motion cues as supervision signals which were abstracted from skeleton
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data.

Our method did not outperform methods using contrastive learning [43, 80].

Those methods learned action representations by distinguishing positive and neg-

ative sample pairs. If two data points belong to a positive pair, their distance is

made as small as possible, otherwise as large as possible. Thus, given a dataset

with N samples, the usable data amount for contrastive learning methods is

CN
2 = 1

2
N(N − 1), which is much larger than N , and the usable data amount

for ours is just N . Therefore, we did not directly compare our method with con-

trastive learning methods, and assigned those studies to another group.

Generative learning networks indirectly learn representations by a pretext task,

and how good are the representations depends on quality of the pretext task.

Contrastive learning networks directly learn representations by making distances

of representations belonging to positive pairs close, which is a direct constraint

to representations in the latent space. This difference is a possible reason why

contrastive learning methods outperformed generative learning methods.

To compare our method with previous supervised methods, when the proposed

network was fine-tuned with 100% labeled data, it outperformed a part of previous

methods as shown in Table 3.4, [51], [16], [74], [50] and [39], but did not exceed the

SOTA performance. When the proposed network was fine-tuned with 40% labeled

data, it still outperformed the methods in [16], [74] and [50]. Thus, our method

achieved the same level of performance with less labeled data during training by

using the proposed unsupervised representation learning.

In Table 3.4, VA-CNN [98], which used very deep CNNs (152 layers) obtained

significantly better results than other methods that used RNNs or LSTMs with

just several layers. When using methods using 6-layer or 8-layer CNNs, the gap

between accuracies were not significantly large. [40]’s method, which used near

amount of layers, did not outperform ours under the cross-view protocol, whereas

it outperformed ours under the cross-subject protocol. This is because different

subjects lead to some scale variant of skeletons, and [40] proposed to normalize
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Method Networks Layers
NTU RGBD 60

Cross View Cross Subject

Du et al. [16] biRNN 5 63.97% 59.07%
Shahroudy et al. [74] LSTM 2 70.27% 62.93%
Liu et al. [50] ST-LSTM 2 77.70% 69.20%
Lee et al. [39] TS-LSTM v2 unknown 81.25% 74.60%
Liu et al. [51] AlexNet 8 82.56% 75.97%
Li et al. [40] AlexNet 8 85.00% 80.20%
Li et al. [40] ResNet 152 90.10% 84.30%
VA-RNN [98] LSTM 5 87.60% 79.40%
VA-CNN [98] ResNet 152 93.40% 88.20%
Ours (with 40% labeled data) CNN 6 80.55% 72.14%
Ours (with 100% labeled data) CNN 6 86.53% 76.52%

Table 3.4: Comparison with state-of-the-art supervised methods.

Method
NTU RGBD 60
(Cross Subject)

NW-UCLA

1% labeled data
LongT GAN [100] 35.22% 18.22%
MS2L [47] 33.10% 21.28%
Ours 40.17% 32.83%

10% labeled data
LongT GAN [100] 62.03% 59.94%
MS2L [47] 65.17% 60.45%
Ours 63.49% 65.11%

Table 3.5: Comparison with state-of-the-art semi-supervised methods.

coordinates on each axis respectively to solve that problem. In our method, joint

coordinates were simply mapped to images without specific processing. As shown

in Table 3.5, our method outperformed other semi-supervised methods in most

scenarios, which demonstrated the effectiveness of proposed unsupervised repre-

sentation learning.

3.5 Conclusion and Future Work

3.5.1 Conclusion

We proposed a novel method of unsupervised representation learning for skeleton-

based action recognition. By training a novel structure-asymmetrical auto-encoder
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using the supervision of salient skeleton motion cues, our method achieved better

performance compared with previous unsupervised methods, which showed that

the auto-encoder learned separable representations. When fine-tuning the network

after the proposed unsupervised representation learning, our method was able to

keep the same performance level using less labeled data, which showed that the

network effectively learned discriminate representations and associated them with

actions.

