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In an electron capture process by a nucleus, emitted neutrinos are monoenergetic. By making use of this, we
study how to get a completely monoenergetic neutrino beam in a long baseline experiment. This is based on [1]

Numerous observations on neutrinos from the
sun[2], the atmosphere[3], reactors[4], and the
accelerator[b] suggest that neutrinos are mas-
sive and hence there is mixing in the lepton
sector. To determine these mixing parameters
much more precisely, there were several ideas
proposed for next generation neutrino oscillation
experiments. [6—9]

For a precision measurement, it is obviously
better to have an experiment using neutrinos
with controllable and precisely known energy. To
achieve this we consider making use of a nucleus
which absorbs an electron and emits a neutrino:

(Z,A)+e — (Z-1,A) + ve, (1)

where Z is the electric charge of the mother nu-
cleus and A is its mass number. In this case
neutrinos have a line spectrum and their energy
is precisely known. Therefore by accelerating
the mother nuclei appropriately with the Lorenz
boost factor «,,, we can control the neutrino en-
ergy and make use of monoenergetic neutrinos in
an oscillation experiment.

We examine the theoretical aspects of this idea
in detail.

Case (i) Purely monoenergetic neutrinos:

As one of the first candidates we study here

1198n. Since it decays into the excited state of

19Tn, emitted neutrino energy in the rest frame
of Sn, Qsn = Asn — EE[?] is 267 keV.
Then the appropriate acceleration of *19Sn to

get the oscillation maximum energy is
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Furthermore there is an interesting feature for
sufficiently high ~,,. Since v, is extremely high,
almost all neutrinos go through the detector.
Therefore we have a wide range of neutrino en-
ergies and by measuring the interaction point
the neutrino energy can be “measured” precisely.
The energy of a neutrino, which is detected at a
distance R from the center of the beam, is easily
calculated (in the large -, limit):

29m Q

BAR) = e

L' = L/vm. (3)

The neutrino energy range is determined by
eq.(3) ,
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1+D72/L'2 < B, < 29,,Q, (4)

where D is the “fiducial” detector diameter. For
example, if D = L', then half of the emitted neu-
trinos hit the detector and their energy range is
Ym@ < E, < 27v,Q. The range of the oscilla-
tion phase varies from 7/3 to 27/3, from which
we can explore the oscillation shape around the
oscillation maximum very precisely.

For the position resolution R(§R? = 2RIR),
the energy resolution is given by
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In the rest frame of the mother nucleus, monoen-
ergetic neutrinos are emitted isotropically. In a
solid angle df) in the rest frame, the number of
neutrinos is distributed uniformly. The solid an-



gle d) = 27 sin 0df corresponds to

47 dR?
(1+ R2/L2)* L?
and in terms of the neutrino energy

40 = 2msin6d0 = = dE, (7)
Tm@

Thus we have a neutrino beam uniformly dis-
tributed in its energy. As a detector can measure
the energy and the interaction point, by com-
bining these two measurement, we can determine
the neutrino energy very precisely. This specific
feature in a beta-capture beam arises from the
fact that neutrinos are monoenergetic in the rest
frame of the mother nucleus.

Another candidate for this perpose is }dIn .

27 sin0df = (6)

case (i) Monoenergetic neutrino and Continu-
ous energy neutrino:

Next we consider the nucleus 35Cr. It decays
into an excited state of 33V and Qg is 1233
KeV. Since Qc; is larger than 2m., twice of the
electron mass, it can not only capture an electron
but also emit a positron:

3Cr+e” —os VA, &53Cr =38 Vet +v.. (8)

Assuming that there are 2 K shell electrons in
the mother nucleus 33Cr, we can conclude that
electron capture process is dominant (98.0%) and
hence a neutrino beam with well-controlled en-
ergy is available.

Since Qc¢; is higher than in the previous case,
the appropriate y¢, is lower and hence the quality
factor is worse than in the previous case. There-
fore, we need to store much more 35Cr nuclei than
119Sn. Assuming the oscillation maximum energy
at the detector,
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which means that the neutrinos at the detector
are completely monoenergetic as can be seen from
eq.(4). There is essentially no position depen-
dence of neutrino energy at the detector.
Therefore we cannot explore the energy de-
pendence of the oscillation without changing the
beam energy as previously discussed. However,

this problem may be solved by the use of contin-
uous neutrino associated with positron emission.
We can control the boost factor v, very well and
hence the highest neutrino energy at a detector is
completely determined by it.

Other candidates are 5F | 1lSn | and
3G+ 7] .

We have studied how the neutrino energy in
oscillation experiments can be controlled better
than with other ideas that are currently dis-
cussed. By electron capture, a nucleus emits a
monoenergetic neutrino. Therefore by accelerat-
ing the mother nuclei, we can get a well-controlled
neutrino beam.
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