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Abstract— This paper focuses on realization of high per-
formance motion control based on acceleration control.
A high sampling frequency is known to be effective for
improving the performance. Characteristics of acceleration
control are investigated and the relationship between the
performance and the sampling frequency of the system is
discussed. Based on these considerations, a new multirate
sampling method for the acceleration control system is
proposed. Disturbance observer is redesigned for application
in the multirate system. Stability analysis is performed
to verify the validity of the proposal. Feasibility of the
proposal and influence on the performance are also verified
by experimental results.

I. INTRODUCTION

Motion control is one of the most important elements
for industrial application of robot control. Due to recent
rapid progress of robotics, requirement of complicated
motion has been increasing. The more complicated the
motion becomes, the more robustness and responsibility
required. Acceleration control is the control that gives ac-
celeration reference and makes the system realize desired
acceleration. It enables acquisition of higher robustness
compared to position and velocity control. Acceleration
control also makes it possible to treat force and position
in the same dimension. For these reasons, acceleration
control is inevitable for motion control. Disturbance
observer[1], which estimates disturbance torque, has been
proposed to make the system to be a robust acceleration
control system. Shortening the sampling period is effec-
tive to widen the bandwidth in which acceleration control
is realized.

On the other hand, the sampling periods have lim-
itations relating to hardware performances even with
recent dramatical development of hardware. In general,
one constant sampling period is selected for input (u(t)),
output (y(t)), and controller (r(t)). Due to the limitations
of sampling periods, the sampling period for the system is
selected so as to be equal to the longest of those three. In
order to acquire better performance despite such hardware
limitations, methods for setting sampling periods indi-
vidually have been proposed. These methods are called
multirate sampling control[2]. The system involves more
than one sampling period by introducing this method.
Many studies have been performed on the system in which
output information cannot be acquired fast enough[3], [4].
The computer hard disk drives or the systems utilizing
visual camera are the examples.

An aim of this study is realization of acceleration
control in wide bandwidth. This paper focuses on the
relationship between the performance and the sampling

frequency of acceleration control. The needs of a higher
sampling frequency for output than for input are de-
scribed. From this point of view, this paper proposes
a new multirate sampling method with a shorter output
sampling period for improvement of acceleration control
performance. Disturbance observer is redesigned to fit
to the multirate system with a new definition of dis-
turbance torque. Stability analysis is performed to make
a comparison with single-rate control and to verify the
validity of the proposal. Experimental results support the
feasibility of the proposed method and improvement of
the performance. This study considers the system in the
1st dimension for simplicity.

II. ACCELERATION CONTROL

In this section, characteristics of acceleration control
are discussed with a focus on its sampling periods. Figs.
1 and 2 are the block diagrams of position control and
disturbance observer, respectively. Here, Kp denotes the
position gain, Kv denotes the velocity gain, τl denotes the
mechanical load, τ̂dis denotes the estimated disturbance
torque, Gdis denotes the cut-off frequency of disturbance
observer, Iref

a denotes the current reference, Kt denotes
the torque constant, J denotes the inertia, and the sub-
script n denotes the nominal value.

The total disturbance torque τdis contains mechanical
load τl, varied self-inertia torque ∆Jθ̈, and torque ripple
from motor ∆KtI

ref
a . The disturbance torque τdis is

represented as follows:

τdis = τl + ∆Jθ̈ − ∆KtI
ref
a . (1)

Disturbance torque is calculated by the equation below.

τdis = KtnIref
a − Jn

dω

dt
(2)

The first term KtnIref
a in (2) is based on input informa-

tion, and the second Jn
dω
dt is based on output information.

In other words, the first corresponds to the left side of dis-
turbance observer in Fig. 2, while the second corresponds
to the right side. Considering derivative calculation in the
second term, the estimated disturbance torque is obtained
through low-pass filter (LPF) as shown in the equation
below.

τ̂dis =
Gdis

s + Gdis
τdis (3)

Introduction of disturbance observer realizes acceleration
control and improves the robustness of the system. In fact,
the robustness is not assured in the frequency range higher
than the cut-off frequency of disturbance observer Gdis.