3.5.2 Future Work

The proposed representation learning is unsupervised; however, we still classified

actions with the aid of labeled data, and it was shown that higher accuracies were

achieved by using more labeled data. It is still a challenge to directly classify

actions without labels.
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Chapter 4

Psp-Transformer: A Transformer
with Data-level Probabilistic
Sparsity for Action
Representation Learning

4.1 Introduction

Human action recognition is a crucial topic in computer vision since it plays a fun-

damental role in a wide range of applications, such as video surveillance, human–

computer interaction, video understanding for retrieval, etc.

With the development of convolutional neural networks (CNN), some vision-

based recognition methods that need strong supervision and a large number of

labeled data [9, 30] have achieved significant levels of performance in the past few

years. CNNs are good at extracting local features, but neglect global integration.

Therefore, non-local networks [90] were proposed to enhance CNNs and make

them able to extract global features. Recently, self-attention-based Transformers

[85] in natural language processing (NLP), which are designed to capture the

global dependencies of every two words in sentences, have been introduced into

the computer vision (CV) domain. Transformer-like networks [14, 2] have been

applied to sequences of image patches or video blocks (i.e., tokens) treated the same

way as words (i.e., tokens) in the NLP domain. Unfortunately, the self-attention

mechanism is very time-consuming and requires much larger storage spaces due to
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the squared complexity of time and space.

RGB images provide discriminative features for action recognition; however,

variations in viewpoint changes, background, and the appearances of people can

adversely affect the performance. For this reason, skeleton data has attracted

much attention since it is robust to those variations, and it includes high-level

representations of human behaviors. In some studies [39, 16, 50, 102, 74], recur-

rent neural networks were proposed to model skeleton movements for capturing

temporal relations of actions. Although skeleton data has the advantages of be-

ing lightweight and robust, a disadvantage is that specific devices such as depth

cameras are needed to recognize skeletons. Hence, action representation learning

based on RGB data is still worth exploring since it does not depend on specific

devices.

Existing supervised methods have shown remarkable success owing to the use

of strong supervision and a large number of labeled data. Well-labeled data is

extremely precious since it is time-consuming to annotate a massive amount of

videos with tags, and if labeled data is lacking during training, neural networks

easily suffer from overfitting. Furthermore, it is difficult and subjective to decide

how accurate the annotations of action videos should be. Thus, it is worth studying

how to learn action representations from data itself. In many studies, [57, 79, 47],

skeleton data is often compressed to low-dimensional representations, and then the

input skeleton data is reconstructed from given learned representations.

To the best of our knowledge, only a few studies [78, 42, 54] explored unsuper-

vised representation learning of actions from videos, using an approach in which

representations are learned from several frames, and input frames are reconstructed

to predict future frames. Therefore, we propose an action representation learning

method using videos that exploits a transformer to learn action representations

from parts of each video. In detail, each video volume is separated into several

3D blocks, and a certain number of blocks are picked up according to probabilistic

values of how large pixel-value changes of the blocks are. For supervised settings,
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embeddings of blocks and their positions are taken as input data during training.

For unsupervised settings, embeddings of blocks only are input to networks to learn

middle representations, and the learned representations are utilized to predict the

positions of input blocks. The learned representations can be used for other tasks,

such as action recognition. The positions of blocks where pixel-value changes are

large are crucial cues for learning representations of actions. Not only are rep-

resentations more discriminative for action recognition, but also the computation

time is reduced.

Furthermore, we propose a framework to implicitly fuse vision data and skele-

ton data in an unsupervised manner, which utilizes multimodal information for

mining correct video–skeleton pairs. Indeed, skeleton data includes high-level rep-

resentations of human behaviors, which are also crucial cues for learning. In a

training batch, features extracted by an RNN-based encoder from skeleton data

and features extracted by a CNN-transformer-based encoder from videos com-

pose many positive and negative video–skeleton pairs, and they are classified as to

whether they belong to the same video. Prediction of the positions of blocks that

are picked up from videos and multimodality-contrastive learning are implemented

simultaneously during training.

