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Abstract

The expectile-based Value at Risk (EVaR) has gained popularity as it is more

sensitive to the magnitude of extreme losses than the conventional quantile-based

VaR (QVaR). This paper applies the expectile regression approach to evaluate the

EVaR of stock market indices of Australia and Japan. We use an expectile regression

model that considers lagged returns and common risk factors to calculate the

EVaR for each stock market and to evaluate the interdependence of downside risk

between the two markets. Our findings suggest that both Australia and Japan

stock markets are affected by their past development and the international stock

markets. Additionally, ASX 200 index has significant impact on Nikkei 225 in terms

of downside tail risk, while the impact of Nikkei 225 on ASX is not significant.

Keywords: Downside risk Expectile regression, Value at Risk (EVaR), Expected

shortfall (ES), Stock market

1 Introduction

Globalization and rapid technological advancements have led to an increasing integra-

tion of financial markets worldwide. As a result, the linkages and interdependence

between national stock markets may have strengthened, which can have significant

implications for corporate investment and financing strategies and international diver-

sification. Strong interdependence would reduce the potential gains from international

diversifications. Therefore, comprehending the nature and extent of return and volatil-

ity linkages across different financial markets can offer insights into diversification and

hedging strategies for investors, as well as appropriate policy actions for regulatory

bodies and governments. In terms of risk management, it is crucial to comprehend any

linkages and transmission of risks between stock markets.

Many studies have demonstrated that increasing bilateral trade relations between

countries can have a substantial impact on their stock market linkages. For example,

Paramati et al. (2016) examined the impact of bilateral trade relations on the time-

varying correlations of the stock markets of Australia and 10 Asian countries. Their

results showed that increasing bilateral trade relations between Australia and Asian

countries contributed to their stock market interdependence over time.
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The economic relationship between Australia and Japan is underpinned by comple-

mentary strengths and needs. According to the Australian Bureau of Statistics, Japan

was Australia’s third-largest trading partner and second-largest export destination in

2021. Australia is the single largest supplier of both industrial raw materials and energy

to Japan1. Meanwhile, Japan ranks second only to the United States in terms of the

stock of foreign direct investment (FDI) into Australia2

Australia and Japan have some common and distinct features in terms of their eco-

nomic structures. The Australian economy is dominated by its service sector and is rich

in natural resources, while Japan is one of the largest and most developed economies

in the world. Japan has a well-educated, industrious workforce, and its large, affluent

population makes it one of the world’s biggest consumer markets. Manufacturing has

been the most remarkable and internationally renowned feature of Japan’s economic

growth.

Both Australia and Japan play critical roles in the world financial markets. Australian

Securities Exchange (ASX) is one of the world’s leading financial market exchanges,

offering a full suite of services, including listings, trading, clearing and settlement,

across a comprehensive range of asset classes. It was created by the merger of the

Australian Stock Exchange and the Sydney Futures Exchange in July 2006 and is one of

the world’s top-10 listed exchange groups measured by market capitalisation3.

The Tokyo Stock Exchange (TSE) is a stock exchange located in Tokyo, Japan. It is

the fourth-largest stock exchange in the world by the aggregate market capitalization

of its listed companies and largest in Asia . Tokyo is one of the world’s foremost centers

of finance.

The economic relationship between Australia and Japan is strong, and it is essential

to have a comprehensive understanding of the transmission of risk between their finan-

cial markets. This study aims to contribute to the literature by examining the influence

of downside risk between the two stock markets, using the Expectile Value-at-Risk
1Australian Bureau of Statistics; International Trade in Goods and Services, Australia, 2021, Tables

14a and 14b.
2Australian Bureau of Statistics; International Investment Position, Australia: Supplementary Statis-

tics 2021, Table 2.
3https://www.asx.com.au/about, accessed on September 10, 2023.
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(EVaR) as the risk measure. Specifically, the paper will apply an expectile regression

approach to evaluate the EVaR of the stock market indices of both countries.

The expectile regression model that includes lagged returns and some common risk

factors will be used to calculate the EVaR for each stock market. The model will also

be used to assess the influence between the two markets in terms of downside risk. By

doing so, the study will shed light on the interdependence of the two markets and how

they respond to market shocks.

Overall, this research will provide valuable insights into the dynamics of risk trans-

mission between the financial markets of Australia and Japan, which can help investors

and policymakers better understand the potential risks and opportunities in these

markets.

The remainder of the paper is organised as follows. Section 2 provides a review of

relevant literature and emphasizes the significance of the study. Section 3 describes the

research methodology used, along with the data and sample statistics. The empirical

results and analysis are presented in Section 4, and concluding remarks are provided

in Section 5.

2 Related literature

In this section, we first describe the downside risk measures, then provide a review of

the literature related to risk transmission between financial markets, with a particular

focus on studies that employ the EVaR approach. This section will also highlight the

importance of this study in advancing our understanding of the interdependence of

the Australian and Japanese financial markets.

2.1 Measures of risk

Risk is defined as the potential for an undesirable outcome (i.e. loss of value) resulting

from an action or inaction. In finance, risk is the uncertainty surrounding the future

value of an asset or portfolio of financial instruments.

Measuring and managing risk is crucial in the financial industry to ensure the sta-

bility and sustainability of the financial system. A good risk measure should accurately
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capture the potential for losses, but not be overly conservative, as this could restrict

economic growth and investment opportunities. A variety of risk measures are used

in finance, including Value-at-Risk (VaR), Expected Shortfall (ES), and the Expectile

Value-at-Risk (EVaR), each with its own strengths and weaknesses.

