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The identification or recognition of material of real object is a fundamental aspect of noncontact visual perception.
Material recognition capability in open eyes helps a person to identify the correct object among various similar types
of candidate objects. For example, a person can easily distinguish between paper made cups and ceramic cups in
open eyes. By inspired from the human natural capability, material recognition for robot vision application gained
our attention. If we want to develop a service robot which will work in home environment by interacting with human
users, we need to build its vision system close to the human vision system. In the real world, a person utilizes several
attributes to specify a particular object certainly. Consequently, to establish proper interaction between users and
robots, robots should have ability to understand and extract those attributes from objects like shape, size, color etc.
Here we are particularly interested in object’s material, because it is also often used to specify target objects by
users. It could be possible to obtain material information of an object or alternatively its surface’s micropartical size
information from the optical signal reflected by its surface. To enhance the discriminating feature among various
types of surfaces we use larger wavelength incident light in our proposed method.

Initially we investigate whether the longer wavelength light reflection from object's surface gives information
about the surface micro-particle size or material. The amount of light reflected by an object, and how it is reflected,
are highly dependent upon the smoothness or texture of the surface. When surface imperfections are smaller than the
wavelength of the incident light (as in the case of a mirror), virtually all of the light is reflected equally in a specific
direction. However, in the real world, most objects have convoluted surfaces that exhibit a diffuse reflection, with
the incident light being reflected in all directions. The light reflects off from surfaces in a predictable manner in
accordance with the law of reflection. If the light rays fall upon a smooth surface, then the light rays reflect and remain
concentrated in a bundle upon leaving the surface. On the other hand, if the surface is microscopically rough, the
light rays reflect and diffuse in many different directions. This research also explores how light waves are reflected

by smooth and rough surfaces. The infrared light has wavelength greater than the microscopic surface detail, so that




the surface-laser interaction causes diffraction and generates a pattern which is specific to each material surface. This
variation is increased by infrared character of laser which penetrates into subsurface and causes diffuse reflection
again. This differentiation would not be possible under the shorter wavelength visible light. Our non-contact active
vision technique utilizes the local surface geometry of objects and the longer wavelength scattering light reflected
from their surface. After investigating the properties of microstructure of the material surface, the system classifies
various regular shape household objects into several material categories according to the characteristic of the micro
particles that belong to the surface of each object. We use a time-of-flight range sensor for this active vision technique.

However, the material identification from a free-form 3D object is a fundamental problem in computer vision. There
are several house hold 3D objects which have very complex shape. In this stage our objective is to estimate 3D free-
form real object surface characteristics to identify the material based on surface reflectance analysis. To investigate
the surface micro-structural detail, we use a modified Torrence-Sparrow light reflection model. The surface roughness
parameter, which represents the microstructure characteristics of object surface and can be an indicator of object
material, is determined from the reflection model. We also have demonstrated the feasibility of the method through
experiments.

Moreover, we propose another method that analyzes the reflection pattern of infrared light to estimate the object
material according to the degree of surface smoothness (or roughness). It measures reflection intensity patterns with
respect to surface orientation for various material objects. Then it classifies these patterns by Random Forest (RF)
classifier to identify the candidate of material of reflected surface. We demonstrate the efficiency of the method
through experiments by using several household objects under normal illuminating condition.

Our previous method needs only a time-of-flight range sensor to identify the material of target object. Although it
produced promising results (72% accuracy), the method needed long processing time (average 23 seconds per object)
and was able to handle only with homogeneous surface objects such as single color objects. The range data from the
3D range sensor are very noisy. To solve this problem, we used data for a large number of points and applied some
complicated smoothing filter to each point of surface. Thus the method needed long processing time. In addition,
we assumed that all patches or segments on the object surface have the same color properties. Thus, the method can
work only for single color objects. The SwissRanger (ToF range sensor) camera uses infrared light to illuminate the
scene and has a visible light elimination filter in front of its CCD array. However, we empirically know that reflection
intensity values are smaller for darker objects. We examined this issue experimentally and found that the normalized
reflection patterns are similar for the same material whatever their color.