The contributions of our study can be summarized as follows:

i) We propose a transformer-based network for action recognition that takes

sparse parts of videos instead of entire videos as training data. Thus, we

design a scheme based on events of salient pixel-value changes to make input

data sparse but indispensable.

ii) We demonstrate that the proposed network with the designed scheme can not

only reduce the time required for training and testing but can also achieve a

remarkable level of performance compared with general video transformers

[2] under the same supervised training settings.

iii) We also propose a framework of multimodal-contrastive learning for unsu-

50



pervised action representation learning that utilizes multimodal information

for mining correct video–skeleton pairs and position prediction, which guides

the learning of comprehensive representations.

iv) We evaluated the framework on action datasets, e.g., NTU-RGBD-60 and

PKU-MMD-II, and achieved state-of-the-art results under unsupervised train-

ing settings.

4.2 Related Work

4.2.1 Supervised Action Recognition

Since 2D-convolution was extended to 3D-convolution [81], 3D-CNNs [9, 29, 24]

have been used to recognize actions from videos. Those studies showed that CNNs

are good at capturing the relationship of neighboring pixels, and remarkable per-

formance can be achieved based on training with close to one million items of data

[62, 27, 33]. However, there are two disadvantages: it is time-consuming to process

vision data, and the global integration of local features is easily neglected.

Therefore, skeleton-based action recognition has attracted the interest of many

researchers since the amount of data for skeletons is greatly reduced, which means

that processing skeleton data is not time-consuming, and the negative effect of

neglecting global integration is naturally reduced. Some studies [39, 50] showed

that RNNs perform well for classifying sequential skeleton data since RNNs are

good at capturing long-term contextual information of skeleton sequences. In those

studies [16, 18], a whole human skeleton was split into several parts, the features of

different parts were extracted by different RNNs, and the finally extracted features

were fused hierarchically. They belong to a bottom-up manner of integrating local

features by utilizing physical structures of human skeletons. However, there is a

disadvantage that joint coordinates need to be extracted from videos in advance by

using specific algorithms such as OpenPose [28] or devices such as Kinect cameras,

which limits the applications of skeleton-based methods.
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Recently, another approach known as self-attention-based Transformers [85],

which was originally used to capture the relationship of words in the natural lan-

guage processing domain, has been introduced to solve the problem of neglecting

global integration in the computer vision domain. Vision data was separated into

sequences of image patches or video blocks, and then the proposed network with a

self-attention mechanism was used to capture the relationship of image patches or

video blocks globally. In the usual approach to combine CNNs and Transformers

to save time and reduce overfitting in many CV tasks [8, 25], features are first

extracted by a CNN, a sequence of features is composed, and then a network with

a self-attention mechanism is used to capture the relationship of features glob-

ally. Although this improves the problem of neglecting global integration, the

problem of time-consuming computation becomes more serious since transformers

contain many more trainable parameters than CNNs with the same number of

layers. Therefore, we designed a scheme to pick up sparse but indispensable parts

of videos to reduce the amount of time-consuming computation.

In addition, it has been proposed that a transformer be directly applied to

skeleton data for action recognition [71]. In [58]’s study, skeleton data and image

data were explicitly fused at a low level and were then fed into a transformer to

classify actions. Skeleton data and image data were needed during both training

and testing.

4.2.2 Unsupervised Action Representation Learning

A lot of different pretext tasks were proposed to improve the performance of unsu-

pervised representation learning. Among various pretext tasks, a type of pretext

tasks, contrastive learning, has shown promising performance. Some studies of

contrastive learning, regardless of whether they use vision data or skeleton data,

focus on making abundant positive and negative samples using data augmentation

techniques and distinguishing them. In [94, 11]’s studies, images transformed from

the same input were considered as positive pairs, and images transformed from dif-
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Figure 4.1: Overview of the proposed method. The method simultaneously im-
plements prediction of position relationships of movements with salient pixel-value
changes using a vision transformer and multimodality-contrastive learning between
representations respectively learned from videos and skeleton sequences.

ferent inputs were considered as negative pairs, and the network was trained to

distinguish positive pairs from negative pairs. In [43, 73, 80]’s studies, similarly,

abundant positive and negative pairs were made, and mining positive pairs. The

difference in our approach is that we implement contrastive learning between dif-

ferent modality data, namely, videos and skeletons.
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4.3 Method

The goal of our method is to learn action representations without human-labeled

annotations, which allows the capture of relationships of low-level movements in

spatiotemporal dimensions. Since videos include much redundant information at

the pixel level, which can adversely affect the performance of representation learn-

ing, we considered that the input data should be sparse but indispensable. To

achieve this, we propose a transformer-like network based on events of salient

pixel-value changes, as shown in Fig. 4.1. Only parts with salient movements

of videos are fed into the network, which makes the network focus on learning

essential relationships of movements in videos.