0-7803-8738-4/05/$20.00 ©2005 IEEE                              1629

IEEE ISIE 2005, June 20-23, 2005, Dubrovnik, Croatia



PV
KsK +

n
J

Js

1

s

1

l
τ

+

�

+
�

cmd
θ

res

θ

PD Controller
Motor

Fig. 1. Position Control

t
K

Js

1

tn

n

K

J

tn
K

1

tn
K sJ

n

dis

dis

Gs

G

+

+

+

+

+ −

−

l
τ

dis
τ̂

ω
ref

θ&&
ref

aI

cmp

a
I

a
I

Right side
Left side

Fig. 2. Disturbance Observer

Gdis can be set high by shortening a sampling period.
Here, the data actually acquired is angular information
from a rotary encoder. Thus, two times of derivative
calculation are performed in the right side. Since it is
usually difficult in experiments to perform derivative
calculation due to data noise, pseudo-derivative with LPF
is introduced. The velocity is calculated as follow:

ˆ̇
θ = s

Gv

s + Gv
θ (4)

where, Gv denotes the cut-off frequency of LPF.
It means that two LPFs are introduced into the right

side of disturbance observer to realize acceleration con-
trol, considering pseudo-derivative and disturbance ob-
server. The data acquired through LPF are delayed. For
this reason, acceleration information in the second term
of (2) calculated from encoder data is delayed compared
with the current reference in the first term. It is better
to reduce the delay by acquiring more output information
than to input delayed values in a fast rate. In other words,
it is preferable to acquire the output information faster
than the renewal of actuation input to minimize the delay.

III. MULTIRATE SAMPLING

A. Multirate Sampling Method for Acceleration Control

This section proposes a new multirate sampling method
for the acceleration control system. As described in IN-
TRODUCTION, multirate sampling methods to update
input faster than acquisition of output information have
been proposed. However, as mentioned in the previous
section, it is important in acceleration control systems to
acquire output information in a shorter sampling period
than renewal of actuation input. The authors, therefore,
propose a new multirate sampling method shown in Fig.
3, in which output information is acquired several times in
one input sampling period. The sampling period of input
Tu and that of the controller Tr are selected to satisfy the
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following equations.

Tu = nTy (5)

Tr = Ty (6)

where, Ty is the sampling period of output and n is the
integer number.

The limitations on sampling periods also support the
adequacy of the proposal. The limitation on the input
sampling period is generally more severe than that on the
output. In motor control, output information is mainly
acquired from encoders. Many studies have been per-
formed to increase the rate of acquisition of encoder
information[5]. A sampling period of acquisition can be
selected in proportion to the clock time of DSP. On the
other hand, a frequency of current input is limited by
performance of an amplifier or a frequency of PWM.
Therefore, the output sampling period can be set shorter
than the input in many cases. Consider the continuous-
time plant represented as follows:

ẋ(t) = Ax(t) + bu(t) (7)

y(t) = cx(t). (8)

Assuming that the sampling periods of output and input
are T and the input u(τ) also remains constant from t to
t + T , the discrete-time plant is represented as follows:

x[i + 1] = Adx[i] + bdu[i] (9)

y[i] = cdx[i] (10)

where, x[i] = x(iT ). Matrix Ad and vectors bd and cd

are given by

Ad = eAT , bd =
∫ T

0

eAτdτb, cd = c.

When a feedback control law is

u(t) = f(x(t)) (11)
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then, it is rewritten into the equation below in discrete-
time.

u[i] = f(x[i]) (12)

In this method, since the actuator input is updated only
when t = iTu (i :integer number) is satisfied, the feedback
control law (11) in the multirate system is given by the
following equation.

u[i, k] = u[i, 0] = f(x[i, 0]) (13)

This equation shows that the actuator input remains
constant from t = iTu to t = (i + 1)Tu. In the proposed
multirate method, therefore, the state-space equations
(9) and (10) can be rewritten into the equations below,
considering the relation of two sampling periods, Ty and
Tu.

x[i, k + 1]=Amx[i, k] + bmu[i, 0] : k �= n − 1 (14)

x[i + 1, 0]=A′
mx[i, n−1] + b′

mu[i, 0] : k = n−1 (15)

y[i, k]=cmx[i, k] (16)

where,

x[i, k] =x((i +
k

n
)Tu)=x(iTu + kTy) (k=0, · · · , n − 1)

Am = eATy , bm =
∫ Ty

0

eAτdτb, cm = c.

B. Disturbance Observer in Multirate System

Application of disturbance observer in the multirate
system is discussed in this section. In the proposed
multirate system, there are two values of input, desired
input value Im[i, k] and real input value Ireal

m [i, k]. The
former is calculated at an output sampling rate and the
latter is a real input value to the robot, which is renewed at
an input sampling rate. From (13), the following relation
is obtained.

Ireal
m [i, k] = Im[i, 0] (17)

1) Application of Conventional Disturbance Observer:
Disturbance torque defined in conventional disturbance
observer is represented by the following equation in the
multirate system.