The financial disasters of the early 1990s led to significant changes in the financial

landscape, with Value-at-Risk (VaR) becoming a standard risk management tool in fi-

nancial and insurance institutions since the 1990s. VaR measures the potential amount

a portfolio can lose for a given probability level, defined as a tail quantile of the distri-

bution of financial returns. However, VaR has some significant drawbacks, including

ignoring most of the risk’s probability distribution and not being a sub-additive risk

measure (Du and Escanciano, 2016; Gordy and Juneja, 2010), which can result in the

measure for a portfolio being less than the sum of its components’ measures.

Expected Shortfall (ES) has been proposed as a risk measure for regulatory frame-

works in response to the limitations of Value at Risk (VaR) (Du and Escanciano, 2016;

Embrechts et al., 2014). Unlike VaR, which only considers the probability of losses

exceeding a certain threshold, ES calculates the average of the VaR values below a

specified level, thus including very unlikely losses with a significant impact on the

portfolio value. ES is a coherent risk measure and has the property of subadditivity,

thus rewarding diversification (Hult et al., 2012). In fact, Basel III4 has recommended

ES as a replacement for VaR in the new regulatory framework and raised the capital

ratios required for financial institutions.

In addition to their use as risk measures, VaR and ES estimation can serve as the

basis for portfolio optimization (Huang et al., 2010; Lwin et al., 2017). However, it is

worth noting that ES is not elicitable, meaning that there is no scoring function for

which the expectation is minimized by the true ES (Gneiting, 2011). Nonetheless, the

benefits of ES as a coherent risk measure have led to its increased use in regulatory

frameworks and portfolio optimization.

The estimation and evaluation of Expected Shortfall (ES) has been challenging in

practice, as noted by Rockafellar et al. (2014). However, Fissler et al. (2016) have shown

that ES and VaR are jointly elicitable. They also proposed a family of scoring functions
4https://www.bis.org/bcbs/basel3.htm, accessed on September 10, 2023.
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that can be used to estimate and evaluate both VaR and ES simultaneously. This has

enabled researchers such as Patton et al. (2019) and Taylor (2019) to estimate dynamic

models for VaR and ES based on joint scoring functions. Additionally, Meng and Taylor

(2020) have introduced a novel approach to estimating these two risk measures using

joint scoring functions based on intraday data. These methods have advanced our

ability to estimate and evaluate VaR and ES accurately, despite the challenges involved

in their practical implementation.

2.2 Risk transmission between financial markets

As global financial markets are increasingly deregulated and integrated, the risk in

one financial market or asset is very likely to be transmitted to other markets or assets.

Understanding risk transmission between financial markets is important for asset al-

location and risk management. It also has crucial implication for policy making that

aims at reducing financial contagion and the instability it causes to the economy.

Risk transmission between financial markets has been the subject of numerous

studies over the past few decades. The interconnectedness of global financial markets

has become increasingly apparent since the 2008 Global Financial Crisis, where the

spillover effects of one market’s instability led to economic turmoil in other regions. A

number of studies have sought to understand the mechanisms and channels through

which risk is transmitted between financial markets.

Caporals et al. (2006) used a Vector Autoregression (VAR) model to examine the

cross-market volatility spillovers between the US and European equity markets. Their

results showed that spillovers were significant and that US markets were more influen-

tial in transmitting shocks to European markets than vice versa. This was corroborated

by other studies, such as Forbes and Rigobon (2002) who found that US equity market

volatility was a significant predictor of volatility in other major equity markets.

Later on, many studies investigate volatility spillover using multivariate GARCH

models. For instance, Baele (2005) analyzed the volatility spillover effects in European

equity markets. Li and Giles (2015) studied the volatility spillover effects between

developed stock markets and Asian emerging stock markets. Vo and Tran (2020)

investigated volatility spillovers from the US equity market to ASEAN stock markets.
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Zhong and Liu (2021) provided evidence on volatility spillovers between China and

South-east Asian stock markets. These are just a few examples of studies that have

examined the phenomenon of volatility spillovers across different equity markets.

However, in many applications, losses and gains are treated symmetrically in the

measure of correlation and volatility spillover. In reality, investors have downside

financial constraints and are downside risk averse, meaning they are more concerned

with downside losses than upside gains. Therefore, these applications are inadequate

in describing extreme bad scenarios when a significant decline in stock returns in one

market generates panic and spreads to other markets, as seen in events such as the 1997

Asian financial crisis and the Global Financial Crisis in 2008.

To address these issues, some studies have distinguished extreme negative shocks

from normal observations. For example, Hartmann et al. (2004) looked at extreme de-

pendence between markets in distress periods, while Asgharian and Bengtsson (2006)

and Asgharian and Nossman (2011) analyzed risk spillover with Poisson jumps. Hus-

sain and Li (2018) considered the dependence structure between Chinese and other

major stock markets based on the extreme value theory and copulas. A few studies

(e.g., Adrian and Brunnermeier (2009); Bae et al. (2003); Christiansen and Ranaldo

(2009)) study extreme coexceedance or simultaneous extreme events of financial mar-

kets and financial institutions.