Moreover, we propose a framework of multimodality-contrastive learning that

implicitly fuses features of videos and skeletons. Since skeleton sequences include

high-level representations of human behaviors, we expect that networks can learn

a better representation space by using multimodality-contrastive learning instead

of learning using single-modality data.

4.3.1 Network Architecture based on Events of Salient Pixel-
Value Changes

Each video has T frames and a resolution of (W ×H) and is separated into several

blocks b ∈ RF×P×P , and N is the resulting number of blocks. Here F is the

interval of frames, and (P × P ) is a small patch size. F should be divisible by T ,

and P should be divisible by W and H. We refer to these blocks as v

v = [b1; b2; ...; bN ], v ∈ RN×F×P×P , N =
T ×W ×H

F × P × P
.

Variances of blocks are calculated, and then those variance values of N blocks are

clustered by k-Means, where n cluster is set to two. The set of blocks with larger

variance values is retained, where the number of these blocks is M , and the rest

are dropped out if the variance values are less than a threshold. In this study, the

threshold is the mean of the center of large values and the center of small values.
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For retained blocks, their variance values were normalized to have a summation of

one and the normalized variance values were taken as probabilities to pick up G

blocks, and we refer to them as input data v0.

v0 = [bi1 ; bi2 ; ...; bG], v0 ∈ RG×F×P×P

The network is composed of a CNN encoder and a transformer encoder with 2L

layers that uses a constant latent vector size D through all of its layers. Local

spatiotemporal features are first extracted from blocks by a CNN encoder, and we

refer to the features as block embeddings z0.

z0 = CNN(v0), z0 ∈ RG×D

Unlike general transformers [14, 2, 85], position embeddings are not added to

block embeddings z0 here. The transformer encoder directly captures the global

relationship of block embeddings. A transformer encoder layer consists of a multi-

headed self-attention (MSA) layer, a feed-forward (FF) layer, and two LayerNorm

(LN) layers placed before the MSA and FF layers. Residual connections are applied

after the MSA and FF layers.

z′l = MSA(LN(zl−1)) + zl−1, l = 1 ... L

zl = FF(LN(z′l)) + z′l, l = 1 ... L

zL ∈ RM×D serves as the middle representation and is fed to a linear layer to

predict the Manhattan distance ydist of every two input blocks on three axes.

ŷdist = Linear(zL), ŷdist ∈ RM×M×3

This can be treated as a pretext task that guides representation learning by pre-

dicting the spatiotemporal order from flat sequences of blocks. The loss function

Lorder is as follows:

Lorder = ||ydist − ŷdist||2.
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Three dimensional positions Epos ∈ R3 are embedded in D-dimensional space by

using a linear layer and added to zL. We propose using 3D-aware position em-

beddings instead of learnable 1D position embeddings since we find significant

performance gains with that change. The resulting sequence of middle represen-

tation zL plus position embedding serves as the input to the rest of the L layers.

zL ← zL + Linear(Epos)

z′k = MSA(LN(zk−1)) + zk−1, k = L + 1 ... 2L

zk = FF(LN(z′k)) + z′k, k = L + 1 ... 2L

The representations z2L learned from videos are taken an average on the dimension

of M , and we refer to them as zblk ∈ RD.

4.3.2 Multimodality-Contrastive Action Representation
Learning

We use additional representations learned from salient skeleton motion cues s to

implement multimodality-contrastive learning. Salient skeleton motion cues are

extracted from skeleton data, where frames without salient motions are dropped,

and if joints do not have salient motions, their coordinates are set as zero.

Salient skeleton motion cues s ∈ RT ′×J×3 that have T ′ frames and represent J

joints with 3D coordinates are embedded in a D-dimensional space by using an

RNN encoder. We refer to the embeddings, hidden states of the RNN, as skeleton

representations zske.

zske = RNN(s), zske ∈ RD

There are positive video–skeleton pairs if zblk and zske come from the same video.

