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Most groundwater modeling efforts are aimed at understanding the effect of a proposed action on the near by
groundwater field. A groundwater field is usually characterized by its hydraulic pressure distribution. Thus, accurate
prediction of hydraulic pressure is indispensable. Depending on the available prior knowledge and physical principles
that relates the proposed action and the resulting hydraulic pressure change, White-box and Black-box modeling
approaches have been traditionally used.

The common approach to modeling of hydraulic pressure change is to use White-box models that involve applying
physical principles and results from full-scale experiments. Numerical models, because they provide the most versatile
approach to hydraulic pressure prediction, have outclassed all other White-box models. However, numerical capability
for representing natural real world complexity underscores the uncertainty of model input values (e.g. aquifer
parameters, boundary conditions, initial conditions etc) and the corresponding hydraulic pressure predictions. It is
time consuming and financially demanding to make clear these vital inputs.

Since it is usually difficult to fully understand these vital inputs to numerical models, alternative Black-box
approaches for hydraulic pressure prediction have been used. These Black-box modeling approaches do not need any
prior knowledge or theoretical consideration about the relationship between the proposed action and the resulting
hydraulic pressure change. Due to their ability to handle highly non-linear relationships artificial neural network
(ANN) and adaptive neuro-fuzzy inference system (ANFIS) are currently the most popular among the Black-box
models. A major implementation advantage of ANN or ANFIS approach is that they typically use input variables that
are fundamentally more accessible and less uncertain (e.g., weather conditions, inter-borehole and/or intra-borehole
hydraulic pressure) than input parameters (e.g., hydraulic conductivity, storage coefficient and areal recharge) required
by White-box models. A major disadvantage of ANN or ANFIS model is that they can only directly predict hydraulic
pressures at locations for which they have been developed with a corresponding set of field data.

ANN and ANFIS are intolerant to situations where prediction involves out of training range values. Thus, for
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prediction of hydraulic pressure change caused by an action that resulted in new hydraulic pressure field with time,
these Black-box models would seldom bring about the required accuracy.

Seeking to circumvent parameter uncertainty and simplifying mathematical and physical assumptions inherent to
White-box models, and incapability to predict beyond what has been observed in the Black-box models; in this study
two alternative Grey-box modeling approaches are proposed. These two Grey-box modeling approaches are formed by
combining the finite element method (a White-box model) with either a feedforward ANN or ANFIS. Both ANN and
ANFIS are trained by the backpropagation algorithm. The general methodology for these Grey-box approaches can be
summarized in three steps:

Step 1: Develop a simplified finite element modeling tool capable of predicting hydraulic pressure variation in
response to a proposed action. And by assigning rough aquifer parameters predict a number of hydraulic pressure
trends.

Step 2: Using the approximate hydraulic pressure trends obtained in step 1 as inputs ‘Train” ANN or ANFIS by
minimizing the residual between these inputs and the corresponding observed hydraulic pressure.

Step 3: Combine the finite element method and the trained ANN or ANFIS in parallel, i.e. using the finite element
model approximated hydraulic pressures as inputs to the trained soft-computing technique the final inferred hydraulic
pressure is obtained.

These Grey-box models were applied to analyze the hydraulic pressure change caused by construction of two
vertical shafts at Mizunami underground research laboratory, in Mizunami, central Japan. The results obtained were

indicators of a successful practical application of the proposed methodology.
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