{"created":"2023-05-15T15:29:36.822779+00:00","id":19379,"links":{},"metadata":{"_buckets":{"deposit":"f6e2af98-a51a-470a-a673-65902810b584"},"_deposit":{"created_by":15,"id":"19379","owners":[15],"pid":{"revision_id":0,"type":"depid","value":"19379"},"status":"published"},"_oai":{"id":"oai:sucra.repo.nii.ac.jp:00019379","sets":["94:429:431:432:992"]},"author_link":[],"item_113_alternative_title_1":{"attribute_name":"タイトル(別言語)","attribute_value_mlt":[{"subitem_alternative_title":"Filtering effect and implementation into seismic design by rigid frame viaduct structure with pile foundation considering nonlinearity and whole structural system during strong earthquake motion"}]},"item_113_biblio_info_9":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2020","bibliographicIssueDateType":"Issued"}}]},"item_113_date_35":{"attribute_name":"作成日","attribute_value_mlt":[{"subitem_date_issued_datetime":"2021-09-16","subitem_date_issued_type":"Created"}]},"item_113_date_granted_20":{"attribute_name":"学位授与年月日","attribute_value_mlt":[{"subitem_dategranted":"2020-09-23"}]},"item_113_degree_grantor_22":{"attribute_name":"学位授与機関","attribute_value_mlt":[{"subitem_degreegrantor":[{"subitem_degreegrantor_name":"埼玉大学"}],"subitem_degreegrantor_identifier":[{"subitem_degreegrantor_identifier_name":"12401","subitem_degreegrantor_identifier_scheme":"kakenhi"}]}]},"item_113_degree_name_21":{"attribute_name":"学位名","attribute_value_mlt":[{"subitem_degreename":"博士(工学)"}]},"item_113_description_13":{"attribute_name":"形態","attribute_value_mlt":[{"subitem_description":"iii, 206p","subitem_description_type":"Other"}]},"item_113_description_23":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":" In recent years, Japan has experienced an increasing number of short-period-dominated, high-acceleration earthquake motions. These earthquake motions far exceed the standard design response spectrum for short-period regions. However, only a limited amount of damage to structures founded on piles and some other types of structures is found to be caused by such earthquake motions. One of the possible reasons for this is the earthquake motion filtering effect through kinematic interaction. It is well known that unlike soil’s free field behavior, pile foundations restrict the motion of the surrounding soil during an earthquake and modify the input earthquake motion for structures. If the filtering effect is taken into consideration in the seismic design, the structure can be rationalized. Several studies focusing on the kinematic interactions for pile foundations are available in the literature. These available studies, however, have various limitations such as:\n・ a pile foundation rigidly connected to a rigid footing is often examined. However, the \n filtering effect of a pile foundation, where a pile is connected to elastic beam, is largely \n unknown.\n・ geology and stratum are complicated in Japan and soil conditions often change greatly \n within the structures. In such cases, seismic motion with a phase lag is input at each point \n of the structure. Since each element of the rigid frame is rigidly connected, the rigidity and \n the three-dimensional motion of the superstructure affect the motion of the pile foundation. \n It is necessary to develop a phenomenon elucidation and evaluation method for filtering \n effect by rigidity and motion of the whole structure system.\n・ most of the studies assume that both the soil and piles behave linearly. This linearity-based \n approach, however, cannot be straightforwardly applied to the filtering effect caused by \n strong earthquake motions as they essentially involve nonlinearity of both the soil and piles.\n・ impact of filtering effect on the short-period-dominated earthquake motions is largely \n unknown.\n・ past studies evaluates the filtering effect by using a single layer soil model under linear \n conditions. This approach, however, cannot be applied to actual soil and structural \n conditions. Therefore, it is necessary to develop a simple and general-purpose evaluation \n method for the filtering effect that can be applied to the static analysis method, which is the \n mainstream in seismic design practice.\n・ there is no research on reduction of element size and reinforcing bar that is possible by \n considering filtering effect in seismic design.\n In this study, theoretical and analytical studies are conducted on the abovementioned shortcomings of the available research in the literature. Considering the filtering effect of a rigid frame viaduct structure founded on piles, the phenomenon elucidation and the implementation in seismic design are examined.