Further, a few studies have focused on risk transmission between stock markets

using downside risk measures such as Expected Shortfall (ES) and Expectile Value-

at-Risk (EVaR). Hong et al. (2009) provided a theoretical background for the binary

response of extreme value spillover. Inspired by this concept of Granger causality in

risk, Liu (2014) proposed a binary response model approach to measure and forecast

extreme downside risk in Asia-Pacific markets, given information on extreme downside

risks in the US and Japanese markets. In both studies, downside risk is measured by

VaR. However, there is a need for more research on risk transmission between stock

markets using downside risk measures such as ES and EVaR.
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2.3 The expectile approach

The term “expectile” was first introduced by Newey and Powell (1987). One major

advantage of using expectiles is that asymmetric least squares (ALS) regression is

more computationally efficient than quantile regression. Computing the expectile is

simpler than computing the quantile because the check-loss function is continuously

differentiable. This has led to an increase in popularity in the use of expectiles in

modelling risk measurement and transmission in recent years.

Expectiles provide a different approach to measuring risk as they rely on both tails

of the distribution, unlike other measures such as expected shortfall and value-at-risk.

Expected shortfall is sensitive to the magnitude of the lower tail returns, but only those

of the lower tail. As such, it tends to be more conservative than other risk measures. VaR

is not influenced by the magnitude of lower tail returns at all, increasing the chance that

it underestimates the true risk involved. The expectile relies on more comprehensive

information to measure risk.

The relationship between expectiles and quantiles has also encouraged the use of

expectiles. Efron (1991) suggested quantiles can be estimated using the expectile. The

one-to-one mapping between quantiles and expectiles has been empirically supported

by Jones (1994), Abdous and Remillard (1995), and Yao and Tong (1996). Taylor (2008)

estimated nonparametric value-at-risk and expected shortfall using expectiles. The

emphasis has generally been placed on the computational efficiency of the expectile as

compared to quantile regression, rather than on the virtues of the expectile as a risk

measure. De Rossi and Harvey (2009) were the first to directly use the expectile by

developing a spline-based nonparametric computation method for the time-varying

expectile. Its use was still limited by the difficulty in interpreting the expectile and

its asymmetry parameter. Direct use of the expectile as a risk measure has been

discouraged by the expectiles’ lack of interpretation. Kuan et al. (2009) addressed the

issue of interpretability by giving a more intuitive definition for the expectiles in a

financial risk setting.

In sum, the expectile, which is the solution to asymmetric least squares regression,

resolves many of the issues of previous risk measures. In addition to addressing the

shortcomings of other risk measures such as Value-at-Risk and Expected Shortfall,
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expectiles have unique characteristics that make them very efficient and informative

for measuring risk.

3 Methodology and data

In this section, we will detail the research methodology used in the study, including

the expectile regression model, EVaR calculations, and the common risk factors used

in the model. This section will also describe the data sources and sample statistics used

in the study.

3.1 Traditional downside risk measures

A VaR with a confidence level of 1−α, α ∈ (0, 1), represents the maximum potential loss

for a given holding period with a probability of 1 − α, see e.g. Jorion (2000). VaR is es-

sentially the negative of the α-th quantile of the return distribution and can be obtained

by minimizing asymmetrically weighted mean absolute deviations. In this weighting

scheme, positive deviations are assigned a weight of α, while negative deviations are

assigned a weight of 1 − α. Bassett et al. (2004) argued that this asymmetric weighting

scheme aligns with certain distorted probability assessments used in Choquet expected

theory, which can describe pessimism.

To be specific, let Y denote an asset return with the distribution function FY . Given

α ∈ (0, 1), the quantile based VaR (henceforth QVaR) is the negative of the α-th quantile

of FY : QVaR(α) = −q(α). It is well known that the α-th quantile can be obtained by

minimizing asymmetrically weighted mean absolute deviations:

E[|α − 1{Y ≤q}||Y − q|] (1)

where 1{Y ≤q} is the indicator of the event Y ≤ q. Thus, a QVaR is a natural product

of an optimization problem with an asymmetric linear loss function. The first order

condition of minimizing Equation (1) is (1 − α)
∫ q

−∞ dFY (y) − α
∫∞

q dFY (y) = 0, which

implies

α =
∫ q

−∞ dFY (y)∫∞
−∞ dFY (y) =

∫ q

−∞
dFY (y). (2)
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This highlights that VaR has limitations as it depends solely on the frequency of more

extreme losses without considering their magnitudes, unlike the lower partial moment.

This may result in VaR being less sensitive to tail risk, meaning that two portfolios with

the same VaR could have very different tail shapes. Additionally, VaR does not satisfy

sub-additivity, so diversification may not decrease the risk measured by VaR, which is

undesirable.

In contrast, expected shortfall (ES) considers the average of all potential losses

beyond the VaR at a given confidence level, taking into account the magnitude of the

loss. However, ES only accounts for the conditional downside mean, and may therefore

be overly conservative.

For an asset return Y with the distribution function FY and given α ∈ (0, 1), the ES

of Y at level α is the mean of the α-tail distribution of Y (Tasche, 2002; Rockafellar and

Uryasev, 2002), i.e.

ESα(Y ) =
∫ ∞

−∞
ydFα,Y (y),

where Fα,Y is the the α-tail distribution defined as (Rockafellar and Uryasev, 2002)

Fα,Y (y) =


0, for y < QVaR(α)
FY (y)−α

1−α
, for QVaR(α) ≤ y.

For a more detailed discussion, we refer to Kou and Peng (2016).

3.2 Expectile based VaR

While the previously mentioned risk measures are still widely used, they have been

criticized for their limitations. The expectile approach has emerged as a solution to

many of these issues. Expectiles have unique properties that make them highly efficient

and informative in measuring risk.

