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Abstract— Decentralized control is a promising method
for large scale systems. A critical design method for de-
centralized control systems is desirable for solving the
complicated design problem. Simple and explicit controller
design becomes available with the idea of “function.” How-
ever, the hierarchy based on the network structure may
impose restrictions on controller design. At the same time,
various kinds of exceptions such as faults, performance
limits and so on may also impose restrictions. This paper
proposes a method of the controller design under these
restrictions. The concept of system connection is applied
to derive the hierarchy. An exception is treated the same
as a communication blackout. The hierarchy structure
is intentionally manipulated to decide the priority order
of the functions. The unified design for the system with
the hierarchical structure and exceptions can be realized
through this method.

I. INTRODUCTION

Decentralized control is a promising method for large
scale systems. It is superior in many features such as
flexibility, fault tolerance, expandability, rapid response
and so on. Many studies have been performed on concepts
and theories of decentralized control systems[1], [2].
Connection matrix is a useful tool to know the hierarchical
structure of decentralized systems[3], [4]. Akuzawa and
Ohnishi adopted the maximum eigenvalue of the connec-
tion matrix and its eigenvector as the design indices[5].

The idea of decentralized control has been also applied
to many robot control systems[6], [7], [8], [9], [10].
Among them, Fukuda et. al. proposed the control method
based on cell structure[6]. Decentralized control systems
have been utilized for many fault tolerant systems[10].

We have shown a new design procedure of a decentral-
ized control system based on the idea of “function”[13].
This idea is also applied and expanded for a bilateral
control system with position/force scaling[14]. The design
becomes simple and explicit since this idea clearly relates
the system role to the controller structure. It was assumed
in the method that communication between subsystems
is complete. The decentralized system with incomplete
communication has restrictions on its controller design
because some of the commands may not reach to the other
subsystems. By the same token, the decentralized system
with a hierarchical structure has restrictions on its con-
troller design. Furthermore, exceptions such as faults and
performance limits also impose restrictions. This paper
describes a way to design the decentralized control system
under these restrictions. We apply connection matrix[3] to
figure out the command flow of the decentralized system.
A unified design method for a decentralized system under
the hierarchical structure and exceptions is proposed.
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Fig. 1. Supposed system

II. SUPPOSED SYSTEM

This paper aims at applying the concept of system
connection to the design of a decentralized control system.
The following discussion is based on a supposed system
shown in Fig. 1. The system consists of four robots active
in 1 dimensional space. They are named robot 1, robot 2,
robot 3 and robot 4 respectively. The method in this study
is applicable for much complicated system in essence. We
however verify it with a simple and fundamental system.

Two robots make a pair and each pair grasps a load.
The pair of robot 1 and robot 2 grasps load 1 while the
pair of robot 3 and robot 4 grasps load 2. The distance
between the two pairs is held constant by control. An
operator gives the manipulation force to the load or
the robot. Operator force is detected by reaction force
observer(RFOB)[12] and assisted so that the operator
feels the load lighter.

III. CONCEPT AND EXPRESSION OF SYSTEM
CONNECTION

System connection is a concept for a network system
to express the information flow. This section describes the
expression of system connection as a preparation for this
study[3], [4], [5].

A. Information Representation in Connected System

The internal connection among subsystems is consid-
ered so as to observe the entire system. Here, a sub-
system stands for an individual robot in this study. We
apply graph theory to express the informational flow.
Fig. 2(a) shows the informational flow from subsystem
A to subsystem B and Fig. 2(b) shows the equivalent
representation.

A connection matrix C is defined against the decentral-
ized system with several subsystems. cij , (i, j) element
of C, is defined as follows:

cij =

⎧⎨
⎩

1, if there is connection from
jth subsystem to ith subsystem

0, otherwise.
(1)
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Fig. 3. Example of informationally connected system

The connection matrix for the example in Fig. 3 is
represented in Boolean algebra as shown in (2).

C =

⎡
⎢⎢⎢⎢⎣

AD BD CD DD ED

AR 0 1 0 0 0
BR 0 0 0 0 0
CR 0 0 0 1 1
DR 0 0 1 0 0
ER 0 1 0 0 0

⎤
⎥⎥⎥⎥⎦. (2)

The subscripts D and R denote a donator and a receptor
respectively. As shown in the example, matrix C de-
scribes the interaction among whole subsystems.

B. Reachability of Connected System

The connected system which forms a hierarchical struc-
ture is expressed using a reachability matrix.

The element ck
ij in Ck represents the direct path

from j to i with the length k. The sum of the power
of the connection matrix C1,C2,C3, · · · ,Ck yields a
reachability matrix MR.