This allows our previous method to recognize objects material regardless of its color if it is a single color and
uniform brightness object. However, if it has different color parts, the method cannot work. We have solved these
issues and present a modified version of our previous method that can work for multicolor objects in short processing
time. Also, in our research we re-modify the Torrance-Sparrow model to represent distant independent surface
reflectance patterns. To do so, we have given up our policy of using only the SwissRanger and use a color camera
with the range sensor. We set the camera so that we can obtain gray-scale values of corresponding points in the range
sensor data. From experiments, we found that the reflection intensity of a point is approximately proportional to the
gray level of the point in gray-scale image. Thus, we have devised two methods. One is the normalization method. We
normalize IR intensity values by dividing them by the gray levels of corresponding points.

The second is the equal gray-level method. We apply gray-level segmentation to the camera image and choose the
largest region (or a set of regions with similar gray scale level whose combined area is largest). We collect the data

only from those region(s) for recognition. The normalized method needs the precise positional calibration between



the range sensor and the gray-scale camera. In addition, gray levels of the camera cannot be so stable. The equal gray-
level method is simple and practical as long as the method can find enough data points. Therefore, we have adopted
the same gray-scale method.

Although the SwissRanger has several built-in noise removal scheme, but the data of SwissRanger 3D camera are
still noisy. There are two types of noise, saturation noise and random noise. The random noise occurs for all types of
surfaces. Although it is hard to eliminate it completely, we input 20 range images for a scene, and filtering them to
reduce the saturation noise.

After removing saturation noise, we have 20 almost saturation noise free range images. Then we compute the
median at each pixel location for these 20 images to obtain the range image with more reduced random noise. We
construct the reflection pattern from this image. In our previous method, we generate surface patches for almost all
pixels. However, since the noise is much reduced, we do not need to use a large number of pixel data to estimate the
reflection pattern. Here we experimentally determine to use 20 pixels.

To select these 20 pixels, first we cluster all pixels into 20 groups according to the pixel intensity. Then from each
group we select the highest intensity pixel. We generate a surface patch from the selected pixels and use their 5x5
neighbors to estimate the reflection pattern.

To perform experiments, we arranged 50 household objects of various sizes, shapes and colors. They included
multicolor objects. These objects were divided into 5 material groups (plastic, paper, wood, fabric and ceramic), 10
objects in each group. In our reflection pattern classification experiment, among 50 experimental objects we took
3 objects from each class to train the classifier. When obtaining the reflection patterns in the training stage, we put
each object about 40 cm in front of the range camera. We performed recognition experiment 5 times for each rest of
the objects for test. Each time we randomly changed the orientation of the target object with respect to the viewing
direction. The recognition rate of the method is 71.5% and the total time required by the system to recognize each
object is 2 seconds. Our previous method was not able to recognize ceramic because ceramic objects yield a large
amount of saturation noise. As we have also devised a saturation noise removal technique, our modified method can
identify ceramic. It can also work for multicolor objects. In such harder conditions, the modified system can show
almost equivalent recognition results compared to the results of the initial approach in simple conditions. Although
the figure itself may not be so high, the recognition rate of the method is reasonable because surface roughness of
objects actually varies much even for the same material objects. However, this level of recognition can be useful in the
interactive object recognition framework. In addition, the processing time has been much reduced. Since we input 20
images by the sensor to reduce noise, we need at least about a second to input them. We need to improve the sensor to
further reduce the recognition time.

We are now working on an interactive robot vision system in which the robot uses this material recognition method
to respond users’ utterances referring to material. Although we will work to further shorten the processing time,
the current level of processing time may not be a major problem in this application, since the robot can execute this
process background before actual interaction about material.

As the final improvement, we propose and implement an integration technique of other features like shape and color
with the near-infrared reflection pattern. Experimental results (79% accuracy) show that our system performs material
recognition reasonably well, outperforming our previous material recognition systems.

We demonstrate the efficiency of this method through several experiments utilizing 50 house hold objects including
single and multi color objects in uncontrolled lighting condition.

Our main objective of this research work is to introduce material information about house hold objects along



with color, shape, and other attributes in order to more efficiently recognize target objects in the interactive object
recognition framework. In this research, we first proposed a basic method of recognizing object material by using a
time-of-flight range sensor. Then, we modified the method to work for various objects in less processing time. We
implemented the method on a robot to develop an interactive object recognition system. Experimental results using the
robot system proved the usefulness of the method. The proposed method can be an important techqnique in developing

home service robots.
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