The loss function based on the noise contrastive estimation loss (InfoNCE) [82] is

as follows:

Lmulti = − log
exp(zblk · zske/τ)

exp(zblk · zske/τ) +
∑

u∼Nske

exp(zblk · u/τ)
,
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where τ is a temperature softening hyper-parameter, and Nske is a set of skeleton

representations that belong to negative video–skeleton pairs in a batch. Finally,

the objective loss function is

L = Lorder + Lmulti.

4.4 Experiments

4.4.1 Dataset

NTU RGB+D 60 Dataset (NTU-RGBD-60) [74]. This is a large-scale hu-

man action dataset that contains about 56000 videos for 60 action categories per-

formed by 40 volunteers and captured from three viewpoints, such as handshaking,

flicking hair, clapping, etc. We used both videos and skeleton sequences in this

dataset. The skeletons were 3-dimensional and had 25 joints, and videos had a

resolution of 1080 × 1920. We tested our method under the cross-view protocol,

where 37113 samples belonging to cameras 2 and 3 were used for training, and

18887 samples belonging to camera 1 were used for testing.

PKU Multi-Modality Dataset Phase II (PKU-MMD-II) [48]. This is

a new benchmark for multimodality 3D human action understanding and covers

a wide range of human activities. It contains almost 7000 action instances for 49

action categories performed by 13 volunteers and captured from three viewpoints,

such as putting on a hat, throwing something, wiping the face, etc. We used both

videos and skeleton sequences in this dataset. The skeletons were 3-dimensional

and had 25 joints, and videos had a resolution of 1080 × 1920. We tested our

method under the cross-subject protocol in which the training dataset has 5295

samples, and the test dataset has 1612 samples.

4.4.2 Implementation

Pre-processing. For the proposed method, we used grayscale images. The origi-

nal resolution of 1080×1920 was trimmed to 1024×1920 and was finally reshaped
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as 256× 480. The frame interval F was set to 8, and the small patch size (P ×P )

was set to (16 × 16). The number of blocks with salient pixel-value changes was

variable, from which 48 blocks were probabilistically selected to be input data.

Salient skeleton motion cues were extracted from skeleton sequences and were

resampled to have 32 frames. For baselines using entire videos, videos with a res-

olution of 1080 × 1920 were cropped to a size of 640 × 640 from the center, were

reshaped to 128× 128 and were uniformly resampled to have 32 frames. They can

be separated into 256 blocks.

Networks. The proposed transformer had 8 layers with a size of 512 dimen-

sions, where the structure of the layers followed [2]. Layers up to “Mixed 4b” in

I3D [9] with pre-trained parameters were used as the CNN encoder, and 3-layer

bidirectional gated recurrent units were used as the RNN encoder. For experiments

using supervised learning, we used a 4-layer video vision transformer [2] (ViViT-

4L) for a baseline, where the input data was blocks with a shape of 256×8×16×16.

To compare with the baseline of the 4-layer ViVit, the proposed transformer was

limited to have four layers, and blocks and position information were embedded

in a 512 dimensional space by a linear layer and were added before the input. We

report other details of the network architecture in the supplementary materials.

Training. For experiments using the proposed networks, we used a NoamOpt

optimizer with a learning rate of 0.0003 and a weight decay of 0.3. It was trained

for 1000 epochs. The temperature softening hyper-parameter τ was set to 0.1. For

experiments using supervised learning, we used an Adam optimizer with a learning

rate of 0.0004 and a weight decay of 0.004, and a cyclic learning rate scheduler

with restarts including a restart period of 5, a multiplier of 2, and a policy of

cosine. They were trained for 155 epochs. The batch size was set to 128 for all

situations.

Evaluation. The proposed transformer-like network output 512 dimensional

vectors zblk, which were taken as final representations for action recognition. We

applied a KNN classifier with k = 1 (i.e., 1-nearest neighbor) on the learned
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Table 4.1: Comparison of supervised action classification results using NTU-
RGBD-60 and PKU-MMD-II. ∗We applied a network in which the architecture
followed [2] and had four layers to save memory and time.