MR =
n−1∑
k=1

Ck + I (3)

The reachability matrix represents the direct or indirect
connections among all subsystems. The elements of it
show whether information of subsystem j reaches to
subsystem i. The example of a reachability matrix in Fig.
3 is calculated as follows:

MR =

⎡
⎢⎢⎢⎢⎣

A B C D E

A 1 1 0 0 0
B 0 1 0 0 0
C 0 1 1 1 1
D 0 1 1 1 1
E 0 1 0 0 1

⎤
⎥⎥⎥⎥⎦. (4)

From this example, it is shown that information from
subsystem E can reach subsystem C and D.

C. Hierarchical Structure of Connected System

Hierarchical information of the connected system is
derived from the reachability matrix. The subsystem
which sends information comes to the higher layer in
a uniflow system. In the reachability matrix MR, the
elements of the column represent reachability from the
related subsystem to other subsystems. On the other hand,
the elements of the row represent the reachability from
other subsystems to the related subsystem. To derive
hierarchical information, the elements of the reachability
matrix is permutated in descending order based on the
sum of column elements. The permutation matrix P in the
example of Fig. 3 is shown in (5) and rows and columns
are permutated by (6).

P =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (5)

M ′
R = PMRP T (6)

Then the replaced reachability matrix M ′
R is obtained as

follows:

M ′
R =

⎡
⎢⎢⎢⎢⎣

B E C D A

B 1 0 0 0 0
E 1 1 0 0 0
C 1 1 1 1 0
D 1 1 1 1 0
A 1 0 0 0 1

⎤
⎥⎥⎥⎥⎦. (7)

Equation (7) shows that subsystem B sends its informa-
tion to all of the other subsystems. In other words, B is on
the highest layer. At the same time, all elements are 1 in
the submatrix formed by the row C, D and the column C,
D. It shows subsystem C and D send their information
to each other, hence they exist in the same layer. The
part where some subsystems exchange their information
mutually is defined as one layer. The hierarchical structure
is mathematically derived with the connection matrix in
this manner.

IV. FUNCTION-BASED CONTROLLER DESIGN

Robots often need to execute multiple actions in par-
allel as the operation becomes complicated. For example,
robots have to move after they grasp a load to achieve a
conveying operation. In short, the robots have to “move”
and “grasp” at the same time. Robots may be urged to
execute and switch a wide variety of actions especially
in a large scale system. However in previous design
methods, these actions were not clearly related to the
controllers. We have therefore proposed a method to
express these actions by the idea of “function.” The
controller design becomes explicit since this idea relates
the individual actions to controllers. The following section
briefly describes the method of function-based controller
design[13].
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A. Definition of Function

At first, the word “system role” is defined as follows:

[Definition 1] “System role” is a description on the
requirement from the user to the robot control system.

The designer has to decide the structure of the con-
troller so as to satisfy the system role. It is more conve-
nient to divide the system role into independent features
since a system role is an abstract expression. These
independent features are called “function.” In other words,
function is a unit to express the desired actions of the
robot. The idea of “function” is defined as follows[14]:

[Definition 2] “function” is the minimum component of a
system role for a control system. Conversely, the system
role is described as a combination of functions.

The examples of functions are shown in Table. I.
In this study, controllers of the decentralized system are

designed based on functions. This approach is different
from other conventional methods in the respect that the
controllers are not directly associated with individual
robots as shown in Fig. 4. Here, multiple controllers
give inputs to multiple robots. A method to associate
controllers with robots is indispensable to solve the
complicated relationship. Hence coordinate transforma-
tion is applied. Robot coordinates are transformed into
function coordinates, new coordinates based on functions.
Function-based controllers are designed on this coordinate
system.

B. Coordinate Transformation

The overview of the control system is shown in Fig.
5. The robot coordinates are transformed into function

TABLE I

FUNCTIONS FOR SUPPOSED SYSTEM

Type Role of function Based information

grasp apply grasp force difference of
to a load two robots

coupling control distance difference of
of two subsystems two robots

friction compensate friction sum of robots
compensation of entire system
inertia assist manipulation sum of robots
manipulation force from human
torque limit limit excessive input single data
velocity limit slow down single data

overspeed actuator
position limit avoid collisions single data or

difference of
two robots
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Fig. 5. Overview of control system
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Fig. 6. Overview of equivalent system

coordinates by a transformation matrix T . If the re-
spective rows in T are independent of each other, each
motion realized by the function-based controller is also
independent. Therefore it becomes possible to control as
if respective controllers are connected to decoupled virtual
objects as shown in Fig. 6. The behavior of robots realized
by each function-based controller is named “function
mode.” A function mode is the behavior of the virtual
object in the function coordinate. On the other hand, the
behavior of the entire system in robot coordinate space
shows up as superposition of function modes.