As opposed to quantiles, which only provide information on a specific percentile,

expectiles capture information on a specific tail and are more sensitive to tail risks.

Additionally, expectiles are robust to outliers and can be easily adapted to incorporate

various risk factors. As such, the expectile regression model has become an increasingly

popular tool in risk management and financial analysis. The EVaR of Y , an asset
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return with the expectile level θ, (θ ∈ (0, 1)) is the negative of θ-th expectile of FY , the

distribution function, which can be obtained as the negative of v that minimizes the

asymmetrically weighted quadratic loss function (Newey and Powell, 1987),

E
[
|θ − 1{Y ≤ν}|(Y − ν)2

]
, (3)

where 1{Y ≤ν} is the indicator of the event Y ≤ ν. Let us denote such value of ν by ν(θ).

Then we have: EVaR(θ) = −ν(θ) with 0 < θ < 1/2.

The first-order condition of minimizing (3) is:

−(1 − θ)
∫ ν

−∞
(y − ν)dFY (y) − θ

∫ ∞

ν
(y − ν)dFY (y) = 0 (4)

which implies

θ =
∫ ν

−∞(y − ν)dFY (y)∫ ν
−∞(y − ν)dFY (y) −

∫∞
ν (y − ν)dFY (y) =

∫ ν
−∞ |y − ν|dFY (y)∫∞
−∞ |y − ν|dFY (y) . (5)

Hence, θ is the ratio of the deviations of Y below ν to the overall deviations of Y from

ν, both weighted by the distribution function. Thus, ν(θ) depends on both the extreme

values and their probabilities (Kuan et al., 2009).

Lower values of θ indicate more risk aversion. Kuan et al. (2009) suggested that

the EVaR can be thought of as a flexible VaR, since the tail probability associated with

an expectile is not some static θ chosen at the outset, but changes with the underlying

distribution.

Compared to the popular QVaR, EVaR is more sensitive to the extreme values of

the distribution (Kuan et al., 2009; Xie et al., 2014). Furthermore, ν(θ) can be used to

calculate ES according to the one-to-one mapping from α to θ. Yao and Tong (1996)

show that θ(α) and qα(Y ) satisfy

θ(α) = αqα(Y ) −
∫ qα(Y )

−∞ ydFY (y)
2E[Y ] − 2

∫ qα(Y )
−∞ ydFY (y) − (1 − 2α)qα(Y )

. (6)

Hence, for any α ∈ (0, 1), θ(α) is transformed by Equation (6), such that ν(θ(α))(Y ) =

qα(Y ). ES can be obtained according to Taylor (2008) by,

ESα(Y ) = −
(

1 + θ

(1 − 2θ)α

)
ν(θ) + θ

(1 − 2θ)αE[Y ]. (7)
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3.3 Expectile regression

Given a collection of k variables X = (1, X2, X3, . . . , Xk)′, in the information set F ,

let ν(θ|F ) denote the θ-th expectile of Y conditional on X . We consider the linear

specification ν(θ|F ) = X ′β(θ) with β(θ) as a k × 1 parameter vector.

When the data (yt, x′
t)′, xt =

(
1, x

(2)
t , . . . , x

(k)
t

)′
are available for t = 1, . . . , T , the

linear specification can be expressed as:

ν(θ|Ft) = x′
tβ(θ).

where Ft denotes the information set up to time t.

The parameter β(θ) can be estimated by the value of β(θ) that minimises

1
T

T∑
t=1

|θ − 1{yt−x′
tβ(θ)≤0}|(yt − x′

tβ(θ))2,

whose first order condition is

− 1
T

T∑
t=1

|θ − 1{yt−x′
tβ(θ)≤0}|x′

t(yt − x′
tβ(θ)) = 0.

We can obtain such value by the usual iteration algorithm:

1. Let β[0] be an appropriate initial guess of the parameter β(θ).

2. Given β[k], the kth guess, β[k+1] is calculated as

β[k+1] =
(
w[k]xx′

)−1
w[k]xy,

where

w[k] =


|θ − 1{y1−x′

1β[k]≤0}|
...

|θ − 1{yT −x′
T β[k]≤0}|

 , x =
(

x1, . . . , xT

)
, y =


y1
...

yT

 .

3. Repeat Step 2, for instance, until |β[k+1] − β[k]| is small enough.

Let us denote by β̂(θ) the estimate of the parameter β(θ) obtained by the algorithm

above. Kuan et al. (2009) suggest that for large T the distribution of β̂(θ) be approx-

imated by the normal distribution with mean β(θ) and variance T Ξ̂(θ)−1V̂ (θ)Ξ̂(θ)−1,

where

Ξ̂(θ) = 1
T

T∑
t=1

|θ − 1{yt−x′
tβ̂(θ)≤0}|xtx

′
t, V̂ (θ) = 1

T

T∑
t=1

|θ − 1{yt−x′
tβ̂(θ)≤0}|

2(yt − x′
tβ̂(θ))2xtx

′
t.

11



3.4 Variables

To investigate if the Japanese stock market is a risk factor that influences the Australian

stock market, similar to Yao et al. (2021), we use the following variables:

y = ASX 200 index return,

x(2) = Nikkei 225 index return,

x(3) = S&P 500 index return, and

x(4) = CSI 300 index return,

and use the specification

ν(θ|Ft) =
(
1 y+

t−1 y−
t−1 y+

t−2 y−
t−2 x

(2)+
t−1 x

(2)−
t−1 x

(3)+
t−1 x

(3)−
t−1 x

(4)+
t−1 x

(4)−
t−1

)
β(θ),

where we use the notations u+ = max(u, 0) and u− = min(u, 0).