τdis[i, k] = τl[i, k] + ∆Jθ̈[i, k] − ∆KtI
real
m [i, k] (18)

The estimated disturbance torque is acquired from the real
input value Ireal

a [i, k] and velocity.
2) Disturbance Observer for Multirate System: Equa-

tion (17) shows that there is a deviation between the
desired input value and the real input value when T �= iTu

is satisfied. Although the deviation is not considered in
the conventional disturbance observer, it may exert an
influence on the system. With a focus on that, the total
disturbance torque of the multirate system including the
influence of the deviation of the input value is defined as
the equation below.

τmdis[i, k]=τl[i, k] + ∆Jθ̈[i, k]−∆KtIm[i, k]
+ (Ktn+∆Kt)∆Im[i, k] (19)
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Fig. 5. Disturbance Observer for Multirate System

where,

∆Im[i, k] = Im[i, k] − Ireal
m [i, k].

In order to estimate and compensate τmdis, disturbance
observer in the multirate system is proposed as shown in
Fig. 5. The desired input value Ia[i, k] is utilized instead
of Ireal

a [i, k].

C. Application of the Proposed Method

The following advantages are expected for the proposed
multirate sampling method:

• Cut-off frequency can be set higher; and
• Information of disturbance can be acquired in a

shorter sampling period.
As a result, responsibility against disturbance is improved
and bandwidth of robust acceleration control is increased.
On the other hand, the absence of updating of compen-
sation input that occurs in the proposed method may
deteriorate the performance. The proposed disturbance
observer enables the system to estimate the disturbance
including the influence of the absence of updating. By
compensating τmdis, performance close to that achieved
with a short sampling period for both output and input
seems to be obtained.

IV. STABILITY ANALYSIS

Stability analysis of both single-rate control and the
proposed multirate control is performed to verify the
validity of the proposed method. The limit of the input
sampling period is assumed to be 0.1[msec] in this
analysis. The block diagram of the whole system for
analysis is shown in Fig. 6.

A. Modeling

A dynamic equation of a 1DOF manipulator in discrete-
time is shown in the following equation.⎡
⎣ θ[i + 1]

θ̇[i + 1]
τdis[i + 1]

⎤
⎦=

⎡
⎣ 1 T −T 2

2J

0 1 −T
J

0 0 1

⎤
⎦
⎡
⎣ θ[i]

θ̇[i]
τdis[i]

⎤
⎦+

⎡
⎣

T 2

2J
T
J
0

⎤
⎦τm[i] (20)

where, τm denotes the input torque and τdis denotes the
disturbance torque, which is assumed to be constant. PD
controller and disturbance observer are applied to the
system. Sampling periods Tu and Ty are set to be equal
in the single-rate control and set to satisfy Tu = nTy in
the multirate control.
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1) Single-rate Control: The state-space equation (20)
is expanded so as to include state variables w1[i], w2[i]
in disturbance observer, which is designed based on the
Gopinath’s method[6], and pseudo-derivative calculation,
which is utilized to acquire velocity from position data.
x[i], u[i], Ad, bd and cd in (9) are represented as
follows:

x[i] =
[

θ[i] θ̇[i] τdis[i] w1[i] w2[i]
]T

, u[i] = τm[i]

Ad =

⎡
⎢⎢⎢⎢⎣

1 T −T 2

2J 0 0
0 1 −T

J 0 0
0 0 1 0 0

b̂Gv 0 0 â b̂Gv(β−1)
1 0 0 0 β

⎤
⎥⎥⎥⎥⎦ , bd =

⎡
⎢⎢⎢⎢⎣

T 2

2J
T
J
0
ĵ
0

⎤
⎥⎥⎥⎥⎦

cd =
[

1 0 0 0 0
]

where,

â = α, ĵ = 1 − α, b̂ =
J

T
(1 − α)2, l1 =

J

T
(1 − α)

α = e−GdisT , β = e−GvT .

Velocity calculated with pseudo-derivative technique and
estimated disturbance torque are given by the following
equations.