Method NTU-RGBD-60 PKU-MMD-II

ViViT-4L∗ [2] 36.43% 15.76%
Ours 67.2% 34.37%

representations to evaluate the action recognition performance of the proposed

method. All samples in the training dataset were used to assign classes similarly

to another study [79]. Specifically, we used related code in the scikit-learn package

[70] to assign classes and make predictions. Note that KNN classifiers do not

require to learn extra weights for classification. For experiments using supervised

learning, a fully-connected layer attached at the end of networks was used to make

predictions.

4.4.3 Results

First, we show classification results obtained by using supervised learning. As

shown in Table 4.1, our network largely outperformed the baseline 4-layer ViViT

on both datasets. Experimental results showed that salient movements in videos

and their position information were crucial clues to recognize actions, and the

use of sparse parts of videos instead of entire videos did not adversely affect the

performance.

As shown in Fig. 4.2, loss values of two networks converged to the same low

level during training; however, there was a large gap in test accuracy between

our network and the 4-layer ViViT, which indicates that a severe overfitting prob-

lem happened in the training of the 4-layer ViViT, which used entire videos and

learnable 1D position embeddings. It was shown that the proposed probabilistic

sparsity of input data and 3D-aware position embeddings can significantly improve

the generalization ability, namely to obtain higher accuracies on test data after the

end of training.
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Figure 4.2: Curves of training loss and test accuracy on NTU-RGBD-60. Best
viewed in color.

Next, we report the costs of training and testing during learning on NTU-

RGBD-60. Compared with the the general 4-layer ViViT, the proposed method

could reduce the computing time to about 25% of the original, and also was efficient

in terms of GPU memory usage, as shown in Table 4.2. It was demonstrated that
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Table 4.2: GPU peak memory usage, GPU training speeds, and GPU inference
speeds during learning on NTU-RGBD-60. There were 128 samples in a batch.
Speed-up multipliers relative to networks are given in parenthesis.

Method ViViT-4L [2] Ours

Layers 4 4
GPU peak memory usage
(measured in GB; smaller is better)

20.87 7.38

GPU training speeds
(measured in seconds per batch; lower is better)

1.726 0.43 (0.25×)

GPU inference speeds
(measured in seconds per batch; lower is better)

0.561 0.137 (0.24×)

making input data sparse is a direct and effective way to reduce redundancy, which

could be used to train neural networks with deeper layers and more data.

4.4.4 Comparison with State-of-the-art Methods

As shown in the third part of Table 4.3, our method achieved the best performance

compared with methods tested on vision-modality data. Since videos could have

different appearances even if they belong to the same action, a cluster of represen-

tations learned from videos only have many noises. For this reason, our method

additionally used salient skeleton motion cues to fuse features of videos and skele-

tons by using multimodality-contrastive learning. By the proposed multimodality-

contrastive learning, fused features were more discriminative than features ex-

tracted from single-modality data. Another difference from methods using RGB

modality data is that we used sparse parts of videos instead of entire videos, and

the spatiotemporal relationship of sparse parts became a supervision signal to

guide representation learning.

Compared with methods tested on other modality data, as shown in the first

and second part of Table 4.3, our method still outperformed all other methods.

In the method using a pretext task of point cloud colorization, skeleton data is

given as point clouds, the relationship of each two joints is broken and becomes

guidance to help networks to represent actions. It is a similar point that our

method exploited the relationship of each two salient movements in videos. It is
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Table 4.3: Comparison of action recognition results with state-of-the-art unsuper-
vised methods on NTU-RGBD-60.