The coordinate transformation from robot coordinates
to function coordinates is shown in (8).

xf = Txr (8)

xf =
[

xf1 xf2 · · · xfN

]T

xr =
[

xr1 xr2 · · · xrM

]T

where xf shows the position in function coordinate. Sub-
script denote the function number. N is the total number
of mounted functions. xr shows the position of the robot.
Numbers in subscript denote the robot number. M is
the total number of robots. T shows the transformation
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matrix.
Velocity, acceleration, input force τ and external force

f are all transformed in the same way.

ẋf = T ẋr (9)

ẍf = T ẍr (10)

τ f = Tτ r (11)

ff = Tfr (12)

C. Function Priority

The control system should automatically choose the
functions to replace and the functions to execute when
excessive functions exist. Hence priority order is intro-
duced to functions.

The priority order is based on the following terms.

1) Mechanical limit
2) Safety
3) Importance of the task

Functions to reply to mechanical limits are the most im-
portant since mechanical limits are the absolute condition
of a control system. Most of the fault redress functions
such as torque limit function and velocity limit function
belong to this category. Functions to assure the safety
comes the next because safety is the priority for users.
Grasp function also has a high priority since it may be
dangerous to drop the grasped load in some situations.
Except these, function priority is given manually based
on the importance of the task.

V. DESIGN METHOD APPLYING SYSTEM
CONNECTION

The hierarchical structure imposes restrictions on the
system role. At the same time, the entire system is also
restricted when communication is uncertain. Furthermore,
various kinds of exceptions may restrict the operation
task. We propose a design method to decide the functions
under these restrictions. The concept of system connection
is applied to derive the layer structure of the decentralized
control system.

This section describes how to utilize the system connec-
tion for deciding the function order. Firstly, an example
of manipulating the system connection intentionally is
shown. Secondly, a unified method to decide the function
order is shown. Finally, conditions for the function is
introduced.

A. Manipulation of System Connection

A unilateral connection between subsystems frames the
hierarchy. When the system connection alters, the hier-
archical structure may also change. For example, Fig. 7
shows the alteration of the hierarchical structure when the
communication from robot 3 to robot 2 is disconnected.

The flow of system connection could be decided arbi-
trarily if the system has reliable communication. Then the
hierarchical structure is also arbitrarily decided. The re-
striction by this manipulated hierarchy could be positively
applied to the design of the function order.

As shown in Fig. 8, the subsystem will close its receptor
when any exceptions occur on it. The subsystem comes

1 2 3 4

1 2

3 4Communication 
blackout

1 2 3 4

1 2

3 4Communication 
blackout

Fig. 7. Hierarchical structure due to communication

1 2 1 2

receptor of robot_2 
blocked off

Fig. 8. Receptor block off in case of exceptions

to the upper layer if the receptor is closed. Then the
exception handling function on the subsystem acquires
the higher priority. In sum, subsystem under exceptions
can autonomously give up its cooperative activity and
handle the exception in the first priority. Furthermore, the
entire system can select the functions to carry on from
the function order. Through this method, it may become
possible for the decentralized system to autonomously
redesign its controller and its hierarchical structure when
any exceptions occur.

B. Function Order based on Hierarchy

The hierarchy makes restrictions on function planning
regardless if it is imposed arbitrarily. Therefore, function-
based controller design should be expanded to consider
these restrictions. The procedure to decide the function
order under the hierarchical structure is given below.

1) Derive hierarchical structure

Hierarchical structure is derived by a reachability
matrix M ′

R as shown in III-C. Every subsystem, every
robot in other words, belongs to individual layers.
Robot 1 and robot 2 belong to the first layer and
robot 3 and robot 4 belong to the second layer in the
example shown in Fig. 7.

2) Distribute functions to each layer

This step should be executed one by one on each
layer in the hierarchical order. The functions based on
the subsystems in the corresponding or higher layer
would belong to the corresponding layer. The function
would not belong to the layer if it is related to any
subsystems in the lower layer. The function based on
robot 1 or robot 2 belong to the first layer in the
example of Fig. 7. On the other hand, the function
based on robot 1, robot 2 and robot 3 would belong
to the second layer as shown in Fig. 9.

3) Choose active functions in each layer

This step should also be executed on each layer in the
hierarchical order. The DOF of each layer is the sum
DOF of robots in the layer. Functions are practicable
as long as the DOF of functions do not exceed the
DOF of the layer. Active functions are selected in the
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Fig. 9. Distribution of robots and functions to the layers

priority order in each layer. Priority order is given by
the conventional way as shown in IV-C.