ˆ̇
θ[i] = Gv(β − 1)w2[i] + Gvθ[i] (21)

τ̂dis[i] = w1[i] − l1
ˆ̇
θ[i] (22)

The control law is expressed by the following equations.

w[i+1] = Âw[i] + b̂θ[i] + ĵτm[i] (23)

x̂[i] = Ĉw[i] + d̂θ[i] (24)

τm[i] = Kd(r[i] − x̂[i]) (25)

where,

w[i] =
[
w1[i] w2[i]

]T
, x̂=

[
θ[i] θ̂[i] τ̂m[i]

]T

Â =
[
â b̂Gv(β−1)
0 β

]
, b̂ =

[
b̂Gv

1

]
, ĵ =

[
ĵ
0

]

Ĉ =

⎡
⎣0 0

0 Gv(β − 1)
1 −l1Gv(β − 1)

⎤
⎦ , d̂ =

⎡
⎣ 1

Gv

−l1Gv

⎤
⎦

Kd =
[
KpJn KvJn −1

]
,

and r[i] denotes the reference. The following equation
is obtained by transforming (23) and (24) into transfer
function expression.

x̂[i] = Kyθ[i] + Kuτm[i] (26)
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Fig. 7. Structure of System

The transfer functions of the system L(z) and controller
G1 in Fig. 7 are obtained as follows:

L(z) = c(zI − Ad)−1Bd (27)

G1(z) = (1 + KdKu)−1KdKy. (28)

2) Multirate Control: The multirate sampling method
and the disturbance observer proposed in the previous
section are applied to the system. Considering that there
are two values of the input torque, the state-space equation
is represented as follows:

x[i, k + 1] = Amx[i, k] + Bm

[
τ real
m [i, k]
τm[i, k]

]
(29)

y[i, k] = cmx[i, k] (30)

where,

Am = Ad, cm = cd, T = Ty

Bm =
[

T 2

2J
T
J 0 0 0

0 0 0 ĵ 0

]T

.

The input torques are given by the following equations.

τm[i, k]=Jn(−Kpθ[i, k]−Kv
ˆ̇
θ[i, k])+τ̂mdis[i, k](31)

τ real
m [i, k]= τm[i, 0] (32)

Equation (29) is the state-space equation described for
the shorter sampling period, the output sampling period.
It is necessary, however, to describe the system for the
longer sampling period for analysis. In order to rewrite
the system for the longer sampling period, the method
described in [7] is used. The state vectors are expanded
as follows:

xM [i]=

⎡
⎢⎢⎢⎣

x[i − 1, 1]
...

x[i − 1, n − 1]
x[i, 0]

⎤
⎥⎥⎥⎦ ,yM [i]=

⎡
⎢⎣

y[i, 0]
...

y[i, n − 1]

⎤
⎥⎦ .(33)

The expanded reference rM [i] and control signal τmM [i]
are defined in parallel to yM [i]. The state-space equations
of the expanded system are represented in the equations
below.

xM [i + 1] = AMx[i] + BMτmM [i] (34)

yM [i] = CM (U1xM [i + 1] + U2xM [i]) (35)

where,

U1=block diag (In, · · · , In,0)
U2=block diag (0, · · · ,0, In)

and the subscript M denotes the expanded matrices.
The control law also has to be rewritten for the longer
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TABLE I

SAMPLING PERIOD AND GAINS IN STABILITY ANALYSIS

Case Ty[msec] Tu[msec]
Single-rate(long) 0.1 0.1
Single-rate(short) 0.05 0.05

Multirate 0.05 0.1

sampling period. The expanded variable wM [i] is defined
in parallel to xM [i], while x̂M [i] is in parallel to yM [i].
The expanded control law is given by the following
equations.

wM[i+1]=ÂMwM [i] + B̂MyM [i] + ĴMτmM [i] (36)

x̂M[i]=ĈM(zŪ1+Ū2)wM[i]+D̂MyM[i] (37)

τmM[i]=KdM (rM [i]−x̂M [i]) (38)

where, Ū1 and Ū2 are defined in parallel to U1 and U2,
respectively. The following equation is obtained by trans-
forming (36) and (37) into transfer function expression.

x̂M[i]=KyMyM[i]+KuMτmM[i] (39)

The transfer functions of the expanded system L(z) and
controller G1(z) are obtained as follows:

L(z) = CM (zU1 + U2)(zI − AM )−1BM (40)

G1(z) = (1 + KdMKuM )−1KdMKyM . (41)

B. Stability Analysis

Nyquist criterion is obtained by drawing Nyquist dia-
gram of det[I + L(z)G1(z)]− 1. Nyquist diagram of the
system in the previous section is shown in Fig. 8. Tables I
and II show the sampling periods and the gains used in the
analysis. This analysis is performed with the assumption
that the limit of the input sampling period is 0.1[msec].
The result of the proposed method shows improvement
of stability compared with single-rate control with T =
0.1[msec], although it does not come up with the result for
T = 0.05[msec]. The result indicates that shortening the
output sampling period is effective to improve stability,
especially in case that there are limitations on the input
sampling period. As mentioned in III-A, limitation on the
input sampling frequency is usually more severe than that
on output. It means that the proposed method is effective
for general systems.