Method Modality of Test Data NTU-RGBD-60

TS Colorization [97] Point Cloud 79.9%
TS+SS Colorization [97] Point Cloud 82.6%
TS+SS+PS Colorization [97] Point Cloud 83.1%

LongT GAN [100] Skeleton 52.1%
EnGAN-PoseRNN [38] Skeleton 77.8%
AS-CAL [73] Skeleton 64.8%
P & C [79] Skeleton 76.3%
SeBiReNet [64] Skeleton 79.7%
3s-CrosSCLR (LSTM) [43] Skeleton 69.2%
3s-CrosSCLR (ST-GCN) [43] Skeleton 83.4%
Thoker et al. [80] Skeleton 85.2%

Li et al. [42] Depth 63.9%
Luo et al. [54] Depth 66.2%
Shuffle & Learn [60] RGB 40.9%
Li et al. [42] RGB 49.3%
Luo et al. [54] RGB 56%
Ours RGB 86.44%

worth studying video-based methods since they do not need specific devices during

inference, such as laser scanners for capturing point clouds or depth cameras for ob-

taining depth information. In our method, skeleton features were implicitly fused

into vision features during training. Therefore, vision features can be directly used

for action recognition when performing inference. Notably, our method achieved

better performance than former state-of-the-art methods.

As shown in Table 4.4, our method also outperformed methods tested on

skeleton-modality data, which shows the effectiveness of the proposed represen-

tation learning method. Aside from the fact that we used sparse parts of videos,

salient skeleton motion cues were another difference. They were extracted from

primal joint coordinates by eliminating meaningless information, and the retained

information essentially represents motion dynamics. Our method performed well

where salient skeleton motion cues played an important role in guiding represen-

tation learning.
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Table 4.4: Comparison of action recognition results with state-of-the-art unsuper-
vised methods on PKU-MMD-II.

Method Modality of Test Data PKU-MMD-II

LongT GAN [54] Skeleton 25.95%
P&C [79] Skeleton 25.5%
MS2L [47] Skeleton 27.63%
Thoker et al. [80] Skeleton 36%

Ours RGB 36.23%

4.5 Conclusion

We proposed an efficient transformer-based network for action recognition that

took sparse parts of videos instead of entire videos as training data and used 3D-

aware position embeddings. Compared with general video vision transformers, the

proposed method achieved better performance and generalization ability, and in

addition, required less time and GPU memory.

We also proposed a framework of multimodality-contrastive learning for un-

supervised action representation learning that utilizes multimodal information for

mining correct video–skeleton pairs and position prediction. By multimodality-

contrastive learning, our network learned more comprehensive representations from

implicitly fused features of videos and skeletons. We evaluated the framework on

action datasets, e.g., NTU-RGBD-60 and PKU-MMD-II, and achieved state-of-

the-art results under unsupervised training settings.
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Chapter 5

Conclusion and Future work

This chapter concludes our thesis works and shows the future work of our thesis.

5.1 Conclusion

In this thesis, we proposed three methods for action recognition by using deep

neural networks that are trained with fewer or no manual labels.

In the first method, we proposed a framework to recognize fall actions from

videos without fine-grained labels, in which annotations of fall actions are not

needed by utilizing learning of abundant Activity of Daily Life (ADL) videos. The

first variational auto-encoder (VAE) in the framework learns representations of

ADL videos only by compressing those videos, and the second VAE gathers repre-

sentations of ADL data and fall action data into two clusters. The experimental

results showed that our method achieved better generalization ability compared

to methods using supervised learning with well-labeled data.

In the second method, we propose a framework for general action representa-

tion learning using skeleton sequences, in which a structure-asymmetrical auto-

encoder is used to learn spatiotemporal representations under the supervision of

salient skeleton motion cues. Manual annotations are not needed during the train-

ing of the neural network. The experimental results showed the effectiveness of

the proposed representation learning, and improvements compared with skeleton-

based generative learning methods. When the proposed network was fine-tuned
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with partially labeled data, our results also outperformed some fully-supervised

methods.

In the third method, we propose a neural network for general action represen-

tation learning which is trained with paired videos and skeleton sequences and is

evaluated using videos only. The network learns representation by simultaneously

predicting position relationships of movements with salient pixel-value changes

and doing multimodality-contrastive learning between representations that are re-

spectively extracted from videos and skeleton sequences. The experimental results

demonstrate the superiority of the proposed method, which efficiently learns dis-

criminative features.

5.2 Future work

Although manual annotations are not needed during representation learning by

utilizing pseudo annotations that are automatically generated by programs, a small

amount of labeled data still is needed for supervised fine-tuning of neural networks

when methods are applied to different datasets. In the future, we will consider

reducing the amount of manually-labeled data to zero.
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