Theoretical study of stable helium complex HeBeO

(Saitama Univ.¹, Hokkaido Univ.², JAEA³) <u>Haruki Motegi¹, Akira Kakizaki¹, Toshiyuki Takayanagi¹,</u> Yuriko Taketsugu², Tetsuya Taketsugu², and Motoyuki Shiga³

Introduction

OHelium molecule? — Stable helium complex: HeBeO —

• Ionic molecule (Binding Energy : $D_e = 50 \sim 100$ kcal/mol) ex) He₂⁺, HeNe⁺, HeH⁺, HeNa⁺, etc...

• van der Waals molecule ($D_e = 0.01 \sim 0.30$ kcal/mol) ex) He-He, He-I₂, He-HCN, etc...

Are there any neutral molecules binding helium strongly??

O Quantum wave packet calculations

There are several theoretical predictions of neutral helium molecule!!

HeBeO is one of the most stable neutral helium complex predicted by Frenking et al. [Chem. Phys. Lett., **132**, 330 (1986)]

Gond character of HeBeO

- Binding energy ranks with hydrogen bond!!
- Charge induce-dipole interaction
- Interaction between He 1s orbital and empty σ orbital of BeO

[Aim of study] \implies To answer following questions.

- □ Is HeBeO observable molecule?
 - To investigate vibrational states of HeBeO (anharmonic calc.)
- □ Is HeBeO selectively produced in an ultra cold helium cluster?
- Can several helium atoms attach to BeO in a helium cluster?

Minimum structure of HeBeO at the CASPT2/aug-cc-pVQZ level of theory.

State density profile calculated from threedimensional wave packet calculations.

Method	V ₁ Be-O	${f V}_2$ bending	${f V}_3$ He-Be
CASPT2/aug-cc-pVQZ	1573	187	499
Quantum dynamics	1564 (100)-(000)	356 (020)-(000)	424 (001)-(000)

Wave function densities of the HeBeO molecule.

R/a

Comparison of vibrational frequencies of HeBeO between the ab initio harmonic approximation and quantum dynamics

*Vibrational quantum numbers ($v_1 v_2 v_3$) mean BeO stretching, bending , He-Be stretching, respectively.

resonance state and corresponds to

- HeBeO has 14 vibrational bound states below the He + BeO dissociation level
- The lifetime of the resonance state located at 2.642 kcal/mol is about 2.0 ps
- Anharmonicity is large in He–Be vibrational stretching mode

 \rightarrow To investigate solvation structures in the He_nBeO cluster system.

Computational Method

- Development of 3–D PES for HeBeO
 - \Rightarrow level : CASPT2/aug-cc-pVQZ(Be=cc-pVQZ)
- Calculate vibrational energy levels of HeBeO
 - \Rightarrow Wave packet calculation
- Simulations of HeBeO in ultra cold helium cluster \Rightarrow Path-integral molecular dynamics simulations $n_{beads} = 500$ T = 2 K_ step = 10,000,000 (~12 ps) 🔳

1 Potential energy curves as a function of the distance between He and the center of mass of BeO for determining the appropriate ab initio level.

Results and Discussion

the state density profile.

HeBeO has several bound states!!

O Path-integral molecular dynamics simulations

HeBeO has nearly linear structures

• The helium motion has a large amplitude due to quantum nature

Three-dimensional perspective plot of the nuclear distribution for HeBeO from PIMD simulation.

- Only one helium atom is strongly bound to BeO molecule in each size of cluster
- HeBeO is solvated by other helium atoms
- The first solvation shell of the HeBeO has an anisotropic behavior

O Potential energy surface for HeBeO

- Helium binding energy is 5.25 kcal/mol
- BeO distance is not affected by He-Be distance
- Attractive region is relatively narrow

Two-dimensional counter plots of the HeBeO potential energy surface at the CASPT2/aug-cc-pVQZ level of theory.

deg.

Density distribution maps of helium atoms around the BeO molecule calculated by PIMD simulations.

 The first solvation shell is saturated by 12-14 helium atoms

HeBeO can be generated in helium clusters!!

Conclusions and Future Directions

- HeBeO has several bound states below the lowest dissociation limit
- HeBeO can be presumably generated in large helium clusters
- Extension to other molecules containing helium atom (HeBeNH, HeNiCO etc...)