To investigate if the Australian stock market is a risk factor that influences the

Japanese stock market, we use the following variables:

y = Nikkei 225 index return,

x(2) = ASX 200 index return,

x(3) = S&P 500 index return, and

x(4) = CSI 300 index return.

In both cases, the CSI 300 and S&P 500 are considered as common risk factors to both

the Australian and Japanese stock markets.

3.5 Data and sample statistics

The two largest economies in the world are the U.S. and China, and both countries

have important economic relationships with Australia and Japan. As the U.S. stock

market and the Chinese stock market are major players in the global market, they are

expected to have significant influence on many other stock markets, including those

of Australia and Japan. Therefore, in order to examine the risk transmission between
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the Australian and Japanese stock markets, it is reasonable to use the CSI 300 and

S&P500 as the common risk factors in the expectile regression models. By using these

two factors, we can also assess the spillover effects of the U.S. and Chinese markets

on the Australian and Japanese markets, and better understand the risk transmission

mechanism between them.

In this paper, we use the daily closing stock index data for Australia (ASX 200),

Japan (Nikkei 225), U.S. (S&P 500), and China (CSI 300) over the past 10 years, from the

beginning of October 2012 to end of September 2023. The exact dates vary depending

on the operating days of each market. Table 1 presents the summary statistics for the

four stock index returns over the sample period.

Index ASX 200 Nikkei 225 S&P 500 CSI 300

Mean (×10−4) 1.18 3.24 3.73 1.79

Median (×10−4) 6.5 7.81 5.74 2.23

Max (×10−2) 6.77 7.73 8.97 6.5

Min (×10−2) -10.2 -8.25 -12.77 -9.15

S.dev (×10−2) 0.97 1.26 1.11 1.4

Skew. -1.05 -0.15 -0.81 -0.8

Kurt. 12.42 4.28 16.19 6.03

ADF -1.92 -1.14 -0.81 -2.31

(p-value) (0.32) (0.70) (0.82) (0.17)

Table 1: Summary statistics of daily returns of the stock market indices.

Based on Table 1, it can be observed that the CSI 300 index has the highest standard

deviation, while the ASX 200 index has the lowest. This suggests that the Australian

stock market was comparatively less volatile than the other three stock markets during

the sample period. Additionally, the negative skewness and large kurtosis of the return

distributions for all four stock indices indicate that they have a fat tail in the left part,

with more extreme information. This characteristic makes the expectile regression

model, which is more sensitive to the left tail, a suitable tool to measure tail risk.

All Augmented Dickey-Fuller (ADF) test p-values for the return distributions of the

four stock indices are greater than 0.1. This suggests that the return series are stationary
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and that the expectile regression model can be effectively applied.

4 Empirical results

In this section, we present the empirical results and analysis of our study. We begin

by examining the Expectile based Value at Risk (EVaR) for each stock market and

then move on to assessing the influence of downside risk between the Australian and

Japanese markets. We also analyze the impact of lagged returns and common risk

factors on the EVaR and Expected Shortfall (ES) estimates.

4.1 The effect of risk factors

For the expectile regression, the corresponding θ is calculated according to Equation (6)

for a given α (1%or 5% in this paper). The final expectile regression results for the ASX

200 and Nikkei 225 indexes are reported in Table 2.
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Indices ASX 200 Nikkei 225

α 1% 5% 1% 5%

θ 0.67% 2.54% 0.3% 2.13%

Variables Estimate Estimate Estimate Estimate

(s.e.) (s.e.) (s.e.) (s.e.)

Const. -0.0081 -0.0059 -0.0206 -0.0098

(0.0014) *** (0.0011) *** (0.0022) *** (0.0014) ***

y+
t−1 -0.0781 -0.0275 -0.1201 -0.0691

(0.2363) (0.1210) (0.1240) (0.0914)

y−
t−1 0.3097 0.1114 -0.0314 0.0498

(0.2185) (0.2031) (0.1513) (0.0820)

y+
t−2 -0.7581 -0.5408 -0.2603 -0.2693

(0.1854) *** (0.1566) *** (0.1339) * (0.1044) ***

y−
t−2 0.6885 0.434 0.4659 0.5004

(0.2962) ** (0.1884) ** (0.0887) *** (0.0849) ***

x
(2)+
t−1 -0.0758 -0.0903 0.0615 -0.1439

(0.0884) (0.0841) (0.3145) (0.1737)

x
(2)−
t−1 0.0035 -0.0166 0.5495 0.4419

(0.0884) (0.0781) (0.2405) ** (0.1701) ***

S&P 500+
t−1 -0.2258 -0.1205 -0.1587 0.3057

(0.1226) (0.1708) (0.9359) (0.1504) **

S&P 500−
t−1 0.7614 0.6062 0.6437 0.5785

(0.1776) *** (0.1124) *** (0.2245) *** (0.1169) ***

CSI 200+
t−1 -0.1036 -0.0871 0.2205 0.0381

(0.1127) (0.0593) (0.1588) (0.0759)

CSI 200−
t−1 0.0648 0.0671 -0.0404 0.0297

(0.0563) (0.0437) (0.0499) (0.0498)

Table 2: The expectile regression results for ASX 200 and Nikkei 225 indices. “s.e.”

denotes the standard error, ***, **, * label significance at 1%, 5% and 10% levels, respec-

tively.
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4.1.1 Results for ASX 200 index

Regarding the expectile regression results for ASX 200, several observations can be

made. First, the 0.01 expectile ν(θ|Ft) is significantly affected by y+
t−2 and y−

t−2 with

coefficients of -0.7581 and 0.6885, respectively. The 0.05 expectile ν(θ|Ft) is also affected

by y+
t−2 and y−

t−2 with the coefficients of -0.5408 and 0.4340, respectively. As for the tail

risk EVaR(θ) = −ν(θ|Ft), the results suggest that negative returns of the ASX 200 index

two business days before tend to indicate a lower tail risk, which results in higher

EVaR. Conversely, positive returns tend to suggest higher tail risk and lower EVaR.