\n\n This dissertation consists of a total of 7 chapters. Chapter 1 details the background of research, review of past researches, and identification of shortcomings in the past researches. Chapters 2 through 6 are roughly divided into two aspects regarding filtering effect, namely - \"clarification of phenomena\" and \"implementation for seismic design\". Chapters 2, 3, and 4 detail studies on the phenomenon elucidation, while Chapters 5 and 6 summarize the studies on implementation in seismic design. The outline of the research contents and results of Chapters 2 to 6 are as follows.\n\n In Chapter 2, the following studies are conducted for a rigid frame viaduct with pile foundations: (1) characteristics of filtering effect due to pile foundation, (2) validity of filtering effect evaluation by mass system model, and, (3) filtering effect of pile foundation connected to an elastic beam.\n\n Firstly, the characteristics of filtering effect due to pile foundations are examined. The characteristics are clarified by performing parametric studies with varying ground and pile foundation specifications using an analysis method combining the thin layer element method and equivalent beam method. As a result, the filtering effect due to the pile foundation has a shorter wavelength relative to the pile length when the frequency is higher, so that the effect of restraining the surrounding ground by the pile becomes greater and the characteristic of the filtering effect occurs. It is also found that greater the relative rigidity of the pile foundation to the ground, the greater the filtering effect.\n\n For the verification of the analysis accuracy of the mass system, the validity was carried out next by comparing the analysis results of the mass system model and the detailed analysis method. Based on the results, it is clarified that the results from the mass system model and the detailed method are in a good match; the filtering effect can be evaluated accurately in the mass system model.\n\n The filtering effect of pile foundations connected to flexible beams was examined for four foundation types: (a) single pile, (b) group pile, (c) 1 column-1 pile type, and (d) pile-vent. The filtering effect was examined by dynamic analysis using a mass system model. Results show that the filtering effect is larger in the order of: group pile, 1 column-1 pile type, pile-vent, and single pile. In the group pile, the filtering effect is the largest due to the constraint effect of the pile head behavior due to the rigid footing. In addition, in the 1 column-1 pile type and pile- vent structure, the filtering effect is caused by resisting the ground motion due to the frame structure of the pile and the beam, and it is clear that the filtering effect can be expected as in the group pile.\n\n In Chapter 3, effects of the non-linearity of the soil and the pile foundation on the filtering effect are examined. Parametric studies were performed by changing the elasto-plasticity of each element of the soil and pile foundation, and the effect of nonlinearity on the filtering effect was evaluated. Results indicate that as the degree of nonlinearity of the soil increases, the rigidity of the pile with respect to the soil becomes relatively high and the filtering effect increases. On the other hand, it is also clarified that the nonlinearity of the pile makes the rigidity of the pile relatively small with respect to the soil and reduces the filtering effect. However, the effect is smaller than when the soil is nonlinear.\n\n In Chapter 4, the filtering effect generated from the whole structure system is examined. Dynamic analyses were carried out using a two-dimensional and three-dimensional model for a 1 column-1 pile type rigid frame viaduct. The filtering effect mechanism of the entire structure from the response results of the 3D model was examined. As a result, it became clear that the filtering effect due to the behavior of the whole structure system is caused by the horizontal rigidity of the pile foundation and the whole structure system.\n\n In addition, to evaluate the filtering effect of the whole structure system, results of the 2D model and the 3D model were compared. Comparison reveals that at the center cross section of the structure, a larger filtering effect is generated by considering the pile and horizontal rigidity, compared to the filtering effect (two-dimensional model) generated from the pile foundation. On the other hand, at the edge of the structure, it is found that the filtering effect considering the pile foundation and horizontal rigidity is smaller than the filtering effect of the pile foundation (two-dimensional model). This is because of the rotational movement of the structure.