Although the result of the stability analysis seems to
indicate that the shorter sampling periods are, the higher
the stability becomes, the problems involved in shortening
the output sampling period are easily conceived. One

TABLE II

CONTROL PARAMETERS

Kp Position Gain [rad/sec] 900
Kv Velocity Gain [rad/sec] 60
Gv Cut-off Frequency of Pseudo-derivative [rad/sec] 13000

Gdis Cut-off Frequency of Disturbance Observer[rad/sec] 7000

Fig. 9. Experimental Equipment

problem is that the shorter output sampling requires
more computations. Another is the problem with encoder
resolution. Encoder resolution in acceleration dimension
Ra is calculated as follows:

Ra =
2π

PeT 2
(42)

where, Pe denotes the number of pulses of an encoder.
As shown in (42), encoder resolution in acceleration
dimension relates to the sampling period. In order to
acquire the same resolution in acceleration dimension in
a shorter sampling period, the number of pulses of an
encoder must be higher. Although the quantization error
is not considered in the stability analysis, it is necessary
to consider the error for practical application. In order
to verify the feasibility and the influence on performance
of the proposed method in the system with quantization
error, the experiments are performed in the next section.

V. EXPERIMENTS

Experimental results of the proposed multirate sam-
pling method are demonstrated and compared with those
of the single-rate sampling control in this section.

A. Experimental Setup

Experiments are performed with the robot shown in
Fig. 9. The number of pulses of the encoder is 81, 000
[pulse/rev] and it is multiplied by four in counter board
to improve resolution.

B. Experimental Results

In this experiment, 0.05[Nm] torque disturbance is
added as step input from t=7.0[sec] to t=7.5[sec] and t=
10.5[sec] to t=11.0[sec] while the manipulator is moved
as a sine wave. Fig. 10 shows the position command
and the response. Shaded areas show the response with
the disturbance. The experiments are performed under
assumption that limitation of the input sampling period is
0.3[msec]. In order to verify the effects of shortening the
output sampling period and of the proposed disturbance
observer, four patterns of experiments listed below are
performed.
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TABLE III

CONTROL PARAMETERS (EXPERIMENT)

Ty[msec] Tu[msec] Gv Gdis

Single-rate (T =0.3) 0.3 0.3 1900 650
Single-rate (T =0.15) 0.15 0.15 2500 1800

Multirate (τdis) 0.1 0.3 2500 1800
Multirate (τmdis) 0.1 0.3 2500 1800
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• Single-rate with a short sampling period
• Single-rate with a long sampling period
• Multirate using conventional disturbance observer
• Multirate using proposed disturbance observer

TABLE III presents the sampling period and the gains
in each experiment. Figs. 11 to 13 show the position
error when the disturbance torque is added. Fig. 11 is the
comparison between single-rate and the multirate controls
with the same input period. In single-rate control, the
manipulator oscillates and becomes unstable with Gdis

larger than 700[rad/sec]. On the other hand, in the multi-
rate control, Gdis can be set much higher. The influence of
the disturbance is greatly reduced and convergence is also
improved. In order to show the advantage of shortening
the output sampling period more clearly, the result of
the multirate control is compared with that of single-
rate control with a shorter sampling period in Fig. 12.
Note that the sampling period of the single-rate control
is shorter than the assumed limitation. Although Gdis

can be set as in case of the multirate control, oscillation
is confirmed, which is not confirmed in the multirate
control. The result indicates that better performance can
be acquired even with a longer input sampling period
by shortening an output sampling period. Therefore, the
sampling period of output has a priority over that of input
in acceleration control.

Fig. 13 compares the proposed disturbance observer
with the conventional disturbance observer. Although both
of them show almost the same response to the disturbance,
they differ in the response without the disturbance. In the
case of conventional disturbance observer, there is an error
in a stationary state. The result shows superiority of the
proposed disturbance observer.

VI. CONCLUSIONS

This paper showed the priority of the sampling period
of output over that of input in acceleration control. From
this point of view, the multirate sampling method for the
acceleration control system was proposed. Effectiveness
of the proposal was confirmed both in terms of stability
and performance. Nyquist diagram shows improvement of
stability by applying the proposed method. Considering
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Fig. 12. Comparison of Single-rate and Multirate 2
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Fig. 13. Comparison of Disturbance Observer

all the experimental results, the merit of shortening the
output sampling period is that better performance can
be acquired even with a longer input sampling period.
The proposed disturbance observer enables the system to
perform as if it has a short sampling period not only for
the output but also the input.
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