These findings imply that ASX 200 tends to correct overreactions in terms of downside

tail risk.

Second, the effect of negative returns of the S&P 500 index previous day is significant

on both the 0.01 and 0.05 expectile ν(θ|Ft) with the coefficients of 0.7614 and 0.6062,

respectively, while the CSI 300 index is not.

Third, the effect of the Nikkei 225 index previous day is not significant. The results

indicate that the transmission of risk from Japanese stock markets to Australian ones

can be limited.

4.1.2 Results for Nikkei 225 index

Regarding the Nikkei 225 index, Table 2 reveals a few interesting findings as well. First,

both the 0.01 and 0.05 expectile ν(θ|Ft) is significantly affected by the lagged y+
t−2 and

y−
t−2.

For the tail risk EVaR(θ) = −ν(θ|Ft), the results indicate that the negative past

returns (y−
t−2) of the Nikkei 225 index tends to suggest a lower tail risk and push the

EVaR upward while the positive past returns (y+
t−2) tends to suggest a higher tail risk

and push the EVaR downward. However, the negative past returns or positive past

returns of lagged 1 do not have any significant effect.

Second, the effect of the negative ASX 200 index previous day is significant, at 5%

level on the 0.01 expectile ν(θ|Ft), and at 1% level on the 0.05 expectile ν(θ|Ft). The

coefficients, 0.5495 for 0.01 expectile, and 0.4419 for 0.05 expecitle, are positive. This

implies that the negative return on ASX 200 previous day tends to result in reduction
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in EvaR. This contrasts to the findings in 4.1.1 and implies that the effect of ASX 200 on

Nikkei 225 is stronger than the other way round in terms of downside tail risk.

Third, the negative return on the SP 500 index previous day is significant (at 1%

level) on the 0.01 expectile ν(θ|Ft) with the coefficient of 0.6437 and the 0.05 expectile

ν(θ|Ft) with the coefficient of 0.5785. The CSI is not significant here.

4.1.3 The comparison

Comparing the results of the ASX 200 and Nikkei 225, it can be concluded that the effect

of Australian stock market on Japanese ones can be stronger than the other way round

in terms of downside tail risk, reflecting the economic integration between Australia

and Japan in the form of trade linkages and foreign direct investment. This finding is

in line with the existing literature, such as Shamsuddin and Kim (2003).

It can be observed that the Nikkei 225 reacts less to past positive returns compared

to the ASX 200. This result confirms the existence of a difference between the two stock

markets in the mechanism of downside risk transmission, even though they are highly

integrated.

4.2 EVaR estimates

In order to test the accuracy of the model, the EVaR was estimated to analyze the past

risk conditions of each stock index.

Figures 1 and 2 show the in-sample ν(θ|Ft) for ASX 200 and Nikkei 225, respectively.

Both figures display a line that covers mostly negative returns, and for both ASX 200

and Nikkei 225, the effectiveness of the model under 0.01 quantile is better than the

0.05 quantile level.

Interestingly, the EVaR of either index is larger during periods of high volatility

in the return series, such as during the Chinese stock market crash in 2015 or at the

beginning of the COVID-19 crisis in early 2020. However, the EVaR of Nikkei 225 is

also high during a few other periods.
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2013-10-01 2015-09-23 2017-09-15 2019-09-09 2021-08-30 2023-08-23

Date

−0.15

−0.10

−0.05

0.00

0.05

ASX Daily Return

Expectile (θ = 0.007)

Expectile (θ = 0.025)

Figure 1: In-sample ν(θ|Ft) of ASX 200 index for θ = 0.0067(α = 0.01) and 0.0254(α = 0.05).

In-sample period: 1 Oct 2012 to 30 Sep 2023.
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2013-10-01 2015-10-19 2017-10-31 2019-11-20 2021-12-09

Date

−0.15

−0.10

−0.05

0.00

0.05

N225 Daily Return

Expectile (θ = 0.003)

Expectile (θ = 0.021)

Figure 2: In-sample ν(θ|Ft) of Nikkei 225 index for θ = 0.0030(α = 0.01) and 0.0213(α = 0.05).

In-sample period: 1 Oct 2012 to 30 Sep 2023.

α 1% 5%

Mean Max Tail prob. Mean Max Tail prob.

ASX 200 0.0187 0.1829 2.729% 0.0131 0.1316 6.606%

Nikkei 225 0.0276 0.1544 1.432% 0.0163 0.1376 5.524%

Table 3: EVaR and the tail probability of ASX 200 and Nikkei 225 indices.