\n\n In Chapter 5, methods for implementing the filtering effect of pile foundation structures in the static analysis method, which is the mainstream in seismic design, are examined. In addition, effect of filtering effect on short-period-dominated earthquake motion is also examined. Firstly, a method for evaluating the filtering effect was developed. The filtering effect due to the pile foundation was calculated by the seismic deformation method and the effect due to the superstructure was assumed to be that the ground motion was obliquely input on the foundation (superstructure), and the theoretical solution of the foundation motion was derived. The filtering effect of the whole structure was evaluated by superposing the pile foundation and superstructure. The validity of the evaluation method was then verified by comparing the results of the evaluation method and the dynamic analysis method.\n\n Next, a method for easily reflecting the filtering effect in the nonlinear response spectrum used in the static analysis method was investigated. The method is a means of correcting the spectrum by calculating the response spectrum ratio using random vibration theory. The validity of the evaluation method was then verified by comparing the nonlinear response spectrum calculated from the evaluation method and the iterated integral method.\n\n The effect of the filtering effect on the short-period-dominated earthquake motions was investigated. Based on the observed earthquakes in the Tohoku Earthquake, the nonlinear spectra of the structure considering the filtering effect of both the pile foundation and the whole structural system were calculated. It is clarified that the reduction of the structure response becomes remarkable in the short period region due to the filtering effect in the earthquake motion containing many short period components.\n\n In Chapter 6, the effect of filtering effect on the response values and verification values of the structure and the rationalization of the structure are examined by conducting a trial design considering the filtering effect for a rigid frame viaduct with pile foundation. The study was carried out by the static analysis method according to the seismic design standard of railways. In the examination, response values and verification values were compared. In addition, changes in the amount of reinforcing bar and element dimensions due to the filtering effect were compared. Results show that the inertial force acting on the structure is reduced by the filtering effect. Consequentially, the cross-sectional force generated by each element decreases and the design margin increases. In addition, the element size and reinforcing bar can be reduced by considering the filtering effect. From this, it became clear that the structure could be significantly rationalized by considering the filtering effect in the seismic design.\n \n Finally, in Chapter 7, the summary of the current study is presented followed by future direction of the current work.","subitem_description_type":"Abstract"}]},"item_113_description_24":{"attribute_name":"目次","attribute_value_mlt":[{"subitem_description":"第1章 序論 ..................................................................................................... 1\n\n1.1 研究の背景と目的 ................................................................................................ 1\n1.2 杭基礎構造物のKinematic 相互作用に関する既往の研究 ................................... 6\n1.2.1 現象解明に関する研究 ....................................................................................... 6\n1.2.2 耐震設計への実装に関する研究 ........................................................................ 9\n1.2.3 既往研究のまとめと課題 ................................................................................. 10\n1.3 本研究の内容と構成 ............................................................................................. 11\n\n第2章 杭基礎による入力損失の評価 ....................................................... 20\n\n2.1 概説 ........................................................................................................... 20\n2.2 動的相互作用による入力損失効果 ........................................................................ 23\n2.3 杭基礎による入力損失の特性 ................................................................................ 25\n2.3.1 薄層要素法による入力損失の評価 .................................................................. 25\n2.3.2 検討条件 ..................................................................................................... 26\n2.3.3 入力損失の特性 ............................................................................................... 26\n2.4 質点系モデルによる入力損失の評価..................................................................... 32\n2.4.1 はじめに ..................................................................................................... 32\n2.4.2 質点系モデルの概要 ......................................................................................... 32\n2.4.3 検証に用いるモデルの概要.............................................................................. 34\n2.4.4 解析条件 ..................................................................................................... 35\n2.4.5 質点系モデルの妥当性 ..................................................................................... 35\n2.5 柔な梁に接続される杭基礎の入力損失 ................................................................. 