C. Conditions for Function

A function has conditions to be executed. The condi-
tions are based on the state and the connection of the
related robots. There are two types of conditions: the
necessary condition and the arbitrary condition. The nec-
essary condition is for diagnosis of function practicability.
Each function has its inherent necessary conditions. For
example, a grasp function has two necessary conditions.
The output torque of related robots should be within
the torque limits and information of one of the related
robots should be reachable to all other related robots. The
arbitrary condition is for a task shift. The designer sets
conditions on the function so that the function works in
a certain situation.

The function works when these conditions are satisfied.
We define this state of functions as “active.” On the other
hand, function-based controllers do not give any inputs
when the state or the connection is out of the condition.
This state is named “inactive.”

VI. SIMULATION

A simulation of the supposed system was executed to
verify the validity of the proposed method. External force
Fext = 0.35 × sin(t) + 0.06 N was given to load 1.
Fig. 5 shows the control system under no exceptions. The
velocity limit of robot 2 was 2.0 m/s.

When the velocity of robot 2 went over the limit,
the velocity limit function became active and robot 2
closed its receptor. The reachability matrix then became
as follows:

M ′
R =

⎡
⎢⎢⎣

2 1 3 4
2 1 0 0 0
1 1 1 1 1
3 1 1 1 1
4 1 1 1 1

⎤
⎥⎥⎦. (13)

Velocity limit function acquired the highest priority
from the hierarchy order. Two grasp functions and cou-
pling function took back seats. Inertia manipulation func-
tion gave way since velocity limit function became active.

Velocity responses on Fig. 10 show that velocity of
robot 2 never overran the limit. Velocity of other robots
were also repressed in tune with the robot 2 so as to
achieve grasp and coupling functions. Force responses
show that the grasp function was executed without any
failure even when the velocity limit function became
active. Small but rapid fluctuation on the force response
occurred. It is due to the rapid input variation on the
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Fig. 10. When robot comes out of performance limit

velocity limit function. It implies that rapid or extreme
input variation may interfere with other functions in
practice although functions are conceptually independent
of each other. This influence is negligible if input varia-
tion is smooth. The function changeover therefore needs
consideration for the boundary condition.

VII. EXPERIMENT

We carried out an experiment on cooperative grasping
with two robot manipulators shown in Fig. 11. Each
manipulator has 1 DOF on a vertical rotation axis. Fig. 12
is an illustration of the experiment. Figs. 13 and 14 show
the position response and the force response respectively.
Sum and difference values of force response are shown
since they correspond to functions directly. The sum value
shows the human force and the difference value shows
the grasping force. Vertical dashed lines in the figures
denote the moment of function changeovers. Details are
described as follows in the order of events:

Fig. 11. Experimental system

free motion

grasp force

external force

Rigid coupling Rigid coupling

Grasp

Inertia manipulation

Grasp

t<5.3 5.3<t<8.0 t>8.0

free motion

grasp force

external force

Rigid coupling Rigid coupling

Grasp

Inertia manipulation

Grasp

t<5.3 5.3<t<8.0 t>8.0

Fig. 12. Steps on experiment

1) t < 5.3

Only rigid coupling function is applied. The rigid
coupling controller controls the robots so that the sum
of position values becomes 0. Hence the motion of two
robots becomes symmetric.
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Fig. 14. Force response on experiment

2) 5.3 < t < 8.0

A grasp function is added after the operator inserted
a load between the robots. The sum value of the force
response shows that the operator applied force while the
rigid coupling function controlled the robots to stay.
At the same time, the difference value of the force
response was almost constant due to the stable grasping
motion.

3) t > 8.0

The rigid coupling function is replaced by an in-
ertia manipulation function. The grasped load there-
fore moved passively when operator applied force. A
position limit function became active when robot 1
exceeded its position limit. The shaded areas show the
term of the position limit function activated. Robot 1
stayed on the position limit while the operator applied
approximately 2 Nm force. The grasping force hardly
altered when the position limit function replaced the
inertia manipulation function. The system connection
was manipulated and the reachability matrix shifted
from (14) to (15) when robot 1 exceeded its position
limit. As a result, robot 1 came to the higher layer and
the position limit function on robot 1 gained the first
priority. In sum, exception handling is achieved through
the manipulation of the system connection.

M ′
R =

[ 1 2
1 1 1
2 −1 1

]
(14)

M ′
R =

[ 1 2
1 1 0
2 −1 1

]
(15)

VIII. CONCLUSION

This paper described the design method of a decen-
tralized control system. We applied the idea of function
to achieve a simple and explicit controller design. A
hierarchy due to the communication flow imposed restric-
tions to the role of function-based control system. The
system connection was utilized to derive this hierarchical
structure. A unified method to design the control system
under these restrictions was proposed. Furthermore, these
restrictions were utilized intentionally for the autonomous
decision of functions. The validity of the proposed method
was shown by the experiment and the simulation.
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