@phdthesis{oai:sucra.repo.nii.ac.jp:00010328, author = {下田, 優弥}, month = {}, note = {x, 113 p., Clusters of galaxies are the largest virialized structures in the universe, and the intracluster medium (ICM) keeps the information since the early universe. Especially, the gravitationally bounded thermal hot plasmas have been enriched with metals (such as Ne, Mg, Si, S, Fe, Ni) having been synthesized in stars and supernovae in the member galaxies. This study conducts a systematic analysis of the metal abundances in the ICM of 62 clusters of galaxies (0.02 < z < 1.16) with the Japanese X-ray observatory Suzaku. Suzaku provides a good sensitivity for the atomic lines in the X-ray spectra with the good line spread function and low particle background level. All clusters of galaxies in the presented sample are also observed with Chandra, the X-ray observatory developed and launched by the United States. Employing the excellent spatial resolution capability of the Chandra, contaminant sources are identified and subtracted from the field of view of Suzaku. Thus carefully analyzed X-ray spectra revealed that iron abundance in the ICM are almost constant value, ~ 0.5 solar abundance. On the other hand, α elements (such as Ne, Mg, Si, and S) abundance range 0.4 < α elements abundance < 1.0. Since ~ 0.3 solar abundance of each elements is realized in nearby ICMs, this discrepancy suggests that iron family elements and α elements have enriched in different paths. By comparison of various correlation study between the metal abundances and parameters thought to trace the age of clusters of galaxies, such as redshift, temperature, total gravitational mass, Abell's richness classes, Bautz-Morgan type, and galaxy luminosity, it is shown that α elements abundance increase as a function of the size of the system (age of the system). The large end system among the presented sample shows two times larger α elements abundance than that of the small end of the sample. On the other hand, iron abundance shows negative trend toward larger systems by ~ 30%. In addition to those, the status resolved metal abundances study requires significant discrepancy between relaxed (cool core/AGN) and merging (non-cool core/non-AGN) type cluster of galaxies. According to the observed results, the metal enrichment history is to be concluded as follows: SN Ia products enriched the ICM mostly at z > 1 for the relaxed clusters and exhibit almost constant metal abundance of ZFe ~ 0.5, while those of the merging clusters increases even in z < 1 because of the possible continuous starburst activity; The large abundance of SN II are observed in the larger clusters. It suggests that the product elements escape from shallower potentials of smaller systems; The redshift dependence of SN II products are not clearly observed because of our selection bias. Above scenario explains well the observed results that the α elements abundance are proportional to the size of clusters while Fe abundance are almost constant value according to the size of systems., 1 INTRODUCTION 1 2 REVIW OF METAL ENRICHMENT HISTORY 3 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Optical Properties of Clusters of Galaxies . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.1 Velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.2 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.3 Richness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Properties of Intracluster Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3.1 X-ray emission mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3.2 Hydrostatic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.3 β-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.4 The origin of metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.5 Metal transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.6 Metals in the ICM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.7 Observational studies of Fe abundance evolution . . . . . . . . . . . . . . . . 11 2.3.8 Theorical studies of Fe abundance evolution . . . . . . . . . . . . . . . . . . . 13 3 INSTRUMENTATION 14 3.1 Suzaku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Mission description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 X-Ray Telescopes (XRTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.3 X-ray Imaging Spectrometer (XIS) . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.4 XIS backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Chandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Mission description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 High Resolution Mirror Assembly (HRMA) . . . . . . . . . . . . . . . . . . . 23 3.2.3 Advanced CCD Imaging Spectrometer (ACIS) . . . . . . . . . . . . . . . . . 25 3.2.4 ACIS backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 OBSERVATION AND DATA REDUCTION 28 4.1 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.1 Selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.2 Classification of targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.1 Suzaku archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 Chandra archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Response Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.4 X-Ray Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.5 Estimation of Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5.1 Non-X-ray background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5.2 Point sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5.3 Cosmic X-ray background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5.4 Galactic foreground emission . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5.5 Spectral analysis of background region . . . . . . . . . . . . . . . . . . . . . . 33 4.6 Radio Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.7 Optical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.7.1 Sloan Digital Sky Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.7.2 Calculation of luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 SPECTRAL ANALYSIS AND RESULTS 37 5.1 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.1 Background and contamination estimation . . . . . . . . . . . . . . . . . . . . 40 5.2.2 Model dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.3 Radial dependence of metal abundances . . . . . . . . . . . . . . . . . . . . . 41 5.3 Temperature Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.4 Metal Abundance Evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.5 Status Resolved Metal Abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.6 Status Resolved Metal Abundance Evolutions . . . . . . . . . . . . . . . . . . . . . . 49 5.7 Number Ratio of Supernovae Ia and cc . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.7.1 Metal abundance ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.7.2 Number ratio of supernovae Ia and cc . . . . . . . . . . . . . . . . . . . . . . 52 6 DISCUSSION 58 6.1 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Iron Evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.1 Redshift evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.2 Age evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 Silicon Evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.1 Redshift evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.2 Age evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4 Contributions from SNe Ia and SNe cc . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.5 Implications for Metal Enrichment History . . . . . . . . . . . . . . . . . . . . . . . . 62 7 CONCLUSION 64 A Individual Clusters 65 A.1 X-Ray Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.2 X-Ray Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A.3 Color-Magnitude Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.4 Number Ratio of Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 B Lists of Cluster Parameters 83 C Observation Logs 93, 主指導教員 : 田代信, text, application/pdf}, school = {埼玉大学}, title = {X-ray Study of Heavy Element Evolution in Hot Plasmas Associated with Clusters of Galaxies}, year = {2014}, yomi = {シモダ, ユウヤ} }