A few observations can be made from Table 3. The mean EVaR values of the ASX

200 index are 0.0186 and 0.0131 under 0.01 and 0.05 quantiles, respectively. These

estimates suggest that the potential maximum loss of investing in the ASX 200 index

one day-ahead with 99% and 95% probabilities is 1.87% and 1.31%, respectively.

The mean EVaR values of the Nikkei 225 index are 0.0276 and 0.0163 under 0.01 and

0.05 quantiles, respectively. These estimates suggest that the potential maximum loss

of investing in the Nikkei 225 index one day-ahead with 99% and 95% probabilities is

2.76% and 1.63%, respectively.
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The mean EVaR values of the ASX 200 index under two quantiles are smaller than

those of the Nikkei 225 index, while the maximum EVaR values of the ASX 200 index

under 0.01 expectiles is larger than that of the Nikkei 225 index.

4.3 ES estimates

Let us now consider the popular ES measure for evaluating the expected loss when

investing in ASX 200 and Nikkei 225. Table 4 reports the mean and max ES values, as

well as the tail probabilities under 1% and 5% probabilities.

The in-sample ES values for the ASX 200 index suggest that the mean risk when

investing in it one day ahead is 3.12% and 2.01% with 1% and 5% probabilities, respec-

tively. In contrast, the in-sample ES values for the Nikkei 225 index indicate that the

mean risk is 3.58% and 2.34% with 1% and 5% probabilities, respectively. Thus, on

average, the risk of investing in Nikkei 225 is higher than that of ASX 200. These results

further confirm the suitability of the expectile model.

Additionally, the lower tail probability values in Table 4 indicate that our model is

highly accurate.

α 1% 5%

Mean Max Tail prob. Mean Max Tail prob.

ASX 200 0.0312 0.3061 0.237% 0.0201 0.2021 1.899%

Nikkei 225 0.0358 0.2005 0.245% 0.0234 0.1987 1.795%

Table 4: In-sample ES of ASX 200 and Nikkei 225 under 0.01 and 0.05 quantiles. See

Figures 3 and 4 for the time plots.
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2013-10-01 2015-09-23 2017-09-15 2019-09-09 2021-08-30 2023-08-23
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ES (α = 0.01)

ES (α = 0.05)

Figure 3: In-sample ES of ASX 200 under 0.01 and 0.05 quantiles.
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Figure 4: In-sample ES of Nikkei 225 under 0.01 and 0.05 quantiles.

5 Concluding remarks

This study investigates the downside risk in Australian and Japanese stock markets and

examines whether the two markets influence each other in terms of downside risk. To

accomplish this, we use a novel approach based on the expectile regression model that

accounts for both lagged returns and macroeconomic risk factors to calculate the EVaR

of the ASX 200 index and Nikkei 225 index and evaluate their mutual influence.

Our analysis utilizes ten years sample (Oct 2013 to Sep 2023) daily returns of ASX

200 index and Nikkei 225 index. The EVaRs for both ASX 200 index and Nikkei 225

index are significantly influenced by negative lagged returns and returns from the S&P

500 index, while those of CSI 300 index is not significant. Moreover, the EVaR and ES

of the ASX 200 index are on average smaller than those of the Nikkei 225 index.

Our findings suggest that both the Australian and Japanese stock markets are af-

fected by their past development and international stock markets. Furthermore, our
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analysis indicates that the ASX 200 index have a significant impact on Nikkei 225 index

downside tail risk, consistent with their close economic relationship. However, the

ASX 200 index responds less to past negative or positive returns than the Nikkei 225

index. Our study’s outcomes can have practical implications for investment and risk

management in the two stock markets.

References

S. R. Paramati, R. Gupta, and K. Tandon. Dynamic analysis of time-varying correla-

tions and cointegration relationship between australia and frontier equity markets.

International Journal of Business and Emerging Markets, 8(2):121–145, 2016.

Z. Du and J. C. Escanciano. Backtesting expected shortfall: Accounting for tail risk.

Management Science, 63(4):940–958, 2016.

M. B. Gordy and S. Juneja. Nested simulation in portfolio risk measurement. Manage-

ment Science, 56(10):1833–1848, 2010.

P. Embrechts, G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. An academic

response to basel 3.5. Risks, 2(1):25–48, 2014.

H. Hult, F. Lindskog, O. Hammarlind, and C. J. Rhen. Risk and Portfolio Analysis:

Principles and Methods. Springer, New York, 2012.

D. Huang, S. Zhu, F. J. Fabozzi, and M. Fukushima. Portfolio selection under distribu-

tional uncertainty: A relative robust cvar approach. European Journal of Operational

Research, 203(1):185–194, 2010.

K. T. Lwin, R. Qu, and B. L. MacCarthy. Mean-var portfolio optimization: A nonpara-

metric approach. European Journal of Operational Research, 260(2):751–766, 2017.

T. Gneiting. Making and evaluating point forecasts. Journal of the American Statistical

Association, 106(494):746–762, 2011.

23



R. T. Rockafellar, J. O. Royset, and S. I. Miranda. Superquantile regression with applica-

tions to buffered reliability, uncertainty quantification, and conditional value-at-risk.

European Journal of Operational Research, 234(1):140–154, 2014.

T. Fissler, J. Ziegel, and T. Gneiting. Expected shortfall is jointly elicitable with value at

risk - implications for backtesting. Risk, pages 58–61, 2016.

A. J. Patton, J. F. Ziegel, and R. Chen. Dynamic semiparametric models for expected

shortfall (and value-at-risk). Journal of Econometrics, 211(2):388–413, 2019.