40\n2.5.1 はじめに ..................................................................................................... 40\n2.5.2 対象構造物の概要 ............................................................................................. 40\n2.5.3 解析条件 ..................................................................................................... 40\n2.5.4 構造形式による入力損失の特性 ...................................................................... 41\n2.6 第2章のまとめ ................................................................................................. 47\n\n第3 章 地盤・杭の非線形性を考慮した杭基礎の入力損失効果 ........... 51\n\n3.1 概説 ........................................................................................................... 51\n3.2 非線形性を動的相互作用に考慮する意義 ............................................................. 52\n3.3 解析モデルの概要と非線形特性 ............................................................................ 54\n3.3.1 解析モデルの概要 ............................................................................................. 54\n3.3.2 自由地盤の非線形性 ......................................................................................... 54\n3.3.3 地盤と基礎の相互作用ばねの非線形性 .......................................................... 55\n3.3.4 杭の非線形性 ................................................................................................. 57\n3.4 地盤,杭基礎の解析条件と入力地震動 ................................................................. 62\n3.5 非線形性を考慮した地盤,杭基礎の応答 ............................................................. 65\n3.6 地盤,杭の非線形性が入力損失に与える影響 ..................................................... 75\n3.6.1 地盤の非線形性の影響 ..................................................................................... 75\n3.6.2 杭の非線形の影響 ............................................................................................. 75\n3.6.3 杭長,杭間隔の影響 ......................................................................................... 75\n3.7 第3章のまとめ ................................................................................................. 78\n付録 (第3章) .................................................................................................... 79\n付録3.1 質点系モデルによる解析結果と簡易算定式の比較 .................................. 79\n\n第4章 ラーメン高架橋全体系の入力損失効果 ....................................... 86\n\n4.1 概説 ........................................................................................................... 86\n4.2 解析モデルの概要と検討条件 ................................................................................ 88\n4.2.1 ラーメン高架橋全体系における有効入力動 .................................................. 88\n4.2.2 解析モデル ................................................................................................... 88\n4.2.3 解析条件 ..................................................................................................... 89\n4.3 構造全体系の応答特性 ........................................................................................... 96\n4.3.1 構造全体系の応答 ............................................................................................. 96\n4.3.2 梁剛性が応答に与える影響.............................................................................. 96\n4.4 構造全体系の入力損失効果 .................................................................................. 109\n4.5 第4章のまとめ ................................................................................................ 112\n付録 (第4章) ................................................................................................... 113\n付録4.1 3次元質点系モデルの固有値解析結果 ..................................................... 113\n\n第5章 杭基礎ラーメン高架橋構造全体系の入力損失効果の耐震設計への実装 ........................... 122\n\n5.1 概説 .......................................................................................................... 122\n5.2 入力損失を耐震設計実務に考慮する上での課題 ............................................... 124\n5.3 杭基礎による入力損失効果の評価 ...................................................................... 125\n5.3.1 評価手法の概要 .......................................................................................... 125 \n5.3.2 評価手法の有効性の検証 ............................................................................... 126\n5.4 杭基礎ラーメン高架橋構造全体系の入力損失の簡易な評価 ........................... 130\n5.4.1 評価手法の概要 .......................................................................................... 130\n5.4.2 上部構造物による効果の評価 ........................................................................ 130\n5.4.3 評価手法の妥当性の検証 ............................................................................... 133\n5.5 入力損失を考慮した簡易な非線形応答スペクトルの低減 ............................... 146\n5.5.1 ランダム振動論に基づくスペクトル比の算定 ............................................ 146\n5.5.2 提案手法の適用性の検討 ............................................................................... 148\n5.6 短周期卓越地震動に入力損失が与える影響 ....................................................... 153\n5.6.1 検討条件と地震動 ........................................................................................... 153\n5.6.2 入力損失による構造物の応答低減効果 ........................................................ 153\n5.7 第5章のまとめ ................................................................................................ 158\n\n第6章 入力損失を考慮した鉄道構造物の試設計 ................................. 162\n\n6.1 概説 .......................................................................................................... 162\n6.2 鉄道の耐震設計基準と入力損失効果の考慮 ....................................................... 163\n6.3 設計条件 ...................................................................................................... 169\n6.3.1 構造条件 .................................................................................................... 169\n6.3.2 地盤条件 .................................................................................................... 169\n6.3.3 構造解析モデル .............................................................................................. 170\n6.3.4 設計作用 .................................................................................................... 173\n6.3.5 検討ケース .................................................................................................. 174\n6.3.6 照査項目と照査指標 ....................................................................................... 174\n6.4 入力損失効果が構造物の応答値,照査値に及ぼす影響 ................................... 183\n6.4.1 有効入力係数の算定 ....................................................................................... 183\n6.4.2 非線形スペクトル法による応答値の算定 .................................................... 183\n6.4.3 応答変位法による応答値の算定 .................................................................... 184\n6.4.4 構造物の照査 ................................................................................................ 185\n6.5 入力損失を考慮した構造物の合理化の評価 ....................................................... 199\n6.6 第6章のまとめ ................................................................................................ 202\n\n第7章 結論 ................................................................................................. 204\n\n発表論文一覧\n\n謝辞","subitem_description_type":"Other"}]},"item_113_description_25":{"attribute_name":"注記","attribute_value_mlt":[{"subitem_description":"指導教員 : 齊藤正人","subitem_description_type":"Other"}]},"item_113_description_33":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"subitem_description":"text","subitem_description_type":"Other"}]},"item_113_description_34":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_113_dissertation_number_19":{"attribute_name":"学位授与番号","attribute_value_mlt":[{"subitem_dissertationnumber":"乙第259号"}]},"item_113_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.24561/00019348","subitem_identifier_reg_type":"JaLC"}]},"item_113_other_language_26":{"attribute_name":"その他の言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_113_publisher_11":{"attribute_name":"出版者名","attribute_value_mlt":[{"subitem_publisher":"埼玉大学大学院理工学研究科"}]},"item_113_publisher_12":{"attribute_name":"出版者名(別言語)","attribute_value_mlt":[{"subitem_publisher":"Graduate School of Science and Engineering, Saitama University"}]},"item_113_record_name_8":{"attribute_name":"書誌","attribute_value_mlt":[{"subitem_record_name":"博士論文(埼玉大学大学院理工学研究科(博士後期課程))"}]},"item_113_text_31":{"attribute_name":"版","attribute_value_mlt":[{"subitem_text_value":"[出版社版]"}]},"item_113_text_36":{"attribute_name":"アイテムID","attribute_value_mlt":[{"subitem_text_value":"GD0001260"}]},"item_113_text_5":{"attribute_name":"著者 所属(別言語)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Science and Engineering, Saitama University"}]},"item_113_version_type_32":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"寳地, 雄大","creatorNameLang":"ja"},{"creatorName":"ホウチ, ユウダイ","creatorNameLang":"ja-Kana"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2021-09-16"}],"displaytype":"detail","filename":"GD0001260.pdf","filesize":[{"value":"13.7 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"GD0001260.pdf","objectType":"fulltext","url":"https://sucra.repo.nii.ac.jp/record/19379/files/GD0001260.pdf"},"version_id":"7d6a3f15-0ca6-46ec-b838-c143fca931d4"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"doctoral thesis","resourceuri":"http://purl.org/coar/resource_type/c_db06"}]},"item_title":"地震時における杭基礎ラーメン高架橋の非線形および構造全体系を考慮した入力損失効果と耐震設計への実装に関する研究","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"地震時における杭基礎ラーメン高架橋の非線形および構造全体系を考慮した入力損失効果と耐震設計への実装に関する研究","subitem_title_language":"ja"}]},"item_type_id":"113","owner":"15","path":["992"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2021-09-16"},"publish_date":"2021-09-16","publish_status":"0","recid":"19379","relation_version_is_last":true,"title":["地震時における杭基礎ラーメン高架橋の非線形および構造全体系を考慮した入力損失効果と耐震設計への実装に関する研究"],"weko_creator_id":"15","weko_shared_id":-1},"updated":"2023-06-23T09:01:15.257541+00:00"}