J. W. Taylor. Forecasting value at risk and expected shortfall using a semi-parametric ap-

proach based on the asymmetric laplace distribution. Journal of Business and Economic

Statistics, 37(1):121–133, 2019.

X. Meng and J.W. Taylor. Estimating value-at-risk and expected shortfall using the

intraday low and range data. European Journal of Operational Research, 280:191–202,

2020.

G.M. Caporals, N. Pittis, and N. Spagnolo. Volatility transmission and financial crises.

Journal of Economics and Finance, 30:376–390, 2006.

K. Forbes and R. Rigobon. No contagion, only interdependence: Measuring stock

market comovements. Journal of Finance, 57(5):2223–2261, 2002.

L. Baele. Volatility spillover effects in european equity markets. Journal of Financial and

Quantitative Analysis, 40(2):373–401, 2005.

Y. Li and D.E. Giles. Modelling volatility spillover effects between developed stock mar-

kets and asian emerging stock markets. International Journal of Finance and Economics,

20(2):155–177, 2015.

X.V. Vo and T.T.A. Tran. Modelling volatility spillovers from the us equity market to

asean stock markets. Pacific-Basin Finance Journal, 59:101246, 2020.

Y. Zhong and J. Liu. Correlations and volatility spillovers between china and southeast

asian stock markets. The Quarterly Review of Economics and Finance, 81:57–69, 2021.

24



P. Hartmann, S. Straetmans, and C. Vries. Asset market linkages in crisis periods. The

Review of Economics and Statistics, 86(1):313–326, 2004.

H. Asgharian and C. Bengtsson. Jump spillover in international equity markets. Journal

of Financial Econometrics, 4(2):167–203, 2006.

H. Asgharian and M. Nossman. Risk contagion among international stock markets.

Journal of International Money and Finance, 30(1):22–38, 2011.

S.I. Hussain and S. Li. The dependence structure between chinese and other major

stock markets using extreme values and copulas. International Review of Economics

and Finance, 56:421–437, 2018.

T. Adrian and M. Brunnermeier. Covar. Technical Report 348, Federal Reserve Bank of

New York, 2009.

K. Bae, G. Karolyi, and R. Stulz. A new approach to measuring financial contagion.

Review of Financial Studies, 16(3):717, 2003.

C. Christiansen and A. Ranaldo. Extreme coexceedances in new eu member states’

stock markets. Journal of Banking and Finance, 33(6):1048–1057, 2009.

Y. Hong, Y. Liu, and S. Wang. Granger causality in risk and detection of extreme risk

spillover between financial markets. Journal of Econometrics, 150(2):271–287, 2009.

L. Liu. Extreme downside risk spillover from the united states and japan to asia-pacific

stock markets. International Review of Financial Analysis, 33:39–48, 2014.

W.K. Newey and J.L. Powell. Asymmetric least squares estimation and testing. Econo-

metrica, 55:819–847, 1987.

B. Efron. Regression percentiles using asymmetric squared error loss. Statistica Sinica,

1:93–125, 1991.

B. Jones. Expectiles and m-quantiles are quantiles. Statistics Letters, 20:149–153, 1994.

B. Abdous and B. Remillard. Relating quantiles and expectiles under weighted-

symmetry. Annals of the Institute of Statistical Mathematics, 47(2):371–384, 1995.

25



Q. Yao and H. Tong. Asymmetric least squares regression and estimation: a nonpara-

metric approach. Journal of Nonparametric Statistics, 6:273–292, 1996.

J.W. Taylor. Estimating value at risk and expected shortfall using expectiles. Journal of

Financial Econometrics, 6(2):231–252, 2008.

G. De Rossi and A. C. Harvey. Quantiles, expectiles, and splines. Journal of Econometrics,

152(2):179–185, 2009.

C. Kuan, J. Yeh, and Y. Hsu. Assessing value at risk with care, the conditional autore-

gressive expectile models. Journal of Econometrics, 150:261–270, 2009.

P. Jorion. Value at Risk: The new benchmark for managing financial risk. McGraw-Hill,

Chicago, 2000.

Jr. Bassett, Gilbert W., Roger Koenker, and Gregory Kordas. Pessimistic portfolio al-

location and choquet expected utility. Journal of Financial Econometrics, 2(4):477–492,

September 2004.

D. Tasche. Expected shortfall and beyond. Journal of Banking and Finance, 26(7):1519–

1533, 2002.

RT Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions.

Journal of Banking and Finance, 26(7):1443–1471, 2002.

S. Kou and X. Peng. On the measurement of economic tail risk. Operations Research, 64

(5):1056–1072, 2016.

S. Xie, Y. Zhou, and A.T.K. Wan. A varying coefficient expectile model for estimating

value at risk. Journal of Business and Economic Statistics, 32(4):576–592, 2014.

Y. Yao, J. Li, and X. Sun. Measuring the risk of chinese fintech industry: evidence from

the stock index. Finance Research Letters, 39, 2021.

A.F. Shamsuddin and J.H. Kim. Integration and interdependence of stock and foreign

exchange markets: an australian perspective. Journal of International Financial Markets,

Institutions and Money, 13(3):237–254, 2003.

26


	Introduction
	Related literature
	Measures of risk
	Risk transmission between financial markets
	The expectile approach

	Methodology and data
	Traditional downside risk measures
	Expectile based VaR
	Expectile regression
	Variables
	Data and sample statistics

	Empirical results
	The effect of risk factors
	EVaR estimates
	ES estimates

	Concluding remarks

